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Chapter 1

Introduction

This thesis is concerned with the statistical modelling of long-run equilibrium relationships between

economic variables. Widely used concepts in statistical theory to describe long-run equilibrium relation-

ships are cointegration and error correction as defined in Engle and Granger (1987). Many economic

variables such as prices, production aggregates and wages exhibit stochastic trends, which means that

shocks have a permanent effect on the trajectory of the time series. The implications of stochastic trends

is that the joint distribution of the stochastic process that generates the times series is nonstationary and

the integrated process does not revert to a stable long-run attractor.

Cointegration is a multivariate concept and refers to the statistical property that two or more nonsta-

tionary (integrated) variables (e.g. spot and futures prices, input and output prices) do not diverge without

bound from each other. Thus, cointegrated variables form a stable long-run relationship although the in-

dividual processes are not stable. Such relationships are often associated with economic equilibria. A

disequilibrium is any situation in which the variables are not in exact equilibrium. For the long-run rela-

tionship to be stable, deviations from equilibrium, however, have to be of temporary nature. The system

has to have a tendency to return to the equilibrium after it is perturbed. Throughout the remainder of this

thesis, we refer to this behavior as error correction or adjustment.

While it is sometimes possible to derive the form of the cointegrating relationship from economic

theory, its exact form is typically unknown in empirical applications. Cointegration models provide

methods to estimate the parameters of the long-run equilibrium equation if it is not known ex ante and

model the adjustment behaviour after disequilibrium states. An important part of empirical cointegra-

tion models consists of testing for the presence of a cointegration relationship since any results from a

cointegration model would be spurious in the absence of cointegration.

The existence of cointegration relationships is of particular interest for economists since many the-

oretical models are based on long-run relationships between economic variables (e.g. purchasing power

parity, Fisher equation, unbiasedness hypothesis). However, the findings in empirical studies are often

ambiguous (see, for example, the discussion on purchasing power parity). A reason for this might be the

restrictive nature of conventional cointegration models. Turning to nonlinear dynamics might therefore

improve estimation and inference.

The original Engle-Granger cointegration model is linear, in that is requires a linear combination

of nonstationary variables to be stationary. The stationarity of the linear combination is empirically

tested by conventional unit root tests which build on linear autoregressive models. The choice of a

linear model specification is easily justifiable considering the availability of statistical tools at the time
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CHAPTER 1. INTRODUCTION

of Grangers’ discovery of cointegration, published in Granger (1981). A general theory of statistical

inference for multivariate integrated processes did not arrive until Phillips and Durlauf (1986) using

results from Phillips (1986, 1987a,b) and Stock (1987). From a mathematical perspective, estimation

and inference involving nonstationary variables are conducted more easily in a linear context. Further,

the computational costs are usually lowest for linear models.

Nevertheless, there are good reasons for expecting economic relationships to be nonlinear. For ex-

ample, business cycle dynamics, transaction costs, diminishing marginal utility or policy interventions

potentially lead to mechanisms which are hardly captured in linear mathematical models. The specifica-

tion of linear econometric models serves as a useful approximation in most cases but might be discarded

for meaningful nonlinear models. Also, the evolution of computing power makes it feasible to estimate

and evaluate complicated nonlinear models efficiently.

Cointegrated systems can be described in several alternative representations. The two statistical

approaches to modelling cointegration relationships used in this thesis are the two-step single equation

approach by Engle and Granger (1987) and the vector error correction model by Johansen (1988, 1991).

Both approaches are based on linear parametric models and assume the parameters to be constant over

time. This presents a natural starting point to relax the restriction of a linear model and move to a

nonlinear model specification.

In the following, a selective review of relevant literature on nonlinear extensions of cointegration

models is presented. This should help to embed the methods that are developed in this thesis and the

existing methods that are used in the empirical applications in the current econometric literature. In the

context of the Engle-Granger framework, several approaches have been proposed to extend the original

model. Nonlinearities can be introduced to this framework at both steps.

A straightforward extension to the first step, the cointegrating regression, is to include a linear deter-

ministic trend variable as in Engle and Yoo (1987). Strictly speaking, this extension is not a nonlinear one

from a technical perspective, although it implies that the cointegration relationship is not static and grad-

ually changes with time. More frequently, the cointegration relationship is thought to change instantly

caused by policy changes or events such as economic crises. In this spirit, structural break models deal

with changes in the cointegrating vector and any deterministic terms that are present in the initial model.

Gregory and Hansen (1996a,b) introduce cointegration tests under the presence of structural breaks. The

break date does not have to be known for these tests, which is usually the case in empirical applications.

Often it is not even known how many structural breaks have to be accounted for. An extension of the

Gregory-Hansen model to two structural breaks is given in Hatemi-J (2008). Arai and Kurozumi (2007)

develop tests for the null hypothesis of cointegration with structural break against the alternative of no

cointegration.

Gonzalo and Pitarakis (2006a) consider a cointegration regression with threshold nonlinearity. The

variable that governs the change from one equilibrium to the next is a stationary threshold variable. If

the threshold variable has crossed the threshold in a given period t − d, the slope coefficients of the

cointegrating vector change in period t. Threshold nonlinearity allows for regime-specific behaviour

depending, for example, on the phases of the business cycle.

Xiao (2009) applies quantile regression methods, developed in Koenker and Bassett (1978), to the

cointegrating equation to obtain quantile-dependent coefficients. Instead of modelling the conditional

expected value in the case of least squares estimation, quantile regression estimates the τth quantile of

3



the dependent variable conditional on the information set in period t. The quantile cointegration model

can be understood as a restricted form of a general random coefficient model.

Random coefficient models are a unifying framework for several forms of nonlinearities in which the

coefficients depend on a stochastic process (Nicholls and Quinn (1982)). They are not easily estimated

with conventional regression techniques without imposing some structure on the behaviour of the coeffi-

cients. Quintos and Phillips (1993) test for constancy of the cointegrating vector in a model that allows

for a random walk process of the slope coefficient. Another way to deal with random coefficient models

in the context of state-space models is detailed in Wagner (2010).

Saikkonen and Choi (2004) develop the asymptotic theory for cointegrating regressions with a smooth

transition structure in the spirit of Granger and Terasvirta (1993). Cointegrating smooth transition regres-

sions can be used to describe long-run relations that change smoothly depending on the location of some

economic variables. The transition function helps to model a smooth change from one equilibrium to the

next instead of an abrupt change from one equilibrium to the next in the threshold model by Gonzalo and

Pitarakis (2006a).

The second step of the Engle-Granger procedure, unit root testing of the cointegration residuals,

presents an even wider variety of nonlinear models. Theoretically, all types of unit root tests could be

applied to the cointegration residuals, to evaluate whether the order of integration has been reduced for

a linear combination of the variables. Conventional unit root tests are constructed to test the speed of

adjustment after disequilibrium states.

Balke and Fomby (1997) suggest a threshold process for the equilibrium error. The equilibrium error

is assumed to follow a threshold autoregression that is mean-reverting outside a range specified by two

threshold values and has a unit root inside the range. This type of model accounts for the presence

of transaction costs which might prevent adjustment after small shocks. However, if the adjustment

behavior in the outer regimes is strong enough, the cointegration relationship is maintained in the long-

run. A cointegration model with threshold adjustment was also proposed by Enders and Siklos (2001).

Their models is restricted to a regime-specific coefficient of the first lag. The threshold variable is

either the lagged equilibrium error series in levels, in a self-exciting threshold autoregression, or the

differenced series which is a momentum threshold autoregression in the spirit of Enders and Granger

(1998) and Caner and Hansen (2001). Maki and Kitasaka (2015) propose cointegation tests with three-

regime threshold autoregressive adjustment.

Kapetanios et al. (2003) consider an exponential smooth transition (ESTAR) model for the equi-

librium error, where the speed of adjustment is slower when the error is close to zero. The transition

function is symmetrically U-shaped around zero. For large values of the smoothing parameter, the ES-

TAR model collapses to a linear model. In the same sense, a logistic smooth transition model (LSTAR)

as proposed by Terasvirta (1994) can be used for the equilibrium error process. In this specification the

logistic function links a regime of positive deviations to a regime of negative deviations. For large values

of the smoothing parameter, the transition function effectively approaches an indicator function and the

LSTAR model reduces to a two-regime threshold autoregressive model.

Hall et al. (1997) and Psaradakis et al. (2004) propose a Markov-switching model for the adjustment

process. This framework allows for periods of strong adjustment behavior as well as periods in which the

system can diverge temporarily from the long-run equilibrium. The equilibrium error follows a Markov-

switching autoregression where a latent state variable governs the regime switches.
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CHAPTER 1. INTRODUCTION

The Granger representation theorem guarantees that, if some variables are cointegrated, an error cor-

rection representation of the variables exists. A vector error correction model (VECM) developed in

Johansen (1988, 1991) can be used to simultaneously test for cointegration and investigate the contribu-

tion of the individual variables to maintaining the long-run equilibrium. This framework is based on an

autoregressive representation of a cointegrated system. It is augmented with nonlinearity concepts sim-

ilar to the Engle-Granger case. However, the structure of the VECM naturally requires a very different

implementation of these concepts.

Quintos (1997) considers a general time-varying structure for the reduced-rank matrix of error cor-

rection coefficients so that both the cointegrating vector and the adjustment dynamics may change over

time. Seo (1998) develops a model for a one-time change of the cointegrating vector and of the ad-

justment coefficients at a potentially unknown change point. Johansen et al. (2000) and Inoue (1999)

analyze breaks in the deterministic terms of a VECM. Further studies on cointegrationg test under struc-

tural breaks in a VECM are conducted in, for example, Saikkonen and Lütkepohl (2000), Lütkepohl et al.

(2003), Lütkepohl et al. (2004), Trenkler et al. (2007) and Harris et al. (2016).

Threshold models in a multivariate framework were first examined in Tsay (1998). Hansen and Seo

(2002) describe an estimation and testing procedure for a VECM with unknown cointegrating vector and

unknown threshold value. Seo (2006) discusses bootstrap tests of the null hypothesis of no cointegration

in threshold VECM, while Gonzalo and Pitarakis (2006b) develop an asymptotic theory for testing the

existence of a threshold effect in a VECM. Krishnakumar and Neto (2015) extend the threshold VECM

to more than one cointegrating relation.

Kapetanios et al. (2006) and Kiliç (2011) provide testing methodology and asymptotic theory for

exponential and logistic smooth transition VECM. Saikkonen (2005, 2008) discusses stability results

for nonlinear VECM and in particular discusses the statistical properties of smooth transition VECM.

Krolzig (1997) develops the estimation and testing methodology for Markov-switching VECM.

More recently, Kristensen and Rahbek (2010), Seo (2011) and Kristensen and Rahbek (2013) discuss

estimation and testing procedures related to a general class of VECM that allows for a wide range of

nonlinear adjustment processes.

After reviewing the above existing studies, we turn to the original research conducted in this thesis.

The main part of this thesis comprises of four chapters - each representing a standalone research paper

- that can be read independently. The connecting thread is the use of nonlinear cointegration models

but each chapter deals with a particular aspect of these approaches. Chapter 2 and Chapter 4 have a

theoretical focus and propose extensions of the Engle-Granger framework to capture nonlinear dynamics,

whereas Chapter 3 and Chapter 5 employ nonlinear cointegration models to study the commodity market.

More precisely:

Chapter 2, Asymmetric price transmission in the US and German fuel markets: A quantile au-
toregression approach, proposes a new econometric model for asymmetric price transmissions. Long-

run equilibrium equations between upstream and downstream prices are estimated and quantile autore-

gression is applied to estimate a quantile-dependent adjustment behavior for lower and upper quantiles

of the residual process. We develop a bootstrap cointegration test which is suitable for cointegration

relationships that exhibit quantile-dependent adjustment. Furthermore, we introduce the appropriate sta-

tistical tests for across-quantile comparisons and overall quantile effects. The methodology is applied to

the US and German gasoline and diesel markets. Our empirical results suggest that asymmetries can be
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found in the early stages of the production chain but are not completely transferred to retail prices.

Chapter 3, Are gold and silver cointegrated? New evidence from quantile cointegration, revisits

an earlier study on the long-run relationship between gold and silver by Escribano and Granger (1998).

We apply a quantile cointegration model to gold and silver prices and to prices of the corresponding fu-

tures contracts. Whereas cointegration models, assuming a constant cointegrating vector, fail to detect a

cointegration relationship between gold and silver, we are able to show that a nonlinear long-run relation-

ship exits. The cointegrating vector is modelled as state-dependent and time-varying in our framework

and the quantile cointegration estimates reveal substantial asymmetry in the relationship. The results

suggest that the pronounced role of precious metals as investment opportunities in times of financial

turmoil leads to comovement of gold and silver in these periods.

Chapter 4, Testing for cointegration with SETAR adjustment in the presence of structural
breaks, develops a new cointegration test with SETAR adjustment allowing for the presence of struc-

tural breaks in the equilibrium equation. Since the timing of structural breaks is usually unknown, we

propose a simple procedure to simultaneously estimate the breakpoint and test the null hypothesis of no

cointegration. Thereby, we extend the well-known residual-based cointegration test with regime shift

introduced by Gregory and Hansen (1996a) to include SETAR adjustment. We derive the asymptotic

distribution of the test statistic and demonstrate its finite-sample performance in a series of Monte Carlo

experiments. We find a substantial decrease of power of the conventional cointegration tests with SE-

TAR adjustment caused by a shift in the slope coefficient of the equilibrium equation. The proposed test

performs superior in these situations. An application to the ‘rockets and feathers’ hypothesis provides

empirical support for this methodology.

Chapter 5, A Markov regime-switching model of crude oil market integration, is a joint paper

with Konstantin Kuck.1 This paper revisits the globalization-regionalization hypothesis for the world

crude oil market. We examine long-run equilibrium relationships between major crude oil prices – WTI,

Brent, Bonny Light, Dubai and Tapis – and focus on the adjustment behaviour following disequilibrium

states. We account for a changing adjustment behaviour over time by using a Markov-switching vector

error correction model. Our overall findings suggest that the crude oil market is globalized. Dubai turned

out to be the only weakly exogenous price in all regimes, indicating its important role as a benchmark

price. Furthermore, an interesting finding of our study is that the degree of market integration seems to

be connected to global economic uncertainty.

Chapter 6 summarizes the key findings, critically assesses the studies and provides concluding re-

marks.

1This article has been originally published as Kuck, K. and Schweikert, K. (2017): A Markov regime-switching model of
crude oil market integration, Journal of Commodity Markets, 6, 16–31.
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Chapter 2

Asymmetric price transmission in the US
and German fuel markets: A quantile
autoregression approach

1 Introduction

The relationship between upstream and downstream fuel prices is one of the most commonly studied top-

ics in asymmetric pricing. Starting with Bacon (1991) and Manning (1991), a steadily growing literature

has emerged (see, among others (Kaufmann and Laskowski, 2005; Grasso and Manera, 2007; Al-Gudhea

et al., 2007; Meyler, 2009; Douglas, 2010; Douglas and Herrera, 2010; Fosten, 2012)), trying to deter-

mine whether price decreases in upstream markets are adjusted in downstream markets differently to

price increases. Previous empirical studies find mixed evidence for price asymmetries depending on the

methodology used, on the country or regional market under investigation and on the stage of the supply

chain. Perdiguero-García (2013) conducts a meta-analysis of empirical studies on price asymmetries in

the oil market from 1991 until 2011. He finds that the research design contributes substantially to finding

asymmetries. Also, the level of competition seems to be a key factor for the existence of asymmetries in

the market.

Several concepts of asymmetry in price transmissions are found in the literature (see Meyer and

Cramon-Taubadel (2004) for a comprehensive survey on asymmetric pricing and Frey and Manera (2007)

for an overview of econometric approaches). The specific type of asymmetry we focus on in this paper is

long-run asymmetry, where we investigate the reaction times of a cointegrated system after equilibrium

errors. Because the cost function for retail fuel is primarily determined by the price of crude oil, we

expect fuel markets to be strongly vertically linked. Hence, upstream and downstream prices are expected

to maintain a long-run equilibrium which implies that either the upstream or the downstream prices have

to adjust in response to equilibrium errors. In this context, asymmetric pricing refers to a situation

in which the rate of price adjustment differs, depending on the size or the sign of the deviation from

equilibrium. Long-run asymmetry has a negative effect on consumer welfare if positive equilibrium

errors (downstream prices are too high relative to the long-run equilibrium) are not adjusted as quickly

as negative equilibrium errors (upstream prices are too high relative to the long-run equilibrium).

Most studies on asymmetric pricing are conducted under a similar framework: A long-run rela-
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tionship between upstream and downstream prices is estimated by least squares as the first step of the

Engle-Granger two-step cointegration procedure. The resulting residual process is separated into two

or more regimes and the speed of adjustment in each regime is measured. Significantly different ad-

justment rates over at least two regimes may be considered as evidence for long-term asymmetry in the

cointegrating relationship. The methodological aspects of testing for cointegration with threshold effects

have been developed by Enders and Siklos (2001). Although the latter framework is appealing due to

its straightforward implementation, it yields contradictory results in a number of studies.1 These am-

biguities may be related to difficulties for the researcher in correctly determining the boundaries of the

regimes. Chan (1993) postulates that searching over the set of possible threshold values so as to mini-

mize the sum of squared residuals yields a consistent estimate of the threshold parameter. However, it

is possible that multiple local extrema can be found and the global extremum might not necessarily be

the only reasonable parameter choice from an economic perspective. Additionally, it is not quite clear

how many regimes should be used to quantify the degree of asymmetric pricing. Taking into account

the existence of transaction costs, it might be reasonable to model the price adjustment process with

three regimes - one regime for small equilibrium errors with weak or insignificant adjustment and one

regime for large positive and negative equilibrium errors, respectively. However, the standard literature

on threshold cointegration (Enders and Siklos, 2001; Hansen and Seo, 2002) tends to restrict the analysis

to only two regimes. Therefore, a certain degree of subjective judgement is involved in all threshold

cointegration models.

Typically, the comparison of adjustment rates between regimes is based on a comparison of conditional-

means. Because the analysis is restricted to the mean behaviour of the residual process in each regime,

specifying the threshold parameter correctly exerts a substantial influence on the outcomes. Consider,

for instance, a residual process that exhibits gradually increasing mean-reversion starting with low mean-

reversion for negative deviations up to high mean-reversion for positive deviations, i.e. the adjustment

rates do not follow a piecewise linear step-function but rather a monotonically increasing continuous

function. In this case, the threshold cointegration approach is not able to produce robust results since

the aforementioned adjustment process requires a large number of regimes and hence a correspondingly

large number of thresholds to be estimated (Honarvar (2010)). Alternatively, the class of smooth tran-

sition autoregressive (STAR) models may be used for modelling nonlinear regime-dependent processes

(see (Terasvirta, 1994; van Dijk et al., 2002) for an overview). In particular, a logistic transition function

could provide an adequate fit for the above described process. However, the recent literature points to

severe identification problems associated with STAR models (Ekner and Nejstgaard (2013)).

In line with the majority of papers on the subject, we use Engle-Granger cointegration as a starting

point and focus on the mean-reversion of the residual process. But instead of piecewise linear models, we

propose a quantile autoregression model. This model expresses the τ-th conditional-quantile function of

the response as a linear function of the lagged values of the response. Using quantile autoregression, we

are able to analyze different parts of the response distribution and thereby use information that would not

be accessible in a conditional-mean paradigm. This is also done without separating the process into sub-

processes in a subjective manner. Since the equilibrium error series - obtained as least squares residuals

from the cointegrating regression - are centered around zero by construction, a natural interpretation for

the conditional-quantiles applies: Lower quantiles correspond to large negative deviations from the long-

1Compare for example the results in (Al-Gudhea et al., 2007; Douglas, 2010)
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run equilibrium and upper quantiles to large positive deviations. A comparison of quantile-dependent

autoregressive coefficients enables us to assess the degree of asymmetry more thoroughly.

We apply this new approach to price relationships in the US and German fuel markets. So far it has

not been possible to draw any conclusive statement about whether or not prices are adjusted asymmet-

rically in these fuel markets. We consider the two major fuel types, gasoline (regular grade for the US

market and Euro Super95 for Germany) and diesel, and follow the supply chain disaggregation by Grasso

and Manera (2007) to track the price transmission at the different stages of the production chain from

crude oil to retail prices. The German fuel market has a distinctly different market structure as compared

to the US market hence we seek to provide new insights as to how the potential asymmetries are formed.

This article provides two main contributions. First, we develop a new methodology that is able to

model asymmetric price adjustments in a more flexible way. Second, we apply this new methodology

to the US and German fuel markets and study the price transmission channel between different stages

of the supply chain. Comparing the results for two major fuel markets allows us to draw conclusions

on how the different market structures may be related to the potentially different degrees of asymmetric

price transmission.

The remainder of the paper is organized as follows. Section 2 summarizes the unique characteristics

of the US and German fuel markets. Section 3 outlines the quantile regression methodology by Koenker

and Xiao (2006) and discusses its applicability in a cointegration model for asymmetric pricing. In

Section 4 , we apply these techniques to assess the degree of asymmetric price transmission in the US

and German fuel markets and Section 5 offers a conclusion.

2 A brief description of the US and German fuel markets

Gasoline and diesel play a primary role in transportation and the economy in general. As liquid fuels,

they are derived from crude oil in a refinery process, are stored in fuel depots and are finally distributed

to local filling stations. To reveal the potentially asymmetric price transmission in the fuel markets, we

follow Grasso and Manera (2007) and analyze individual steps of the transmission chain. At the first

stage of the production chain, the price transmission occurs from crude oil to ex-refinery prices. We refer

to this as the first stage or refining stage price transmission. The second stage price transmission then

occurs when wholesale price changes affect the cost structure for retailers. We refer to this as the second

stage or distribution stage price transmission. The refined fuel is transported to the filling stations and

priced depending on the fuel grade. Additionally, we consider a single stage transmission, directly from

crude oil prices to retail prices. Concerning the retail price, one has to distinguish between prices that

exclude (PTD) and prices that include tax and duty (ITD). Hence, the taxation structure might have an

influence on whether price transmissions are asymmetric.

In this study, we examine two fuel markets which are geographically separated and feature distinct

market structures. The US fuel market is characterized by a large dependence on gasoline, with 137.8

billion gallons of gasoline consumption in 2010 whereas diesel consumption amounted to only 49.2

billion gallons (US Energy Information Agency (2015)). The share of diesel-engined retail car sales is

generally low in the US.2 The preference for gasoline can in parts be explained by a higher federal excise

tax burden on diesel fuel (24.4 cents per gallon) in comparison to gasoline (18.4 cents per gallon). State

2The share of diesel cars sales rose to an all-time high with 2.94% in 2009 but then dropped back down to 0.33% in 2012
(U.S. Department of Energy (2013): Transportation Energy Data Book Edition 32)

9



3 . A QUANTILE-DEPENDENT ERROR CORRECTION MECHANISM

and local state taxes and fees amount to a national average total of 49.44 cents per gallon for gasoline

and 55.41 cents per gallon for diesel (American Petroleum Institute (2017)). Diesel is almost exclusively

consumed by professional users (e.g. truck companies, heavy-duty machinery). Approximately 85% of

gasoline sold is of regular grade, therefore we do not consider midgrade and premium gasoline.

US refineries mostly use North American crude oil that is considered light and sweet making it a

high quality crude. The price for North American crude oil (WTI) is formed in a trading hub in Cushing,

Oklahoma. An ex-refinery price can be stated for the West coast (Los Angeles), East Coast (New York

Habor) and the Gulf Coast region. The retail price is then derived from a sample of filling stations

throughout the country.

Northern and Central European countries utilize primarily crude oils for which the North Sea crude

oil Brent serves as a benchmark. The crude oil production is delivered to the Antwerp-Rotterdam-

Amsterdam (ARA) oil hub and transported to nearby refineries. For the retail price of fuel we concentrate

on Germany as a major automotive market in Europe and analyze the country-specific fuel prices. A

Europe-wide analysis would only be feasible as a panel of individual country data (see Grasso and

Manera (2007) or Meyler (2009)) since the market structures and taxing schemes vary greatly. European

transportation relies much more on diesel-powered engines than the US. Around half of all new passenger

cars sold in 2013 were diesel-powered (Eurostat (2017)). Including industrial use, the overall diesel

consumption of 31.3 million tons in 2009 was higher than the gasoline consumption of 20.2 million tons

(Statista (2010)). The retail fuel tax in Germany is a compound of a fixed mineral oil tax (diesel 47.04

Cent per litre, gasoline 65.45 Cent per litre) and a value added tax applied to both the fuel itself and the

mineral oil tax.

3 A quantile-dependent error correction mechanism

The starting point for the empirical analysis of asymmetric price adjustments in this paper is the residual-

based cointegration framework developed by Engle and Granger (1987). Two individually integrated

time series, yt and xt , are said to be cointegrated if they form a linear combination that is stationary. In

our empirical application, yt describes the downstream price and xt corresponds to the upstream price. In

the first step, the long-run equilibrium equation

yt = β0 +β1xt + zt (2.1)

is estimated by least squares to obtain the cointegrating vector. In the second step, a stationarity test is

applied on the least squared residual series zt to ascertain whether the latter indeed constitutes a station-

ary equilibrium error.3 The ADF-type Engle-Granger cointegration test assesses the significance of the

reversion of the residual process towards its mean.

The majority of studies on asymmetric price adjustment focusses on the mean-reversion property of

the cointegration residuals. In order to allow for asymmetric adjustment, the residual process is divided

into sub-processes at one or more threshold values. Instead, we propose a quantile autoregression model

that is able to measure nonlinear effects in the adjustment process using repeated estimation of a linear

model. We assume an autoregressive process of order p and use the following linear function (see

3The disequilibirum series, although estimated, will be denoted zt for simplicity.
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Koenker and Xiao (2006)) for the residuals zt ,

zt = µ0 +α1,tzt−1 +α2,tzt−2 + · · ·+αp,tzt−p +ut (2.2)

with µ0 = E [θ0(Ut)], ut = θ0(Ut)− µ0 and α j,t = θ j(Ut) for j = 1, . . . , p. The θ j’s are real-valued

functions [0,1]→ R of standard uniform random variables Ut . The functions are unknown and have to

be estimated. ut is a sequence of independently identical distributed random variables with distribution

function F(·) = θ
−1
0 (·+µ0). The autoregressive coefficients α j,t depend on the quantile τ ∈ [0,1] of the

error term via the function θ j(Ut), allowing them to change from one period to the next.

The residual process zt is assumed to follow a globally covariance-stationary process under the alter-

native that is allowed to exhibit some locally persistent or even explosive behavior. However, significant

mean-reversion is required in some quantiles to ensure overall stability of the process. Estimation of

(2.2) requires solving

min
αt ∈Rp+1

[
∑

t∈{t:zt≥Xtαt}
τ|zt −Xtαt|+ ∑

t∈{t:zt<Xtαt}
(1− τ)|zt −Xtαt|

]
(2.3)

with Xt = (1,zt−1, . . . ,zt−p) and αt = (µ0,α1,t , . . . ,αp,t)
′ by using linear programming techniques (see

(Koenker and d’Orey, 1987; Portnoy and Koenker, 1997)).

The quantile autoregression can equivalently be written in the random-coefficient notation which will be

hereafter referred to as the QAR(p) model,

zt = µ0 +ρtzt−1 +
p

∑
j=1

γ j,t∆zt− j + εt (2.4)

where the additional p lags are included to accommodate the dynamics of the process. The analysis

continues to focus on the quantile-dependent autoregressive coefficient ρt or equivalently the mean-

reversion 1−ρt of the τth conditional-quantile of zt .4 Since we are interested in a quantile-dependent

error correction mechanism, we apply the QAR(p) model to the least squared residuals resulting from

the long-run equation in (2.1). The coefficient ρt is estimated for a sequence of quantiles so that the

mean-reversion behaviour can be studied for disequilibria of different signs and magnitudes.

3 .1 Testing for cointegration

We test for stationarity of the residual series zt by applying a modified version of the quantile unit root

test developed by Koenker and Xiao (2004). For that purpose, equation (2.4) is estimated for a range

of quantiles (in our case T = (0.01,0.02, . . . ,0.99)) and the t-statistic for the null hypothesis of no

cointegration, ρt(τ) = 1, is computed by

tn(τ) =
̂f (F−1(τ))√
τ(1− τ)

(Z−1
′P∆Z−1)

1/2(ρ̂t(τ)−1) (2.5)

4Note that the quantile autoregression should not be estimated in the mean-reversion notation since the application of the
nonparametric quantile function on the response ∆zt is not equivalent to the application on the response zt . The former could
be used to model momentum shifts in the adjustment process.
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where Z−1 is the vector of the lagged variable zt−1 and P∆ is the projection matrix onto the space orthog-

onal to ∆ = (1,∆zt−1, . . . ,∆zt−p)
′. ̂f (F−1(τ)) can be written as ̂f (F−1(τ)) = (τi− τi−1)/(Q̂zt (τi|Xt)−

Q̂zt (τi−1|Xt)) where Q̂zt (τi|Xt) represents the conditional-quantile of zt given the information set at point

t. The difference quotient, ̂f (F−1(τ)), estimates the conditional density of yt for some appropriately

chosen sequence of τ’s. Since the residual process maintains stationarity in the long-run despite the

fact that it may display persistence for some quantiles, we use a test statistic that focuses on the overall

mean-reversion. For that matter, we employ a quantile Kolmogorov-Smirnov test

QKS = sup |tn(τ)| (2.6)

for the t-ratios in (2.5). Large values of QKS signal a strong overall mean-reversion behaviour of the

residual process and should therefore lead to a rejection of the hypothesis of no cointegration.

The limiting distributions of the individual t-statistics are nonstandard so that we follow Koenker

and Xiao (2004) and use a re-sampling procedure for inference based on the QKS statistic. A bootstrap

design has to account for the fact that residuals from the cointegrating regression in (2.1) are used.

The existing literature on bootstrapping cointegrating regressions points to some difficulties related to

nuisance dependencies between the error term and the regressor(s) in the cointegrating regression (see

(Li and Maddala, 1997; Chang et al., 2006)). However, bootstrapping cointegrating regressions is mostly

used to test linear hypothesis on the cointegrating vector, whereas in our study we seek to test whether

the variables are cointegrated with a potentially time-varying mean-reversion behaviour. The error term

in (2.1) is not well defined under the null of no cointegration so that a contemporaneous dependence

structure between zt and the xt variable(s) cannot exist. We therefore propose a modification of the

bootstrap unit root test in Koenker and Xiao (2004) in order to make it applicable in cointegration testing.

In step (4) of the bootstrap algorithm (see below) the cointegrating regression is re-estimated to mimic

the data more closely. The algorithm then proceeds as follows:

(1) Fit the pth order autoregression

∆zt =
p

∑
j=1

η j∆zt− j +ut (2.7)

by least squares and obtain the parameter estimates η̂ j as well as the residuals ût .

(2) Draw iid variables u∗t from the centered residuals ût and generate ∆z∗t using the estimates from the

fitted autoregression so that

∆z∗t =
p

∑
j=1

η̂ j∆z∗t− j +u∗t . (2.8)

(3) Generate z∗t under the null restriction of a unit root

z∗t = z∗t−1 +∆z∗t (2.9)

with z∗1 = z1.

(4) Regard the exogenous cointegration variables as fixed and generate y∗t = β̂0 + β̂1xt + z∗t . Estimate

y∗t = β
∗
0 +β

∗
1 xt + z∗∗t (2.10)
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by least squares and obtain the residuals z∗∗t .

(5) Estimate

z∗∗t = µ0 +ρtz∗∗t−1 +
p

∑
j=1

γ j,t∆z∗∗t− j + εt (2.11)

to obtain the bootstrap estimates and test statistics.

The bootstrap estimates for QKS allow to construct p-values for the empirically observed statistic. If the

QKS test confirms global stationarity of the residuals we assume a long-run cointegrating relationship

and proceed with the analysis of the degree of asymmetry in the adjustment path, especially as to how

the mean-reversion parameter differs for different signs and sizes of the shock.

3 .2 Testing for quantile effects

Inferential evidence for an asymmetric adjustment behavior is obtained by evaluating the difference in

the autoregressive coefficients across quantiles. Least squares residuals are centered around zero by

construction so that lower quantiles of zt refer to large negative and upper quantiles of zt to large positive

deviations. Thus we seek to test the equality of two autoregressive coefficients at the left and right tail

of the conditional distribution, for example, according to the null hypothesis H0 : ρt(τ5) = ρt(τ95) or

more generally, we compare a range of coefficients across quantiles with H0 : ρt(τ5) + · · ·+ ρt(τl) =

ρt(τu)+ · · ·+ρt(τ95). In both cases, we use a Wald statistic that imposes the corresponding restrictions

on the coefficients. The computation of the test statistic requires estimation of the covariance matrix of

the estimators.

Cointegration residuals, although covariance-stationary, potentially display a large degree of depen-

dence. Therefore, to account for potentially autocorrelated errors in (2.4), we suggest a block bootstrap-

ping procedure to estimate the covariance matrix.5 Evaluating the Wald statistic becomes a direct test for

asymmetric adjustment in the cointegration relationship.6

Furthermore, we are interested in a comparison of the quantile-dependent coefficients with the

conditional-mean coefficient. The corresponding null hypothesis of the constancy of the autoregres-

sive coefficient can be formulated as ρt(τi) = ρM for all τi ∈ [τL,τU ] = T , where ρM is the least squares

estimate for ρ in (2.4). Following Bera et al. (2014), we estimate a sequence of Wald tests with the null

hypothesis ρt(τi) = ρM and compute a Kolmogorov-Smirnov type statistic. The practical application

requires an estimate of the joint covariance matrix for the QAR- and AR-parameters. For that purpose

we use the above outlined block bootstrap set-up and include the calculation of the least squares estimate

for ρM. Through resampling we can then calculate the bootstrap variance for ρM and subsequently the

covariance, cov(ρM,ρt(τi)) for L ≤ i ≤U . The Wald statistic is computed for each i. To evaluate the

resulting Wald process, we consider the supremum statistic,

Wn := sup
τ∈T

W (τ), (2.12)

5We intend to retain the dependence structure of the data by choosing a replication with an average block length of l = 2m
where m is the most distant lag that still shows a significant impact in the autocovariance function of zt (see Politis and Romano
(1994)). We use 600 replications of the disequilibrium series zt to estimate the covariance matrix.

6The interpretation of the quantile approach, unfortunately, suffers from subjective decision-making in that we have to
determine which across-quantile comparison are most relevant. For the empirical part, we therefore display a battery of Wald
tests as well as plots of the estimates of ρt to depict the adjustment behaviour as accurately as possible.
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where Wn does not follow a standard χ2
p-distribution. The proposed method in Bera et al. (2014) uses an

approximation by Davies (1987) that provides an upper boundary for the p-value. The boundary takes

the form of

Pr(Wn > u)≤ Pr(χ2
p > u)+

u
p−1

2

e
u
2 2

p
2 Γ( p

2 )

∫
T

E

∣∣∣∣∣∂W
1
2 (τ)

∂τ

∣∣∣∣∣dτ (2.13)

where p denotes the number of restrictions. Davies (1987) estimates
∫
T E

∣∣∣∣ ∂W
1
2 (τ)

∂τ

∣∣∣∣dτ from the total

variation of the Wald process,

V =
∣∣∣W 1

2 (τ1)−W
1
2 (τL)

∣∣∣+ ∣∣∣W 1
2 (τ2)−W

1
2 (τ1)

∣∣∣+ · · ·+ ∣∣∣W 1
2 (τU)−W

1
2 (τk)

∣∣∣ , (2.14)

where τ1,τ2, . . . ,τk are the turning points of W
1
2 (τ) and L and U are the lower and upper bound of τ ,

respectively.

3 .3 Monte Carlo simulation results

In this section, we use Monte Carlo experiments to examine the properties of the modified QKS test

applied to residuals of a cointegrating regression. The Engle-Granger cointegration test based on the ADF

statistic and the threshold cointegration test with TAR adjustment serve as benchmarks. We generate

series of length T ∈ {100,500} according to the model

yt = 5+2xt +ut ut = ρtut−1 +ϑt ϑt ∼ N(0,1)

xt = xt−1 + εt εt ∼ N(0,1)
(2.15)

to investigate the empirical size and power of the cointegration tests and discard additional 100 obser-

vations to randomize initial values. The theoretical justification of the Monte Carlo approach rests on

asymptotic results which means that the number of replications, R, should be large for the Monte Carlo

experiment to approximate the distribution of a test statistic. However, the QKS test involves a bootstrap

procedure and the number of bootstrap replications B are required to be large for the test to be valid.

Therefore, a Monte Carlo experiment concerned with bootstrap procedures has to fulfil B,R→ ∞. As-

suming that the number of bootstrap replications is fixed at B = 600, every added Monte Carlo iteration

contributes multiplicatively to the overall computational cost. To avoid this inefficiency, we refer to the

‘Warp-speed’ bootstrap described by Giacomini et al. (2013). The authors provide formal results that it

is sufficient to use only one bootstrap replication in each Monte Carlo replication. The critical values

are then computed from the empirical distribution of the R bootstrap test statistics. We draw R = 5,000

replications from (2.15) in each experiment.

Setting ρt = ρ = 1 gives the empirical size of the tests. We compare the power of the tests according

to four different choices of the autoregressive coefficient ρt : First, we consider constant adjustment

ρt = ρ = 0.9. Second, we generate data according to threshold autoregressive adjustment

ρt =

ρ1 = 0.95 ut−1 ≥ 0

ρ2 = 0.75 ut−1 < 0
(2.16)

where negative shocks are adjusted at a faster rate. Finally, we specify a quantile-dependent adjustment
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behaviour. For that matter, we set ρt = θ(ϑt) = min{c+F(ϑt),0.95}, c ∈ {0.7,0.8.0.9}, where F(·)
is the standard-normal cumulative distribution function. The speed of adjustment is inversely related to

the magnitude of shocks with an upper boundary of ρt = 0.95. Furthermore, we use the specification

ρt = θ̃(ϑt) = min{c+F(ϑt),1}, c ∈ {0.5,0.6.0.7}. This specification allows for persistence in case of

large positive shocks and moderate mean-reversion for negative shocks.7

Table 2.1: Empirical size and power of the cointegration tests.

T = 100 T = 500

ρt EG TAR QKS QKS∗ EG TAR QKS QKS∗

1 0.054 0.055 0.036 0.078 0.050 0.050 0.050 0.069

0.9 0.218 0.229 0.067 - 1 1 0.814 -

0.95
0.75 0.217 0.246 0.078 - 0.998 1 0.738 -

θ(ϑt)
c = 0.7 0.168 0.178 0.114 - 0.996 0.999 0.995 -
c = 0.8 0.119 0.122 0.055 - 0.959 0.961 0.825 -
c = 0.9 0.103 0.103 0.048 - 0.879 0.880 0.287 -

θ̃(ϑt)
c = 0.5 0.359 0.392 0.345 - 1 1 1 -
c = 0.6 0.190 0.202 0.242 - 0.987 0.992 1 -
c = 0.7 0.101 0.104 0.132 - 0.786 0.786 0.998 -

Note: EG denotes the Engle-Granger test. TAR denotes the threshold cointegration test with TAR adjustment. The quantile unit root test by
Koenker and Xiao (2006), QKS∗, without a modification for the use of cointegration residuals is only reported for the size experiment. The
QKS test is accommodated for small sample sizes, i.e. we estimate the deciles for T = 100 instead of percentiles for T = 500.

The results are reported in Table 2.1. We find that the modified QKS test is slightly undersized

for small sample sizes but has correct size for T = 500. The quantile unit root test by Koenker and

Xiao (2006) without a modification for the use of cointegration residuals is still oversized for T = 500.

The QKS test lacks power in situations of constant or TAR adjustment. Changing the autoregressive

parameter ρt to a quantile-dependent adjustment scheme does not lead to a superior performance of the

QKS test compared to the benchmark cointegration tests if a mean-reversion tendency is assured over

the whole distribution of shocks. However, the QKS test clearly outperforms the Engle-Granger and

threshold cointegration tests if large positive shocks persist.

4 Empirical analysis

Economic theory strongly suggests that a cointegrating relationship between prices of upstream and

downstream fuel markets exists since the prices of downstream goods are largely influenced by upstream

prices. Meyler (2009) decomposes EU petrol and diesel prices from 2008 and finds that 75% of petrol and

7Using the symmetry of the standard-normal distribution, we can easily generate data so that positive shocks are reverted
and large negative shocks persist. The autoregressive coefficient ρt then follows the function θ(ϑt) = min{c+F(−ϑt),1}.
However, the results are virtually identical.

15



4 . EMPIRICAL ANALYSIS

62% of diesel are accounted for by the crude oil price. The decomposition for the US fuel market shows

a similar result with crude oil accountable for 72% of petrol and 61% of diesel prices. It is therefore not

unrealistic to assume that crude oil and fuel prices share a common stochastic trend. In what follows,

we will first have to test the individual series for their order of integration. After confirmation of their

I(1) property, we will estimate the first step of the Engle-Granger cointegration procedure to obtain

the equilibrium error series zt on which we will then apply the above outlined quantile autoregression

approach to cointegration.

4 .1 Data, unit root and cointegration tests

Our data cover the period from January 1999 until November 2013 with weekly observations. For the

crude oil price we use WTI as a proxy for the North American market and Brent for the European mar-

ket.8 Both series are taken from the Federal Reserve Economic Database (FRED) and are converted

into cents per litre in their respective currencies. The US ex-refinery price for Los Angeles, New York

Habor and the Gulf Coast as well as the retail prices for gasoline and diesel are obtained from DATAS-

TREAM. We use the spot prices at the ARA oil hub for the ex-refinery prices in Europe. Since regular

gasoline is rarely used in Europe, we focus on premium gasoline. Gasoil, a prestage for diesel, serves as

the proxy for the ex-refinery diesel price. The German gasoline (Super95) and diesel prices with taxes

excluded/included (PTD/ITD) are taken from the Weekly Oil Bulletin of the European Commission.

The prices for crude oil and its derivatives experienced a sudden slump during the financial crisis.

This break in the series may influence the rejection frequency of unit root tests which do not account for

structural breaks and could lead to a false rejection of a unit root. Therefore, we choose the unit root test

by Busetti and Harvey (2001) which allows for a structural break in the intercept as well as in the slope

coefficient in both the null hypothesis and alternative. The test is based on the KPSS framework which

tests for random walk components while assuming (trend-) stationarity with a potential break under the

null hypothesis. The results for the Busetti-Harvey (BH) test suggests a unit root in all available series.9

The differenced time series are deemed stationary in all cases. The results of the unit root tests are

depicted in Table 2.2.10

Next, we estimate the cointegrating regressions (2.1) for each stage of the price transmission and

test for the stationarity of the residual process zt , using the EG test and the modified QKS test. Since

prices of US retail fuel excluding tax and duty are not available, we estimate the second stage and single

stage for the US and German fuel market directly for prices that are observed at the pump. Hence,

we use a log-transformation of the prices in these regressions to capture the fact that the mark-up is

increasing in costs due to the value added tax.11 However, this does not allow to isolate the effects of

the taxation structure. To further investigate this issue, we compare the results for German ITD prices

with the German PTD prices (see Subsection 4 .3). The mark-up for spot fuel prices and retail prices

8The properties of different crude oil benchmarks have been discussed in the literature (see Fattouh (2006) for an extensive
exposition) WTI and Brent have been chosen since they are the crude oils primarily utilized in US and European refineries,
respectively. However, switching the benchmarks or using a third benchmark (Dubai) instead, did not change the qualitative
interpretation of our results.

9Estimated breakpoints become irrelevant if the null hypothesis is rejected
10The unit root test results for log-transformed prices lead to the same test decision but are not reported here to conserve

space.
11Estimating the cointegration regressions in a linear specification yields qualitatively identical results for the asymmetry

patterns.
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Table 2.2: Unit root tests of individual price series.

BH ADF

ξ (l) break t-stat lags

Crudes

Brent 0.204∗∗∗ 02/2002 ∆ Brent −19.50∗∗∗ 1
WTI 0.103∗∗∗ 02/2005 ∆ WTI −20.88∗∗∗ 1

Ex-refinery prices

Diesel (ARA) 0.206∗∗∗ 02/2004 ∆ Diesel (ARA) −18.87∗∗∗ 1
Gasoline (ARA) 0.199∗∗∗ 06/2011 ∆ Gasoline (ARA) −19.37∗∗∗ 1
Diesel (US) 0.156∗∗∗ 10/2004 ∆ Diesel (US) −18.94∗∗∗ 1
Gasoline (US) 0.125∗∗∗ 09/2004 ∆ Gasoline (US) −20.58∗∗∗ 1

Retail prices

Diesel (US) 0.154∗∗∗ 10/2004 ∆ Diesel (US) −10.58∗∗∗ 2
Gasoline (US) 0.140∗∗∗ 10/2004 ∆ Gasoline (US) −9.89∗∗∗ 2
Diesel (GER) 0.136∗∗∗ 05/2009 ∆ Diesel (GER) −20.86∗∗∗ 1
Gasoline (GER) 0.100∗∗∗ 02/2009 ∆ Gasoline (GER) −19.51∗∗∗ 1

PTD retail prices

Diesel (GER) 0.228∗∗∗ 09/2009 ∆ Diesel (GER) −21.06∗∗∗ 1
Gasoline (GER) 0.182∗∗∗ 04/2011 ∆ Gasoline (GER) −19.86∗∗∗ 1

Note: BH denotes the Busetti-Harvey test. The BH test equation includes a constant and a linear time trend. Critical values are 10%: 0.033,
5%: 0.041, 1%: 0.054. The ADF test equation includes a constant. The number of lags is based on the Bayesian Information Criterion (BIC).
Critical values are 10%: −2.57, 5%: −2.86, 1%: −3.43.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

excluding tax and duty does not increase in costs, hence we use a linear specification in these instances.12

The results are presented in Table 2.3.

The cointegration tests indicate an overall mean-reversion behaviour, with the exception of the Ger-

man diesel spot/diesel ITD relationship where we find evidence for EG cointegration but cannot reject

the null hypothesis of no quantile-dependent cointegration. This discrepancy can be explained with the

Monte Carlo simulation results in Subsection 3 .3 in which the QKS test has lower power than the EG

test if adjustment is symmetrical. We therefore conjecture the residual process zt to be a globally sta-

tionary process which implies a cointegrating price relationship. In the next section, we proceed with the

estimation of the quantile autoregressive model and test the resulting quantile-dependent coefficients for

their degree of asymmetry.

4 .2 Quantile autoregression results

For the empirical analysis, we apply the QAR(p) model in (2.4) to US fuel market data and German fuel

market data. The residuals in both cases originate from the estimates of the long-run equilibrium equation

(2.1). We use the modified Barrodale and Roberts algorithm for the quantile regression (Koenker and

d’Orey (1987)). The estimated quantile-dependent coefficients are plotted for quantiles between 0.05

and 0.95 (see Figure 2.1 and Figure 2.2). The remaining quantiles are not displayed since solving (2.3)

results in increasingly inaccurate estimates for tail quantiles and the overall pattern is already sufficiently

revealed by the constrained quantile sequence.

12Likewise, a log-specification does not alter the results substantially.
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Table 2.3: Estimates of the equilibrium equations and residual-based cointegration tests.

Intercept Slope EG QKS

First stage

DieselARA 1.096 1.128 −5.377∗∗∗ 10.360∗∗∗

GasolineARA 3.412 1.149 −6.609∗∗∗ 8.603∗∗∗

DieselUS −2.967 1.289 −5.095∗∗∗ 6.183∗∗

GasolineUS 0.919 1.130 −6.278∗∗∗ 10.530∗∗∗

Second stage

DieselGER 3.034 0.469 −4.311∗∗∗ 4.949
GasolineGER 3.467 0.381 −4.769∗∗∗ 6.016∗∗

DieselUS 1.576 0.693 −7.408∗∗∗ 6.907∗∗

GasolineUS 1.591 0.682 −10.040∗∗∗ 9.714∗∗∗

Single stage

DieselGER 3.123 0.464 −4.654∗∗∗ 5.581∗

GasolineGER 3.658 0.352 −5.132∗∗∗ 6.365∗∗

DieselUS 1.474 0.755 −5.384∗∗∗ 7.555∗∗

GasolineUS 1.690 0.681 −5.716∗∗∗ 5.751∗∗

Note: EG denotes the Engle-Granger test. The number of lags is based on the Bayesian Information Criterion (BIC). Critical values are
taken from MacKinnon (2010), 10%: −3.05, 5%: −3.35, 1%: −3.91. QKS denotes the modified quantile Kolmogorov-Smirnov test with 600
bootstrap replications.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

We begin with the first stage of the price transmission chain in the US market. We restrict the empir-

ical analysis to the Gulf coast prices since the US refinery industry is concentrated in this region.13 The

estimated autoregressive coefficients (ρt) for disequilibria series of the diesel/WTI and gasoline/WTI

relationships are plotted in the upper panel of Figure 2.1. We observe a upward-sloping curve for the

quantile-dependent coefficients in both relationships. The estimated autoregressive coefficient is visibly

smaller than one for lower quantiles, corresponding to large negative deviations. This means that dis-

equilibria induced by crude oil prices that are higher in relation to the ex-refinery prices are adjusted

relatively fast over time. Conversely, the point estimates for upper quantiles are close to one indicating

that adjustment is slow when crude oil prices are too low.

Generally, the speed of pass-through is quite slow (see Table 2.4). The half-life period (50% of pass-

through reached) of shocks to the diesel/WTI relationship is 7.9 weeks for negative deviations from the

long-run equilibrium (25% quantile) and 44.6 weeks for positive deviations from the long-run equilib-

rium (75% quantile). 90% of a shock is passed through after 26.2 weeks for negative deviations and

148 weeks for positive deviations. Correspondingly, the half-life period of shocks to the gasoline/WTI

relationship is 5.4 weeks for negative deviations and 48.8 weeks for positive deviations while 90% of the

shock is passed through after 17.9 weeks for negative deviations and 162 weeks for positive deviations.

Interestingly, the point estimates indicate that extreme positive shocks are not reverted at all. The

QAR(p) model in principle allows for a locally persistent or locally explosive behavior of zt as long

as the disequilibrium process is globally mean-stationary. However, in this case the confidence bands

13The results for Los Angeles and New York Habor prices display a similar pattern.
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Figure 2.1: Estimation results for the quantile-dependent adjustment coefficient ρt(τ) in the US fuel market. The
upper panel, middle panel and lower panel display the first stage, second stage and single stage, respectively.
Diesel prices are on the left and gasoline prices are on the right. Shaded areas correspond to a 95% bootstrap

confidence interval.

for tail quantiles are relatively wide and include values below one so that we do not find significant

statistical evidence for a lack of adjustment. A notion which is supported by the results of the EG and

QKS cointegration test rejecting the null of no cointegration for all first stage relationships (Table 2.3).

The point estimates for gasoline (right panel) show slightly stronger asymmetric behaviour than the
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Table 2.4: Pass-through of long-run equilibrium shocks in weeks.

lower tail upper tail

50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

First stage

DieselARA 4.5 5.9 7.8 10.4 14.9 253 335 440 588 842
GasolineARA 3.6 4.8 6.3 8.4 12.0 10.2 13.5 17.7 23.7 33.9
DieselUS 7.9 10.4 13.7 18.3 26.2 44.6 58.9 77.4 104 148
GasolineUS 5.4 7.1 9.4 12.5 17.9 48.8 64.6 84.8 113 162

Second stage

DieselGER 13.9 18.3 24.1 32.2 46.0 7.9 10.5 13.8 18.4 26.3
GasolineGER 16.4 21.7 28.5 38.2 54.6 6.4 8.5 11.1 14.9 21.3
DieselUS 3.9 5.2 6.8 9.0 12.9 4.4 5.9 7.7 10.3 14.8
GasolineUS 2.9 3.8 5.0 6.7 9.5 3.1 4.1 5.4 7.2 10.3

Single stage

DieselGER 8.1 10.7 14.1 18.8 26.9 6.5 8.6 11.3 15.1 21.6
GasolineGER 9.6 12.7 16.6 22.2 31.8 5.0 6.7 8.8 11.7 16.7
DieselUS 5.2 6.9 9.1 12.1 17.4 8.7 11.5 15.1 20.2 27.0
GasolineUS 6.0 8.0 10.5 14.0 20.0 7.3 9.6 12.7 16.9 24.2

Note: The pass-through durations for the lower tail are based on the 25% conditional-quantile estimations, while the upper tail results are
estimated based on the 75% quantile. The durations are computed for the hypothetical case that the quantile-dependent adjustment coefficients
stay at the 25% (75%) quantile. It needs to be emphasized that this situation is unrealistic since the coefficients are allowed to change every
period.

point estimates for diesel (left panel). The supremum Wald test for equality of conditional-mean and

quantile effects, depicted in Table 2.5, signals that the quantile-dependent coefficients are significantly

different from the coefficients of the conditional-mean model only for gasoline/WTI. A comparison of

the tails of the distribution points towards a strong asymmetry for diesel and gasoline. This is in line with

the graphical illustration. The results for the first stage suggest that the refinery sector is able to delay

the pass-through of price decreases in the US crude oil market, while price increases are passed through

at a significantly faster rate.

In the second stage, we analyze the transmission from ex-refinery prices to retail prices at the pump.

The point estimates, depicted in the middle panel of Figure 2.1, are more concentrated around the base-

line conditional-mean value. The conditional-mean estimates indicate that shocks are passed through

faster in the gasoline market than in the diesel market. The half-life period of shocks to the diesel/ex-

refinery relationship is 3.9 weeks for negative deviations and 4.4 weeks for positive deviations. The

half-life period of shocks to the gasoline/ex-refinery relationship is 2.9 weeks for negative deviations

and 3.1 weeks for positive deviations. The supremum Wald test supports the hypothesis that the quan-

tile effects are not statistically different from the conditional-mean effect and a comparison at the tails

indicates no asymmetries.

In the single stage transmission process, we find a slightly upward-sloping curve for the diesel/WTI

20



CHAPTER 2. ASYMMETRIC PRICE TRANSMISSION IN THE US AND GERMAN FUEL
MARKETS: A QUANTILE AUTOREGRESSION APPROACH

Table 2.5: Supremum Wald test for equality of mean and quantile effects and single Wald tests for
equality of the autoregressive coefficients across quantiles.

Wn W (τ15 = τ85) W (τ10 = τ90) W (τ5 = τ95) W (R1) W (R2)

First stage

DieselARA 17.00∗∗∗ 16.07∗∗∗ 15.34∗∗∗ 12.55∗∗∗ 14.17∗∗∗ 15.54∗∗∗

GasolineARA 10.36∗∗ 7.46∗∗∗ 6.99∗∗∗ 9.54∗∗∗ 8.63∗∗∗ 8.37∗∗∗

DieselUS 6.58 5.48∗∗ 5.87∗∗ 5.34∗∗ 6.47∗∗ 6.80∗∗∗

GasolineUS 18.37∗∗∗ 7.99∗∗∗ 12.44∗∗∗ 13.72∗∗∗ 17.07∗∗∗ 14.30∗∗∗

Second stage

DieselGER 2.27 0.64 1.72 0.59 0.95 1.05
GasolineGER 6.30 2.10 2.63 1.94 2.68 2.73∗

DieselUS 1.89 0.84 0.14 0.16 0.18 0.31
GasolineUS 3.97 0.07 0.28 0.27 0.04 0.17

Single stage

DieselGER 3.55 0.00 0.16 0.00 0.07 0.03
GasolineGER 6.73 0.88 1.56 6.18∗∗ 3.11∗ 2.14
DieselUS 4.54 1.94 1.40 1.94 1.43 1.43
GasolineUS 3.59 0.06 0.29 0.00 0.06 0.08

Note: Wn denotes the supremum Wald test for equality of mean and quantile effects with null hypothesis ρM = ρt(τ5) = ρt(τ6) = · · ·= ρt(τ95).
The Wald tests W (τ15 = τ85), W (τ10 = τ90) and W (τ5 = τ95) test the null hypothesis ρt(τ15) = ρt(τ85), ρt(τ10) = ρt(τ90) and ρt(τ5) = ρt(τ95),
respectively. W (R1) corresponds to a Wald test under the hypothesis ρt(τ5)+ · · ·+ρt(τ9) = ρt(τ91)+ · · ·+ρt(τ95) and W (R2) to a Wald test
under the hypothesis ρt(τ5)+ · · ·+ρt(τ14) = ρt(τ86)+ · · ·+ρt(τ95).
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

relationship while the estimated quantile-dependent adjustment coefficients for the gasoline/WTI rela-

tionship coincide with the conditional-mean estimate (lower panel in Figure 2.1). The supremum Wald

test for equality and the asymmetry tests do not reveal any asymmetries at reasonable significance levels.

As expected, the speed of adjustment is slower than in the second stage. 50% (90%) of a shock to the

diesel/WTI relationship is adjusted after 5.2 (17.4) weeks for negative deviations and 8.7 (28.9) weeks

for positive deviations, while 50% (90%) of a shock to the gasoline/ex-refinery relationship is 6.0 (20.0)

weeks for negative deviations and 7.3 (24.2) weeks for positive deviations.

We now turn to the German fuel markets. The quantile-dependent adjustment coefficients in the

first stage transmission are depicted in the upper panel of Figure 2.2 and show a similar pattern com-

pared to their US counterparts. Gasoil and premium gasoline at the ARA hub display a steep upward-

directed slope. Since the null hypothesis of equality of the conditional-mean coefficient and all quantile-

dependent coefficients is rejected, we find significant quantile effects. Also, the across quantiles com-

parison are highly significant. The half life of shocks to the gasoil/Brent relationship is 4.5 weeks for

negative deviations and 254 weeks for positive deviations. This means that large positive deviations are

not effectively adjusted by the system. Premium gasoline is adjusted at a faster rate so that we estimate

the half life of shocks to the premium gasoline/Brent relationship to be 3.6 weeks for negative deviations

and 10.2 weeks for positive deviations.

A possible source for the strong signs of asymmetry in the first stage in Europe and the US might

be the fact that the oil refinery market has a relatively small number of competitors due to the capital-
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Figure 2.2: Estimation results for the quantile-dependent adjustment coefficient ρt(τ) in the German fuel market.
The upper panel, middle panel and lower panel display the first stage, second stage and single stage, respectively.

Diesel prices are on the left and gasoline prices are on the right. Shaded areas correspond to a 95% bootstrap
confidence interval.

intensive nature of this industry. In 2013, the refining capacity of the US was spread across 57 refinery

companies operating 139 refineries (US Energy Information Agency (2013)), while 106 refineries were

operated in Europe (FuelsEurope (2014)). Large vertically integrated operations which are involved in

several upstream activities might also reduce competition. Additionally, the price formation process in
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the crude oil and fuel spot markets is unusual. The product is sold in large quantities and trading in

the ex-refinery petroleum market depends highly on the benchmark prices provided by price reporting

agencies (PRA). Platts, the leading PRA, collects prices by a window or market-on-close process (MOC)

in which bids, offers and the trade volume are assessed and prices are published as an end-of-day value.

The system has been harshly criticized lately since it rests on voluntary and selective disclosure as well

as subjective judgement of the PRA. Even without proclaiming intentional manipulation or collusive

action, the MOC price formation is far from a full information pricing and opens up opportunities for

delayed price reactions.

The second stage transmission does not reveal significant asymmetries. The quantile-dependent

adjustment coefficients are depicted in the middle panel of Figure 2.2. The point estimates suggest that, in

contrast to expectations, negative deviations are adjusted at a faster rate which corresponds to a situation

in which the customers experience an immediate retail price decrease caused by lower crude oil prices,

but price increases are delayed. However, the null hypothesis of the quantile effects and asymmetry tests

cannot be rejected. The conditional-mean adjustment rates of Super95 and diesel are very similar while

the conditional-quantile curve is slightly steeper for Super95. The half life of shocks to the diesel/gasoil

relationship is 13.9 weeks for negative deviations and 7.9 weeks for positive deviations. The half life

of shocks to the Super95/premium gasoline relationship is 16.4 weeks for negative deviations and 6.4

weeks for positive deviations.

The results for the single stage are depicted in the lower panel of Figure 2.2 and whereas the curve is

almost flat for diesel, we find a slightly downward-sloping curve for Super95. Equality across quantiles

can be rejected only for extreme quantiles. 50% (90%) of a shock to the diesel/Brent relationship is

adjusted after 8.1 (26.9) weeks for negative deviations and 6.5 (21.6) weeks for positive deviations while

50% (90%) of a shock to the Super95/Brent relationship is adjusted after 9.6 (31.8) weeks for negative

deviations and 5.0 (16.7) weeks for positive deviations.

The results in this section are robust to a sample split at the time of the financial crisis. Furthermore,

we find only minor violations of the monotonicity requirement on the conditional-quantile functions (see

(Koenker and Xiao, 2006; Chernozhukov et al., 2010)).

4 .3 Effects of the taxation structure on fuel price transmissions

In contrast to the US market, fuel prices excluding tax and duty are available for the German market.

Hence, we are now able to investigate whether the tax structure masks any asymmetries in the distribution

stages. Greenwood-Nimmo and Shin (2013) study fuel price adjustments in the UK and find that the tax

structure masks asymmetries at the pump. However, the UK uses an escalator type fuel duty policy which

is different from the fixed sum mineral oil tax in Germany. It is therefore of interest to find out whether

the same difference between PTD and ITD prices exist in the German fuel market.

The cointegration equation for PTD prices is estimated in a linear specification and the results for

the second stage and single stage are displayed in the upper and lower panel of Figure 2.3, respectively.

The results reveal differences in PTD and ITD prices. Prices before tax and duty are adjusted at a faster

rate than prices at the pump. In case of diesel, the half life of shocks in the second stage (single stage) is

3.1 (2.5) weeks for negative deviations and 1.8 (4.2) weeks for positive deviations. For Super95, the half

life of shocks in the second stage (single stage) is 2.0 (5.0) weeks for negative deviations and 1.6 (3.6)

weeks for positive deviations.
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5 . CONCLUSION

In the second stage, we find downward-sloping conditional-quantile curves for diesel and Super95,

but only the differences across quantiles for Super95 are statistically significant. The reaction to increases

in production costs and subsequent adjustment of retail prices seem more difficult in the Super95 market.

A higher price elasticity of demand for gasoline could imply that customers postpone refuelling their

cars when they use them for expendable activities or they switch to alternative modes of transportation.

This pattern is not found in the single stage where the conditional-quantile curve is again upward-sloping

for diesel and almost flat for Super95. Although it seems that the tax structure in Germany slows down

the adjustment rates, we find no evidence that it allows retailers to delay prices decreases.

5 Conclusion

The quantile autoregression approach to asymmetric pricing in the US and German fuel markets leads to

new insights about the pricing mechanisms. Using quantile regression techniques, we are able to quantify

the degree of asymmetric price transmission without explicitly specifying distinct regimes and estimating

the associated threshold values, or without specifying a particular parametric smooth transition frame-

work. Therefore, the estimations are free of subjectivity and the employed model is parsimonious in

nature. Applying this methodology to two large, geographically separated fuel markets, we are able to

relate potential similarities or differences in the empirical findings to the specific structures of the two

markets.

Our results highlight the importance of separating the price transmission chain in individual steps.

The price transmission at the second stage and single stage turn out to be mostly symmetric, while we

find evidence for a strong degree of asymmetry in the first stage of both markets. This finding might be

related to indirect price discovery through a price reporting agency. Furthermore, the literature points to

oligopolistic structures and the storage capacity to have some influence on the price transmission process

from crude oil prices to the fuel spot markets (Bacon, 1991; Manning, 1991; Kaufmann and Laskowski,

2005). However, we are not able to identify the source of asymmetry in this paper and leave this open

for further research.

Interestingly, the asymmetries vanish when we turn to the direct adjustment from crude oil to prices

at the pump. This is a surprising result considering that the meta-analysis by Perdiguero-García (2013)

reports a greater likelihood of price asymmetries for the retail price segment. A contributing factor might

be the fact that we use prices at the pump which include tax and duty. Further analysis of German fuel

prices excluding tax and duty reveals a more rapid pass-through. The design of the tax structure seems to

contribute to slower reaction times of fuel prices to oil price changes. In terms of asymmetric adjustment

behaviour, the retail fuel prices in Germany show a pattern which contradicts the widespread perceptions.

Indeed, not the decreases in fuel spot prices are adjusted at a slower rate but rather the increases appear to

be delayed. This has a positive effect on customer welfare and signals a highly competitive fuel market.

However, the differences in pass-through are only statistically significant for retail gasoline prices.

For the US retail fuel market, we find no statistically significant asymmetry in both gasoline and

diesel. This has to be considered a surprising result in the context of previous studies that argue for

market power as a possible explanation for empirically observed asymmetric adjustments (Fosten (2012)

and Perdiguero-García (2013)). Although the smaller diesel demand side consists almost exclusively of

professional users and small-scale enterprises which are usually not able to delay their purchase in times
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of increasing fuel prices, we find no evidence that retailers are able to exploit the market structure.

In summary, it can be stated that fuel spot prices are asymmetrically adjusted to crude oil prices both

in Europe and the US but we find no convincing evidence that those asymmetries are passed on to the

retail fuel markets.
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Figure 2.3: Estimation results for the quantile-dependent adjustment coefficient ρt(τ) in the German fuel market
(excluding tax and duty). The upper panel and lower panel display the second stage and single stage, respectively.

Diesel prices are on the left and gasoline prices are on the right. Shaded areas correspond to a 95% bootstrap
confidence interval.
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Table 2.6: Additional estimations and tests for German fuel prices excluding tax and duty.

Intercept Slope EG QKS Wn W (τ15 = τ85) W (τ10 = τ90) W (τ5 = τ95) W (R1) W (R2)

Second stage

DieselGER 7.774 1.098 −8.672∗∗∗ 6.970∗∗ 11.59∗∗ 4.15∗∗ 4.19∗∗ 4.55∗∗ 4.29∗∗ 6.13∗∗

GasolineGER 7.232 0.945 −9.413∗∗∗ 9.252∗∗∗ 5.05 3.58∗ 4.14∗∗ 2.02 3.08∗ 3.66∗

Single stage

DieselGER 8.874 1.242 −6.997∗∗∗ 8.365∗∗ 2.68 0.18 0.10 0.57 0.29 0.22
GasolineGER 10.303 1.092 −6.554∗∗∗ 7.577∗∗ 6.24 2.53 2.63 3.77∗ 3.03∗ 2.93∗

Pass-through of long-run equilibrium shocks in weeks

lower tail upper tail

50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

Second stage

DieselGER 3.1 4.1 5.4 7.2 10.3 1.8 2.4 3.2 4.3 6.1
GasolineGER 2.0 2.6 3.5 4.6 6.6 1.6 2.1 2.8 3.7 5.3

Single stage

DieselGER 2.5 3.3 4.3 5.8 8.3 4.2 5.6 7.3 9.8 14.0
GasolineGER 5.0 6.6 8.7 11.6 16.7 3.6 4.8 6.3 8.5 12.1

Note: EG denotes the Engle-Granger test. The number of lags is based on the Bayesian Information Criterion (BIC). Critical values are taken from MacKinnon (2010), 10%: −3.05, 5%: −3.35, 1%: −3.91. QKS denotes
the modified quantile Kolmogorov-Smirnov test with 600 bootstrap replications. Wn denotes the supremum Wald test for equality of mean and quantile effects with null hypothesis ρM = ρt(τ5) = ρt(τ6) = · · ·= ρt(τ95).
The Wald tests W (τ15 = τ85), W (τ10 = τ90) and W (τ5 = τ95) test the null hypothesis ρt(τ15) = ρt(τ85), ρt(τ10) = ρt(τ90) and ρt(τ5) = ρt(τ95), respectively. W (R1) corresponds to a Wald test under the hypothesis
ρt(τ5)+ · · ·+ρt(τ9) = ρt(τ91)+ · · ·+ρt(τ95) and W (R2) to a Wald test under the hypothesis ρt(τ5)+ · · ·+ρt(τ14) = ρt(τ86)+ · · ·+ρt(τ95). The pass-through durations for the lower tail are based on the 25% quantile,
while the upper tail results are estimated based on the 75% quantile. The durations are computed for the hypothetical case that the quantile-dependent adjustment coefficients stay at the 25% (75%) quantile. It needs to be
emphasized that this situation is unrealistic since the coefficients are allowed to change every period.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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Chapter 3

Are gold and silver cointegrated? New
evidence from quantile cointegration

1 Introduction

Gold and silver share a long-standing relationship that goes back to the first issuance of gold and silver

coins that were used as currency. The monetary use of gold and silver was facilitated by their unique

characteristics. They are rare, easily transportable, malleable and do not corrode so that they serve as

a perfect store of value. The monetary system of, for example, Germany was backed by silver until

1873 and the gold-backed Bretton Woods system de facto ended in 1971 with the change to a system of

national fiat monies. Subsequently, the relationship between gold and silver changed drastically with the

transformation from commodity money to fiat money.

Although precious metals are still seen as stores of value, their commercial uses have gained impor-

tance. Gold is used, among others, in restorative dentistry and, since it is highly conductive, for high

quality electrical connectors. Silver is the most reflective known metal and therefore used in photog-

raphy, optics, as well as the solar energy industry. Both metals are also used in jewellery (demand for

jewellery accounted for around 50 per cent of world gold demand and 20 percent of global silver demand

in 20141).

Gold and silver also play a prominent role as investments. In times of financial turmoil which are

characterized by rapidly decreasing values of stock indices, the prices of precious metals tend to move

in the opposite direction. Investors are interested in assets which are uncorrelated or ideally negatively

correlated with the general market developments to hedge against adverse financial events. Evidence for

a safe haven role of gold has recently been found by Baur and Lucey (2010) and Baur and McDermott

(2010). Agyei-Ampomah et al. (2014) report that other precious metals, including silver, may present

even better investment alternatives than gold in financial crises periods.

It is of considerable interest to market participants to know whether a long-run relationship between

gold and silver prices exists for the following reasons: First, the knowledge of the dependence between

prices may be used for forecasting purposes. Maintaining an equilibrium relationship over an extended

period of time implies that at least one variable adjusts to disequilibrium states. The adjustment behaviour

can then help to predict future returns of the adjusting variable(s). Second, a cointegrated gold and

1The estimates are taken from the World Gold Survey 2016 and World Silver Survey 2016 (GFMS (2016a) and GFMS
(2016b)).
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silver portfolio would be a suitable long-term hedge and could qualify for a market-neutral pairs trading

strategy (Alexander (1999)).2 Third, as gold and silver are seen as substitutes to reduce similar types of

risks in portfolios (Ciner (2001)), finding evidence of cointegration provides statistical support that gold

and silver follow a common stochastic trend. Fourth, additional information about the trajectory of gold

prices might reduce uncertainty for central banks and other major institutions.

The question of whether gold and silver are cointegrated has already drawn some attention in the

literature: Escribano and Granger (1998) investigate the relationship between gold and silver prices after

the collapse of the Bretton Woods system. They use monthly data from 1971 to 1990 and investigate a

cointegration relationship between gold and silver prices. However, they have to pre-specify regimes in

order to find evidence for cointegration and the null hypothesis of no cointegration cannot be rejected

for the full sample. They argue that the cointegration relationship only holds for the well-known Hunt

brothers episode (‘silver bubble’) from June 1979 to March 1980 and the post-bubble period in the

1980s, but markets begin to separate at the end of their sample. The authors encourage further research

to focus on the potential nonlinearity in the data, particularly on the time-varying dependence between

the prices. Ciner (2001) responds to the claim of a long-run relationship between gold and silver and

uses daily closing prices of gold and silver futures contracts traded on the Tokyo Commodity Exchange

(TOCOM) to verify whether markets indeed became separate. The results do not support a stable long-

run relationship between gold and silver futures for the period from 1992 to 1998. Lucey and Tully

(2006) use a dynamic cointegration approach which involves a recursive or rolling window estimation

and identify periods of weak and strong dependence. They use a sample of Friday closing prices from

1978 to 2002 for their analysis and conclude that overall a cointegration relationship has been maintained.

Baur and Tran (2014) revisit the dataset used by Escribano and Granger (1998) and expand the time

period to July 2011. They find evidence for cointegration in the full sample but the results suggest

that the cointegrating vector changes during bubble and crisis periods. They conclude that the long-run

relationship between gold and silver is not stable. The results point to a comovement only in episodes of

financial stress in which the store of value aspect of precious metals is particularly important.

Potential nonlinearity in the long-run relationship between gold and silver has so far been treated

either as a structural break in the cointegrating vector or as a recursive/rolling window estimation to

identify periods of stronger and weaker dependence. On the one hand, a division of the sample period

into subperiods requires that dummy variables have to be specified arbitrarily. On the other hand, an ap-

plication of dynamic cointegration models might identify a number of subperiods with strong dependence

but estimation requires specifying the appropriate length of the estimation window which influences the

result. Moreover, nonlinearities cannot be quantified.

In this paper, we propose a quantile cointegration approach which enables to model a state-dependent

and time-varying cointegrating vector. The values of the cointegrating vector may vary over the innova-

tion quantile. Thereby, the degree of comovement between gold and silver does not depend on prevailing

market conditions but rather on the state of the individual prices. Specifically, this allows to measure the

2In pairs trading, two or more assets are identified that share similar characteristics and for which prices should be similar,
i.e. they hold a long-run relationship. Then if the relative pricing between the assets indicates a mispricing, the trading strategy
consists of buying the lower-priced asset and selling the higher-priced asset leading to a statistical arbitrage in the short-run.
However, it is assumed that the mispricings will be corrected in the long-run. Prices are usually modelled as a random walk
so that a cointegration analysis has to be employed to capture the long-run relationship between prices. If evidence for a
cointegration relationship between the assets can be established, the disequilibrium series is mean-reverting and mispricings
have to be corrected to maintain the long-run equilibrium.
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response of silver prices to gold prices, if silver prices are high and vice versa. The effects of financial

turmoil on the prices is implicitly modelled since prices of precious metals tend to increase in financial

crisis periods and thereby the state of the prices is altered. To determine whether gold and silver are

cointegrated under the quantile cointegration framework, we use a cointegration test developed by Xiao

(2009). This test is based on the CUSUM testing principle and, contrary to conventional unit root tests

applied in the Engle-Granger framework, tests the null hypothesis of cointegration by measuring the

fluctuation in the residuals. If the null hypothesis of the quantile cointegration test is not rejected, it is

possible to test for constancy of the cointegrating vector over a range of quantiles to quantify the degree

of nonlinearity in the long-run relationship.

This paper contributes to the empirical literature by modelling the state- and time-dependence of the

long-run relationship between gold and silver prices and attempts to explain why gold and silver move

together in the long-run. First, we revisit an extended gold and silver dataset in a monthly frequency to

allow a comparison to the Escribano and Granger (1998) and Baur and Tran (2014) studies. Furthermore,

we also conduct the analysis using observations at a daily frequency as well as using prices of futures

contracts from 1980 to 2014 to examine the robustness of our results to different frequencies and whether

our results are driven by unique characteristics of the spot market. We are able to reveal an asymmetric

pattern in the monthly spot prices relationship characterized by a stronger response of silver prices to

gold prices when silver prices are high and of gold prices to silver prices when gold prices are high.

The remainder of the paper is organized as follows: Section 2 discusses economic reasons why

gold and silver might share a common stochastic trend, Section 3 introduces a CUSUM test for linear

cointegration models and describes the quantile cointegration methodology by Xiao (2009). In Section 4

, we apply these techniques to the gold and silver relationship and Section 5 concludes on our results.

2 Why should gold and silver share a common stochastic trend?

Although gold and silver possess similar characteristics, their differing commercial uses suggest that their

markets are separated and hence no long-run relationship between them exists. Granger (1986) states that

prices generated on a jointly efficient, speculative market cannot be cointegrated since this would violate

the efficient market hypothesis. However, the findings on whether gold and silver markets are efficient are

mixed. For example, Smith (2002) investigates London gold prices and finds autocorrelated returns of the

twice-daily fixing prices, speaking against the random walk hypothesis. The closing prices, by contrast,

are generated randomly. Pierdzioch et al. (2014) account for transaction costs and show that a trading rule

which incorporates publicly available information does not outperform a buy-and-hold strategy, implying

that the gold market is informationally efficient. Ntim et al. (2015) extend their analysis of gold price

efficiency to different markets. They report a higher probability of rejecting the weak-form efficiency

in emerging gold markets than developed ones. Charles et al. (2015) find that return predictability of

precious metals markets has been changing over time. Gold seems to have a higher degree of market

efficiency over silver and platinum.

The exact mechanisms of the price formation of precious metals prices is still little understood.

Precious metals are seen both as a commodity as well as a financial asset. While financial asset returns

are strongly correlated with macroeconomic indicators and each other, commodity returns are typically

less correlated with financial assets returns and returns of other commodities (Tang and Xiong (2012)).
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As a distinctive feature of precious metals, and in contrast to other commodities like crude oil, the

price is largely unaffected by annual production since its life span is practically infinite and stockpile

outweighs annual production. The price formation is therefore determined on the demand side. The

annual production of gold and silver is depicted in Figure 3.1 and Figure 3.2 shows a decomposition of

gold and silver demand. In 2014, around 10% of total gold demand and 50% of total silver demand was
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Figure 3.1: Supply of gold (right) and silver (left) in tonnes. Data taken from the GFMS gold and silver surveys
(1998 - 2015).
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Figure 3.2: Demand for gold (right) and silver (left) in tonnes. Data taken from the GFMS gold and silver
surveys (1998 - 2015).

attributed to industrial fabrication. Taking into consideration that jewellery items are often seen as stores

of value, gold seems to be mainly used as a cash-like asset, while silver prices are determined largely

by industrial demand. Nevertheless, gold and silver show a visible comovement in historical price series

(see Figure 3.3).

A closer inspection of the time series plot reveals that gold and silver boom and bust during the

same time periods. However, the behaviour in tranquil times is far less synchronized. The long-run re-

lationship, if it exists, might be characterized by episodes of stronger and weaker dependence. Although

gold and silver are no industrial substitutes, their use on financial markets, especially as a safe haven

asset in crisis periods, could translate to periods in which the store of value aspect of gold and silver is

pronounced and might be the reason why the individual prices follow a similar trajectory.
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Figure 3.3: Historic gold and silver spot prices. The left (right) axis describes the gold (silver) prices in USD.

3 Econometric framework

The quantile cointegration model builds on the idea of the residual-based cointegration approach pro-

posed in Engle and Granger (1987). The long-run equilibrium equation is specified as

yt = α +β
′xt +ut , (3.1)

where xt is a k-dimensional vector of I(1) variables. For the long-run equilibrium to hold ut must be

mean zero stationary. While the parameters θ = (α,β ) are usually estimated using least squares in the

linear cointegration model, we estimate θ using quantile regression. Thereby, the coefficients are thought

to be varying over time. In particular, the value of the coefficients may vary over the innovation quantile.

Hence, the quantile cointegration model may be viewed as a stochastic cointegration model with strongly

dependent coefficients (Xiao (2009)). The quantile regression estimator θ̂(τ) = (α̂(τ), β̂ (τ))′ for each

quantile τ ∈T is obtained by solving

θ̂(τ) = arg min
θ ∈Rk+1

n

∑
t=1

ρτ(yt −α(τ)−β (τ)′xt), (3.2)

where ρτ(u) = u(τ −1{u < 0}) is the asymmetric weights function as in Koenker and Bassett (1978),

1{·} is a Heaviside indicator function and n is the sample size. In contrast to least squares estimation,

where the conditional expected value of yt is expressed as a function of the variables xt , in quantile

regression the τth quantile of yt conditional on the information set Ft in period t is estimated,

Q̂yt (τ|Ft) = α̂(τ)+ β̂ (τ)xt +F−1
u (τ). (3.3)
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The residual weights are computed as ψτ(u) = τ −1{u < 0} and the τth residual series as utτ = yt −
α̂(τ)− β̂ (τ)′xt .

Estimating equation (3.1) using a pair of potentially cointegrated variables (yt ,xt)
′ introduces an

endogeneity problem if xt is not weakly exogenous. Although the quantile regression estimator is still

super-consistent, it is second order biased due to the dependence of xt and ut . The second order bias

complicates the development of inference procedures about the cointegration vector. Two modifications

are proposed in the literature to restore the asymptotic properties of the quantile regression estimator in

cointegrating regressions. The first approach adds leads and lags of xt to the long-run equation (3.1) so

that we arrive at

yt = α +β
′xt +

K

∑
j=−K

∆x′t− jΠ j + εt . (3.4)

In this dynamic OLS (DOLS) method, originally proposed by Saikkonen (1991), the error term ut is

decomposed into a component related to ∆xt and a pure innovation term εt . The quantile regression

estimator applied to (3.4) is then asymptotically unbiased. From a practical perspective, the drawback

of this approach is the uncertainty regarding the dynamic specification as the number of leads and lags

is generally unknown. However, standard model selection criteria can be used to determine the lag

length (Choi and Kurozumi (2012)). The second approach involves a nonparametric correction of the

original estimator, known as fully modified OLS (FM-OLS) estimation (for a detailed discussion of

fully-modified quantile regression estimators, refer to Xiao (2009)).

Cointegration testing is based on the residuals obtained by estimating the long-run equation (3.1). In

contrast to the Engle-Granger procedure with the null hypothesis of no cointegration, we follow Xiao

and Phillips (2002) and Xiao (2009) and test the null hypothesis of cointegration directly. If yt and xt

are cointegrated, the residuals should reflect this by displaying fluctuations that resemble a stationary

process. A substantial stochastic trend in the residuals would lead to inflated variation over time and

would point to the alternative of no cointegration relationship between yt and xt .

We begin with the description of the testing procedure for quantile cointegration regression (Xiao

(2009)). To measure the fluctuation in the residuals, a partial sum process (related to the CUSUM test

literature (Shin (1994))) is constructed as

Ynτ =
1

ω̂∗ψ
√

n

n

∑
j=1

ψτ(ε̂ jτ) (3.5)

where ω̂∗2ψ is a consistent estimate of the long-run variance of ψτ(ε̂ jτ). The CUSUM test is based on

the residual weights which are mean-zero instead of the residuals for which the τth quantile is zero. The

quantile regression residual utτ and residual weights ψτ(ε̂ jτ) are obtained from the lead-lag augmented

regression in equation (3.4). We use a Kolmogorov-Smirnov type test and base the cointegration test for

the τth quantile regression on the supremum of Ynτ . Under the alternative of no cointegration, supYnτ

diverges to infinity.

As a benchmark, we use a conditional-mean cointegration test which follows the same principle. The

cointegration test proposed in Xiao and Phillips (2002) uses the test statistic

CSn = max
k=1,...,n

1
ω̂υu
√

n
|

k

∑
j=1

û+j | (3.6)
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where ω̂2
υu = ω̂2

u − Ω̂uυΩ̂−1
υυΩ̂υu and û+ is the vector of FM-OLS residuals. The test statistic is based on

the fully modified estimator for β . We define the FM-OLS estimator of β as

β̂
+
LS =

[
∑

t
y+t x′t −nλ̂

+
υu

][
∑

t
xtx′t

]−1

(3.7)

where y+t = yt−υ ′t Ω̂
−1
υυΩ̂υu, υt =∆xt and λ̂+

υu = λ̂υu− λ̂υυΩ̂−1
υυΩ̂υu. The relevant long-run (co-)variances

are estimated by applying a kernel estimator to the residuals obtained by estimating the cointegrating

regression (3.1) with least squares. We choose a Bartlett kernel k(·) with the plug-in bandwidth M =

1.1447(φ(1)n)1/3 according to Andrews (1991), where

φ(1) =
4ρ̂2

(1− ρ̂2)2 (3.8)

and ρ̂ is the estimated first order autocorrelation of the least squares residual ût . We arrive at the kernel

estimates

λ̂υu =
bMc
∑

h=0
k
( h

M

)
Cυu(h), λ̂υυ =

bMc
∑

h=0
k
( h

M

)
Cυυ(h),

Ω̂υu =
bMc
∑

h=−bMc
k
( h

M

)
Cυu(h), Ω̂υυ =

bMc
∑

h=−bMc
k
( h

M

)
Cυυ(h),

ω̂2
u =

bMc
∑

h=−bMc
k
( h

M

)
Cuu(h),

(3.9)

where Cυψ(h), Cυυ(h) and Cuu(h) are sample covariances defined by Cυu(h) = n−1
∑υt ût+h, Cυυ(h) =

n−1
∑υtυ

′
t+h, Cuu(h)= n−1

∑ ût ût+h, respectively. For a more comprehensive discussion of fully modified

least squares, see Hansen (1992) and Xiao and Phillips (2002).

Quantile cointegration is able to reveal a quantile-dependent structure of the cointegration relation-

ship. If the cointegration relationship is nonlinear and state-dependent, the quantile-dependent coeffi-

cients should be different from the constant cointegrating coefficients in at least one quantile. Hence, it

is of interest to test the null hypothesis H0 : β (τ) = β̄ over a sequence of quantiles τ ∈ T . We consider

the least squares estimator, β̂LS, obtained from the linear cointegration model to be a suitable candidate

to approximate β̄ . Xiao (2009) proposes the process

Vn(τ) = n(β̂ (τ)− β̂LS) (3.10)

and evaluates sup |Vn(τ)| with a bootstrap procedure assuming a constant β . A large sup |Vn(τ)| statistic

points to overall quantile effects. It turns out to be a computational advantage to use the lead-lag aug-

mentation to obtain β̂ (τ) and β̂LS for the resampling algorithm. The bootstrap procedure is divided into

five steps:

(1) Obtain the estimates β̂ (τ) and β̂LS from (3.4) by quantile regression and linear regression, respec-

tively. Further, calculate sup |Vn(τ)| and the least squares residuals,

ût = yt − α̂− β̂
′
LSxt t = 1, . . . ,n.
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(2) Define ŵt = (υt , ût) with υt = ∆xt , estimate the bivariate VAR model,

ŵt =
q

∑
j=1

B jŵt− j + et t = q+1, . . . ,n,

and save the fitted residuals êt = ŵt −
q
∑
j=1

B̂ jŵt− j. The lag length q can be chosen on the basis of

the AIC.

(3) Center the residuals

êt −
1

n−q

n

∑
j=q+1

êt

and draw samples e∗t from the centered residuals. Generate w∗t using the estimate B̂ j and e∗t so that

w∗t =
q

∑
j=1

B̂ jw∗t−1 + e∗t t = q+1, . . . ,n

with w∗j = ŵ j for j = 1, . . . ,n.

(4) Generate x∗t from x∗t = x∗t−1 +υ∗t with x∗1 = υ∗1 and

y∗t = α̂ + β̂
′x∗t .

(5) Obtain the bootstrap estimates β̂ ∗(τ) and β̂ ∗LS from

y∗t = α +β
′x∗t +

K

∑
j=−K

∆x∗′t− jΠ j + ε
∗
t ,

and calculate V ∗n = n(β̂ ∗(τ)− β̂ ∗LS). Repeat steps 2-5 sufficiently often to approximate the distri-

bution of sup |Vn(τ)|.

Should the overall quantile effects test lead to a rejection of the null hypothesis, we can assume an

inherent nonlinearity in the cointegration relationship between yt and xt .

4 Empirical Analysis

We analyze gold and silver spot prices at a monthly frequency from August 1971 to April 2014 and daily

spot and futures prices from March 1980 to April 2014. The London OTC market and New York COMEX

are considered major gold and silver markets. We use the morning official fixing price at the London

Bullion market for the daily price series and build a monthly price series from the first price reported in

each month. The futures prices are obtained for COMEX 100 ounces gold contracts and COMEX 5000

ounces silver contracts. We denote the spot prices of silver and gold as S and G, respectively. The futures

prices are denoted as SF and GF . Gold prices are denominated in USD per troy ounce whereas silver is

denominated in USD cents per troy ounce.

Since the sample of the spot prices includes the Hunt brothers’ attempt to corner the silver market

in the late 1970s and early 1980s, we have to treat this period as a separate regime. The Hunt brothers

35
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and their collaborators tried to restrict the supply of silver on the market so that it became difficult for

investors who sold short to deliver at the end of the contract. The price of silver subsequently increased

dramatically and this peak appears as a striking anomaly in the data. However, they only acted in the

silver market and did not act on the gold market in the same fashion. It has to be assumed that the potential

long-run relationship between gold and silver was exogenously altered during the Hunt brothers episode.

In contrast, we do not treat the financial crisis in 2008 as a separate regime since gold and silver markets

were both affected. Prices of precious metals increased due to a higher demand of investors for safe

haven assets without necessarily changing the relationship between them.

We start the analysis by testing all price series for their order of integration. Each series is determined

to be integrated of order one. The results of the unit root tests are depicted in Table 3.1.

Table 3.1: Augmented Dickey-Fuller tests for gold and silver prices

drift lags trend lags drift lags

Goldm −0.158 1 −1.083 1 ∆Goldm −16.01∗∗∗ 1
Silverm −2.632∗ 1 −3.138∗ 1 ∆Silverm −16.58∗∗∗ 1

Goldd −0.049 1 −1.452 1 ∆Goldd −76.73∗∗∗ 1
Silverd −1.707 1 −2.666 1 ∆Silverd −79.12∗∗∗ 1

GoldF
d −0.109 1 −1.475 1 ∆GoldF

d −67.21∗∗∗ 1
SilverF

d −1.674 1 −2.561 1 ∆SilverF
d −65.75∗∗∗ 1

The subscript m denotes monthly observations and d denotes daily observations, respectively. Including an intercept in the ADF test equation
is indicated with drift, including an additional linear trend term with trend. The lag selection was achieved via Bayesian Information Criterion
(BIC).
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

4 .1 Monthly spot prices

In the first part of the empirical analysis, we revisit a similar data set found in Escribano and Granger

(1998). The long-run equilibrium model between gold and silver prices is expressed as

St = α +β Gt + γ1 dt + γ2 dt ·Gt +ut . (3.11)

The dummy variable dt and the interaction term dt ·Gt model a change in the intercept and the slope

parameter for the ‘silver bubble’ period from June 1979 to March 1980.3 The cointegrating vector is

estimated by FM-OLS and the CUSUM cointegration test is applied to the residuals û+t . The supCSn

statistic amounts to 1.569 with a p-value of 0.002 for the monthly series such that the null hypothesis

of linear cointegration can be rejected. This means we find strong evidence that gold and silver are

not cointegrated in the Engle-Granger framework assuming a constant cointegrating vector with a one-

time break. The FM-OLS estimator for β amounts to 1.729 and the DOLS estimator takes the value

1.847. This result supports the findings in Escribano and Granger (1998) who report no cointegration

relationship for the full sample.

3Removing the dummy variable and the interaction term and thereby ignoring the Hunt brothers episode leaves the results
virtually unchanged.
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We now test for quantile cointegration. The supYn statistic is computed for each quantile τ and is

plotted in the left panel of Figure 3.4. The null hypothesis of quantile cointegration cannot be rejected

at the 5% significance level for any quantile τ . The point estimates for the quantile-dependent estimator

are depicted in the left panel of Figure 3.5. It can be inferred from the plots that significant asymme-

try is present in the quantile regression estimates. The bootstrap test based on supVn with a value of

1224 and p-value less than 0.001 supports this conjecture for the monthly frequency and points to sig-

nificant overall quantile effects.4 The slope parameter β largely coincides with the conditional-mean

benchmark (DOLS) with the exception that the lower tail estimates are slightly smaller than the DOLS

estimate. However, the point estimates for quantiles above the 80% quantile are significantly larger than

the benchmark.
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Figure 3.4: The estimated supYn statistics for the 1% to 99% quantile (monthly series). The left panel
corresponds to specification (3.11) and the right panel corresponds to (3.12). The critical value, dashed line, is

1.78 for the 10% significance level (2.1 for the 5% significance level).

The quantile cointegration estimates suggests that silver prices respond stronger to gold prices changes

if silver prices are high. A plot of the historic time series (Figure 3.3) shows that high gold and silver

prices occurred during the Hunt brothers episode and during economic crisis periods. In general, the

quantile cointegration framework is not able to identify periods with stronger responses directly, since

conditional quantiles are estimated. However, we are able to indicate the periods in which the residuals

were assigned a higher weight. This is depicted in the upper and lower panel of Figure 3.6, where we

mark the higher weighted residuals for the lower tail (10% quantile) and the upper tail (90% quantile)

with a red rhombus.

The indicated periods of weaker dependence match the results of Escribano and Granger (1998) who

claim that the cointegration relationship dissolves towards the end of their sample in 1990. Periods of

stronger dependence are found during the ‘silver bubble’ and during the financial crisis. Lucey and Tully

(2006) find a different pattern but their sample period is shorter and excludes the Hunt brothers episode

as well as the financial crisis. In general our data-driven framework finds a state-dependence of the

long-run relationship between gold and silver that resemble the pre-specified conditional-mean results

4We use 600 replications of all variables present in the linear regression for bootstrapping of the supVn test. However, the
results of the supVn test have to be interpreted cautiously since we find evidence against cointegration in the conditional-mean
benchmark model. The estimate of β under constancy is not well-defined and the bootstrap procedure involves nonstationary
variables. In this case the nonlinearity test is potentially oversized.
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Figure 3.5: Estimation results for the slope coefficient in the lead-lag augemented quantile cointegration
regression (monthly series). The left panel corresponds to specification (3.11) and the right panel corresponds to

(3.12). The DOLS estimate serves as a benchmark (dashed line).

by Baur and Tran (2014) who also find a different cointegrating vector during times of financial stress.

Switching the roles of gold and silver, the long-run relationship can be respecified in the form of

Gt = α +βSt + γ1dt + γ2dt ·St +ut , (3.12)

assuming that silver leads the pricing process. It is possible to use this alternative normalization, since

the estimator for β is unbiased in either specification after the endogeneity correction through FM-OLS

or DOLS estimation is applied. Now, the quantile-dependent coefficients β (τ) measure the response of

gold prices to silver prices given the information set in period t. The CUSUM cointegration test for the

conditional-mean case results in a supCSn statistic of 1.682, so that the null hypothesis of cointegration is

rejected at the 5% significance level. The supYn statistics for the quantile process is depicted in the right

panel of Figure 3.4. The pattern of the quantile-dependent estimates differs compared to the previous

specification: The response to silver prices is again stronger for upper conditional quantiles of gold but

instead of a slow increase until the 80% quantile, the pattern resembles logarithmic growth in τ . The

point estimates of β (τ) can be found in the right panel of Figure 3.5. The conditional-mean estimates

are 0.458 (DOLS) and 0.562 (FM-OLS), respectively.

4 .2 Daily spot and futures prices

The historic price series for gold and silver futures contracts starts in March 1980. Since the Hunt

Brothers episode is excluded from the sample, we estimate the long-run equation without the need of

any dummy variables. The results for the daily spot prices series are largely in accordance with the

monthly series, we obtain conditional-mean estimates 1.954 (DOLS) and 1.89 (FM-OLS). The quantile-

dependent estimates are depicted in the left panel of Figure 3.7. The response is weaker compared to the

benchmark value in lower quantiles and stronger for upper quantiles. The CUSUM test statistic based

on the fully modified residuals is 1.3 with a p-value of 0.024. Thus, we find only weak evidence against

the null hypothesis of cointegration considering the sample size of 8884 for daily prices compared to the

sample size of 513 for the monthly series. The quantile cointegration test statistics are depicted in the left
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Figure 3.6: Periods of conditional 10% quantile monthly silver prices (upper panel) and conditional 90%
quantile monthly silver prices (lower panel). Observations are marked with a red rhombus if they received a
higher weight in the loss function of the 10% (90%) quantile regression for silver as the dependent variable.

panel of Figure 3.8. We observe generally larger supYn statistics for the daily series and have to reject the

null hypothesis for upper quantiles. However, the results for the daily series are not unexpected since the

power of the supYn naturally increases with sample size which is represented by the 0.1% significance

level. The test of constancy of the cointegrating vector over all quantiles τ gives supVn = 3320 and a p-

value below 0.001. Hence, we also find a statistically significant nonlinear response of daily silver prices
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to daily gold prices. Interestingly, the periods of conditional 10% (90%) quantile daily silver prices,

depicted in Figure 3.9, are identified slightly different compared to the quantile cointegration model for

monthly prices.

Switching to specification (3.12) again yields results similar to the monthly series. The values β (τ),

depicted in the right panel of Figure 3.7, can be characterized as a linear function of the quantiles of the

conditional distribution of gold. The response to silver prices is weak for lower quantiles and strong for

upper quantiles. The null hypothesis of quantile cointegration is only rejected at the 0.1% significance

level for intermediate quantiles between 15%-25%.
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Figure 3.7: Estimation results for the slope coefficient in the lead-lag augemented quantile cointegration
regression (daily series). The left panel corresponds to specification (3.11) and the right panel corresponds to

(3.12). The DOLS estimate serves as a benchmark (dashed line).

● ●

●

●

●
●

●

●

●

● ●
● ●

●

●
●

●

●

●

●
● ● ●

●
● ● ● ●

● ●
● ● ● ●

● ●

● ● ●
●

● ●

●

●
● ●

● ●
● ●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ● ●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

0 20 40 60 80 100

0.5

1.0

1.5

2.0

2.5

τ

α = 0.1%

●

●

●
●

●

●

●

●

●

● ● ●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●
● ●

●
● ● ● ●

●

● ●
●

●
●

●

●
●

●

●

●

●

● ● ●
● ● ●

● ●
● ●

●
●

● ●
●

●
● ●

●
● ●

●

●

●

●
●

● ●

●
● ●

●
●

●

●

●

●

●

0 20 40 60 80 100

0.5

1.0

1.5

2.0

2.5

τ

α = 0.1%

Figure 3.8: The estimated supYn statistics for the 1% to 99% quantile (daily series). The left panel corresponds
to specification (3.11) and the right panel corresponds to (3.12). The critical value for the 0.1% significance level

is 2.19.

The long-run equilibrium relationship between the prices of gold and silver futures contracts is ex-

pressed as

SF
t = α +β GF

t +ut . (3.13)

The supCSn statistic amounts to 1.201 with a p-value of 0.043 which does not lead to a rejection of the
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Figure 3.9: Periods of conditional 10% quantile daily silver prices (upper panel) and conditional 90% quantile
daily silver prices (lower panel). Observations are marked with a red rhombus if they received a higher weight in

the loss function of the 10% (90%) quantile regression for silver as the dependent variable.

null hypothesis of cointegration considering the large sample size. Gold and silver futures prices seem

to be cointegrated even with a constant cointegrating vector. However, the supYn process points to no

cointegration for upper quantiles of silver. The quantile-dependent estimates of β are depicted in the

left panel of Figure 3.10 and display an increasing response to gold futures prices for upper quantiles of

the conditional distribution. The test of overall quantile effects results in the test statistic supVn = 1517
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4 . EMPIRICAL ANALYSIS

with p-value less than 0.001 so that we also find strong evidence for nonlinearity in the cointegration

relationship between gold and silver futures prices.
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Figure 3.10: Estimation results for the slope coefficient in the lead-lag augemented quantile cointegration
regression (futures contract prices). The left panel corresponds to specification (3.13) and the right panel

corresponds to (3.14). The DOLS estimate serves as a benchmark (dashed line).
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Figure 3.11: The estimated supYn statistics for the 1% to 99% quantile (futures contract prices). The left panel
corresponds to specification (3.13) and the right panel corresponds to (3.14). The critical value for the 0.1%

significance level is 2.19.

The respecified long-run equilibrium takes the form of

GF
t = α +β SF

t +ut . (3.14)

The CUSUM cointegration test gives a supCSn statistic of 1.159 with p-value 0.055 and the null hypoth-

esis of cointegration can not be rejected at appropriate significance levels. The supYn statistic leads to the

rejection of the null hypothesis for lower conditional quantiles of the gold futures prices. The quantiles-

dependent estimates show a pattern similar to the daily spot price series with an increasing response

from lower to upper conditional quantiles of gold. The supVn test supports the graphical illustration and

rejects the null hypothesis of constancy of the slope parameter across quantiles.

The results for daily spot and futures prices are very similar which indicates that the asymmetrical
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Figure 3.12: Periods of conditional 10% quantile silver futures prices (upper panel) and conditional 90%
quantile silver futures prices (lower panel). Observations are marked with a red rhombus if they received a higher

weight in the loss function of the 10% (90%) quantile regression for silver as the dependent variable.

pattern is not a unique feature of the price discovery in spot markets, i.e. the comovement in bubble and

crisis period is not necessarily created by distinct features of the gold fixing process but rather could be

generated by a general need of investors for safe haven assets. Both precious metals share store of value

characteristics which are most sought after during times of financial market turbulence. In tranquil times,

the individual (industrial) demand for gold or silver seems to drive the individual prices.
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5 Conclusion

In this paper, we estimate a time-varying cointegrating vector for the gold and silver long-run relationship

depending on the innovation quantile. Our empirical results point to a significantly asymmetric depen-

dence between silver prices and gold prices. We observe a stronger response of silver prices to gold price

changes when silver prices are at a relatively high level and a stronger response of gold prices to silver

price changes when gold prices are at a relatively high level. The long-run relationship between gold

and silver is therefore best characterized by a state-dependence. More specifically, after the prices were

deregulated in 1971, high gold and silver prices can generally be found in times of financial stress and

only in those periods, we find a strong dependence between prices which results in a visible comovement.

It can be suspected that one of the key properties of gold and silver – the store of value aspect – plays a

more prominent role in periods of financial turbulence where other assets lose value and the investors’

search for safe haven assets increases demand for gold and silver. This in turn increases prices for gold

and silver simultaneously. Moreover, the analysis over a post-bubble sample and at a different frequency

shows that the asymmetrical pattern is remarkably stable and the results can easily be transferred to the

futures market.

In general, we emphasize the abilities of the quantile cointegration framework to detect nonlinearities

in a cointegration relationship. Considering our empirical results, it is now possible to understand the

difficulties, described in previous studies, to find a stable long-run relationship between the two precious

metals. Although we observe a comovement of both prices over decades, we fail to estimate a single

constant cointegrating coefficient that connects both prices. Allowing for a more general time-varying

cointegrating vector enables us to capture the time- and state-dependence of the long-run relationship.

Taking into account that the cointegrating vector is allowed to change in every period, we conclude that a

long-run relationship exists but it is not particularly stable. The estimated relationship cannot directly be

used for forecasting, since the exact state of the variables is generally unknown. From that perspective,

finding evidence for quantile cointegration but not finding evidence for linear cointegration does not

contradict the weak form efficiency of gold and silver markets. In fact, given our results, a statistical

arbitrage strategy based on the weakly linked gold and silver prices under the assumption of a single

constant coefficient would be very risky.

44



Chapter 4

Testing for cointegration with SETAR
adjustment in the presence of structural
breaks

1 Introduction

The residual-based threshold cointegration models developed by Enders and Siklos (2001) are a useful

addition to the toolbox of researchers working with multivariate time series. They are easy to apply,

allow for discontinuous adjustment to a long-run equilibrium and nest linear cointegration in the sense

of Engle and Granger (1987) as a special case. The dynamics of the adjustment process are described by

a two-regime threshold autoregressive (TAR) model which partitions the residual process according to a

threshold value and specifies different coefficients of the leading autoregressive lag for each regime. It

can therefore be considered a restricted model under the general class of TAR models described by Tong

(1983). A prominent application in the economics literature is the empirical analysis of asymmetric price

transmissions in which case non-stationary price series form a cointegrating relationship and may feature

asymmetric adjustment to long-run equilibrium. The speed of adjustment is usually assumed to depend

on the sign and size of the deviations from the long-run equilibrium. While threshold cointegration

tests are suitable to study these cases, they do not account for possible structural change in the long-run

relationship. It is well-known that conventional residual-based cointegration tests perform poorly when a

cointegration relationship has structural breaks. Maki (2013) found that the power property of threshold

cointegration tests is more robust to structural breaks than, for example, the Engle-Granger cointegration

tests assuming linear adjustment. Nevertheless, the power of all residual-based cointegration tests is

impaired if the tests do not model the structural breaks explicitly. Consequently, it is difficult to provide

evidence for the existence of a cointegration relationship. Furthermore, the estimated adjustment to

equilibrium is biased if the cointegrating vector does not account for structural change. This is of special

concern from a practical perspective since the Financial Crisis of 2008 is suspected to have induced

structural change in several economic relationships (see for example Zhou and Kutan (2011) for an

examination of the real exchange rate during the Financial Crisis and Lehkonen (2015) for the effects on

stock market integration).

An extensive body of literature exists on the problem of structural instability in time series. Based on
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the seminal work of Perron (1989), several unit root tests accounting for structural change have been de-

veloped (see, inter alia, Zivot and Andrews (1992), Lumsdaine and Papell (1997) and Lee and Strazicich

(2003)). Structural breaks in linear cointegration models are addressed in Gregory and Hansen (1996a,b),

Carrion-i Silvestre and Sanso (2006), Westerlund and Edgerton (2007) and Hatemi-J (2008). Gregory

and Hansen (1996a), henceforth GH, propose a residual-based cointegration test with structural break.

Their test does not require a pre-specified breakpoint which is rarely known in empirical applications.

Instead, a single unknown breakpoint is determined from the data based on one of three structural break

models. However, the GH test is only suitable for cointegration models with linear adjustment.1 We

contribute to the literature by extending the GH test to include a form of non-linear adjustment. This new

test is residual-based and uses a SETAR model to describe the adjustment toward equilibrium. Thereby,

we also provide an extension to the SETAR Enders-Siklos test which is robust to a structural break in the

cointegrating vector.

We derive the limiting distributions of the test statistic considered in this paper and provide a formal

proof. The properties of the proposed test are investigated by Monte Carlo experiments for a variety of

models ranging from linear adjustment with no structural break to non-linear adjustment with structural

break in the intercept and slope coefficients. The results suggest that a break in the intercept does not

influence the power of the threshold cointegration test enough to justify modelling the structural break.

However, a break in the slope coefficients reduces the power of the SETAR Enders-Siklos test substan-

tially such that our proposed test performs clearly better than its benchmark. In addition, we find that the

unknown breakpoints are estimated accurately by the new procedure.

The methodology is applied to empirical data in the context of the ‘rockets and feathers’ hypothesis.

We use US gasoline market data covering the Financial Crisis. We illustrate that empirical evidence for

the existence of a long-run relationship between neighbouring stages of the gasoline value-chain can only

be provided if we control for a structural break in the cointegrating vector. Using either cointegration

model, we do not find evidence for asymmetric adjustment toward equilibrium, i.e. we do not find

empirical support for the ‘rockets and feathers’ hypothesis.

The paper is organized as follows. Section 2 describes the models and the cointegration testing

procedure, Section 3 presents the asymptotic distribution of the test statistic. Section 4 is devoted to the

Monte Carlo study. Section 5 reports the results of the empirical application, and Section 6 summarizes

the study.

2 Models and cointegration testing

The long-run equilibrium equation of EG cointegration models is given by

yt = µ +α1x1t +α2x2t + · · ·+αmxmt + et

= µ +α
′xt + et (4.1)

where t = 1,2, . . . ,T is the time series index, yt and xt = (xit ,x2t , . . . ,xmt)
′ are I(1) variables, µ is an

intercept, α ′ = (α1,α2, . . . ,αm) is a vector of slope coefficients and et is the equilibrium error. The null

hypothesis of no cointegration is rejected if the residuals obtained from least squared estimation of (4.1)

1The effects on the power properties of linear cointegration tests, if the equilibrium error follows a nonlinear adjustment
process, are reported in Pippenger and Goering (2000).
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PRESENCE OF STRUCTURAL BREAKS

are mean-zero stationary. Since the parameters µ and α are time-invariant, a residual-based cointegration

test based on (4.1) becomes invalid if the long-run equilibrium is subject to structural change.

Following Perron (1989) and Gregory and Hansen (1996a), we consider three forms of structural

change.2 First, in the C model, a break in the intercept µ is considered. This model is named the ‘crash’

model and relates to events that cause a parallel shift of the equilibrium equation. Second, the C/T model

adds an additional trend term to the equilibrium equation. Third, in the C/S model, a break in both the

constant and the slope parameter is specified. The C/S model is named the ‘regime shift’ model. The

three models are given as follows,

(C) yt = µ1 +µ2ϕt,τ +α
′xt + et

(C/T ) yt = µ1 +µ2ϕt,τ +δ t +α
′xt + et (4.2)

(C/S) yt = µ1 +µ2ϕt,τ +α
′
1xt +α

′
2xtϕt,τ + et

where µ1, µ2 are constants, α1 = (α11,α12, . . . ,α1m)
′ and α2 = (α21,α22, . . . ,α2m)

′ are slope coefficients.

The dummy variable ϕt,τ is defined as

ϕt,τ =

 1 if t > [T τ]

0 if t ≤ [T τ]
, (4.3)

where τ ∈ (0,1) denotes the relative timing of the breakpoint (break fraction), and [·] denotes integer

part. The timing of the breakpoint is rarely known in empirical applications so that the GH test is con-

structed without the need of pre-specified breakpoints. More specifically, a grid search over all possible

breakpoint is employed, i.e. the structural change model is repeatedly estimated for each possible break-

point τ ∈ T . The set T can be any compact subset of (0,1) which excludes endpoint results. GH

suggest to trim the upper and lower 15 percent and, for computational reasons, consider only integer

steps, T = ([0.15T ], [0.85T ]). Estimating one of the structural break models in (4.3) by least squares for

each breakpoint yields a sequence of residuals. The GH test applies the ADF test to each sequence and

evaluates the null hypothesis of no cointegration based on the smallest values of the t ratios across all

τ ∈T . The infimum statistic is chosen since it puts the most weight on the alternative hypothesis. If the

null hypothesis is rejected, the break fraction τ̂ that corresponds to the infimum statistic is considered to

be the most likely breakpoint.

In order to account for asymmetric adjustment, the two-regime self-exciting threshold autoregressive

(SETAR) model is now used to describe the adjustment toward equilibrium. The SETAR model for the

equilibrium error process et is given by

∆et = ρ1et−11{et−1 ≥ λ}+ρ2et−11{et−1 < λ}+
K

∑
j=1

γ j∆et− j + εt , (4.4)

where 1{·} denotes the Heaviside indicator function, the parameter λ is a possibly non-zero threshold

value and εt is a stationary mean zero error term. The coefficient ρ1 measures the mean-reversion toward

the cointegrating vector after a shock greater than or equal to λ whereas ρ2 measures the mean-reversion

2We restrict our analysis to these three models. However, our methodology can easily be adapted for other structural break
models, as for example given in Gregory and Hansen (1996b) and Hatemi-J (2008).
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toward the cointegrating vector after a shock less than λ . The indicator function in this case is set

according to the level of et−1. In an alternative specification, suggested by Enders and Granger (1998)

and Caner and Hansen (2001), the indicator function is set depending on ∆et−1. However, the so-called

momentum threshold autoregressive (MTAR) model is not covered in this paper.

Under the null hypothesis of no cointegration, ρ1 = ρ2 = 0, the data-generating process (DGP) of

et is symmetric and a unit root is present in both regimes. Model (4.4) is a special case of the general

class of threshold autoregressive models in that it does not allow for regime-specific deterministic terms

and regime-specific dynamics beyond the leading autoregressive lag. This restriction is convenient since

it circumvents the problem of having an identified threshold under the null hypothesis resulting in an

asymptotic distribution of the test statistic that depends on nuisance parameters (see Caner and Hansen

(2001) for a more detailed discussion in the context of MTAR processes with a unit root). Furthermore,

the Engle-Granger test for symmetric adjustment (ρ1 = ρ2) is itself a special case of (4.4). Petruccelli

and Woolford (1984) show that the stationarity of the SETAR process {et}∞
1 is ensured if ρ1 < 0, ρ2 < 0

and (1+ρ1)(1+ρ2) < 1 for any value λ . Assuming stationarity, Tong (1983, 1990) demonstrated that

least squares estimators of ρ1 and ρ2 are asymptotically normally distributed. Enders and Siklos (2001)

recommend a Wald-type F-test to test the null hypothesis of no cointegration in their model without

structural breaks. However, since the F-test can lead to rejection of the null hypothesis when only one

coefficient is negative, the test should only be applied if both point estimates suggest a mean-reversion

behaviour. In other words, the one-sided alternative ρ1 < 0∧ρ2 ≥ 0 or ρ2 < 0∧ρ1 ≥ 0 should not lead

to rejection of the null hypothesis.

In the case of a cointegration model with potential structural break and SETAR adjustment, we pro-

pose the following cointegration test: First, an appropriate structural break model is selected from (4.3)

and the cointegrating regression is estimated by least squares for each break fraction τ ∈ T . Then, the

F-statistic, Fτ , is computed for each sequence of residuals. Since the null hypothesis of no cointegration

is naturally rejected for large values of the F-statistic, the supremum statistic,

F∗ = sup
τ∈T

Fτ , (4.5)

is used to evaluate the null hypothesis of no cointegration against the alternative of threshold cointegra-

tion with possible structural break. The largest value found in this grid search also determines the most

likely breakpoint.

3 Asymptotic distribution

The asymptotic theory for SETAR processes with a unit root was developed in Seo (2008). Maki and

Kitasaka (2015) derive the asymptotic distribution of Wald statistics in a three-regime threshold coin-

tegration model of which the two-regime threshold cointegration model is a special case. Gregory and

Hansen (1996a) provide results for cointegration test statistics which are functions of the break fraction

parameter τ . Hence, we follow Gregory and Hansen (1996a) and Maki and Kitasaka (2015) closely in

our derivations. For notational convenience we use ‘⇒’ to signify weak convergence of the associated

probability measures. Continuous stochastic processes such as the Brownian motion B(s) on [0,1] are

simply written as B. We also write integrals with respect to the Lebesgue measure such as
1∫
0

B(s)ds
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simply as
1∫
0

B.

Let {zt}∞
0 be an (m+1)-vector integrated process whose data generating process is

zt = zt−1 +ξt , t = 1,2, . . . (4.6)

where it is assumed that T−1/2z0
p→ 0 so that z0 can be treated as either fixed or random and the results

do not depend on the initial condition. The (m+ 1)-vector random sequence {ξt}∞
1 is defined on the

probability space (X ,F ,P) and is assumed to be strictly stationary and ergodic with zero mean and

finite variance. {ξt}∞
1 satisfies the following regularity conditions:

Assumption 1. ξt is a stationary ARMA process with ξt =
∞

∑
j=0

C jνt− j, C0 = In,
∞

∑
j=0

j
∥∥C j
∥∥< ∞ and νt ∼

iid(0,Σ), where Σ is a positive definite variance matrix and νt have absolutely continuous distribution3.

Further, E|νt |r < ∞ for some r ≥ 4.

The partial sum process constructed from {ξt} satisfies the functional central limit theorem (FCLT)

for Reyni-mixing processes, described in Hall and Heyde (1980). For s ∈ [0,1] and as T → ∞, it holds

that

XT (s) = T−1/2
[T s]

∑
t=1

ξt ⇒ B(s), (4.7)

where B(s) is (m+1)-vector Brownian motion with covariance matrix

Ω = lim
T→∞

T−1E

((
T

∑
t=1

ξt

)(
T

∑
t=1

ξ
′
t

))
. (4.8)

We partition zt = (yt ,x′t)
′ into the scalar variate yt and the m-vector xt with conformable partitions of Ω

and B:

B =

[
By

Bx

]
Ω =

[
ω11 ω ′21

ω21 Ω22

]
. (4.9)

We assume Ω22 > 0 and decompose Ω as Ω = L′L, where L is given by

L =

[
l11 0

l21 L22

]
, (4.10)

with l11 = (ω11 −ω ′21Ω
−1
22 ω21)

1/2, l21 = Ω
−1/2
22 ω21, and L22 = Ω

1/2
22 . Further, we define W (s) to be

(m+1)-vector standard Brownian motion and from Lemma 2.2 of Phillips and Ouliaris (1990) it follows

that B = L′W .

Residual-based cointegration tests seek to test the null hypothesis of no cointegration using unit

root tests applied to the residuals of the cointegrating regression. Hence, we estimate the cointegrating

regression according to one of the structural break models (4.3) using least squares and apply the SETAR

model (4.4) to the residuals êtτ ,

∆êtτ = ρ1êt−1τ1{êt−1τ ≥ λ}+ρ2êt−1τ1{êt−1τ < λ}+
K

∑
j=1

γ j∆êt− jτ + εtτ , (4.11)

3A stationary ARMA process is not necessarily strong-mixing. But if the innovations have absolutely continuous distribu-
tion, the strong-mixing condition is ensured (see, for example Andrews (1984) and Mokkadem (1988)).
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given that the threshold parameter λ is known, i.e. a fixed value. The residual regression (4.11) depends

on the relative timing of the breakpoint parameter τ . We assume the lag order K in (4.11) to be large

enough to capture the correlation structure of the errors. Since the error term εtτ might have a nonzero

MA component, it is necessary to increase K with the sample size (K→ ∞ as T → ∞). We follow Said

and Dickey (1984) and state:

Assumption 2. K increases with T in such a way that K = o(T 1/3).

Since 1{êt−1τ ≥ λ} and 1{êt−1τ < λ} are orthogonal, the test statistic is given by

Fτ =
t2
1 + t2

2
2

, (4.12)

where t1 and t2 are the t ratios for ρ̂1 and ρ̂2 from regression (4.11). Fτ is computed for each possible break

fraction τ ∈T and the supF-statistic, F∗, is computed to evaluate the null hypothesis of no cointegration

against the alternative of threshold cointegration with possible structural break. The following theorem

presents the asymptotic distributions of F∗ for model specifications C, C/T and C/S:

Theorem 1. If {zt}∞
0 is generated by (4.6), Assumptions (1) and (2) hold, the threshold parameter λ is

fixed and τ belongs to a compact subset of (0,1), then as T → ∞

F∗⇒ 1
2

sup
τ∈T


(

1∫
0
1{Qκτ ≥ 0}QκτdQκτ

)2

κ ′τDτκτ

1∫
0
1{Qκτ ≥ 0}Q2

κτ

+

(
1∫
0
1{Qκτ < 0}QκτdQκτ

)2

κ ′τDτκτ

1∫
0
1{Qκτ < 0}Q2

κτ


where

Qκτ = Wy−

 1∫
0

WxτW ′xτ

−1 1∫
0

WyW ′xτ

Wxτ

κτ =

1,−

 1∫
0

WxτW ′xτ

−1 1∫
0

WyW ′xτ




Under the alternative of cointegration with two-regime SETAR adjustment, F∗ → ∞ as T → ∞. Qκτ

depends on the model:

a) If the residuals are obtained from least squares estimation of model C, then

Wxτ = (W ′x ,1,ϕτ)
′

Dτ =

[
Im+1 0

0 0

]
.

b) If the residuals are obtained from least squares estimation of model C/T , then

Wxτ = (W ′x ,1,s,ϕτ)
′

Dτ =

[
Im+1 0

0 0

]
.
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c) If the residuals are obtained from least squares estimation of model C/S, then

Wxτ = (W ′x ,1,W
′
xϕτ ,ϕτ)

′

Dτ =


1 0 0 0 0

0 Im 0 (1− τ)Im 0

0 0 0 0 0

0 (1− τ)Im 0 (1− τ)Im 0

0 0 0 0 0

 .

A formal proof of the theorem is provided in the Appendix.

4 Simulation results

Critical values and finite sample properties of the supF test are examined by Monte Carlo experiments.

In the absence of a structural break, we use a DGP according to Engle and Granger (1987) and Banerjee

et al. (1986) which is given for one regressor (m = 1) in the form of

yt = µ +αx1,t + et ∆et = ρet−1 +ϑt ϑt ∼ N(0,1)

yt = x1,t +ηt ηt = ηt−1 +ωt ωt ∼ N(0,1)
(4.13)

where the parameters of the equilibrium equation are µ = 1 and α = 2. First, the null hypothesis of no

cointegration is simulated with ρ = 0. This enables us to obtain quantiles of the supF distribution for

different sample sizes. Critical values are computed for 10,000 draws for each sample size. The results

are reported in Table 4.1.

Table 4.1: Approximate critical values of F∗

C C/T C/S

T 90% 95% 99% 90% 95% 99% 90% 95% 99%

K = 0
50 10.55 12.12 15.28 12.85 14.37 18.11 14.76 16.70 20.98
100 10.21 11.44 14.18 12.26 13.63 16.65 13.90 15.51 18.94
250 9.94 11.04 14.11 11.84 13.11 15.78 13.57 15.05 18.10
500 9.81 10.98 13.64 11.74 12.98 15.59 13.59 14.93 17.90

K = 1
50 10.09 11.50 14.98 12.00 13.68 17.47 11.27 12.84 16.33
100 10.07 11.24 14.26 11.88 13.24 16.24 11.13 12.65 15.68
250 10.00 11.10 13.72 11.68 12.93 15.65 11.18 12.47 15.36
500 9.85 11.00 13.56 11.74 12.91 15.60 11.28 12.67 15.24

K = 4
50 8.58 9.84 12.84 9.71 11.14 14.24 9.16 10.40 13.43
100 9.09 10.26 12.68 10.53 11.68 14.51 9.87 11.06 13.55
250 9.42 10.68 13.05 11.16 12.33 14.62 10.58 11.90 14.33
500 9.64 10.83 13.15 11.42 13.00 15.18 10.90 12.18 14.72

Note: C, C/T and C/S denote the structural break models in (4.3). K refers to the number of lags in (4.4).

51



4 . SIMULATION RESULTS

Table 4.2: Approximate critical values of F∗ for more than one regressor

C C/T C/S

T 90% 95% 99% 90% 95% 99% 90% 95% 99%

m = 2
50 12.53 14.25 18.00 14.66 16.50 20.41 15.68 17.69 22.33
100 12.05 13.60 16.69 13.91 15.54 18.97 14.88 16.61 20.38
250 11.68 13.00 15.69 13.39 14.91 17.89 14.40 16.09 19.36
500 11.54 12.76 15.52 13.25 14.62 17.48 14.21 15.67 18.89

m = 3
50 14.63 16.53 20.74 16.63 18.70 22.91 19.30 21.65 27.31
100 13.74 15.21 18.63 15.52 17.20 20.40 17.94 19.74 23.83
250 13.29 14.63 17.88 14.99 16.58 19.71 17.31 19.05 22.59
500 13.12 14.41 17.37 14.70 16.04 18.85 17.06 18.60 22.20

m = 4
50 16.35 18.46 22.91 18.44 20.70 25.49 22.91 25.60 32.01
100 15.38 17.14 20.71 17.22 19.13 23.20 21.04 23.24 27.78
250 14.97 16.45 19.62 16.62 18.10 21.35 20.18 21.96 25.64
500 14.64 16.05 19.16 16.30 17.65 20.78 19.80 21.66 25.32

Note: C, C/T and C/S denote the structural break models in (4.3). m refers to the number of columns of the
regressor matrix xt .

The power of the supF test under structural change is evaluated with a DGP designed in line with

Gregory and Hansen (1996a). A slight modification was, however, necessary to allow for SETAR adjust-

ment to the long-run equilibrium. The following DGP is employed for a bivariate cointegrated system,

yt = µt +αtx1,t + et ∆et =

ρ1et−1 +ϑt if et−1 ≥ 0

ρ2et−1 +ϑt if et−1 < 0
ϑt ∼ N(0,1)

yt = x1,t +ηt ηt = ηt−1 +ωt ωt ∼ N(0,1)

[
µt = µ1, αt = α1, t ≤ [T τ]

µt = µ2, αt = α2, t > [T τ]

] (4.14)

in which symmetric adjustment is nested as ρ1 = ρ2. A change in the intercept is modelled by means of

an increase from µ1 = 1 to µ2 = 4 at the breakpoint [T τ], whereas a change in the slope is modelled as

an increase from α1 = 2 to α2 = 4. The simulation set-up used for cointegrated systems with symmetric

adjustment directly follows Gregory and Hansen (1996a) so that the results for the supF test can be

compared with the results for the GH test.

Table 4.4 displays the frequency of rejection under structural stability and asymmetric adjustment,

i.e. how often the supF test rejects the null hypothesis of no cointegration for a given combination

of autoregressive coefficients. For each pair of coefficients the series was generated with sample size

T = 100. The process was replicated 2,500 times for every specification. If the series are generated under

asymmetric adjustment with a stable cointegrating vector, we find that the sup F test operates with less

power than the threshold cointegration test by Enders and Siklos (2001). Falsely incorporating breaks in

form of additional dummy variable in the equilibrium equation thus reduces the power against the null
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hypothesis. Accordingly, the most parsimonious model C performs best among the three structural break

models.

Table 4.5 presents the power performance under cointegration with symmetric adjustment and break

in either the intercept or slope. We can see that the supF test has generally higher rejection frequencies

than either the Engle-Granger test using the ADF test statistic or the threshold cointegration test without

breakpoint estimation. The simulation reveals that the supF test is as powerful as the GH test. The

SETAR Enders-Siklos test seems to be rather robust to a break in the intercept but suffers from a drastic

reduction in power if a break in the slope is considered. The supF test shows sufficient power at sample

sizes above T = 100 and moderate adjustment rate ρ = −0.5. As expected, the model C outperforms

model C/T and C/S if a break in the intercept is considered, while C/S performs best if the slope changes

at one point in the sample.

The simulation results under symmetric adjustment can also be used to analyze the estimation accu-

racy of the pre-specified breakpoint in the DGP. The timing of the break is varied and takes place either

at the beginning, the middle or near the end of the series. The results are summarized in Table 4.6 and

reveal that breakpoint estimates are in large parts very accurate. In general, it seems that a break at the

beginning (λ = 0.25) is the most difficult to detect and the supF test often indicates a later breakpoint.

Breaks in the intercept and the slope are estimated with equal accuracy as long as the correct structural

break model is applied.

Finally, the behaviour of the supF test is evaluated under parameter instability and asymmetric ad-

justment. For that matter, we draw from the DGP in (4.14) using a subset of the parameter combinations

displayed in Table 4.4. In the first panel of Table 4.7, we consider a break in the intercept. The supF test

shows dismal power properties and is outperformed by the SETAR Enders-Siklos test in each parameter

combination. The loss in power of the original threshold cointegration test due to a break in the intercept

does not justify the additional parameter estimation and grid search of the C model. The C/T and C/S

models involve an additional parameter and, as expected, have lower rejection frequencies. With a break

in the slope (second panel of Table 4.7), we find the picture to be quite different. All structural break

models have more power against the null hypothesis than the SETAR Enders-Siklos test. While the C

models performs slightly better than the correctly specified C/S model for weak adjustment, the power

of the C/S model exceeds all others under moderate adjustment. In the third panel of Table 4.7, we

display the results for a break in the intercept and the slope. Again, the C/S model performs best among

the structural break models and far exceeds the benchmark. In general, we find a break in the slope

to have a more substantial impact on the power function than a break in the intercept. Since structural

change most likely involves all parameters of the equilibrium equation and the supF test based on the

C/S model performs best in those situations, it has to be considered the preferred model for cointegration

relationships with asymmetric adjustment which are subject to parameter instability.

5 Empirical application

In this section, we apply the supF test methodology to study the ‘rockets and feathers’ hypothesis4 in the

US gasoline market. The ‘rockets and feathers’ hypothesis describes the adjustment behaviour of prices

faced with input price shocks. More precisely, the hypothesis states that prices adjust faster to input

4The name originates from the Bacon (1991) paper entitled: ‘Rockets and feathers: the asymmetric speed of adjustment of
UK retail gasoline prices to cost changes’
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price increases than to input price decreases. In the terms of Bacon (1991)’s seminal paper, the price

goes up like a rocket, but falls down like a feather. While early studies on the matter (Bacon (1991),

Manning (1991), Borenstein et al. (1997)) focused on the short-run asymmetry in the pricing process,

the focus quickly shifted to the economically meaningful long-run asymmetry estimated by asymmetric

error correction models (Bachmeier and Griffin (2003)). We demonstrate the capabilities of the supF

test using US gasoline data over a span that covers the Financial Crisis from 2008.

Crude oil passes different stages of processing and distribution until it reaches the end customer. For

the analysis, we examine the prices transmission at two points of the production chain. First, we ana-

lyze the speed of adjustment for deviations from the long-run relationship between crude oil prices and

gasoline spot prices (first stage), i.e. the relationship between pre- and post-refinement prices. Second,

we analyze the pass-through from gasoline spot prices to retail prices (second stage). Finally, the direct

link between crude oil prices and retail prices is analyzed (single stage). Naturally, we expect the speed

of adjustment at the first and second stage to be faster than at the single stage transmission. Asymmetry

in the sense of the ‘rockets and feathers’ hypothesis is found if negative deviations from the long-run

equilibrium are adjusted faster than positive deviations, i.e. ρ1 = ρ− < ρ+ = ρ2.

0
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0
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0
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Spot
Crude

2006 2007 2008 2009 2010 2011 2012 2013

Figure 4.1: WTI crude oil prices, spot gasoline prices and retail gasoline prices from January 2006 to December
2013

Our sample reaches from January 2006 to December 2013 to include the collapse of commodity

prices in 2009 and their subsequent recovery. We observe prices at a monthly frequency yielding a total

of 96 observations. The West Texas Intermediate prices (crude), regular gasoline spot prices (spot) and

regular gasoline retail prices (retail) are all obtained from the U.S. Energy Information Administration

(EIA). Figure 4.1 depicts the trajectory of the prices and shows volatile behaviour of prices for petroleum

products during the Financial Crisis. Although the times series are affected by global events, it does not

immediately follow that the long-run relationship between them changes. However, from our simulation

study, we know that an existing instability of the cointegrating vector can severely decrease the power

of a threshold cointegration test. A closer inspection of the trajectories reveals a larger margin between

crude oil and gasoline spot prices in the later part of the sample.

First, we estimate a threshold cointegration model according to Enders and Siklos (2001). We specify
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the long-run equilibrium equations

(I) spott = µ +α crudet + et

(II) retailt = µ +α spott + et

(S) retailt = µ +α crudet + et

(4.15)

where the (I), (II), (S) denote first stage, second stage and single stage, respectively. The coefficients

of the cointegrating vector are estimated using least squares and the SETAR model is applied to the

residuals. The results are reported in panel (a) of Table 4.3. The adjustment coefficients show the

expected signs but do not reveal significant asymmetry in the adjustment process. Surprisingly, we do

not find sufficient evidence for a long-run relationship between crude oil prices and gasoline spot prices.

In contrast, retail gasoline prices and crude oil prices seem to maintain a long-run equilibrium which is a

less likely result from an economic perspective than the existence of a crude/spot relationship.

Table 4.3: Long-run adjustment along the gasoline value-chain

Panel (a): No structural break

µ α ρ+ ρ− ΦSETAR ρ+ = ρ−

(I) 5.492 1.145 −0.242 −0.181 4.922 -
(II) 79.499 0.960 −0.567 −0.887 17.830∗∗∗ 2.581
(S) 76.376 1.141 −0.250 −0.326 6.727∗∗ 0.263

Panel (b): Structural break model C

µ1 µ2 α ρ+ ρ− supF ρ+ = ρ− break

(I) 35.385 41.263 0.916 −0.516 −0.490 13.281∗∗ 0.021 12/10
(II) 79.438 −6.778 0.978 −0.621 −0.964 20.561∗∗∗ 2.921∗ 01/09
(S) 103.287 37.904 1.028 −0.445 −0.497 12.627∗∗ 0.095 02/11

Panel (c): Structural break model C/T

µ1 µ2 α δ ρ+ ρ− supF ρ+ = ρ− break

(I) 40.094 50.459 0.923 −0.199 −0.561 −0.522 14.821∗∗ 0.049 12/10
(II) 75.814 −3.736 0.982 −0.001 −0.584 −0.948 19.567∗∗∗ 3.317∗ 09/10
(S) 110.132 51.776 0.951 −0.302 −0.527 −0.527 15.087∗∗ 0.000 02/11

Panel (d): Structural break model C/S

µ1 µ2 α1 α2 ρ+ ρ− supF ρ+ = ρ− break

(I) 32.176 100.412 0.935 −0.256 −0.561 −0.474 14.553∗∗ 0.234 02/11
(II) 60.491 22.381 1.062 −0.123 −0.630 −1.018 21.404∗∗∗ 3.696∗ 10/08
(S) 93.796 195.438 0.989 −0.698 −0.453 −0.588 14.880∗∗ 0.621 02/11

Note: µ (α) denotes the intercept (slope coefficient) of the long-run equilibrium equation without structural break. µ1 (α1)
and µ2 (α2) denote the intercept (slope coefficient) of the long-run equilibrium equation before the break and after the break,
respectively. δ is the linear trend coefficient. ΦSETAR denotes the F-statistic based on the null hypothesis H0 : ρ+ = ρ− = 0.
We conduct F tests to test the null hypothesis ρ+ = ρ−.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

Second, we estimate the long-run equilibrium equations again with each of the three structural break

models. We put emphasis on the results of the C/S specification since this specification of the supF test

performed best in the simulation study if the slope coefficient changed at one point in time and is best-

suited for modelling unspecific regime shift events. The results are reported in panel (b)-(d) of Table 4.3.

The null hypothesis of no cointegration can now be rejected at all stages along the gasoline value-chain.
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The breakpoint is located either at the beginning of the crisis, i.e. at the peak crude oil prices, or after the

prices had recovered in 2011. We do not find statistical evidence for asymmetric adjustment processes

in the gasoline value-chain whether we model a structural break or not.

6 Summary

This paper proposed an extension to the GH test to include SETAR adjustment. Thereby, we constructed

a threshold cointegration test which endogenously determines the location of a structural break in the

cointegrating vector and tests the null of no cointegration. We derived the limiting distribution for the

structural break models C, C/T and C/S and tabulated their critical values which were obtained by

Monte Carlo simulations. Analysis of the finite sample properties under the alternative of linear and

threshold cointegration revealed that the test exhibits considerable power gains over the conventional

SETAR Enders-Siklos test if a break in the slope coefficient is present. We applied the supF test to US

gasoline market data and found evidence for a long-run relationship between prices along the value-chain

after we accounted for structural breaks. None of the models we estimated provided sufficient evidence

for asymmetric price transmissions.
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B Appendices

B .1 Mathematical proofs

Proof of Theorem 1. The asymptotic distribution is derived by adapting the results of Gregory and

Hansen (1992) to match the F-statistic process involving a threshold indicator function using results in

Maki and Kitasaka (2015). However, Maki and Kitasaka (2015) use a different definition of the threshold

parameter space. The threshold parameter in our model is fixed, i.e. belongs to a trivial compact subset

of R whereas the parameter space in Maki and Kitasaka (2015) is data dependent (see the discussion on

threshold parameter space in Section 2.2 of their paper). Indicator functions with threshold parameters

defined on compact sets are treated in Seo (2008). The proof only refers to model C/S while the results

for the remaining models can be deduced from the results obtained for this model. Hence, we consider

the cointegrating regression,

yt = α̂
′
1xt + µ̂1 + α̂

′
2xtϕt,τ + µ̂2ϕt,τ + êtτ , (4.16)

where êtτ is an integrated process under the null hypothesis of no cointegration and zt = (yt ,x′t)
′ is

generated according to (4.6).

Define the (2m+3)-vector Xtτ =(yt ,xt ,1,xtϕt,τ ,ϕt,τ)
′ and partition Xtτ =(X1tτ ,X2tτ)

′ where X1tτ = yt

and X2tτ contains all regressors of (4.16). Define δT = diag(T−1/2Im+1,1,T−1/2Im,1), ϕτ(s) = 1{s > τ}
and Xτ(s) = (B(s)′,1,Bx(s)′ϕτ(s),ϕτ(s))′. Partition δT = (δ1T ,δ2T ) in conformity to Xtτ .

Next, we partition the (m+1)-vector standard Brownian Motion W as W = (Wy,W ′x)
′ where

Wy = l−1
11

(
By−ω

′
21Ω

−1
22 Bx

)
Wx = Ω

−1/2
22 Bx. (4.17)

Furthermore, we define

Wxτ = (W ′x ,1,W
′
xϕτ ,ϕτ)

′ (4.18)

and Wτ = (Wy,W ′xτ)
′.

First, we consider the least squares estimator of the parameters of the cointegrating regression. It is

shown in Gregory and Hansen (1992) using the FCLT for vector processes in Phillips and Durlauf (1986)

and the continuous mapping theorem (CMT, see Billingsley (1999), Theorem 2.7) that

T−1
δT

T

∑
t=1

XtτXtτ
′
δT ⇒

1∫
0

XτXτ
′ (4.19)

uniformly over τ .

We define the vector θ̂τ = (α̂ ′1, µ̂1, α̂
′
2, µ̂2) as the least squares estimator of (4.16) for each τ . It
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follows from (4.19) and the CMT that

T−1/2
δ2T
−1

θ̂τ =

(
T−1

δ2T

T

∑
t=1

X2tτX2tτ
′
δ2T

)−1(
T−1

δ2T

T

∑
t=1

X2tτX1tτ
′
δ1T

)

⇒

 1∫
0

X2τX2τ
′

−1 1∫
0

X2τX1τ
′

 . (4.20)

When we set η̂τ = T−1/2δT
−1(1,−θ̂ ′τ)

′ = (1,−δ2T
−1

θ̂ ′τ)
′, it follows that

η̂τ ⇒

1,−

 1∫
0

X2τX2τ
′

−1 1∫
0

X1τX2τ
′


= ητ . (4.21)

Next, we state some useful convergence results for the residuals of the cointegrating regression. We

define the residual series êtτ = yt − α̂ ′1xt − µ̂1− α̂ ′2xtϕt,τ − µ̂2ϕt,τ which is dependent on τ . Note that êtτ

can be expressed as

êtτ = T 1/2
η̂
′
τδT Xtτ . (4.22)

Using Lemma 2.2 of Phillips and Ouliaris (1990) yields

T−1/2êtτ ⇒ η
′
τXτ = l11κτWτ = l11Qκτ , (4.23)

where

κτ =

1,−

 1∫
0

WxτW ′xτ

−1 1∫
0

WyW ′xτ




Lητ = l11κτ (4.24)

Qκτ = Wy−

 1∫
0

WxτW ′xτ

−1 1∫
0

WyW ′xτ

Wxτ .

The first-differenced residuals are expressed as ∆êtτ = η̂ ′τ∆Xtτ , where

∆Xtτ = ∆(yt ,xt ,1,xtϕt,τ ,ϕt,τ)
′

= (ξ1t ,ξ2t ,0,xt−1∆ϕt,τ +∆xtϕt,τ ,∆ϕt,τ)
′ (4.25)

= (ξ1t ,ξ2t ,0,xt−1∆ϕt,τ +ξ2tϕt,τ ,∆ϕt,τ)
′

and

∆ϕt,τ =

 1 if t = [T τ]

0 if t 6= [T τ]
. (4.26)

The asymptotic counterpart to ∆ϕt,τ is the differential dϕτ , a Dirac function concentrating the unit mass
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at the point t = τ so that
1∫

0

f dϕτ = lim
z↑τ

f (z)

for all functions with left-limits. Then, it holds that ∆êtτ ⇒ η ′τ∆Xτ , where

∆Xτ(s) = (dB(s)′,0,Bx(s)′dϕτ(s)+dBx(s)′ϕτ(s),dϕτ(s))′. (4.27)

Under Assumption 1, ξt is a stationary VARMA process and consequently, the scalar process η ′τ∆Xtτ is

also a stationary ARMA process except for a point mass at t = [T τ]. Following Phillips and Ouliaris

(1990) we write the AR representation of the SETAR error term process as εtτ =
∞

∑
j=0

D j(∆Xt− jτ)
′ητ =

D(L)(∆Xtτ)
′ητ . Under Assumption 2, the lag structure is chosen in a way that εtτ is an orthogonal

(0,σ2(η ,τ)) sequence with σ2(η ,τ) = D(1)2η ′τΩτητ . From Lemma 2.1 of Phillips and Ouliaris (1990),

it follows that

T−1/2
[T s]

∑
t=1

εtτ = D(L)η ′τ

(
[T s]

∑
t=1

δT ∆Xtτ

)
+op(1)⇒ D(1)η ′τXτ(s) (4.28)

for each τ , where D(1) =
∞

∑
j=0

D j.

Now, we consider the auxiliary regression. We apply the SETAR model to the residuals according

to (4.11) and compute the test statistics Fτ . Note that the estimated adjustment coefficients might be

correlated with the estimated coefficients of the additional lagged differences. Therefore, we write the

least squares estimator of ρ = (ρ1,ρ2)
′ in the breakpoint-specific notation under the null hypothesis

ρ1 = ρ2 = 0 as ρ̂ = (U ′τQKUτ)
−1U ′τQKετ , where

Uτ =


ê0τ1{ê0τ ≥ λ} ê0τ1{ê0τ < λ}
ê1τ1{ê1τ ≥ λ} ê1τ1{ê1τ < λ}

...
...

êT−1τ1{êT−1τ ≥ λ} êT−1τ1{êT−1τ < λ}

 , (4.29)

ετ = (ε1τ ,ε2τ , . . . ,εT τ)
′ and QK = I−MK(M′KMK)

−1M′K is the projection matrix onto the space orthogo-

nal to MK = (∆êt−1τ , . . . ,∆êt−Kτ).

Partition the matrix Uτ as Uτ = (U1τ ,U2τ), then the t ratio of ρ̂1 can be expressed as

t1 =
ρ̂1

se(ρ̂1)
=

ρ̂1

(σ̂2(U ′1τ
QKU1τ)−1)1/2 =

U ′1τ
QKετ

σ̂(U ′1τ
QKU1τ)1/2 (4.30)

and similarly the t ratio of ρ̂2 can be expressed as

t2 =
U ′2τ

QKετ

σ̂(U ′2τ
QKU2τ)1/2 . (4.31)

In the remainder of the proof, we focus on t1. Scaling the t ratio appropriately yields the numerator

T−1U ′1τQKετ = T−1U ′1τετ −T−1/2 ·T−1U ′1τMK(T−1M′KMK)
−1T−1/2M′Kετ

= T−1U ′1τετ +op(1) = NT (λ ,τ)+op(1) (4.32)

59



B . APPENDICES

and the term

T−2U ′1τQKU1τ = T−2U ′1τU1τ −T−1 ·T−1U ′1τMK(T−1M′KMK)
−1T−1M′KU1τ

= T−2U ′1τU1τ +op(1) = DT (λ ,τ)+op(1). (4.33)

Finally, we need convergence results for NT (λ ,τ), DT (λ ,τ) and σ̂2. From (4.23) and since x 7→
x1{x≥ λ} is a regular function, it follows from Theorem 3.1 of Park and Phillips (2001) that

T−1/2êt−1τ1{êt−1τ ≥ λ} = η̂
′
τδT Xt−1τ1{T 1/2

η̂
′
τδT Xt−1τ ≥ λ}

= η̂
′
τδT Xt−1τ1{η̂ ′τδT Xt−1τ ≥ T−1/2

λ} (4.34)

⇒ η
′
τXτ1{η ′τXτ ≥ 0}= l11Qκτ1{Qκτ ≥ 0}.

Thus, Theorem 2.2 of Kurtz and Protter (1991) combined with results (4.28) and (4.34) yields

NT (λ ,τ) = T−1
T

∑
t=1

1{êt−1τ ≥ λ}êt−1τεtτ

= η̂
′
τδT

T

∑
t=1

1{δT η̂
′
τXt−1τ ≥ T−1/2

λ}Xt−1τD(L)(∆Xtτ)
′
δT ητ

⇒ D(1)η ′τ

1∫
0

1{η ′τXτ ≥ 0}XτdX ′τητ (4.35)

= D(1)l2
11

1∫
0

1{Qκτ ≥ 0}QκτdQκτ ,

while (4.28), (4.34) and the CMT yield

DT (λ ,τ) = T−2
T

∑
t=1

1{êt−1τ ≥ λ}ê2
t−1τ

= η̂
′
τδT T−1

T

∑
t=1

1{δT η̂
′
τXt−1τ ≥ T−1/2

λ}Xt−1τXt−1τ
′
δT η̂τ

⇒ η
′
τ

1∫
0

1{η ′τXτ ≥ 0}XτX ′τητ (4.36)

= l2
11

1∫
0

1{Qκτ ≥ 0}Q2
κτ .

For the variance estimate, σ̂2, we note that ρ̂1 = Op(T−1) and ρ̂2 = Op(T−1), but (γ̂ j−γ j) = Op(T−1/2).
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Using Lemma 2.2 of Phillips and Ouliaris (1990) yields

σ̂
2 = T−1

T

∑
t=1

(
∆êtτ − ρ̂1êt−1τ1{êt−1τ ≥ λ}− ρ̂2êt−1τ1{êt−1τ < λ}−

K

∑
j=1

γ̂ j∆êt− jτ

)2

= T−1
T

∑
t=1

ε
2
tτ +op(1) = T−1

T

∑
t=1

D(L)2
η
′
τ∆Xtτ(∆Xtτ)

′
ητ (4.37)

⇒ D(1)2
η
′
τΩτητ = D(1)2l2

11κ
′
τDτκτ ,

where the long-run covariance matrix is given by

Ωτ =


ω11 ω ′21 0 (1− τ)ω ′21 0

ω21 Ω22 0 (1− τ)Ω22 0

0 0 0 0 0

(1− τ)ω21 (1− τ)Ω22 0 (1− τ)Ω22 0

0 0 0 0 0

 (4.38)

and

Dτ =


1 0 0 0 0

0 Im 0 (1− τ)Im 0

0 0 0 0 0

0 (1− τ)Im 0 (1− τ)Im 0

0 0 0 0 0

 . (4.39)

Similar results can be obtained for t2 so that the results (4.35), (4.36), (4.37) combine with the CMT to

proof the theorem under the null hypothesis.

Under the alternative, the system is cointegrated so that we have η̂τ

p→ ητ and

η̂τ = ητ +Op(T−1) (4.40)

from Phillips and Durlauf (1986), Theorem 4.1. Thus, for the residual series it holds that

êtτ = η̂
′
τzt = η

′
τzt +Op(T−1/2) = qtητ +Op(T−1/2). (4.41)

By assumption a stationary SETAR representation of qtητ exists and is given by

qtητ = a11qt−1ητ1{qt−1ητ ≥ λ}+a12qt−1ητ1{qt−1ητ < λ}+
∞

∑
j=2

a jqt− jητ + ε
∗
tητ , (4.42)

where ε∗tητ is an orthogonal (0,σε∗ητ
) sequence. This can alternatively be written as

∆qtητ = ψ11qt−1ητ1{qt−1ητ ≥ λ}+ψ12qt−1ητ1{qt−1ητ < λ}+
∞

∑
j=2

ψ j∆qt− jητ + ε
∗
tητ . (4.43)

If we consider the t ratio of ρ̂1 and use the expression

t1 =
1
σ̂

(
ρ̂1 (U ′1τQKU1τ)

1/2
)
, (4.44)
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we find that ρ̂1
p→ ψ11 6= 0 and σ̂2 p→ σ2

ε∗ητ
. Further, we observe

U ′1τQKU1τ =U ′1τU1τ −U ′1τMK(M′KMK)
−1M′KU1τ = Op(T ) (4.45)

which yields t1 = Op(T 1/2) and similarly t2 = Op(T 1/2). Hence, we immediately see that F∗ → ∞ as

T → ∞. �
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Table 4.5: Rejection frequencies of the supF test under structural change and symmetric adjustment

µ1 = 1, µ2 = 4, α1 = 2, α2 = 2 µ1 = 1, µ2 = 1, α1 = 2, α2 = 4

T = 50 T = 100 T = 50 T = 100

τ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

C 0.535 0.547 0.545 0.993 0.994 0.993 0.787 0.613 0.696 0.936 0.863 0.955
C/T 0.415 0.405 0.417 0.972 0.968 0.974 0.652 0.476 0.485 0.897 0.839 0.924
C/S 0.296 0.310 0.319 0.939 0.933 0.934 0.693 0.489 0.341 0.995 0.982 0.975

ADF (c) 0.139 0.096 0.096 0.391 0.274 0.277 0.089 0.060 0.086 0.126 0.100 0.145
ADF (c + t) 0.124 0.125 0.116 0.397 0.481 0.434 0.076 0.058 0.096 0.109 0.122 0.187
GH (C) 0.486 0.486 0.508 0.977 0.976 0.979 0.259 0.265 0.492 0.643 0.587 0.898
GH (C/T ) 0.387 0.377 0.390 0.929 0.930 0.920 0.203 0.220 0.277 0.508 0.546 0.761
GH (C/S) 0.376 0.377 0.387 0.940 0.935 0.939 0.399 0.378 0.408 0.969 0.968 0.968
Φ 0.297 0.261 0.263 0.883 0.733 0.863 0.194 0.144 0.194 0.331 0.279 0.354

Note: C, C/T and C/S denote the structural break models in (4.3). ADF (c) and ADF (c + t) refer to the Engle-Granger test with
intercept and intercept plus trend, respectively. GH denotes the Gregory-Hansen test. Φ denotes the Enders-Siklos cointegration test
with SETAR adjustment. The table is based on 2,500 replications of the DGP described in (4.14). The autoregressive coefficients are
ρ1 = ρ2 =−0.5, i.e. the adjustment is constant and symmetric.

Table 4.6: Estimates of the breakpoint under symmetric adjustment

µ1 = 1, µ2 = 4, α1 = 2, α2 = 2 µ1 = 1, µ2 = 1, α1 = 2, α2 = 4

T = 50 T = 100 T = 50 T = 100

τ 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

C 0.32(0.15) 0.53(0.11) 0.70(0.15) 0.28(0.10) 0.51(0.08) 0.74(0.11) 0.34(0.18) 0.55(0.13) 0.72(0.13) 0.28(0.12) 0.54(0.11) 0.75(0.10)
0.28(0.04) 0.52(0.04) 0.74(0.04) 0.26(0.02) 0.51(0.02) 0.76(0.02) 0.28(0.05) 0.54(0.04) 0.76(0.04) 0.26(0.02) 0.52(0.02) 0.77(0.02)

C/T 0.38(0.19) 0.50(0.16) 0.66(0.22) 0.33(0.16) 0.51(0.11) 0.69(0.16) 0.39(0.19) 0.53(0.15) 0.65(0.20) 0.31(0.15) 0.53(0.11) 0.73(0.13)
0.28(0.26) 0.50(0.08) 0.74(0.34) 0.27(0.03) 0.51(0.02) 0.75(0.03) 0.28(0.26) 0.52(0.10) 0.74(0.22) 0.27(0.02) 0.52(0.02) 0.75(0.02)

C/S 0.35(0.16) 0.53(0.12) 0.68(0.16) 0.30(0.11) 0.51(0.07) 0.72(0.12) 0.33(0.14) 0.54(0.09) 0.71(0.13) 0.27(0.07) 0.51(0.05) 0.75(0.07)
0.28(0.18) 0.54(0.04) 0.76(0.12) 0.25(0.02) 0.51(0.02) 0.76(0.03) 0.26(0.14) 0.54(0.04) 0.78(0.08) 0.25(0.02) 0.51(0.02) 0.77(0.01)

Note: C, C/T and C/S denote the structural break models in (4.3). The left panel and right panel report the estimates of the break fraction following a shift in
the intercept and a shift in the slope, respectively. Upper rows contain the mean breakpoint estimate and the empirical standard deviation. Lower row contain
the median breakpoint and the interquartile range. The autoregressive coefficients are ρ1 = ρ2 =−0.5, i.e. the adjustment is constant and symmetric.
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Table 4.7: Rejection frequencies of the supF test under structural change and asymmetric adjustment

µ1 = 1, µ2 = 4, α1 = 2, α2 = 2

C C/T C/S Φ

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

−0.025 −0.05 0.096 0.050 0.013 0.098 0.050 0.009 0.037 0.018 0.004 0.119 0.062 0.014
−0.15 0.111 0.059 0.014 0.109 0.058 0.012 0.043 0.018 0.003 0.143 0.067 0.018
−0.25 0.128 0.070 0.016 0.120 0.062 0.018 0.048 0.022 0.004 0.153 0.084 0.022

−0.05 −0.10 0.120 0.061 0.013 0.112 0.064 0.013 0.043 0.020 0.003 0.147 0.080 0.019
−0.25 0.160 0.089 0.021 0.149 0.082 0.024 0.056 0.026 0.003 0.182 0.108 0.032

−0.10 −0.15 0.173 0.106 0.023 0.157 0.086 0.020 0.058 0.028 0.004 0.210 0.118 0.037
−0.25 0.226 0.140 0.041 0.196 0.114 0.030 0.081 0.040 0.008 0.258 0.158 0.053

µ1 = 1, µ2 = 1, α1 = 2, α2 = 4

C C/T C/S

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

−0.025 −0.05 0.241 0.165 0.097 0.196 0.137 0.065 0.214 0.168 0.093 0.114 0.057 0.012
−0.15 0.263 0.190 0.109 0.215 0.157 0.076 0.255 0.201 0.107 0.117 0.059 0.014
−0.25 0.274 0.200 0.114 0.226 0.164 0.081 0.271 0.212 0.118 0.119 0.064 0.016

−0.05 −0.10 0.268 0.198 0.114 0.219 0.164 0.073 0.269 0.207 0.113 0.114 0.059 0.013
−0.25 0.298 0.221 0.132 0.243 0.182 0.088 0.325 0.256 0.140 0.126 0.067 0.017

−0.10 −0.15 0.319 0.246 0.138 0.255 0.179 0.092 0.340 0.271 0.155 0.136 0.072 0.018
−0.25 0.353 0.277 0.160 0.286 0.206 0.109 0.394 0.311 0.189 0.193 0.110 0.037

µ1 = 1, µ2 = 4, α1 = 2, α2 = 4

C C/T C/S Φ

ρ1 ρ2 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

−0.025 −0.05 0.080 0.060 0.037 0.228 0.163 0.080 0.235 0.185 0.111 0.111 0.057 0.011
−0.15 0.171 0.136 0.080 0.246 0.180 0.093 0.268 0.215 0.123 0.112 0.058 0.013
−0.25 0.274 0.195 0.110 0.263 0.185 0.100 0.278 0.231 0.136 0.118 0.062 0.015

−0.05 −0.10 0.269 0.198 0.116 0.224 0.155 0.074 0.265 0.198 0.111 0.116 0.058 0.011
−0.25 0.308 0.225 0.129 0.248 0.175 0.086 0.314 0.250 0.138 0.130 0.068 0.017

−0.10 −0.15 0.327 0.243 0.135 0.250 0.184 0.093 0.343 0.270 0.153 0.134 0.069 0.017
−0.25 0.355 0.277 0.160 0.284 0.204 0.109 0.388 0.315 0.184 0.143 0.081 0.022

Note: C, C/T and C/S denote the structural break models in (4.3). Φ denotes the Enders-Siklos cointegration test with SETAR adjustment. The table is based
on 2,500 replications of the DGP described in (4.14). The breakpoint occurs mid-sample, i.e. τ = 0.5. The test with the highest rejection rates is highlighted
in boldface.
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Chapter 5

A Markov regime-switching model of
crude oil market integration

1 Introduction

The discussion on whether world crude oil markets are globalized or regionalized has received a great

deal of attention in recent years. Adelman (1984) described the world crude oil market as ‘one great

pool’. Changes in market conditions in one region are then expected to affect other geographical regions

immediately. An existing price differential in local oil markets that exceeds the transportation costs of

third party exporters gives rise to arbitrage opportunities. The subsequent supply pressure is expected to

close the difference in prices. The idea of ‘one great pool’ was challenged by Weiner (1991) who finds

empirical support for a high degree of regionalization. His findings imply that the world crude oil market

is fragmented and the effects of price shocks to regional crude oil prices are restricted to this specific

regional market.

This initial discussion has triggered numerous empirical studies, among them Guelen (1999), Fattouh

(2010), Reboredo (2011) and Ji and Fan (2015), that tackle the ‘globalization-regionalization’ hypothesis

from different angles. The majority of recent studies finds evidence for a globalized crude oil market.

However, the structure of the market does not seem to be stable over time.

Our paper contributes to the literature by proposing a regime-switching model for the long-run rela-

tionships among benchmark crude oil prices. This allows us to relax the assumption of constant dynamics

over the sample period which has to hold for linear cointegration models. More specifically, we apply a

Markov-switching vector error correction model (MSVECM) to capture changing roles of crudes in the

world crude oil market and a changing degree of market integration. This enables us to identify regime-

shifts from the data without the need to pre-specify structural breaks. We aim to account for increasingly

volatile crude oil prices and changing economic and geopolitical conditions over a sample reaching from

1987 to 2015. Our data-set consists of five major crude oil benchmark prices – WTI, Brent, Bonny Light,

Dubai and Tapis – representative of five crude oil producing regions.

The question whether the crude oil market is globalized or regionalized has important policy impli-

cations. Developed countries hold strategic petroleum reserves to provide emergency crude oil in times

of disruptive supply shocks. Members of the International Energy Agency are required to stockpile
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crude oil equal to 90 days of prior year’s net oil imports1. If effects of supply shocks were restricted

to one region, higher reserves would have to be stockpiled than in a globalized market where arbitrage

opportunities lead to supply of cheaper oil from other production sites.

Furthermore, a precise assessment of the market behaviour is needed to anticipate the scope of new

energy policies. Energy markets are currently experiencing fundamental changes since production of

giant oil fields declines (Höök et al. (2009)) whereas new technologies, like hydraulic fracturing, are

used to revitalize existing oil fields. Also, the interest in renewable energy has recently increased as

might be reflected by the renewable energy directive of the European Union (European Commission

(2016)). The decision to invest in the energy sector requires an accurate prediction of future crude oil

prices. Focussing on the classical benchmarks (WTI and Brent) or only on local benchmark prices might

prevent assessing the correct market behaviour if they do not reflect global supply and demand.

Moreover, a precise assessment of crude oil prices is needed for hedging purposes and the pricing

of other derivatives related to crude oil prices. It is therefore of interest which benchmark price reflects

crude oil market developments first and leads the pricing process. This may become even more important

since activity in commodity exchange contracts has risen in recent years which is discussed under the

term ‘financialization’ of commodity markets in the literature (see, for example, Buyuksahin and Harris

(2011) and Tang and Xiong (2012)). Although activity in crude oil exchange trading has increased

accordingly, trading physical oil is still carried out in large quantities and is non-transparent to the public.

In practice, price reporting agencies, like Platts, provide assessments of benchmark crude oil prices. The

prices in the physical oil market are collected by a window or market-on-close process in which bids,

offers and the trade volume are assessed and prices are published as an end-of-day value. This leads

to price-discovery which rests on voluntary and selective disclosure by market participants as well as

subjective judgement of the price reporting agency. Although WTI, Brent and Dubai are considered to be

the most important crude oil benchmarks, there is no universally recognized global crude oil spot price.

Market agents exposed to crude oil price risks, therefore, are particularly interested in how different

crude oil benchmarks interact and which of them responds fastest to changing conditions on the crude

oil market.

The remainder of the paper is organized as follows. Section 2 describes the structure of the world

crude oil market and the role of benchmark prices. In Section 3 , we review the literature on crude

oil market integration, Section 4 outlines the econometric framework used in the empirical part of the

paper, Section 5 reports the results of the empirical application, Section 6 relates our findings to previous

studies and Section 7 concludes.

2 Market structure and the role of benchmark prices

Internationally traded crude oil comes in different qualities and characteristics. Lighter crude oils yield

a higher percentage of gasoline and diesel fuel than heavier crudes (usually measured in American

Petroleum Institute (API) gravity). Since sulphur is an undesirable component, ‘sour’ crudes with a

higher sulphur level are less sought after than ‘sweet’ crudes. Generally, light and sweet crudes are

priced at a premium relative to heavy and sour crudes. Buyers and sellers of crude oil rely on the use

1The International Energy Agency (IEA) was founded in the wake of the first oil crisis. Historically, the majority of member
states were net oil importers. Net exporters are exempt from this requirement. Although the role of the US as a net importer
has to be reconsidered, following the resurgence of shale oil fields, the largest crude oil stockpiles are concentrated in the US.
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Figure 5.1: Time series plots for regional crude oil price series (WTI, Brent, Dubai, Bonny Light, Tapis)
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Source: DATASTREAM (see Section 5 .1).

of benchmark crude oils (price markers) to price the different types of crude oil. These benchmarks

typically exhibit the following properties: First, the volume of production must be sufficiently large to

ensure physical liquidity. Second, the oilfield has to be located in a geopolitically and financially stable

region to encourage market interactions. Third, delivery points have to be provided at locations suitable

for trade with other market hubs to enable arbitrage. Finally, a diverse ownership of production should

be present to prevent market interference and price manipulation. In practice, however, major crude oil

benchmarks do not fulfil all the requirements equally. Non-benchmark crudes are priced relative to the

benchmark crude at a premium or discount depending on their quality. This is known as formula pricing.

Brent is the reference for about 65% of crude oil traded around the globe according to the Inter-

continental Exchange, whereas WTI is the dominant benchmark in the US (Intercontinental Exchange

(2016)). Dubai is the main reference for Persian Gulf oil delivered to the Asian market. Bonny Light

is a benchmark for West African oil fields and Tapis serves as a benchmark crude for the Asian Pacific

region. Figure 5.1 shows the trajectories of the five benchmark prices from 1987 to 2015. The amount

of oil production over time is depicted in Figure 5.2.

Originally, crude oil extracted from the Brent oilfield, which was discovered in 1971, formed the

Brent benchmark (API gravity of 38.3◦ and 0.37% sulphur). Production from the Brent oilfield started

to decline in the mid-1980s which led to volatile prices. Commingling Brent with oil produced in the

Ninian oil field, also located in the North Sea, alleviated this problem temporarily. A further decline

in production led to the inclusion of oil from the Forties, Oseberg and Ekofisk fields (Fattouh (2006)).

Today, the production is still declining (see Figure 5.2) and a substantial share of Europe’s crude oil

supply comes from Russia, which raises the question whether Brent has retained its role as a benchmark

price.

The North American crude oil West Texas Intermediate (WTI), which has an API of 39.6◦ and con-

tains 0.24% sulphur, making it a light and sweet crude, is transported from the extraction sites via

pipelines to Cushing, Oklahoma. In 1983, NYMEX chose Cushing as the official delivery point for
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Figure 5.2: Temporal evolution of crude oil production in five production sites denoted in thousand barrels per
day
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its light sweet crude futures contract which in turn connects the oil fields to refineries and ports. Fol-

lowing the explosive growth in production from shale oil fields, the Cushing pipeline nexus has turned

out to be a bottleneck. Oil is transported to Cushing in large quantities but the ill-equipped infrastruc-

ture delayed the distribution of oil. Consequently, the build-up in inventory caused WTI to trade at a

discount compared to other benchmark crude oils and to decouple from the world crude oil market. This

phenomenon is known in the literature as the ‘broken benchmark’ (Fattouh (2007), Fattouh (2010) and

Ji and Fan (2015)). If WTI was considered the global price setter, a decoupling effect would severely

impair effective hedging against risks related to energy prices and would lead to incorrect pricing of other

derivatives based on crude oil.

WTI and Brent held a constant price differential until around 2010. Historically, WTI traded at a

premium compared to Brent, attributed to the fact that WTI is the lighter and sweeter crude oil. Beginning

in 2010, the spread has been reversed. The hydraulic fracturing boom in the US helped to increase the

US crude oil production by 75% from 2008 to 2014 according to the US Energy Information Agency (US

Energy Information Agency (2016)) and subsequently ensured full inventories. Hydraulic fracturing is

not utilized with the same intensity in the oil fields of the North Sea. A significant widening of the price

differential can be observed after the shale oil boom in the US picked up speed. Moreover, the US ban

on crude oil exports during our observational period may have prohibited the reduction of overcapacities

through international trade2.

Dubai is of slightly lower grade than WTI or Brent. An API gravity of 31◦ and 2% sulphur makes

Dubai a medium heavy and sour crude. It comprises of crudes from different oil fields in Dubai, Oman

and Abu Dhabi. Despite the existence of other regional crudes with a larger physical base, Dubai serves

as a benchmark price for oil extracted in the Gulf region.

Bonny Light is a sweet but medium heavy crude oil (API 33.4◦, 0.16% sulphur). The Bonny Light

2The US have lifted the crude oil export ban in January 2016.
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production is concentrated in the onshore and offshore areas of the Niger Delta of Nigeria. West African

crude oil is mostly refined outside the region, in Asia, Europe and the US. Violent conflicts in the Niger

region led to temporary disruption of the oil production in September 2004.

Tapis is produced offshore in the South China Sea (the Seligi, Guntong, Tapis, Semangkok, Irong

Barat, Tebu, and Palas fields). It is of the highest quality with an API gravity of 45.2◦ and low sulphur

content (0.03%).

Historically, none of the five benchmark prices in our study has emerged as a universally recognized

global price setter. A price setter is defined as a price that influences other prices in the same category

directly or indirectly without being influenced itself. In terms of our empirical application which focuses

on a cointegrated system, a price setter can be identified as a variable which does not adjust to deviations

from the long-run equilibrium which is instead maintained by the remaining variables. The price setter

takes the role of a lead variable whereas the remaining variables act as lag variables.

We believe that focussing on benchmark prices reduces the problem encountered by studies involv-

ing both benchmark and non-benchmark prices (Wlazlowski et al. (2011) and Candelon et al. (2013)):

Non-benchmark prices are priced in relation to the regional benchmark with price adjustments made

depending on quality and transportation costs (formula pricing). While we expect the benchmark/non-

benchmark relation to be strong, we are primarily interested in the relationship between geographically

separated markets. Only if we find long-run co-movement and short-run adjustments among prices with-

out a formula pricing relationship, we can argue in favour of a globalized crude oil market.

3 Literature

After Adelman (1984) and Weiner (1991) initiated the discussion on the integration of international

crude oil markets, a substantial body of literature on the subject has emerged. Empirical studies mostly

employ cointegration models to assess the relations among crude oil prices. For instance, Rodriguez and

Williams (1993) aim to test the ‘one great pool’ hypothesis using a cointegration analysis for monthly

data from 1982 to 1992. They claim to find evidence for integrated crude oil markets by rejecting

the hypothesis of no cointegration which implies the presence of a long-run stable relationship among

regional crude oil prices. However, Weiner (1993) emphasizes that, although prices follow a common

trend, the short-run dynamics are important to characterize the relationship among regional prices. More

precisely, Weiner (1993) argues that only price reactions to changes in other crude oil prices in the

short-run should lead to a rejection of the ‘regionalization’ hypothesis. He criticizes the use of linear

cointegration models which are not able to capture the true dynamics of a changing world crude oil

market.

Guelen (1999) tries to account for structural change by applying cointegration models to subsamples

of falling and rising crude oil prices. He finds evidence for stronger co-movement in periods of increasing

prices, implying that linear cointegration models indeed are not well-suited for the analysis of price

dynamics in global crude oil markets. Further, he finds that WTI and Brent take the role of global

benchmark prices. Bentzen (2007) specifies a vector error correction model for daily crude oil prices

from the Middle East, North America and the North Sea. Using data from January 1988 to December

2004, evidence is found for a globalized market with an increasing role of OPEC prices, thereby reducing

the strength of WTI and Brent as global benchmarks.
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Hammoudeh et al. (2008) and Fattouh (2010) use threshold cointegration models to capture a po-

tentially non-linear relationship among crude oil prices. More specifically, Hammoudeh et al. (2008)

examine the relationship among four benchmark prices (WTI, Brent, Dubai, Maya) based on daily data

from 1990 to 2006. They use momentum threshold autoregressive (MTAR) models which allow for

different adjustment depending on whether the spread between crudes is widening or narrowing. While

all price pairs are cointegrated, Brent and WTI are found to be leading the pricing process in the long-

run. Instead, Fattouh (2010) analyzes crude oil price differentials at a weekly frequency from 1997 to

2008 using threshold autoregressive (TAR) models. Prices of crude oils with a similar quality show a

strong comovement over the sample whereas divergence of prices for crudes of different qualities can be

observed.

Liu et al. (2013) investigate the role of China in the world crude oil market. Since China is one of

the major oil importers with increasing demand in recent years, China’s energy policy has an important

influence on regional crude oil prices. If price changes of the regional benchmark, Daqing, were trans-

mitted to world crude oil prices, indications of market integration would be found. However, the results

of a threshold VECM reveal only a one-directional effect from world crude oil markets to the regional

Daqing benchmark. Wilmot (2013) focusses on the Canadian-US market integration. He argues that the

‘globalization’ hypothesis also requires that a long-run relationship among secondary ‘non-benchmark’

crudes exists. Evidence from a cointegration analysis of Edmonton Par, a light crude, and Western Cana-

dian Select, a heavy crude, and its US (Mexican) analogues, confirm a long-run relationship. However,

the analysis reveals a structural break in the cointegrating vector and the breakpoint is determined to

coincide with the Financial Crisis.

More recently, Ji and Fan (2015) investigate the long-run equilibrium relationships among the five

major regional crude oil benchmarks (WTI, Brent, Dubai, Bonny Light, Tapis) by using a VECM com-

bined with a directed acyclic graph technique. Based on tests for the presence of structural breaks, they

split their sample at the break point in October 2010. They find that WTI was a price setter before 2010

while Brent is in a leading role since 2011. Tapis has always been a price taker whereas Dubai and Bonny

Light have taken both roles at times. Mann and Sephton (2016) use band-TAR threshold cointegration

models to examine the long-run relationships between WTI and Brent and WTI and Oman. They find

these crude oil price pairs to be tied together in the long-run. Since each price adjusts to the long-run

equilibrium at some point, they conclude that a unique global benchmark prices does not exist.

Additionally, there are further studies that focus on the changing conditions on the crude oil market.

Reboredo (2011) models the dependence structure between crude oil benchmark prices using a copula

approach. Upper and lower tail dependence is found, suggesting that benchmark crude oils boom and

crash simultaneously. This is considered evidence for a globalized world crude oil market. Candelon

et al. (2013) examine causal linkages at regional oil markets when prices are on average extremely high

or low. The study reveals benchmark prices besides WTI and Brent. Moreover, market integration is

found to be weaker during extreme times. Instead of Candelon et al. (2013)’s set of 32 different crudes,

Lu et al. (2014) restrict their analysis to four benchmark prices (WTI, Brent, Dubai, Tapis) and find

a stronger market integration after disruptive events take place. Zhang and Zhang (2015) employ a

Markov-switching autoregressive model to investigate the short-run dynamics between Brent and WTI.

They find three price regimes which are characterized by different dynamics.

In all, evidence is mounting that crude oil markets are ‘globalized’. Crude oil prices seem to hold
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long-run equilibrium relationships. However, the degree of market integration does not seem to be stable

over time.

4 Econometric methodology

The long-run and short-run dynamics of the crude oil prices, collected in a vector yt , are modelled using a

vector error correction model (VECM). The model assumes that the prices are linked by stable long-run

relationships. However, the variables deviate from these equilibrium relationships in the short-run due

to random shocks. Maintaining the long-run relationships requires that deviations are corrected by the

variables in the short-run. Put differently, the variables are said to adjust to equilibrium errors. Following

Johansen (1988)’s notation, the linear VECM is given as

∆yt = µ +Πyt−1 +
p−1

∑
i=1

Γ
i
∆yt−i +ut , (5.1)

where yt is a N×1 vector of I(1) variables, µ is a vector of drift parameters and ut is a vector of white

noise error terms. The k× k parameter matrix Π = αβ ′ captures both the long-run equilibrium relations

and the adjustment behaviour. The matrix β contains r cointegrating vectors and α carries the loadings

in each of the r vectors.

A particular feature of the linear VECM is that it assumes constancy of all parameters in its data

generating process. Certainly, this assumption appears to be restrictive in the context of a volatile crude

oil market. Previous studies described relevant disruptive events concerning the energy market (see Lu

et al. (2014) for a list of events from 2002 to 2011), and specific issues on the crude oil market, for exam-

ple WTI, as a ‘broken benchmark’. These events are likely to induce structural changes in the relations

among crude oil prices. Although we expect the crude oil prices to maintain constant long-run equilibria

since crude oils are close substitutes3, the roles of crude oils in the market, for example, switching from

price takers to prices setters and vice versa, might change over time. Particularly, a decoupling of WTI

from the world crude oil market might have led to exogeneity of WTI for this period. We therefore study

the evolution of the adjustment coefficients while the long-run equilibrium relationships are assumed to

stay constant over time.

To account for potential time-varying adjustment, we apply a Markov-switching VECM (MSVECM)

to the data. Markov-switching models in a time series econometrics framework were introduced by

Hamilton (1989) and the MSVECM used in this paper was proposed by Krolzig (1997). We consider a

q-regime VECM which allows the parameters to be state-dependent. The MS(q)-VECM takes the form

of

∆yt = µst +Πst yt−1 +
p−1

∑
i=1

Γ
i
st

∆yt−i +ut , ut |st ∼ N(0,Σst ), (5.2)

where µst are state-dependent drift terms, Πst is the state-dependent long-run impact matrix, Γi
st

are state-

dependent short-run dynamics and the error terms have a normal distribution conditional on the state st .

A Cholesky decomposition of the error term variance-covariance matrix gives Σ = LS2L′ where L is a

normalized lower triangular matrix and S is diagonal. The error term variance can either be restricted to

stay fixed over all states, Σst = Σ for all st = 1,2, . . . ,q, or change over states. We distinguish between

3Differences in quality (density and sulphur content) are reflected in discount or premium prices.
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a switching scale, Σst = LS2
st

L′, and a fully switching variance, where each element of Σst is switching

according to st , Σst = Lst S
2
st

L′st
. A fully switching variance-covariance matrix comes at the cost of an

increasing number of parameters that have to be estimated.

The state of the data-generating process is governed by a latent integer state variable st . The proba-

bility that st attains some particular value j ∈ {1,2, . . . ,q} depends only on the most recent value st−1:

P(st = j|st−1 = i,st−2 = k, . . .) = P(st = j|st−1 = i) = pi j ∀ i, j = 1,2, . . . ,q. (5.3)

Such a process is described as a q-state Markov chain with constant transition probabilities pi j > 0,
q
∑
j=1

pi j = 1 (Hamilton (1994)). We assume the Markov chain to be irreducible and ergodic, which means

that each regime can be reached from any previous regime (absence of absorbing states) and no regime

has a periodic occurrence.

The state-dependent long-run impact matrix Πst is decomposed in the constant cointegrating vectors

and the state-dependent weighting matrix αst ,

Πst = αst β
′, (5.4)

where αst contains the state-dependent adjustment coefficients which measure the reaction to deviations

from the long-run equilibria for each regime. In our application, we are particularly concerned with

the evolution of the adjustment coefficients over time and regimes. The adjustment coefficients can be

interpreted in the context of a lead-lag relationship among the crude oil prices. If one of our crudes

was a global price setter, it would not adjust to deviations from the long-run equilibrium induced by

random shocks. The price setting crude thus takes the role of a lead variable. Analyzing the long-

run relationships among crude oil prices via a MSVECM provides further insights in the structure of

the world crude oil market since it enables us to identify exogenous benchmark prices under particular

regimes of the process.

The dynamic properties are further investigated by observing the behaviour of the system after shocks

to variables of the system using regime-specific orthogonalized impulse response functions. For this

matter, we need to transform the VECM representation given in (5.2) to a vector moving average (VMA)

representation,

yt = ut +Ψ
1
st

ut−1 +Ψ
2
st

ut−2 +Ψ
3
st

ut−3 + . . . (5.5)

Since the error terms ut are correlated with each other, we use the Cholesky decomposition of the regime-

specific error term variance-covariance matrix again and construct orthogonalized impulse response func-

tions,

IRF1
st
(θ̂) = L̂st , IRF2

st
(θ̂) = Ψ̂

1
st

L̂st , . . . , IRFh
st
(θ̂) = Ψ̂

h−1
st

L̂st , (5.6)

where θ̂ denotes the entirety of all estimated parameters.

Naturally, the number of parameters to estimate increases with the number of states which are spec-

ified in the MSVECM, so that a parsimonious model specification leads to a maximum of two or three

states. However, the exact number of states is usually not known a priori and has to be jointly selected

with additional variables, that is, further lags to capture short-run dynamics. Psaradakis and Spagnolo

(2006) found that information criteria can accurately identify the appropriate number of states for a

Markov-switching model. Awirothananon and Cheung (2009) argued for the use of the BIC to select the
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number of states based on results of Monte Carlo experiments. In the following application, we follow

Awirothananon and Cheung (2009) and use the BIC for model selection with respect to the number of

states, the lag length and switching behaviour of the drift terms as well as elements of the variance-

covariance matrix.

5 Empirical analysis

5 .1 Data

For this study, we observe crude oil price data at weekly frequency from May 1987 until October 2015.

All crude oil prices are free on board (FOB) spot prices4, observed at each Monday and denominated in

US dollars per barrel. The time series are obtained from DATASTREAM5 and the original observations

were transformed by taking natural logarithms.

First, the time series are tested for their order of integration. The results of ADF and KPSS unit

root tests are reported in Table 5.1. Furthermore, we apply the Lee-Strazicich (LS) unit root test which

accounts for two structural breaks in the null and alternative (Lee and Strazicich (2003)). The null

hypothesis of the ADF and LS tests cannot be rejected at the 1% significance level for all prices while

the null hypothesis of the KPSS test is rejected at all conventional significance levels. We obtain opposite

results for the returns. The tests support the hypothesis that all prices follow a unit root process and are

integrated of order one.

Table 5.1: Unit root tests of the logarithmized crude oil prices.
Variables ADF LS KPSS Variables ADF LS KPSS

WTI −2.635 −2.846∗ 0.668∗∗∗ ∆ WTI −22.153∗∗∗ −37.433∗∗∗ 0.064
Brent −2.901 −3.087∗∗ 0.738∗∗∗ ∆ Brent −20.234∗∗∗ −34.436∗∗∗ 0.068
Dubai −2.794 −3.459∗∗ 0.742∗∗∗ ∆ Dubai −19.773∗∗∗ −41.847∗∗∗ 0.071
Bonny Light −2.520 −3.014∗ 0.742∗∗∗ ∆ Bonny Light −20.167∗∗∗ −31.848∗∗∗ 0.069
Tapis −2.575 −3.485∗∗ 0.725∗∗∗ ∆ Tapis −18.630∗∗∗ −42.166∗∗∗ 0.072

Note: The ADF, LS and KPSS test equations are estimated including an intercept and trend for the variables in levels. The test equations for the first differences
include an intercept. Lag selection is based on the Bayesian Information Criterion (BIC).
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

5 .2 Linear cointegration analysis

To test for cointegration, we rely on the Johansen rank test which is based on the VECM specified in

Equation (5.1). The cointegrating rank r is determined by the number of estimated eigenvalues of the

estimated adjustment coefficient matrix Π that are significantly greater than zero. Johansen (1988, 1991)

proposed likelihood ratio type tests of which we use the trace test variant6. The trace test examines the

null hypothesis, rank(Π) = r0, against the alternative hypothesis, r0 < rank(Π)≤ k−1.

The results of the cointegration test are presented in panel (a) of Table 5.2. Since the null hypothesis

r0 = 3 can soundly be rejected, we assume the maximum number of cointegrating vectors of four. The

4Pertains to a transaction whereby the seller makes the product available within an agreed on period at a given port at
a given price; it is the responsibility of the buyer to arrange for the transportation and insurance. (US Energy Information
Administration)

5The data can be found using Mnemonic (Code): OILTPMY (S214WT), OILDUBI (T15609), OILBRNP (S04107),
CRUDWTC (S369VW), OILAFRB (S00112).

6The maximum eigenvalue test reaches the same conclusion: The null hypothesis of at most three cointegration vectors is
rejected.
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normalized cointegrating vectors are displayed in Panel (b) of Table 5.2. We find that the price differen-

tials between WTI and the four remaining crudes are relevant long-run equilibria. The trade-off between

a parsimonious specification and sufficiently capturing the short-run dynamics of the system leads to two

additional lagged differences (K = 2).

Table 5.2: Cointegration tests and linear VECM
N− r r Eig.value Trace 5% Crit. val. p-Value

Panel (a): I(1)-analysis
5 0 .1084 361.75 76.07 .000
4 1 .0651 192.16 53.12 .000
3 2 .0374 92.61 34.91 .000
2 3 .0292 36.22 19.96 .000
1 4 .0013 1.95 9.24 .783

WTI Brent Bonny Dubai Tapis µ

Panel (b): Cointegration vectors
β1 -1.087 1 .276
β2 -1.136 1 .584
β3 -1.097 1 .355
β4 -1.094 1 .363

Panel (c): Adjustment coefficients
α1 .066∗ .104∗∗∗ .110∗∗∗ .049 −.162∗∗∗

(1.879) (2.974) (3.159) (1.514) (−6.198)
α2 .028 .064∗∗ .063∗∗ −.016 .061∗∗∗

(1.005) (2.270) (2.238) (−.606) (2.877)
α3 −.214∗ −.229∗∗ −.432∗∗∗ −.272∗∗∗ −.001

(−1.933) (−2.062) (−3.915) (−2.638) (−.018)
α4 .198∗ .053 .257∗∗ .242∗∗ .090

(1.701) (.451) (2.216) (2.237) (1.028)

Panel (d): Weak exogeneity
LR(4) 16.47∗∗∗ 22.87∗∗∗ 33.38∗∗∗ 7.54 43.07∗∗∗

Lag 1 2 3 4 5

Panel (e): Test for residual autocorrelation
3.398 9.366 66.174∗∗∗ 148.79∗∗∗ 196.38∗∗∗

Panel (f): Test for ARCH effects
2081.5∗∗∗ 2937.7∗∗∗ 3790.5∗∗∗ 4971.8∗∗∗ 5529.4∗∗∗

Note: Panel (a) reports Johansen (1988) cointegration tests. The critical values are taken from Osterwald-Lenum (1992). p-values are computed using a simulation study with 10,000
replications. Panel (b) displays the estimates of the cointegrating vectors. Insignificant variables have been excluded from the cointegrating vector. Panel (c) reports the estimates of
the adjustment coefficients with t-statistics in parentheses. Estimates of the short-run dynamics, drift terms and variance-covariance matrix are not shown to conserve space. Panel (d)
reports weak exogeneity tests. The likelihood ratio (LR) statistics are χ2 distributed with degrees of freedom in parentheses. Panel (e) shows the results of vector portmanteau tests
of the residuals. Panel (f) shows the results of tests for ARCH effects.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1

We now briefly turn to the results of the linear VECM to obtain a useful summary of the ‘aver-

age’ adjustment dynamics provided by a linear specification. The adjustment coefficients of the linear

VECM are reported in panel (c) of Table 5.2. A surprising feature of the results is the adjustment of the

cointegrated system to the WTI-Brent price differential. Neither WTI, nor Brent adjust strongly to the

deviations from their long-run equilibrium. By contrast, Bonny Light and Dubai react to deviations from

the WTI-Brent price differential in the previous period. Tests for weak exogeneity of particular crude oil

prices are presented in panel (d). The tests suggest weak exogeneity of Dubai, although it adjusts signif-

icantly to the WTI-Brent and WTI-Bonny Light price differentials. This discrepancy can be attributed to

a generally lower power of Wald-type statistics. WTI is found to adjust to all price differentials except

WTI-Dubai. Hence, WTI does not seem to be an exogenous price setter although it is the most closely

watched benchmark crude oil price in the US.
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5 .3 Markov-switching error correction models

Given the evolution of the market conditions, described in Section 2 , we suspect that the adjustment

coefficients among crude oil prices do not remain constant over time and therefore consider a MSVECM

which allows the model parameters to change between different regimes. As noted previously, the model

specification of the MSVECM in terms of number of states is typically not clear a priori. Therefore, we

consider both a two-state and a three-state specification and choose the final model specification based on

the BIC7. Further, in line with the principle of parsimony, we reduce the number of parameters to estimate

by testing whether allowing a switching behavior in a parameter matrix improves the model with regard

to the BIC. More specifically, in the two-state MSVECM with two lags, henceforth MS(2)VECM(2),

the vector of drift terms is restricted to be constant over both states and the variance-covariance matrix

Σ is allowed to switch over states. In the three-state MSVECM with two additional lags, henceforth

MS(3)VECM(2), we impose constancy of the drift terms and allow for a switching scale of the variance-

covariance matrix. A comparison between the MS(2)VECM(2)8 and MS(3)VECM(2) based on the BIC

suggest that the increased goodness-of-fit of a three-state MSVECM indeed outweighs the increasing

number of parameters. The regime-specific adjustment parameters for the MS(3)VECM(2) are reported

in Table 5.3. We have excluded the short-run dynamics to conserve space and focus on the adjustment to

the long-run equilibria. We find evidence for distinct regime-switching, reflected by non-zero transition

probabilities and a state variable that assumes state 1 in 17%, state 2 in 15% and state 3 in 68% of the

sample period. We refer to those points in time in which the model is confident of being in state 1

as regime 1 (R1), in state 2 as regime 2 (R2) and in state 3 as regime 3 (R3). Smoothed probabilities

reflect the estimated probabilities of occurrence of each state at each point in time. This allows us to gain

insights into the evolution of the adjustment dynamics over time. The smoothed probabilites are depicted

in Figure 5.3.

The cointegrated system seems to be predominantly in state 1 at the beginning of the observational

period. The first regime, thus, comprises almost exclusively of the first part of the sample, reaching from

1987 to 1994 and we refer to this as the ‘early regime’.9 High probabilities of state 2 can be linked to

exogenous global events and volatile economic environments. Probabilities close to one coincide with,

among others, the period around the events of September 11, 2001, the period after the invasion of Iraq

in 2003, and the Financial Crisis beginning in 2008. The second regime can therefore be associated

with volatile economic and geopolitical times, hence we call it the ‘crisis regime’. The remaining regime

associated with state 3 is referred to as the ‘tranquil regime’ and reflects behavior of the system in periods

of relative calm.

We investigate the role of each crude oil price in all three regimes. The regime-specific dynamics

help us to obtain new insights regarding the changing roles of regional crudes in the world crude oil

market.

We report the results of regime-specific and overall weak exogeneity test in panel (c) of Table 5.3.

We find no evidence against the null hypothesis of weak exogeneity of WTI in the ‘early regime’ and in

the ‘tranquil regime’ during the later parts of the sample period. However, WTI adjusts significantly to

7Higher order MSVECM (q > 3) are not in line with a parsimonious model specification
8The results for the MS(2)VECM(2) specification are reported in Table 5.4 in the appendix.
9Please note that the labelling of the regimes primarily serves the purpose of illustration. The transition probabilities are

estimated to be nonzero. Hence, it is, for example, possible that the state variable takes value one at a later point in time and
the system switches to the ‘early regime’ again.
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5 . EMPIRICAL ANALYSIS

Figure 5.3: Smoothed probabilities MS(3)VECM(2).
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This figure shows the probabilities for the cointegrated system being in the
‘early regime’ (grey), probabilities of being in the ‘crisis regime’ (black) and
probabilities of being in the ‘tranquil regime’ (light-grey). The probabilities

sum up to one in each period.

the WTI/Bonny Light and WTI/Brent price differential in the ‘crisis regime’. The hypothesis of overall

weak exogeneity is rejected which can be attributed to the significant adjustment in the ‘crisis regime’. In

other words, WTI seems to react to other crude oil prices primarily in times of uncertainty about future

supply and demand. Brent is a weakly exogenous variable in the ‘early regime’ and the ‘crisis regime’.

However, Brent adjusts to the WTI/Tapis and WTI/Dubai price differentials in the ‘tranquil regime’.

Bonny Light is weakly exogenous in the ‘early regime’, adjusts to WTI/Bonny Light and WTI/Brent

price differentials in the ‘crisis regime’ and to the WTI/Tapis and WTI/Dubai price differentials in the

‘tranquil regime’. These findings suggest that WTI and Brent are important signals of world crude oil

market news for Bonny Light in crisis periods whereas the price differentials with the Arabian Dubai

and the Asian Pacific Tapis are constant factors in the price determination of Bonny Light. This can in

parts be explained by the fact that Dubai is a close regionally competitor to the Nigerian Bonny Light. A

reaction to its WTI price differential is attributed to the fact that the US is the largest importer of Nigerian

crude oil so that US crude oil demand shocks are transmitted to the price of Bonny Light.

Dubai is the only weakly exogenous variable in all regimes. The results of the overall weak exogene-

ity test for Dubai in the three-state model is in line with the findings for the two-state MSVECM and the

linear model (see panel (d) in Table 5.2 and panel (c) in Table 5.4). Also, an alternative normalization in

which Dubai is allowed to be an exogenous variable in each equation left the results virtually unchanged.

The results of this model are reported in Table 5.6 in the appendix. Economically, the result implies that

Dubai acts as a price setter in this set of benchmark crude oil prices. Finally, Tapis is a price taker in all

three states.
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The orthogonalized impulse response functions10 are displayed in Figure 5.4a and Figure 5.4b. We

find that shocks to one variable in the ‘early regime’ do not evoke strong responses from the other

variables. In contrast, shocks in the ‘crisis regime’ lead to visible reactions of the system. Adjustment

to shocks is relatively fast whereas it takes the system more time to adjust to shocks in the ‘tranquil

regime’. These findings are in line with Ji and Fan (2015) who document stronger market integration if

global exogenous shocks occur.

6 Discussion

Overall, the results are in line with the findings of Lu et al. (2014) and Ji and Fan (2015), indicating a

stronger market integration in turbulent times. While a globally stable oil market promotes the use of

nearby oil fields with lower transportation costs, extreme economic conditions create incentives to re-

evaluate the attractiveness of different crude oil sources. Therefore, crude oil prices have to incorporate

global information beyond the regional supply and demand changes.

Furthermore, the allocation of regime 1 to the earlier part of our sample, helps to emphasize the

evolution of the world crude oil market. With the exception of Tapis, we do not reject weak exogeneity

for any crude oil in the ‘early regime’. The later part of the sample is partitioned into the ‘tranquil regime’

and the ‘crisis regime’, so that either Brent and Bonny Light adjust to long-term equilibria in tranquil

times or WTI adjusts to its WTI/Brent and WTI/Bonny Light price differentials to maintain a long-run

equilibrium relationship under extreme economic conditions. Dubai’s price setting role supports the

hypothesis in Bentzen (2007) which states that OPEC prices are gaining influence in the world crude oil

market.

Similar to our results, Guelen (1999) finds that crude oil market integration is not stable and is espe-

cially strengthened during tight market conditions. His results, however, rely on a pre-specified structural

break (the full sample is divided into two subperiods 1991-1993 and 1994-1996). Our study, following

a more flexible approach, reveals that focusing only on the magnitude of prices does not seem to pro-

vide a more comprehensive picture of the crude oil market dynamics. Specifically, the application of a

Markov-switching model to a longer and more varied sample period shows that crude oil market inte-

gration is strengthened in periods following geopolitical and economic events. The prices of benchmark

crude oil reflect changing market conditions and, for example, tend to increase if supply is uncertain, but

we document faster adjustment primarily in high volatility periods.

Moreover, the extent of market integration seems to coincide with the level of macroeconomic and

financial uncertainty. To illustrate our notion, we compare the occurrence of the ‘crisis regime’ with two

measures for financial and economic uncertainty. First, we contrast the evolution of the state indicator

variable with the CBOE Volatility Index (VXO) which is based on 30-day S&P 100 index at-the-money

options. It is a widely used measure for uncertainty in the financial market and has the advantage over

other uncertainty measures that it spans the full sample period and is available at weekly frequency. The

VXO, however, primarily measures uncertainty in the financial markets while economic uncertainty may

also be influenced by fluctuations in real activity.

10The ordering of the variables which is used for the Cholesky decomposition is given as follows: Dubai→WTI→ Brent
→ Bonny Light→ Tapis.
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6 . DISCUSSION

Figure 5.4a: Regime-specific orthogonalized impulse response functions for one standard deviation
shock in Dubai, WTI, Brent, Bonny Light and Tapis. The dotted, dashed and solid lines represent the

OIRF in the ‘early regime’, the ‘crisis regime’ and the ‘tranquil regime’, respectively.
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INTEGRATION

Figure 5.4b: Regime-specific orthogonalized impulse response functions for one standard deviation
shock in Dubai, WTI, Brent, Bonny Light and Tapis (continued). The dotted, dashed and solid lines
represent the OIRF in the ‘early regime’, the ‘crisis regime’ and the ‘tranquil regime’, respectively.
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6 . DISCUSSION

Second, we therefore also compare the occurrence of ‘crisis’ episodes in the crude oil market with a

measure for macroeconomic uncertainty, recently developed by Jurado et al. (2015). This new measure

for macroeconomic uncertainty essentially is an index based on various indicators including real output

and income, unemployment, consumer spending

Figure 5.5: Smoothed probabilities of the ‘crisis regime’ and uncertainty measures.
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This figure compares the smoothed probabilities of the cointegrated system being in the
‘crisis regime’ (row one) with the CBOE Volatility Index (row two) and the measure for
macroeconomic uncertainty (grey shaded area: NBER recession dates) by Jurado et al.
(2015) (row three).

and foreign exchange measures. The smoothed probabilities for the ‘crisis regime’ and our uncertainty

measures are depicted graphically in Figure 5.5. It is obvious that the occurrence of the ‘crisis regime’

matches various peaks in the VXO, particularly, after the stock market crash in 1987, during the Persian

Gulf crisis 1990-1991, the September 11, 2001 attack in the US, the 2003 Iraq war and the Financial

Crisis starting late 2007. Likewise, peaks in macroeconomic uncertainty match ‘crisis’ episodes in the

crude oil market. Compared to the VXO, Jurado et al. (2015)’s measure for macroeconomic uncertainty,

however, is much smoother and its relation with the ‘crisis regime’ appears to be generally less pro-

nounced. Finally, we consider the linear relation between the VXO and the ‘crisis regime’ indicator.11

The contemporary correlation of the two time series is 0.277.

In essence, these findings provide descriptive evidence for a link between global economic uncer-

tainty and world crude oil market integration. While they support our notion they do not enable an

inferential analysis which we leave for future research.

11Computing correlations between our state indicator variables and the measure for macroeconomic uncertainty is not possi-
ble due to different data frequencies.
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7 Conclusion

This study provides a dynamic perspective on crude oil market integration. We employ a Markov regime-

switching model based on the vector error correction model to study regime-switching adjustment be-

havior to constant long-run equilibria. Thereby, we identify three regimes to describe the adjustment

behavior in different market conditions. The results highlight the changing landscape of the world crude

oil markets. While the crude oil prices did not seem to maintain a long-run equilibrium from 1987 to

1994, the degree of crude oil market integration has strengthened in the later part of the sample. How-

ever, the roles of price setter and price taker can change drastically depending on the state of the global

economy. Moreover, the results reveal the important role of Dubai as a price setter. Understanding crude

oil market dynamics should therefore not be confined to a precise monitoring of WTI and Brent prices

but should include Dubai as a third important benchmark price. Although the relationship between crude

oil benchmark prices is changing over time, we do not find evidence for a decoupling of the WTI bench-

mark after the introduction of hydraulic fracturing to the shale oil fields of the US. It seems, that instead

global events trigger adjustment to other regional benchmarks, thereby increasing world crude oil market

integration.
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C Appendix

Figure 5.6: Smoothed probabilities MS(2)VECM(2).
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This figures depicts the probabilities for the cointegrated system being in
regime 1 (grey) and probabilities of being in regime 2 (light-grey). The

probabilities sum up to one in each period.

Figure 5.7: Smoothed probabilities MS(3)VECM(2) (Dubai normalization).
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Table 5.5: Cointegration tests and linear VECM (Dubai normalization).
N− r r Eig.value Trace 5% Crit. val. p-Value

Panel (a): I(1)-analysis
5 0 .1084 361.75 76.07 .000
4 1 .0651 192.16 53.12 .000
3 2 .0374 92.61 34.91 .000
2 3 .0292 36.22 19.96 .000
1 4 .0013 1.95 9.24 .783

WTI Brent Bonny Dubai Tapis µ

Panel (b): Cointegration vectors
β1 −.958 1 −.284
β2 1 −.966 −.209
β3 1 −.963 −.200
β4 1 −.881 −.515

Panel (c): Adjustment coefficients
α1 .066∗ .104∗∗∗ .110∗∗∗ .049 −.162∗∗∗

(1.879) (2.974) (3.159) (1.514) (−6.198)
α2 −.214∗ −.229∗∗ .432∗∗∗ −.272∗∗∗ −.001

(−1.933) (−2.062) (−3.915) (−2.638) (−.018)
α3 .198∗ .053 .257∗∗ .242∗∗ .090

(1.701) (.451) (2.216) (2.237) (1.028)
α4 −.086∗∗∗ .007 .001 −.003 .011

(−3.254) (.277) (.050) (−.110) (0.570)

Panel (d): Weak exogeneity
LR(4) 16.47∗∗∗ 22.87∗∗∗ 33.38∗∗∗ 7.54 43.07∗∗∗

Lag 1 2 3 4 5

Panel (e): Test for residual autocorrelation
3.398 9.366 66.174∗∗∗ 148.79∗∗∗ 196.38∗∗∗

Panel (f): Test for ARCH effects
2081.5∗∗∗ 2937.7∗∗∗ 3790.5∗∗∗ 4971.8∗∗∗ 5529.4∗∗∗

Note: Panel (a) reports Johansen (1988) cointegration tests. The critical values are taken from Osterwald-Lenum (1992). p-values are computed using a simulation
study with 10,000 replications. Panel (b) displays the estimates of the cointegrating vectors. Insignificant variables have been excluded from the cointegrating vector.
Panel (c) reports the estimates of the adjustment coefficients with t-statistics in parentheses. Estimates of the short-run dynamics, drift terms and variance-covariance
matrix are not shown to conserve space. Panel (d) reports weak exogeneity tests. The likelihood ratio (LR) statistics are χ2 distributed with degrees of freedom in
parentheses. Panel (e) shows the results of vector portmanteau tests of the residuals. Panel (f) shows the results of tests for ARCH effects.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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Table 5.6: Markov-switching error correction model for major crude oil prices (three-state model, Dubai normalization).

WTI Brent Bonny Light Dubai Tapis

Panel (a): Switching adjustment coefficients
R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

α1(st) −.018 .080 .068 −.036 .102 .122∗∗∗ .016 .063 .134∗∗∗ −.030 .025 .055 −.144∗∗∗ −.312∗∗∗ −.105∗∗∗
(−.393) (.535) (1.590) (−.719) (.666) (2.650) (.305) (.405) (2.910) (−.658) (.175) (1.440) (−3.660) (−2.700) (−3.280)

α2(st) −.073 −.826∗∗ .072 −.053 −.645∗ .009 −.479∗∗∗ −.835∗∗ −.055 −.217 −.615∗ −.015 .035 −.360 .202∗
(−.453) (−2.220) (.495) (−.313) (−1.740) (.062) (−2.660) (−2.220) (−.369) (−1.390) (−1.750) (−.115) (.256) (−1.270) (1.860)

α3(st) .166 1.124∗∗∗ −.176 .094 .627 −.284∗ .513∗∗∗ .853∗∗ −.232 .350∗∗ .720∗ −.079 .074 .611∗ −.172
(.968) (2.670) (−1.140) (.524) (1.470) (−1.750) (2.680) (1.970) (−1.430) (2.160) (1.800) (−.552) (.511) (1.890) (−1.480)

α4(st) −.098 −.426∗∗∗ −.018 .018 −.142 .036 .023 −.160 .035 −.022 −.127 .027 .027 −.084 .033∗
(−1.450) (−3.320) (−.738) (.256) (−1.120) (1.450) (.315) (−1.240) (1.420) (−.338) (−1.050) (1.210) (.488) (−.852) (1.740)

Panel (b): Weak exogeneity
LR(4) 3.277 13.250∗∗ 5.962 .962 4.173 18.255∗∗∗ 7.744 6.271 19.733∗∗∗ 6.013 3.491 4.816 14.596∗∗∗ 12.992∗∗ 13.814∗∗∗
LR(12) 23.029∗∗ 26.316∗∗∗ 36.293∗∗∗ 13.450 42.970∗∗∗

Lag 1 2 3 4 5 6 7 8 9 10

Panel (c): Test for residual autocorrelation
5.615 12.342 43.175 82.409 103.99 126.05 138.06 196.39 229.13 250.39
(.999) (.999) (.999) (.999) (.914) (.923) (.816) (.559) (.411) (.481)

Panel (d): Test for ARCH effects
2.583 2.382 2.317 2.048 1.964
(.000) (.000) (.000) (.000) (.000)

R1 R2 R3

Panel (e): Transition probabilities
R1 .952 .182 .047
R2 .037 .770 .033
R3 .012 .048 .919

Note: R1 refers to the ‘early regime’, R2 to the ‘crisis regime’ and R3 to the ‘tranquil regime’, respectively. Panel (a) reports the estimates of the adjustment coefficients for three regimes with t-statistics in parentheses. The estimated cointegrating vectors are identical to panel (a) in Table 5.5.
Estimates of the short-run dynamics, drift terms and variance-covariance matrix are not shown to conserve space. Panel (b) reports weak exogeneity tests for each regime (first row) and over all three regimes (second row). The likelihood ratio (LR) statistics are χ2 distributed with degrees of
freedom in parentheses. Panel (c) shows the results of vector portmanteau tests of the residuals with p-values are given in brackets. Panel (d) shows the results of tests for ARCH effects with p-values are given in brackets. Panel (e) displays the estimated transition probabilities.
∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1
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Chapter 6

Critical assessment and conclusion

This thesis demonstrates the usefulness of modelling nonlinear dynamics in the context of cointegra-

tion relationships. Each of the main chapters provides an extension of the literature either in terms of

a theoretical contribution to cointegration analysis or an innovative empirical application of nonlinear

cointegration models to open research questions. The main findings of the four studies are summarized

in their respective chapters. In the following, the studies are placed in context of related work, remaining

methodological shortcomings are discussed and opportunities for future research are highlighted:

Chapter 2 focusses on the second step of the Engle-Granger procedure. This study contributes to

the literature by developing a new econometric model and demonstrating its application to price trans-

missions in the US and German fuel markets. Whereas the majority of studies on asymmetric price

transmission apply threshold cointegration model or asymmetric error correction models and test for sig-

nificantly different mean-reversion in pre-specified regimes, we propose to model a quantile-dependent

adjustment behaviour of the residual process. This allows us to quantify the degree of asymmetry in the

adjustment to equilibrium errors without pre-specifying the number of regimes and without estimating

threshold values. Instead, optimizing the loss function of a quantile regression automatically results in

quantile-specific adjustment coefficients. Therefore, only the quantile has to specified to obtain, for in-

stance, the adjustment behavior for large negative and large positive deviations from equilibrium. This

approach is inspired by and uses results from the literature on quantile regression with times series.

The drawbacks of this model are directly related to the quantile regression methodology employed

therein: The estimates of the adjustment coefficients cannot be used to forecast directly. The interpreta-

tion of the quantile regression estimates are given as a varying response conditional on the quantile of the

dependent variable in period t. Since the state of the dependent variable is not known in period t−1, it

is not possible to obtain point forecasts. Still, it remains an open question whether these estimates could

be used for probabilistic forecasting. Another drawback related to the quantile regression technique is

that estimates for different quantiles have a different degree of uncertainty assigned to them. Extreme

quantiles are more difficult to estimate which results in broader confidence bands. However, this prob-

lem is also present in threshold models if a regime does not consist of a sufficiently large number of

observations.

We propose a bootstrap cointegration test and the appropriate statistical tests for across-quantile

comparisons and overall quantile effects. While the cointegration test is analyzed with a ‘Warp-speed’

simulation study employing a realistic data-generating process, the block bootstrap technique used for

the follow-up analysis is based on the assumption that the equilibrium error series is stationary. Since
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CHAPTER 6. CRITICAL ASSESSMENT AND CONCLUSION

the null hypothesis of no cointegration is rejected for all cointegration pairs, the test should remain valid.

Our empirical results suggest that asymmetries can be found in the early stages of the production

chain but are not completely transferred to retail prices. This finding coincides with the theoretical

expectation that the retail fuel market with numerous competitors should be more competitive than the

fragmented market for fuel prestage products. Further research needs to be conducted using data from

different fuel markets to test if the findings can be reproduced for smaller, less developed, fuel markets.

Chapter 3 investigates whether gold and silver are cointegrated and why previous studies on this issue

produced ambiguous results. First, we discuss reasons for a long-run relationship between these precious

metals which have very different industrial uses. Their substitutability on financial markets leads us to

the conjecture that the relationship might be stronger in periods of financial stress and economic crisis

- periods in which precious metals are particularly sought-after investments. The cointegration model

should therefore account for time-varying coefficients. We address the constancy of parameters in the

cointegrating regression and apply a quantile cointegration model to gold and silver prices. Under the

restrictions of linear cointegration, we find sufficient evidence against the null hypothesis of cointegra-

tion, but we do not find evidence against a nonlinear long-run relationship. The quantile cointegration

estimates reveal substantial asymmetry in the relationship. The response of silver (gold) prices to gold

(silver) price changes is stronger if silver (gold) prices are at a high level. While previous studies could

only find traces of cointegration in subsamples, which had to be pre-specified, the quantile cointegration

model determines the parameter changes from the data. The periods identified by these studies match

with the periods of stronger responses identified in the quantile cointegration framework.

Similarly to the study presented in Chapter 2, the quantile cointegration framework has the disad-

vantage that forecasting is difficult. This is particularly unfortunate considering the fact that the long-run

relationship between gold and silver could be used in a trading strategy. Moreover, quantile regres-

sion produces weighted residuals which cannot be used for conventional error correction models. It is

therefore not possible to analyze which price leads the quantile cointegration relationship. Although

the robustness of our results across different frequencies and markets has been shown, further research

could be directed at the robustness of our results to different nonlinearity concepts. For example, a

Markov-switching cointegration models could be applied to gold and silver prices, to see whether the

state-dependence of the long-run relationship is also found for the adjustment behaviour.

Chapter 4 mainly contributes to the field of theoretical time series econometrics. We develop a new

cointegration test with SETAR adjustment allowing for the presence of a structural break in the coin-

tegrating vector. This test is residual-based and extends the Engle-Granger framework at both steps.

Modelling structural breaks of the cointegrating regression accounts for the possibility of multiple equi-

libria and modelling the adjustment behavior with a SETAR model accounts for nonlinear responses

to equilibrium errors caused, for example, by transaction costs or collusive agreements. We derive the

asymptotic distribution of the test statistics and analyze the finite sample properties of the test. This test

could be a useful tool for researchers working on asymmetric price transmission models in an unstable

environment as demonstrated by the empirical example using US fuel market data. Since the procedure

to determine the timing of the structural break is based on a statistic of the auxiliary regression, the test

is easily modified to account for multiple structural breaks and alternative structural break models. How-

ever, the computational costs of higher dimensional grid searches might restrict these considerations.

Further research needs to be conducted on cointegration models with MTAR adjustment under the
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presence of structural breaks. This would extend the second test given in Enders and Siklos (2001).

Although the model specification is similar, asymptotic theory in this case is potentially very different.

Moreover, the restriction of a fixed threshold value needs to be relaxed to allow for empirical appli-

cations where the threshold value is unknown. Again, this leads to some theoretical difficulties which

result from the test construction. Chan (1993) proved the consistency of a threshold estimate that is based

on minimizing the sum of squared errors over a set of data-dependent threshold values. However, the

structural breaks in our procedure are found as a supremum of Wald-type statistics or, conceptionally,

as a model specifications that speaks against the null hypothesis of no cointegration. Since the configu-

ration of the structural break dummy alters the residual series, these two approaches cannot be merged

straightforwardly.

Chapter 5 presents a Markov-switching approach to answer the question of whether the global crude

oil market is unified or regionalized. We analyze the long-run relationship between the different regional

crude oil benchmark prices and find that prices are reacting to each other. The degree of market integra-

tion, however, seems to be state-dependent. Two specifications of a MSVECM reveal that prices react

more strongly to each other in periods of economic crises. Furthermore, the price leadership changes

from one regime to the next. The most commonly used benchmark prices, WTI and Brent, are not

always price setters. Instead, Dubai emerges as the only exogenous price in all regimes.

Although a Markov-switching approach presents a convenient way to model state-dependencies, the

immediate drawback is the large number of parameters that have to be estimated. We show the robustness

of our results with respect to the number of regimes and their allocation, using a two-regime and a three-

regime model. Further model specifications with more regimes are not considered because the degrees of

freedom would be reduced below a reasonable threshold in these cases. Also, the dynamic specification is

altered and the results do not seem to be sensitive in this regard. Again, a lower number of lags is chosen

to prevent a reduction in the degrees of freedom. We match the allocation of the ‘crisis regime’ with

spikes in the volatility index (VXO) and a newly developed indicator for macroeconomic uncertainty, to

underline the interpretation of a stronger market integration in periods of economic uncertainty. Further

research might be directed to enable inferential analysis of this finding.

Overall, it should be emphasized that the purpose of the nonlinear extensions in this thesis is not to

improve the statistical fit of a given cointegration model to the empirical data. Instead, the nonlinear coin-

tegration models are motivated by economic theory. Long-run effects of asymmetric price transmissions,

for example, cannot be investigated if the cointegration model does not allow for nonlinear adjustment

behaviour. Furthermore, the restrictive nature of conventional cointegration models is not suitable for the

analysis of long-run relationships which do not stay constant over the observational period. Chapter 2

deals with gradually changing speed of adjustment in the context of quantile regressions, while Chapter 4

improves existing threshold cointegration models under the presence of structural breaks which might be

caused by policy changes, technological changes or events such as economic crises. Chapter 3 presents

an empirical study in which a weaker concept than Engle-Granger cointegration is used to model the

nonlinear long-run relationship between gold and silver which is motivated by a time-varying demand

for precious metals as investments. Finally, Chapter 5 proposes the use of a Markov-switching VECM to

model the long-run relationships on a volatile crude oil market. Thus, nonlinear cointegrations models

are used to reveal information about the long-run relationship beyond the average behavior and aim to

capture the true dynamics of these relationships more closely than their linear benchmark models.
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