
  
   

 

University of Hohenheim 

Institute of Agricultural Engineering 

Livestock Systems Engineering (440b) 

Apl. Prof. Dr. habil. Matthias Schick 

and 

Swiss Federal Department of Economic Affairs, Education and Research 

Agroscope 

Research Division Competitiveness and System Evaluation 

Dr. Christina Umstätter 

 

RumiWatch - Development and assessment of a sensor-based 

behavior monitoring system for ruminants 

 

Dissertation 

 

Submitted in fulfillment of the regulations to acquire the degree  

Doctor scientiarum agrarium (Dr. sc. agr.)  

to the Faculty of Agricultural Sciences 

Presented by 

Nils Zehner 

2018 



  
   

 
This thesis was accepted as a doctoral thesis (Dissertation) in fulfillment of the regulations  

to acquire the doctoral degree “Doctor scientiarum agrarium” by the Faculty of Agricultural 

Sciences at University of Hohenheim on October 15th, 2018.   

  

 

 

Date of the oral examination: December 7th, 2018. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Examination Committee  

Head of the oral examination:  Prof. Dr. Markus Rodehutscord 

Supervisor and reviewer:  Apl. Prof. Dr. Matthias Schick 

Co-reviewer:    Prof. Dr. Mark Rutter 

Additional examiner:   Apl. Prof. Dr. Eva Gallmann 



Widmung 

  
 
  3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Meinen Eltern gewidmet 

 



Vorwort und Danksagung 

  
 
  4 

 

Vorwort und Danksagung 

 

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter 

an der Forschungsanstalt Agroscope am Standort Tänikon und bei der Firma Itin und Hoch 

GmbH.  

Herrn Apl. Prof. Dr. habil. Matthias Schick danke ich für seine Unterstützung und die 

zahlreichen Anregungen, die die Durchführung dieser Arbeit ermöglicht haben. 

Den Projektpartnern, Herrn Matthias Hoch und Herrn Dr. Joel. J. Niederhauser, danke ich für 

die  Anregungen bei der Projektdurchführung.  

Frau Dr. Christina Umstätter danke ich für die wissenschaftlichen Impulse und die ein-

gehende und kritische Durchsicht der Arbeit. 

Mein Dank gilt weiterhin Herrn Franz Nydegger, sowie allen Mitarbeitern der Forschungs-

anstalt Agroscope, die mich bei meiner Arbeit unterstützt haben. 

 

 

 

Ettenhausen, im Dezember 2018 

 

 

 



Content 

  
 
  5 

Content 

Summary ............................................................................................................................... 8 

Zusammenfassung ...............................................................................................................13 

1 General Introduction ......................................................................................................19 

1.1 Framework of health monitoring in dairy farming ....................................................19 

1.2 Sensor data to support health monitoring in dairy farming ......................................20 

1.3 Rationale for the development of a novel animal monitoring system ......................22 

1.4 Aims of research ....................................................................................................22 

1.5 References .............................................................................................................23 

2 System specification and validation of a noseband pressure sensor for measurement of 

ruminating and eating behavior in stable-fed cows ...............................................................28 

2.1 Abstract ..................................................................................................................29 

2.2 Introduction ............................................................................................................30 

2.3 Materials and methods ...........................................................................................32 

2.3.1 RumiWatch noseband sensor .........................................................................32 

2.3.2 RumiWatch Converter software .......................................................................35 

2.3.3 Experimental procedures ................................................................................37 

2.4 Results ...................................................................................................................41 

2.4.1 Raw classification (1-minute resolution) ..........................................................41 

2.4.2 Consolidated classification (1-hour resolution) ................................................44 

2.5 Discussion ..............................................................................................................48 

2.6 Conclusions............................................................................................................51 

2.7 Ethical statement ....................................................................................................51 

2.8 Funding ..................................................................................................................51 

2.9 Acknowledgments ..................................................................................................51 

2.10 References .............................................................................................................52 

3 Development and validation of a novel pedometer algorithm to quantify extended 

characteristics of the locomotor behavior of dairy cows ........................................................56 

3.1 Abstract ..................................................................................................................57 

3.2 Introduction ............................................................................................................58 

3.3 Materials and Methods ...........................................................................................59 

3.3.1 RumiWatch Pedometer ...................................................................................59 

3.3.2 Concept of Algorithm Development and Validation ..........................................60 

3.3.3 Animals and Experimental Procedures ............................................................62 

3.3.4 Data Analysis and Statistics ............................................................................63 

3.4 Results ...................................................................................................................64 



Content 

  
 
  6 

3.5 Discussion ..............................................................................................................67 

3.6 Conclusions............................................................................................................69 

3.7 Acknowledgments ..................................................................................................70 

3.8 References .............................................................................................................71 

4 Development and validation of a predictive model for calving time based on sensor 

measurements of ingestive behavior in dairy cows ...............................................................75 

4.1 Abstract ..................................................................................................................76 

4.2 Introduction ............................................................................................................77 

4.3 Materials and methods ...........................................................................................80 

4.3.1 Data collection .................................................................................................80 

4.3.2 Data preparation and selection ........................................................................82 

4.3.3 Model development .........................................................................................84 

4.3.4 Model evaluation .............................................................................................88 

4.4 Results ...................................................................................................................91 

4.4.1 Predictive performance of sensor variables .....................................................91 

4.4.2 Effect of reducing the evaluation timeframe of calving alerts ...........................97 

4.5 Discussion ..............................................................................................................98 

4.6 Conclusions.......................................................................................................... 101 

4.7 Ethical statement .................................................................................................. 102 

4.8 Funding ................................................................................................................ 102 

4.9 Acknowledgments ................................................................................................ 102 

4.10 References ........................................................................................................... 103 

4.11 Supplementary material ....................................................................................... 108 

5 Validation of a sensor-based automatic measurement system for monitoring chewing 

activity in horses ................................................................................................................. 112 

5.1 Abstract ................................................................................................................ 113 

5.2 Introduction .......................................................................................................... 114 

5.3 Material and methods ........................................................................................... 115 

5.3.1 The automatic measurement system ............................................................. 115 

5.3.2 Animals, housing, feeding management ........................................................ 117 

5.3.3 Experimental design ...................................................................................... 117 

5.3.4 Data evaluation ............................................................................................. 118 

5.3.5 Statistical analysis ......................................................................................... 119 

5.4 Results ................................................................................................................. 120 

5.4.1 Pressure signatures ...................................................................................... 120 

5.4.2 Mean of chews per minute ............................................................................ 121 

5.4.3 Agreement between measurement methods ................................................. 122 

5.5 Discussion ............................................................................................................ 125 



Content 

  
 
  7 

5.6 Conclusions.......................................................................................................... 127 

5.7 Acknowledgements .............................................................................................. 128 

5.8 References ........................................................................................................... 128 

6 General Discussion ..................................................................................................... 131 

6.1 Further development and prospects ..................................................................... 131 

6.1.1 Analysis routines ........................................................................................... 131 

6.1.2 Noseband sensor .......................................................................................... 133 

6.1.3 Pedometer .................................................................................................... 134 

6.1.4 Economic viability .......................................................................................... 135 

6.2 Extended application potentials ............................................................................ 135 

6.2.1 Intake estimation ........................................................................................... 135 

6.2.2 Heat detection ............................................................................................... 136 

6.2.3 Health disorder detection .............................................................................. 137 

6.2.4 Chronobiological analysis .............................................................................. 137 

6.3 Customer benefits ................................................................................................ 138 

6.4 Connected agriculture – future evolution .............................................................. 139 

6.5 References ........................................................................................................... 140 

7 General Conclusions ................................................................................................... 146 

List of Figures ..................................................................................................................... 147 

List of Tables  ..................................................................................................................... 149 

List of Abbreviations ........................................................................................................... 151 

List of Publications ............................................................................................................. 153 

Curriculum Vitae ................................................................................................................. 158 

 
 

 



Summary 

  
 
  8 

Summary 

Sustainable and competitive milk production is highly dependent on securing the 

performance potential, health and fertility of dairy cows. Therefore, farmers can benefit from 

sensor data of animal monitoring systems to improve health management and work 

processes in dairy farming. The research during this PhD thesis aimed to contribute to the 

development and evaluation of a scientifically validated, sensor-based animal monitoring 

system that comprises a device for measurement of ingestive behavior and a device for 

measurement of movement behavior in cattle that interact as a system with system-specific 

software. Further aim of this thesis was to evaluate application potentials for this animal 

monitoring system by means of calving prediction in dairy cows and measurement of 

chewing activity in horses. The underlying experimental work was structured into four 

separate studies. The aim of the first study was to develop and validate a novel scientific 

monitoring device for automated measurement of rumination and eating behavior in dairy 

cows. Research works for this study aimed to provide a complete and detailed technical 

specification of the functionality of this device and to perform a validation under field 

conditions in stable-fed cows. The objective of the second study was to develop and validate 

a novel algorithm to monitor lying, standing, and walking behavior based on the output of a 

triaxial accelerometer collected from loose-housed dairy cows. The third study aimed to use 

automated measurements of ingestive behavior obtained from the developed sensor device 

to develop and validate a predictive model for calving in dairy cows. The aim of the fourth 

study was to investigate the suitability and validity of the developed sensor system for 

automated measurement of chewing activity in horses.  

 

The RumiWatch noseband sensor (Agroscope, Ettenhausen, Switzerland and Itin+Hoch 

GmbH, Liestal, Switzerland) developed in the first study incorporates a noseband pressure 

sensor, a data logger with online data analysis, and software. Automated measurements of 

behavioral parameters are based on generic algorithms without animal-specific learning data. 

Thereby, the system records and classifies the duration of chewing activities and enables 
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users to quantify individual ruminating and eating jaw movements performed by the animal. 

During the course of the development, two releases of the system-specific software 

RumiWatch Converter (RWC) were created and taken into account for the validation study. 

The results generated by the two software versions, RWC V0.7.2.0 and RWC V0.7.3.2, were 

compared with direct behavioral observations. Direct observations of cow behavior were 

conducted on 14 Swiss dairy farms with an observation time of 1 hour per animal, resulting in 

a total sample of 60 dairy cows. Agreement of sensor measurement and direct observation 

was expressed as Spearman correlation coefficients (rs) for the pooled sample. For 

consolidated classification of sensor data (1-hour resolution), correlations for rumination time 

were rs = 0.91 (RWC V0.7.2.0) and rs = 0.96 (RWC 0.7.3.2), and for eating time rs = 0.86 

(RWC 0.7.2.0) and rs = 0.96 (RWC V0.7.3.2). Both software versions provide a high standard 

of validity and measuring performance for ruminating and eating behavior. The high to very 

high correlations between direct observation and sensor data demonstrate that the 

RumiWatch noseband sensor was successfully developed and validated as a scientific 

monitoring device for automated measurement of ruminating and eating activity in stable-fed 

dairy cows. Further research is needed to allow for the differentiation of total eating jaw 

movements, as the described state of the analysis routines does not enable a separate 

classification of chews, bites, and chew-bites during eating.  

 

The objective of the second study was to develop and validate a novel algorithm to monitor 

extended parameters of lying, walking, and standing behavior of loose-housed dairy cows 

based on the output of the RumiWatch pedometer (Itin+Hoch GmbH, Liestal, Switzerland). 

Data of locomotion were acquired by simultaneous accelerometer measurements at a 

sampling rate of 10 Hz and video recordings for manual observation later. The study 

consisted of 3 independent experiments with a total of 55 dairy cows. Experiment 1 was 

carried out to develop and validate the algorithm for lying behavior (n = 18 cows), Experiment 

2 for walking and standing behavior (n = 21 cows), and Experiment 3 for stride duration and 

stride length (n = 16 cows). The final version was validated, using the raw data, collected 
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from cows not included in the development of the algorithm. Spearman correlation 

coefficients were calculated between accelerometer variables and respective data derived 

from the video recordings (gold standard). Dichotomous data were expressed as the 

proportion of correctly detected events, and the overall difference for continuous data was 

expressed as the relative measurement error. The proportions for correctly detected events 

or bouts were 1 for stand ups, lie downs, standing bouts, and lying bouts and 0.99 for 

walking bouts. The relative measurement error and Spearman correlation coefficient for lying 

time were 0.09% and 1; for standing time, 4.7% and 0.96; for walking time, 17.12% and 0.96; 

for number of strides, 6.23% and 0.98; for stride duration, 6.65% and 0.75; and for stride 

length, 11.92% and 0.81, respectively. The strong to very high correlations of the variables 

between visual observation and converted pedometer data indicate that the novel 

RumiWatch algorithm may markedly improve automated livestock management systems for 

efficient health monitoring of dairy cows. Using the new pedometer software, further research 

is intended to study in more detail the normal locomotor activity of healthy dairy cows and to 

evaluate the suitability of the newly described parameters of walking behavior for early 

detection of lameness. 

 

In the third study, measurement data of the RumiWatch noseband sensor (Agroscope, 

Ettenhausen, Switzerland and Itin+Hoch GmbH, Liestal, Switzerland) of 35 dairy cows were 

used for the development and validation of a predictive model for calving time based on 

variables of ingestive behavior. Sensor data obtained from calving events on three farms 

were used as one training dataset (n = 11 cows) and two independent validation datasets (n 

= 11 and n = 13 cows, respectively) to evaluate the predictive performance of a Naïve Bayes 

classifier model for calving prediction at 1 hour before the start of calving. The model 

performance was evaluated on an hourly basis for 168 hours prior to the start of calving. 

Thereby, different noseband sensor variables as best individual predictors were identified for 

the two validation datasets. These were ruminating chews for Validation Dataset 1 

(sensitivity = 0.82, specificity = 0.79, positive predictive value = 0.02), and other chews, i.e., 
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non-ingestive related jaw movements, for Validation Dataset 2 (sensitivity = 0.69, specificity 

= 0.81, positive predictive value = 0.02). Combinations of sensor variables were most useful 

in calving prediction, as they improved predictive performance and decreased the number of 

false positive alerts in comparison with individual sensor variables. The best combination of 

calving predictors consisted of ruminating chews, ruminating boluses, and eating chews for 

Validation Dataset 1 (sensitivity = 0.82, specificity = 0.87, positive predictive value = 0.04), 

and ruminating chews per bolus, ruminating chews per minute, eating chews, other activity 

time, and other chews for Validation Dataset 2 (sensitivity = 0.69, specificity = 0.86, positive 

predictive value = 0.03). These results indicate, that the sensitivity and specificity of the 

predictive model were satisfactory, but the positive predictive value was low and the amount 

of false positive alerts was considerably high. Although the developed model is therefore not 

suitable for application in practice, the analyses showed that particularly variables of 

rumination behavior have predictive value and should be taken into consideration for future 

research on calving prediction models. The findings of this study demonstrate that 

specifically for predictive models in livestock production, an assessment limited to the terms 

of sensitivity and specificity may be misleading, as these variables may achieve high values 

and suggest adequate performance, while the model is not appropriate in the light of its 

expected use.  

 

In the fourth study, it was successfully demonstrated that it is feasible to apply the 

RumiWatch noseband sensor (Agroscope, Ettenhausen, Switzerland and Itin+Hoch GmbH, 

Liestal, Switzerland) to horses. In order to investigate the measuring performance, 10 horses 

(5 mares, 5 stallions) were equipped with the device. Additionally, direct observations were 

conducted as a reference method, while feeding three different feeds (hay, haylage and 

concentrate). The results of direct observation compared with the automatic measurement 

showed an overall agreement of the observed and automatically measured chews per minute 

of 93% within all feedstuffs. The agreement between automated measurements and direct 

observations was high for all analyzed feed types, amounting to 92.4% for hay, 96.8% for 
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haylage, and 91.4% for concentrate, respectively. The analysis indicated that the 

differentiation between chews and other muzzle and lip movements could improve the overall 

measuring performance of the device, as horses tend to display a high amount of lip 

movements towards the end of the concentrate intake. However, the constituents and 

software of the measurement system were not specifically adapted to horses so far and can 

be optimized in order to improve accuracy. Consequently, the noseband sensor has a high 

potential to become a reliable tool for research and practical use. 

 

In conclusion, the RumiWatch noseband sensor and pedometer that were developed and 

validated in the current project represent a suitable measuring instrument for automated 

recording of ingestive and locomotor behavior in dairy cows. The system-specific software is 

suitable for research purposes and shows a high performance for classification of extended 

parameters of rumination, eating, lying, standing, and walking behavior. The achieved 

validation results indicate that the measuring performance satisfies scientific requirements. 

Further application potentials were demonstrated by means of automated calving prediction 

in dairy cows and automated measurement of chewing activity in horses. The development 

and validation of a predictive model for calving time using measurements of the RumiWatch 

noseband sensor revealed a high amount of false positive alerts that was prohibitive for 

application of the model in farming practice. However, the analyses showed that particularly 

parameters of ruminating behavior have predictive value and should be taken into 

consideration for future research on calving prediction models. Furthermore, it was 

successfully demonstrated that it is feasible to apply the RumiWatch noseband sensor to 

horses. The results of direct observation compared with the automatic measurement showed 

a very high overall agreement of the observed and automatically measured data and, after 

minor refinements, this measuring device has the potential to become a valuable and easy-

to-use tool for equine research and management.  
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Zusammenfassung 

Eine nachhaltige und wettbewerbsfähige Milchproduktion erfordert in hohem Masse die 

Sicherstellung des Leistungspotentials, der Gesundheit und der Fruchtbarkeit von 

Milchkühen. Sensordaten, die durch technische Monitoringsysteme für die Überwachung des 

Tierverhaltens generiert werden, können hierbei einen wichtigen Beitrag für die 

Verbesserung der Arbeitsprozesse und des Gesundheitsmanagement in der 

Milchviehhaltung leisten. Die Zielsetzung dieses Dissertationsprojekts stellte einen Beitrag 

zur Entwicklung und wissenschaftlichen Evaluation eines technischen Monitoringsystems für 

die Tieraktivität dar. Im Rahmen der Forschungsvorhaben sollten Messinstrumente für die 

Erfassung des Ingestionsverhaltens und des Bewegungsverhaltens entwickelt und 

wissenschaftlich validiert werden, die unter Hinzunahme einer systemspezifischen Software 

zum nicht-invasiven, systematischen Gesundheitsmonitoring bei Milchkühen dienen. Zudem 

sollten Anwendungspotentiale für dieses Monitoringsystem anhand der 

Abkalbungsvorhersage bei Milchkühen und der Messung der Kauaktivität bei Pferden 

evaluiert werden. Die zugrundeliegenden experimentellen Arbeiten waren in vier separate 

Studien unterteilt. Die erste Studie beinhaltete die Entwicklung und Validierung eines 

neuartigen wissenschaftlichen Messinstruments für die automatisierte Erfassung des 

Wiederkau- und Futteraufnahmeverhaltens bei Milchkühen. Die Forschungsarbeiten im 

Rahmen dieser Studie umfassten die Bereitstellung eines umfassenden technischen 

Funktionsbeschriebs dieses Messinstruments und die Durchführung einer Validierungsstudie 

unter Praxisbedingungen bei stallgefütterten Milchkühen. Die Zielsetzung der zweiten Studie 

war die Entwicklung und Validierung eines neuartigen Algorithmus zur Erfassung des Geh-, 

Steh- und Liegeverhaltens von Milchkühen in Laufstallhaltung basierend auf den Messdaten 

eines triaxialen Accelerometers. In der dritten Studie wurde die Nutzung von Messdaten des 

Ingestionsverhaltens zur Entwicklung und Validierung eines Modells für die automatisierte 

Kalbungsvorhersage beabsichtigt. Ziel der vierten Studie war die Untersuchung der Eignung 

und Validität des entwickelten Sensorsystems für die automatisierte Erfassung des 

Kauverhaltens von Pferden.              
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Die Zielsetzung der ersten Studie dieses Dissertationsprojektes war es, ein neuartiges 

wissenschaftliches Messinstrument für die automatisierte Erfassung des Wiederkau- und 

Futteraufnahmeverhaltens von stallgefütterten Milchkühen zu entwickeln und zu validieren. 

Der Forschung soll hierdurch eine technische Lösung für das Aktivitäts- und 

Gesundheitsmonitoring zur Verfügung gestellt werden. Der im Rahmen dieser Studie 

entwickelte RumiWatch-Nasenbandsensor (Agroscope, Ettenhausen, Schweiz und Itin+Hoch 

GmbH, Liestal, Schweiz) umfasst einen Drucksensor im Nasenband eines Halfters, einen 

Datenlogger mit Echtzeit-Datenanalyse sowie eine systemspezifische Software. Die 

automatisierte Erfassung der Verhaltensparameter basiert auf generischen Algorithmen ohne 

tierspezifische Lerndaten. Hierdurch kann das Messsystem die Dauer von Kauaktivitäten 

aufzeichnen und klassifizieren. Zudem können die individuellen Wiederkau- und 

Fresskauschläge des Tieres aufgezeichnet werden. Im Verlauf der Entwicklung wurden zwei 

Versionen der der systemspezifischen Software RumiWatch Converter (RWC) erarbeitet und 

zur Validierung verwendet. Die Resultate der automatischen Auswertung durch die beiden 

Software-Versionen, RWC V0.7.2.0 und RWC 0.7.3.2, wurden jeweils mit den Ergebnissen 

einer zeitgleichen Direktbeobachtung verglichen. Die Direktbeobachtungen wurden auf 14 

Schweizerischen Milchviehbetrieben mit einer Beobachtungsdauer von 1 Stunde pro Tier 

durchgeführt. Zur Auswertung stand eine Gesamtstichprobe von 60 Kühen zur Verfügung. 

Die Übereinstimmung der Ergebnisse von Sensormessungen und Direktbeobachtungen 

wurde durch den Spearman-Korrelationskoeffizient (rs) für die Gesamtstichprobe 

wiedergegeben. Für die zusammengefasste Auswertung der Sensormessdaten in 1-Stunde-

Auflösung betrugen die Korrelationen für die gemessenen Wiederkauzeiten rs = 0.91 (RWC 

V0.7.2.0) und rs = 0.96 (RWC 0.7.3.2) sowie für die gemessenen Fresszeiten rs = 0.86 (RWC 

0.7.2.0) und rs = 0.96 (RWC V0.7.3.2). Beide Software-Versionen stellen einen hohen 

Standard der Validität und Messgenauigkeit für die Erfassung des Wiederkau- und 

Futteraufnahmeverhaltens dar. Die hohen bis sehr hohen Korrelationen zwischen den 

Ergebnissen der Direktbeobachtung und der Sensormessung verdeutlichen die erfolgreiche 

Entwicklung und Validierung eines wissenschaftlichen Monitoringsystems für die 
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automatisierte Erfassung des Wiederkau- und Futteraufnahmeverhaltens für stallgefütterte 

Milchkühe. Weitere Forschungsarbeiten sind für die genauere Differenzierung des 

Kauverhaltens während der Futteraufnahme erforderlich, da der beschriebene Stand der 

Auswertungsroutinen noch keine separate Klassierung von Fresskauschlägen, Fressbissen 

und Kau-Fressbissen ermöglicht.  

 

Zielsetzung der zweiten Studie war die Entwicklung und Validierung eines neuartigen 

Algorithmus zur Erfassung erweiterter Parameter des Geh-, Steh- und Liegeverhaltens von 

Milchkühen in Laufstallhaltung, der auf den Messwerten des RumiWatch-Pedometers 

(Itin+Hoch GmbH, Liestal, Schweiz) basiert. Daten des Bewegungsverhaltens wurden durch 

Accelerometer-Messungen mit einer Aufzeichnungsrate von 10 Hz und eine zeitgleiche 

Videobeobachtung zur späteren Auswertung bei einer Gesamtzahl von 55 Milchkühen 

akquiriert. Die Studie war hierbei in 3 unabhängige Experimente unterteilt. Zur Entwicklung 

und Validierung eines Algorithmus wurde Experiment 1 für das Liegeverhalten (n = 18 Kühe), 

Experiment 2 für das Geh- und Stehverhalten (n = 21 Kühe) und Experiment 3 für die 

Schrittdauer und Schrittlänge (n = 16 Kühe) durchgeführt. Die finale Version des Algorithmus 

wurde mit Rohdaten von Kühen validiert, die nicht für die Entwicklung verwendet wurden. 

Hierzu wurde der Spearman-Korrelationskoeffizient zwischen den Pedometer-Messwerten 

und den jeweiligen Aufzeichnungen der Videobeobachtung (Goldstandard) berechnet. Für 

dichotome Variablen wurde die Übereinstimmung als Anteil korrekt detektierter Ereignisse 

bestimmt. Für kontinuierliche Variablen wurde die Differenz als relativer prozentualer 

Messfehler wiedergegeben. Der Anteil korrekt detektierter Ereignisse oder Phasen betrug 1 

für Aufsteh- und Abliegevorgänge sowie für Steh- und Liegephasen bzw. 0.99 für 

Gehphasen. Der relative Messfehler und Spearman-Korrelationskoeffizient betrug für 

Liegezeit 0.09% und 1, Stehzeit 4.7% und 0.96, Gehzeit 17.12% und 0.96, Schrittanzahl 

6.23% und 0.98, Schrittdauer 6.65% und 0.75 sowie für Schrittlänge 11.92% und 0.81. Die 

hohen bis sehr hohen Korrelationen zwischen der visuellen Erfassung und der Pedometer-

Messung verdeutlichen das hohe Potential des neu entwickelten RumiWatch-Algorithmus für 
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die Verbesserung der automatisierten Erfassung des Tierverhaltens und für ein effizienteres 

Gesundheitsmonitoring bei Milchkühen. Bei weiterführenden Forschungen können die 

neuartigen Auswertungsroutinen des RumiWatch-Pedometers für eine genauere 

Untersuchung des Bewegungsverhaltens gesunder Milchkühe genutzt werden. Zudem soll 

die Möglichkeit einer Früherkennung von Lahmheiten basierend auf den neu beschreibenden 

Auswertungsparametern des Bewegungsverhaltens eruiert werden.   

 

In der dritten Studie wurden Messdaten des RumiWatch-Nasenbandsensors (Agroscope, 

Ettenhausen, Schweiz und Itin+Hoch GmbH, Liestal, Schweiz) von 35 Milchkühen zur 

Entwicklung und Validierung eines Vorhersagemodells für den Kalbezeitpunkt basierend auf 

Parametern des Ingestionsverhaltens verwendet. Sensordaten von Abkalbungen auf drei 

verschiedenen Milchviehbetrieben wurden als ein Trainingsdatensatz (n = 11 Kühe) und zwei 

unabhängige Validierungsdatensätze (n = 11 bzw. n = 13 Kühe) verwendet, um die 

Vorhersageleistung eines Naiven Bayes Klassifikators für die Bestimmung des Zeitpunktes 1 

Stunde vor Beginn der Kalbung zu evaluieren. Die Modelleistung wurde auf stündlicher Basis 

für einen Zeitraum von 168 Stunden vor Beginn der Kalbung evaluiert. Hierbei wurden 

unterschiedliche Verhaltensparameter als beste individuelle Prädiktoren für die beiden 

Validierungsdatensätze identifiziert. Dies waren Wiederkauschläge für Validierungsdatensatz 

1 (Sensitivität = 0.82, Spezifität = 0.79, Positiver Vorhersagewert = 0.02) und andere 

Kauschläge, d. h. nicht-ingestive Kieferbewegungen, für Validierungsdatensatz 2 (Sensitivität 

= 0.69, Spezifität = 0.81, Positiver Vorhersagewert = 0.02). Kombinationen von 

Sensorparametern waren am besten für die Vorhersage der Kalbung geeignet, da hierdurch 

im Vergleich zu individuellen Sensorparametern eine Verbesserung der Vorhersageleistung 

und eine Verringerung der Falsch-Positiv-Alarme festzustellen war. Die bestleistende 

Kombination von Kalbungsprädiktoren bestand aus Wiederkauschlägen, Wiederkauboli und 

Fresskauschlägen in Validierungsdatensatz 1 (Sensitivität = 0.82, Spezifität = 0.87, Positiver 

Vorhersagewert = 0.04) sowie Wiederkauschläge pro Bolus, Wiederkauschläge pro Minute, 

Fresskauschläge, Dauer anderer Aktivitäten und andere Kauschläge für 
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Validierungsdatensatz 2 (Sensitivität = 0.69, Spezifität = 0.86, Positiver Vorhersagewert = 

0.03). Diese Ergebnisse verdeutlichen, dass die berechnete Sensitivität und Spezifität zwar 

zufriedenstellend war, aber gleichzeitig niedrige Positive Vorhersagewerte und eine hohe 

Anzahl an Falsch-Positiv-Alarmen festgestellt wurden. Obwohl das entwickelte Modell daher 

nicht für die praktische Anwendung geeignet ist, zeigten die Analysen, dass insbesondere 

Parameter des Wiederkauverhaltens für die zukünftige Erarbeitung von Vorhersagemodellen 

für den Kalbungszeitpunkt berücksichtigt werden sollten. Zudem zeigen die Ergebnisse 

dieser Studie, dass eine auf die Parameter Sensitivität und Spezifität begrenzte 

Modellbewertung im spezifischen Kontext einer Anwendung in der Nutztierhaltung 

missverständlich interpretiert werden kann, da diese Parameter zwar hohe Werte annehmen 

und so eine zufriedenstellende Modelleistung suggerieren können, obwohl das betreffende 

Modell für den erwarteten Nutzen ungeeignet ist.    

 

In der vierten Studie wurde die erfolgreiche Anwendung des RumiWatch-Nasenbandsensors 

(Agroscope, Ettenhausen, Schweiz und Itin+Hoch GmbH, Liestal, Schweiz) bei Pferden 

demonstriert. Zur Bestimmung der Messgenauigkeit wurden 10 Pferde (5 Stuten, 5 Hengste) 

mit diesem Messgerät ausgestattet. Parallel zur Sensormessung wurden als 

Referenzmethode Direktbeobachtungen bei der Fütterung dreier Futtermittel (Heu, Heulage, 

Kraftfutter) durchgeführt. Ein Vergleich der Ergebnisse von Direktbeobachtung und 

Sensormessung zeigte eine prozentuale Übereinstimmung der erfassten Kauschläge pro 

Minute von 93% im Mittelwert aller Futtermittel. In einer separaten Betrachtung war für alle 

untersuchten Futtermittel eine hohe Übereinstimmung festzustellen, diese betrug 92.4% für 

Heu, 96.8% für Heulage und 91.4% für Kraftfutter. Die Analyse zeigte zudem, dass durch 

eine weitere Differenzierung der Kauschläge und sonstiger Maul- und Lippenbewegungen 

eine weitere Verbesserung der Messleistung erbracht werden könnte, da Pferde gegen Ende 

der Kraftfutteraufnahme eine erhöhte Anzahl von Lippenbewegungen zeigen. Die 

Bestandteile und Software des Messsystems waren nicht spezifisch für Pferde angepasst 

und können für eine Erhöhung der Messgenauigkeit weiter optimiert werden. Demzufolge 
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kann dem Nasenbandsensor ein hohes Potential als reliables Messinstrument für Forschung 

und Praxis zugemessen werden.     

 

In einer Gesamtbetrachtung ist festzustellen, dass der RumiWatch-Nasebandsensor und das 

RumiWatch-Pedometer erfolgreich als Messinstrumente für die Erfassung des Ingestions- 

und Bewegungsverhaltens von Milchkühen entwickelt wurden. Die systemspezifische 

Software ist für wissenschaftliche Zwecke geeignet und zeigt eine hohe Validität bei der 

Messung erweiterter Parameter des Wiederkau-, Futteraufnahme-, Geh-, Steh- und 

Liegeverhaltens. Die erzielte Messgenauigkeit bei der Validierung der beiden 

Messinstrumente entspricht wissenschaftlichen Ansprüchen. Weitere Anwendungspotentiale 

wurden anhand der automatisierten Kalbungsvorhersage bei Milchkühen und Messung der 

Kauaktivität bei Pferden demonstriert. Bei der Entwicklung und Validierung eines 

Vorhersagemodells für den Kalbezeitpunkt basierend auf Messdaten des RumiWatch-

Nasenbandsensors zeigte sich eine hohe Anzahl an Falsch-Positiv-Alarmen, die prohibitiv für 

die Anwendung des entwickelten Modells in der landwirtschaftlichen Praxis ist. Dennoch 

konnte gezeigt werden, dass insbesondere Parameter des Wiederkauverhaltens für die 

zukünftige Erarbeitung von Vorhersagemodellen für den Kalbezeitpunkt herangezogen 

werden sollten. Zudem konnte der RumiWatch-Nasenbandsensor erfolgreich auch bei 

Pferden eingesetzt werden. Der Vergleich von Direktbeobachtungen und Sensormessungen 

zeigte hierbei eine hohe Übereinstimmung zwischen beobachteten und automatisch 

erfassten Messwerten. Nach geringfügigen Modifikationen ist dem Nasenbandsensor somit 

auch ein hohes Potential für den Einsatz in Forschung und Praxis bei Pferden 

zuzuschreiben.       
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1 General Introduction  

Benefiting from automated detection of occurrences requiring assistance or treatment by 

farmers, such as calving, disease, or heat is a particular interest of large-scale dairy farming. 

This demand is driven by structural changes towards intensified production and growing 

herds in the dairy industry that affect health and welfare of dairy cows (Barkema et al. 2015). 

Accordingly, technical monitoring tools to support health management on dairy farms are a 

major focus in the development and marketing of dairy technology (Rutten et al. 2013). Using 

an automated health monitoring system may serve for early detection of changes in health-

related behavioral parameters and may enable diagnosis and reactions to feeding 

deficiencies and metabolic diseases at an early stage. This is of particular relevance, as 

costs for medical treatment and losses in production may have a considerable economic 

impact. Fourichon et al. (2001) found that average total costs related to animal health made 

up 1.14 € per 100 kg milk. Thus, automated behavior monitoring systems for health 

management can render a contribution to secure profitability of dairy farming and to improve 

animal welfare. The presented thesis will therefore focus on the development and 

assessment of a sensor-based behavior monitoring system for ruminants.  

 

1.1 Framework of health monitoring in dairy farming 

Sustainable and competitive milk production is highly dependent on securing the 

performance potential, health and fertility of dairy cows. Today’s performance-oriented dairy 

cow nutrition aims to contribute both to adequate nutrient supply and best possible 

profitability of dairy farming. Rations are marked by an increased proportion of easily 

fermentable carbohydrates and risks for deficits in structured fiber contents. This may 

represent possible causes of pathological strains of forestomach digestion and facilitate 

occurrence of metabolic diseases. These disorders have an increased prevalence in 

intensive dairy farming and are highly correlated to increased milk yield and production 

stress (Fleischer et al. 2001). In addition, the peri-partum and early lactation represent 



General Introduction 

  
 
  20 

phases of increased physiological disposition for deficiency diseases and secondary 

complications in dairy cows (Overton and Waldron 2004). 

 

Studies by Gonzalez et al. (2008) and DeVries et al. (2009) revealed significant changes in 

rumination, eating and movement behavior as indicators for impairments of dairy cows’ 

metabolic health. These pathophysiologic impacts may result in economic losses by 

decrease in milk yield and milk quality, costs for veterinary treatments, increased working 

time, and early culling of dairy cows (Gonzalez et al. 2008). Lameness has been specified as 

one of the main health problems in modern dairy herds (Kossaibati and Esslemont 1997). 

With increasing livestock numbers per farm, the available time per cow for individual 

observation of abnormalities, deficiencies and disorders will decrease, which will affect the 

early diagnosis of lameness and further impairments of animal health. Making use of sensor 

data might support the farmer in their daily management (de Mol et al. 2013). 

 

1.2 Sensor data to support health monitoring in dairy farming  

Sensor-controlled, automated processes are increasingly available also for the optimization 

of dairy production systems and are referred to as Precision Dairy Farming (Maltz 2010) or 

Smart Farming (Walter et al. 2017) solutions. On the basis of a systematic measurement and 

evaluation, these technologies intend to provide decision criteria or recommendations for the 

management of production-relevant natural, human, and technical resources. Furthermore, 

by considering economic, environmental and also increasingly social parameters, Precision 

Dairy or Smart Farming solutions intend both to improve the efficiency of production and to 

facilitate the work of agricultural producers. The increasing spread of automated milking 

systems is an exemplary case that underlines the structural change in dairy farming due to 

the introduction of automated solutions for farming practice. For automated animal behavior 

monitoring systems, development potentials have increased due to technological progress, 

particularly in sensor and software applications. Advantages of automated recording can be 

seen in a less time consuming, more continuous and objective measurement process. 
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Computerized applications offer improved methods for documentation and information 

exchange. Thus, high data and information density can be generated specifically for the 

individual animal. In the field of health management, an elementary goal of such sensor-

based animal monitoring technology is to enable detection of critical conditions at an early 

stage and to suggest management measures for farmers and veterinarians in response to 

the detected conditions.  

 

As one of the main challenges in animal health management, metabolic disorders in dairy 

cows represent a common problem in farming practice with high physiological and economic 

impact (Fourichon et al. 2001, Bareille et al. 2003). For early detection of metabolic 

problems, ruminating activity is considered an important non-invasive measurable behavioral 

parameter (Maekawa et al. 2002, DeVries et al. 2009, Nydegger et al. 2010). An automated 

measurement of ruminating and eating activity may enable the identification of feeding 

deficiencies and thus facilitate a decision to adjust the ration (Gonzalez et al. 2008, Weary et 

al. 2009, Nydegger et al. 2010). Several studies have been aiming at the development and 

validation of a non-invasive, automated method for measuring rumination and feed intake in 

ruminants (Penning 1983, Penning et al. 1984, Rutter et al. 1997, Nydegger et al. 2010). 

Furthermore, the development of applications for automated measurement of locomotor 

behavior has gained an increasing scientific and commercial interest (Champion et al. 1997, 

Scheibe and Gromann 2006, de Mol et al. 2009), predominantly for detection of estrus 

(McGowan et al. 2007, Saint‐Dizier and Chastant‐Maillard 2012) and lameness (Mazrier et 

al. 2006, Alsaaod et al. 2012). Solutions for automated recording and analysis of behavioral 

parameters initially had a focus on scientific and advisory purposes. Meanwhile, these 

technologies were further developed, consolidated, and commercialized and are increasingly 

used in farming practice, particularly for intensive dairy systems. The role of research is to 

contribute to the ongoing development of these assisting tools, to validate the technology in 

the light of its expected use, and to evaluate its added value for farming practice.  
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1.3 Rationale for the development of a novel animal monitoring system  

The ultimate goal of the underlying research project was to use state-of-the-art technology to 

develop a sensor-based animal monitoring system for ingestive and locomotor behavior 

which generates a high data density of relevant behavioral parameters that indicate the 

health state of the animal. This animal monitoring system needed to undergo a scientific 

evaluation and validation during the course of the development to ensure functionality and 

measuring performance that satisfies scientific requirements. Therefore, we aimed to use 

real-time analysis of sensor signals obtained from different types of sensors in a systematic 

approach based on high-resolution measurement data and enabled us to classify multiple 

behaviors and extended parameters of these behaviors. Further requirement of the projected 

animal monitoring system was to enable both wireless data transmission and device-based 

storage of measurement data, and adequate data storage capacity and energy supply for 

longitudinal recordings. The functionality of the system was intended to be further 

expandable by additional analysis parameters and sensor types. It was also envisioned that 

a system-specific software for user-defined post-processing of measurement data was 

included. Thereby, we aimed to provide high usability for a broad field of applications in 

agronomic and veterinary research. The development was intended to be based on the 

measurement system described by Swiss Patent CH 700 494 B1 (Nydegger and Bollhalder 

2010).  

 

1.4 Aims of research 

The research during this PhD thesis aimed at contributing to the development and scientific 

validation of a sensor-based animal monitoring system comprising a device for measuring 

ingestive behavior and a device for measuring movement behavior in cattle. Both devices 

interact as a system linked via a system-specific software. Further aim of this thesis was to 

evaluate application potentials for this animal monitoring system by means of calving 

detection in dairy cows and measurement of chewing activity in horses. The underlying 

experimental work was structured into four studies. The aim of the first study was to develop 
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and validate a novel scientific monitoring device for automated measurement of ingestive 

behavior in dairy cows. Research works for this study provide a complete and detailed 

technical specification of the functionality of this device and to perform a validation under 

field conditions in stable-fed cows. The objective of the second study was to develop and 

validate a novel algorithm to monitor locomotor behavior based on the output of a triaxial 

accelerometer collected from loose-housed dairy cows. The third study aimed to use 

automated measurements of ingestive behavior obtained from the developed sensor device 

to create and validate a detection model for calving in dairy cows. The aim of the fourth study 

was to investigate the suitability and validity of the developed noseband sensor for 

automated measurement of chewing activity in horses.  
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2.1 Abstract 

Rumination and eating behavior are important indicators for assessing health and well-being 

in cattle. The objective of this study was to develop and validate a novel scientific monitoring 

device for automated measurement of ruminating and eating behavior in stable-fed cows to 

provide research with a measuring instrument for automated health and activity monitoring. 

The RumiWatch noseband sensor (Itin+Hoch GmbH, Liestal, Switzerland) incorporates a 

noseband pressure sensor, a data logger with online data analysis, and software. Automated 

measurements of behavioral parameters are based on generic algorithms without animal-

specific learning data. Thereby, the system records and classifies the duration of chewing 

activities and enables users to quantify individual ruminating and  eating jaw movements 

performed by the animal. During the course of the development, two releases of the system-

specific software RumiWatch Converter (RWC) were created and taken into account for the 

validation study. The results generated by the two software versions, RWC V0.7.2.0 and 

RWC V0.7.3.2, were compared with direct behavioral observations. Direct observations of 

cow behavior were conducted on 14 Swiss dairy farms with an observation time of 1 hour per 

animal, resulting in a total sample of 60 dairy cows. Agreement of sensor measurement and 

direct observation was expressed as Spearman correlation coefficients (rs) for the pooled 

sample. For consolidated classification of sensor data (1-hour resolution), correlations for 

rumination time were rs = 0.91 (RWC V0.7.2.0) and rs = 0.96 (RWC 0.7.3.2), and for eating 

time rs = 0.86 (RWC 0.7.2.0) and rs = 0.96 (RWC V0.7.3.2). Both software versions provide a 

high standard of validity and measuring performance for ruminating and eating behavior. The 

high to very high correlations between direct observation and sensor data demonstrate that 

the RumiWatch noseband sensor was successfully developed and validated as a scientific 

monitoring device for automated measurement of ruminating and eating activity in stable-fed 

dairy cows. 

 

Key words: Precision Dairy Farming, health monitoring, dairy cow, RumiWatch, chewing 

activity 
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2.2 Introduction 

Research in the field of Precision Livestock Farming has put a major effort on development 

and evaluation of technologies allowing early recognition of pathological and management-

relevant behavioral changes and assessment of the individual health state in dairy cows (cf. 

review by Rutten et al. 2013). Hence, sensor devices for automated detection of health 

impairments in livestock are increasingly available and can provide effective management 

support in various types of farming systems. In dairy cattle nutrition, chewing activity has 

been identified as an important parameter to assess the adequate composition of a diet and 

the risk of ruminal acidosis (Yang and Beauchemin 2007). Furthermore, ruminating activity 

may provide meaningful information on calving time and subclinical diseases or health 

disorders (Goff and Horst 1997, Soriani et al. 2012).  

 

Accordingly, continuous measurements of cow feeding variables enable us to develop a 

more complete understanding of the dietary effects on digestive function and performance 

(Dado and Allen 1993). The timeline and intensity of feeding activity provide information on 

the diurnal pattern of the behavior of ruminants, and identification of deviations may be used 

for detection of health impairments (Weary et al. 2009, Braun et al. 2014). Direct observation 

for measurement of ruminating and eating behavior is labor intensive, error-prone and hardly 

applicable for continuous observations on several animals simultaneously (Penning 1983).  

 

For these reasons, several methods have been developed for automated, non-invasive 

measurement of chewing activity in ruminants. The working principle of these devices is 

mainly based on detection of jaw movements via strain or pressure sensors fitted to a halter 

(Luginbuhl et al. 1987, Matsui and Okubo 1991, Dado and Allen 1993). The best known 

approach is the IGER Behaviour Recorder (Penning 1983, Penning et al. 1984, Rutter et al. 

1997, Rutter 2000). However, continuous recording is hereby limited to approximately 24 

hours and Nydegger et al. (2010) reported frequent damages of the IGER Behaviour 

Recorder when applied in loose housing systems, as the recorder’s dimensions impeded the 
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animals, particularly on entering and leaving the feed rack. Therefore, Nydegger et al. (2010) 

developed a compact-built pressure sensor system integrated into a halter (ART-MSR Jaw 

Movement Sensor, MSR Electronics GmbH, Seuzach, Switzerland), which allowed individual 

jaw movements to be recorded but required animal-specific learning data. The necessity of 

creating learning datasets for classification of the activities before starting the measurement 

is laborious, and recording time of this device was limited to a maximum of 40 hours due to 

storage capacity and power supply (Nydegger et al. 2012).  

 

Meanwhile, technological progress in electronics led to increased battery lifetime, storage 

capacity, continuous recording time, and accuracy of automated measurements. Considering 

both scientific and commercial requirements for detailed analysis of the behavior and activity 

of ruminants, automated measurement technologies should generate information on the 

duration, intensity and diurnal pattern of chewing activities. Furthermore, a suitable method 

for automated recording of jaw movements needs to allow classification and quantification of 

individual jaw movements for a long operating time (i.e., weeks to several months) at a high 

resolution and with satisfactory measuring performance.  

 

The aim of this study was to develop and validate a novel scientific monitoring device for 

automated health and activity monitoring in dairy cows. The presented RumiWatch noseband 

sensor was developed by Agroscope Institute for Sustainability Sciences (Ettenhausen, 

Switzerland) in collaboration with Itin+Hoch GmbH and InnoClever GmbH (both Liestal, 

Switzerland) and enables automated measurements of ruminating, eating, and drinking 

behavior.  

 

Our aim in this paper was twofold. Firstly, to provide a complete and detailed technical 

specification of the functionality of this device and, secondly, to perform a validation focusing 

on the system’s ability to quantify the duration of chewing activity and the number of jaw 

movements during rumination and eating. As the algorithms have undergone successive 
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development, two releases of the device-specific software for behavior classification are 

currently available that allow repeated analysis of previously recorded noseband sensor 

data. Hence, a further aim of this study was to validate these two commercially available 

versions of the software applied to the same data set recorded by the RumiWatch noseband 

sensor in comparison with direct observation under field conditions in stable-fed cows.  

 

 

2.3 Materials and methods 

2.3.1 RumiWatch noseband sensor 

The RumiWatch noseband sensor (Nydegger and Bollhalder 2010, Swiss Patent CH 700 494 

B1, Agroscope, Ettenhausen, Switzerland; manufactured and distributed by Itin+Hoch 

GmbH, Liestal, Switzerland) is a non-invasive sensor-based system enabling automated 

measurement of rumination, eating, drinking, movement and posture of the head in cattle. It 

comprises a noseband sensor, a data logger with online data analysis, and evaluation 

software. The noseband sensor consists of a glycol-filled silicone pressure tube with a built-in 

pressure sensor placed in the casing of a fully adjustable polyethylene halter over the bridge 

of the cow’s nose (Figure 2.1). Adjustable straps provide a proper fit of the padded halters to 

the dimensions of the animal’s head, in order to ensure wearing comfort, correct positioning 

of the sensor unit, and collection of valid data. The total weight of the noseband sensor 

including all components is approximately 700 grams.  

 

The pressure sensor is connected to a data logger placed in a protective casing on the right 

side of the halter. A second, identically constructed casing on the left side of the halter stores 

two 3.6-V lithium-ion batteries (Tadiran SL-761, Tadiran Batteries Ltd., Kiryat Ekron, Israel) 

for power supply of the electronic components. The data logger registers the pressure 

changes in the noseband sensor, triaxial accelerations of the halter, and ambient 

temperature at a constant logging rate of 10 Hz and saves the raw data as a binary file to a 

specific microSD memory card (Swissbit AG, Bronschhofen, Switzerland). Online data 
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analysis with preliminary classification of measurement data is conducted via the device 

firmware that is operated by the onboard 16-bit CPU (MSP430, Texas Instruments Inc., 

Dallas, Texas, USA). During chewing activity, the curvature of the noseband is altered by the 

cow’s jaw movement, exerting a pressure change in the pressure tube. Thus, the pressure 

sensor allows individual jaw movements to be recorded. 

 

 

Figure 2.1. Technical components of the RumiWatch noseband sensor. 

 

Automatic classification and quantification of chewing activity is based on the logging of 

individual pressure peaks, whereby every peak above a detection threshold of 28 mbar is 

counted as a chew. Absolute peak height is not considered for classification of chewing 

activity, as the pressure head inside the silicone tube is not standardized. In consequence, 

chewing activity is classified according to the frequency of peaks, as characteristic peak 

rates and peak intervals during rumination, eating, drinking, and other activity (e.g., idling) 

allow distinguishing between jaw movements of these behaviors. Peak frequencies recorded 

by the noseband sensor during measurement of ruminating, eating, and drinking behavior 

are shown in Figure 2.2a–c. The diagrams show that rumination is clearly distinguishable 

from eating activity. Homogeneous phases of jaw movements interrupted by bolus 
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regurgitation cause the significant peak profile of ruminating activity. Peak rates during eating 

are more heterogeneous with irregular interruptions and altering peak frequencies due to the 

animal’s partly increased bite rate and feed selecting behavior. A specific peak profile during 

drinking activity recorded by the noseband sensor is clearly distinguishable from those of 

rumination and eating (Figure 2.2a–c). The shown diagrams represent typical measures that 

are obtained from noseband sensor recordings under normal operating conditions.  

 

 

Figure 2.2a–c. Peak profiles over a period of 60 seconds during a) rumination, b) eating, and 
c) drinking, obtained from the same animal and noseband sensor. 
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The raw data files of noseband sensor recordings contain all information logged at 10 Hz, 

comprising the date and time of measurement, pressure value, triaxial acceleration values, 

ambient temperature value, time of last pressure peak detection, and preliminary 

classification of the detected behavior. They can be transferred to a PC and processed as 

Comma-Separated Values (CSV) files for further evaluation. 

 

2.3.2 RumiWatch Converter software 

The RumiWatch Converter (referred to hereafter as RWC; Itin+Hoch GmbH, Liestal, 

Switzerland) is a specific software application for user-defined post-processing of RumiWatch 

measurement data. It executes the analysis algorithms and serves for conversion of 

recorded pressure data into classified measurement data of animal activity. The basic 

concept of the RumiWatch algorithm is to generate four classifications for parameters of 

ingestive behavior based on the noseband sensor pressure data (Figure 2.3). 

 

 

Figure 2.3. Classification tree of ingestive behaviors applied by the RumiWatch noseband 
sensor algorithm. 

 

Classification and quantification of jaw movements is based on generic algorithms without 

animal-specific learning data. During the conversion and classification process, recorded 
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pressure data first undergo a raw classification procedure. Thereby, the analysis algorithm 

classifies pressure data according to the frequency of jaw movements, e.g., 50-70 chews per 

minute during rumination, and occurrence of systematic interruptions of jaw movements, e.g., 

during regurgitation of ruminating boluses, within an analysis period (Figure 2.2a). An interval 

between two pressure peaks that is longer than 3.2 seconds, is registered as a ruminating 

bolus. The total analysis period for raw classification of pressure data is 60 seconds. A 

classification update is made every 10 seconds. Three consecutive 10-second intervals of 

the same behavior classification are needed for final classification of the analyzed minute 

according to the prevailing activity, i.e., either rumination, eating, drinking, or other activity 

(any other activity not covered by the previously mentioned behaviors). The output of this 

procedure contains raw classification summaries in 1-minute resolution. As a further 

conversion and classification option in the software, consolidated summaries of animal 

activity can be created e.g. with a resolution of one hour. Thereby, the recorded sensor data 

additionally undergo validity checks contained in the analysis algorithm in order to avoid 

invalid and defective interpretation of measured values. These validity checks require a 

minimum resolution of 10 minutes and can only be applied to consolidated classification 

data. Hence, they are not effective in the raw classification procedure for data in 1-minute 

resolution. The output of the consolidated classification procedure contains measurement 

results that represent percentages of behavior time and quantification of jaw movements and 

boluses within a 1-hour interval.  

 

As the analysis algorithms have undergone successive development, two releases of the 

device-specific software for behavior classification are currently available. Software versions 

used in this validation study were RWC V0.7.2.0 and the subsequently developed RWC 

V0.7.3.2. Improved validity of detected ruminating activity has been a major focus in the 

development of RWC V0.7.3.2 due to its high relevance as a health and welfare indicator. 

The parameters and criteria of the executed validity checks, comparing RWC V0.7.2.0 and 

RWC V0.7.3.2, are shown in Table 2.1.  



System specification and validation of a noseband pressure sensor 
 

37 

Table 2.1. Parameters and criteria for validity checks integrated into RumiWatch Converters 
V0.7.2.0 and V0.7.3.2. 

Parameter Validity criterion  Converter version  

Ruminating 
classification 

 

 If bouts of classified ruminating activity are 
less than a duration of 3 minutes, this 
analysis interval is classified as eating activity  

V0.7.2.0, V0.7.3.2 

Ruminating 
classification 

 

 Double peaks (peak interval < 0.2 seconds) 
are ignored for chew count to achieve higher 
validity of ruminating classification  

V0.7.3.2 

Bolus 
detection 

 Bolus detection is only activated if current 
classification is rumination 

 Ruminating chews between two detected 
boluses are counted (chews per bolus) 

 After detection of a new bolus, counted 
chews per bolus assist to validate the 
detection of the respective bolus, executed in 
the following manner: 
- < 20 chews per bolus: insufficient number 

of chews, detected bolus is ignored for 
classification 

- ≥ 20 chews per bolus: valid bolus count 
- ≥ 90 chews per bolus: detection of latest 

bolus failed, so bolus count is doubled for 
classification 

- ≥ 150 chews per bolus: detection of last 2 
boluses failed, so bolus count is tripled 
for classification 

V0.7.2.0, V0.7.3.2 

Bolus 
detection 

 Minimum of one counted bolus per minute is 
required for ruminating classification of the 
analyzed minute 

V0.7.3.2 

 

2.3.3 Experimental procedures 

The validation of the RumiWatch noseband sensor was conducted as a field study on 

commercial dairy farms to investigate the device’s and software’s suitability for automated 

behavior classification. 

 

2.3.3.1 Data collection 

The study was performed on 14 Swiss commercial dairy farms. A varying number of 

experimental animals was randomly selected per farm (range 2 to 18), resulting in a total 

number of 60 cows of various breeds (9 Holstein Friesian, 6 Red Holstein, 2 Jersey, 34 

Brown Swiss, 5 Fleckvieh, 3 Original Braunvieh, 1 Crossbred). The sample consisted of 11 
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primiparous and 49 multiparous cows with an average of 3.2 (standard deviation 2.1) 

lactations. The cows were on average 141.4 (standard deviation 97.1) days in milk. The 

measurements were undertaken during 15 days in August and September. Date and time of 

observations were chosen randomly. During each observation day, 4 cows were observed. 

All 60 cows were housed in loose housing systems with cubicles and fed a mixed ration with 

different proportions of concentrate and forage. In all farms, cows were continuously housed 

and did not have access to pasture for grazing.  

 

Direct observations were performed using a tablet computer (Dell Latitude 10, Dell Inc., 

Round Rock, Texas, USA). Jaw movements were entered and counted in a spreadsheet 

(Microsoft Excel 2013, Microsoft Corporation, Redmond, Washington, USA) with a macro for 

time stamps in tenth of a second resolution (Visual Basic for Applications, Microsoft 

Corporation, Redmond, Washington, USA). Each jaw movement was registered with its 

classification of behavior, date and time to a tenth of a second. The beginning and end of 

ruminating, eating, drinking, and other activity were also registered and, thus, used to 

determine total duration of these behaviors during the observation periods. All direct 

observations in this study were done by the same observer (first author) with observational 

routine based on previous studies. Each cow’s behavior was observed continuously for the 

duration of 1 hour, adding up to 3,600 observed minutes in total. Direct observation was 

done according to a pre-defined ethogram for all registered behaviors (Table 2.2).  

 

Table 2.2. Ethogram for the classification of behaviors registered during observations. 

Behavior Description 

Ruminating Chewing and swallowing of a ruminating bolus 

Bolus regurgitation Process of regurgitating a ruminating bolus 

Eating Intake, chewing, and swallowing of feed 

Drinking Putting mouth in water bowl and swallowing water 

Other activity Non-ingestive related activities 
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In order to allow for time of habituation and to avoid impairments of the animals’ normal 

behavior, direct observations were started approximately 1 hour after newly equipping an 

animal with a RumiWatch noseband sensor. The tablet PC and noseband sensors were time 

synchronized. Animal behavior could be observed at any location, including feed rack, 

cubicles, and concrete-floored loafing area, as the observer was able to move freely in order 

to follow the target animals. 

 

2.3.3.2 Data preparation 

RumiWatch data were converted into 1-minute classification summaries (raw classification, 

i.e., without validity checks) and 1-hour classification summaries (consolidated results, i.e., 

with validity checks, cf. Table 2.1) using both RWC V0.7.2.0 and RWC V0.7.3.2 for each 

animal-specific data file. For 1-minute raw classification data, the activity within 1 minute was 

summarized and classified according to the dominant activity (either rumination, eating, 

drinking, or other activity), with simultaneous count of chews and boluses during the 

respective behavior. Within the 1-hour consolidated classification data, measurement results 

represent percentages of behavior time per hour and quantification of jaw movements and 

boluses. Recordings of observation protocols were summarized for the same analysis 

intervals and resolutions to allow comparison with sensor data.  

 

2.3.3.3 Statistical analysis 

All statistical analyses were conducted in IBM SPSS Statistics 23 (IBM Corporation, Armonk, 

New York, USA). According to graphical examination and Kolmogorov–Smirnov test of 

analyzed variables, none of the defined variables was normally distributed (p < 0.05); thus, 

nonparametric tests were used. For evaluation of the raw classification performance, the 

classification cases shown in Table 2.3 were defined. 
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Table 2.3. Definition of classification cases for the types of ingestive behavior (either 
ruminating, eating, drinking, or other activity). 

 Actual classification (direct observation) 

Predicted classification 
(RumiWatch Converter) 

Behavior type present Behavior type not present 

Behavior type present True Positive False Positive 

Behavior type not present False Negative True Negative 

 

Data in 1-minute resolution (raw classification, i.e., without validity checks) were analyzed by 

calculating sensitivity, specificity, positive predictive value, and accuracy, comparing results 

of direct observation and sensor data classified by RWC V0.7.2.0 and RWC V0.7.3.2. The 

parameters included in the analysis were the four different classifications of jaw movements 

(i.e., either rumination, eating, drinking, or other activity). A confusion matrix approach 

(Stehman 1997) was used for classification accuracy assessment of the RWC versions. This 

specific matrix layout allows visualization of the classification performance, whereby each 

row of the matrix represents the occurrences in the predicted classification according to the 

RWC, whereas each column represents the occurrences in the actual classification 

according to direct observations. Based on the created confusion matrices, the statistical 

parameters listed in Table 2.4 were calculated for classifications of the RWC versions.  

 

Table 2.4. Statistical parameters for classification accuracy assessment of the RumiWatch 
Converter. 

Parameter Equation  

Sensitivity 
Sensitivity = 

True Positives

Positives
=  

True Positives

(True Positives + False Negatives)
 

Specificity 
Specificity =  

True Negatives

Negatives
=  

True Negatives

(True Negatives + False Positives)
 

Positive predictive 
value 

Positive predictive value =  
True Positives

(True Positives + False Positives)
 

Accuracy 
Accuracy =  

(True Positives + True Negatives)

(True Positives + False Positives + False Negatives + True Negatives   )
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Thereby, sensitivity describes the proportion of positives that are correctly identified as such. 

Specificity indicates the proportion of negatives that are correctly identified, whereas the 

positive predictive value evaluates the proportion of true positives against all positive results. 

Accuracy is defined as the proportion of true results (both true positives and true negatives) 

among all obtained results. The Spearman nonparametric correlation coefficient (rs) was 

used to analyze the concordance of sensor data in summarized 1-hour resolution 

(consolidated classification, i.e., with validity checks, cf. Table 2.1) and direct observation. 

According to Taylor (1990), correlation coefficients were rated as weak (rs ≤ 0.35), moderate 

(rs = 0.36–0.67), strong or high (rs = 0.68–0.89), and very high correlation (rs ≥ 0.9). A 

graphical analysis was conducted by using the Bland–Altman plot (Bland and Altman 1986). 

This method evaluates the agreement between two measurement methods, here of behavior 

classification by direct observation and RWC software. Agreement was expressed as the 

mean difference between the paired results of software classifications and direct 

observations (minutes or chews classified by software − minutes or chews classified by direct 

observation) and plotted against the mean of the paired values ([minutes or chews classified 

by software + minutes or chews classified by direct observation]/2). Additionally, the upper 

and lower limits of agreement for the 95% confidence interval (CI) were calculated. 

 

 

2.4 Results 

2.4.1 Raw classification (1-minute resolution) 

Raw classification data in 1-minute resolution represent the results of the raw classification 

process exerted by the RWC. The results of counted jaw movements per minute during 

rumination and eating measured by RumiWatch and direct observation were summarized in 

box plots (Figure 2.4). 
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Figure 2.4. Comparison of direct observations with the RumiWatch Converters V0.7.2.0 and 
V0.7.3.2 for the parameters jaw movements per minute during rumination and eating. Raw 
data are presented as box plots showing the median as bold black line and the boxes as first 
and third quartiles. The whiskers indicate the 95th and 5th percentiles.  

 

The median for ruminating jaw movements per minute was much lower, with 63-64 chews 

per minute, compared to the median of total eating jaw movements, with 78-79 chews per 

minute. The interquartile range (75th–25th percentile) followed the same pattern with 10-11 

chews per minute for rumination and 27-28 chews per minute for eating. The number of 

chews per minute comparing rumination and eating differed significantly for all three 

measurement methods (Mann-Whitney U test, p < 0.001). The pooled sample of all observed 

minutes was analyzed with confusion matrices comparing the results of classification by 

direct observation and the respective RWC version. Confusion matrices for behavior 

classification of RWC V0.7.2.0 and RWC V0.7.3.2 are shown in Table 2.5 and Table 2.6, 

respectively.  
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Table 2.5. Classification results for 1-minute raw classification data for RumiWatch Converter 
V0.7.2.0 and direct observations. 

 

Direct observation [min]  

RumiWatch Converter 
V0.7.2.0 [min] 

Other activity 
time 

Ruminating 
time 

Eating time Drinking time 
Total 

Other activity time 1,261 34 96 23 1,414 

Ruminating time 8 1,095 49 1 1,153 

Eating time 56 85 831 7 979 

Drinking time 32 1 9 12 54 

Total 1,357 1,215 985 43 3,600 

Bold values indicate the true positive classifications. 

 

 

Table 2.6. Classification results for 1-minute raw classification data for RumiWatch Converter 
V0.7.3.2 and direct observations. 

 

Direct observation [min]  

RumiWatch Converter 
V0.7.3.2 [min] 

Other activity 
time 

Ruminating 
time 

Eating time Drinking time 
Total 

Other activity time 1,282 34 98 25 1,439 

Ruminating time 32 1,164 267 5 1,468 

Eating time 33 16 616 4 669 

Drinking time 10 1 4 9 24 

Total 1,357 1,215 985 43 3,600 

Bold values indicate the true positive classifications. 

 

The results of the statistical analysis of raw classification data (1-minute resolution) are 

shown in Table 2.7. Three of the parameters demonstrated a high classification performance 

for both RWCs. Only the parameter drinking time was found to have a low positive predictive 

value. However, despite a low sensitivity, specificity for raw classification of drinking time was 

very high. For RWC V0.7.3.2 there was an indication that sensitivity was higher for 

rumination time compared to RWC V0.7.2.0. For eating time, the opposite was found. In 

consequence, RWC V0.7.3.2 was marked by an increased probability for misclassification of 

other behaviors instead of identifying rumination. Both versions of the RWC showed high 

robustness for raw classification of other activity time. 
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Table 2.7. Results of the statistical analysis of RumiWatch raw classification data (1-minute 
resolution) compared with direct observation (pooled sample, n = 60 cows, one continuous 
observation hour per cow). Lower and upper 95% confidence intervals are indicated in 
parentheses. 

Parameter Converter 
version 

Sensitivity Specificity Positive 
predictive 
value 

Accuracy 

Rumination time V0.7.2.0 0.90                          
(0.88-0.92) 

0.98                          
(0.97-0.98) 

0.95                           
(0.94-0.96) 

0.95                           
(0.94-0.96) 

 V0.7.3.2 0.96                            
(0.95-0.97) 

0.87                           
(0.86-0.89) 

0.79                            
(0.78-0.81) 

0.90                         
(0.89-0.91) 

Eating time V0.7.2.0 0.84                          
(0.82-0.87) 

0.94                          
(0.93-0.95) 

0.85                          
(0.83-0.87) 

0.92                            
(0.91-0.93) 

 V0.7.3.2 0.63                           
(0.59-0.66) 

0.98                          
(0.97-0.98) 

0.92                          
(0.90-0.94) 

0.88                          
(0.88-0.89) 

Drinking time V0.7.2.0 0.28                  
(0.15-0.44) 

0.99                 
(0.98-0.99) 

0.22                  
(0.14-0.33) 

0.98                           
(0.97-0.98) 

 V0.7.3.2 0.21                  
(0.10-0.36) 

1.00                 
(0.99-1.00) 

0.38                  
(0.22-0.56) 

0.99                             
(0.98-0.99) 

Other activity time V0.7.2.0 0.93                              
(0.91-0.94) 

0.93                          
(0.92-0.94) 

0.89                          
(0.88-0.91) 

0.93                          
(0.92-0.94) 

 V0.7.3.2 0.94                          
(0.93-0.96) 

0.93                           
(0.92-0.94) 

0.89                          
(0.88-0.90) 

0.94                           
(0.93-0.94) 

 

 

2.4.2 Consolidated classification (1-hour resolution) 

Results of the statistical analysis of consolidated classification data (1-hour resolution) are 

listed in Table 2.8. Spearman nonparametric correlation coefficients (rs) between direct 

observations and RumiWatch measurements were rated as very high in 10 out of 14 

analyzed parameters, high in 3 parameters, and moderate in 1 parameter. Highest 

correlations were found when applying RWC V0.7.3.2. Lowest correlation was calculated for 

measurement of drinking time using RWC V0.7.2.0.   
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Table 2.8. Results of the statistical analysis of the RumiWatch consolidated classification (1-
hour resolution) compared with direct observation (pooled sample, n = 60 cows, one 
continuous observation hour per cow).  

  Bland–Altman analysis   

Parameter Converter 
version 

Mean 
difference 

Standard 
deviation 

Lower 
95% CI 

Upper 
95% CI 

rs Concordance  

Rumination time V0.7.2.0 −2.34 6.43 −15.20 10.51 0.91** very high 

[min/h] V0.7.3.2 0.79 3.33 −5.87 7.45 0.96** very high 

Eating time V0.7.2.0 4.56 7.21 −9.86 18.98 0.86** high 

[min/h] V0.7.3.2 2.20 4.78 −7.35 11.76 0.96** very high 

Drinking time V0.7.2.0 0.57 1.70 −2.82 3.97 0.42** moderate  

[min/h] V0.7.3.2 −0.06 1.13 −2.33 2.20 0.78** high 

Other activity time V0.7.2.0 −3.12 3.66 −10.45 4.21 0.91** very high 

[min/h] V0.7.3.2 −3.12 3.49 −10.10 3.86 0.93** very high 

Ruminating chews V0.7.2.0 −147.18 378.72 −904.63 610.26 0.92** very high 

[n/h] V0.7.3.2 44.85 174.72 −304.60 394.30 0.97** very high 

Total eating jaw V0.7.2.0 233.22 475.54 −717.86 1,184.29 0.88** high 

movements [n/h] V0.7.3.2 58.85 321.42 −583.99 701.69 0.97** very high 

Bolus V0.7.2.0 −2.53 7.48 −17.49 12.42 0.93** very high 

[n/h] V0.7.3.2 0.48 4.79 −9.09 10.06 0.97** very high 

** correlation is highly significant with p ≤ 0.001 

 

For consolidated classification, Figure 2.5 shows the agreement of the results generated by 

the two converter versions in comparison with direct observations. The diagram indicates 

more deviation of rumination time and ruminating chews by RWC V0.7.2.0, whereas these 

parameters analyzed by RWC V0.7.3.2 showed higher concordance (Table 2.8). For all 

parameters analyzed by Bland–Altman plots (Table 2.8), the calculated mean differences 

were lower when using RWC V0.7.3.2, associated with narrower 95% CIs (Table 2.8; Figure 

2.6), than when using RWC V0.7.2.0. This result demonstrated the effectiveness of the 

validity checks introduced in RWC V0.7.3.2 (cf. Table 2.1).  
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Figure 2.5. Correlations between direct observations and RumiWatch Converters V0.7.2.0 
and V0.7.3.2 for rumination time (a, b), eating time (c, d), ruminating chews (e, f), and total 
eating jaw movements (g, h).  
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Figure 2.6. Bland–Altman plots demonstrating the agreement of direct observations with 
RumiWatch Converters V0.7.2.0 and V0.7.3.2, analyzed for the parameters rumination time 
(a, b), eating time (c, d), ruminating chews (e, f), and total eating jaw movements (g, h). Bold 
lines show the mean difference, dashed lines indicate the lower and upper 95% confidence 
interval.  
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2.5 Discussion 

The validation showed that the development of the RumiWatch monitoring system was 

successful. The system was designed to meet the requirements of scientific users. 

Therefore, it allows recording of ingestive behavior types with full raw data accessibility and 

post-processing option if a different converter version shall be used at a later time. Thus, 

collected raw data can be repeatedly evaluated with an updated version of the analysis 

routines.  

 

The obtained accuracy of measurement was high for all analyzed behavior classifications, 

which is indicative of relatively small systematic errors (cf. Taylor 1997). The achieved 

precision of measurement, as expressed by the positive predictive value was satisfactory for 

classification of rumination, eating, and other activity time, but not so for drinking time. 

Therefore, classification of drinking behavior is prone to an increased occurrence of random 

errors. The reinforcement of a particular behavior detection represents a tradeoff that may 

negatively affect the classification performance for other behavior types.  

 

In the present study, this occurred in RWC V0.7.3.2 due to reinforced detection of ruminating 

behavior. Based on the analysis of raw classification data (1-minute resolution), RWC 

V0.7.3.2 showed a tendency for misclassification and overestimation of behaviors towards 

rumination, as indicated by lower specificity, positive predictive value, and accuracy for 

classification of rumination time as compared with RWC V0.7.2.0. The major reason for 

overestimation of rumination by this software version was the misclassification of eating 

behavior to rumination, simultaneously resulting in underestimation of eating time (Table 

2.6). Sensitivity and positive predictive value for classification of drinking time was low in both 

RWC versions (Table 2.7). Drinking behavior was difficult to classify due to the similarities of 

the peak profiles of drinking, eating, or idling behavior. Additionally, short duration and low 

frequency of drinking bouts (drinking time 5.5–6.8 minutes per day, Huzzey et al. 2005; in 

6.6–9.5 bouts, Huzzey et al. 2005, Cardot et al. 2008) represented a challenge in generating 
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sufficient sample size for both development and validation of an analysis algorithm, 

particularly on individual cow level. Hence, robust detection and extensive examination of 

validity for measurement of drinking behavior is difficult and requires further research.  

 

Comparison of consolidated classification data (1-hour resolution) with direct observations 

revealed higher correlation coefficients when using RWC V0.7.3.2 (Table 2.8). These results 

demonstrate the improvement of measuring performance for the consolidated classification 

due to the validity checks introduced in RWC V0.7.3.2 (cf. Table 2.1). Particularly for studies 

requiring consolidated classification of animal behavior or focusing on ruminating activity as 

an important health parameter, the use of this RWC version is preferable. On the other hand, 

if the analysis of minute-by-minute data for classification and quantification of jaw 

movements is of relevance for a conducted study, e.g., in feeding trials, the use of RWC 

V0.7.2.0 is recommended. Here, the accuracy for raw classification of rumination time and 

eating time was higher than in RWC V0.7.3.2. Although only to a minor degree, the suitability 

of a RWC version for behavior classification may vary depending on the required temporal 

resolution and the behavior that is of particular interest for the analysis. However, both 

converters provide a high standard of validity and measuring performance for eating and 

ruminating behavior.  

 

As a limitation of the presented system compared with the approach described by Rutter et 

al. (1997) and the acoustic approach used by Ungar and Rutter (2006), it cannot discriminate 

between eating bites, chews, and chew-bites. Hence, the closer analysis of feed intake on 

pasture appears to be difficult when using the current state of the system’s analysis routines. 

This validation study only used continuously housed cows that were fed mixed rations with 

no grazing. There is a need for further validation studies where the described system is 

applied in grazing cows.  

In a previous state of development, the noseband sensor was evaluated by Ruuska et al. 

(2016), but only on the basis of duration of chewing activity during eating and rumination, 
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whereas the system’s ability to detect and quantify individual chews of these behaviors was 

not investigated. These authors compared measurements of rumination, eating, and drinking 

time by the RumiWatch noseband sensor with continuous video observation (n = 6 dairy 

cows, total sample of 72 h) and found a very dependable relationship for rumination time (R2 

= 0.93) and eating time (R2 = 0.94). Comparable results were obtained from the present 

study, shown by Spearman correlation coefficients of rs = 0.91 (RWC V0.7.2.0) and rs = 0.96 

(RWC V0.7.3.2) for rumination time, and rs = 0.86 (RWC V0.7.2.0) and rs = 0.96 (RWC 

V0.7.3.2) for eating time. The relationship between drinking time recorded by RumiWatch 

and by video observation found by Ruuska et al. (2016) was poor (R2 = 0.20). This finding 

was in agreement with the present study, where correlations of automatically measured 

drinking times were lower than those in the other ingestive parameters, with rs = 0.42 (RWC 

V0.7.2.0) and rs = 0.78 (RWC V0.7.3.2).  

 

In a validation study of a pressure-based measuring system for chewing activity similar to the 

RumiWatch noseband sensor in our study, the correlation coefficients between the results 

from the automated system and direct observations were r = 0.99 for the duration of eating 

and rumination phases (Braun et al. 2013). However, the results of their study are not directly 

comparable with ours, as Braun et al. (2013) used scan sampling with 1-minute sampling 

intervals, whereas we used continuous observations for obtaining a gold standard (cf. Martin 

and Bateson 2007). Continuous direct observation of chewing behavior, as conducted in the 

current study, represents the best reference method for comparison with sensor 

measurement. It allows the recording of the type (specific behavior), pattern (duration and 

frequency of chewing activity), and intensity of chewing behavior (number of chews). The 

validation method used in several studies was a comparison of automated measurement with 

scan sampling observations (Grant et al. 1990, Maekawa et al. 2002, Couderc et al. 2006). 

This observational method is only a representation of activity occurring at intervals and does 

not trace the continuous automated measurement (Kononoff et al. 2002). Therefore, it was 

not a suitable method for our analysis.  
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2.6 Conclusions 

The RumiWatch noseband sensor was successfully developed and validated as a scientific 

monitoring device for automated measurements of ruminating and eating activity in stable-

fed dairy cows. Both system-specific software versions were suitable and showed a high 

performance for classification of ruminating and eating behavior but less so for the parameter 

drinking time. The achieved validation results indicate that the measuring performance 

satisfies scientific requirements. Further research is needed to allow for the differentiation of 

total eating jaw movements, as the described state of the analysis routines does not enable a 

separate classification of chews, bites, and chew-bites during eating.  
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3.1 Abstract 

Behavior is one of the most important indicators for assessing cattle health and well-being. 

The objective of this study was to develop and validate a novel algorithm to monitor 

locomotor behavior of loose-housed dairy cows based on the output of the RumiWatch 

pedometer (ITIN+HOCH GmbH, Fütterungstechnik, Liestal, Switzerland). Data of locomotion 

were acquired by simultaneous pedometer measurements at a sampling rate of 10 Hz and 

video recordings for manual observation later. The study consisted of 3 independent 

experiments. Experiment 1 was carried out to develop and validate the algorithm for lying 

behavior, experiment 2 for walking and standing behavior, and experiment 3 for stride 

duration and stride length. The final version was validated, using the raw data, collected from 

cows not included in the development of the algorithm. Spearman correlation coefficients 

were calculated between accelerometer variables and respective data derived from the video 

recordings (gold standard). Dichotomous data were expressed as the proportion of correctly 

detected events, and the overall difference for continuous data was expressed as the relative 

measurement error. The proportions for correctly detected events or bouts were 1 for stand 

ups, lie downs, standing bouts, and lying bouts and 0.99 for walking bouts. The relative 

measurement error and Spearman correlation coefficient for lying time were 0.09% and 1; for 

standing time, 4.7% and 0.96; for walking time, 17.12% and 0.96; for number of strides, 

6.23% and 0.98; for stride duration, 6.65% and 0.75; and for stride length, 11.92% and 0.81, 

respectively. The strong to very high correlations of the variables between visual observation 

and converted pedometer data indicate that the novel RumiWatch algorithm may markedly 

improve automated livestock management systems for efficient health monitoring of dairy 

cows. 

 

Key words: accelerometer, dairy cow, behavior, locomotion, walking 
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3.2 Introduction 

Change of animal behavior is one of the most important criteria for assessing animal welfare 

and health (Cook et al. 2005, Urton et al. 2005, Chapinal et al. 2011, Viazzi et al. 2013). 

Parameters of animal behavior can be used to build up an early disease warning system. For 

example, painful claw lesions cause changes in animal behavior such as lameness (Hudson 

et al. 2008) and are usually associated with an increased lying time (Ito et al. 2010, Alsaaod 

et al. 2012, Yunta et al. 2012) and a decreased overall daily activity level (O’Callaghan et al. 

2003). The current gold standard for detection of lameness is manual observation by a 

trained professional. The degree of lameness is described, using an accepted clinical gait-

scoring scheme (Sprecher et al. 1997, Flower and Weary 2006). 

 

In general, veterinary treatments and management decisions are more effective the earlier 

they are initiated relative to the onset of the disease (Gonzalez et al. 2008). However, 

detecting behavioral changes at an early stage is difficult (Whay et al. 2003, Espejo et al. 

2006). Traditionally, behavior research of loose-housed cows is based on direct observation 

or use of video recordings. The drawbacks of both methods are that they are time consuming 

and labor intensive with nocturnal observations, which limit their feasibility for long-term 

observations in practice (Muller and Schrader 2005). 

 

Previous studies indicated lameness to be one of the most important health and welfare 

problems of modern dairy farming (Nordlund et al. 2004, Shearer et al. 2013). Practical 

strategies to automatically detect lameness to improve claw health have, therefore, become 

a major focus for the dairy industry. Consequently, real-time analysis of cattle activity could 

provide useful information for early detection of disease, thereby reducing its negative effect, 

increasing the chance of treatment success, and preventing the disease from becoming 

chronic. Accelerometry is a reliable and useful tool to detect standing and lying behavior 

(Munksgaard et al. 2006, O’Driscoll et al. 2008, Nielsen et al. 2010). So far, accelerometers, 

however, have not been suitable for detecting and characterizing patterns of walking 
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behavior in cattle with a sufficient accuracy. Detailed information about the duration of 

walking and standing phases, number and duration of strides, and distance walked is a 

prerequisite for increasing the sensitivity and specificity of accelerometers to detecting 

lameness (Flower et al. 2005). It was already concluded by Chapinal et al. (2011) that 

accelerometers seem to be a promising tool for lameness detection on farm, especially when 

attached to a leg. 

 

The objective of this study was to develop and validate a novel algorithm to monitor 

locomotor behavior based on the output of a 3-dimensional accelerometer collected from 

loose-housed dairy cows compared with video analysis (gold standard). It was hypothesized 

that a novel algorithm of the RumiWatch pedometer device (ITIN+HOCH GmbH, 

Fütterungstechnik, Liestal, Switzerland, http://www.rumiwatch.ch/) can be developed that 

provides a moderate to high correlation of parameters of behavior of dairy cows in both 

upright and lying positions between the output data of the pedometers and the data derived 

from temporarily staggered video analysis. 

 

 

3.3 Materials and Methods 

3.3.1 RumiWatch Pedometer 

The hardware used in this study was the RumiWatch pedometer, with the dimensions of 55 

mm (width) × 100 mm (length) × 30 mm (depth) and a total weight of 126 g. It is attached to 

one of the hind limbs of a cow proximal to the fetlock joint by a Velcro fastener. It represents 

a noninvasive electronic sensor, continuously collecting data at 10 readings per second, 

including a 3-dimensional accelerometer. The raw data are continuously stored on the 

integrated micro SD Memory Card (Swissbit AG, Bronschhofen, Switzerland). 
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3.3.2 Concept of Algorithm Development and Validation 

The basic concept of definitions underlying all stages of development of the novel algorithm 

(RumiWatch software, ITIN+HOCH GmbH) is depicted in Figure 3.1. The normal locomotor 

activity of the cow consists of either lying or being in an upright position. The latter includes 

either standing or walking. Walking was defined as the activity characterized by at least 3 

consecutive limb movements (strides), allowing the cow to change its location in space either 

in forward or backward direction. Standing was defined as the activity of a cow in upright 

position when it did not walk.  

 

 

Figure 3.1. Classification tree of locomotion behavior of dairy cows used for the development 
of the novel RumiWatch (ITIN+HOCH GmbH, Fütterungstechnik, Liestal, Switzerland) 
algorithm. 

 

Specific definitions of locomotor activity are given in  

Table 3.1. Detection of the lying and standing behavior was based on pedometer angle 

estimations. The walking algorithm extracted parameters from the 3-dimensional 

accelerometer measurements. Development of the current version (V0.7.3.6), as described 

and validated in this paper, followed an empiric approach of several cycles of algorithm 

amelioration, validation. These cycles were repeated until the accuracy of detecting position-

change events and number of bouts (dichotomous data) exceeded 98% and the mean 

relative measurement error (RME) of continuous data describing locomotor activity was less 
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than 20%. The final version was validated using the 10-Hz raw data collected from cows not 

included in the development of the algorithm. 

 

Table 3.1. Definitions of various variables used for quantifying locomotor activity of dairy 
cows. 

Variable Definition 

Lying bout Period with the pedometer in a position exceeding an angle of 58° 
toward the vertical axis lasting >50 s. Interruption of this pedometer 
position for less than 50 s is identified and calculated as one stand-up 
and one lying-down event but not as a separate standing bout. The 
lying bout is rated as not interrupted. 

Walking bout Period characterized by at least 3 consecutive strides in the same 
direction (forward or backward). The period between 2 strides must 
not exceed 4 s. Walking bouts are rated as separate if the time 
between 2 strides exceeds 10 s. 

Standing bout Periods during which the cow is in an upright position but not walking; 
temporary change of the pedometer angle exceeding 58° toward the 
vertical axis for less than 50 s is neither rated as lying-down and 
standing-up events nor as an additional lying bout. 

Stand up Event at which the pedometer angle changes its position from an 
angle >58° toward the vertical axis to an angle <58° toward the 
vertical axis. 

Lie down Event at which the pedometer angle changes its position from an 
angle <58° toward the vertical axis to an angle >58° toward the 
vertical axis for a duration of at least 50 s. 

Stride One forward or backward movement of the limb within a walking bout. 

Lying time Sum of the duration of all lying bouts within a given recording period. 

Walking time Sum of the duration of all walking bouts within a given recording 
period. 

Standing time Sum of the duration of all standing bouts within a given recording 
period. 

Stride length Distance between the 2 consecutive imprints of the same 
instrumented hind limb. 

Stride duration Time interval between 2 consecutive foot strikes of the same 
instrumented hind limb. 

Activity index The averaged variance of 3-dimensional acceleration in 10-s 
segments 
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3.3.3 Animals and Experimental Procedures 

Development and validation of the algorithm were divided into 3 major experiments. They 

were carried out with the permission of the respective cantonal committee for animal 

experimentation. 

 

3.3.3.1 Experiment 1 

Experiment 1was performed to elaborate the parameters lying time, stand up, lie down, and 

number of lying bouts ( 

Table 3.1). The experiment was carried out at the experimental farm of Agroscope Research 

Station in Tänikon, Switzerland. The cows were kept in a loose housing system with straw-

bedded cubicles. The walking and feeding alleys were made of plain concrete, and the 

outside paddock was covered with slatted concrete. The cows were milked 2 times a day and 

had free access to a TMR and a water trough. The cows were continuously videotaped over 

24 h with 2 video recorders (Mobotix D14D-Sec and Mobotix M12D-Sec-DNight, Mobotix AG, 

Langmeil, Germany) mounted underneath the roof construction of the barn well above the 

cows. Time settings of the video recorders and pedometers were synchronized before the 

experiment on the computer used to initialize the devices. The cows were marked on the 

back and both flanks individually with colored numbers for unequivocal identification. A total 

of 5 different versions of the algorithm were developed, using data of 30 cows. For validation 

of the final version, 18 cows (11 Brown Swiss; 6 Red Holstein; 1 Swiss Fleckvieh; median 

age: 4.1 yr, with range of 2.0 to 8.2 yr; median milk yield of 28 kg/d) were randomly selected 

from a pool of cows with a lameness score (≤2) according to Sprecher et al. (1997). This 

revealed a pool of video data for validation of 432 h. 

 

3.3.3.2 Experiment 2 

Experiment 2 was performed to elaborate 5 parameters describing behavior during upright 

position: standing time, walking time, number of standing bouts, number of walking bouts, 

and number of strides ( 
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Table 3.1). A hand-held digital video camera (Sony HDR-PJ740VE, Sony Corporation, 

Tokyo, Japan) was used to record the locomotion of the cows at 50 frames per second and 

to provide a posterior view of the hind legs while the respective cow was walking freely. The 

camera was initially synchronized by setting the clock of the video to match the time on the 

computer that was used to initialize each accelerometer. Each cow was videotaped for a 

period of ≥10 min. A total of 8 versions of the algorithm were developed, using data of 20 

cows kept under conditions similar to experiment 1. The version V0.7.3.6 was finally used to 

validate the accelerometer data of 21 cows (12 Brown Swiss; 9 Red Holstein; median age: 

4.0 yr, with a range of 2.0 to 8.9 yr; median milk yield of 25.45 kg/d) videotaped over ≥10 

min, making up a total of 210 min of video data. 

 

3.3.3.3 Experiment 3 

Experiment 3 was performed to elaborate the parameters stride length (m) and stride 

duration (s;  

Table 3.1). The cows were videotaped with a hand-held video recorder (Sony HDR-

PJ740VE, Sony Corporation, Tokyo, Japan) from behind, when cows were walked by a 

handler for at least 5 min. The walking distance was individually measured by using a 

distance-measuring wheel guided by the handler that was familiar with the cows. Two 

versions were developed using data of 20 cows kept under conditions similar to experiment 

1. The version V0.7.3.6 was finally used to validate the accelerometer data of 16 cows (16 

Brown Swiss; median age of 3.1 yr, with range of 2.0 to 10.0 yr; median 305-d milk yield of 

7,030.5 kg) at Hürlimann-Grimm Ernst Farm in Ettenhausen, Switzerland. 

 

 

3.3.4 Data Analysis and Statistics 

For dichotomous data (stand up, lie down, lying bout, standing bout, and walking bout), the 

number of events or bouts detected by the RumiWatch algorithm was compared with the 

number of events detected in the video recordings (gold standard). The proportion of 
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detected events and the respective 95% confidence interval were calculated. For continuous 

data, the RME was calculated as the deviation between accelerometer algorithm value and 

respective video recording using this formula: percent deviation = (100/video-recording 

observation) × absolute value (video-recording observation − RumiWatch observation). Mean 

and standard deviation were calculated to describe the RME for the different variables. A 

RME of <1% was rated very low, 1 to 5% was rated low, and 6 to 20% was rated moderate. 

Agreement between continuous variables (time spent walking, standing, and lying; stride 

length; and stride duration) was expressed as correlation coefficients. The variables were not 

normally distributed; therefore, Spearman nonparametric correlation coefficient was used for 

the analyses. A correlation coefficient (rs) of rs ≥0.9 was rated as very high, rs = 0.68 to 1.0 as 

strong or high, rs = 0.36 to 0.67 as moderate, and rs = ≤0.35 as weak correlation (Taylor, 

1990). For continuous data, only one measurement for each cow was conducted; therefore, 

the degree of interdependence between RME and rs was not of any relevance. Furthermore, 

the variability between individual cows was not considered, as the comparison between 

accelerometer algorithm and respective video recording was done at cow level. All statistical 

analyses were undertaken using NCSS9 (NCSS LLC, Kaysville, UT). 

 

 

3.4 Results 

In experiment 1, all the stand up (n = 165) and lie down events (n = 165) and all lying bouts 

(n = 164) were correctly detected (Table 3.2). The estimate of lying time was perfect, with a 

mean measurement error of 0.09% and a very high correlation compared with the video 

recordings (rs = 1; Table 3.3; Figure 3.2a). In experiment 2, all standing bouts were correctly 

detected (n = 132) and only 1 out of 127 walking bouts was not detected by the algorithm 

(Table 3.2). Standing time per 10 min of recording time (mean = 7.18 min; range 4.67–9.83) 

and walking time (mean = 2.82 min; range 0.17–5.5) were detected with a mean RME of 4.7 

and 17.1%, respectively, and similarly very high correlations of rs = 0.96 for both parameters 

(Table 3.2, Figure 3.2b, Figure 3.2c). The mean RME of the number of strides was 6.23%, 
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and a very high correlation of rs = 0.98 between algorithm output and video recordings was 

estimated, (Table 3.3, Figure 3.2d). In experiment 3, the median number of strides per 5 min 

of recording time was 41 strides (range 17–124 strides). The mean RME of stride duration 

was moderate (6.65%), with a strong correlation of rs = 0.75; (Table 3.3; Figure 3.2e). The 

mean RME for stride length was moderate (11.92%), with a strong correlation of rs = 0.81 

(Table 3.3, Figure 3.2f).  

 

 

Table 3.2. Number and proportion of stand ups, lie downs, lying bouts, standing bouts, and 
walking bouts detected by the novel RumiWatch1 algorithm compared with the number 
observed by analyzing the video recordings (gold standard). 

     95% CI of p 

Experiment Variable VVR2 (no.) RumiWatch 
algorithm 
(no.) 

Proportion 
detected (p) 

Lower Upper 

1 Stand up 165 165 1.000 0.978 1.000 

1 Lie down 165 165 1.000 0.978 1.000 

1 Lying bout 164 164 1.000 0.978 1.000 

2 Standing bout 132 132 1.000 0.972 1.000 

2 Walking bout 127 126 0.992 0.957 0.999 

1 ITIN+HOCH GmbH, Fütterungstechnik, Liestal, Switzerland. 
2 VVR = visual video recording. 
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Figure 3.2. Correlations between the RumiWatch (ITIN+HOCH GmbH, Fütterungstechnik, 
Liestal, Switzerland) algorithm output and the result of the manual video analysis (gold 
standard) of measurements of lying time (a), standing time (b), walking time (c), number of 
strides (d), stride duration (e), and stride length (f). 
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Table 3.3. Relative measurement error (RME) of the variables lying time, standing time, 
walking time, number of strides, stride duration, and stride length given by the novel 
RumiWatch1 algorithm as compared with the result of video recording analysis (gold 
standard). 

    Range value  95% CI of 
RME 

Experiment Variable RME2 (%) SD Lower Upper  Lower Upper 

1 Lying time (n = 18) 0.09 0.044 0.028 0.174  0.067 0.111 

2 Standing time (n = 21) 4.7 4.32 5.62 13.21  2.73 6.67 

2 Walking time (n = 21) 17.12 16.03 6.43 66.67  9.82 24.42 

2 Number of strides (n = 
21) 

6.23 6.49 0 20.83  3.27 9.18 

3 Stride duration (n = 16) 6.65 3.83 1.15 13.79  4.61 8.69 

3 Stride length (n = 16) 11.92 9.95 0.2 32.93  6.61 17.22 

1 ITIN+HOCH GmbH, Fütterungstechnik, Liestal, Switzerland. 
2 RME = Mean relative measurement error between video recording and algorithm. 
 

 

3.5 Discussion 

To the best of the authors’ knowledge, this is the first description of a pedometer software 

allowing the detection of a variety of characteristics of cow walking behavior, correlating at a 

strong to mostly very high degree with the gold standard. The differentiation between lying 

position and being in an upright position of loose-housed cows and calves has already been 

possible with a high accuracy, using data loggers available on the market (O’Driscoll et al. 

2008, Trenel et al. 2009, Robert et al. 2009). With the novel algorithm, developed in this 

study, all lying and standing events, without exception, were correctly detected. To minimize 

the chance of misclassifying the grooming behavior of the hind limb with the cow standing as 

a lying down event, the duration at which the pedometer remains in horizontal position must 

exceed 50 s to detect a true lying down event with a consecutive lying bout. Similarly, to 

minimize the chance of misclassifying the short upright position in the course of a position 

change at lying as a short standing bout, the duration at which the pedometer remains in 

vertical position must exceed 50 s to detect a true standing bout. 
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As mentioned in many studies, the accuracy of correctly describing the walking behavior with 

the available data loggers was moderate to low (Robert et al. 2009, Trenel et al. 2009). 

Mattachini et al. (2013) reported that just 30% of the walking events were correctly detected. 

This is mainly because the transition from standing to walking and vice versa is physically 

less distinctive than from the lying to the upright position (Trenel et al. 2009). Furthermore, 

the character and extent of limb movements with the cow standing but not walking is 

extremely variable, reaching from a simple and very short relief of the weight bearing of the 

limb, over frequent weight shifting from one limb to the contralateral limb in case both limbs 

are affected, to an obvious flexion of the limb lasting for several seconds. Definition of a step 

as opposed to a stride (defined here as being a limb movement within a walking phase) is, 

therefore, an extremely difficult task with a low detection rate. Even classification of individual 

limb movements at manual observation by professionals is not conclusive (Cutler 2012). 

Hence, during the development of the current algorithm, it was decided to characterize the 

limb movements with the cow in upright position first by the walking behavior (walking 

phases, number of strides, stride duration, and stride length) and second by the activity index 

at standing and walking separately. The activity index ( 

Table 3.1) represents the averaged variance of 3-dimensional acceleration in 10-s segments. 

Validation of the activity index by manually comparing video sequences of the cow with the 

output of the pedometer is not possible. 

 

In a recent paper, describing the development of new algorithms for detection of walking 

behavior, it was shown that applying the rule that a walking phase must at least last 5 s 

optimized the classification rate (Nielsen et al. 2010). Combining this rule with the step-count 

detection at walking versus standing based on a moving average of 3 s, the optimal 

misclassification rate was reduced to 10% (Nielsen et al. 2010). In the current study, walking 

phases were not defined by a minimal duration but rather by the condition that a walking 

phase must consist of at least 3 consecutive strides and the period between 2 strides must 

last less than 4 s. A walking phase was rated as separate from the previous walking phase if 
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the interval between 2 strides exceeded 10 s. This allowed that only 1 out of 127 walking 

phases were not detected correctly and the correlation between automated and manual 

detection of the number of strides was rs = 0.98. The RME of walking time was quite high 

(17.2%) as compared with other locomotor parameters described in this study. The reason 

for this high relative error might be the 10-s temporal quantization resolution of the shorter 

absolute walking time compared with the much longer standing or lying times. 

 

Estimating the stride length and the stride duration represents a further important parameter 

of cow locomotor activity. Platz et al. (2008) showed an increase in stride length of cows kept 

on rubber compared with concrete floors. Flower et al. (2005) showed that lame cows have 

longer stride duration and shorter stride length compared with healthy cows using kinematic 

gait analysis. With the current algorithm, correlations of stride length and stride duration with 

the gold standards were both strong. 

 

The sampling rate of the RumiWatch pedometer was set at 10 samples per second, 

representing a very high rate. Mattachini et al. (2013) concluded that sampling intervals ≤2 

min are required to accurately measure aspects of lying behavior such as number of lying 

bouts per day. From the results of the current study, it remains unclear whether reduction of 

the sampling rate to 1 Hz might be possible without loss of important information mainly 

concerning the walking behavior. 

 

 

3.6 Conclusions 

The results of this study suggest that the newly developed algorithm of the RumiWatch 

pedometer allows for the detection of several characteristics of the locomotor behavior of 

cows with a very high (lying time, standing time, walking time, and number of strides) or 

strong degree of correlation (stride duration and stride length). The proportion of correctly 

detected events exceeded 99% for the parameters number of lying bouts, standing bouts, 
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walking bouts, stand up events, and lie down events, and the RME was less than 10% for the 

parameters lying time, standing time, number of strides, and stride duration as compared 

with manual observation. Using the new pedometer software, further research is warranted 

to study in more detail the normal locomotor behavior (focusing on walking) of healthy dairy 

cows and to evaluate the feasibility of the newly described parameters of cow walking for 

early detection of lameness. 
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4.1 Abstract 

Calving is an event with major impact on working routines in dairy farming and highly affects 

the physiological state of dairy cows. Hence, it is in the interest of livestock farmers to have 

information on approaching calving events to ensure a sound birth, health and welfare of the 

dairy cow and calf for profitable and sustainable milk production. Changes in the ingestive 

behavior of dairy cows due to the onset of calving have been revealed in several studies. 

Therefore, sensor data of these behaviors may be useful for automated prediction of calving 

time. The current study used sensor data of a novel monitoring device for ingestive behavior 

(RumiWatch noseband sensor, Agroscope, Ettenhausen, Switzerland and Itin+Hoch GmbH, 

Liestal, Switzerland) of 35 dairy cows for development and validation of a predictive model 

for calving time. Sensor data obtained from calving events on three farms were used as one 

training dataset and two independent validation datasets to evaluate the predictive 

performance of a Naïve Bayes classifier model for calving prediction at 1 hour before the 

start of calving. The model performance was evaluated on an hourly basis for 168 hours prior 

to the start of calving. Combined sensor variables with highest predictive performance were 

ruminating chews, ruminating boluses, and eating chews (sensitivity = 0.82, specificity = 

0.87, positive predictive value = 0.04) in Validation Dataset 1, and ruminating chews per 

bolus, ruminating chews per minute, eating chews, other activity time, other chews 

(sensitivity = 0.69, specificity = 0.86, positive predictive value = 0.03) in Validation Dataset 2. 

These results indicate, that the sensitivity and specificity of the predictive model were 

satisfying, but the positive predictive value was low and the amount of false positive alerts 

was considerably high. Although the developed model is therefore not suitable for application 

in practice, we found that particularly variables of rumination behavior have predictive value 

and should be taken into consideration for future research on calving detection models. The 

findings of this study demonstrate that an assessment limited to the terms of sensitivity and 

specificity may be misleading, as these variables may achieve high values and suggest 

adequate performance, while the model is not appropriate in the light of its expected use.  
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4.2 Introduction 

The recognition of imminent calving is highly relevant for dairy herd management. Currently, 

external physiological signs of approaching parturition such as pelvic ligament relaxation, 

udder distension, teat filling, vaginal discharge, vulva edema, and behavioral changes are 

widely used to predict the onset of calving in dairy cows by human observation (Berglund et 

al. 1987, Miedema et al. 2011a, Streyl et al. 2011). These assessments are subjective, time 

consuming, accompanied by wide variation of external signs among dairy cows (Ouellet et al. 

2016), and require expertise and routine of the observer for adequate prediction of calving 

time. The importance of calving time prediction can be seen in its role to facilitate timely 

human intervention to assist birth and safeguard the health of calf and cow, particularly in 

cases of dystocia (Palombi et al. 2013). However, growing animal numbers per farm unit can 

impede individual and timely human observation of dairy cows in the pre-partum period. 

Hence, automated devices for prediction or detection of calving events based on measuring 

behavioral changes are considered as beneficial tools to support dairy farm management 

practices (Ouellet et al. 2016).  

 

Hogeveen et al. (2010) defined three criteria that must be fulfilled for a detection model to be 

implemented in commercial livestock production: firstly, a high performance in terms of 

sensitivity and specificity, secondly, a time window corresponding to the necessary response 

time for the specific condition, and thirdly, a high degree of similarity between the study 

design and the real everyday conditions in commercial farms.  

 

Detection models for livestock production majorly use binary target variables, i.e., either 

positive or negative indication of the condition to be detected, as an alert mechanism. The 

predictive model performance is commonly evaluated by the binary epidemiological terms of 
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sensitivity and specificity (Dominiak and Kristensen 2017). For assessment of the suitability 

for practical implementation of detection models, the consideration of false positive alerts is 

of particular importance (de Mol and Woldt 2001). Studies on automated mastitis detection 

by Hogeveen et al. (2010) and Mollenhorst et al. (2012) showed a preference of farmers for 

alerts temporally close to an event and that false positive alerts reduced farmers’ acceptance 

of the automated detection systems. Similarly, this perception can be assumed for 

automated calving detection (Rutten et al. 2017).  

 

As a specific feature in livestock detection models, particularly those using sensor data in 

time series, the prevalence of the condition to be detected and, hence, the number of 

positive cases is low compared to all negative cases in the sample. For instance, for calving 

detection it must be assumed, that animal behavior is monitored over several days during the 

prepartum period to detect one calving event per animal. Under these circumstances, an 

assessment of a detection model only based on the terms of sensitivity and specificity may 

be misleading, as the occurring false positive alerts are not considered for the calculation of 

sensitivity, and specificity may be biased by a high number of true negative cases compared 

to the false positive cases in the sample. Hence, satisfying sensitivity and specificity values 

may also be achieved, although the ratio of false positive alerts is high or even prohibitive for 

practical implementation. An indication on the occurrence of false positive alerts is instead 

given by the positive predictive value that represents the ratio of true positive detections in 

relation to all positive detections and, therefore, gives a more suitable indication on the 

practical usefulness of the detection model.  

 

Further influence on the predictive performance is the time window for classification of alerts 

(Dominiak and Kristensen 2017). A recent study by Rutten et al. (2017) demonstrated, that 

extending the time window for true positive classification of an alarm from hourly basis to 

broader time windows of three, six, and twelve hours significantly increased the sensitivity of 

prediction. The extension of time windows for classification of alerts will consequently also 
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affect the number of false positive alerts and has to be taken into account for interpretation of 

the predictive performance.   

 

Several studies have shown that sensor data of behavioral changes may be used for calving 

prediction (Miedema et al. 2011b, Schirmann et al. 2013, Braun et al. 2014, Büchel and 

Sundrum 2014, Pahl et al. 2014, Ouellet et al. 2016). However, Rutten et al. (2017) stated 

that an independent validation of the accuracy of such prediction has not been studied yet 

and developed a prediction model with a combination of expected calving date and sensor 

data. That model was evaluated for the last three weeks before calving, using different time 

windows for the generation of calving alerts in a separate dataset obtained from the same 

farm. The number of false positive alerts was high and using the best model, the moment at 

which calving started was correctly predicted for fewer than half of the calvings.  

 

An animal monitoring device for recording behavioral changes and potentially generating 

calving alerts is the RumiWatch noseband sensor (Agroscope, Ettenhausen, Switzerland and 

Itin+Hoch GmbH, Liestal, Switzerland), that was developed and validated by Zehner et al. 

(2012, 2017). This system allows to monitor several variables of ingestive behavior via an 

animal-borne measuring device with real time on-line analysis and wireless data 

transmission. Measurement of ruminating and eating activity by this sensor may allow 

detailed analysis of pre-partum behavior and hence may be used to generate a model to 

predict or detect calving events. Therefore, the objectives of this study were to use 

automated measurements of ingestive behavior obtained from RumiWatch noseband 

sensors to predict the start of calving in dairy cows by (a) analyzing at which moment, prior to 

the start of calving, the sensor measurements have predictive value, (b) assessing the 

predictive value of different behavioral variables for estimation of the start of calving, and (c) 

developing an independently validated model that predicts the starting point of calving. 

 

 



Development and validation of a predictive model for calving time 
 

80 

4.3 Materials and methods 

4.3.1 Data collection 

4.3.1.1 Experimental procedures 

Data of 35 cows kept in loose housing systems with cubicles were used on three German 

dairy research farms, including n = 11 on Farm 1, n = 11 on Farm 2 and n = 13 on Farm 3. 

All farms applied comparable, standardized management procedures to maintain high-

yielding dairy herds (average 305-day lactation yield: 9’897 kg on Farm 1, 9’302 kg on Farm 

2, 10’134 kg on Farm 3). The measurements took place from May to December 2014.  On all 

three farms, a total mixed ration with different proportions of forage and concentrate was 

provided once daily between 06:00 and 07:00 a.m. Water was available from water troughs 

ad libitum. Cows were continuously housed and did not have access to pasture for grazing. 

At least 7 days before the expected calving date, late gestation cows were moved to straw-

bedded calving pens, either kept single or in groups of up to six animals. The expected 

calving date was calculated on the basis of insemination records at 280 days after 

insemination for each cow. Animals were equipped with RumiWatch noseband sensors 

(Agroscope, Ettenhausen, Switzerland and Itin+Hoch GmbH, Liestal, Switzerland) to record 

ingestive behavior at least 8 days before the expected calving date. The scheduled 

monitoring period for continuous noseband sensor measurements was 30 days ranging from 

8 days ante partum until 21 days post-partum (Figure 4.1).  

 

 

Figure 4.1. Timeframes for data collection and analysis.  
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Animals’ reactions on device fastening and wearing were observed and documented by the 

observer and farm staff on duty, as well as losses and damages of the sensor devices. The 

10-Hertz raw measurement data recorded on the sensor devices’ built-in SD Memory Card 

were downloaded once after completion of the monitoring period. The behavioral variables 

recorded by RumiWatch noseband sensors during this study are shown in Table 4.1. These 

variables were considered to be potential predictors of calving for the later analysis. A 

definition of the noseband sensor variables was given by Beer et al. (2016) and Zehner et al. 

(2017). 

 

Table 4.1. Behavioral variables recorded by RumiWatch noseband sensors.  

Duration (min) Frequency (n) 

Rumination time Ruminating chews 

 Ruminating boluses  

 Ruminating chews per bolus  

 Ruminating chews per minute  

Eating time Eating chews 

Other activity time, i.e., non-
ingestive related behaviors  

Other chews, i.e. non-ingestive 
related jaw movements 

 

Calving times and course of delivery were observed and documented by the farm staff or the 

observer. Day, time, ease of calving, sex and weight of calves were documented according 

to a standard operating procedure. Newborn calves were removed from the calving pen 

approximately 2 to 3 hours after calving. Cows either remained in the straw-bedded calving 

pens or were moved to the lactating herd depending on the health state assessment by 

trained farm staff.  

 

4.3.1.2 Definition of calving and timeframe for analysis 

For the development of the predictive model, the start of calving was selected as the target 

variable, as this point in time is considered to be the most relevant for a possible intervention 

by the farmer in case of dystocia. The start of calving was defined for our study as the start of 
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the second stage of parturition before complete expulsion of the calf, and referred to as Hour 

0 ante partum in our analysis. At this stage, cows are most of the time in a lying position 

(lateral recumbency), and visible abdominal contractions indicate active labor for expulsion of 

the calf (Parkinson et al. 2001, Proudfoot et al. 2013). Evident signs for the start of the 

second stage of parturition are the appearance of the amniotic sac or the calves' feet 

(Schuenemann et al. 2011). For our analysis, the pre-calving hours were defined as the last 

4 hours before the start of calving, as this timeframe represents the first stage of parturition 

(cervical dilatation). The time of parturition was defined as the completion of the fetal 

expulsion. The temporal offset between the start of calving and actual parturition varied. As 

sensors generated measurement data of behaviors for every full hour, the actual calving 

point was positioned non-uniformly within the 1-h sensor data period considered Hour 0 ante 

partum, or in the following hour. As cows are often moved to separate calving pens 7 days 

prior to expected calving on commercial farms, the timeframe for evaluating the predictive 

model was chosen to be 168 hours preceding the start of calving.  

 

 

4.3.2 Data preparation and selection 

4.3.2.1 Sensor data processing 

Raw measurement data obtained from RumiWatch noseband sensor recording were 

converted into consolidated results of 1-hour classification summaries for every full hour 

using the device specific software RumiWatch Converter V0.7.3.2 (Itin+Hoch GmbH, Liestal, 

Switzerland; Zehner et al. 2017) for each animal specific data file. Within the classification 

summaries, measurement results represented percentages of durations and frequencies of 

behavioral variables per 1 hour (cf. Table 4.1). The information on datasets obtained by the 

RumiWatch noseband sensors were joint with the information of the respective hour relative 

to the start of calving. Additionally, sensor data were summed up to 24-hour summaries for 

the seven intervals within the analysis period before the start of calving. We calculated the 

sum of all variables within each 24-hour interval, except for the variables, “ruminating chews 
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per minute”, “ruminating chews per bolus”, which were averaged within the respective 

interval. 

 

4.3.2.2 Training and validation datasets  

The 35 calving events and associated sensor data for further analysis were split into three 

farm-specific subsets to define one training dataset and two independent validation datasets. 

Missing sensor data was a recurrent problem in our study, as we applied prototype versions 

of the noseband sensors that were later described and validated by Zehner et al. (2017). For 

training data, the occurrence of missing sensor measurements was considered to be 

tolerable, as these data were only used to train the classifier and no continuous timeline for 

the consistent evaluation of alerts was required. For validation data, the availability of animal-

specific continuous sensor data within 168 hours before the start of calving were defined to 

be a prerequisite for the evaluation of calving alerts generated by the predictive model. 

Therefore, due to partially missing sensor data within this timeframe for 6 out of 11 animals in 

Farm 1, this subset was chosen for training. For validation, we selected the subsets obtained 

from Farm 2 and 3, as here continuous sensor data within the 168 hours before the start of 

calving were available (Table 4.2).  

 
Table 4.2. Datasets for training and validation of the predictive model.  

  Dataset   

Sample 
Farm 1 

(Training) 
Farm 2 

(Validation 1) 
Farm 3 

(Validation 2)  Total 

Animals:     

Cows (n) 11 11 13 35 

- Multiparous (n) 7 10 7 24 

- Primiparous (n) 4 1 6 11 

Sensor data:     

Monitoring hours1 (n) 9’216 9’216 9’216 27’648 

- Other hours2 (n) 7’728 7’368 7’032 22’128 

- Evaluation hours3 (n) 1’488 1’848 2’184 5’520 

1 Monitoring hours: total monitoring period  
2 Other hours = monitoring hours not covered by the evaluation hours 
3 Evaluation hours = hours -168 to -1 relative to the start of calving 
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4.3.3 Model development 

All data processing procedures and statistical analyses for the model development and 

evaluation were conducted in MATLAB R2016b (The MathWorks Inc., Natick, 

Massachusetts, USA). Descriptive statistics were generated using IBM SPSS Statistics 24 

(IBM Corporation, Armonk, New York, USA).  

 

For the descriptive statistics, we used the non-parametric Friedman test to investigate 

behavioral changes in the analysis period, and to reveal at which moment, prior to the start of 

calving, the sensor measurements had predictive value. Firstly, differences in behavioral 

variables were analyzed between the seven 24-hour intervals preceding the start of calving. 

Secondly, behavioral variables on an hourly basis were compared within 4-hour intervals for 

the entire analysis period.   

 

In a next step, a model was developed. Because of the limited number calving events, only a 

small training dataset was available. Therefore, a Naïve Bayes Classifier (NBC) was chosen. 

This method represents a comparably simple, probabilistic classification approach but has 

competitive performance with more complex classifiers (Domingos and Pazzani 1997, Zhang 

et al. 2006). It is derived from the Bayes theorem (Bayes et al. 1763) and estimates the 

probability of the classification given the observation and selects the class with the highest 

probability as classification outcome.  

 

Applying Bayes rule (cf. Rish 2001), the conditional probability p of a given observation X 

classified into class k of a classification C is calculated as 

p(𝐶𝑘  | 𝑋) =
𝑝(𝐶𝑘) 𝑝(𝑋 |𝐶𝑘) 

𝑝 (𝑋)
  (Equation 1). 

 

The training dataset used to build the NBC is expressed as {𝑋, 𝐶} and contains observations 

X (measurements of behavioral variables from noseband sensor on an hourly basis) with a 
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known binary classification C (1 = calving or 0 = non-calving) of the respective hour. The 

features x used to describe the observations X are denoted by 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑛) and 

each observation is belonging to a binary classification 𝐶 ∈ {0, 1}, where 0 denotes a non-

calving classification and 1 denotes a calving classification. For an observation, the NBC 

generates a binary classification by calculating the posterior probability of an observation for 

being classified into a given class, for a calving classification according to  

𝑝(𝐶 = 1 | 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛)) =
1

𝑍
𝑝(𝐶 = 1) ∏ 𝑝𝑖(𝑥𝑖 | 𝐶 = 1)𝑛

𝑖=1  (Equation 2), 

and for a non-calving classification by            

𝑝(𝐶 = 0 | 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛)) =
1

𝑍
𝑝(𝐶 = 0) ∏ 𝑝𝑖(𝑥𝑖 | 𝐶 = 0)𝑛

𝑖=1  (Equation 3), 

with the evidence 𝑍 = 𝑝(𝑥). The two posteriors were then compared according to  

𝑝=(𝐶=1 | 𝑋=(𝑥1,𝑥2,…,𝑥𝑖,…,𝑥𝑛))

𝑝=(𝐶=0 | 𝑋=(𝑥1,𝑥2,…,𝑥𝑖,…,𝑥𝑛))
=

𝑝(𝐶=1) ∏ 𝑝𝑖(𝑥𝑖 | 𝐶=1)𝑛
𝑖=1

𝑝(𝐶=0) ∏ 𝑝𝑖(𝑥𝑖 | 𝐶=0)𝑛
𝑖=1

  (Equation 4). 

The log odds (LO) was calculated using the decadic logarithm according to  

𝑙𝑜𝑔10
𝑝=(𝐶=1 | 𝑋=(𝑥1,𝑥2,…,𝑥𝑖,…,𝑥𝑛))

𝑝=(𝐶=0 | 𝑋=(𝑥1,𝑥2,…,𝑥𝑖,…,𝑥𝑛))
= 𝑙𝑜𝑔10

𝑝(𝐶=1) ∏ 𝑝𝑖(𝑥𝑖 | 𝐶=1)𝑛
𝑖=1

𝑝(𝐶=0) ∏ 𝑝𝑖(𝑥𝑖 | 𝐶=0)𝑛
𝑖=1

 (Equation 5). 

The observation represented by X was classified as calving classification if  

𝑙𝑜𝑔10
𝑝(𝐶=1) ∏ 𝑝𝑖(𝑥𝑖 | 𝐶=1)𝑛

𝑖=1

𝑝(𝐶=0) ∏ 𝑝𝑖(𝑥𝑖 | 𝐶=0)𝑛
𝑖=1

>  𝜃  (Equation 6), 

where 𝜃 is the threshold value for calving classification. If the logarithmic probability was 

below this threshold, the observation 𝑋 was considered as non-calving classification and 

classified into class 0. In the current study, the threshold 𝜃 was determined as the threshold 

maximizing the Youden’s index (J; Youden 1950) for selecting the optimum cut-off point, and 

expressed by the log odds (LO) for class-conditional probability of calving (threshold for 

calving vs. non-calving classification).  

 

First, n = 9 promising calving indicators recorded by RumiWatch noseband sensors were 

identified (cf. Table 4.1). Then the individual variables and all 2^9 possible combinations of 

these indicators were analyzed by multiple uses of Bayes' Theorem, resulting in a total 

number of 512 combinations in the analysis. For our predictive model, the NBC classifies 
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data in two steps. Firstly, during the training of the classifier, the training dataset is used to 

estimate the variables of a probability distribution, assuming that the predictors are 

conditionally independent given the class. Secondly, for prediction in unseen validation data, 

the NBC computes the posterior probability of the sample belonging to each class. We 

assumed a Gaussian distribution for the predictors in each class. For each predictor, the 

NBC estimates a separate Gaussian distribution for each class by computing the mean and 

standard deviation of the training data in each class. Probability distributions for the 

continuous predictors were parameterized as probability density functions (PDF).  

 

For the continuous attributes 𝑥 (sensor data of behavioral variables) in the training dataset, 

the data were first segmented by the classification (calving or non-calving), then the mean 

and variance of 𝑥  were calculated. Hence, 𝜇𝐶  is the mean of the values of attribute 𝑥 

associated with class 𝐶, and 𝜎𝐶
2 is the variance of the values in 𝑥 associated with class 𝐶. 

The probability distribution of an observational value 𝜐 given a class 𝐶, denoted by 𝑝(𝑥 =

𝜐 | 𝐶), was computed by assigning the observational values 𝜐  to a Gaussian distribution 

parameterized by 𝜇𝐶 and 𝜎𝐶
2, denoted by  

𝑝(𝑥 = 𝜐 | 𝐶) =
1

√2𝜋𝜎𝐶
2

𝑒
− 

(𝜐−𝜇𝐶)
2

2𝜎𝐶
2

  (Equation 7). 

 

We estimated the probability density functions for all observations 𝑖  of each feature 𝑥 

(behavioral variable from sensor data) in each class 𝐶 (calving and non-calving) per sample 

unit (1-hour summaries of sensor). Using this approach, we obtained the class-conditional 

probability density functions for the binary classification, denoted by 

𝑝(𝑥 | 𝐶𝑐𝑎𝑙𝑣𝑖𝑛𝑔) = ∏ 𝑝(𝑥𝑖  | 𝐶𝑐𝑎𝑙𝑣𝑖𝑛𝑔)𝑁
𝑖=1   (Equation 8), 

and for non-calving, denoted by  

𝑝(𝑥 | 𝐶𝑛𝑜𝑛−𝑐𝑎𝑙𝑣𝑖𝑛𝑔) = ∏ 𝑝(𝑥𝑖  | 𝐶𝑛𝑜𝑛−𝑐𝑎𝑙𝑣𝑖𝑛𝑔)𝑁
𝑖=1   (Equation 9). 
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The PDF for the calving class was estimated based on the pre-calving hours, i.e. the last 4 

hours before the start of calving, whereas the PDF for the non-calving class was estimated 

from all other hours contained in the training dataset. The threshold for calving detection was 

expressed by the log odds (LO) for class-conditional probability of calving. Hourly sensor 

data in the validation datasets were then compared against the calving or non-calving 

probability density functions in order to predict the start or the absence of a calving event.  

 

We defined a data segmentation method that allows continuous activity recognition, i.e. 

detection of imminent calving events, in time series of sensor data. The sampling rate for the 

predictive model was chosen according to the output resolution of consolidated classification 

summaries of behavioral variables generated by the RumiWatch noseband sensor. Hence, 

we used 1-hour blocks generated every full hour for further processing in the model. For data 

segmentation, we used a fixed-size overlapping sliding window with a window size of 4 hours 

and with 3 hours (75%) overlap that was defined a priori. The classifier was executed over a 

fixed-width sliding analysis window of 4 observations, i.e., 4 consecutive hours relative to the 

start of calving (Figure 4.2).  

 

 

Figure 4.2. Data segmentation method for calving detection. 
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This method creates a moving time window for classification of the observations (probability 

of calving vs. non-calving), so that the latest generated behavior summary is only compared 

to the most recently observed behavior summaries that fall within the time window. Thereby, 

it is possible to provide a completed analysis window consecutively every hour that allows to 

generate calving alerts on an hourly basis. We implemented two selectable prediction offsets 

for calving detection: prediction offset -1 for detection 1 hour before the start of calving (Hour 

-1) and prediction offset 0 for detection of the start of calving (Hour 0).  

 

4.3.4 Model evaluation 

For evaluation of the classifier performance, the outcome for actual and predicted 

classification shown in Table 4.3 was defined.  

 

Table 4.3. Definition of outcome for actual and predicted classification.   

 Actual classification (human observer) 

Predicted classification 
(predictive model) 

Calving Non-calving  

Calving True Positive (TP) False Positive (FP) 

Non-calving False Negative (FN) True Negative (TN) 

 

Based on these outcomes, the performance metrics for the prediction and detection of the 

start of calving as shown in Table 4.4 were calculated.  

 

Table 4.4. Performance metrics for evaluation of the predictive model.  

Parameter Definition  

Sensitivity Sensitivity = 
True Positives

Positives
=  

True Positives

(True Positives + False Negatives)
 

Specificity Specificity =  
True Negatives

Negatives
=  

True Negatives

(True Negatives + False Positives)
 

Positive predictive value PPV =  
True Positives

(True Positives + False Positives)
 

Youden’s index J = (Sensitivity + Specificity) − 1 
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To determine the performance metrics of the model prediction at a given threshold, a 

receiver operating characteristic (ROC) analysis was performed. The ROC curve is a 

graphical plot that illustrates the performance of a binary classifier system as its 

discrimination threshold is varied (Metz 1978, Zweig and Campbell 1993). Using the ROC 

curve, the true positive rate (sensitivity) is plotted as a function of the false positive rate (1-

specificity) over the whole range of possible threshold values (Detilleux et al. 1999, 

Steensels et al. 2016). In the current study, the criterion for threshold selection was 

maximizing the Youden’s index (J), as this parameter allows practical considerations such as 

choice of a false positive rate that could be suitable for farmers. ROC curves were used for 

the Naïve Bayes classification both for individual sensor variables and combinations of 

sensor variables. Derived from ROC analysis, the area under the ROC curve (AUC) was 

calculated to allow for comparison of the different predictors. For the predictive model, the 

AUC indicates the ability of the predictor to discriminate cows that will start to calve and cows 

that will not start to calve within the next hour. Therefore, a predictor that would be able to 

differentiate the two classes perfectly would have an AUC of 1, whereas a predictor that is 

not able to categorize the two classes at all would have an AUC of less than 0.5 (Bewick et 

al. 2004, Burfeind et al. 2011, Ouellet et al. 2016). According to Steensels et al. (2016), a 

diagnostic test is usually classified as excellent (AUC = 0.9 to 1), good (AUC = 0.8 to 0.9), 

fair (AUC = 0.7 to 0.8), poor (AUC = 0.6 to 7) or fail (AUC = 0.5 to 0.6). In general, a test with 

an AUC ≤ 0.75 is considered to be not clinically useful (Fan et al. 2006).  

 

An evaluation scheme for classification of calving alerts was defined. The calving alerts 

generated by the predictive model were evaluated on an hourly basis for the 168 hours 

before the start of calving. The TP alarms generated by the detection model were classified 

by adding the information on the point in time relative to the start of calving and hereby 

sorting the alarms into TP and FP (Figure 4.3).  
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Figure 4.3. Evaluation scheme for classification of calving alerts.  

 

This measure comprised an acceptance of the original performance level complemented by 

a post-processing step for classification of the alarms into TP or FP. Calving alerts generated 

during the hours -168 to -10 relative to the start of calving were classified to be either FP or 

TN. If calving alerts were generated within the hours -9 to -2 relative to the start of calving 

(pre-calving alerts), these were classified to be TP alerts, as they were occurring during the 

first stage of parturition (cervical dilatation) and, therefore, were considered useful for the 

identification of the onset of calving. Calving alerts in the hour before the start of calving 

(Hour -1) were classified to be either TP or FN.     

 

For validation of the predictive model, a two-fold cross-validation was applied. The data were 

split into two complementary subsets. For the first subset, the training dataset was obtained 

from Farm 1 and the validation dataset was obtained from Farm 2, whereas for the second 

subset, the training dataset was obtained from Farm 1 and the validation dataset was 

obtained from Farm 3. We used a repetitive process, in which the classifier was trained with 

the training dataset (Farm 1) and repeatedly applied to the validation dataset (Farm 2 and 

Farm 3, respectively). The cross-validation was performed with 20 repetitions. During each 

repetition, the classifier was trained on the training dataset and the fitted model was 
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repeatedly applied to the validation dataset to determine its predictive performance. Finally, 

the average of classification results generated during 20 repetitions was used to determine 

the classification performance.  

 

 

4.4 Results 

As an initial step an explorative data analysis was carried out to gain information on the 

behavioral changes in the pre-calving period. Graphical examination of the entire analysis 

period of the 168 hours before the start of calving revealed that notable behavioral changes 

occurred majorly during the last 24 hours before the start of calving. More detail on that can 

be found in the supplementary material (Supplementary Figure 1, 2, 3 and 4). 

 

4.4.1 Predictive performance of sensor variables  

The results of the predictive performance of sensor variables are shown separately for 

Validation Dataset 1 (Table 4.5 and Table 4.6) and Validation Dataset 2 (Table 4.7 and Table 

4.8), both for the prediction (Hour -1) and detection (Hour 0) of calving events.  

 

In Validation Dataset 1, ruminating chews had most value as an individual sensor variable for 

prediction of calving (AUC = 0.80, J = 0.61). The best performing combination of sensor 

variables for calving prediction consisted of ruminating chews, ruminating boluses, and 

eating chews (AUC = 0.82, J = 0.69). For detection of calving, ruminating chews had also the 

most predictive value out of the individual sensor variables in Validation Dataset 1 (AUC = 

0.83, J = 0.63). Combined sensor variables of ruminating boluses, ruminating chews per 

bolus, ruminating chews per minute, and other activity time showed the best predictive 

performance of all analyzed combinations of variables for calving detection (AUC = 0.83, J = 

0.66). On the contrary, the variables eating time and eating chews showed a low predictive 

performance, both for prediction and detection of calving in Validation Dataset 1.   
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Table 4.5. Classification results of sensor variables as predictors for prediction of calving 
events (Hour -1) in Validation Dataset 1 (Farm 2, n = 11 calvings) during a monitoring period 
of 168 hours before the start of calving. The 95% confidence intervals are indicated in 
parentheses. Bold values indicate predictors with an AUC ≥ 0.75. Criterion for threshold 
selection is maximizing the Youden’s index (J).  

Sensor variable LO1 TP2 FP3 Sensitivity Specificity PPV4 AUC5 J6 

Individual variable:        

Rumination time -1.7 8 243 0.73                   
(0.39-0.94) 

0.87                      
(0.85-0.88) 

0.03               
(0.02-0.05) 

0.77 0.60 

Ruminating chews -2.05 9 382 0.82                 
(0.48-0.98) 

0.79                   
(0.77-0.81) 

0.02                
(0.01-0.03) 

0.80 0.61 

Ruminating boluses -1.25 7 132 0.64                   
(0.31-0.89) 

0.93                  
(0.92-0.94) 

0.05                 
(0.03-0.08) 

0.79 0.56 

Ruminating chews 
per bolus 

-1.5 6 302 0.55                     
(0.23-0.83) 

0.84                   
(0.82-0.85) 

0.02                 
(0.01-0.03) 

0.69 0.38 

Ruminating chews 
per minute 

-1.6 8 293 0.73                   
(0.39-0.94) 

0.84                    
(0.82-0.86) 

0.03                  
(0.02-0.04) 

0.87 0.57 

Eating time  -1.4 3 198 0.27                   
(0.06-0.61) 

0.89                     
(0.88-0.91) 

0.015       
(0.006-0.039) 

0.54 0.16 

Eating chews -1.4 4 200 0.36                    
(0.11-0.69) 

0.89                    
(0.88-0.91) 

0.02                   
(0.01-0.04) 

0.58 0.25 

Other activity time -3.05 10 957 0.91                   
(0.59-1.00) 

0.48              
(0.46-0.51) 

0.01                
(0.009-0.013) 

0.73 0.39 

Other chews -2.95 10 1091 0.91                     
(0.59-1.00) 

0.41                    
(0.39-0.43) 

0.01                 
(0.008-0.011) 

0.67 0.32 

Combination of variables:       

Ruminating chews 

+ Ruminating 
boluses 

+ Eating chews 

-2.1 9 233 0.82                   
(0.48-0.98) 

0.87                
(0.86-0.89) 

0.04                
(0.03-0.05) 

0.82 0.69 

1 Log odds for conditional probability of calving (threshold for calving vs. non-calving classification) 
2 True positive alerts 
3 False positive alerts  
4 Positive predictive value 
5 Area under the ROC curve  
6 Youden’s index 
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Table 4.6. Classification results of sensor variables as predictors for detection of calving 
events (Hour 0) in Validation Dataset 1 (Farm 2, n = 11 calvings) during a monitoring period 
of 168 hours before the start of calving. The 95% confidence intervals are indicated in 
parentheses. Bold values indicate predictors with an AUC ≥ 0.75. Criterion for threshold 
selection is maximizing the Youden’s index (J).   

Sensor variable LO1 TP2 FP3 Sensitivity Specificity PPV4 AUC5 J6 

Individual variable:         

Rumination time -0.8 7 59 0.64                      
(0.31-0.89)                

0.97                   
(0.96-0.97) 

0.11                    
(0.07-0.17) 

0.81 0.61 

Ruminating chews -1.55 8 175 0.73                       
(0.39-0.94) 

0.91                     
(0.89-0.92) 

0.04                  
(0.03-0.06) 

0.83 0.63 

Ruminating boluses -0.8 7 67 0.64                  
(0.31-0.89) 

0.96                 
(0.95-0.97) 

0.10                 
(0.06-0.15) 

0.82 0.60 

Ruminating chews 
per bolus 

-1.55 8 305 0.73                   
(0.39-0.94) 

0.83                   
(0.82-0.85) 

0.03       
(0.02-0.04) 

0.76 0.56 

Ruminating chews 
per minute 

-1.5 8 198 0.73                    
(0.39-0.94) 

0.89                 
(0.88-0.91) 

0.04                    
(0.03-0.06) 

0.86 0.62 

Eating time  -1.35 2 149 0.18                   
(0.02-0.52) 

0.92                    
(0.91-0.93) 

0.013    
(0.004-0.045) 

0.47 0.10 

Eating chews  -1.4 3 200 0.27                    
(0.06-0.61) 

0.89                   
(0.88-0.91) 

0.015     
(0.006-0.038) 

0.52 0.16 

Other activity time -0.5 4 50 0.36                   
(0.11-0.69) 

0.97                  
(0.96-0.98) 

0.07       
(0.03-0.15) 

0.63 0.34 

Other chews -2.5 9 736 0.82                  
(0.48-0.98) 

0.60                   
(0.58-0.62) 

0.012   
(0.009-0.016) 

0.75 0.42 

Combination of variables:       

Ruminating boluses 

+ Ruminating 
chews per bolus 

+ Ruminating 
chews per minute 

+ Other activity 
time 

-1.55 8 138 0.73                 
(0.39-0.94) 

0.93                   
(0.91-0.94) 

0.05                   
(0.04-0.08) 

0.83 0.66 

1 Log odds for conditional probability of calving (threshold for calving vs. non-calving classification) 
2 True positive alerts 
3 False positive alerts  
4 Positive predictive value 
5 Area under the ROC curve  
6 Youden’s index 
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In Validation Dataset 2, other chews, i.e. non-ingestive related jaw movements, had most 

value as an individual sensor variable to predict the start of calving (AUC = 0.78, J = 0.50). 

The best performing combination of sensor variables for calving prediction consisted of 

ruminating chews per bolus, ruminating chews per minute, eating chews, other activity time, 

and other chews (AUC = 0.80, J = 0.55). Other chews had also the best predictive 

performance of individual sensor variables (AUC = 0.81, J = 0.60) for the detection of the 

onset of calving. However, the highest performance for calving detection was achieved by a 

combination of rumination time, ruminating chews, ruminating boluses, ruminating chews per 

bolus, ruminating chews per minute, eating chews, and other chews (AUC = 0.79, J = 0.63). 

For Validation Dataset 2, eating time and eating chews had more predictive value compared 

with Validation Dataset 1. However, predictive performance of the variables was still below 

those of rumination and other activity, as indicated by lower values of the Youden’s index (J).    
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Table 4.7. Classification results of sensor variables as predictors for prediction of calving 
events (Hour -1) in Validation Dataset 2 (Farm 3, n = 13 calvings) during a monitoring period 
of 168 hours before the start of calving. The 95% confidence intervals are indicated in 
parentheses. Bold values indicate predictors with an AUC ≥ 0.75. Criterion for threshold 
selection is maximizing the Youden’s index (J).   

Sensor variable LO1 TP2 FP3 Sensitivity Specificity PPV4 AUC5 J6 

Individual variable:         

Rumination time -2.5 10 835 0.77                    
(0.46-0.95) 

0.62                  
(0.60-0.64) 

0.012  
(0.009-0.016) 

0.70 0.39 

Ruminating chews -2.65 10 809 0.77                 
(0.46-0.95) 

0.63                  
(0.61-0.65) 

0.012  
(0.009-0.017) 

0.70 0.40 

Ruminating boluses -2.5 10 993 0.77                 
(0.46-0.95) 

0.55                
(0.52-0.57) 

0.01                
(0.007-0.013) 

0.64 0.31 

Ruminating chews 
per bolus 

-3.7 13 1494 1.00      
(0.75-1.00) 

0.32      
(0.30-0.34) 

0.009  
(0.008-0.009) 

0.70 0.32 

Ruminating chews 
per minute  

-4.3 13 1850 1.00                  
(0.75-1.00) 

0.15                  
(0.14-0.17) 

0.007 
(0.0069-
0.0071) 

0.52 0.15 

Eating time -1.7 9 802 0.69                  
(0.39-0.91) 

0.63                   
(0.61-0.65) 

0.011     
(0.008-0.016) 

0.63 0.32 

Eating chews  -1.8 8 762 0.62                  
(0.32-0.86) 

0.65                    
(0.63-0.67) 

0.01                  
(0.007-0.016) 

0.64 0.27 

Other activity time -2.35 9 585 0.69       
(0.39-0.91) 

0.73       
(0.71-0.75) 

0.015  
(0.011-0.022) 

0.72 0.42 

Other chews -1.7 9 425 0.69            
(0.39-0.91) 

0.81                 
(0.79-0.82) 

0.02             
(0.01-0.03) 

0.78 0.50 

Combination of variables:       

Ruminating chews 
per bolus 

+ Ruminating 
chews per minute 

+ Eating chews 

+ Other activity 
time 

+ Other chews 

-2.35 9 308 0.69                   
(0.39-0.91) 

 

0.86                  
(0.84-0.87) 

0.03                    
(0.02-0.04) 

0.80 0.55 

1 Log odds for conditional probability of calving (threshold for calving vs. non-calving classification) 
2 True positive alerts 
3 False positive alerts  
4 Positive predictive value 
5 Area under the ROC curve  
6 Youden’s index 
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Table 4.8. Classification results of sensor variables as predictors for detection of calving 
events (Hour 0) in Validation Dataset 2 (Farm 3, n = 13 calvings) during a monitoring period 
of 168 hours before the start of calving. The 95% confidence intervals are indicated in 
parentheses. Bold values indicate predictors with an AUC ≥ 0.75. Criterion for threshold 
selection is maximizing the Youden’s index (J).   

Sensor variable LO1 TP2 FP3 Sensitivity Specificity PPV4 AUC5 J6 

Individual variable:         

Rumination time -2.1 9 518 0.69        
(0.39-0.91) 

0.76                
(0.74-0.78) 

0.02                 
(0.01-0.03) 

0.75 0.46 

Ruminating chews -2.2 9 526 0.69                
(0.39-0.91) 

0.76                  
(0.74-0.78) 

0.017      
(0.012-0.024) 

0.75 0.45 

Ruminating boluses -2.2 10 706 0.77             
(0.46-0.95) 

0.68               
(0.66-0.70) 

0.014           
(0.010-0.019) 

0.70 0.45 

Ruminating chews 
per bolus 

-2.85 11 1016 0.85               
(0.55-0.98) 

0.53                  
(0.51-0.56) 

0.011                
(0.009-0.014) 

0.73 0.38 

Ruminating chews 
per minute  

-3.7 12 1570 0.92                   
(0.64-1.00) 

0.28                    
(0.26-0.30) 

0.008   
(0.007-0.009) 

0.53 0.20 

Eating time  -1.7 10 802 0.77                     
(0.46-0.95) 

0.63                   
(0.61-0.65) 

0.012  
(0.009-0.017) 

0.67 0.40 

Eating chews  -2.15 11 1089 0.85                   
(0.55-0.98) 

0.50                   
(0.48-0.52) 

0.01                  
(0.008-0.013) 

0.68 0.35 

Other activity time -1.8 8 324 0.62                  
(0.32-0.86) 

0.85                  
(0.84-0.87) 

0.024                 
(0.016-0.037) 

0.74 0.47 

Other chews -1.6 10 372 0.77                   
(0.46-0.95) 

0.83                  
(0.81-0.85) 

0.03                   
(0.02-0.04) 

0.81 0.60 

Combination of variables:       

Rumination time 

+ Ruminating 
chews 

+ Ruminating 
boluses 

+ Ruminating 
chews per bolus 

+ Ruminating 
chews per minute 

+ Eating chews 

+ Other chews 

-3.15 10 306 0.77                    
(0.46-0.95) 

0.86                    
(0.84-0.87) 

0.03      
(0.02-0.04) 

0.79 0.63 

1 Log odds for conditional probability of calving (threshold for calving vs. non-calving classification) 
2 True positive alerts 
3 False positive alerts  
4 Positive predictive value 
5 Area under the ROC curve  
6 Youden’s index 

 

For both validation datasets and prediction offsets, the combination of sensor variables 

improved the predictive performance and decreased the number of false positive alerts in 

comparison with individual sensor variables used as calving predictors. Nonetheless, the 

number of false positive alerts was considerably high.  
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4.4.2 Effect of reducing the evaluation timeframe of calving alerts  

The alterations in performance metrics in response to the timeframe for evaluation are 

demonstrated in Table 4.9 and Table 4.10. We compared the results for an evaluation of 

calving alerts for a selection of sensor variables within a timeframe for analysis within 168 

hours and 24 hours before the start of calving. The positive predictive values increased for 

the evaluation within the 24-h timeframe, due to the higher prevalence of the condition to be 

detected within the sample, i.e., 1 calving per 24 hours for evaluation compared with 1 

calving per 168 hours for evaluation, whereas the sensitivity and specificity values remained 

broadly unchanged. The number of false positive alerts remained high, leading to low 

positive predictive values despite the higher prevalence of calving events within the analyzed 

timeframe. 

 

Table 4.9. Comparison of classification results of sensor variables for prediction of calving 
events (Hour -1) in Validation Dataset 1 (Farm 2, n = 11 calvings) during a monitoring period 
of 168 vs. 24 hours before the start of calving. The 95% confidence intervals are stated in 
parentheses. 

Sensor variable Timeframe LO1 TP2 FP3 Sensitivity Specificity PPV4 

Rumination time 168 h -1.7 8 243 0.73                   
(0.39-0.94) 

0.87                      
(0.85-0.88) 

0.03               
(0.02-0.05) 

 24 h -1.7 8 36 0.73                           
(0.39-0.94) 

0.86                        
(0.82-0.90) 

0.18                          
(0.12-0.26) 

Eating time 168 h -1.4 3 198 0.27                   
(0.06-0.61) 

0.89                     
(0.88-0.91) 

0.015       
(0.006-0.039) 

 24 h -1.4 3 44 0.27                       
(0.06-0.61) 

0.83                       
(0.78-0.88) 

0.06                          
(0.02-0.16) 

Other activity time 168 h -3.05 10 957 0.91                   
(0.59-1.00) 

0.48              
(0.46-0.51) 

0.01                
(0.009-0.013) 

 24 h -3.05 10 146 0.91                            
(0.59-1.00) 

0.45                         
(0.39-0.51) 

0.06                          
(0.05-0.08) 

1 Log odds for conditional probability of calving (threshold for calving vs. non-calving classification) 
2 True positive alerts 
3 False positive alerts  
4 Positive predictive value 

 

 

 



Development and validation of a predictive model for calving time 
 

98 

Table 4.10. Comparison of classification results of sensor variables for prediction of calving 
events (Hour -1) in Validation Dataset 2 (Farm 3, n = 13 calvings) during a monitoring period 
of 168 vs. 24 hours before the start of calving. The 95% confidence intervals are stated in 
parentheses. 

Sensor variable Timeframe LO1 TP2 FP3 Sensitivity Specificity PPV4 

Rumination time 168 h -2.5 10 835 0.77                    
(0.46-0.95) 

0.62                  
(0.60-0.64) 

0.012  
(0.009-0.016) 

 24 h -2.5 10 109 0.77                           
(0.46-0.95) 

0.65                         
(0.59-0.70) 

0.08                     
(0.06-0.11) 

Eating time 168 h -1.7 9 802 0.69                  
(0.39-0.91) 

0.63                   
(0.61-0.65) 

0.011     
(0.008-0.016) 

 24 h -1.7 9 122 0.69                  
(0.39-0.91) 

0.61                
(0.55-0.66) 

0.07                     
(0.05-0.10) 

Other activity time 168 h -2.35 9 585 0.69       
(0.39-0.91) 

0.73       
(0.71-0.75) 

0.015  
(0.011-0.022) 

 24 h -2.35 9 97 0.69                          
(0.39-0.91) 

0.69                         
(0.63-0.74) 

0.08                   
(0.06-0.12) 

1 Log odds for conditional probability of calving (threshold for calving vs. non-calving classification) 
2 True positive alerts 
3 False positive alerts  
4 Positive predictive value 

 

 

4.5 Discussion 

We developed a detection model for calving based on sensor measurements of ingestive 

behavior in dairy cows. The model was evaluated under the conditions that have to be 

expected in farming practice. Sensitivity and specificity values were satisfying, although the 

amount of false positive alerts was so high that the model is not suitable for application in 

practice. The positive predictive values were low due to the low prevalence of the condition 

to be detected (1 calving per 168 evaluation hours) and the high number of false positive 

alerts. Positive predictive values increased when evaluating the predictive performance for a 

shorter timeframe due to the higher prevalence of the condition to be detected (1 calving per 

24 evaluation hours), whereas the ratio of false positive alerts was similarly high. Therefore, 

for assessment of detection models, it is important to evaluate them under conditions that 

have to be expected in commercial farming, particularly concerning the treatment of data in 

time series and practically relevant timeframes for evaluation. For this purpose, longitudinal 

studies have to be preferred over cross-sectional studies. We considered this aspect by 
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evaluating the detection model for 168 hours before the start of calving. The possibility for an 

independent validation of the developed model was enabled by the fact that the data 

collection was conducted as a multicenter study on three different farms. We suggest to 

assess detection models not only by using sensitivity and specificity values but also taking 

the positive predictive values and the quantification of false positive alerts into account.        

 

The advantage of the chosen modelling approach was, that the Naïve Bayes classifier is also 

suitable for comparably small samples and training datasets (Domingos and Pazzani 1997). 

Further advantage of using a Naïve Bayes classifier is, that missing values in the dataset can 

be ignored for training the classifier (Ramoni and Sebastiani 2001). That was of high 

relevance for the treatment of partially missing sensor data in our study. The Naïve Bayes 

classifier assumes conditional independence of the treated variables, thus making estimation 

much less computational expensive, as interactions between variables are ignored (Silva et 

al. 2013). Although the assumption of independence of variables is often violated, as it is in 

our analysis, this classifier has been found to generate satisfactory classification results in 

numerous studies (Domingos and Pazzani 1997, Rish 2001). For the analyzed sensor 

variables as predictors the conditional independence was also not met (e.g., rumination, 

eating), but adverse influence on the classifier is only to be expected in cases with strong 

inter-correlations among predictor variables (Langley and Sage 1994). The predictive model 

was fitted assuming a Gaussian distribution of the data. Although this assumption was not 

entirely fulfilled, we considered this by application of separate fitting of the extreme values 

(i.e., 0 and 60 minutes) within the boundaries of a 1-hour summary of sensor data. The lower 

and upper extreme values per 1-hour summaries (0 and 60 min within the boundaries of a 1-

hour block) were separately fitted for the model, as duration of activities can be equal to zero 

or exceed the duration of 60 minutes beyond the boundary of an 1-hour summary interval, 

whereas the non-extreme values within an 1-hour summary represent a Gaussian 

distribution. 
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Predictive performance is a trade-off between both the sensitivity and specificity. Therefore, 

we used the Youden’s index (Youden 1950) as a single metric derived from sensitivity and 

specificity for comparative assessment of the different sensor variables, as it allowed 

incomplex identification of predictors with high values for both sensitivity and specificity. 

Although the calculated sensitivity and specificity of our model were satisfying, it should be 

pointed out that the number of false positive alerts was considerably high, as indicated by 

low positive predictive values.  

 

Rutten et al. (2017) stated, that detecting the moment of actual calving, i.e. completed 

expulsion of the calf, is not informative for the farmer, as potential dystocia should be 

detected and resolved shortly after the start of calving, and therefore recommended the start 

of the calving process as a better moment to generate an alert for calving. In our study, we 

considered this by selecting the time of the start of calving, not the moment of actual calving, 

as target variable of the predictive model. Additionally, we implemented a second prediction 

offset (Hour 0) to investigate, how the model would perform for detection of the actual 

moment of calving.    

 

Advantageously, two independent datasets were available to validate the selected classifier 

approach. These were obtained from two different farms and satisfied the requirements 

defined by Dominiak and Kristensen (2017), who emphasized that a detection model must be 

validated externally to prove its accuracy. Therefore, they suggested a validation on data, 

which is completely independent from the training dataset and has been obtained from 

another herd, as it is fulfilled in our analysis. Although it was not possible to investigate farm-

specific influences on the predictive performance in detail, as the sample size per farm was 

small, it can by hypothesized that there are numerous animal and farm specific influences 

such as parity, social interactions, and group size in the calving pen that may affect the pre-

calving behavior and hence a model’s ability to correctly detect behavioral changes resulting 

in a calving event. Nonetheless, the high prevalence of false positive alerts does not provide 
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adequate usability of the described predictive model and is prohibitive for application in 

commercial setups. However, our results indicate that particularly variables of rumination 

behavior have predictive value and should be taken into consideration for future research on 

calving detection models.  

 

Based on their review on model performance and alarm reducing methods in livestock 

production, Dominiak and Kristensen (2017) concluded that for 20 years, no sensor-based 

detection model has fulfilled the performance demands needed to generate a satisfyingly low 

level of false positive alarms, and these demands seem close to unreachable with the few 

models actually obtaining high performances being associated with high error rates. 

Moreover, these authors stated, that instead of focusing on fulfilling unreachable demands 

based on binary performance parameters for more complex conditions, future research could 

seek alternative approaches for the output of detection models, e.g., the prior probability or 

the risk of a condition occurring or not. 

 

 

4.6 Conclusions 

The study identified different best individual predictors for the two validation datasets. 

Ruminating chews were identified for Validation Dataset 1 and other chews, i.e., non-

ingestive related jaw movements, for Validation Dataset 2. The best combination of calving 

predictors consisted of ruminating chews, ruminating boluses, and eating chews for 

Validation Dataset 1, and ruminating chews per bolus, ruminating chews per minute, eating 

chews, other activity time, and other chews for Validation Dataset 2. Although the calculated 

sensitivity and specificity were satisfying, the number of false positive alerts was considerably 

high, as indicated by low positive predictive values. The high prevalence of false positive 

alerts is prohibitive for practical application of the described predictive model under 

conditions of commercial dairy farming. However, we found that particularly variables of 

rumination behavior have predictive value and should be taken into consideration for future 
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research on calving detection models. Specifically for detection models in livestock 

production, an assessment limited to the terms of sensitivity and specificity may be 

misleading. These parameters may achieve high values and suggest an adequate model 

performance, although the model is not suitable in the light of its expected use, as it was 

demonstrated by the findings of our study.   
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4.11 Supplementary material  

 

 

Supplementary Figure 1. Comparison of mean values per 24h-intervals preceding the start 
of calving for rumination time (a–c), eating time (d–f), and other activity time (g–i) in all three 
datasets. Intervals with different superscripts within a row differ significantly according to 
Friedman test (p < 0.05; n.s. = not significant). Error bars indicate the 95% confidence 
intervals of the mean.   
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Supplementary Figure 2. Average rumination times per hour within 4-hour intervals in the 
analysis period of 168 hours before the start of calving for all three datasets. Error bars 
indicate the 95% confidence intervals of the mean. Dotted lines show the mean and dashed 
lines indicate the lower and upper 95% confidence interval for the last 4-hour interval before 
the start of calving.  
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Supplementary Figure 3. Average eating times per hour within 4-hour intervals in the 
analysis period of 168 hours before the start of calving for all three datasets. Error bars 
indicate the 95% confidence intervals of the mean. Dotted lines show the mean and dashed 
lines indicate the lower and upper 95% confidence interval for the last 4-hour interval before 
the start of calving. 
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Supplementary Figure 4. Average other activity times per hour within 4-hour intervals in the 

analysis period of 168 hours before the start of calving for all three datasets. Error bars 

indicate the 95% confidence intervals of the mean. Dotted lines show the mean and dashed 

lines indicate the lower and upper 95% confidence interval for the last 4-hour interval before 

the start of calving. 



Validation of a sensor based automatic measurement system for monitoring chewing activity 
 

112 

Published in Livestock Science, 186, 53–58 

 

5 Validation of a sensor-based automatic measurement system for monitoring 

chewing activity in horses 

 

Jessica Wernera*, Christina Umstättera, Nils Zehnera, Joël J. Niederhauserb, Matthias 

Schicka 

a Agroscope, Institute for Sustainability Sciences, Tänikon 1, 8356 Ettenhausen, Switzerland 

b InnoClever GmbH, Tiergartenstrasse 7, 4410 Liestal, Switzerland 

 

* Corresponding author: 

Jessica Werner 

Agroscope, Institute for Sustainability Sciences, Tänikon 1, 8356 Ettenhausen, Switzerland 

E-mail: jessica.werner@agroscope.admin.ch  

Tel. +41 58 469 28 67 

  

mailto:jessica.werner@agroscope.admin.ch


Validation of a sensor based automatic measurement system for monitoring chewing activity 
 

113 

5.1 Abstract 

The aim of this study was to determine the feasibility of using a jaw movement measuring 

system developed for cattle, the “RumiWatchSystem”, on horses. The system records the 

chewing activity and consists of a noseband pressure sensor, integrated into a halter, and a 

software package. In order to investigate the accuracy of the system, 10 horses (5 mares, 5 

stallions) were equipped with the device. Additionally, they were observed visually as a 

reference method, while feeding three different feeds (hay, haylage and concentrate). To 

ensure similar conditions, the horses were stabled individually and fed twice daily with 

roughage and twice or three times with concentrate. The results of the visual observation 

were compared to the automatic measurement as an evaluation of the accuracy of the 

automatic measurement system. The overall agreement of the observed and automatically 

measured data within all feedstuffs was 93%. The agreement of feeding roughage was even 

higher with 95%. However, for concentrate the visual observations and automatic 

measurements agreed only in 91.4%. The decreased agreement compared to the roughage 

is due to the high sensitivity of the automated system. Horses tend to display a high amount 

of lip movements towards the end of the concentrate intake. This is different compared to 

cattle behaviour and their feeding regime. However, the system was not specifically adapted 

to horses so far and can be optimized in order to improve accuracy. Consequently, the 

system has a high potential to become a reliable tool for research and practical use. 

 

Key words: Animal welfare, Feeding behaviour, Feeding management, RumiWatch, 

EquiWatch, Stereotypies 
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5.2 Introduction 

The chewing activity of horses can be a suitable parameter for health and welfare 

assessment as the prevalent housing and feeding conditions often leave horses unsatisfied. 

Evolutionary, horses adapted over a long period of time to their ecological niche (Janis 

1976). They used to live as grazers in steps with poor vegetation. Therefore, they are 

adjusted to a low energy and high fibre diet. The feed intake behaviour is defined by a long 

intake time of 12–16 h (Zeitler-Feicht 2008, McGreevy 2004) and travelling long distances of 

up to 28 km a day (Hampson et al. 2010). Because of the natural food resource, the gastric 

system is well adapted to small feeding bouts and a consistent filling of the stomach. With 

the help of microbial fermentation in the large caecum, it is possible to split high fibre feed 

(Frape 2010). In modern housing systems, compared to the natural behaviour, horses are 

often fed roughage restrictive (twice daily) with an additional feeding of grains. This leads to 

a high amount of starch over a small period of time and can cause illness of the gastro-

intestinal system like gastric ulcerations (Hymøller et al. 2012). Even in pleasure horses the 

prevalence of gastric ulcer is 40–60% (Niedźwiedź et al. 2013). Additionally, horses are 

mostly individually stabled and there is often little or no possibility of social contact to other 

horses. In Northern Germany, 10% of stabled horses do not even have the possibility to 

observe their environment (Petersen et al. 2005). This deviation of natural behaviour may 

lead to abnormalities or stereotypies (Cooper and Albentosa 2005) and even to serious 

health problems. To evaluate and monitor the feed intake behaviour of a horse, it would be 

very valuable to measure the chewing activity automatically. The “RumiWatchSystem” could 

provide us with an assessment tool for different feeding regimes and husbandry systems.  

 

There are still a number of unanswered questions, e.g. why such a high number of stomach 

ulcers occur in horses. Analyzing the chewing behaviour linked to different feeding regimes 

would provide us with valuable information and might lead us to the solution how to reduce 

stomach ulcers. Another possibility to use the system is to apply it in horse dentistry.  
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The jaw movements are an empiric and valid parameter to determine the chewing behaviour 

and was already subject of investigations (Bonin et al. 2007, Vervuert et al. 2013). However, 

there was no appropriate system to measure the chewing activity automatically until 2012, 

when the “RumiWatchSystem” became commercially available for cattle. Therefore, our aim 

was to test the equipment on horses in order to find out, if this would be an appropriate tool 

to improve horse management. 

 

5.3 Material and methods 

5.3.1 The automatic measurement system  

The “RumiWatchSystem” (Itin+Hoch GmbH, Liestal, Switzerland) consists of a noseband 

pressure sensor with acceleration sensor, data logger with on-board analysis, and a software 

package including the “RumiWatch Converter Version 0.7.2.0” and the “RumiWatch Manager 

Version 0.9.6”. The sensor system was integrated into a commercially available horse halter 

as already described in Nydegger et al. (2010), (Figure 2.1). An oil-filled silicon tube with 

integrated pressure sensor in the noseband transmitted a signal to the data logger with a 10 

Hz frequency, which was mounted in a plastic box at one end of the noseband. The signal 

was formed by a pressure difference inside the silicon tube due to jaw movements of a 

horse. These raw data were saved as binary data on an SD memory card, which was also 

located in the plastic box. Additionally, raw data were saved as a csv-file, labelled according 

to the four categories: eating, ruminating, drinking or other activities. This classification was 

done by an algorithm, originally developed for cattle. 
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Figure 5.1. Specifics of the automated measurement system (“RumiWatch”), integrated in a 
commercially available horse halter 

 

The power supply was provided by a 3.6 V battery, which lasts for 3 years under laboratory 

conditions due to a low energy operating system. It was mounted in a second plastic box on 

the other side of the noseband. The raw data transfer was made via a USB plug-in 

connection. Additionally, 24 h-summaries divided in 1 h-summaries were transmitted wireless 

via an ANT-standard-antenna to the “RumiWatch Manager” software. 

 

The automatic quantification of the chewing activity was determined by pressure peaks. 

Every peak above the threshold of 28 mbar was counted as a chew. The absolute values 

could not be taken into account because the pressure inside the silicon tube was not 
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standardized. That means precisely, that not the height of a peak determined the chewing 

activity but the frequency of peaks. In this study, there was no differentiation between chews 

and bites. Additional information about the system can be found in Nydegger et al. (2011), 

Zehner (2012) and Zehner et al. (2012). 

 

5.3.2 Animals, housing, feeding management  

In this study, ten horses (5 stallions, 5 mares) were used. Two breeds were included in the 

trials, eight “Freiberger” and two “Swiss Warmblood”. They aged 8 to 17 years and weighed 

on average 601±38 kg. All horses were stabled individually and were bedded on straw with 

daily access to paddocks. Mares were not used for exercise, but stallions were schooled 

under saddle or driven 2-4 days a week. Before the study commenced, all horses were 

checked by veterinarians of the “Institut suisse de médecine equine” (ISME-Swiss Institute of 

Equine Medicine, Avenches, Switzerland) regarding their body condition and dental health. 

There were no specific findings, which would differ from a normal health status. 

 

The feeding management was adjusted to the experimental design. All horses were fed twice 

daily with roughage (hay or haylage). Concentrate was fed twice a day to mares and three 

times a day to stallions. The sensory analysis of feed revealed a good quality for both 

groups, stallions and mares. However, the hay of the stallion group appeared to have a lower 

amount of structure than the hay of the mares group. The haylage for both groups was of 

equal quality and appearance. The concentrate was a mixture of pellets, bruised barley, corn 

flakes, sunflower seeds and linseeds. 

 

5.3.3 Experimental design 

The horses were observed visually – as a reference method – while feeding three different 

types of feed (hay, haylage and concentrate). Therefore, all five horses of each group 

(mares/stallions) were equipped with a noseband pressure sensor, integrated in a leather 

halter. The visual observations were recorded with a tablet device. A modified Microsoft 
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Excel sheet with a user interface enabled the observer to record each jaw movement with a 

time stamp and behavioural category (Zehner 2012). These categories needed to be 

determined manually in advance. In our case we chose the categories “feed intake 

roughage”, “feed intake concentrate”, “drinking” and “other activities”. 

 

The study was divided into four trial periods (Table 5.1); mares hay, mares haylage, stallions 

hay, stallions haylage. Within each trial period, the horses were observed visually for 10 min 

in the morning and 10 min in the evening while feeding either hay or haylage over duration of 

three days. There was an adaptation period with no observation of at least three days in 

between the different trial periods. Additionally, all horses were observed while eating 

concentrate for 5 min, except of the mares in Trial period 2. As Trial period 1 showed that the 

concentrate intake of the mares lasted often less long than the observation period, it was 

decided to adapt the observation period to the actual intake time (3–9 min) in Trial period 2. 

 

Table 5.1. Experimental design. Horses were equipped with the RumiWatch system 
continuously and were observed additionally for determined periods. There was an 
adaptation period of three days between the different trial periods. 

Trial period Feed Horses Observation period (per horse/day) No. of days 

1 hay + concentrate 5 mares hay: 2x10 min,                                      
concentrate: 2x5 min+1x5 min 

3 days 

2 haylage + concentrate 5 mares haylage: 2x10 min,                              
concentrate: 2x3–9 min+ 1x3–9 min 

3 days 

3 hay + concentrate 5 stallions hay: 2x10 min,                                      
concentrate: 2x5 min+1x5 min 

3 days 

4 haylage + concentrate  5 stallions  haylage: 2x10 min,                             
concentrate: 2x5 min+1x5 min 

3 days 

 
 

5.3.4 Data evaluation 

The comparison of both systems (observational and automated) was based on the amount of 

chews per minute. The evaluation software “RumiWatch Converter” was used for the 

analysis of the automatically recorded data. The converter was able to summarize the 
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recorded data minute by minute regarding the amount of chews. The observational 

measurements were analyzed by manually counting the detected chews. 

 

5.3.5 Statistical analysis 

Preliminary data analysis and handling of statistical information was done using Microsoft 

Excel Version 2010 (Microsoft Corporation, Redmond, USA). The major statistical analysis 

was carried out using the statistics program SPSS Version 22 (IBM Corporation, Armonk 

USA). 

 

At first, the mean “amount of chews” measured automatically and visually within the 

observational periods was compared. Due to a not normally distributed sample of chews per 

minute for each feed, a non-parametric statistical test was used. As halters were allocated to 

individual horses throughout the experimental period, we used the Wilcoxon-signed-rank-test 

for analyzing the paired samples. The significance level was set at p=0.05. 

 

Afterwards, the agreement of both measurement methods was analyzed by the following 

formula: Agreement in percentage = (Chews(aut) / Chews(vis))*100. 

Chews vis = amount of chews measured visually in an observation period. 

Chews aut = amount of chews measured automatically in an observation period. 

 

A graphical analysis was made by using the Bland–Altman-Plot (Bland and Altman 1986, 

Grouven et al. 2007). This plot demonstrates the agreement between both measurement 

methods. The middle line indicates the mean difference between the paired automated and 

visual observations (chews visual-chews automated) plotted against the mean of the 

automated and visual paired values ((chews visual+chews automated)/2). The lines above 

and below indicate the confidence interval of 95%. 
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5.4 Results 

5.4.1 Pressure signatures 

The software package “RumiWatch Converter” enabled a visualization of the data. Figure 5.2 

shows the pressure signatures, generated by the noseband pressure sensor, while three 

different types of feed were fed. 

 

 

 
Figure 5.2. Pressure signatures of the same noseband pressure sensor for different feed 
types. 
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Each feed type was fed to each horse. Comparing the three different varying profiles, the 

difference between hay and haylage in the horses' chewing activity is apparent. However, 

even more distinct is the difference of chewing activity during concentrate intake. The 

frequency of chews increased from feeding hay to haylage to concentrate. That means 

chews per minute are highest in feeding concentrate. 

 

5.4.2 Mean of chews per minute  

The results of chews per minute measured visually and automatically by feeding three 

different feeds were summarized in a Box–Whisker-Plot (Figure 5.3). It can be found that the 

whisker down to the minimum is always longer than the whisker up to the maximum value for 

all combinations (feed types and measurement methods). That means, the deviation of the 

amount of chews in the smaller values is larger than in the range above the median. There is 

also a larger span in visual observations in the area of upper and lower quartiles, compared 

to the automatically measured values in all feedstuffs, especially in feeding hay. In feeding 

haylage the box of 75% of all data is smallest in both measurement methods, whereas the 

feeding of concentrate causes a wider range of amount of chews per minute, recorded by 

both systems. 

 

 

Figure 5.3. Box–Whisker-Plots detailing the amount of chews per minute for both 
measurement methods (visual vs. automatic) and three different feed types (hay, haylage, 
concentrate). 
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The mean of all measurements while feeding hay was 70±13 chews per minute observed 

visually and 76±11 chews per minute measured automatically. That led to a difference of 6 

chews per minute in favour of the automatic measurement system. Due to a not normally 

distributed sample, the Wilcoxon-signed-rank-test as a non-parametric test was carried out to 

analyze the differences between means. In case of feeding hay, the mean for “amount of 

chews” of both measurement methods was different (p<0.001). 

 

The second feed, which was tested, was haylage. The mean amount of chews were 76±9 

chews per minute by visual observation and 79±7 chews per minute by automatic 

measurement. This resulted in a higher amount of chews for the automatic recording of 3 

chews per minute. The statistical analysis revealed a difference between both measurement 

methods while feeding haylage (p<0.001). 

 

In addition to the two roughages, the horses were observed over a period of 5, respectively 

3–9 min while eating concentrates. The mean amount of chews, measured visually were 

86±15 chews per minute. In comparison, the automatic measurement system recorded 

95±11 chews per minute. That implies, that the value of the automatic measurement is 9 

chews per minute higher than the visual observation. The difference between the 

measurement methods is verified by statistical analysis (p<0.001). 

 

Summarizing all measured minutes across the three different feeds, the amount of chews per 

minute observed visually (78±15) was always lower than the value of the automatic 

measurement system (85±13). 

 

5.4.3 Agreement between measurement methods  

The agreement between the automatic measurement and the visual observation as a 

reference method was determined by the comparison of amount of chews per minute (Table 

5.2). A highly encouraging overall agreement of 93.3% between both measurement methods 
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was found. Looking at the results of the different feed types, the agreement between the 

automated system and visual observations was greatest when feeding haylage (96.8%). 

Overall, the agreement of roughage (94.7%) was higher than the agreement while feeding 

concentrate (91.4%). 

 

Table 5.2. Agreement between measurement methods. Mean of agreement and standard 
deviation between the visual reference method and the automatic measurement system in 
percent. 

 Mean of agreementa [%] Standard deviation [%] 

Total 93.3 18.1 

Hay 92.4 13.9 

Haylage 96.8 14.0 

Concentrate  91.4 22.5 

 
Chews aut = amount of chews per minute measured automatically in an observation period. 
Chews vis = amount of chews per minute measured visually in an observation period. 
a Mean of agreement [%]= (chews(aut)/(chews(vis)*100. 

 

The agreement between both measurement methods is presented graphically in a Bland–

Altman-Plot (Figure 5.4). The figure shows, that if the amount of chews per minute increased, 

then the difference between the measurement methods decreased. The greatest variation 

between the systems was identified in ranges of lower than 70–75 chews per minute. 
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Figure 5.4. The Bland–Altman-Plot demonstrates the difference between both measurement 
methods. The middle line indicates the mean difference between the paired automated and 
visual observations (chews vis-chews aut) plotted against the mean of the automated and 
visual paired values ((chews vis+chews aut/2)). The lines above and below indicate the 
confidence interval of 95% (Mean=6.25; limit lines=+32 and −19). 

 

By looking at the individually measured minutes, it was found, that the difference between 

both measurement methods changed with increasing minute number (Figure 5.5), 

particularly for feeding concentrate. However, it should be pointed out that the sample size 

for Minutes 6–9 of concentrate feeding decreased considerably. Therefore, the data 

interpretation needs to be done carefully. 
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Figure 5.5. Mean of differences between visual observations and automatic measurement of 
amount of chews per minute while feeding different feeds. Positive values are caused by a 
higher amount of chews measured automatically. The sample size of Minutes 6–9 is much 
smaller for feeding concentrate (n<18) compared to Minutes 1–5 and give, therefore, only an 
indication of the trend. 

 

 

5.5 Discussion 

 

The results of the study showed successfully that it is feasible to use the 

“RumiWatchSystem” on horses. The overall agreement of 93% between visual and 

automatic measurements demonstrated the good accuracy, even though the system was 

developed for cattle. 

 

The agreement of feeding haylage (97%) was higher compared to feeding hay (92%). One 

reason might be, that the chewing activity was more rhythmical than feeding hay. Another 

reason for falsely identified chews could have been the interruptions by drinking behaviour 

while feeding hay, as the moisture content in hay is much lower than in haylage. The 

automatic system might have identified the lip movements while drinking as chewing, 

whereas the observer did not count them as chews. 
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The amount of chews per minute while feeding three different feeds is noteworthy. It 

increased from hay to haylage to concentrate. Unlike our results, Vervuert et al. (2013) found 

a lower amount of chews (66±12 chews per minute) for feeding haylage than feeding hay 

(70±15 chews per minute). This might have been caused by the ad libitum feeding in their 

study, whereas in our study a restricted feeding regime was carried out. Another possible 

reason for influencing the results might have been the quality of the feed stuff as horses tend 

to prefer good quality hay to good quality haylage (Müller and Udén 2007). 

 

The amount of chews while feeding concentrate (95±11 chews/min automatically vs. 86±15 

chews/min visually) correspond with results of a study done by Meyer et al. (1975), 70–93 

chews per minute. 

 

The results in Figure 5.5 show, that the sensor system detected more chews than the 

observer after the fourth minute. This was caused by the fact, that the horses used their lips 

to search the last feed crumbs. These movements were detected as chews whereas the 

observer did not count them as chews. This resulted in the large differences between both 

measurement methods occurring after the fourth minute. It should be kept in mind, that the 

algorithm to detect chews was developed for cattle. In their specific chewing behaviour, cattle 

use their tongue to rip the grass. Therefore, they show less lip movements than horses. The 

system overestimates horses’ chewing activity because of the adaption to the specific 

chewing behaviour of cattle. 

 

The automatic measurement system is very easy to use, as the device is similar to a 

standard horse halter. This improved the acceptance of wearing the system by the horse, as 

all horses were halter trained. Additionally, the three buckled straps of the halter enabled us 

to fit the halters individually. The storage and analysis of raw data was user-friendly and easy 

to carry out with the help of the software package. One critical issue might be the danger of 

injuries as a horse could get stuck, caused by the halter. Integrating a predetermined 
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breaking point or an elastic connecting piece might be a suitable fix to avoid accidents. The 

wearing over a period of 6 days was causing small skin irritations in two horses. This might 

be fixed by changing the halter material or adding appropriate padding. In this study, heavy 

leather halters were used, with the seams being inside, close to the horses' skin, rubbing on 

the cheek bones. Another critical location for small skin irritations was at the moving jaw 

bone. However in comparison to some invasive systems, which were used by Vervuert et al. 

(2013), the noseband sensor is more justifiable under animal welfare criterias. 

 

The benefit of an automatic measurement system of chewing behaviour could be manifold. In 

Precision Livestock Farming (PLF) automated animal monitoring is often used to develop 

early warning systems for health and welfare issues. Although the aims and circumstances in 

horse husbandry often differ from other livestock production branches, the principals of PLF 

can also be advantageous in the equine sector. As Berckmans (2006) pointed out, 

observations done by humans are a limiting factor compared to an automatic monitoring 

system. The “RumiWatchSystem” could be employed e.g. as an early warning system for the 

beginning of parturition. Furthermore, it could be used as an assessment tool for husbandry 

systems or feeding regimes or even providing additional information on the development of 

stereotypies. 

 

 

5.6 Conclusions 

The study successfully demonstrated that it is feasible to use the “RumiWatchSystem” to 

horses. Although it was developed for cattle, the overall agreement of 93% was highly 

encouraging. The analysis indicated that the differentiation between chews and other muzzle 

and lip movements could improve the overall performance of the system. Therefore, to 

optimize the recording of the chewing activity, the analysis algorithm developed for cattle, 

could be adapted to the monogastric species ‘horse’. However, the system could be, after 

minor refinements, a valuable and easy-to-use tool for equine research and management. 
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6 General Discussion  

6.1 Further development and prospects 

6.1.1 Analysis routines  

The RumiWatch (RW) System, comprising a noseband sensor integrated into a halter and a 

pedometer, were successfully developed and validated for an indoor environment. The next 

development step will be the adaptation for a grazing environment. This further development 

is already on the way for the RW noseband sensor (Rombach et al. 2015a, Werner et al. 

2017a). The broadening of its usage, by including the grazing environment, is a valuable step 

for supporting the advisory services and dairy farming. It is estimated that 9 billion people will 

be starving in 2050 and it is envisaged that a big part of the solution will be the usage of the 

world’s grasslands (O’Mara 2012). In this light, intake estimation on pasture will play an 

important role in optimizing pasture management. The RW device can be utilized to develop 

algorithms for intake estimation on pasture as well as to determine bite to chew ratios for a 

qualitative assessment of herbage. Rombach et al. (2015b, 2016, 2017) focused on the 

estimation of herbage intake based on measurements of grazing behavior using the RW 

noseband sensor and calculated it including the parameters herbage dry matter per hectare, 

daily milk yield, milk protein and lactose content. A potential user interface for such easy-to-

use software for intake estimation is depicted in Figure 6.1. Further research by Werner et al. 

(2017b) has given an indication of importance of some of the RW parameters to evaluate 

pasture allocation for dairy cows. In their study, grazing behavior in terms of bite frequency 

was significantly increased for a treatment (60% herbage allowance) over a control (100% 

herbage allowance) group, whereas rumination behavior in terms of rumination time per day 

and chews per bolus were significantly decreased for the treatment group. These results 

showed that particularly rumination behavior may be a suitable indicator of appropriate grass 

allocation per cow. Hence, automated monitoring of these parameters in dairy cows may be 

indicative of insufficient grass allocation and may allow decision support for improved 

management of pasture based dairy systems.  
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Figure 6.1. RumiWatch 2 – user interface for a software tool for intake estimation on pasture 
based on measurements of the RW noseband sensor, containing an animal list (upper left), 
herbage and milk yield data (upper right), intake calculation (lower left), and visualization of 
chewing activities (lower right).  

 

Further enhancement of the RW System is projected by integrating standardized 

chronobiological analysis routines based on the work of Berger et al. (1999, 2002) and 

Scheibe et al. (1999). Berger et al. (2003) identified the degree of a harmonic behavioral 

rhythmicity as a key welfare indicator. The intention for the RW development is now to apply 

a mathematical approach to feeding and activity data in order to identify disturbances in 

behavioral patterns, and therefore, reveal social, feeding, and husbandry deficits or human 

interventions affecting animal welfare and health. Such a tool could be important for advisors 

and researchers alike to improve animal husbandry. In addition, a smart phone application 

for visualization of RW measurement data with connection to a cloud storage is conceivable, 

particularly in terms of enhancing user-friendliness and practicability of the system for 

farming practice. 
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6.1.2 Noseband sensor   

In its current state, the RW noseband sensor is suitable for scientific application and for 

advisory purposes in agronomics and veterinary medicine. Potential research and application 

areas are feed evaluation for dairy cattle, assessment of housing systems and animal 

welfare, and ethological studies on ruminants. The RW noseband sensor may particularly 

assist for detection of metabolic health disorders and feeding deficiencies, and for post-

surgery recovery monitoring in dairy cows. After further development and extension of the 

analysis routines, e.g. by implementation of automated detection of calving, heat, and health 

disorders, a potential field of application also has to be seen in intensive dairy farming 

systems with high numbers of individuals, high level of productivity and high management 

expenditure. Here, the intended use of the system may be to serve as a decision-support-

tool for nutrition management and as a health and welfare sensor to enable reactions to 

critical conditions by dairy farmers and veterinarians at an early stage. Also a transformation 

of the system’s hardware and analysis routines for application in other species, e.g. small 

ruminants, have been projected (Figure 6.2).  

 

 

Figure 6.2. Modification of the RW noseband sensor for application in sheep.  
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Application potentials of the noseband sensor technology in horses can be seen both in 

scientific studies and for easy-to-use equine feeding and husbandry assessment. For this 

purpose, it is conceivable to merge the ruminating and eating recordings obtained from 

application of noseband sensors in horses into only one class “ingestive behavior”. 

Nonetheless, it may be useful to maintain a separate classification of “rumination” (slow, 

regular jaw movements) and “eating” (accelerated, irregular jaw movements) in order to 

enable a differentiation of chewing rhythmicity that might be valuable, i.e., for assessment of 

feedstuffs or feeding technology. The usefulness of analysis routines that were originally 

developed for cattle but applied in other species was demonstrated in a study by Dittmann et 

al. (2017) that compared mastication behavior using RW noseband sensors in domestic 

horses, cattle, and Bactrian camels.  

 

6.1.3 Pedometer   

In its current state of development, the RW pedometer is a measuring device dedicated to 

scientific use. The abundance of analysis parameters of movement behaviors allows 

application in several fields of agronomic and veterinary research, e.g. for assessment of 

housing systems or detailed investigation of lameness. Werner et al. (2017a) validated the 

RW pedometer in a pasture-based dairy system and found similar accurate results for 

standing and lying time as shown in Chapter 3. The measuring performance in detecting 

walking was slightly weaker than in detecting standing and lying, but still considered 

appropriate for a measurement system in a grazing environment. Going to further stages of 

development, particularly concerning extended ranges for wireless data transmission and 

connectivity to commercially available herd management software, the RW pedometer may 

also represent a valuable device for application in farming practice.  
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6.1.4 Economic viability  

Current structural change in dairy farming is characterized by increased livestock numbers 

per farm unit, concomitant lower personnel capacities for individual animal monitoring, and 

occurrence of production stress in dairy cows. Despite this development, the economic 

viability of automated decision support tools is often under question. In order to enhance the 

chances for establishing the use of such supporting tools in herd management and for the 

justification of automated health monitoring systems, separate studies on economic 

effectiveness and user acceptance are desirable. Thereby, the aim may be to determine the 

potential for reduction of costs and production losses related to health disorders, and to 

identify additional features of health monitoring systems requested by users in farming 

practice.    

 

 

6.2 Extended application potentials 

The following section provides an outlook on extended application areas of the developed 

RW monitoring system by discussion of the findings and methodology of studies described in 

scientific literature.   

 

6.2.1 Intake estimation 

Leiber et al. (2016) applied the RW noseband sensor in stable-fed cows and concluded, that 

the random factor model developed in their study allowed estimation of individual changes in 

feed intake within animal but not across animals. Chewing behavior measurements proved to 

have a potential for the detection of relative intake alterations with roughage-based TMR 

diets but data were not sufficient for quantitative estimations. This may also be due to the 

use of the RW Converter V0.7.3.2 for analysis, as this version only classifies total eating jaw 

movements and does not allow to discriminate between eating bites, chews, and chew-bites 

(cf. Chapter 2). Using such differentiation of eating jaw movements might increase the 

possibility for quantitative intake estimations. Meanwhile, the values obtained from the 
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acceleration sensor are included in the analysis routines as an additional criterion for 

behavior classification, in order to further improve the measuring performance and enable 

the differentiation of prehension and mastication bites during grazing (RumiWatch Converter 

V0.7.4.5, Itin+Hoch GmbH, Liestal, Switzerland). This might reveal the possibility for intake 

estimation on pasture based on the measurements of the noseband sensor (Rombach et al. 

2016). 

 

6.2.2 Heat detection 

Automated heat detection is gaining interest in dairy farming, particularly as fertility problems 

have high prevalence in intensive livestock systems. Therefore, Zehner et al. (2014) 

conducted a pilot study to determine the feasibility of automatic heat detection in dairy cows 

using the RW noseband sensor described in this thesis. The aim of the study was to assess 

the suitability of the device for automated detection of heat and to investigate changes in 

behavioral parameters between peri-estrus vs. estrus days. In total, 10 estrus events were 

monitored at Agroscope Tänikon research stable (Ettenhausen, Switzerland). Experimental 

animals were equipped with noseband sensors two weeks before the calculated estrus day. 

Estrus events were verified by several reference methods (visual observation, pedometers, 

color markers). Behavioral changes in ruminating, eating, and motion activity during estrus 

cycles were analyzed and compared for all monitored estrus cycles (n = 10). Three reference 

days before and after the day of estrus, and the day of estrus itself were compared in the 

evaluation. Overall results were generated by calculating the average change in activity 

parameters for all experimental animals (n = 7). Results indicated that estrus significantly 

influences ruminating and eating activity in dairy cows. Motion activity of the head clearly 

increased by 34.5% compared to non-estrus days. On average, decrease in number of 

ruminating chews was -18.3% and -23.7% in number of eating chews when comparing the 

day of estrus versus the reference (peri-estrus) period. The number of ruminating boluses 

decreased by -16.0% on the day of estrus. Based on the findings of this study, several 

parameters of ruminating, eating, and motion behavior were identified as potentially 
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significant indicators for automatic heat detection in dairy cows. The RW noseband sensor 

used for this study may have the potential to become a suitable tool for heat detection, as it 

constantly measures relevant behavioral parameters for reliable estrus detection, e.g. 

ruminating activity (cf. Reith and Hoy 2012). Further research and development works are 

needed for implementation and validation of a function for automated heat detection as part 

of the RW monitoring system. Particularly in a systematic approach when used in 

combination with a pedometer, very high heat detection rates may be achievable. 

 

6.2.3 Health disorder detection 

During the data collection of the study described in Chapter 4, several disease cases were 

monitored. However, there was no generalizable intra-individual or inter-individual course of 

behavioral changes before and after the diagnosis of a disease. The feasibility of early 

detection of health disorders using the RW monitoring system will have to be subject to 

further research. Probably, extended data evaluation processes will be required, as the early 

detection of diseases using established statistical methods for two-dimensional analysis of 

behavioral changes over the course of time has proven to be difficult in the current thesis and 

remains without unequivocal results (unpublished data). Beer et al. (2016) developed logistic 

regression models for lameness detection based on the output of the RW noseband sensor 

and pedometer. A model considering the number of standing bouts and walking speed was 

the best predictor of cows being lame with a sensitivity of 90.2% and specificity of 91.7%. 

Sensitivity and specificity of the lameness detection model were considered to be very high, 

even without the use of the noseband sensor data. They concluded that under the conditions 

of the study farm, pedometer data were suitable for accurately distinguishing between lame 

and non-lame dairy cows, even in cases of slight lameness with a gait score of 2.5. 

 

6.2.4 Chronobiological analysis 

For the development of animal monitoring systems, a fundamental intent was to provide a 

technology for early detection of health and welfare impairments. However, despite the 
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growing amount of data, solutions for data evaluation that are of enormous relevance for this 

intent, were often not found to be practicable and reliable. In a pioneering approach, Berger 

et al. (2003) developed a chronobiological procedure to evaluate living conditions, behavior 

and the internal state of free-ranging animals. These authors found high Degrees of 

Functional Coupling (DFCs) in healthy animals and after a disturbance in behavior patterns 

the DFCs dropped. Umstätter et al. (2016) used this method combined with RW sensor and 

software technology to measure activity and ingestive behavior in housed cattle to 

investigate biological rhythms and its use for farming systems. The DFCs were used to 

measure the correlation between internal rhythms of the animal and the external 24-h period 

given by the environment. DFCs state the percentage of the circadian component and 

harmonic ultradian components in relation to all rhythmic components of a spectrum. In 

addition, the harmonic parts (HPs) were calculated as the equivalent to the total intensity of 

all harmonic rhythmic components of activity behavior. Different parameters were tested for 

analysis on cattle, from activity behavior, feeding time to rumination time. Interestingly, the 

DFCs and HPs calculated by Umstätter et al. (2016) for domestic cattle did not reach 

comparable high levels that were described for free-ranging ruminants by Berger et al. 

(2003). For this reason, chronobiological analyses may be used to identify impairments of 

animal welfare and health under human directed conditions, i.e., in livestock farming and zoo 

animal husbandry. 

 

 

6.3 Customer benefits 

Meanwhile, the RW System is an internationally acknowledged and established research tool 

for behavior monitoring in ruminants. It has been applied in validation studies (Kröger et al. 

2016, Ruuska et al. 2016, Werner et al. 2017a), for veterinary research (Beer et al. 2016, 

Kohler et al. 2016, Nechanitzky et al. 2016, Aditya et al. 2017, Giovannini et al. 2017), and 

for investigation of nutritional aspects (Felber et al. 2015, Dittmann et al. 2016, Ertl et al. 

2016, Leiber et al. 2016, Dittmann et al. 2017, Kleefisch et al. 2017, Werner et al. 2017b). 
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The presented animal monitoring system is manufactured and commercially distributed by 

the industry partner Itin+Hoch GmbH Feeding Technology (Liestal, Switzerland). Introductory 

courses for application of the RW system and customer advice are offered for scientific 

users. Operating procedures for application of the system-specific hardware and software 

have been published as technical documentations in German and English language (Zehner 

et al. 2015a, 2015b, 2015c, 2015d). In the described state of development, the RW System 

is dedicated to scientific application. Further development works aim to generate extended 

usability for advisory purposes and commercial farming.    

  

 

6.4 Connected agriculture – future evolution 

Due to rapid technological progress in sensor and computer technology in the last decade, 

animal monitoring systems are able to generate and store considerable amount of data. 

However, these data can only provide impact to farmers if clear and concise information can 

be extracted. Therefore, the core challenge for future research and development work will be 

to create efficient data management and information processing structures that can operate 

in real-time. For farming practice, the massive amount of data that can be generated by 

Precision Farming solutions needs to be connected between the devices of different 

manufacturers and processed into a practically relevant decision basis or unequivocal 

recommendation for action. Further interest of farmers for such connected solutions may be 

the generation of end-to-end data for dairy production, enabling the traceability of forage 

throughout the entire crop cycle and including the consumption by the animal. The RW 

noseband sensor and pedometer act as a system and have the potential to render a 

contribution to the vision of connected agriculture. The data formats and transmission 

standards of RW are potentially suitable for data exchange between systems from different 

manufacturers and have been projected for integration into a farm information system which 

combines data from different sources to a central database in real-time (Nikander et al. 

2015). Further application potential would be to connect the RW System via a standardized 
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interface to veterinarians and herd books for systematic health and fertility management. 

Integrated and validated analysis routines for the detection of health disorders and estrus 

would be a prerequisite to attain adequate usability for such application and remain subject 

of future research.   
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7 General Conclusions 

The RumiWatch noseband sensor and pedometer were successfully developed and 

validated as scientific monitoring devices for automated measurements of ingestive and 

movement behavior in dairy cows. The achieved validation results indicate that the 

measuring performance satisfies scientific requirements. The development and validation of 

a predictive model for calving time based on measurements of the RumiWatch noseband 

sensor revealed that the achieved sensitivity and specificity were satisfactory, but the 

number of false positive alerts was too high for practical application of the developed model 

under conditions of commercial dairy farming. However, we found that particularly 

parameters of rumination behavior have predictive value and should be taken into 

consideration for future research on calving detection models. We successfully demonstrated 

that it is feasible to apply the RumiWatch noseband sensor to horses. The analysis indicated 

that the differentiation between chews and other muzzle and lip movements could improve 

the overall performance of the system. However, the system will be, after minor refinements, 

a valuable and easy-to-use tool for equine research and management. 
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