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1. General introduction 

Soil salinization constrains global crop production. At present, 6% of global arable and 

20% of irrigated land area are thought to be affected by a level of salinization that compromises 

plant growth and yield (Munns & Tester, 2008; Rengasamy, 2010). Moreover, salinization is 

becoming more extensive as a result of global climate change, land clearing and inadequate 

irrigation practices (Munns & Gilliham, 2015; Roy et al., 2014; Zörb et al., 2019) further 

reducing the limited arable land area. Therefore, we need to breed plants showing greater salt 

tolerance in order to increase crop performance under saline conditions. 

1.1 Soil salinization 

Saline soil is defined as having high concentrations of soluble salts that significantly 

reduce the yield of most crops, in particular, when the electrical conductivity of the saturated 

soil extract (ECe) exceeds 4 dS m-1 (Richards, 1954). This threshold equals approximately 

40 mM NaCl, which represents the most soluble and prevalent salt in soil (Butcher et al., 2016; 

Munns & Tester, 2008). Because soils are rarely saturated in the field, the salt concentrations 

experienced by roots can be several times that of the saturated soil extract (Shabala & Munns, 

2012) resulting in concentrations of about 80-100 mM NaCl for soils with an ECe of 4 dS m-1 

(Rengasamy, 2002). Such conditions are primarily found in arid and semiarid climate areas, 

where salt ions from various sources have accumulated in soils over long periods (Rengasamy, 

2002). In addition to natural sources for salt ions such as mineral weathering and evaporation 

and to the drawing of soluble salts from deep layers into the root zone, anthropogenic 

salinization can occur by field irrigation with saline ground water and poor quality waste water, 

and insufficient drainage obstructing the washing-off of excess salts (Panta et al., 2014). As a 

consequence, 2% of global arable dry land and 20% of irrigated land area are saline because of 
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anthropogenic salinization (Munns & Tester, 2008); this is expected to contribute substantially 

to the degradation of further arable land in the future (Panta et al., 2014). 

1.2 Salt stress and mechanisms of tolerance in plants 

Plant growth and yield are compromised by abiotic stress conditions such as soil salinity. 

The most important crop plants providing 90% of plant-based human food are sensitive to salt 

(Zörb et al., 2019). As a consequence, even moderate salinity in the range of 4-8 dS m-1 results 

in average yield reductions of 50-80% (Panta et al., 2014). Salt-related reductions in crop 

productivity result from mechanisms directly impacting on plant physiology, viz. osmotic and 

ion-specific effects (Munns, 2002), and indirect effects that result from the deterioration of soil 

physical and chemical properties and that thereby interfere with nutrient acquisition (Bronick 

& Lal, 2005; Butcher et al., 2016; Tester & Davenport, 2003). The initial phase of salt stress is 

characterized by osmotic stress resulting from high solute concentrations lowering the soil 

water potential outside the roots (Munns & Tester, 2008). In addition to rapid stomatal closure 

mediated by the accumulation of the plant stress hormone abscisic acid (Geilfus et al., 2018; 

Geilfus et al., 2015a), plant metabolism responds within minutes to such conditions by 

disturbances in nitrogen assimilation and activation of metabolic pathways favouring the 

scavenging of reactive oxygen species (Geilfus et al., 2015b). To alleviate the consequences of 

the lowered soil water potential, plants osmotically adapt by ion intake (Amede et al., 2015) 

and the biosynthesis of organic osmolytes (Hasegawa et al., 2000; Kabbadj et al., 2017). 

Osmotic adjustment by using salt ions is energetically cheaper than the biosynthesis of organic 

osmolytes (Munns et al., 2020) but only as long as the cellular capability for sequestrating salt 

ions into vacuoles and for balancing the resulting osmotic pressure by organic osmolytes in the 

cytosol is not exceeded (Munns & Gilliham, 2015; Munns et al., 2016). This trade-off illustrates 

the interplay of two major strategies for coping with salt in soil solution: (1) the exclusion of 

salt ions at the root level and the restriction of acropetal transport towards photosynthetically 
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active tissue (‘ion exclusion’) and (2) the strict regulation of subcellular ion compartmentation 

into vacuoles or photosynthetically non-active cells to avoid the rise of toxic Na+ and Cl- 

concentrations (Munns & Gilliham, 2015; Munns & Tester, 2008; Roy et al., 2014). In most 

glycophytes, Na+ and Cl- concentrations in leaves increase with continuous exposure to salinity 

because of weak ion exclusion capabilities leading to the disruption of ion homeostasis and 

symptoms of ion toxicity (Munns & Tester, 2008). The toxicity of high Na+ is largely a result 

of interference with K+ homeostasis. The chemical similarity of the cations (Benitoet al., 2014) 

enables Na+ to compete with K+ for the binding sites essential for cellular functioning such as 

enzyme activation and protein biosynthesis (Flowers et al., 2015; Tester & Davenport, 2003) 

thus, adversely affecting the cellular metabolism. In contrast, the stress effects of high Cl- are 

less well understood than those of Na+ (Bazihizina et al., 2018; Li et al., 2017; Teakle & 

Tyerman, 2010), despite its being the predominant anion in most saline soils (Munns & Tester, 

2008). Increasing leaf Cl- concentrations are primarily associated with reductions in 

photosynthetic capacity (Tavakkoli et al., 2010) and chlorophyll degradation (Geilfus, 2018). 

In glycophytic crops, photosynthetic capacity is possibly affected by excessive Cl- 

accumulation within the chloroplasts (Teakle & Tyerman, 2010) because their outer envelopes 

have a high permeability for Cl- (Bose et al., 2017; Heber & Heldt, 1981). Enrichment of Cl- in 

chloroplasts is expected to cause reductions in quantum yield and plant growth (Tavakkoli et 

al., 2010). This is considered as a consequence of Cl--induced disturbance of the structural 

organization of photosystem II and the degradation of chlorophyll (Geilfus, 2018), finally 

leading to chlorotic discolorations and later to necrotic leaf edges (Hanson et al., 1999). 

1.3 Physiology of stomata 

Stomata usually consist of two opposingly arranged guard cells and enable controlled gas 

exchange between the atmosphere and the inside of a leaf. A fine-tuned balancing of CO2 intake 

and concomitant water loss is important to provide CO2 for photosynthesis while retaining the 
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hydration of the plant (Lawson & Blatt, 2014; Lawson et al., 2010). The adjustment of stomatal 

aperture in response to endogenous and exogenous cues, such as their immediate response to 

soil salinity, is of tremendous significance because stomatal transpiration accounts for 

approximately 95% of the water loss of a plant (Ache et al., 2010). Optimization of the 

performance of the stomata is a key factor for the acclimatization of a plant to soil salinity 

because this structure controls transpiration and, therefore, the hydration and the extent of salt 

delivered to the shoot by mass flow (Hedrich & Shabala, 2018; Robinson et al., 1997). The fast 

responses of the stomata are facilitated by transient solute accumulation within their guard cells 

enabling rapid changes in turgor (MacRobbie & Kurup, 2007). During light-induced stomatal 

opening, the import of K+, Cl-, NO3- and small organic acids from the apoplast together with 

the biosynthesis of organic solutes such as malate are essential for the build-up of the osmotic 

potential within the guard cells (Jezek & Blatt, 2017; Santelia & Lawson, 2016). In this process, 

the guard cell metabolism plays a pivotal role because it provides energy equivalents for active 

transport of inorganic ions and for the biosynthesis of organic solutes (Kollist et al., 2014; 

Kopka et al., 1997). In response to light, starch degradation (Daloso et al., 2017; Horrer et al., 

2016) and fatty acid breakdown of guard cells become activated (Horrer et al., 2016; 

McLachlan et al., 2016), favouring energy production via mitochondrial oxidative 

phosphorylation and peroxisomal β-oxidation, respectively. The produced energy equivalents 

feed the high energy demand of solute intake and biosynthesis, which trigger water influx, i.e. 

the inflating of the guard cells leading to stomatal opening. Vice versa, closing stomata are 

characterized by a reversal of the opening process in regard to osmolyte magnitude and flux 

direction. A signal cascade initiated, for example, by the stress hormone abscisic acid, triggers 

an initial anion release from guard cells, which in turn leads to the release of K+ together with 

inorganic anions (Hedrich & Shabala, 2018; Jezek & Blatt, 2017). Organic anions are either 

metabolically decomposed or released to the apoplast when stress responses require fast turgor 

loss (Santelia & Lawson, 2016). 
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1.4 Objectives & main findings 

A better understanding of stomatal processes contributing to salt tolerance in crop plants 

is becoming increasingly important for agriculture because of the serious impacts of soil salinity 

on plant yield and quality. In this thesis, a broad analysis of tolerance mechanisms is provided 

in terms of ion exclusion, tissue tolerance, and their impact on stomatal regulation and 

photosynthesis within selected populations of V. faba and Z. mays exposed to various salt 

treatments. 

o Is there plasticity in the ability of ion retention and tissue tolerance of Na+ and Cl- 

between salt sensitive and tolerant V. faba varieties? 

Þ Tolerant V. faba varieties sequester Na+ and exclude Cl- from shoots. 

 

o Is there plasticity in the ability of ion retention and tissue tolerance of Cl- in diverse 

Z. mays genotypes? 

Þ Most Z. mays genotypes exclude Cl- from shoot avoiding a deleterious Cl- 

accumulation in photosynthetically active tissues. 

 

o Are stomatal function and guard cell metabolism in V. faba affected by increasing 

leaf Na+ and Cl+ concentrations resulting from long-term salinity? 

Þ Stomata can still be opened and closed, albeit at slower speed. In contrast to 

mesophyll, guard cells do not show a salt stress metabolic signature. 
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A B S T R A C T

Faba bean (Vicia faba L.) is sensitive to salinity. While toxic effects of sodium (Na+) are well studied, toxicity
aspects of chloride (Cl−) and the underlying tolerance mechanisms to Cl− are not well understood. For this
reason, shoot Cl− translocation and its effect as potential determinant for tolerance was tested. Diverse V. faba
varieties were grown hydroponically and stressed with 100mM NaCl until necrotic leaf spots appeared. At this
point, biomass formation, oxidative damage of membranes as well as Na+, Cl− and potassium concentrations
were measured. The V. faba varieties contrasted in the length of the period they could withstand the NaCl stress
treatment. More tolerant varieties survived longer without evolving necrosis and were less affected by inhibitory
effects on photosynthesis. The concentration of Cl− at the time point of developing leaf necrosis was in the same
range irrespective of the variety, while that of Na+ varied. This indicates that Cl− concentrations, and not Na+

concentrations are critical for the formation of salt necrosis in faba bean. Tolerant varieties profited from lower
Cl− translocation to leaves. Therefore, photosynthesis was less affected in those varieties with lower Cl−. This
mechanism is a new trait of interest for salt tolerance in V. faba.

1. Introduction

Faba bean (Vicia faba L.) contributes to nitrogen input to soil and is
often used in organic agriculture (Köpke and Nemecek, 2010; Turpin
et al., 2002). Faba bean is an important legume crop that is used as feed
and food because of its high dietary protein content (Crépon et al.,
2010). Legumes and particularly faba bean are sensitive to high salt
loadings in soil resulting in limitations in yield and biomass (Li et al.,
2017; Tavakkoli et al., 2010). Faba bean is grown in the Middle East,
the Mediterranean region, China and Ethiopia. Some of these regions
may face a problem with high salt loadings (Jensen et al., 2010), with
sodium chloride representing the most soluble and prevalent salt
(Butcher et al., 2016; Munns and Tester, 2008). The initial phase of salt
stress is usually dominated by osmotic stress resulting from high solute
concentrations and low soil water potential and is therefore categorized
as ‘osmotic-phase’ (Munns and Tester, 2008). In response to the osmotic
imbalance, faba bean undergoes fast physiological adaptations within
the first hour (Geilfus et al., 2015a). In addition to rapid stomatal
closure, metabolites associated with the formation and scavenging of
reactive oxygen species accumulate, while a reduction in glutamine

synthetase activity indicates disturbances in nitrogen assimilation, even
in the early phase of salt stress. Additionally, a proline analogue (trans-
4-hydroxy-L-proline) known to inhibit cell elongation is increasingly
synthesized after NaCl-stress initiation (Geilfus et al., 2015b). In order
to alleviate the effect of reduced cell expansion and lack of water, plants
osmotically adapt by ion uptake (Amede et al., 2003; Farooq et al.,
2015) and the synthesis of compatible solutes (Hasegawa et al., 2000;
Kabbadj et al., 2017). With a continuous exposure to salinity, the ac-
cumulated salt ions lead to the disruption of ion homeostasis and cause
symptoms of ion toxicity (Munns and Tester, 2008). Moreover, a clear
separation into osmotic and ionic stress phases is problematic, because
the transition between the phases is fluent and phases often overlap. In
faba bean, high shoot Na+ concentrations interfere with K+ and cal-
cium nutrition, while the accumulation of Cl− is associated with a
decline of photosynthetic capacity (Tavakkoli et al., 2010). The re-
striction of salt ion fluxes is mandatory both for preventing intra- and
intercellular Na+ and Cl− concentrations from rising to toxic con-
centrations and for ensuring K+ homeostasis. The latter is essential for
the functioning of protein biosynthesis and the various cytosolic en-
zymes that might be impaired by competition of Na+ and K+ (Flowers

https://doi.org/10.1016/j.jplph.2019.02.012
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and the lme4-package to perform linear mixed effects analysis (Bates
et al., 2015). As fixed effects, variety and treatment with an interaction
term were entered into the model, whereas the positioning of the in-
dividual plants within the plastic containers of the hydroponics system
was entered as a random effect. Residuals of statistical models were
inspected visually and by using the DurbinWatson test from the car-
package (Fox and Weisberg, 2011). Data were analysed on the basis of
p≤ 0.05 by using the Tukey test algorithm and information of pairwise
comparison and compact letter display was extracted by use of the
multcompView package (Graves et al., 2015). Prior to clustering by
using the stats package (R Development Core Team, 2017), optimal
cluster number was estimated by using the fpc package (Hennig, 2015).
Clustering was conducted according to the Hartigan and Wong algo-
rithm with an estimated cluster number by optimum average silhouette
width (R Development Core Team, 2017). Relative changes of dry
weights were calculated relative to the non-stressed control group by
subtracting log-transformed values. Changes of electrolyte leakage were
calculated relative to the averaged non-stressed control group. Average
ion accumulation was calculated as difference of salt stress concentra-
tions and averaged non-stressed control group divided by the length of
the exposure to NaCl stress. Data were visualized by using the ggplot2
package (Wickham, 2016), the ggbiplot package (Vu, 2011) and the
corrplot package (Wei and Simko, 2017).

3. Results

3.1. Plasticity of faba bean varieties under salt stress

To identify the plasticity of stress physiological reactions and the
range of diverse varieties in stress tolerance, faba bean varieties that
contrast in their ability to withstand 100mM NaCl stress were tested.
Therefore, the experiment was conducted using a variable stress period,
i.e. each variety grew as long as was needed to develop visible toxicity
symptom. The plants of each variety were harvested when four out of
five plants developed toxicity symptoms such as tiny leaf spot necrosis
or severe loss of turgidity (Fig. 2B, C). By this, a comparison of the
plasticity of the varieties at a similar physiological stress level was
achieved. Salt-treated ‘Major’ plants suffered from severe loss of tur-
gidity (Fig. 2C), whereas the other varieties developed tiny necrotic
spots on leaves (Fig. 2B). The faba bean varieties differed in their stress
response. Some of the varieties showed salt stress symptoms earlier,
others later thus illustrating the contrast in their plasticity to withstand
salt stress (Fig. 2A). In comparison of the 13 varieties ‘Fuego’ and
‘Major’ developed symptoms first (after 12 days of NaCl treatment). The
other varieties developed leaf necrosis after 14, 16, 19, 21 and 26 days
of NaCl treatment. The most tolerant varieties were ‘Nebraska’ and
‘Scoop’ which developed leaf necrosis after 26 days, this was 14 days
later than the sensitive variety ‘Fuego’.

3.2. Growth depression, membrane integrity, assimilation and transpiration

Of course, the absolute biomass formation increased with the

Fig. 2. Plasticity of faba bean varieties at 100mM salt stress. A) Duration in days starting from full-strength salt application to development of leaf necrosis or loss of
turgidity in at least four out of five salt-treated plants of a respective variety. Time point indicates harvest time; B) Faba bean leaf with necrotic spots. Image taken
from a 4th leaf of ‘Fuego’ after 11 days of NaCl treatment; C) Faba bean leaf with loss of turgidity, from 3th leaf of ‘Major’ after 11 d of NaCl treatment. Scale bars
represent 1 cm.
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duration of the growth period under both control and NaCl conditions
in all varieties showing that the treatment was moderate and not too
harsh. The plasticity of the varieties was high because salt-induced
growth depression ranged in average from 5 to 65% in young shoots
that had developed under the influence of salt stress. However, growth
depression was only significant for ‘RLS67101’ and ‘Scoop’ (Fig. 3). The
most tolerant variety ‘Nebraska’ (Fig. 2A) did not show significant
growth depression neither necrosis within 25 d of stress duration.

The status of the membrane integrity of mature leaf was assessed by
measuring their electrolyte leakage. The electrolyte leakage was sig-
nificantly increased by NaCl treatment in all varieties with the excep-
tion of the early salt-injury-developing varieties ‘Fuego’ and ‘Honey’,
which had similar leakage rates under control and salt conditions
(Fig. 4). With the exception of the two mentioned varieties, the relative
increase of electrolyte leakage was at a similar level although the ex-
posure time to NaCl varied (Fig. 2A).

Leaf transpiration rate (E) and CO2 assimilation rate (A) were

measured every 2nd or 3rd day, starting 3 d after full-strength NaCl
application (Fig. 5). In comparison with control, salt treated plants had
significantly reduced E and A with an average reduction of about 70%
and 30%, respectively (Fig. 5). At the early stress phase (3 d since full-
strength NaCl application), salt treated plants showed reduced E of
about 1mol H2O m−2 s−1 that fluctuated only a little in the following
days of the stress period. Conversely, A was about 5.5 μmol CO2m−2

s−1 and decreased significantly for most varieties in the subsequent
period of 5 to 10 d of NaCl stress to rates of about 2 μmol CO2m−2 s−1

(Fig. 5). Two days after A decreased to this level, the varieties such as
‘Fuego’, ‘Honey’ and ‘Mallory’ already had developed necrotic spots.
The E of ‘RLS67101’, ‘Nebraska’ and ‘Scoop’ was slightly higher in
comparison with the other varieties. Furthermore, A decreased only to
approx. 2.5 μmol CO2m−2 s−1 and did slightly recover to 3.5 μmol
CO2m−2 s−1 in the period from 14 to 17 d of salt stress. The latter trend
was also visible at ‘Diva’ and ‘Espresso’.

Fig. 3. Plasticity of faba bean varieties differing in young shoot biomass (at the individual day that the varieties displayed visible symptoms), dry weight of control
(CT) and 100mM NaCl. Plants were harvested when leaf necrosis or loss of turgidity occurred as indicated in Fig. 2. Adjusted means from linear mixed-effect
model ± SE. Different letters indicate significant differences; p≤ 0.05; n= 5.

Fig. 4. Membrane integrity of faba bean varieties. EL, relative increase of electrolyte leakage after NaCl treatment in comparison to unstressed controls. Samples were
taken when first symptoms occurred as indicated in Fig. 2. Means ± SE. Different letters indicate significant differences; p≤ 0.05; n= 5.
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3.3. Ion pattern

The concentrations of potassium [K+], sodium [Na+] and chloride
[Cl−] were analysed to determine plasticity of tissue specific ion pat-
terns in these varieties. Sodium in control plants was hardly detectable,
whereas the average [Cl−] ranged from 150 to 200 μmol g DW−1 in
young shoots and from 100 to 420 μmol g DW−1 in mature leaves
(Figs. 6A, 7 A). The [K+] was similar for most varieties, with con-
centrations ranging from 1050 μmol g DW−1 in young shoots to
1150 μmol g DW−1 in mature leaves of control plants (Figs. 6A; 7 A).
The addition of 100mM NaCl to the nutrient solution resulted in an
accumulation of salt ions but the increase of Na+ was about two-fold
higher than that of Cl− in both young shoots and mature leaves
(Figs. 6A; 7 A). In mature leaves, [Na+] and [Cl−] were higher than in
young shoots. In contrast, the reduction of [K+] was more pronounced
in mature leaves that had accumulated 84% more Na+ than young
shoots (Figs. 6A; 7 A). In comparison with the later symptom-devel-
oping varieties ‘RLS67101’, ‘Nebraska’ and ‘Scoop’, the early symptom-
developing variety ‘Fuego’ accumulated less Na+ in young shoot and
mature leaf.

The pattern of Na+ and K+ concentrations in young shoots differed
in relation to the duration that the plants grew under stress. The [Na+]
increased with the duration of NaCl stress (‘days without symptoms’)
whereas that of [K+] decreased (Suppl. Fig. 1). The varieties ‘Nebraska’
and ‘Scoop’, which developed symptoms later, showed higher [Na+] in
young shoots and mature leaves. These both varieties had also lower
[K+] compared with the more sensitive variety ‘Fuego’ which devel-
oped necrotic spots earlier (Fig. 6A). In contrast, the [Cl−] differed
much less at the time point when leaf necrotic spots appeared. This

pattern was visualized by a density plot: in young shoots and mature
leaves the densities of [Cl−] were about double in comparison to [Na+]
(Figs. 6B; 7 B). However, in mature leaves the density of [Cl−] was
twice as high compared with young shoots (Fig. 7B). Moreover, the
pattern for Cl− shows narrow density peaks in comparison with Na+

with broad peaks. In particular, [Cl−] in young shoots was similar, ir-
respective of the variety and the various exposure time to NaCl
(Fig. 6B). The common pattern was that plants, regardless of their
variety, formed salt-stress symptoms at a specific Cl− tissue con-
centration, whereas such a pattern was not observed for Na+ (Figs. 6B;
7 B).

To find a tissue ion pattern for the diverse varieties a hierarchical
clustering according to their Na+ and Cl− concentrations was done
(Fig. 8A, B). In both leaf fractions (young and mature), varieties with
lower ion concentrations clustered into one group (dark triangle) and
other varieties with 1.5 to 2-fold higher tissue ion concentration clus-
tered together (light triangle). Varieties such as ‘RLS67101’, ‘Nebraska’,
and ‘Scoop’ developing symptoms later clustered into the group with
higher tissue ion concentrations. However, [Cl−] in young shoots was
similar in all varieties except for ‘Major’ (Fig. 8A), which did not de-
velop necrotic spots but showed loss of turgidity (Fig. 2C). Ion tissue
concentrations in mature leaves were in general higher compared to
young tissue and a diversification of the concentration pattern of all
varieties was observable.

The average ion accumulation per day of NaCl stress exposure
(stress dose) was calculated to relate the ion concentration at the time
point of the appearance of symptoms to the length of the respective
stress period. This value serves as an evaluation for the height of the
daily ion-accumulation to show the potential differences between Na+

Fig. 5. Assimilation (A) and transpiration rate (E) of faba bean varieties grown at 100mM NaCl. Measurements were conducted at mature leaves (4th) starting from 3
days after full-strength salt stress until the respective variety developed symptoms. Means ± SE with dotted trend line (local polynomial regression fit). Different
letters indicate significant intra-variety differences of means; p≤ 0.05; n=3.
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and Cl− intake of the diverse varieties. The average Na+ accumulation
in young shoot was similar in all varieties with values ranging from 40
to 60 μmol g DW−1 d−1 (Fig. 8C). Cl− was accumulated up to 20 μmol g
DW−1 d−1. The variety ‘Mallory’ was significantly different to ‘Scoop’
that had lowest average accumulation of 10 μmol g DW−1 d−1. In
mature leaves, the average Na+ accumulation was similar to that of
young shoots for all varieties, ranging from 100 to 140 μmol g DW−1

d−1, except of ‘Honey’ with 50 μmol g DW−1 d−1 (Fig. 8D). In most
varieties, Cl− accumulated up to 40 μmol g DW−1 d−1, except for
‘Mallory’, ‘Nebraska’ and ‘Scoop’ which had lower values of about
25 μmol g DW−1 d−1. The relative Na+/K+ ratios in young shoots and

mature leaves increased with NaCl treatment (Fig. 8E, F). Highest in-
creases in young shoot of 600-fold and 200-fold were found in those
varieties (‘Nebraska’, ‘Scoop’, ‘RLS57222’) that developed symptoms
later than others (Fig. 8E). In mature leaves, the relative Na+/K+ ratios
of the earlier-symptom developing varieties (‘Fuego’, ‘Major’, ‘Honey’)
increased by about 60 to 100-fold whereas the other varieties showed
increases of 200-fold or higher (Fig. 8F).

Analysis of principle components (PCA) based on concentrations of
Na+, Cl− and K+ revealed that the more salt-sensitive ‘Fuego’, ‘Honey’
and ‘Organdi’ were separated due to higher [K+] and lower [Na+],
whereas the contrary was found for the later symptom-developing

Fig. 6. Ion concentrations in young shoot of faba bean. A) Concentrations of sodium Na+, chloride Cl− and potassium K+, non-stressed controls (CT), 100mM NaCl
(NaCl). B) density plot of Na+ and Cl− concentrations in young shoots of 13 averaged NaCl-treated faba bean varieties. Samples were taken when leaf necrosis or loss
of turgidity occurred as indicated in Fig. 2. Adjusted means from linear mixed-effect model ± SE; n= 5.

Fig. 7. Ion concentrations in mature leaf (4th) of faba bean. A) Concentrations of sodium Na+, chloride Cl− and potassium K+, non-stressed controls (CT), 100mM
NaCl (NaCl). B) density plot of Na+ and Cl− concentrations in mature leaves of 13 averaged NaCl-treated faba bean varieties. Samples were taken when leaf necrosis
or loss of turgidity occurred as indicated in Fig. 2. Adjusted means from linear mixed-effect model ± SE; n=5.
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Fig. 8. Comparison of faba bean varieties by means of ion composition at one day after the development of symptoms (Fig. 2). A) Clustering of NaCl-treated faba bean
varieties based on concentrations of sodium Na+, chloride Cl− and potassium K+ in young shoot and B) mature leaf. C) Average Cl− and Na+ accumulation per day
of NaCl application in young shoot and (D) mature leaf. E) Relative increase of Na+/K+ ratio in response to salt treatment in young shoot and (F) mature leaf. A–B)
Adjusted means from linear mixed-effect model; C–F) Means ± SE. Different letters indicate significant differences: capital letters: Cl−; lowercase letters: Na+;
p≤ 0.05; n= 5.
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varieties ‘Nebraska’ and ‘Scoop’ (Fig. 9A). The variety ‘RLS67101’, also
belonging to the later symptom-developing varieties was characterized
by higher [K+] combined with increased [Cl−] and [Na+] in mature
leaves. Due to increased [Na+] and [Cl−] combined with low [K+],
‘Nebraska’ and ‘Scoop’ were at the right side (Fig. 9A). On the contrary,
the variety ‘Major’ was separately arranged due to lowest [Cl−] in
young shoot. PCA based on the calculated measures, average ion ac-
cumulation and increase in Na+/K+ ratio, illustrated that the later
symptom developing varieties ‘Nebraska’ and ‘Scoop’ were separated
due to low average shoot Cl− and K+ accumulation and highly in-
creased shoot Na+/K+ ratio (Fig. 9B). Conversely, the early symptom
developing ‘Fuego’ was at the right side due to higher average shoot
Cl− accumulation as well as higher K+ accumulation in young shoot
and mature leaf (Fig. 9B).

4. Discussion

4.1. Plasticity of NaCl tolerance in Vicia faba

In contrast to common experimental setups using fixed stress ex-
posure time, our experiment was conducted with synchronized stress
level to characterize the diverse faba bean varieties as salt sensitive or
more tolerant and further evaluate on the basis of ion accumulation
patterns how salt ion exclusion and retention mechanisms could have
contributed to the observed differences in salt stress tolerance. With this
approach it is possible to evaluate the plasticity of either sensitive or
more tolerant genotypes differing in their physiological stress response.

Our experimental results show that faba bean varieties differ in their
ability to withstand salinity. The plasticity of tolerance to salinity of V.
faba seems to be broad and even without having the breeding goal of
salt tolerance in these German varieties there is a high genetic and
physiological variance within this trait. In response to prolonged salt
treatment, all varieties except of ‘Major’ developed necrotic lesions on
leaves. The necrotic spot symptom is attributed to the ionic part of salt
stress which is an addition of an ionic imbalance together with an ion
toxicity caused by high Na+ concentrations and excess Cl−. The plant
either has to exclude excess ions or deal with these physiological in-
conveniences. This can be achieved by a so called ‘tissue tolerance’. The
differences in Na+/K+ ratio of the diverse varieties also showed the

plasticity of V. faba in terms of dealing with ion homeostasis or ex-
cessive salt ion accumulation that may lead to cytotoxicity (necrosis)
and consequently the loss of photosynthetically active tissue (Fig. 2B)
(Geilfus, 2018; Slabu et al., 2009). In faba bean, this ‘overcome of tissue
tolerance’ is a sudden process, as necrotic spots appeared mostly over-
night and resulted in leaf senescence within about three days. The
difference among sensitive and tolerant varieties was approximately
double in NaCl dose that caused symptoms, therefore we consider the
plasticity of V. faba also as relatively high in terms of salt tolerance
mechanisms. In contrast, in the literature V. faba is considered as salt
sensitive crop (Li et al., 2017; Maas and Hoffman, 1977; Slabu et al.,
2009). We think it is of great matter which variety has been used to
evaluate this. Of note, the variety ‘Major’ showed a loss of turgidity and
wilting, which represent symptoms that are attributed to osmotic stress
(Fig. 2C). In that physiological stage, ion accumulation had likely not
yet exceeded the tissue tolerance capacity.

By choosing this experimental setup, salt tolerant plants were
evaluated according to their variety-specific growing days without
symptoms. On the basis of the temporal difference in development of
symptoms referred to as days without symptoms, the variety ‘Fuego’
was identified as salt sensitive whereas ‘Nebraska’ and ‘Scoop’ were
more tolerant (Fig. 2A). As biomass increased with growth time (Suppl.
Fig. 1), the tolerant varieties tended towards formation of higher bio-
mass of the young shoot fraction, that had developed under full-
strength NaCl treatment (100mM NaCl) (Fig. 3). Interestingly, the
shoot growth of the tolerant variety ‘Nebraska’ appeared to be un-
affected by salt treatment although the respective plants had faced the
longest stress period before developing symptoms. However, this might
be due to a comparatively low growth performance also under control
conditions and should therefore not lead to the erroneously conclusion
that the variety ‘Nebraska’ is preferable to that of ‘Scoop’ in terms of
biomass production in saline environments (Fig. 3).

4.2. Oxidative stress, assimilation and transpiration

In order to evaluate physiological parameters such as membrane
integrity under stress conditions, we compared variety-specific in-
creases in electrolyte leakage. These are ascribed to stress conditions
such as salinity, drought or pathogen attack (Demidchik et al., 2014;

Fig. 9. Principal component analysis of NaCl-treated faba bean varieties A) based on concentrations of sodium Na+, chloride Cl− and potassium K+ in young shoot
and mature leaf and B) average Cl− and Na+ accumulation per day of NaCl application (‘days without symptom’) and relative increase of Na+/K+ ratio in response
to salt treatment in young shoot and mature leaf.
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Miller et al., 2010). This membrane damage results from oxidative
processes or stress-related decrease of the lipid to protein ratio
(Borochov-Neori and Borochov, 1991; Dionisio-Sese and Tobita, 1998).
The maintenance of low electrolyte leakage under stress conditions has
been associated with tissue tolerance (Arefian and Malekzadeh
Shafaroudi, 2015; Bose et al., 2014; Lee and Zhu, 2010; Sudhakar et al.,
2001). In our study, electrolyte leakage was measured at the time point
when salt lesions appeared meaning that the variety-specific capacity of
tissue tolerance was overcome. In this context, electrolyte leakage re-
presents a measure for the intensity of oxidative stress that the plants
had been exposed to. In response to salt treatment, all varieties except
for ‘Major’ and ‘Honey’ had similar electrolyte leakage when salt in-
juries occurred (Fig. 4). This indicates that the level of oxidative stress
was similar for most varieties at the time point when leaf necrosis ap-
peared. However, the membrane integrity of ‘Fuego’ and ‘Honey’ was
less hampered under conditions of salt stress, but the two varieties were
able to endure this stress only for 12 and 14 days, respectively. Because
those varieties that developed symptoms later under stress conditions
had increased relative electrolyte leakage, we conclude that impaired
membrane integrity is a consequence of increasing salt ion accumula-
tion but does not necessarily lead to the formation of leaf necrosis.

Leaf transpiration (E) and assimilation rate (A) are non-destructive
measurements representing a physiological indicator for salt tolerance
that allows conclusions to be made with regard to the health and
functional integrity of leaves (Munns et al., 2016). We performed these
non-destructive physiological measurements at the 4th leaves, which
later were analyzed for their K+, Na+, and Cl− concentrations for
better comparison (Fig. 7A). Faba bean growing under saline conditions
responded by reducing E to avoid undesired water loss (Fig. 5) (Geilfus
et al., 2015a; Keisham et al., 2018; Roy et al., 2014). Unlike to our
expectations the more tolerant varieties maintained even higher E than
sensitive ones, in contrast one would expect that a reduction in E is an
essential attribute to save water (Fig. 5). Moreover, as stomata regulate
access of CO2 to photosynthetic active tissues, a decreased stomatal
conductivity is assumed to compromise assimilation rate by restricting
CO2 diffusion into leaves (Lawson and Blatt, 2014). Although E and
therefore CO2 influx did not decrease or only slightly decrease since the
continuing stress period, a significant decrease of A was seen from 3 to
5 days after full-strength salt stress application for some varieties.
Especially the salt sensitive varieties ‘Fuego’, ‘Major’ and ‘Honey’
showed this trend of a continuously decreasing A until salt lesions had
occurred. In contrast, the tolerant varieties maintained higher E and A
during prolonged exposure to salt (Fig. 5). Besides the inhibitory effect
of osmotic stress that results in photorespiration and decrease of A, an
unbalanced chloroplastidial Cl− homeostasis is expected to compro-
mise photosynthesis. Under salinity, field bean accumulates Cl− in
chloroplasts that might reduce photosynthetic quantum yield by re-
duction in chlorophyll content (Slabu et al., 2009; Tavakkoli et al.,
2010). In addition, the inhibition of CO2 fixing enzymes, disturbed dark
relaxation of chloroplasts, damage of PSII reaction centers due to
photoinhibition as well as excessive production of ROS in chloroplasts
were associated with excess chloroplastidial Cl− (Geilfus, 2018).
Hence, a decreasing A, which is not directly limited by reduced sto-
matal conductivity, might be explained by excess Cl− that had been
translocated into the shoot and ultimately accumulated in chloroplasts.
This explanation is consistent with the differences in variety-specific
Cl− translocation to the young shoot and mature leaves (Fig. 7C, D),
which potentially enabled the tolerant varieties to protect their sites of
primary photosynthesis more efficiently from excess Cl− intake and
thus may help preventing chlorophyll degradation and the resulting
decrease of A (Fig. 5; Suppl. Table 1).

4.3. Tolerant V. faba varieties sequester Na+ ions

All varieties accumulated Na+ and Cl− ions but to a different extent
(Figs. 6A, 7 A). The Na+ concentration increased with the length of

NaCl-stress exposure. Consequently, longer growing varieties had
higher Na+/K+ ratios compared with NaCl-sensitive varieties such as
‘Fuego’ (Fig. 7E, F). In particular, the most tolerant varieties ‘Nebraska’
and ‘Scoop’ showed highest and second highest relative Na+/K+ ratios
in both young shoots and mature leaves (Figs. 8E, F; 9 B). Sodium is
often referred to as the most toxic ion in plants at saline conditions,
because high cytosolic concentrations disturb K+-homeostasis and
therefore interfere with enzyme function and the regulation of stomatal
aperture under saline conditions (Deinlein et al., 2014; Flowers et al.,
2015; Hasegawa, 2013; Munns et al., 2016). However, the ion pattern
at the time point of a similar stress level revealed that the maintenance
of a low Na+/K+ ratio seems to be a less important attribute for salt
tolerance in faba bean. This finding is in line with previous work in
which legumes were associated with Cl− sensitivity (Geilfus, 2018; Li
et al., 2017; Teakle and Tyerman, 2010). We found highly increased
relative Na+/K+ ratio in leaves of such varieties that showed earlier
leaf necrotic spots such as ‘Mallory’ and ‘Organdi’ (Fig. 7E, F) and in
varieties that developed symptoms the latest, such as ‘Scoop’ and ‘Ne-
braska’. This implies that the shoot Na+ translocation of those varieties
was less controlled, meaning that tolerance in terms of Na+ exclusion
and retention was less pronounced. Therefore, mechanisms enabling
tolerance to Na+ in faba bean occurred most probably as tissue toler-
ance, since the Na+ accumulation appeared to predominantly depend
on the length (dose) of the salt exposure. As a consequence, excessive
Na+ in the shoot needed to be effectively sequestered because K+

homeostasis is essential for cell function (Munns et al., 2016; Zörb et al.,
2014). The ability to maintain K+ homeostasis in root and leaf tissues
and thereby protecting balanced cytosolic Na+/K+ ratio under saline
conditions represents an important trait contributing to salt tolerance
(Hauser and Horie, 2010; Wu et al., 2018). Hence, those varieties
showing highly increased Na+/K+ ratios must have been effectively
compartmentalizing Na+ away from the cytosol, e.g. via compartmen-
talization into the vacuole (Munns et al., 2016; Percey et al., 2016).
This makes ions to a certain extent available as ‘cheap’ osmolytes
(Blumwald, 2000; Keisham et al., 2018; Niu et al., 1995). The cheap
usage of salt ions for osmotic adjustment represents a physiological
adaption of naturally salt tolerant halophytes and preserves energy for
growth, as the synthesis of organic solutes is energetically more ex-
pensive. Further, sequestering Na+ into the vacuole is preferential over
the removal into the apoplast, as it contributes to membrane potential
via removing positive charge from the cytosol. Thereby, the relocation
of K+ from the vacuole into the cytosol and the retention of cytosolic
K+ is favored (Percey et al., 2016). Thus, the later symptom-developing
field bean varieties may have been able to effectively sequester Na+

ions into the vacuole enabling an increased K+ retention and a better
control of their water status (Fig. 5) (Flowers and Colmer, 2008;
Mancarella et al., 2016; Pan et al., 2016; Wu et al., 2018).

4.4. Leaf necrosis appears at distinct Cl− concentrations in all V. faba
varieties

Many previous salt-stress experiments were rather focused on Na+

than Cl−. However, in few papers legumes have been reported to be
sensitive to Cl− (Li et al., 2017; Teakle and Tyerman, 2010). In addition
to the role of Cl− in the initiation of stomatal closure during the early
NaCl-stress response (Geilfus and Mühling, 2013), some evidence has
been found for Cl− being the predominant toxic ion in faba bean, af-
fecting photosynthesis and plant growth to a greater extent than Na+

(Slabu et al., 2009; Tavakkoli et al., 2010). Besides indications on the
adverse effects on A (Fig. 5), we have found that irrespective of the
duration until symptoms occurred, all varieties, e.g. those growing 12 or
26 days, had comparable [Cl−] in young shoots and mature leaves that
were harvested when the plants had developed leaf necrosis (Figs. 6B; 7
B). Based on this observation and in line with previous work we con-
clude that the [Cl−] in developing leaves might be the critical factor
contributing to ion toxicity for faba bean growing under NaCl salinity
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(Geilfus, 2018; Tavakkoli et al., 2010). A critical role for Na+ appears
less relevant, as Na+ concentrations fluctuated across the varieties at
the time point when symptoms occurred (Figs. 6B, 7 B, 9 A). Thus, NaCl
tolerance and the ability to withstand salinity (´days without symp-
toms´) may depend on the ability to restrict the transfer of excess Cl− to
photosynthetically active tissues (Figs. 8C; 9 B). Of note, as Cl− inter-
feres with NO3

− uptake an increased NO3
− selectivity over Cl−, re-

presenting a feature of naturally salt tolerant halophytes, might also be
beneficial for glycophytes alongside with avoidance of excess Cl− up-
take (Bazihizina et al., 2018). However, the more tolerant ‘Scoop’ and
‘Nebraska’ accumulated fewer Cl− and therefore might suffered less
from excessive ROS production and chlorophyll degradation during the
early stress phase than sensitive varieties (Bose et al., 2017; Tavakkoli
et al., 2010). Therefore, Cl− accumulation in the cytosol and further
uptake into chloroplasts is expected to be a key factor of ion toxicity in
faba bean finally resulting in leaf necrotic spots.

5. Conclusion

In faba bean, ion homeostasis-associated tolerance mechanisms
seem to be handled opposingly for Na+ and Cl−. Faba bean varieties
are tolerant to Na+ accumulation and consequently Na+/K+ ratio is of
less importance for evaluating their salt tolerance level. Presumably,
tolerance to Na+ occurred predominantly at the level of tissue toler-
ance after Na+ had entered the leaf. Conversely, Cl− tissue tolerance is
weak throughout all 13 V. faba varieties as Cl− concentrations were
distinct at the time point of occurring symptoms. Therefore, tolerance
to Cl− was rather facilitated by a restriction of Cl− entering the plant’s
shoot. In accordance with the hypothesized Cl− sensitivity of legumes,
Cl− shoot translocation might be a key process explaining the observed
physiological plasticity in the ability to withstand salinity between the
diverse V. faba varieties.
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Supplementary material 

Supplementary material 1.1: Correlation matrix of ion concentrations and physiological 
measurements of 13 salt-stressed V. faba varieties (100 mM NaCl). Correlations between 
concentrations of sodium (Na+), chloride (Cl-) and potassium (K+) in young shoots and mature 
leaves and electrolyte leakage, days without symptoms and stomatal conductivity. Plant 
material for ion determination was collected when plants of a variety developed visible salt 
injuries (see Fig. 2). Stomatal conductivity was measured at mature leaves (4th) 3, 5, 7 and 10 
days after full-strength NaCl treatment was applied. Correlations with P ≤ 0.01 are colour-
coded; blue, positive; red, negative. 
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Supplementary material 1.2: Decrease of SPAD value of 13 salt-stressed (100 mM NaCl) V. 
faba varieties during various stress periods (according to days without symptoms). Initial SPAD 
was measured 3 days after full-strength NaCl stress was applied; Last SPAD measurement was 
conducted before symptoms occurred. Means from linear model ± SE. Different letters indicate 
significant inter-variety differences; P ≤ 0.05; n = 3. 
 

V. faba L. variety SPAD decrase [unitless] stress period [d] 
‘Fuego‘ -1.9±1.2 C 9 
‘Major‘ -5.1±1.2 ABC 9 
‘Honey‘ -3.0±1.2 BC 11 
‘Mallory‘ -2.9±1.2 BC 11 
‘Organdi‘ -2.1±1.2 BC 11 
‘Tiffany‘ -1.9±1.2 C 13 
‘Diva‘ -3.7±1.2 ABC 16 
‘Espresso‘ -2.1±1.2 BC 16 
‘Lynx‘ -3.9±1.2 ABC 16 
‘RLS5722‘ -8.2±1.2 AB  18 
‘RLS67101‘ -9.5±1.2 A  18 
‘Nebraska‘ -4.0±1.2 ABC 23 
‘Scoop‘ -4.0±1.2 ABC 23 
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Abstract 

Introduction 
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Chloride (Cl
ƴ
) is an element, that is, required for photosynthesis 

(Arnon & Whatley, 1949). Moreover, it can stimulate the activity of 

the tonoplast-type H
+
-ATPase (Churchill & Sze, 1984; Randall & Sze, 

1986) and it can be effective in the regulation of turgor (Fromm & 

Eschrich, 1989; Geilfus, 2018a). Most glycophytic crop plants contain 

approximately 1–20 mg/g Cl
ƴ
 dry matter (DM) (Marschner, 2011). 

Minimal Cl
ƴ
 requirements vary in the shoots of crops such as rice 

(Oryza sativa; 3 mg/g DM), wheat (Triticum aestivum; 1.2–4 mg/g DM), 

barley (Hordeum vulgare; 0.14 mg/g DM) (Marschner, 2011). In cotton, 

Cl
ƴ
 predominantly allocates in vegetative plant tissues such as leaf 

and stem, which is why the concentration is highest in leaves, being 

followed by stem, root, seed and fibre (Chen, He, He, Yang, Mishra, & 

Stoffella, 2010). Maize is regarded as a moderately sensitive crop with 

regard to NaCl (Farooq, Hussain, Hussain, Wakeel, & Siddique, 2015).

Chloride is the dominant form of chloride in soils. It is very mo-

bile in soil solution because of its high water solubility (Reeder, 2006). 

For being taken up, Cl
ƴ
 is transported from the soil solution to the 
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Chloride is a micronutrient required for photosynthesis but when applied in the 

concentration of a macronutrient, it may also promote growth by regulating turgor. 

However, if chloride accumulates excessively, it can induce toxicity. The aim of this 

study was to identify physiological dysfunctions in maize (Zea mays L.) that arise in 

response to excessive chloride ion accumulation. For this, a novel water sensor was 

employed for the first time allowing the in vivo measurement of water content in 

the plant by using two near IR-wavelengths with different absorption of water. This 

enabled to analyse whether water imbalances occurred. Chloride was given together 

with calcium as companying counter cation. Results show that most of the tested 

maize genotypes were able to maintain growth, photosynthesis and normal water 

content when stressed with concentrations as high as 757.1 mg chloride/kg soil dry 

matter. Leaf blades accumulated only 8.5 mg chloride/g dry matter, with the most 

genotypes not even showing salt stress necrosis at the leaves. A comparison be-

tween more tolerant and more sensitive genotypes revealed that restriction of chlo-

ride root-to-shoot translocation is a trait of chloride tolerance.

� � + )� !	 "

chloride salinity, maize (Zea mays L.), photosynthetic rate, salt exclusion, tolerance, water 

content

Correction added on 6 August 2019 after first online publication: One of the reference 
citations was removed from this version of the article. 
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Materials and Methods 
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root vascular stele, with symplastic transport as the dominant path-

way for Clƴ (Teakle & Tyerman, 2010). Upon entering the root xylem, 

Clƴ is acropetally transported to the shoot (Gong et al., 2010), where 

it is released and may be compartmented by the phloem (Lessani & 

Marschner, 1978). Clƴ can also be stored in cell vacuoles (De Angeli, 

Zhang, Zhang, Meyer, & Martinoia, 2013).

Chloride was thought to improve yield in winter wheat by in-

creasing turgor pressure of leaves, facilitating expanding growth 

Ő�_ubv|;mv;mķ�$-�Ѵouķ�$-�Ѵouķ��-1hvomķ�ş��b|1_;ѴѴķ�ƐƖѶƐőĺ��;m;u-ѴѴ�ķ��Ѵƴ 
content is critical not only for yield but also for quality (Geilfus, 2018a). 

The osmotic properties of Clƴ can increase turgor enabling turgor-

driven movements, drive water flow, promoting compound migration 

and influence source-sink partitioning (Romo & Haferkamp, 1987).

Excessive concentration of Clƴ in soil, as it occurs under NaCl based 

soil salinity, can lead to an increased Clƴ uptake. As a consequence, cel-

lular Clƴ levels can rise up to toxic levels, hampering plant growth and 

development (Geilfus, 2018b). High Cl can also alter transcript abun-

dance of abscisic acid (ABA) biosynthetic genes, as shown for maize 

(Geilfus, Ludwig-Müller, Ludwig-Müller, Bárdos, & Zörb, 2018) and 

alter compartmental distribution of ABA between the leaf apoplast 

and the guard cells (Geilfus, Mithöfer, Mithöfer, Ludwig-Müller, Zörb, 

& Muehling, 2015). The latter controls apoplastic pH (Geilfus, 2017) 

and stomata closure in salt-stressed field bean (Vicia faba L.). A Clƴ-in-

duced transient alkalinization of the leaf apoplast stiffens the cell wall 

during onset of Clƴ salinity in maize leaves, thus being related to the 

growth reduction under NaCl salinity (Geilfus, Tenhaken, Tenhaken, & 

Carpentier, 2017).

Excessive Clƴ may accumulate in the chloroplast, which is thought 

to negatively affect chlorophyll content due to degradation. (Slabu, 

Zörb, Zörb, Steffens, & Schubert, 2009). As a result, photosynthe-

sis might be impeded giving rise for radical formation. Radicals can 

destroy photosystem II (PSII) reaction centres (Foyer, Lelandais, 

Lelandais, & Kunert, 1994). Since Clƴ also acts as an osmoticum, ex-

cessive NaCl concentrations in the leaf apoplast may cause cellular 

damage by disturbing cellular water relations (Oertli, 1968).

Salt exclusion is commonly implemented by preferably accumulat-

ing ions in the root or in some relatively insensitive tissues of the shoot 

of plants under NaCl stress (Boursier, Lynch et al. 1987). Moreover, ion 

partitioning status of various plant organs is highly related with their po-

tential salt resistance mechanisms. Specifically speaking, a larger amount 

of Clƴ into the sheath relative to the blade tissue was found in the leaves 

of young barley (Hordeurn vulgare L.) exposed to moderate levels of NaCl 

salinity (Boursier, Lynch et al. 1987). Clƴ partitioning in the sheaths of 

plants was also observed in wheat (Triticum aestivum L.), maize (Zea mays 
L.) and sorghum (Sorghum bicolor L.) (Boursier, Lynch et al. 1984).

This work aimed to screen eight maize genotypes for differences 

in the ability to grow under conditions of excessive soil Clƴ. A com-

parison of the individual tissue distribution of Clƴ in those contrasting 

genotypes was conducted to give clues about the physiological basis 

of the ability to withstand high Clƴ concentration in the soil, being 

given as CaCl2*2H2O. For this, maize were cultivated for nine weeks in 

Mitscherlich pots using sandy soil. To group the plants into Clƴ includer 

or excluder, the Clƴ root-to-shoot translocation was determined as the 

ratio of total shoot Clƴ content to the total root Clƴ content.

ƑՊ |Պ��$�!���"���	���$��	"

ƑĺƐՊ|Պ�-|;ub-Ѵ

Eight maize genotypes (Table 1) were planted (one maize plant per 

pot) and grown under three Clƴ concentrations (8.75 [control], 63.2 

and 757.1 mg Clƴ/kg soil DM, respectively). Chloride was given to-

gether with calcium as companying counter cation, using CaCl2*2H2O. 

Control conditions equal normal non-saline soils. For the easy sake 

of reading, we abbreviated the three Clƴ concentrations with “con-

trol,” “low” and “high” treatment, because Chen et al., (2010) previ-

ously reported that maize is a crop with high Clƴ-endurance, which 

was able to tolerate more than 600 mg/kg dry soil without apparent 

disadvantageous effects. Plants were cultivated in a greenhouse for 

nine weeks using seven litre Mitscherlich pots filled with 7,840 g DM 

soil mixture. The soil mixture contained subfloor loam soil (Corg, 4.0%; 

Ostfilden, Stuttgart) homogenously mixed with sand of particle size 

0–2 mm according to the ratio of 47.5%/47.5% (w/w). Sour turf soil 

(Baywa, Filderstadt) (pH = 3.7) was then added with 5% (w/w) based 

on the prepared soil-sand mixture (pH = 7.26) for adjusting the final 

pH to 7.06. The surface of the pots was covered with additional 600 g 

v-m7�r;u�ro|ĺ�";;7v��;u;�vo�m�om�Ɩ���m;�ƑƏƐƕķ�=uol�|_;m�|_;���;u;�
watered on a regular basis to maintain 70% (w/w) water holding ca-

pacity (WHC) of the potted soil. For fertilization, 2 g NH4NO3, 5 g 

KH2PO4, 2 g MgSO4*7H2O and 0.3 g Fetrilon-combi micronutrient 

solution (AgNova Technologies Pty Ltd) was given to each pot as liquid 

fertilizer. Fetrilon-combi contains micronutrients (1.5% boron, 0.6% 

copper, 4.0% iron, 3.0% manganese, 0.05% molybdenum and 4.0% 

zinc) and some macronutrients (0.8% magnesium and 1.3% sulphur). 

CaCl2*2H2O was used to treat the maize with Clƴ. The first Clƴ addi-

tion took place with either 21.1 or 252.4 mg Clƴ/kg dry soil DM (given 

as CaCl2*2H2O), which were stepwise increased by 10.5 or 126.2 mg 

Clƴ/kg soil DM, respectively, every second day, finally reaching a maxi-

mum dose of either 63.2 for the “low”or 757.1 mg Clƴ/kg soil DM for 

the “high” (0.5 or 6.4 g/pot DM) after 8 days. The control was not 

enriched with Clƴ. Treated plants and corresponding controls grew 

10 days after full stress treatment was set. At harvest, different plant 

$���� �ƐՊThe detailed information of eight maize genotypes

�;mo|�r;v "�rrѴb;uv

P8589 Pioneer Hi-Bred Northern Europe Sales Division GmbH

LG30222 LG c/o Limagrain GmbH

Tokala Advanta c/o Limagrain GmbH

KWS-Stabil KWS SAAT SE GmbH

Amamonte KWS SAAT SE GmbH

P8400 Pioneer Hi-Bred Northern Europe Sales Division GmbH

LG30215 LG c/o Limagrain GmbH

ES-Metronom Euralis Saaten GmbH
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organs were put into fractions: (a) 9th leaf blade, (b) other leaf blades, 
(c) leaf sheaths, (d) shoot (all leaf blades and leaf sheaths) and (e) root 
(see Figure 1). It is important to note that fractions (a) and (b) did not 
contain any leaf sheaths. Each genotype was grown with one plant 
per pot in five biological replicates. All pots were randomly rearranged 
twice a week during the whole growth period.

ƑĺƑՊ|Պ�;|_o7v

ƑĺƑĺƐՊ|Պu;v_��;b]_|�-m7�7u���;b]_|

Fresh weight (FW) of all plant fractions (Figure 1) was weighed im-
mediately after harvest. Dry weight (DW) of plant material was de-
termined after drying at 55°C for 72 hr in a ventilated oven.

ƑĺƑĺƑՊ|Պ)-|;u�1om|;m|

In order to quantify leaf water content in planta, a certain area (diame-
ter = 1 cm) was marked on the 9th leaf blade. On this marked area, we 
repeated these non-invasive measurements over several days. A water 
content sensor based on infrared light emitting diodes (LED) and a pho-
todiode linked to a custom device were calibrated against maize leaves 
and employed for non-invasive measurements of leaf water contents. The 
schematic diagram of this device was depicted in Figure S1. The underly-
ing principle is the transmission recording of two near IR-wavelengths 

with different absorption of water penetrating the leaf at an angle of 45°. 
The ratio of transmission at these two wavelengths is linearly correlated 
with leaf water content. For calibration of water contents (Table S1), each 
leaf was completely saturated overnight by floating at 4°C in ddH2O 
water, then the water content was determined at six time points (0, 10, 
20, 30, 45, 60 min) after the removal from the water bath during the dry-
ing process. NIR-transmission ratio and gravimetrically measured leaf 
water content were determined simultaneously, yielding a linear calibra-
tion curve of leaf water content versus NIR-ratio specific for maize leaves.

ƑĺƑĺƒՊ|Պ�Ѵƴ�l;-v�u;l;m|

Samples from all plant fractions and soils were homogeneously 
grounded to powder using a mill (Retsch ZM1) equipped with a 
0.5 mm sieve. Plant tissues powder (200 mg on a dry basis) and soil 
powder (2 g on a dry basis) were subjected to Clƴ extraction by solving 
in 10 ml ddH2O in glass tubes and heating in water bath at 80°C for 
15 min. The suspension was cooled on ice for 7 min and finally filtered 
through a circular filter paper (90-mm diameter) into a 15 ml falcon 
tube. Clƴ-concentration in the water extract was measured using a Clƴ 
metre 6610 (Eppendorf) (Ebert, Eberle, Eberle, Ali-Dinar, & Lüdders, 
2002). For this, 600 μl of the water extract was mixed with 1 ml gela-
tin solution (Biorapid GmbH) and 15 ml acid buffer. The stock acid 
buffer (1 L) was prepared with 0.64% (v/v) nitric acid and 5.76% (v/v) 
acetic acid (100%). Four technical replicates were conducted.

 ��&!� �ƐՊ��;u�b;��o=�;�r;ubl;m|�v;|Ŋ�rĺ�$_;�=buv|��Ѵƴ�-77b|bomv�|ooh�rѴ-1;��b|_�;b|_;u�ƑƐĺƐ�ou�ƑƔƑĺƓ�l]��Ѵƴņh]�7u��vobѴķ��_b1_��;u;�
v|;r�bv;�bm1u;-v;7�0��ƐƏĺƔ�ou�ƐƑѵĺƑ�l]��Ѵƴņh]�vobѴķ�u;vr;1|b�;Ѵ�ķ�;�;u��v;1om7�7-�ķ�=bm-ѴѴ��u;-1_bm]�-�l-�bl�l�7ov;�o=�;b|_;u�ѵƒĺƑ�ou�ƕƔƕĺƐ�
l]��Ѵƴņh]�vobѴ�ŐƏĺƔ�ou�ѵĺƓ�]ņro|ő�-=|;u�Ѷ�7-�vĺ�Ő�ő�$_;�|-0Ѵ;�7;v1ub0bm]�_o��rѴ-m|v��;u;�_-u�;v|;7�bm|o�7b==;u;m|�=u-1|bomv�-m7�_o��|_;v;�
fractions were named, (B) The table showing which fractions were used for the specific parameter measurements, (C) The schematic chart 
v_o�bm]�_o��rѴ-m|v��;u;�]uo�m�-m7�|u;-|;7�0���Ѵƴ�-m7�=bm-ѴѴ��_-u�;v|;7�Œ�oѴo�u�=b]�u;�1-m�0;��b;�;7�-|��bѴ;�omѴbm;Ѵb0u-u�ĺ1olœ
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ƑĺƑĺƓՊ|Պ�vloѴ-ub|�

The leaf sap was collected at 10 days after full stress treatment 
by squeezing the 9th leaf blade of each plant. Leaf sap was stored 
-|� ƴƑƏŦ�ĺ� �vloѴ-ub|�� �-v� l;-v�u;7� �b|_� v;lbŊlb1uo� ovlol;|;u�
(Knauer ML, Berlin, Germany) (Zimmermann et al., 2008) by diluting 
the original sap 1:4 using ddH2O water. Aliquots of 200 μl were used 
for determination. A standard curve was made by 10, 20, 30 and 
40 mM CaCl2*2H2O for calculating the osmolarity in leaf sap. Each 
measurement was conducted in replicates of four.

ƑĺƑĺƔՊ|Պ�;-=�;Ѵ;1|uoѴ�|;�Ѵ;-h-];

When harvesting the plant material, six 1 cm diameter discs were 
immediately collected from the 9th leaf blade and washed for four 
times with ddH2O. Then, they were put into a 50 ml falcon tube con-
taining 20 ml ddH2O. The conductivity was firstly measured after 
4 hr of shaking using a conductometer (WTW LF90 and a WTW 
KLE1 cell, Weilheim, Germany) (El Achouri et al., 2001). The leaf 
7bv1v��;u;�v|ou;7�o�;umb]_|�-|�ƴƑƏŦ�ķ�-m7�|_;m�|_;�|o|-Ѵ�1om7�1|b�-
ity was recorded after thawing. Ion leakage was expressed as the 
ratio of the conductivity (4 hr) and the total conductivity.

ƑĺƑĺѵՊ|Պ�Ѵ;1|ub1-Ѵ�1om7�1|-m1;�-m7�r��o=�
vobѴ�voѴ�|bom

After harvest, electrical conductivity of potted soil solution 
was directly measured by a handheld readout device (Infield 7) 
equipped with Theta Probe (ML2x). For determination of soil pH, 
2 g dry soil powder with a particle size of 0.5 mm was dissolved in 
25 ml ddH2O and incubated on a shaker for 45 min. After 15 min 
sedimentation, the pH in the supernatant was measured using a 
pH meter (WTW 538) (Ullrich, Menge, Menge, Schmid, Gübitz, & 
Krauss, 2001).

ƑĺƑĺƕՊ|Պ$u-mvrbu-|bom�u-|;ķ�v|ol-|-Ѵ�1om7�1|-m1;�-m7�
r_o|ov�m|_;|b1�u-|;

The area that was marked in the 9th leaf blade (Figure 1) for water 
content quantification (see section 2.2.22) was also used to moni-
tor photosynthetic rate and transpiration rate using a LCi Portable 
Photosynthesis System (ADC BioScientific Ltd) (Ramani et al., 
2006). A broad type chamber was used, the observed leaf area was 
625 mm2 and the light was natural sunlight lying between 0.4 and 
3.0 microns. For maize leaves, CO2 flowing into leaf chamber was 
around 400 vpm and H2O flux was between 0.17 μmol/m2 sƴƐ.

ƑĺƑĺѶՊ|Պ�_Ѵouor_�ѴѴ�1om1;m|u-|bom

The chlorophyll concentration in the 9th leaf blade was measured by 
a Chlorophyll meter (SPAD 502; Konica Minolta) (Netto, Campostrini, 
Campostrini, Oliveira, & Bressan-Smith, 2005). For each leaf, four 

measurements were conducted at different positions on opposite 
sides of the central vein.

ƑĺƒՊ|Պ"|-|bv|b1-Ѵ�-m-Ѵ�vbv

All data were expressed as mean ± standard error. To determine the sig-
nificance difference between control and two levels of treatments, data 
were analysed by Duncan test (three and more variables) or T test (two 
variables) at the probability of 0.05 and 0.01 levels with SPSS software 
19.0 (SPSS Inc), as indicated in the figures. Principal component analysis 
(PCA) was conducted by SPSS 19.0 on a basis of all parameters measured 
above. For each sample, every measurement had five biological replicates. 
Only Clƴ concentration and osmolarity measurements were technically 
repeated four times while other parameters had no technical replicates.

ƒՊ |Պ!�"&�$"

ƒĺƐՊ|Պu;v_�-m7�7u��0bol-vv�o=�7b==;u;m|�l-b�;�
ou]-mv

Treating maize with either 0.5 (low) or 6.4 (high) g Clƴ per pot did not 
significantly change FW in the 9th leaf blade, other leaf blades, leaf 
sheaths and the shoot of almost all genotypes (Figure 2). This pattern 
was also reflected by DW (Figure 3B). The genotype P8589 was an 
exception because it developed leaf edge and leaf tip necrosis (Figure 
S2C) and FW and DW were significantly reduced in the fraction that we 
call “other leaf blades” (this fraction represents all leaf blades but not 
the ninth leaf blade) when high Clƴ-treatment was applied (Figure 2). 
P8589 stood out for a second reason: this genotype increased FW and 
DW under low Clƴ treatment. However, this trend was only significant 
for FW in the leaf sheaths of P8589 (Figures 2 and 3). Root biomass 
was not affected by low or high Clƴ treatment in any genotype, except 
for KWS-Stabil, displaying significantly reduced root DW under high 
Clƴ (Figure 3E). Other leaf blades had significant lower calculated water 
content (58.5 g) under high Clƴ treatment in P8589 in comparison with 
control (72.3 g) (Figure 4B). However, this trend was not observed in 
leaf sheaths, in which low Clƴ supply increased calculated water con-
tent from 212.1 g to 243.8 g in P8589 (Figure 4C). Similarly, P8589 
and P8400 exhibited a greater calculated water content (330.2 g and 
296.8 g, respectively) in shoot under low Clƴ level than the correspond-
ing controls (291.8 g and 266.9 g, respectively) (Figure 4D).

ƒĺƑՊ|Պ�Ѵƴ�7bv|ub0�|bom�bm�Ɩ|_�Ѵ;-=�0Ѵ-7;ķ�o|_;u�Ѵ;-=�
0Ѵ-7;vķ�Ѵ;-=�v_;-|_vķ�uoo|�-m7�vobѴ

In soil, Clƴ concentrations expressed as average over all pots of all 
genotypes were 8.8 mg Clƴ/kg soil DM in control, 26.4 mg Clƴ/kg soil 
DM in low treatment and 335.4 mg Clƴ/kg soil DM in high treatment 
(Figure 5E).

In the 9th leaf blade, other leaf blades, leaf sheaths, roots and 
soil, Clƴ concentration significantly increased with rising external 
Clƴ application. This was true for all genotypes except for the root 
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of P8589, the 9th leaf blade of KWS-Stabil and the fraction “other 

leaf blades” (this fraction represents all leaf blades but not the ninth 

leaf blade) in ES-Metronom, where no significant increases in Clƴ 

concentration could be observed after low treatment compared 

with controls (Figure 5). When plants were stressed by a high Clƴ-

dose, as expected, all genotypes showed significant Clƴ increase in 

all plant fractions. Besides, LG30222 had the greatest shoot/root 

ratio and Amamonte, P8400 and ES-Metronom were the lowest 

under high Clƴ treatment (Figure 5F). The genotype Tokala showed 

the same low shoot/root ratio under either low or high treatment 

(Figure 5F).

ƒĺƒՊ|Պ)-|;u�1om|;m|

In comparison with control, low Clƴ treatment did not change the 

non-invasively quantified water content of all genotypes (Figure 6). 

However, as expected, non-invasively quantified water content was 

significantly reduced from 13.9 mg/cm2 to 10.8 mg/cm2 and from 

12.7 mg/cm2 to 10.6 mg/cm2 in the genotypes Amamonte and 

P8589, respectively, by high Clƴ treatment. In contrast, genotypes 

KWS-Stabil and LG30215 had increased non-invasively quantified 

water content from 11.3 mg/cm2 to 13.9 mg/cm2 and from 9.8 mg/

cm2 to 11.6 mg/cm2, respectively, when exposed to high Clƴ concen-

tration. The non-invasively quantified water content in genotypes 

LG30222 and ES-Metronom remained unchanged irrespective of the 

treatment.

ƒĺƓՊ|Պ�vloѴ-ub|��-m7�;Ѵ;1|uoѴ�|;�Ѵ;-h-];

Treating maize with either low or high Clƴ increased osmolarity 

from 258 mOsm/L to approximately 275 mOsm/L in Amamonte 

and from 277 mOsm/L to approximately 297 mOsm/L in 

LG30215, respectively, but did not affect osmolarity in Tokala, 

P8400, LG30222 and ES-Metronom (Figure 7A). Under high Clƴ 

treatment, the osmolarity of P8589 and KWS-Stabil increased 

from 245 mOsm/L to 292 mOsm/L and from 237 mOsm/L to 

272 mOsm/L, respectively, whereas osmolarity was not affected 

by low Clƴ treatment in these two genotypes. None of the geno-

types showed a significant difference in ion leakage between both 

Clƴ treatments (Figure 7B).

ƒĺƔՊ|Պ"obѴ�;Ѵ;1|ub1-Ѵ�1om7�1|-m1;

Under both Clƴ treatments, electrical conductance in the soil 

kept the same value in comparison with controls among all geno-

types (Figure 8). However, the genotypes KWS-Stabil and P8400 

were the exceptions. Electrical conductance of soil in pots of 

KWS-Stabil increased under both Clƴ treatments. In contrast, soil 

 ��&!� �ƑՊFresh weight in different plant tissues. Small letters indicate significant FW mean difference (p < 0.05) under different 
treatments per genotype by Duncan Test. (A) Fresh weight of 9th leaf blade, (B) Fresh weight of other leaf blades, (C) Fresh weight of leaf 
sheaths, (D) Fresh weight of shoot [Colour figure can be viewed at wileyonlinelibrary.com]
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electrical conductance of P8400 only increased with high Clƴ ad-
dition (Figure 8).

ƒĺѵՊ|Պ$u-mvrbu-|bom�u-|;ķ�v|ol-|-Ѵ�1om7�1|-m1;ķ�
r_o|ov�m|_;|b1�u-|;�-m7�"��	

Transpiration rate, stomatal conductance and photosynthetic rate 
of 9th leaf blades of all genotypes were unaltered by both Clƴ treat-
ments during the whole growing period (Figure 9). However, an 
effect of Clƴ application on chlorophyll concentration estimated 
by SPAD measurements was found. In comparison with control, 
chlorophyll concentration of P8589, LG30222 and P8400 was 
significantly increased by low Clƴ. In contrast, high Clƴ treatment 
considerably decreased chlorophyll concentration from 50.7 to 

49.3 and from 54.7 to 51.4 in genotypes LG30222 and LG30215, 
respectively.

ƒĺƕՊ|Պ�ubm1br-Ѵ�1olrom;m|�-m-Ѵ�vbv

Principal component analysis (PCA) revealed that Clƴ concentration 
was the variable that explained most of the variance on principal 
component 1 (30.9%), whereas water content was the dominant fac-
tor for the variance on principal component 2 (16.3%) (Table S2 and 
Figure 10). Consequently, the genotypes clustered predominantly into 
groups being affected by the dose of the Clƴ treatment (Figure 10). 
However, two genotypes deviated from this trend. Low Clƴ-treated 
P8589 was located in the group of high Clƴ concentration and low Clƴ 
treated ES-Metronom clustered into control group.

 ��&!� �ƒՊDry weight in different plant tissues. Small letters indicate significant DW mean difference (p < 0.05) under different 
treatments per genotype by Duncan Test. (A) Dry weight of 9th leaf blade, (B) Dry weight of other leaf blades, (C) Dry weight of leaf sheaths, 
(D) Dry weight of shoot, (E) Dry weight of root [Colour figure can be viewed at wileyonlinelibrary.com]
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ƓՊ |Պ	�"�&""���

ƓĺƐՊ|Պ$u;-|l;m|�-m7�vobѴ�1om7b|bom

In this experiment, we applied calcium as Clƴ accompanying cation be-
cause the macronutrient calcium is not toxic at the applied concentra-
tion (Kirkby & Pilbeam, 1984; Marschner, 2011). Changing soil calcium 
concentration may influence soil pH, however, in our experiment soil 
pH was stable (Table S3). With these prerequisites, it is most likely 
that the series of physiological reactions and effects described in this 
work are attributable to different Clƴ-treatments. The high amount of 
Clƴ applied (757.1 mg/kg soil) in the experiment was still mild stress 
for maize, because neither severe chlorotic nor necrotic lesions could 
be observed. Only genotype P8589 showed necrosis at the tip and 
margin of the 9th leaf under low and high treatment, respectively.

ƓĺƑՊ|Պ�==;1|v�o=�1_Ѵoub7;�v-Ѵbmb|��bm�
1om|u-v|bm]�];mo|�r;v

Our data indicate that Clƴ root-to-shoot translocation was restricted 
in most maize genotypes, with the expectation of P8589, as the 
shoot-to-root ratio was less than 0.5 (Figure 5F). Thus, we conclude 
that maize is an Clƴ excluder. However, some Clƴ accumulates in the 

aerial part of the plant. Twice as much of Clƴ was present in the leaf 
sheaths as compared to the leaf blades under low and high treat-
ment. This pattern could prevent harmful effects on photosynthesis, 
as leaf blades are more active in photosynthesis compared to the 
sheaths.

Although leaf sheaths DW of P8589 was similar under low and 
high Clƴ (Figure 3C), leaf sheaths FW of low Clƴ treated P8589 plants 
was higher than that of high Clƴ treatment (Figure 2C). This shows 
that only high Clƴ treatment induced stress in P8589. This was true 
for other leaf blades of P8589 as well (Figure 4B). This observation 
was also verified by sensor-measured water content and osmolarity 
data on the 9th leaf blade (Figures 6 and 7A) that underlined that 
high Clƴ treatment caused a reduction in water content, indicating 
osmotic stress. Furthermore, plant height of P8589 under low Clƴ 
concentration kept the same as control (Figure S2). However, this 
phenomenon was not seen under high Clƴ treatment, which indi-
cates that the development of P8589 was reduced when Clƴ reached 
too high concentrations (Figure S2). Nevertheless, such reduction 
was probably attributed to the osmotic stress instead of ion toxic-
ity, since the permeability and integrity of cellular membrane in leaf 
blades were not affected under such high Clƴ treatment (Figure 7B). 
Overall, the genotype P8589 was identified as being particularly 
sensitive to Clƴ-stress, possibly due to problems in maintaining 

 ��&!� �ƓՊCalculated water content of plant fractions. Small letters indicate significant mean difference (p < 0.05) under different 
treatments per genotype by Duncan Test. (A) Water content of 9th leaf blade, (B) Water content of other leaf blades, (C) Water content of 
leaf sheaths, (D) Water content of shoot [Colour figure can be viewed at wileyonlinelibrary.com]
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normal cellular water relations in plant tissues. Necrotic leaf edges 

witness chloride toxicity (Figure S2C).

A different tendency was detected in ES-Metronom. Neither 

low nor high Clƴ treatment influenced biomass formation (FW and 

DW), osmolarity or water content. Moreover, photosynthetic rate, 

stomatal conductance and transpiration rate of ES-Metronom 

were not affected by subjection to low or high Clƴ treatment 

(Figure 9). This implies that ES-Metronom was more tolerant to 

Clƴ stress than P8589 as even high Clƴ did not induce osmotic nor 

ion-toxic stress.

A potential explanation for the different performance under 

high Clƴ between P8589 and ES-Metronom could be attributed to 

a differing allocation of excess Clƴ within the plant organs accord-

ing to shoot/root ratio (Figure 5F). In our findings, ES-Metronom 

 ��&!� �ƔՊChloride distribution in different plant tissues and soil. Small letters indicate significant mean difference (p < 0.05) under 
different treatments per genotype by Duncan Test; capital letters in shoot/root ratio indicate significant mean difference (p < 0.05) among 
all genotypes under one treatment; * and ** indicate significant mean differences (p < 0.05 and p < 0.01, respectively) r in shoot/root 
ratio between 63.15 mg Clƴ/kg and 757.11 mg Clƴ/kg for each genotype by Duncan Test. (A) Cl- concentration of 9th leaf blade, (B) Cl- 
concentration of other leaf blades, (C) Cl- concentration of leaf sheaths, (D) Cl- concentration of root, (E)Cl- concentration of soil, (F) The 
ratio of Cl- concentration between shoot and root [Colour figure can be viewed at wileyonlinelibrary.com]

 ��&!� �ѵՊWater content in the 9th leaf blade. Small letters 
indicate mean significant difference in water content (p < 0.05) 
under different treatments per genotype by Duncan Test [Colour 
figure can be viewed at wileyonlinelibrary.com]
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had lower shoot/root ratio under both low and high treatment than 
P8589. This indicates that ES-Metronom was able to exclude Clƴ 
from being transported to the shoot. There is a strong correlation 
between sodium exclusion and salt tolerance in many cop species 
ŐѴo�;uv�ş�+;oķ�ƐƖѶѵĸ���mmv�ş��-l;vķ�ƑƏƏƒőĺ���u�7-|-�bm7b1-|;�|_bv�
for Clƴ, as previously done by others (Brumos, Talon, Talon, Bouhlal, 
ş��ĺ��ĺ��������!�Ŋ��!�"ķ�ƑƏƐƏĸ��b�;|�-Ѵĺķ�ƑƏƐѵĸ�$;-hѴ;ķ�Ѵo�;uvķ�
Flowers, Real, & Colmer, 2007).

This is useful as ongoing salt ion accumulation will cause os-
lo|b1�bl0-Ѵ-m1;v�-m7�bom�|o�b1b|b;v�Ő��mmvķ��-l;vķ��-l;vķ�ş�1࢜��_Ѵbķ�
2006). Therefore, restricting acropetal transport of Clƴ is likely to be 
an important factor contributing to low salt accumulation in leaves 
and might be the underlying mechanism of increased Clƴ tolerance of 
ES-Metronom (Munns, 2005; Pitman, 1984). We speculated that this 
reduced transport is based on restricted xylem loading, however, we 

have not tested this. However, Clƴ tolerance by Clƴ retention in root 
seems to be trade-off as the root growth of the respective geno-
types was impaired to some extent, most likely due to the excessive 
Clƴ accumulation.

ƓĺƒՊ|Պ�o�u;Ѵ-|bom�0;|�;;m�ovloѴ-ub|�ķ�
�Ѵƴ�-m7�]uo�|_

Osmolarity of P8589, KWS-Stabil, Amamonte and LG30215 
(Figure 7A) was increased by high Clƴ treatment. Apparently, Clƴ 
accumulated in the cells, acted as osmoticum and facilitated water 
uptake. Growth, however, was not facilitated as it might have been 
possible in the light of the turgor-driven acid-growth. Shoot fresh 
and dry biomass of all maize genotypes were not affected by low 
or high chloride treatment in comparison with controls (Figures 2D 
and 3D). Similar results were reported by Hütsch, Keipp, Glaser, and 
Schubert (2018) who figured out that the potato cultivars Marabel 
and Désirée can be fertilized with KCl instead of K2SO4 without the 
risk of tuber yield depression.

ƓĺƓՊ|Պ�_Ѵouor_�ѴѴ�1om1;m|u-|bom�-m7�
r_o|ov�m|_;|b1�u-|;

The chlorophyll concentration in genotypes LG30222 and LG30215, 
as estimated by SPAD readings (Figure 9D), was reduced by high 
Clƴ treatment in comparison with controls. Slabu et al. (2009) re-
ported that a reduced chlorophyll concentration in leaves of Vicia 
faba after NaCl exposure (13 days after 100 mM treatment) is at-
tributable to high chloroplastic Clƴ concentrations rather than the 
accumulation of sodium. Chloroplasts exhibit a high permeability for 
Cl–, and a treatment with NaCl resulted in the accumulation of Cl– 
and decline in SPAD values (Heber & Heldt, 1981). Furthermore, high 

 ��&!� �ƕՊThe osmolarity and electrolyte leakage in the 9th leaf blade sap. Small letters indicate significant mean difference (p < 0.05) in 
osmolarity under different treatments per genotype by Duncan Test; relative ion leakage was expressed as low treatment/control- and high 
treatment/ control-ratio; T test was used for analysing significant difference in electrolyte leakage. The sign “ns” means non-significant.  
(A) Osmolality of 9th leaf blade, (B) Relative ion leakage of 9th leaf blade [Colour figure can be viewed at wileyonlinelibrary.com]

 ��&!� �ѶՊElectrical conductance of soil. Small letters indicate 
significant mean difference (p < 0.05) in electrical conductance 
under different treatments per genotype by Duncan Test [Colour 
figure can be viewed at wileyonlinelibrary.com]
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Cl
–
 concentration reduces the photosynthetic capacity and quantum 

yield in Vicia faba due to chlorophyll degradation which may result 

from a structural impact of high Cl
–
 concentration on PSII (Tavakkoli, 

Rengasamy, Rengasamy, & McDonald, 2010). In our study, the reduced 

chlorophyll concentration did not inhibit the photosynthesis rate in 

maize (Figure 9C,D). This might be attributable to the fact that the 

��&!� �ƖՊTranspiration rate, stomatal conductance, photosynthetic rate and SPAD value in the 9th leaf blade. Relative transpiration rate, 

relative stomatal conductance and relative photosynthetic rate were expressed as low treatment/control- and high treatment/ control-ratios; * 

and ** indicate significant mean differences (p < 0.05 and p < 0.01, respectively) between 63.2 mg Cl
ƴ
/kg and 757.1 mg Cl

ƴ
/kg for each genotype 

by T test. Small letters indicate significant mean difference (p < 0.05) in SPAD readings under different treatments per genotype by Duncan 

Test. The sign “ns” means non-significant. (A) Relative transpiration rate of 9th leaf blade, (B) Relative stomatal conductance of 9th leaf blade, (C) 

Relative photosynthetic rate of 9th leaf blade, (D) SPAD value of 9th leaf blade [Colour figure can be viewed at wileyonlinelibrary.com]

 ��&!� �ƐƏՊPrincipal component analysis (PCA) of eight maize genotypes under different treatments. In general, there are 24 parameters 

used for PCA analysis. They contain fresh weight in the 9th leaf blade, dry weight in the 9th leaf blade, fresh weight in other leaf blades, 

dry weight in other leaf blades, fresh weight in leaf sheaths, dry weight in leaf sheaths, dry weight in roots, stomatal conductance in stress 

induction phase (45th day to 53rd day), stomatal conductance in full stress phase (54th day to 64th day), photosynthetic rate in stress induction 

phase (45th day to 53rd day), photosynthetic rate in full stress phase (54th day to 64th day), transpiration rate in stress induction phase (45th 

day to 53rd day), transpiration rate in full stress phase (54th day to 64th day), water content in stress induction phase (45th day to 53rd day), 

water content (54th day to 64th day), soil electrical conductance, electrolyte leakage, osmolarity, soil pH, Cl
ƴ
 concentration in the 9th leaf 

blade, Cl
ƴ
 concentration in other leaf blades, Cl

ƴ
 concentration in leaf sheaths, Cl

ƴ
 concentration in roots and Cl

ƴ
 concentration in the soil 

[Colour figure can be viewed at wileyonlinelibrary.com]
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Conclusion 
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given chlorophyll concentration, as indicated by the SPAD readings, is 
adequate for fulfilling the photosynthetic function in our control and 
stressed plants, spanning from 50.7 in LG30222 to 54.7 in LG30215 
among total tested genotypes. A critical SPAD value of 48.6 ± 3.8 
(mean value ± standard deviation) at vegetative stage (10th leaf) was 
suggested to be adequate to achieve high corn yield in a field con-
dition (Sunderman, Pontius, Pontius, & Lawless, 1997). Besides, the 
maximum reduction of chlorophyll, as averaged over all maize geno-
types (Figure 9D), was 6.3% under high Cl– treatment in LG30215. For 
comparison: under water stress, a reduction of leaf chlorophyll con-
centration about 40% was still not severe enough to negatively affect 
photosynthetic rate at mid-day in maize (Sanchez, Hall, Hall, Trapani, 
& Hunau, 1983).

ƔՊ |Պ�����&"���"

Chloride is not harmful when reaching concentrations as high as 
757.1 mg Clƴ/kg soil DM, except for the Cl-sensitive genotype P8589 
that showed leaf edge necrosis. While an equimolar sodium concen-
tration would affect biomass, photosynthesis rate or water content, 
the same parameters were not affected by Cl salinity. Data show 
that chloride root-to-shoot translocation is restricted in most maize 
genotypes, indicating that maize excludes Clƴ at the xylem, which 
might be useful for avoiding accumulation in the photosynthetic 
active leaf blades. The more Clƴ sensitive genotypes accumulated 
more Clƴ in the shoot compared to the more tolerant ones, viz. had a 
smaller shoot-to-root ratio.
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Supplementary material 

Supplementary material 2.1: Soil pH of various Zea mays genotypes under control, low and 
high Cl- treatment (low = 63.2 and high = 757.1 mg Cl- kg-1 soil DM). Measurements were 
conducted after 10 days of treatment (64th day after sowing). Mean ± SE; different letters 
indicate significant differences between varieties and treatments (Duncan test; P ≤ 0.05; n=5). 
 

 
 

Supplementary material 2.2: Examples of Zea mays phenotypes of contrasting genotypes and 
chlorotic symptoms in the genotype P8589 after 10 days under various Cl- treatments (64th day 
after sowing). Plant phenotypes under control, low and high Cl- treatment (low = 63.2 and high 
= 757.1 mg Cl- kg-1 soil DM) of (A) the slightly Cl--sensitive genotype P8589, (B) the slightly 
Cl--tolerant genotype ES-Metronom, and (C) the 9th leaf blade of the slightly Cl--sensitive 
genotype P8589 displaying chlorotic symptoms. 
 

 
Supplementary material 

 
  

Table S2 Soil pH 
Genotypes Control 63.2 mg Cl⁻ kg⁻¹ 757.1 mg Cl⁻ kg⁻¹ 

P8589 7.29±0.01a 7.28±0.01a 7.30±0.01a 
LG30222 7.20±0.01a 7.21±0.01a 7.21±0.01a 

Tokala 7.09±0.03a 7.10±0.03a 7.14±0.03a 
KWS-Stabil 7.25±0.01a 7.26±0.01a 7.23±0.01a 
Amamonte 7.29±0.02a 7.24±0.02a 7.26±0.02a 

P8400 7.27±0.01a 7.27±0.01a 7.29±0.01a 
LG30215 7.28±0.02a 7.29±0.02a 7.26±0.02a 

ES-Metronom 7.27±0.01a 7.25±0.02a 7.27±0.01a 
The data of soil pH were expressed as mean value ±	standard error. Small letters 
indicate significant mean difference (P<0.05) under different treatments per genotype. 
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Supplementary material 2.3: Illustration of the water sensor operation principle. Leaf water 
content was measured by using a sensor consisting of infrared (IR) light-emitting diodes and a 
photodiode linked to a custom device. Transmissions of two near IR-wavelengths with various 
absorption characteristics for H2O were recorded when IR light penetrated the leaves at an angle 
of 45°. The ratio of the transmission values at these two wavelengths is linearly correlated to 
the leaf water content. After calibration of the sensor to the respective leaf material, the leaf 
water content was calculated based on the transmission ratio. 
 

 
 

Supplementary material 2.4: Kinetics of the absolute water content of the 9th leaf blades of 
various Zea mays genotypes under control, low and high Cl- treatment (low = 63.2 and high = 
757.1 mg Cl- kg-1 soil DM). The water contents were measured daily within the first 9 days of 
Cl- treatment. Mean ± SE; n=5. 
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Supplementary material 2.5: Data of a water sensor calibration example for the Zea mays 
genotype Amamonte under control, low and high Cl- treatment (low = 63.2 and high = 757.1 
mg Cl- kg-1 soil DM). (A) Measured weights of water per leaf disc and the corresponding near 
infrared (NIR) transmission ratios (water value) obtained from the water sensor based on the 
ratio of two recordings of the transmissions of two NIR-wavelengths with various absorption 
characteristics for H2O and (B) the plotted values representing a water sensor calibration curve. 
Excised leaf discs were saturated by being floated at 4°C in double distilled H2O overnight. 
After removal of the discs from the water bath, the water contents of the drying leaf discs were 
determined at six time points, namely 0, 10, 20, 30, 45 and 60 minutes, by being weighed and 
by using the water sensor. 
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Supplementary material 2.6: Data of principle component analysis (PCA) based on the means 
of 24 measured variables of various Zea mays genotypes under control, low and high Cl- 
treatment (low = 63.2 and high = 757.1 mg Cl- kg-1 soil DM; n=5). (A) Listing and numbering 
of the individual variables, (B) matrix of the extracted components and (C) matrix of the rotated 
components (Method: Varimax with Kaiser normalization; 10 iterations). 
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Abstract

Stomatal movements are enabled by changes in guard cell turgor facilitated via tran-

sient accumulation of inorganic and organic ions imported from the apoplast or bio-

synthesized within guard cells. Under salinity, excess salt ions accumulate within

plant tissues resulting in osmotic and ionic stress. To elucidate whether (a) Na+ and

Cl− concentrations increase in guard cells in response to long-term NaCl exposure

and how (b) guard cell metabolism acclimates to the anticipated stress, we profiled

the ions and primary metabolites of leaves, the apoplast and isolated guard cells at

darkness and during light, that is, closed and fully opened stomata. In contrast to

leaves, the primary metabolism of guard cell preparations remained predominantly

unaffected by increased salt ion concentrations. Orchestrated reductions of stoma-

tal aperture and guard cell osmolyte synthesis were found, but unlike in leaves, no

increases of stress responsive metabolites or compatible solutes occurred. Diverging

regulation of guard cell metabolism might be a prerequisite to facilitate the constant

adjustment of turgor that affects aperture. Moreover, the photoperiod-dependent

sucrose accumulation in the apoplast and guard cells changed to a permanently

replete condition under NaCl, indicating that stress-related photosynthate accumu-

lation in leaves contributes to the permanent closing response of stomata under

stress.

K E YWORD S

apoplast, assimilation, chloride, field bean, guard cells, metabolite, salt stress, sodium, stomata,

transpiration

1 | INTRODUCTION

Legumes and particularly Vicia faba L. are sensitive to salt and, there-

fore, undergo fast physiological changes attributable to osmotic stress,

as early as the first hour after exposure to high salinity. In addition to

the inhibition of nitrogen assimilation and the accumulation of metab-

olites associated with the formation and scavenging of reactive oxy-

gen species (Geilfus et al., 2015; Geilfus, Mithofer, Ludwig-Muller,

Zörb, & Mühling, 2015), abscisic acid signalling results in the rapid clo-

sure of stomatal pores, which are formed by pairs of highly specialized

guard cells (GCs) (Jezek & Blatt, 2017). With continuous exposure to

high salinity, salt ions accumulate within roots and leaves and, in turn,

cause symptoms of ion toxicity as a result of disturbed ion homeosta-

sis (Munns, James, Gilliham, Flowers, & Colmer, 2016). Such abiotic

stress condition perturbs plant metabolism, for example, by hindering

enzyme function and lowering the availability of substrates (Obata &
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Fernie, 2012). As part of an optimization of the biological system to

the new environmental condition (Herrmann, Schwartz, &

Johnson, 2019), metabolism acclimates by reconfiguring the metabolic

network to adopt a new steady state (Obata & Fernie, 2012), which

can help to avoid or mitigate harmful effects resulting from the preva-

iling stress condition (Schwachtje et al., 2019). The leaf metabolic

acclimation of V. faba to salt stress is characterized by, for example,

increased metabolite pools of myo-inositol, the presence of the gen-

eral stress marker proline and decreased intermediates of the tricar-

boxylic acid (TCA) cycle and monosaccharides such as arabinose and

xylose (Richter, Behr, Erban, Kopka, & Zörb, 2019), all of which reflect

conserved patterns of metabolic acclimation to high salinity in

legumes (Sanchez et al., 2011; Sanchez, Siahpoosh, Roessner,

Udvardi, & Kopka, 2008). In contrast to the well-known metabolic

acclimation of root and leaf tissues to high salinity, information about

stress-related modifications of the specialized GC metabolome is

limited.

Guard cells enable a controlled gas exchange between the atmo-

sphere and the leaf internal space. This is important for balancing the

trade-off between CO2 intake and the concomitant water loss achiev-

ing CO2 availability for Calvin cycle activity, the autotrophic produc-

tion of organic compounds and the maintenance of the plant's

hydration (Lawson & Blatt, 2014; McAusland et al., 2016), aspects

essential for cell expansion and plant growth (Thompson, 2005). The

adjustment of stomatal aperture in response to exogenous and endog-

enous cues is facilitated by the transient accumulation of osmotically

active compounds within GCs thereby enabling rapid turgor changes

(Jezek & Blatt, 2017). For this process, the import of K+, Cl− and NO3
−

from the apoplast is essential; however, organic solutes considerably

contribute to the GC osmotic adjustment (Lawson &

Matthews, 2020). Therefore, GC metabolism is not only important for

feeding the high energy demand required for ion transport processes,

but also for contributing to the built up of the osmotic gradient neces-

sary for stomatal opening by the synthesis of organic solutes such as

malate (Kollist, Nuhkat, & Roelfsema, 2014; Kopka, Provart, & Müller-

Röber, 1997; Santelia & Lawson, 2016). In contrast to the increasing

sucrose and starch content in mesophyll cells (Santelia & Lunn, 2017;

Tcherkez, Boex-Fontvieille, Mahé, & Hodges, 2012), the degradation

of starch (Daloso et al., 2017; Flütsch et al., 2020; Horrer et al., 2016)

and the activation of glycolysis (Medeiros et al., 2018) occur in GCs in

response to illumination indicating the demand for energy during sto-

matal opening. In agreement with this, the breakdown of lipid droplets

and starch in GCs has been found to be essential for blue-light-

stimulated stomatal opening (Horrer et al., 2016; McLachlan

et al., 2016). The breakdown of fatty acids is proposed to favour

adenosine triphosphate production via peroxisomal β-oxidation during

the dark-to-day transition (McLachlan et al., 2016), whereas starch

breakdown is suggested to replenish cytosolic sugar pools (Flütsch

et al., 2020) and to stimulate the flux of carbon skeletons into mito-

chondria and the TCA cycle for energy production (Daloso

et al., 2015; Daloso, Anjos, & Fernie, 2016; Lima et al., 2018; Medei-

ros et al., 2018). Guard cells in detached epidermal strips are able to

respond to environmental cues such as light intensity and quality and

changes in CO2 solely (Mott, Sibbernsen, & Shope, 2008). Neverthe-

less, mesophyll derived sugars and organic acids have been shown to

affect stomatal behaviour in planta (Antunes, de Menezes Daloso, Pin-

heiro, Williams, & Loureiro, 2017; Araújo et al., 2011; Kelly

et al., 2013), providing evidence for metabolic feedback mechanisms

correlating mesophyll photosynthetic demands with stomatal aper-

ture. The accumulation of mesophyll-derived sucrose in the apoplast

has been proposed as a mechanism for stimulating stomatal closure

(Antunes et al., 2017; Granot & Kelly, 2019). This metabolic feedback

of sucrose has been found to affect stomatal aperture via an abscisic

acid pathway stimulating sugar-sensing hexokinase (Kelly et al., 2013;

Lugassi et al., 2015), thereby coordinating mesophyll photosynthesis

with transpirational water loss (Daloso et al., 2017; Lima et al., 2018).

The motivation behind the present study was to evaluate

whether (a) long-term NaCl stress leads to Na+ and Cl− accumulation

in GC preparations and whether (b) GCs reflect patterns of conserved

metabolic response to high NaCl such as the accumulation of organic

and amino acids. For this purpose, a non-targeted metabolomics

workflow involving gas-chromatography mass-spectrometry was used

to explore modulations of GC metabolism in comparison with that of

leaves and the apoplast under long-term NaCl. To assess variation in

the dark-to-light transition, we compared the physiological status of

GCs under dark and light condition, that is, between closed and fully

opened stomata.

2 | MATERIALS AND METHODS

2.1 | Cultivation of plant material

The Vicia faba L. varieties Fuego and Scoop (Norddeutsche

Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, Germany) were

grown under hydroponic culture conditions in a climate cabinet

(WEISS HGC1014, Heuchelheim, Germany) (14/10 hr day/night;

22/18!C; approx. 80/60% humidity, 300 μmol photons m2/s at shoot

level). Seeds were immersed in aerated CaSO4 (0.5 mM) solution for

1 day at room temperature and were subsequently placed in moist-

ened quartz sand. After 12 days of germination, seedlings were trans-

ferred into plastic pots containing 1/4-strength aerated nutrient

solution. The concentration of the nutrient solution was incrementally

increased to 1/2-strength after 2 days, 3/4-strength after 3 days and

to full-strength after 4 days. The full-strength nutrient solution had

the following composition: 0.1 mM KH2PO4, 1.0 mM K2SO4, 2.0 mM

Ca(NO3)2, 0.5 mM MgSO4, 0.00464% (wt/vol) Sequestren (Ciba

Geigy, Basel, Switzerland), 10 μM NaCl, 10 μM H3BO3, 2.0 μM
MnSO4, 0.5 μM ZnSO4, 0.2 μM CuSO4, 0.1 μM CoCl2, 0.05 μM
(NH4)6Mo7O24. After 4 days of growing under full-strength nutrient

concentration, the NaCl treatment was introduced to the plants. Dur-

ing the following three consecutive days, the NaCl concentration was

increased starting from 1/3-strength, over 2/3-strength to full-

strength (100 mM NaCl), respectively. Concomitant to the replace-

ment of the nutrient solution every third day, the plant roots were

gently rinsed with deionized water. After 20 days of full-strength
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F IGURE 1 Gas exchange and the stomatal response to light in Vicia faba grown under NaCl. (a) Images of plant shoots from V. faba variety
Fuego grown under control and 100 mM NaCl conditions (20 days). (b) Assimilation (A) and transpiration (E) rate of two V. faba varieties, Fuego
and Scoop, grown under control and 100 mM NaCl. Measurements were conducted at fourth leaves from top after 100 mM NaCl treatment had
been applied. Means ± SE; different letters indicate significant differences of means of comparison within variety (Tukey test; p ≤ .05; n = 5).
(c) The response of A and E rates of fourth leaves from top of Fuego and Scoop after 20 days NaCl stress and controls to light. Measurements of
A and E rates with trend-line (local polynomial regression fit) during the transition from darkness to light indicated by labelled horizontal segments
(grey: 0 μmol m−2 s−1; yellow: 400 μmol m−2 s−1). Vertical bars annotate the half of the maximum value (max1/2) plus the slope (m) from the initial
value to max1/2 (n = 3) [Colour figure can be viewed at wileyonlinelibrary.com]
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NaCl treatment, plant materials, all without salt-induced lesions, were

harvested in a randomized order. Material referred to as light condi-

tion was collected starting from after 2.5 hr lights on. The material of

the second, dark condition was collected identically, but the plants

were kept in the darkness until harvest and the laboratory remained

unlit (!1 μmol photons m2/s) during the harvest (Figure S2).

2.2 | Isolation of guard cells

Guard cells for metabolomic analysis were isolated by the abaxial leaf

epidermis being peeled off of at least 5 leaves as described earlier

(Cornish & Zeevaart, 1986; Geilfus, Lan, & Carpentier, 2018). Peeled

off strips were collected within 5 min in 10 ml 0.001% Tween20 on

ice and then sonicated for 3 min by using 0.3 s pulses at approx. 35 W

(SONOPULS HD 2070/UW 2070/M 73, Bandelin, Berlin, Germany).

This procedure destroyed the epidermal cells, whereas the more

robust GCs remained intact (Cornish & Zeevaart, 1986). After being

rinsed with ice-cold deionized water in a sieve, isolated GCs

(GC preparations) were shock-frozen in liquid nitrogen, lyophilized

and stored at −80"C. To obtain sufficient material for ion analysis of

GCs, a second GC isolation approach was used, namely, the ice

blender method according to Bauer et al. (2013) with minor modifica-

tions. At least 6 leaves were blended (B-400, Büchi, Essen, Germany)

in 200 ml deionized H2O containing crushed ice for 30 s and, then,

the tissue was collected and rinsed on a nylon mesh with a pore width

of 210 μm. The collected tissue was subjected to a second blending

step, as described above, and then, collected, shock-frozen in liquid

nitrogen, lyophilized and stored at −80"C. The effectiveness of the

two isolation methods was microscopically verified by means of viabil-

ity stains (Geilfus et al., 2018; Geilfus, Mithofer, et al., 2015).

2.3 | Extraction of apoplastic washing fluids and
sampling of leaf fractions

Cut leaves were infiltrated with deionized H2O according to Lohaus,

Pennewiss, Sattelmacher, Hussmann, and Mühling (2001). Apoplastic

washing fluid (AWF) was collected within 3 min by carefully pulling

the plunger of a syringe (without a needle) that was being gently

pressed on the abaxial leaf side. Cytosolic AWF contamination (Floerl

et al., 2008) was estimated by malate dehydrogenase (MDH) activity

as described by Lohaus et al. (2001) (maximal relative activity of about

5%; Figure S1). The remaining leaf materials (symplastic leaf fractions)

from which AWFs had been extracted, AWFs and non-treated leaf

materials (non-sample controls) were shock-frozen in liquid nitrogen,

lyophilized and stored at −80"C.

2.4 | Gas exchange and stomatal imprints

The transpiration and CO2 assimilation rates of the fourth leaves

(Figure 1a) were measured in the climate cabinet (see above) by using

an LCi-SD ultra-compact photosynthesis system (ADC Bioscientific,

U.K.) after 2.5 hr lights on. For the recording of the light-induced

changes in gas exchange, sets of three plants of each condition were

measured in rotation during dark-to-light (0–400 μmol photons m2/s)

transition until 4 hr after lights on. For recording of the stomatal clos-

ing response, leaf gas exchange was continuously measured of plants

that had been transferred to dark. In addition to the transition to dark-

ness, dry air (approx. 20% humidity) was supplied to the continuous

flow leaf chamber. Epidermal imprints were taken under light (4 hr

after lights on) and dark (4 hr after lights off at the end of the photo-

period) condition by applying a thin layer Formvar (2% in

1,2-dichlorethane). After being dried, the imprints were detached from

the leaves by using adhesive strips and afterwards analysed

microscopically.

2.5 | Ion extraction and measurement

Leaf ions were extracted and measured as described earlier (Franzisky,

Geilfus, Kränzlein, Zhang, & Zörb, 2019). In brief, 50 mg ground plant

material was solubilized by microwave digestion at 190"C for 25 min

in 12 ml digestion solution (46% (vol/vol) HNO3 and 10% (vol/vol)

H2O2). Filtrated digestates were used for the analysis of cations by

atomic absorbance spectroscopy whereas the Cl− concentrations

were measured by using the ferricyanide method (Munns, Wallace,

Teakle, & Colmer, 2010). For the ion measurement of GC preparations

and AWFs, approximately 15 mg DW or AWF aliquots of 100 μl were

each added to 500 μl 0.5 M HNO3, respectively, and then incubated

at 85"C for 16 hr with repeated thorough mixing. Supernatants of

centrifuged (20,800 g, 10 min 4"C) extracts were used for analysis.

After the addition of internal Rh standard, concentrations were mea-

sured by using an inductively coupled plasma mass spectrometer

(NexION 300 X, Perkin Elmer, Waltham, USA). AWFs were corrected

by the subtraction of cytosolic ion contamination, which was calcu-

lated by the use of the respective fresh leaf ion concentrations and

MDH activities (Figure S1). Although the ion concentrations of GC

preparations do not refer to guard cell symplasts only (Raschke, 1979;

Stevens & Martin, 1977), the approach allowed a qualitative analysis

of the effect of the NaCl treatment on the ion contents.

2.6 | Metabolite extraction and metabolite
profiling

Approximately 10 mg lyophilized leaf material or GC preparation was

homogenized by using a Retsch MM300 TissueLyser (Haan, Ger-

many). Soluble metabolites of leaves were extracted according to

Richter et al. (2019) with modifications. In brief, metabolites were

extracted in 360 μl methanol with added U13C6-sorbitol standard at

70"C for 1.5 hr. After the addition of 200 μl CHCl3 the samples were

agitated at 37"C for 0.5 hr. An aliquot of 400 μl bi-distilled H2O was

added to induce a liquid phase separation. After thorough mixing and

centrifugation (20,800 g for 5 min), aliquots of 160 μl of the upper
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polar phase were dried in a vacuum concentrator overnight at room

temperature. AWFs were derivatized without further extraction. Pri-

mary metabolites of GC preparations were extracted with 600 μl pre-
mix containing MeOH/H2O/CHCl3: 2.5/1/1 (vol/vol/vol) without

liquid partitioning into chloroform (Erban et al., 2020). Aliquots of

500 μl were dried in a vacuum concentrator overnight at room tem-

perature. Chemical derivatization, that is, methoxyamination and tri-

methylsilylation, and subsequent gas chromatography-electron

impact/time-of-flight mass-spectrometry (GasC-EI/TOF-MS)-based

metabolite profiling was carried out as described earlier (Dethloff

et al., 2014) in splitless mode for GC preparations and in splitless and

split 1:30 mode for leaves and AWFs.

2.7 | Metabolite data processing

GasC-EI/TOF-MS chromatograms were acquired, visually controlled,

baseline-corrected and exported in the NetCDF file format by using

ChromaTOF software (Version 4.22; LECO, St. Joseph, USA). The

processing of GasC-EI/TOF-MS data into a standardized numerical

data matrix and compound identification were performed by using

TagFinder software (Luedemann, Strassburg, Erban, & Kopka, 2008).

Compounds were identified according to standardized guidelines

(Dethloff et al., 2014) by mass spectral and retention time index

matching to a reference collection of authenticated standard sub-

stances and of frequently observed but not yet identified mass spec-

tral tags from the Golm Metabolome Database, GMD, (http://gmd.

mpimp-golm.mpg.de/search.aspx) (Hummel et al., 2010; Kopka

et al., 2005). In this study, individual hexoses could not be resolved

because of co-elution. Because the extraction of the GC preparation

metabolites had been performed without phase separation, an analy-

sis of fatty acids and lipids was performed for GC preparations only.

Data processing and numerical analysis were carried out according to

Richter et al. (2019). Metabolite abundancies were normalized to

weights, internal standards and the sum of the intensities of the

respective sample to enable the analysis of compositional changes of

metabolites separately within each of the three sample types, namely

leaves, AWFs and GCs. Values are presented as the percent of maxi-

mum. Fold-changes for the comparison of metabolic changes in

response to experimental conditions were calculated by numerical

subtraction after log2-transformation.

2.8 | Statistical analysis

All fractions for metabolome profiling, but non-sample controls, were

sampled from two independent experiments with each of 5 biological

replicates yielding 10 biological replicates for AWFs, symplastic frac-

tions and GC preparations (exceptions with n = 9 are given in

Table S1). Symplastic fractions (leaf material from which AWFs had

been extracted) were used to restrict analysis of AWF profiles to

metabolite pools that remained unaffected by the extraction proce-

dure (p ≤ .001). Data processing, transformation, analyses of variance

(ANOVA), models and the post-hoc test (Tukey's) were carried out by

using R software for statistical computing (R Core Team, 2020). Data

of repeated experiments were analysed by using the mixed model

algorithm of “lmer” (Bates, Maechler, Bolker, & Walker, 2015) with

the repeated experiments as a random factor by applying a signifi-

cance threshold of p < .05. Other data were analysed by using linear

models and applying the same threshold unless stated otherwise. Prior

to computing the principal component analysis by using “stats”, the
data were restricted to metabolites with less than 10% missing values

(NA); remaining NA were replaced by half of the minimum value. Data

were plotted by using “ggplot2” (Wickham, 2016). Trend-lines were

fitted with local polynomial regression by using “stats”. Heatmaps and

Euler diagrams were drawn by using “pheatmap” (Kolde, 2019) and

“VennDiagram” (Chen & Boutros, 2011), respectively.

3 | RESULTS

3.1 | Leaf physiological measures

The two Vicia faba L. varieties Fuego and Scoop were selected to

allow the evaluation of the broad stress response occurring in both

varieties, which had shown plasticity in withstanding salt stress in a

previous experiment (Franzisky et al., 2019). In addition, in this experi-

ment, some plants of the variety Fuego showed salt-induced stress

symptoms such as necrotic spots on leaves a few days earlier than

Scoop. However, for the collection of plant material and physiological

measurements only plants without symptoms were considered.

Under control conditions, mature leaves (Figure 1a) of both varie-

ties exhibited similar assimilation and transpiration rates, with values

of about 9 μmol CO2 m−2/s and 3 mmol H2O m−2/s, respectively

(Figure 1b). In response to NaCl treatment, the transpiration rate sig-

nificantly decreased by about 60% in comparison with controls. This

reduction was constant over the measuring period for both varieties.

Similar to the transpiration, the rate of CO2 assimilation was slightly

reduced at the beginning of the stress period but decreased continu-

ously with prolonged exposure to NaCl stress to values of about

4 μmol CO2 m−2/s, although gas exchange in terms of transpiration

remained at a similarly reduced level (Figure 1b). To assess the open-

ing response of the stomata to light, we recorded the gas exchange

characteristics during the dark-to-light transition after 20 days of

NaCl stress. After lights on, the photosynthesis rate of both varieties

increased within 25 mins to the respective maximum with no tempo-

ral differences between NaCl stressed and control plants (Figure 1c).

However, the maximal assimilation rate of NaCl treated plants was

half of that of controls (Figure 1b,c). In accordance with the course of

assimilation rates, the transpiration rates increased with the duration

of illumination, but in the salt stressed plants, the maximum rates

were again half of that of the controls. The transpiration rates of NaCl

stressed Fuego and Scoop reached maximal values after about

60 mins, which was about 30% later than controls (Figure 1c). The

comparison of the slopes from initial values recorded at darkness to

half of the maximum (max1/2) illustrated that the speed of the light-
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induced increase of transpiration, that is, the opening of the stomatal

pores, was about 50% slower in long-term NaCl stressed plants than

in the controls, irrespective of the variety.

In agreement with the reduced transpiration rates, the stomatal

apertures of leaves of various developmental stages were reduced

under light after 20 days of NaCl stress in comparison with controls

(Figure 2a). However, the aperture of the stomatal pores of leaves of

various developmental stages was differently regulated because the

salt stress-induced reduction was weaker in old leaves than in mature

and young leaves in both varieties. Moreover, young leaves of Scoop

had more opened stomata under control conditions in comparison

with Fuego whereas the apertures of both varieties were similar under

NaCl condition. In contrast to the differential aperture regulation in

light, the stomata of NaCl-treated plants were closed 4 hr after the

end of the photoperiod (dark), the same as in the controls (Figure 2a).

To assess the closing response of stomata, we recorded gas-exchange

of plants that had been transferred to dark and were treated with dry

air (approx. 20% humidity). In response to the combined closing stim-

uli, the rates of stomatal conductance of all plants declined markedly

within 20 min (Figure 2b). Starting from about 0.4 to 0.6 mol m−2 s−1,

the stomatal conductance of controls decreased by at least 50%

within 20 mins reaching a constant, basal plateau. In agreement with

the reduced gas-exchange under NaCl stress, the initial rates of sto-

matal conductance of NaCl stressed plants were lower than that of

the controls with values of 0.1 mol m−2 s−1, which decreased in

response to the closing stimuli to zero within 20 and 10 mins in Fuego

and Scoop, respectively (Figure 2b). The comparison of the slopes

from initial values to max1/2 illustrated that the stomatal conductance

declined about 50% faster in Fuego than in Scoop under control con-

ditions. Under long-term salt stress however, the response to the clos-

ing stimuli was faster in Scoop than in the respective control, and

four-fold faster in comparison with salt stressed Fuego.

3.2 | Ion concentrations of leaves, apoplast and
guard cell preparations

In response to NaCl treatment, Na+ and Cl− concentrations increased

in young and mature leaves of both varieties (Figure 3). Compared with

younger leaves, the accumulation of Na+ and Cl− and the reductions in

K+ were higher in mature leaves. Mature leaves also showed a signifi-

cant reduction in Mg2+ concentration, whereas stress-responsive

increases in Ca2+ were higher in young leaves of both cultivars. An

enrichment of salt ions was also found in the apoplastic space, that is,

cell walls, with Na+ and Cl− concentrations being increased >100-fold

and up to 26-fold in comparison with controls, respectively (Figure 3b).

A similar trend was found for GC preparations because the Na+ con-

centrations were increased three-fold and 7.6-fold in the NaCl-treated

Fuego and Scoop varieties, respectively, whereas the Cl− concentra-

tions remained similar to those of the control (Figure 3c). The concen-

trations of K+, being the major inorganic osmolyte for GC osmotic

adjustment, were significantly reduced (0.1 to 0.2-fold) in comparison

with controls (Figure 3c). Divalent cations such as Ca2+ and Mg2+

remained unchanged, the slight reductions being non-significant.

F IGURE 2 Analysis of stomatal apertures and the closing
response in salt stressed Vicia faba. (a) Stomatal aperture of leaves of
various developmental stages of two V. faba varieties, Fuego and
Scoop, from control and 20 days 100 mM NaCl conditions. Epidermal
imprints were taken from the abaxial side of young, mature and old
leaves (Figure 1a) during dark and light. Data are presented as box
plots featuring the maxima, 75 quartiles, medians, 25 quartiles and
minima with density plots of individual apertures (n = 3). (b) The
response of stomatal conductance of fourth leaves from top of Fuego
and Scoop after 20 days NaCl stress and controls to combined
darkness and dry air (approx. 20% humidity) as stomatal closing
stimuli. Continuous measurement of stomatal conductance with
trend-line (local polynomial regression fit) during the transition from
light to dark and from 80 to 20% relative humidity (RH) indicated by
labelled horizontal segments (yellow: 400 μmol m−2 s−1, RH: !80%;
grey: 0 μmol m−2 s−1, RH: !20%). Vertical bars annotate the half of
the maximum value (max1/2) plus the slope (m) from the initial value
to max1/2 (n = 3) [Colour figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 3 Ion compositions of various leaf fractions of Vicia faba grown under NaCl and control conditions. Ion concentrations of (a) young
and mature leaves, (b) apoplastic washing fluids and (c) guard cell preparations of V. faba varieties, Fuego and Scoop, under control and 100 mM
NaCl conditions. Concentrations of potassium (K+), sodium (Na+), chloride (Cl−), calcium (Ca2+) and magnesium (Mg2+). Means ± SE; FC, fold
change; different letters indicate significant differences of comparisons between varieties and treatments within ions; (p ≤ .05; n = 5) [Colour
figure can be viewed at wileyonlinelibrary.com]
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3.3 | Leaf metabolic acclimation to long-term NaCl

For a comparison of the metabolic signatures of GCs, the apoplast

and the leaves in response to long-term NaCl during dark and light,

we applied non-targeted gas chromatography mass-spectrometry. The

evaluation of the metabolites in each fraction was restricted to manu-

ally identified mass spectral tags consisting of known metabolites and

to non-identified compounds with known mass spectrum and reten-

tion index properties.

To overview the general effects of the experimental conditions

on the metabolome of the mesophyll dominated whole leaf fractions,

from which the GC preparations and the AWFs had been isolated, we

analysed the principal components of the leaf metabolomic data

(Figure 4). The latter analysis illustrated a separation according to the

long-term NaCl treatment (horizontally) and the light conditions (ver-

tically). Correspondingly, the first principal component gave high load-

ings to NaCl-responsive metabolites such as the compatible solute

proline and other amino acids such as aspartic acid, phenylalanine,

isoleucine and serine whereas the separation along the second

principal component was largely influenced by the light-dependent

changes in sucrose content. More specifically, the leaf metabolic

response to long-term NaCl was mainly characterized by lower levels

of organic acids related to the TCA cycle (aconitic-, maleic- and malic

acid), minor carbon hydrate metabolism (threonic acid) and photore-

spiratory pathway associated glyceric acid whereas the compatible

solute proline and other amino acids, the stress-responsive myo-inosi-

tol, TCA cycle intermediate succinic acid and anti-oxidative and

membrane-related compounds (nicotiamide, glycerophosphoglycerol)

were increased (Figure 5a). Although the changes in metabolite pools

in response to NaCl exposure showed variety-specific differences in

their extent, these general trends were the same for Fuego and Scoop

(Figure 5).

3.4 | Guard cell metabolic response to long-term
NaCl diverges from that of leaves

Qualitative analysis revealed decreasing leaf and GC preparation

metabolite pools having partly overlapping patterns in response to

NaCl treatment (Figure 5). Decreases of 6 metabolite pools were

found in GC preparations, with 5 (butanoic acid, 4-amino- [GABA],

citric-, malic-, glutamic- and glyceric acid) being common between the

two V. faba varieties (Figure 5a,b). Although the reduction of citric

acid was the same for both varieties, the reductions of GABA, malic

and glutamic acid pools in Fuego were about two-fold in comparison

with Scoop (Figure 5a). Common decreases between leaves and GC

preparations were found for glyceric and malic acid, and for A170001,

with the last-mentioned for Fuego only (Figure 5b). In comparison

with leaves, the reductions of malic acid pools of GC preparations

were higher for each variety, whereas glyceric acid was similarly

reduced (Figure 5a). In GC preparations 7 metabolites increased in

response to NaCl treatment of which the fatty acid tetradecanoic acid

was similar for both varieties (Figure 5a,c). However, there was no

common increase between metabolite pools of leaves and GC prepa-

rations (Figure 5c).

3.5 | Deviations in guard cell metabolic response
to light under long-term NaCl

For a detailed analysis of the metabolic response to light (Stitt,

Lunn, & Usadel, 2010; Stitt & Zeeman, 2012; Szecowka et al., 2013)

throughout the three leaf fractions, we looked at the changes

resulting from the transition from dark to light (Figure 6). Similar pat-

terns of light-induced increases were found for sucrose and malic acid

representing the major photosynthate and a TCA cycle intermediate

with a central role in primary metabolism and in GC turgor adjust-

ments, respectively. However, malic acid pools in the leaf and AWF

fractions showed only minor light-related increases under control

conditions, because the levels were similar in darkness and light

(Figure 7e,f). In contrast, the light-induced increases in the malic acid

F IGURE 4 Unsupervised analysis of leaf primary metabolite
content of Vicia faba in dark and light under NaCl and control
conditions. Principal component analysis (PCA) of the relative leaf
metabolite content of two V. faba varieties, Fuego and Scoop, under
control and 100 mM NaCl, and dark and light conditions. Principal
components (PCs) represent 79.3% of the total variance of the data
with PC1 reflecting the differences between control and NaCl, and
PC2 the differences between dark and light conditions. Top
10 influential metabolites of PC loadings are indicated by labels and
blue arrows. The segment length and the size of the metabolite labels
correspond to the influence on the separation (means of n = 5)
[Colour figure can be viewed at wileyonlinelibrary.com]
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pools of GC preparations were more prominent, because the levels

were low at darkness and high after acclimation to light (Figure 7d).

Under NaCl, malic acid pools of leaf and AWF fractions only slightly

increased in response to light, whereas light-related increases in GC

preparations were diminished (Figure 7d–f). The sucrose pools

increased under all conditions and in all fractions in response to

illumination; however, increases in AWFs and GC preparations were

slightly lower under NaCl conditions (Figure 6; Figure 7a–c). In com-

parison with the control, the sucrose levels of GC preparations and

AWFs of NaCl-treated plants were higher at dark (Figure 7a,b). Pools

of amino acids tended to decrease in AWFs and leaves in response to

light, except for the increasing pools of photorespiratory-pathway-

F IGURE 5 Analysis of common and specific metabolic changes in guard cell preparations and leaves of Vicia faba in response to NaCl.
(a) Metabolic response to NaCl (100 mM, 20 days) in guard cell (GC) preparations and leaves of the V. faba varieties, Fuego and Scoop, under light
condition. Means of the fold-changelog2 of the relative metabolite contents are indicated by a colour code. Asterisks indicate the level of
significance (*p ≤ .05; **p ≤ .01; ***p ≤ .001; GC: n = 9–10; leaves: n = 5; MST, mass spectral tag; the shown metabolites are restricted to
detections in GCs plus affected leave metabolites; full data set provided in supplementary Table S1). (b, c) Comparison of common, significantly
affected metabolites in leaves and GC preparations under light condition. Results of the qualitative assessment of decreased (b) and increased
(c) metabolite pools are plotted as Euler diagrams with numbers indicating common and unique metabolites [Colour figure can be viewed at
wileyonlinelibrary.com]
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associated glycine and serine in leaves (Figure 6). This pattern was

partly seen in GC preparations, as serine increased together with

polyhydroxic and glyceric acid in response to light. However,

increases in glutamic acid, GABA and serine pools of GC preparations

were seen under control rather than under NaCl conditions. Through-

out the various leaf fractions, sucrose was the only sugar exhibiting a

similar pattern. Arabinose pools remained mostly unchanged within

leaf and AWF fractions. In control GC preparations, arabinose pools

slightly decreased in response to light. In the respective NaCl frac-

tions, this trend was weaker.

4 | DISCUSSION

4.1 | Similar physiological response to long-term
NaCl in both Vicia faba varieties

Plant growth and nutrient uptake seems to be disturbed under high

salinity such as when K+ is diminished and Na+ and Cl− is increased

(Flowers, Munns, & Colmer, 2015; Kotula, Garcia, Zörb, Colmer, &

Flowers, 2020; Zörb, Geilfus, & Dietz, 2019). This well-known pattern

has also been found here for both V. faba varieties (Figures 1a and

F IGURE 6 Metabolic response to light in guard cell preparations, apoplastic washing fluids and leaves of Vicia faba. Metabolic response to
light in guard cell (GC) preparations, apoplastic washing fluids (AWF) and leaves of the V. faba varieties, Fuego and Scoop, under control and
100 mM NaCl conditions. Means of the fold-changelog2of relative metabolite contents are indicated by a colour code. Asterisks indicate the level
of significance (*p ≤ .05; **p ≤ .01; ***p ≤ .001; GC: n = 9–10; AWF: n = 10; leaves: n = 5; MST, mass spectral tag; the shown metabolites are
restricted to detections in GCs and AWFs; full data set provided in Table S1) [Colour figure can be viewed at wileyonlinelibrary.com]

10 FRANZISKY ET AL.



Chapter 4 - Acclimatisation of guard cell metabolism to long-term salinity 

 54 
 

 
 
 
 

3a). In our experiment, K+ was little changed in plant leaves of both

varieties (Figure 3a) indicating that the NaCl stress was below the

level of causing a K+ deficiency (Zörb et al., 2019). In terms of the ion

distribution in leaves of various ages, the younger leaves are clearly

protected by the high salt ion load, which agrees with previous studies

(Franzisky et al., 2019; Richter et al., 2019). The physiological stress

response of the extent of gas exchange was similar in both varieties

showing a stress-related delay in the stomatal opening (Figure 1c) and

the reduction of transpiration more than half (Figure 1b) due to sto-

matal closure (Figure 2a). Both physiological reactions diminish plant

productivity and water use efficiency in terms of unproductive water

loss or the limitation of CO2 diffusion into leaves (Lawson & Vialet-

Chabrand, 2019). The assimilation of CO2 decreased continuously

over the stress period (Figure 1b) suggesting a salt stress-induced

metabolic perturbation of photosynthesis beyond the limitation of

CO2 diffusion because the gas exchange in terms of transpiration was

similarly reduced throughout the NaCl stress period. This illustrates

that photosynthesis was negatively affected under long-term NaCl,

but not at a severe level. Thus, the plants could produce sufficient

assimilates and react with appropriate metabolic regulation to mitigate

direct stress effects.

4.2 | Stomatal regulation resists increasing leaf
Na+ and Cl− concentrations

The enrichment of acropetally transported Na+ and Cl− in leaves and

apoplast was found in both V. faba varieties (Figure 3a, b) and is

known to interfere with enzyme functioning and other metabolism at

higher concentrations (Flowers et al., 2015; Geilfus, 2018; Munns

et al., 2016). Increasing salt ion concentrations within the apoplast

resulting inter alia from weak ion exclusion capabilities (Munns, Pas-

sioura, Colmer, & Byrt, 2020), in particular that of Na+, have previ-

ously been reported for salt-sensitive dicots such as V. faba (Shahzad,

Zörb, Geilfus, & Mühling, 2013; Speer & Kaiser, 1991). Because inor-

ganic ions are imported from the apoplastic reservoirs during stomatal

opening (Felle, Hanstein, Steinmeyer, & Hedrich, 2000; Roelfsema &

Hedrich, 2002), apoplastic salt ion accumulation might interfere with

GC ion transport (Hedrich & Shabala, 2018). In addition to the appar-

ent reductions in K+ concentrations in GC preparations compared

with controls, reductions that are primarily a consequence of the

NaCl-induced suppression of stomatal opening (Kollist et al., 2014;

Munemasa et al., 2015; Roelfsema, Hedrich, & Geiger, 2012;

Zhu, 2002), Na+ concentrations were increased in GC preparations

F IGURE 7 Sucrose and malate in various leaf fractions of Vicia faba in dark and light under salt and control conditions. Detail of sucrose (a–c)
and malic acid (d–f) in guard cell preparations, apoplastic washing fluids (AWFs) and leaves, respectively, of the V. faba varieties, Fuego and
Scoop, under control and 100 mM NaCl conditions at dark and light condition. Maximum scaled (%) relative metabolite contents presented as box
plots featuring the maxima, 75 quartiles, medians, 25 quartiles and minima [Colour figure can be viewed at wileyonlinelibrary.com]
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(Figure 3c). Unlike the values obtained from surrounding mesophyll

and apoplast (Figure 3a,b), Cl− did not increase on NaCl treatment in

the GC preparations of the two varieties (Figure 3c). The differential

accumulation pattern of Na+ and Cl− implies that GCs rely on their Cl−

transport mechanisms (Jezek & Blatt, 2017) to avoid the accumulation

of Cl−, whereas the intake of Na+ seems to be less well controlled.

Although the stomatal pores of both varieties were closed 4 hrs after

the end of the photoperiod same as the controls (Figure 2a), the sto-

matal response to darkness and low air humidity was markedly del-

ayed in the variety Fuego (Figure 2b) suggesting a dysfunctional

stomatal closing response as a result of Na+ intake into GCs

(Robinson, Véry, Sanders, & Mansfield, 1997; Thiel & Blatt, 1991)

observed in Fuego but not in Scoop. Such a delayed closing response

increases the probability of unproductive water loss (Lawson & Vialet-

Chabrand, 2019; McAusland et al., 2016) and continued acropetal

transport of deleterious salt ions to the shoot (Hedrich &

Shabala, 2018). However, the general reduction of the stomatal pore

widths (Figures 1b and Figure 2a), and thus, less intake of inorganic

ions into GCs, might be advantageous to prevent accumulation of del-

eterious salt ions when apoplastic Na+ and Cl− concentrations

increase because of continuous exposure to salinity.

4.3 | Diverging signatures of leaf and guard cell
metabolic acclimatisation to NaCl

Long-term exposure to NaCl results in the accumulation of salt ions in

plant tissues (Figure 3), challenging ion homeostasis (Munns

et al., 2016), nutrient availability (Zörb et al., 2019) and primary

metabolism (Sanchez et al., 2008). The last-mentioned is markedly

affected in V. faba (Richter et al., 2019) and other legumes such as

Lotus (Sanchez et al., 2008; Sanchez et al., 2011). Accordingly, the leaf

metabolic profiles reflected changes in response to the long-term

exposure to NaCl and the light condition, that is, when the stomata

were open or closed (Figure 4). Changes of the levels of compatible

solutes such as proline and stress-responsive metabolites such as

sugars, free amino acids and the reduction of TCA cycle intermediates

(Figures 4 and 5a) were in agreement with known patterns of meta-

bolic responses to osmotic and high NaCl stress (Fàbregas &

Fernie, 2019; Richter et al., 2019; Sanchez et al., 2008).

As far as GC metabolism is concerned, we have shown that the

amount of changed metabolites under salt conditions is lower than in

whole leaves indicating that GCs, in general, are not as sensitive to

saline conditions as leaves (Figure 5). This is in accordance to the find-

ings above and therefore suggests that the stomata of V. faba can still

function, that is, control their aperture and the transpiration rate,

albeit at a slower rate (Figures 1b,c and 2), to reduce water loss and

the amount of salt delivered to the shoot (Hedrich & Shabala, 2018;

Robinson et al., 1997), even when the mesophyll is affected by high

salinity. Conserved leaf metabolic responses to high NaCl exposure,

for example, increases of stress-responsive metabolites such as myo-

inositol and free amino acids (Sanchez et al., 2008; Sanchez

et al., 2011), were not present in GC preparations (Figure 5a). In V.

faba, the metabolic response of the mesophyll, with respect to TCA

cycle intermediates such as fumaric and malic acid, and the stress-

responsive amino acid proline, is more affected by salinity with Cl−

(KCl, NaCl) than by exposition to Na+ without Cl− (NaSO4) (Richter

et al., 2019). Therefore, the absence of a conserved NaCl-stress signa-

ture in guard cell metabolism might be associated with the prevention

of Cl− accumulation (Figure 3c). In terms of increased photorespiratory

pathway and reduced TCA cycle activity, GC and leaf metabolism

were similarly affected, as associated metabolites were changed in

response to NaCl exposure (Figures 4 and 5a) reflecting known signa-

tures of leaf metabolic response to stress in many salt-sensitive

glycophytes (Richter et al., 2019; Sanchez et al., 2008; Sanchez

et al., 2011). In GC metabolism, however, the TCA cycle plays a pivotal

role for osmolyte synthesis and energy production, which is required

for energizing the proton pumps that drive the import of inorganic

ions into GCs (Daloso et al., 2017; Robaina-Estévez, Daloso, Zhang,

Fernie, & Nikoloski, 2017; Santelia & Lawson, 2016). In addition to

Cl−, organic anions such as malic acid counterbalance the positive

charge resulting from K+ that is accumulated during stomatal opening

(Chen et al., 2012; Fernie & Martinoia, 2009; Hills, Chen, Amtmann,

Blatt, & Lew, 2012; Horrer et al., 2016; Santelia & Lawson, 2016). In

association with the decreased malic acid and increased GABA pools

of the GC preparations (Mekonnen, Flügge, & Ludewig, 2016), the sto-

matal apertures of both the V. faba varieties were reduced in the light

(Figure 2a) illustrating the tight correlation of GC metabolism and sto-

matal aperture (Daloso et al., 2017; Santelia & Lawson, 2016). In view

of the impact of the stress hormone abscisic acid on GC sugar trans-

port and the TCA cycle activity suggested by previous studies (Asai,

Nakajima, Kondo, & Kamada, 1999; Jin et al., 2013; Yoshida

et al., 2019; Zhu & Assmann, 2017) the observed changes of GC

sucrose and malic acid pools might be part of the metabolic response

to abscisic acid. Thus, GC metabolism under long-term NaCl seems to

be primarily affected by stress-related abscisic acid signalling (Lee &

Luan, 2012; Umezawa et al., 2010; Weiler, Schnabl, &

Hornberg, 1982) rather than by direct NaCl stress effects as observed

in the Na+ and Cl− accumulating mesophyll-dominated whole leaf frac-

tions (Figures 3a and 5a). Hence, the differential metabolic response

of GC metabolism to long-term salinity indicates that the ability for

transient turgor adjustments of GCs remains preserved under condi-

tions of increasing salt ion loads in the leaves and the apoplast.

4.4 | Sucrose replete pattern in guard cells
indicates metabolic feedforward function during long-
term salinity

We observed increased sucrose pools in AWFs and GC preparations

both at darkness and in the light under conditions of NaCl stress

(Figure 7a–c), when stomata remained mostly closed (Figures 1b,c and

2a). Sucrose pools of controls were lower at darkness and then

increased over the photoperiod in all fractions (Figure 7a–c). In V.

faba, sucrose represents the primary photosynthate and transport

form for sugars, which are translocated to the phloem with an
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apoplastic step. This leads to the transpiration-stream-driven enrich-

ment of sucrose in the apoplast during the photoperiod (Ewert, Out-

law Jr, Zhang, Aghoram, & Riddle, 2000; Outlaw & De Vlieghere-

He, 2001). Concomitant with sucrose accumulation in the apoplast

during the late diel period, the stomatal aperture declines, although

environmental conditions remain unchanged. In addition to a potential

osmotic effect of apoplastic sucrose, Kelly et al. (2013) proposed a

metabolic feedforward functioning of sucrose coordinating stomatal

conductivity and photosynthesis by the stimulation of stomatal clo-

sure via a sugar-sensing hexokinase, which in turn stimulates the

abscisic acid-signalling pathway in GCs resulting in stomatal closing.

Such metabolic regulation has been hypothesized to be relevant under

conditions of limited sink capacity and therefore saturated phloem

loading in the late diel period (Lawson, Simkin, Kelly, & Granot, 2014;

Lima et al., 2018) but might also apply to the physiological condition

of V. faba under long-term NaCl exposure favouring leaf sugar accu-

mulation of, for example, sucrose (Kempa, Krasensky, Dal Santo,

Kopka, & Jonak, 2008; Krasensky & Jonak, 2012; Sanchez

et al., 2008). We therefore hypothesize that the sucrose feedforward

mechanism acts not only as a positive regulator of GC abscisic-

signalling in the late diel period leading to stomatal closure (Kelly

et al., 2013; Lugassi et al., 2015), but also under conditions of long-

term NaCl, when sucrose accumulates in the apoplast and GCs as a

consequence of stress-related carbon partitioning.

In conclusion, this study shows that NaCl exposure increased Na+

in GCs and triggered responses that indicated a reduced TCA cycle

and increased photorespiration activity, both of which are attributable

to stress-related hormone signalling. Metabolic stress markers and

compatible solutes accumulated in leaf tissue but not in GC prepara-

tions. Diverging metabolic regulation of GCs might be a prerequisite

for maintaining GC functionality under long-term NaCl, that is, facilita-

tion of a constant adjustment of GC turgor that affects stomatal aper-

ture and water loss. In contrast to controls, the sucrose levels of the

apoplast and GC preparations from NaCl-treated plants were high

irrespective of the photoperiod indicating that a metabolic sucrose-

mediated feedforward mechanism is involved in coordinating stomatal

closure under conditions of long-term NaCl.
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Supplementary material 

Supplementary material 3.1: Relative malate dehydrogenase (MDH) activity of apoplastic 
washing fluids (AWF) extracted from leaves of the V. faba varieties, Fuego and Scoop, under 
control and 100 mM NaCl conditions. MDH was used to check the purity of AWF, which might 
be contaminated by symplastic solutes because of stress-related increases of membrane leakage. 
The activity is expressed as relative to that of whole leaves. Means ± SE; different letters 
indicate significant differences of comparisons between varieties and treatments; (p ≤ .05; n = 
5). 

 
 
Supplementary material 3.2: Illustration of the conditions of the harvest in terms of light and 
time. After 20 days of NaCl treatment, plant materials were harvested. Material of the light 
condition was collected starting from after 2.5 hr lights on, whereas material of the dark 
condition was collected in an unlit laboratory (~1 μmol photons m2/s) from plants that had been 
kept in the darkness until harvest. 
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Supplementary material 3.3: Metabolome and stomatal kinetic data set. Relative contents of 
primary metabolites in whole leave material, apoplastic washing fluids (AWF) and guard cell 
(GC) preparations of the V. faba varieties, Fuego and Scoop, under control and 100 mM NaCl, 
and dark and light conditions. Stomatal kinetics of transitions from dark-to-light and from light-
to-dark under control and 100 mM NaCl conditions. 
 
Data set available online (13 January 2021): 
https://onlinelibrary.wiley.com/action/downloadSupplement?doi=10.1111%2Fpce.13964&fil
e=pce13964-sup-0003-TableS1.xlsx 
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5. General discussion 

A better understanding of the physiological traits that contribute to salt tolerance of crops 

is of great importance to meet the future demands of human nutrition. Therefore, in this work, 

the contribution of the tolerance mechanisms ‘ion exclusion’ and ‘tissue tolerance’ to plant 

performance has been evaluated in diverse varieties of the two crop species V. faba and Z. mays. 

As an aspect of ‘tissue tolerance’, the impact of the accumulation of excess salt ions in leaves 

and the apoplast on stomatal physiology was characterized in V. faba exposed to long-term 

salinity in order to improve our knowledge of guard cell physiology and the stomatal control of 

transpiration and leaf CO2 assimilation under saline conditions. 

 

5.1 Tolerant Vicia faba varieties sequester Na+ and exclude Cl- from shoots 

To assess the toxic effects of high Na+ and Cl- in salt-sensitive V. faba, 13 diverse varieties 

were grown hydroponically and stressed with 100 mM NaCl until necrotic leaf spots appeared 

(Chapter 2, Fig. 2). Sensitive and tolerant varieties differed by approximately a factor of two in 

the stress period until salt-induced lesions appeared (Chapter 2, Fig. 2 A), indicating a broad 

plasticity of tolerance to NaCl salinity in V. faba. To prevent such salt-induced lesions, the plant 

either has to exclude excess ions into the soil or cope with the physiological inconveniences 

resulting from increasing tissue concentrations of Na+ and Cl-, a characteristic referred to as 

‘tissue tolerance’ (Munns et al., 2016). Because high cytosolic Na+ concentrations disturb K+ 

homeostasis and, thus, enzyme functioning and stomatal regulation (Deinlein et al., 2014; 

Flowers et al., 2015), Na+ is often considered as the primary toxic ion under salinity. Therefore, 

the maintenance of low tissue Na+ concentrations is an important trait of salt tolerance in many 

crop species (Roy et al., 2014; Zörb et al., 2019). However, leaf Na+ concentrations increase 

with the length of NaCl exposure leading to the highest Na+/K+ ratios in those varieties 

developing salt-induced lesions the latest (Chapter 2, Fig. 8 E, F). This finding indicates that 
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that tolerant varieties are effectively able to sequester Na+ in order to maintain K+ homeostasis 

(Munns et al., 2016) and moreover, that the ability of Na+ retention from shoots is not decisive 

for NaCl tolerance in V. faba. 

In agreement with a few reports of legumes being primarily sensitive to Cl- (Li et al., 

2017; Teakle & Tyerman, 2010), adverse effects on photosynthesis and plant growth in V. faba 

were initially attributed to high Cl- rather than high Na+ (Slabu et al., 2009; Tavakkoli et al., 

2010). Irrespective of the variable NaCl stress dose, leaf Cl- concentrations were similar 

throughout the varieties at the time point when necrotic spots appeared (Chapter 2, Fig. 6, 7), 

suggesting that varieties with higher tolerance profit from lower Cl- translocation to the shoots 

(Chapter 2, Fig. 8 C, D) and, further, that the Cl- concentration in developing leaves is a critical 

factor for ion toxicity in V. faba growing under NaCl salinity (Geilfus, 2018; Tavakkoli et al., 

2010). Toxic effects of high Cl- are expected to result from unbalanced chloroplastidial Cl- 

homeostasis, because the salinity-induced accumulation of Cl- in the chloroplasts (Slabu et al., 

2009) is associated with the inhibition of CO2-fixing enzymes, disturbed chloroplast dark 

relaxation, damage of PSII reaction centres and excessive accumulation of reactive oxygen 

species in chloroplasts (Geilfus, 2018). In this context, the tolerant varieties are able to improve 

the protection of their chloroplasts from excess Cl- intake and, thus, prevent excessive reactive 

oxygen species production (Bose et al., 2017), chlorophyll degradation (Chapter 2, 

Supplemental table 1) and the related reductions in energy and redox equivalent pools. 

5.2 Zea mays excludes Cl- from shoot and restricts leaf Cl- accumulation to leaf 

sheaths 

To identify physiological dysfunctions of Z. mays in response to excess Cl- in soil, 8 

diverse genotypes were grown in soil and stressed with mild and high CaCl2 treatments (63.2 

and 757.1 mg Cl- kg-1 soil DM) for 10 d (Chapter 3, section 2.1). None of the genotypes except 

for P8589 developed Cl- toxicity symptoms, such as leaf chlorosis or necrosis, indicating that 
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the high Cl- application represented a mild stress for Z. mays. The CaCl2 treatment-related 

increases of Cl- concentrations in aerial plant parts (Chapter 3, Fig. 5 A, B & C) were smaller 

than those in roots (Chapter 3, Fig. 5 D) suggesting that Z. mays is a Cl--excluder restraining 

most of the Cl- from acropetal transport.  

The exclusion of excess salt ions is an important attribute of salt tolerance in many crop 

plants (Munns & Gilliham, 2015; Roy et al., 2014), as has been particular well documented for 

Na+ in Z. mays (Farooq et al., 2015; Fortmeier & Schubert, 1995; Tester & Davenport, 2003). 

Accordly, the lowest Cl- exclusion capability among the genotypes was found for P8589, that 

had developed chlorotic leaf edges (Chapter 3, Fig. 5 F). Moreover, the Cl- concentrations of 

the various leaf fractions illustrated a differential spatial leaf Cl- accumulation pattern, because 

Cl- primarily accumulated in leaf sheaths instead of, for example, in the photosynthetically 

active leaf blades. This strategy was effective in preventing the harmful effects of high chloride 

concentrations on chloroplasts (Geilfus, 2018), because the chlorophyll content and 

photosynthesis remained unaffected by the Cl- treatments (Chapter 3, Fig. 9).  

 

5.3 Guard cell metabolism is less sensitive to salt stress compared with whole 

leaf tissue in Vicia faba 

Stomatal movements are enabled by changes in guard cell turgor facilitated via the 

transient accumulation of inorganic and organic ions imported from the apoplast or 

biosynthesized within guard cells. Because inorganic ions are imported from the apoplastic 

reservoirs during stomatal opening (Felle et al., 2000; Roelfsema & Hedrich, 2002), the 

salt-stress-related Na+ and Cl- accumulation in the apoplast might interfere with guard cell ion 

transport and physiology (Hedrich & Shabala, 2018; Roelfsema & Hedrich, 2005). 

In response to long-term salinity (20 days; 100 mM NaCl), Na+ and Cl- concentrations 

increased in leaves and the apoplast (Chapter 4, Fig. 3 A, B) illustrating the weak ion exclusion 



Chapter 5 – General discussion 

 65 
 

capability of the salt-sensitive V. faba (Franzisky et al., 2019; Geilfus et al., 2015; Slabu et al., 

2009). In guard cell preparations, however, only Na+ increased, whereas Cl- levels remained 

similar to those of the controls without NaCl treatment (Chapter 4, Fig. 3 C). The differential 

accumulation pattern implies that guard cells rely on their Cl- transport mechanisms (Jezek & 

Blatt, 2017) to avoid excessive Cl- accumulation under conditions of increased salt ion 

concentrations in leaf tissue, whereas the intake of Na+ seems to be less controlled. Although 

the stomatal pores of both varieties were closed at night (Chapter 4; Fig. 2 A) the closing 

response to darkness and low air humidity was markedly delayed in the variety Fuego (Chapter 

4; Fig. 2 B) suggesting a dysfunctional stomatal closing response as a result of Na+ intake into 

GCs (Jarvis & Mansfield, 1980; MacRobbie, 1983; Robinson et al., 1997; Thiel & Blatt, 1991). 

However, a general reduction of aperture during NaCl stress (Chapter 4, Fig. 1; Fig.  2) and, 

thus, less detrimental intake of Na+ into GCs (Thiel & Blatt, 1991) might be a strategy to protect 

from Na+ toxicity in guard cells (Hedrich & Shabala, 2018). 

In comparison with leaf metabolic acclimatisation to long-term NaCl, guard cell 

preparations showed a lower amount of increases of stress-responsive metabolites and 

compatible solutes (Chapter 4, Fig. 5), indicating that guard cells are less sensitive to salinity 

than mesophyll dominated leaf tissue. The differential regulation of guard cell metabolism is in 

accordance with the finding that stomata can still function, i.e. they can still control the aperture 

and water loss (Chapter 4, Fig. 1 B, C; Fig. 2 A), even when the mesophyll is affected by 

increased salt loads under salinity (Chapter 4, Fig. 3; Fig. 4). The regulation of stomatal 

aperture depends on fast changes in guard cell turgor (Jezek et al., 2017). Thus, the avoidance 

of a permanent, salt-stress-related accumulation of compatible solutes within guard cells might 

be a prerequisite to maintain the ability to regulate stomatal aperture during salt stress. 

Moreover, we observed the shift from a light-dependent sucrose accumulation in guard 

cells and apoplast under control conditions towards a light-independent replete pattern under 

long-term NaCl (Chapter 4, Fig. 7 A). In V. faba, mesophyll-derived sucrose functions as a 
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metabolic feedback in coordinating stomatal aperture with photosynthesis. Increasing sucrose 

levels in guard cells are sensed by hexokinases, which in turn, stimulate the abscisic-

acid-signalling pathway in guard cells resulting in stomatal closing in the late diel period when 

photosynthesis is saturated (Granot & Kelly, 2019; Kelly et al., 2013). This metabolic 

sucrose-mediated regulation might also induce stomatal closure during long-term salinity, 

which favours the accumulation of sugars, e.g. sucrose, in leaves (Kempa et al., 2008; 

Krasensky & Jonak, 2012; Sanchez et al., 2008). Hence, the sucrose-mediated feedforward 

mechanism might act as positive regulator of guard cell abscisic-acid-signalling in the late diel 

period (Granot & Kelly, 2019), but also under conditions of long-term salinity, when sucrose 

accumulates in the apoplast and guard cells (Chapter 4, Fig. 7 A) as a consequence of 

stress-related alterations in carbon transport and metabolism (Asai et al., 1999; Jin et al., 2013; 

Yoshida et al., 2019; Zhu & Assmann, 2017). 
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Summary 

Soil salinity is a major challenge for agriculture, because most crop plants are sensitive 

to high salt concentrations in soil, an environment that results in reduced growth and yield. One 

major constraint imposed by salinity is the disruption of ion homeostasis attributable to the 

uptake competition of salts and nutrients and the accumulation of deleterious ions, which are 

toxic to plants at high concentrations. For a better understanding of ion-homeostasis-associated 

traits contributing to salt tolerance in salt-sensitive crops, such as Vicia faba and Zea mays, the 

capabilities of ion exclusion and tissue tolerance were assessed in diverse genotype selections 

under saline conditions. In addition, the impact of increased salt ion concentrations in leaves 

and in the apoplast on stomatal physiology and guard cell integrity was characterized in V. faba 

exposed to long-term salinity in order to improve our knowledge of stomatal physiology and 

functioning under conditions of NaCl stress. 

The treatment of diverse V. faba varieties with 100 mM NaCl demonstrated that 

ion-homeostasis-associated tolerance mechanisms are differentially managed for Na+ and Cl-. 

The longer-withstanding varieties were tolerant to the accumulation of Na+ suggesting that 

tolerance to Na+ predominantly occurred at the level of tissue tolerance after Na+ had entered 

the leaves. Conversely, tissue tolerance for Cl- was weak throughout all varieties suggesting 

that the tolerance to Cl- was facilitated instead by the restriction of the intrusion of Cl- into the 

plant’s shoots; this process might be crucial for the ability of V. faba to withstand NaCl salinity. 

The treatment of diverse Z. mays hybrids with mild and high doses of Cl- added to the soil 

revealed that most genotypes restricted Cl- root-to-shoot translocation. This suggests that 

Z. mays effectively prevents Cl- from entering the xylem and, thus, the acropetal transport of 

Cl-, thereby hindering harmful Cl- accumulations building up in the photosynthetically active 

leaf blades. 

A detailed analysis of guard cell physiology under long-term NaCl demonstrated that 

guard cell primary metabolism differentially responds to altered ion composition resulting from 



Chapter 6 - Summary 

 73 
 

salt stress in comparison with whole leaf tissue in V. faba; such a differential response might 

be a prerequisite for the maintenance of guard cell functionality under conditions of stress, i.e. 

the adjustment of guard cell turgor that affects stomatal aperture and water loss. Moreover, the 

shift from a photoperiod-dependent accumulation of sucrose in guard cells and the apoplast to 

a photoperiod-independent under salinity suggests that a metabolic sucrose-mediated 

feedforward mechanism is involved in coordinating stomatal closure under conditions of 

long-term NaCl and might be beneficial for reducing water loss under conditions of 

stress-related carbon partitioning. 

In summary, this work shows that ion-homeostasis-associated tolerance traits vary 

between crop species and that the differential metabolic acclimatisation of guard cells to 

disturbed ion homeostasis might represent an important aspect of tissue tolerance enabling the 

maintenance of stomatal regulation during long-term salinity. 
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Zusammenfassung 

Die Anreicherung von Salz in Ackerböden stellt eine große Herausforderung für die 

Landwirtschaft dar, da die wichtigsten Kulturpflanzen salzsensitiv sind und es folglich zu 

Ernteausfällen kommen kann. Eine Folge der Bodensalinität ist die Störung der 

Ionenhomöostase der Pflanze, die aus der Konkurrenz zwischen Salzionen und Nährstoffen um 

die Aufnahme sowie der Akkumulation von schädlichen Salzionen resultiert. Um das Wissen 

über Toleranzmechanismen von salzsensitiven Kulturpflanzen wie der Ackerbohne (Vicia faba 

L.) und Mais (Zea mays L.) zu erweitern, wurden die physiologischen Eigenschaften die 

Aufnahme von Salzionen in die Pflanze zu vermindern (Ionenexklusion) und hohe 

Salzkonzentrationen in pflanzlichem Gewebe zu tolerieren (Gewebetoleranz) in 

unterschiedlichen Genotypen beider Spezies untersucht. Des Weiteren wurde der Einfluss von 

erhöhten Salzkonzentrationen in Blättern und dem Apoplast auf die stomatäre Physiologie und 

Schließzellintegrität in V. faba unter Salzstress charakterisiert. 

Die Behandlung einer Auswahl von 13 Ackerbohnensorten mit der Zugabe von 100 mM 

NaCl zur hydroponischen Nährlösung bis nekrotische Flecken auf den Blättern auftraten zeigte, 

dass Ionenhomöostase assoziierten Toleranzmechanismen der Ackerbohne bezüglich der 

Salzionen Na+ und Cl- unterschiedlich gehandhabt werden. Die widerstandsfähigeren Sorten 

waren gegenüber der Akkumulation von Na+ tolerant, was darauf hindeutet, dass die Toleranz 

gegenüber Na+ vorwiegend in Form von Gewebetoleranz nach der Aufnahme in die Pflanze 

auftritt. Die Gewebetoleranz für Cl- war bei allen Sorten schwach ausgeprägt, was impliziert, 

dass die Toleranz gegenüber Cl- durch die Limitierung des Cl- Transports in den Pflanzenspross 

erreicht wird. In Übereinstimmung mit der postulierten Cl--Empfindlichkeit von Leguminosen, 

stellt die Translokation von Cl- zum Pflanzenspross in V. faba einen Schlüsselprozess für die 

Toleranz gegenüber salzhaltigen Böden dar.  

Die Behandlung einer Auswahl von 8 Mais-Hybriden mit niedriger und hoher Zugabe 

von Chlorid zum Boden (63.2 und 757.1 mg Cl- kg-1 Boden TM; gegeben als CaCl2) zeigte, 
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dass die physiologische Reaktion auf Cl- im Vergleich zu equimolarer Zugabe von z.B. Na+ 

schwächer ausfiel. Außerdem zeigten die Profile der Cl--Verteilung in den Maispflanzen, dass 

die meisten Hybriden die Cl--Translokation aus der Wurzel in den Pflanzenspross limitierten. 

Dies deutet darauf hin, dass Mais den Cl--Transport in das Xylem effektiv beschränkt und somit 

den akropetalen Cl--Transport verringert, was einer der Photosynthese schädlichen 

Akkumulation von Cl- in Blattspreiten vorbeugt. 

Die Untersuchung der Schließzellphysiologie von V. faba unter Salzstress zeigte, dass 

der Primärstoffwechsel von Schließzellen im Vergleich zum Gesamtblatt unterschiedlich auf 

eine gestörte Ionenhomöostase reagiert. Dies könnte eine wichtige Voraussetzung für die 

Aufrechterhaltung der Schließzellfunktionalität unter Salzstress sein, welche eine konstante 

Anpassung des Schließzellturgors und damit der stomatäre Apertur ermöglicht. Darüber hinaus 

wurde unter Salzstress die Veränderung einer von der Fotoperiode abhängigen 

Saccharose-Akkumulation in Schließzellen und dem Apoplast zu einer permanenten, von der 

Fotoperiode unabhängigen Saccharose-Akkumulation beobachtet. Dies weist auf einen 

metabolischen, Saccharose-vermittelten ‚feedforward‘-Mechanismus hin, welcher an der 

Koordinierung des stomatären Schlusses unter Salzstress beteiligt ist und somit zur Reduktion 

des Wasserverlustes beiträgt. 

Diese Arbeit zeigt, dass Ionen-Homöostase assoziierte Toleranzmerkmale zwischen der 

Ackerbohne und Mais variieren und dass die vom Mesophyll abweichende metabolische 

Akklimatisation von Schließzellen an eine durch Salzionen gestörte Ionenhomöostase einen 

wichtigen Aspekt der Gewebetoleranz darstellen könnte, welcher die Aufrechterhaltung der 

stomatären Regulation während andauerndem Salzstress begünstigt.
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