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Summary 

No-tillage is considered as a promising alternative for tillage-based conventional farming, 

by saving energy-input and time, reducing groundwater pollution and counteracting soil 

erosion and losses of the soil-organic matter. However, in the recent past, no-tillage 

farmers in Southwest Germany repeatedly reported problems particularly in winter wheat 

production, characterized by stunted plant growth in early spring, chlorosis, impaired fine 

root development and increased disease susceptibility. These symptoms were particularly 

apparent on field sites with long-term (≥ 10 years) no-tillage history (LT) but not on 

adjacent short-term (≤ 2 years) no-tillage plots (ST). The effects could be reproduced in 

pot experiments under controlled conditions, with soils collected from the respective field 

sites in five different locations, providing a basis for causal analysis.  

The expression of damage symptoms in pot experiments with sieved soils, excluded 

differences in soil compaction, induced by long-term no-tillage farming as a potential 

cause. Soil analysis revealed higher levels of soil organic matter in the topsoil, as 

expected for LT field sites and no apparent mineral nutrient deficiencies, both, on LT and 

ST soils. However, phosphate (P) deficiency was characteristic for plants grown on LT 

soils. Obviously, this was caused by the limited acquisition of sparingly soluble soil P, 

due to impaired root development but not by low P availability on LT soils. 

In four out of five cases, gamma-ray soil sterilization did not affect the expression of plant 

damage symptoms on LT soils, excluding pathogen effects as a major cause. Soil 

application of biochar, at a rate of 5% (v/v), rapidly restored plant growth on LT soils, 

detectable already during the first week after sowing. This finding points to the presence 

of a phytotoxic compound since binding of soil xenobiotics by biochar is well 

documented. Accumulation of allelopathic compounds, originating from crop residues 

and root exudates remaining in the topsoil, is a problem related to no-tillage farming, 

particularly in cases of limited crop rotations or in monocultures, which also applied to 

the investigated field sites. However, a specific wheat auto-allelopathic effect is unlikely, 

since similar crop damage was also observed in soybean, sunflower, oilseed rape and 

various cover crops. Typical for allelopathic effects, in the pot experiments, plant damage 
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symptoms in winter wheat appeared rapidly during emergence and early seedling 

development. However, under field conditions, germination and early growth were 

usually not affected, and symptoms were first detectable during re-growth in early spring. 

Moreover, damage symptoms disappeared when soil sampling was performed in summer 

instead of early spring, suggesting degradation of the toxic compound, which is also not 

compatible with the hypothesis of long-term accumulation of allelopathic compounds. 

The observed temporal pattern of plant damage rather resembled residual effects, 

occasionally observed after application of certain herbicides with soil activity (e.g., 

sulfonylureas, propyzamide). Therefore, a systematic survey of herbicide residues was 

conducted for topsoils on six pairs of LT and ST-field sites.  

Characteristic for no-tillage farming, glyphosate was the only herbicide, commonly and 

regularly used on all investigated field sites. The soil analysis revealed higher levels of 

glyphosate residues on all investigated LT, soils as compared with directly neighboured 

ST plots. Particularly on LT plots with strong expression of plant damage symptoms, high 

concentrations of glyphosate (2-4 mg kg
-1

 soil), and of its metabolite AMPA were 

detected in the 10 cm topsoil layer. This concentration range is characteristic for residual 

levels, usually observed several days after glyphosate applications but was still detectable 

in early spring, six months after the last glyphosate treatment, while only trace 

concentrations below the detection limit (0.05 mg kg
-1

 soil) were found in ST soils. 

Coinciding with the declining plant damage potential, residual glyphosate and AMPA 

concentrations on LT plots declined during the vegetation period until early summer. No 

comparable pattern was detectable for residues of other herbicides, such as pendimethalin 

and propyzamide. Degradation of glyphosate residues in soils correlates with microbial 

activity. Accordingly, reduced soil respiration as an indicator for microbial activity was 

detected in four out of five cases in soil samples collected from LT field sites, suggesting 

delayed glyphosate degradation as compared with ST plots. 

Due to rapid adsorption, glyphosate usually exhibits extremely limited soil activity. 

However, at least trace concentrations of glyphosate and AMPA (1.5-3.5 µg L
-1

) were 

detectable also in the potentially plant-available, water-soluble phase in spring samples, 

collected from LT field plots with high potential for plant damage. Nutrient solution 
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experiments, with 3-6 weeks exposure of winter wheat to the residual herbicide 

concentrations detected in the LT soil solution, revealed the development of chlorosis and 

similar to soil experiments, a 30%-50% reduction in fine root production, which 

surprisingly was mainly induced by AMPA and to a lesser extent by glyphosate itself. 

Accordingly, both, in hydroponics and LT soil experiments, the plant damage symptoms 

were not associated with shikimate accumulation in the root tissue as a physiological 

indicator for glyphosate but not for AMPA toxicity. The dominant role of AMPA toxicity 

also became apparent by the fact that, both, glyphosate resistant (GR) and non-resistant 

(NR) soybean plants were affected on LT no-tillage soils since transgenic GR plants are 

not resistant to AMPA.   

 A preliminary RNAseq gene expression analysis of the root tissue just prior to the 

appearance of visible plant damage symptoms, revealed down-regulation of genes 

involved in general stress responses, down-regulation of aquaporin genes (PIPs and TIPs) 

with functions in water uptake and root elongation, down-regulation of ethylene-related 

genes but up-regulation of cytokinin-related gene expression indicating interferences with 

hormonal balances. These changes in gene expression patterns relative to the untreated 

control were detected in plants treated with AMPA and glyphosate+AMPA but not with 

glyphosate alone. The findings suggest that long-term exposure to subtoxic levels of 

AMPA, as major glyphosate metabolite temporally accumulated in LT no-tillage soils, 

can finally interfere with metabolic processes essential for normal root development.     

A series of pot and field experiments were initiated to test the potential of selected 

commercial formulations of plant growth-promoting microorganisms, based on strains of 

Pseudomonas sp., Bacillus amyloliquefaciens, and Trichoderma harzianum, for 

mitigation of plant stress symptoms, expressed on LT no-tillage field sites in spring. For 

members of the selected microbial genera, root growth-promoting effects, pathogen 

suppression, and glyphosate degradation potential have been reported. Unfortunately, 

plant growth promotion was detectable only on ST soils but was not successful on LT 

plots, both, in pot and field experiments, probably related to  limited root development for 

microbial colonization and early summer drought under field conditions. As an alternative 

approach, incorporation of pyrolysis biochar from woody substrates at a rate of 5 % (v/v) 
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to the top 10 cm soil layer of LT soils, equivalent to approx. 35 t ha
-1

, were able to restore 

plant growth completely in pot experiments and protected wheat plants from glyphosate 

overdose applications (up to 8 L Roundup Ultramax
®

 ha
-1

), even on artificial substrates 

with low potential for glyphosate adsorption. As a short-term mitigation strategy, field-

testing with different biochar concentrations is recommended.  

During the last two years, farmers also modified their no-tillage management strategies on 

the investigated field sites by introducing more variable crop rotations including, winter 

wheat, winter rape, maize and soybean and using mustard, pea, and Crotalaria as cover 

crops. Despite further annual applications of glyphosate (3 L ha
-1

 of a 360 g ai L
-1

 

formulation), plant performance on the respective field sites was significantly improved. 

These observations suggest that limited crop rotation favored the development of a soil 

microflora with low degradation potential for glyphosate, leading to a decline in 

degradation rates of glyphosate soil residues and underline the importance of crop 

diversity management. 
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Zusammenfassung 

Pfluglose Anbaumethoden werden oft als vielversprechende Alternative für Ackerbau mit 

wendender Bodenbearbeitung betrachtet, die zur Einsparung von Arbeitszeit und 

Energieverbrauch beitragen, der Grundwasserbelastung und Bodenerosion 

entgegenwirken und die Humusbilanz verbessern. In Direktsaatanbausystemen in 

Süddeutschland wurden jedoch in den letzten Jahren verstärkt Nachbauprobleme 

insbesondere beim Anbau von Winterweizen beobachtet, die sich in 

Wachstumsdepressionen, Chlorosen und Nekrosen, verminderter (Fein)-Wurzelbildung 

und lückiger Bestandesentwicklung der betroffenen Pflanzen äußern. Die Symptome 

wurden besonders deutlich auf langjährigen Direktsaatflächen (LT ≥ 10 Jahre) im 

Vergleich zu unmittelbar benachbarten Tauschflächen mit nur kurzzeitiger 

Direktsaatbewirtschaftung (ST ≤ 2 Jahre). Die Effekte konnten in Topfversuchen unter 

kontrollierten Bedingungen reproduziert werden und bieten so die Grundlage für eine 

Ursachenanalyse.   

Die Ausprägung von Schadsymptomen in Topfexperimenten mit gesiebten Böden schließt 

den Einfluss einer verstärkten Bodenverdichtung durch langzeitig pfluglose 

Bewirtschaftung als mögliche Ursache aus. Bodenanalysen ergaben erwartungsgemäß die, 

für LT Direktsaat typischen, erhöhten Gehalte an organischer Substanz aber keinen 

offensichtlichen Mangel an Pflanzennährstoffen. Jedoch wiesen Pflanzen auf LT Böden 

regelmäßig Phosphat (P) Mangel auf, was offensichtlich durch verschlechterte Aneignung 

des schwerlöslichen Phosphats in Folge des gehemmten Wurzelwachstums bedingt war. 

Bei vier von fünf LT Böden hatte eine Gamma-Sterilisierung des Bodens keinen Einfluss 

auf die Ausbildung von Schadsymptomen, was Krankheitserreger als Haupt-

schadensursache ausschließt. Bodenapplikation von Biokohle (5% v/v) verbesserte 

dagegen schnell das Pflanzenwachstum auf LT Böden, was bereits in der ersten Woche 

nach der Aussaat nachweisbar war. Diese Beobachtung deutet auf Bodenkontamination 

mit einer phytotoxischen Substanz hin, da für Biokohle die Bindung organischer 

Schadstoffe in Böden nachgewiesen ist. Die Akkumulation allelopathischer Substanzen 

im Oberboden, die aus Pflanzenrückständen und Wurzelexsudaten stammen, ist ein gut 

dokumentiertes Problem in Direktsaatsystemen, besonders bei engen Fruchtfolgen oder 
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Monokulturen, was auch für die untersuchten Flächen zutraf. Allerdings ist ein Weizen-

spezifischer Autoallelopathie-Effekt unwahrscheinlich, da Pflanzenschäden auch bei 

anderen Pflanzenarten wie Soja, Sonnenblume, Raps und Zwischenfruchtmischungen 

auftraten. Charakteristisch für allelopathische Effekte traten in Topfversuchen mit 

Winterweizen Schadsymptome schnell, schon während der frühen Keimlingsentwicklung 

auf. Unter Feldbedingungen war die Auflaufphase dagegen in der Regel nicht betroffen 

und Pflanzenschäden entwickelten sich erst zu Beginn der neuen Vegetationsperiode im 

zeitigen Frühjahr. Darüber hinaus verschwanden die Pflanzenschäden, wenn die 

Bodenproben für Topfversuche im Sommer und nicht im zeitigen Frühjahr genommen 

wurden, was auf einen Abbau der Schadsubstanz hinweist und nicht mit der Hypothese 

einer langfristigen Bodenakkumulation allelopathischer Substanzen erklärbar ist. Der 

beobachtete Zeitverlauf der Entwicklung von Schadsymptomen ähnelt eher den 

Nachbauproblemen, die unter bestimmten Bedingungen durch bodenaktive 

Herbizidrückstände, wie Sulfonylharnstoffe oder Propyzamid, ausgelöst werden können. 

Daher wurden in einer Übersichtsanalyse Herbizidrückstände im Oberboden auf sechs 

LT-, und ST-Standortpaaren untersucht.     

Charakteristisch für pfluglose Anbausysteme war Glyphosat das einzige Herbizid, das 

regelmäßig auf allen Standorten eingesetzt wurde. Die Bodenanalyse ergab durchgängig 

höhere Glyphosatrückstandswerte auf den LT Standorten im Vergleich zu den 

benachbarten ST-Plots. Auf LT-Flächen mit besonders starker Ausprägung von 

Schadsymptomen, wurden besonders hohe Rückstandskonzentrationen (2-4 mg kg
-1

 

Boden) gemessen, wie sie üblicherweise wenige Tage nach der Applikation auftreten, 

aber in diesen Fällen noch sechs Monate nach der letzten Glyphosatgabe nachweisbar 

waren, während die benachbarten ST Flächen nur Spurenkonzentrationen unterhalb der 

Nachweisgrenze aufwiesen. In Übereinstimmung mit dem abnehmenden Schadpotential 

der LT Böden, sank auch die Glyphosatrückstandsbelastung im Laufe der 

Vegetationsperiode zum Sommer hin ab. Für andere untersuchte Herrbizidwirkstoffe, wie 

Pendimethalin und Propyzamid, wurden keine vergleichbaren Verteilungsmuster 

gefunden. Glyphosatabbau in Böden korreliert mit der mikrobiellen Aktivität. 

Entsprechend war die Bodenatmung als Indikator für mikrobielle Aktivität bei vier von 

fünf untersuchten Standortpaaren auf den LT-Flächen im Vergleich zu den benachbarten 
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ST-Plots herabgesetzt, was auf einen verlangsamten Glyphosatabbau auf LT Standorten 

schließen lässt.    

Aufgrund schneller Adsorption zeigt Glyphosat in der Regel keine oder nur sehr 

eingeschränkte Bodenaktivität. Allerdings waren auf LT Böden mit hohem 

Schadpotenzial, Glyphosat und AMPA zumindest in Spurenkonzentrationen (1.5 – 3.5 µg 

L
-1

) auch in der wasserlöslichen und damit potenziell pflanzenverfügbaren Phase 

nachweisbar. Nährlösungsversuche mit Winterweizen, der über 3-6 Wochen den 

Herbizidspurenkonzentrationen, die in der LT Bodenlösung nachgewiesen wurden, 

ausgesetzt war, entwickelten Chlorosen und zeigten ähnlich wie bei den Bodenversuchen 

30 – 50 % vermindertes Feinwurzelwachstum, was überraschenderweise in erster Linie 

durch AMPA und nicht durch die Glyphosatexposition verursacht wurde. 

Übereinstimmend wurde weder in Hydroponik-, noch in Bodenversuchen 

Shikimatakkumulation im Wurzelgewebe als spezifischer Indikator für Glyphosat-

Toxizität nachgewiesen. Die bestimmende Rolle der Toxizität von AMPA wurde auch bei 

Topfversuchen mit Glyphosat-resistenten und nicht-resistenten Sojalinien deutlich, die in 

beiden Fällen Schadsymptome auf LT Böden ausbildeten, da transgene, Glyphosat-

resistente Sojasorten nicht gleichzeitig resistent gegenüber AMPA-Toxizität sind.     

Eine erste RNAseq Genexpressionsanalyse im Wurzelgewebe, unmittelbar vor 

Ausbildung visueller Schadsymptome, ergab verminderte Expression von Genen der 

generellen Stressantwort, von Aquaporinen (PIPs und TIPs) mit Funktionen bei der 

Wasseraufnahme und beim Wurzelstreckungswachstum, von Genen des 

Ethylenstoffwechsels aber eine erhöhte Expression von Cytokinin-Genen, was auf 

Wechselwirkungen mit hormonellen Gleichgewichten hinweist. Diese Veränderungen der 

Genexpression relativ zur unbehandelten Kontrolle, wurden in Pflanzen mit AMPA-, und 

AMPA+Glyphosat-Exposition aber nicht bei ausschließlicher Glyphosatexposition 

nachgewiesen. Die Ergebnisse deuten darauf hin, dass Langzeitexposition gegenüber 

subtoxischen AMPA Konzentrationen, die besonders im Frühjahr in den Böden der LT 

Flächen als Folge des verzögerten Abbaus akkumulieren, zu Störungen von 

Stoffwechselfunktionen führt, die für die normale Wurzelentwicklung essentiell sind.    
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In einer Reihe von Topfversuchen wurde das Potenzial ausgewählter, kommerzieller 

Formulierungen mikrobieller Pflanzenstärkungsmittel, basierend auf Stämmen von 

Pseudomonas sp., Bacillus amyloliquefaciens, und Trichoderma harzianum getestet, um 

die Stress-Symptome vom Pflanzen, die im Frühjahr auf LT Böden auftraten, zu 

vermindern. Für Vertreter der ausgewählten Mikroorganismengattungen sind 

Wurzelwachstumsstimulierung, Pathogen-Antagonismen und die Fähigkeit zum 

Glyphosatabbau dokumentiert. Unglücklicherweise trat eine Stimulierung des 

Pflanzenwachstums nur auf den ST Böden auf, während auf LT Böden, weder in 

Topfversuchen, noch im Feld, fördernde Effekte beobachtet wurden, was möglicherweise 

auf mangelnde Wurzelbesiedlung in Folge der Hemmung des Wurzelwachstuns und auf 

Frühsommertrockenheit im Feld zurückzuführen war.  

Als alternativer Ansatz, wurde die Einarbeitung einer Pyrolyse-Biokohle aus Holzabfällen 

getestet, die in Topfversuchen bei einer Applikationsdosis von 5% (v/v) im Oberboden, 

entsprechend ca 35 t ha
-1

, die Ausbildung von Schadsymptomen bei Winterweizen auf LT 

Böden komplett verhinderte und eine Schútzwirkung gegen Glyphosatüberdosierung (bis 

8 L Roundup Ultramax ha
-1

) sogar auf Substraten mit minimalem Adsorptionpotenzial 

vermittelte. Als mögliche kurzfristige Schutzmaßnahme ist daher die Untersuchung unter 

Feldbedingungen mit unterschiedlichen Biokohle-Applikationsdosen angeraten.   

Während der vergangenen beiden Jahre wurden Änderungen des 

Fruchtfolgemanagements auf den betreffenden Flächen eingeführt, mit vielfältigeren 

Fruchtfolgen, die Winterweizen, Winterraps, Mais und Crotolaria einschließen und auch 

Zwischenfruchtgemenge aus Erbsen und Gelbsenf getestet. Trotz weiterem, jährlichem 

Glyphsoateinsatz mit Aufwandmengen von 3 L ha
-1

 einer 360 g ai L
-1

 Formulierung, hat 

sich die Pflanzenentwicklung auf den betroffenen Flächen unzwischen signifikant 

verbessert. Diese Beobachtungen weisen darauf hin, dass die bislang praktizierten, engen 

Weizen/Raps Fruchtfolgen die Entwicklung einer Bodenmikroflora mit vermindertem 

Glyphosatabbaupotenzial begünstigt haben, was die Bedeutung eines Biodiversitäts-

managements auch für Kulturpflanzen unterstreicht.  



Chapter 1 Introduction  1 

1 Introduction 

1.1 History of tillage in agricultural practice 

Agriculture is the science and practice of cultivating the soil to grow crops for food 

production. With the aid of modern scientific techniques, we have achieved high crop 

productivity. State of the art machinery made farming efficient, latest plant varieties 

increased production, and agrochemicals provided an effective solution against pests and 

weeds. In developed countries, feed and food shortage are no more problems. This 

industrial agricultural production is efficient, but there are still a lot of unsolved problems 

concerning ecological sustainability. In Agronomic practices, tillage has played a vital 

role throughout the history of agriculture. During tillage, the soil is manipulated 

mechanically to prepare the ground for plantation. In 3000 B.C., a wooden plow was used 

in the Euphrates and Nile rivers (McKyes, 1985). First, it was pulled by man and then 

later by animals. 

There are also several Biblical references about the use of a plow. One of them is: “They 

shall beat their swords into plowshares” (Isaiah 2:4). This plow was just a branch of a 

tree, which was used to scratch the soil surface without mixing the soil layers (Derpsch, 

1998). Plows with the ability to invert soil surface and help in weed control were first 

developed in the 17
th

 century and became more and more sophisticated in the 18
th

 and 19
th

 

centuries. Of note, at the end of the 18
th

 century, the British, Dutch and Germans 

developed a tool in the shape of a moldboard. It is the perfect tool to turn the soil by 135
o
 

and, thereby, be efficient in weed control. This plow was used to control widespread weed 

all over Europe, and it helped to mitigate the famine at the end of 18
th

 century. It became 

a symbol of “modern” agriculture and used by Agriculture Institutes. In the museum of 

the University of Hohenheim, located in Stuttgart Germany, one of these plows from 1884 

is displayed. It was spread in America, Asia, and Africa through colonial powers and 

gained vital importance (Derpsch, 1998). Nowadays, deep and intensive tillage is used 

commonly and is referred to as conventional tillage, or cultivation. Therefore, some of the 

equipment utilized for this purpose are called cultivators. 
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1.1.1 Advantages of tillage 

Due to multiple significant benefits, tillage has been continued till now. It provides weed 

control through breaking the soil and reduces the soil compaction (Hobbs et al., 2008). 

Tillage enhances root growth and development (Varsa et al., 1997). It can quickly 

incorporate crop residues into the soil and provide a faster increase in organic matter for 

short-term (Hobbs et al., 2008). Tillage destroys shelters of pests and disrupts their life 

cycle, exposes pests to unfavorable conditions including predators and improves soil 

aeration (Oisat, 2015). 

1.1.2 Disadvantages of tillage 

Along with benefits, tillage also brings problems. Tillage destroys the soil structure, 

increases soil erosion, reduces the population of beneficial organisms such as mycorrhizal 

fungi in soil by disrupting their life cycle, induces moisture loss, delays when planting can 

begin, incurs high costs for both machinery and energy, and increases pollution (Oisat, 

2015). Crop production based on intensive tillage negatively affects and damages the 

quality of natural resources, including water, soil, terrain, the associated ecosystem, and 

biodiversity. Of total CO2, N2O and CH4 emissions (the greenhouse gasses which lead 

climate change), 30% stem from Agriculture (IPCC, 2007). In addition, regular 

cultivation of soil leads to the depletion of soil quality, which in the medium to long-term 

is not sustainable for economics and environment (Basch et al., 2008). In conclusion, 

intensive tillage cannot continue to keep sustainable agriculture, and a shift is required 

towards conservation agriculture. 

1.2 Conservation agriculture (CA) 

Conservation agriculture (CA) is a combination of ideas, practices, and technology to 

manage the ecosystem, develop sustainable production, increase agriculture profit, and 

ensure the availability of food without damaging environmental resources. CA conserves 

and improves natural resources like fauna, flora, and wildlife without a reduction in yield 

(FAO, 2015). It also improves biodiversity and the various processes of nature both above 

and below ground.  
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There are three principals of CA defined by FAO. 

 1. Continuous minimum mechanical soil disturbance. (No-tillage, direct seeding or 

seeding through broadcasting, direct placement of planting material in the soil. 

Minimal soil disturbance by both cultivation and harvest operations) 

 2. Permanent cover of organic matter. (Crop residues and cover crops) 

 3. Diverse crop rotation. 

To correspond the principals of CA alternative of conventional tillage is conservation 

tillage, which includes no-tillage or zero-tillage, non-inversion, and minimal-tillage (strip- 

tillage, and mulch-tillage). In the case of no-tillage cultivation (Figure 1), the soil is not 

disturbed except for seeding. In the event  of non-inversion or minimal-tillage, reduced 

cultivation is done by using cultivator like chisel plow, etc. (Jones et al., 2006). 

 

Figure 1: Agricultural practice in conventional and conversation tillage. Courtesy; Dow 

AgroSciences. 
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1.3 No-tillage  

No-tillage is often understood as a system where only seeding is done without tillage, but, 

actually, it is an entirely different system where not just one factor, tillage, but a complete 

set of factors must be changed. Different machinery for seeding is necessary, machinery, 

which is capable of cutting through residues of previous crops. In addition, adaptations 

are required in crop variety selection, fertilization, and weed and pest management. In 

essence, it can be defined as a system of planting (seeding) crops into the untilled soil by 

opening a narrow slot, trench or band of only sufficient width and depth to obtain proper 

seeding coverage. No other soil tillage is done. Further, the aim should be permanent no-

tillage, not occasional tillage or tillage in alternative seasons. To achieve this, crop 

rotation and cover crops are essential; the soil must have the undisturbed cover of crops or 

green manure (Derpsch and Friedrich, 2009). 

1.3.1 No-tillage History 

No-tillage is an ancient practice in agricultural management. It was used by primitive 

cultures because man does not have enough muscle power to till large areas manually. 

One of the most indigenous cultures, the Incas in the Andes of South America, used sticks 

to make seeding holes in the soil and covered the seeds by foot. A large number of 

farmers in Central and South America (Derpsch, 1998) are still using a similar method 

today. Slush mulch or “tapado” is another system practiced in Central America and 

Mexico today and for centuries before. It is a no-tillage system developed by small 

landholders (Thurston et al., 1994). After the rain, seeds are thrown on the topsoil 

underneath a dense stand of vegetation, e.g., Mexican Sunflower (Tithonia diversifolia), 

and, then, the plants are cut and left on top of the seeds. After a few days, the plants on 

top are dried and the seeds germinate without any tillage being performed (Derpsch, 

1998). 

In Europe and worldwide, modern no-tillage started in 1955 with the development of 

herbicide Paraquat
®
 in the United Kingdom (UK). This concept developed because of 

increasing research activities on no-tillage. By 1973/74, in the UK 200,000 hectare (ha) 

was under no-tillage. After ten years, it increased to 275,000 ha (Derpsch, 1998). In 1962, 
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research on no-tillage started in Netherlands with the aim to find ways to make field work 

simple and improve farm economy by saving time and energy. In Germany, research on 

no-tillage began in 1966 (Derpsch and Friedrich, 2009). After 18 years of research, no-

tillage was found more profitable due to the lower cost for machinery, lower operating 

expenses, lower initial cost, which is required for machinery, labor, and other variable and 

fixed cost (Derpsch, 1998). In a well-managed no-tillage system, yield comparable with 

conventional tillage systems can be obtained. Even in cases of a lower yield, higher profit 

is still expected due to lower input costs. Based on total process cost, no-tillage is 

economical and can be further improved (Tebruegge and Böhrnsen, 1997). In Germany 

till 2010, 44% of the agricultural areas were under conservation tillage (Table 1), and 

about 50% of winter rape (Brassica napus) and 50% of winter wheat (Triticum 

aestivum)/barley (Hordeum vulgare) was grown under no-tillage management (Schmitz 

and Graevert, 2012).  

Table 1: Soil tillage methods on arable land in Germany 2010. (Destatis, Statistisches 

Bundesamt, Wiesbaden 2015, www.destatis.de). 

Soil Tillage Method Arable Land (1000 ha) 

Conventional soil tillage (ploughing) 6,6082 

Conserving soil tillage (e.g., by grubbing, harrowing) 4,4693 

Direct seeding method (zero tillage) 1463 

 

In France, INRA and ITCF started experiments on minimum and no-tillage techniques in 

1970 (Derpsch and Friedrich, 2009). They made advancements in no-tillage in Europe, 

and, until 2008 the area under no-tillage in France was 200,000 ha (Derpsch et al., 2010). 

In Spain, no-tillage research started in 1982, and the no-tillage system proved more 

productive than tillage and minimal tillage in southern Spain’s clay soil because of the 

low energy consumption and moisture conservation. In 1967 to 1982 long-term 

experiments with plowing and direct drilling showed higher yield in winter bean, winter 

wheat, and spring oats (Avena sativa) managed with no-tillage. In maize (Zea mays) and 

spring barley 15% and sugar beet (Beta vulgaris) 20% yield was reduced due to no-

http://www.destatis.de/
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tillage. No-tillage was adopted in Spain more than the in rest of the Europe. It was 

practiced on 650,000 ha for annual crops growing in Spain, mainly wheat and barley 

(Derpsch et al., 2010).  

In the USA, research on conservation tillage started in the 1930s with early chisel plow in 

Great Plains for the purpose to alleviate soil damage caused by wind erosion after the 

famous “dust bowl.” In 1950, successful application of no-tillage was reported (Philips 

and Philips, 1984). Therefore, intensive research started on no-tillage in combination with 

chemical weed control. No-tillage was promoted and facilitated by the publication of 

“No-tillage farming” by Philips and Young in 1973. It reached to 19.4 million ha by 

1996/97 (Hebblethwaite, 1997) and it kept advancing as shown in Table 2. 

In 1971, with the cooperation of GTZ (German aid), no-tillage experiments started in 

Brazil. Maize, wheat, soybeans (Glycine max), barley, sorghum (Sorghum bicolor), 

sunflower (Helianthus annuus), beans (Phaseolus vulgaris) are the main crops being 

grown with no-tillage technology. In 1974, Argentina started no-tillage farming with the 

goal to find a better way of double cropping of soybean and wheat (Derpsch, 1998). In 

both countries, no-tillage adaptation was rapid and dominating the cropland. According to 

Derpsch and Friedrich (2009), the main advantage of no-tillage is a possibility of 

production without dragging the soil, and it improves soil biological, chemical and 

physical properties. 

On a global level, only 2.8 million ha were under no-tillage in 1973/74. Within 10 years, 

this area grew to 6.2 million ha in 1996/97 and increased to 38 million ha (Derpsch, 

1998). In 2010, the estimated area under no-tillage worldwide was 111 million ha 

(Derpsch et al., 2010). According to FAO (AQUASTAT, 2016) estimates of different 

years from 1960 until 2015, the total area under CA worldwide is 156.991 million ha. It is 

managed with different conservational tillage practices including no-tillage. The area 

under no-tillage in all over the world is steadily increasing. The highest adaptation is in 

MERCOSUR countries, a larger percentage of total area is under no-tillage, i.e., 

Argentina 80%, Brazil 50%, Paraguay 90%, and Uruguay 82% (Gianessi, 2014). In US 

38.8 million ha (almost 25% of cropland area) are reported under no-tillage (Dobberstein, 

2014). 
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Table 2: Area under no-tillage in various in countries with > 100,000 ha (Derpsch et al., 2010). 

Country Area (ha) 2008/2009 

USA 26,500,000 

Brazil 25,502,000 

Argentina 19,719,000 

Canada 13,481,000 

Australia 17,000,000 

Paraguay 2,400,000 

China 1,330,000 

Kazakhstan 1,200,000 

Bolivia 706,000 

Uruguay 655,100 

Spain 650,000 

South Africa 368,000 

Venezuela 300,000 

France 200,000 

Finland 200,000 

Chile 180,000 

New Zealand 162,000 

Colombia 102,000 

Ukraine 100,000 

Total 110,755,100 

1.3.2 Significance of No-tillage  

As compared to conventional tillage, the no-tillage system is beneficial in the 

conservation and improvement of natural resources. With the use of no-tillage reduction 

in production costs and increasing yield (Tebrügge, 2001) leads to higher net profit. No-

tillage is cheaper than conventional tillage due to fewer field operations (80% fuel and 
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60% lesser labor requirements) and a 50% less cost for machinery, which also lasts longer 

due to less operational hours per year. Further, once a no-tillage system is established, less 

technical skill, chemical and fertilizer inputs are required (Baker et al., 2007).  

Soil structure is improved with the least possible physical disturbance and with the 

addition and preservation of organic matter and soil fauna and flora, e.g., earthworms. 

Water loss, runoff of soil and applied chemicals, soil compaction, and the wind and water 

erosions are controlled (Triplett and Dick, 2008). Due to organic matter cover, the soil has 

better internal drainage and infiltration, higher earthworm populations and higher water 

holding capacity. Under no-tillage, growth conditions for plants are improved with better 

nutrient availability and soil temperature moderation. Proper mixing of potassium and 

phosphorus by earthworms increases nutrient availability in the root zone. Soil 

temperature remains lower in summer and higher in winter (Baker et al., 2007). No-tillage 

is a sink for greenhouse gasses, reduced runoff of agrochemical and contamination of 

water, less use of fossil fuels, agrochemicals, and fertilizer (Baker et al., 2007), leads to 

environment-friendly and sustainable agriculture.  

1.3.3 Challenges in no-tillage adaptation 

Along with several advantages, there are also some challenges to deal with when 

establishing a no-tillage system. No-tillage is a shift of various factors and agricultural 

practices from conventional tillage. Farm machinery needs to change or upgrade and land 

leveling, which makes it expensive to start. More skills are required to start this system 

and perform agricultural operations, especially to deal with pests and diseases.  

As a rule, higher the soil disturbance leads to a reduction in weed infestation (Boström, 

1999) and less soil disturbance contributes in developing a weed seed bank (Cardina et 

al., 2002: Moonen and Barberi, 2004). The major reason for tillage is weed control to 

reduce competition for early crop growth (Triplett and Dick, 2008). In the case of no-

tillage, weed infestation and seed banks do increase (Légère et al., 2011). Grasses are an 

additional problem in no-tillage systems (Locke et al., 2002: El Titi, 2003). In the absence 

of tillage, major weed control is possible by the application of chemicals (herbicides), 

which tend to be selective towards weeds, which are resistant against formulations (Baker 
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et al., 2007). Therefore, the ultimate limiting factor in no-tillage is weed management 

(Soane et al., 2012). 

In a no-tillage system, applying non-selective herbicides, mainly glyphosate mostly 

controls weeds. Glyphosate is the most widely used herbicide worldwide (Powles, 2008) 

in both conventional and no-tillage system. It is sold under different trade names, based 

on the manufacturer and formulation. The most widely used product is Roundup
®

 

(Monsanto, St. Louis, Missouri, USA). 

1.4 Glyphosate 

1.4.1 Significance of glyphosate 

Glyphosate is an active ingredient of more than 750 commercial products (Saltmiras et 

al., 2015) for agricultural, forestry, residential and urban applications. It is a broad-

spectrum herbicide, frequently used for the pre-emergence application. In the case of 

orchards, vineyards forestry, and glyphosate-resistant (GR) crops glyphosate is also 

applied in the standing culture or as a post-emergence herbicide, respectively. It is used 

for weed control in perennial and annual plants, broad- leaf weeds, grasses, grains, 

orchards and forestry, aquatic weed control and infrastructure (railway track). 

Furthermore, glyphosate is approved for use in vegetables, orchards, vine, ornamentals, 

forest, and lawn. It is also used to synchronize and accelerate the ripening of forage 

cereals. Glyphosate is reported to control 76 of world’s most damaging weeds. It can 

provide control for 300 weeds in more than 100 crops (Franz et al., 1985).  

Glyphosate is the worldwide most frequently used herbicide (Saltmiras et al., 2015). Its 

use was boosted with the introduction of glyphosate-resistant (GR) crops in 1996 and with 

changes of management practice to no-tillage and reduced tillage (Cerdeira and Duke, 

2006). It was estimated that the use of glyphosate in the European Union raises the annual 

welfare of 1.4 billion euros (Schmitz and Garvert, 2012). Annual global production 

figures for glyphosate have recently been estimated at 825,800 tons (Benbrook, 2016). 

Others estimated even higher production volumes, surpassing 1 million ton annually 
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(Sz k cs and Darva, 2012; Bøhn et al., 2015). In 2017, the global market of glyphosate is 

expected to reach 1.35 million tons (Global Industry Analysts, 2011). 

In 2007, the production capacity of Chinese companies was 323,400 tons, which 

increased to 835,000 tons in 2010 with 37% annual growth rate (Sz k cs and Darvas, 

2012). The global sale value of glyphosate was US$ 4.7 billion (Borggaard, 2011). The 

amount of glyphosate used is increasing globally and there is a tendency to use it as a sole 

herbicide (Woodburn, 2000) particularly in cropping systems based on GR crops. In 

Denmark, the use of glyphosate was 35% of total pesticide applied in 2008 (Borggaard, 

2011). In Italy only in 2011, more than 120 tons of glyphosate were sold mainly for use in 

vineyards (Napoli et al., 2015). In the United Kingdom, 40 to 80% of cereals and oilseed 

rape were treated with glyphosate as a pre harvest herbicide (Cook et al., 2010). In 

Germany (Table 3), use of glyphosate increased from 1999 to 2010. The annual growth 

rate was 20% between 1999 and 2008. It dominated the herbicide market being covering 

40% of national use (Steinmann et al., 2012). According to winter survey of 2010/11, 

Steinmann et al. (2012) reported glyphosate application on 27.5% agricultural area (arable 

land and grassland) and 35% of the total arable area. It was mainly applied to grow 

oilseed rape, winter barley, and pluses. Grassland, forage crops and potatoes (Solanum 

tuberosum) were less exposed to it. The survey reported the diverse application of 

glyphosate, not just for weed control but also as a multifunctional agronomic tool.  

According to Franz et al. (1997), glyphosate is regarded as an environment-friendly 

herbicide. It is less likely to leach and contaminate ground water than many other 

products because of its strong sorption and rapid inactivation in the soil quickly after 

application. It is effective against all weeds with relatively limited recognized resistance 

evolution, except areas with the intensive use of GR cropping systems. It was known to be 

noncarcinogenic and has low acute human and animal toxicity. It was also reported to 

have limited effects on soil macro-, and microorganisms (Borggaard and Gimsing, 2008; 

Forlani et al., 2008; Powles, 2008). 
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Table 3: Glyphosate use in Germany applied on the area to different crops in 2008 (Steinmann et 

al., 2012). 

Crop  Calculated 

application 

area (ha*1000) 

Calculated share of applied 

area (%) 

Calculated amount 

of Glyphosate (t) 

Share of total 

glyphosate 

applied (%) 

Grassland  133.5 3.3 165.5 4.0 

Winter wheat 702.5 23.2 658.8 15.8 

Silage maize 389.7 25.2 347.9 8.3 

Oilseed rape 1200.6 87.2 1149.2 27.5 

Winter barley 898.7 65.9 837.9 20.1 

Rye/ triticale 382.1 35.0 335.6 8.0 

Forage crops 77.0 12.5 76.1 1.8 

Spring cereals 230.8 41.7 264.4 6.3 

Maize 146.6 33.6 144.9 3.5 

Sugar beet 111.9 31.0 124.3 3.0 

Potatoes 26.1 10.5 25.6 0.6 

Pulses 40.8 72.1 39.9 0.9 

1.4.2 Glyphosate-Resistant Crops (GR)  

In 1996, Monsanto developed glyphosate-resistant (GR) soybean called Roundup Ready
®

 

Soybean which was genetically modified (GM) to resist against glyphosate application. 

After development of GR soybean, Monsanto continued to develop GR cotton 

(Gossypium spp.), GR maize, GR canola, GR alfalfa (Medicago sativa) and GR sugar beet 

(Dill et al., 2008) and following this, other companies made similar varieties and named 

them Gly-Tol
TM

 (Bayer CropScience), Optimum GAT (Pioneer HiBred) and Agrisure GT 

(Syngenta AG). Thus, the postemergence application of the glyphosate-based herbicides 

became possible in a broad range of important crops. It adopted quickly, particularly in 

no-tillage farming associated with a corresponding increase in glyphosate use (Figure 

2B). The area under GMOs is rapidly growing (Table 4, Figure 2A) and it reached to 120 
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million ha where 80% of them were herbicide resistant crops virtually all being 

glyphosate resistant crops (Duke and Powles, 2010). In 2013, the area under herbicide 

resistant crops increased to 99.4 million ha with high net profit (ISAAA GM, 2014). 

Table 4: Total crop production share of GR cultivars in different years and countries (Duke and 

Powles, 2010). 

GR Crop GR Share Year Country 

Soybean (Glycine max L.) 90% 2009 USA 

Soybean (Glycine max L.) 90% 2003 Argentina 

Cotton (Gossypium hirsutum L.) 70% 2009 USA 

Canola (Brassica napus L. & B. rapa L.) 70% 2008 Canada 

Sugar beet (Beta vulgaris L.) 60% 2008 USA 
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Figure 2: (A) GR crops from 1996 to 2008 in the United States based on USDA ERS, 2009 (Duke 

and Powles, 2010). (B) Glyphosate use in different crops during 1992 to 2011 in the 

United States based on U.S Geological Survey.  

A 

B 
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1.4.3 Chemical and Physical Properties 

Glyphosate (N- phosphonomethyl-glycine) is a phosphonomethyl derivative of the amino 

acid glycine. It is an odorless, white crystalline solid, a weak organic acid (Table 5) 

belongs to the group organophosphates. The molecular mass is 169.07 g mol
−1 

with the 

formula C3H8NO5P. Its molecule forms a zwitterionic structure. It is amphoteric and has a 

central basic secondary amino function, with acidic functions on both ends formed by a 

mono-carboxylic acid and dibasic phosphonic acid (Figure 3). 

Due to high polarity, glyphosate is insoluble in organic solvents, such as ethanol, acetone, 

and benzene (Franz, 1985) but also its solubility in water is relatively low. To increase 

water solubility, glyphosate is usually formulated as ammonium, isopropyl ammonium, 

potassium, sodium or trimethylsulfonium salts (Sz k cs and Darva, 2012). Surfactants are 

used to increase glyphosate’s penetration in plant cells.  

The formulated herbicide is stable under ambient temperature conditions (-20 °C to 

40 °C), non-volatile, photo-stable with limited soil persistence. In many agricultural soils, 

the half-life of glyphosate is typically less than 60 days but ranges from 1 to 197 days 

(Giesy et al., 2000) depending on environmental conditions. 

 

Figure 3: Glyphosate (N- (phosphonmethyl) glycine) - Chemical structure. 
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Table 5: Chemical and physical properties of Glyphosate (WHO, 1994). 

Boiling point  Decomposing  

Color  White 

Explosiveness  Not explosive 

Flammability  Not flammable 

Henry's law constant < 7 X10-11 

Melting point 184.5 oC and Decomposing at 187 oC 

Molar absorptivity  0.086 liter mol-1 per cm at 295 nm 

Molecular Mass 169 

Octanol-water partition coefficient (log KOW) -2.8 

Odor None 

pH  2.5 (1% solution) Water 

Physical state  Crystalline powder 

pKa values  < 2, 2.6, 5.6, 10.6  

Solubility in water  10- 100 mg L-1 at 20 oC 

Specific gravity (density)  1.704 at 20 oC 

Surface tension  0.072 N/m 0.5% (w/v) at approx. 25 °C 

Vapor pressure  < 1 x 10-5 Pa at 25 oC 

 

The Roundup Ultra
®
 formulation is active against most annual and perennial weeds with a 

dosage 2 to 4 L ha
-1

 containing 960 to 1920 g of active ingredient. However, for some 

perennial weeds and woody species, higher dosages and single plant application instead of 

broadcast spraying are required (Bott, 2010). 
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1.4.4 Mode of Action 

1.4.4.1 Primary Effects 

In general, glyphosate is classified as an inhibitor of aromatic amino acid biosynthesis via 

inhibition of the shikimic acid pathway as a primary mechanism (Figure 4) (Duke and 

Hoagland, 1985; Panettieri et al., 2013). However, it is not completely clear if this is the 

only mode of action. Glyphosate is readily absorbed and translocated within the plant, 

preferentially to the young growing tissues (Cranmer, 1988). In higher plants and many 

microorganisms, the shikimate pathway has vital importance to link primary and 

secondary metabolism, initiated by condensation of phosphoenolpyruvate (PEP) with 

erythrose-4-phosphate (Herrmann and Weaver, 1999). The end products of the pathway 

are the aromatic amino acids tryptophan (Trp), tyrosine (Tyr) and phenylalanine (Phe), 

essential for the synthesis of proteins (Comai and Stalker, 1986). Tryptophan is the 

precursor for the synthesis of indole-acetic acid (IAA) as one of the most important 

growth-promoting phytohormones (Yamada et al., 2009). Phenylalanine is a major 

precursor for the synthesis of secondary phenolic compounds via phenylalanine 

ammonialyase (PAL) for the production of phenolic acids, coumarins, flavonoids, lignins, 

tannins and quinones (Duke and Hoagland, 1985). Within the shikimate pathway, 

glyphosate competitively inhibits the key enzyme 5-enolpyruvylshikimate-3-phosphate 

synthase, which catalyzes the reaction of shikimate-3-phosphate and 

phosphoenolpyruvate to form 5-enolpyruvyl-shikimate-3-phosphate (Panettieri et al., 

2013). This pathway blockage causes shikimic acid accumulation, which is also widely 

used as an indicator for the detection of glyphosate toxicity (Neumann et al., 2006; Reddy 

et al., 2010). The lack of the essential amino acids Trp, Tyr, and Phe inhibits biosynthesis 

of proteins, which rapidly affects photosynthesis with the most abundant chloroplast 

proteins, leading to leaf necrosis and finally death of the plant (Duke et al., 2003; Duke 

and Powles, 2008). Due to the ubiquitous occurrence of the shikimate pathway in plant 

metabolism, the herbicidal effect is observed in all plant species (Sz k cs and Darva, 

2012).  
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1.4.4.2 Secondary Effects 

Due to the general inhibition of protein synthesis, a wide range of metabolic pathways and 

processes are affected by glyphosate in a pleiotropic way, including reduction of 

chlorophyll and porphyrin synthesis, inhibition of photosynthesis, respiration and nitrate 

assimilation, reduction in synthesis of nucleic acids and inhibition of anthocyanin 

formation (Cole, 1985). Reduced uptake of amino acids, nucleotides, and glucose, caused 

by glyphosate has been demonstrated in cell cultures (Brecke & Duke, 1980). Glyphosate 

also affects hormonal balances including IAA, ethylene, and cytokinins, (Cañal et al., 

1987; Cole, 1985; Duke et al., 1979; Lee, 1980).  

 

Figure 4: Shikimic acid pathway and its inhibition by glyphosate (adapted from Dill, 2005). 

1.4.5 Glyphosate uptake translocation in plants  

After foliar application, glyphosate is quickly absorbed by the foliage of treated seeds and 

translocated to root and shoot meristems and young growing tissues (Grangeot et al., 

2006). However, in many plants self-limited translocations of glyphosate has been 
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observed after foliar application particularly at higher doses of glyphosate. It may be due 

to toxic effects of the internal translocation processes (Geiger et al., 1999; Hess, 1999; 

Majek, 1980). Usually, the uptake is initially rapid and then slower. The herbicide 

absorption through the plasma membrane into the symplast involves passive and active 

transport mechanisms using phosphate carriers (Franz et al., 1997, Caseley and Coupland, 

1985). Gougler and Geriger (1981) reported the involvement also of amino acid transport 

systems in glyphosate transport across the plasma membrane.  

1.4.6 Glyphosate in Soil 

Glyphosate enters into the soil by direct contact during spraying, being washed off the 

leaf surface after the foliar application or as plant root exudates and lysates (Kremer et al., 

2005). It is rapidly adsorbed to the soil matrix by the formation of complexes with metal 

cations, i.e., Fe
2+

, Cu
2+

, Mn
2+

, and Ni
2+

 (Andréa et al. 2003), representing the main 

mechanism of glyphosate detoxification in soils. In a study on glyphosate adsorption in 

three soils with illitic, kaolinite and smectic clay minerals, glyphosate adsorption and 

presence of clay minerals could be related (Dion et al., 2001). Some studies showed that 

glyphosate adsorption in soil is not linked or negatively related to soil organic matter 

(Gerritse et al., 1996; Vereecken, 2005). Western Australian studies on glyphosate 

adsorption on sandy soils indicate that it is possible for soil organic matter (e.g., humic 

acids) to compete for adsorption sites and counteract adsorption of glyphosate (Gerritse et 

al., 1996). According to a review of Borgaard and Gimsing (2008), soil organic matter 

has a controversial and dual role in soil sorption of glyphosate. Soil organic matter can 

reduce glyphosate sorption by blocking sorption sites. It can also increase absorption 

because high organic matter enhances the poorly ordered aluminum and iron oxides, 

which have high glyphosate sorption capacity. However, the main sorption sites for 

glyphosate are on the surface of aluminum and iron oxides, edges of layer silicates and 

poorly ordered aluminum silicates. Glyphosate adsorption was tested on three topsoils 

having different cation exchange capacity, textural fraction and amorphous Fe and Al 

oxides. It revealed amorphous Fe and Al oxides and organic matter controls glyphosate 

interaction with soils (Morillo et al., 1999). Soil with permanently charged clay minerals 
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like illite, smectite, and vermiculite adsorb less glyphosate as compared to soil with high 

Fe and Al contents (Gimsing and Borgaard, 2007).   

1.4.7 Glyphosate Degradation 

Glyphosate is biologically degraded in soils. In the laboratory, the half-lives (DT50) 

ranges from 1 to 40 days and forms the intermediate metabolite aminomethyl-phosphonic 

acid (AMPA). AMPA is more persistent with DT50 ranging from 24 to 75 days (Mamy et 

al., 2005) in most cases. The primary route of glyphosate degradation is microbial, 

although photodegradation and chemical degradation can take place to a smaller extent 

(Tu et al., 2001). Barrett and McBride (2005) demonstrated abiotic degradation of 

glyphosate and AMPA by Mn oxide birnessite. Microbial degradation preferentially 

proceeds under aerobic but also under anaerobic conditions, favored by high temperature 

(Heinonen- Tanski, 1989; Rueppel et al., 1977). During this degradation, microorganisms 

are using the herbicide for acquiring phosphorus rather than as a carbon source (Franz et 

al., 1997). The degradation of the herbicide is related to microbial activity, and its 

degradation rate is correlated with the rate of soil respiration (Franz et al., 1997). Higher 

adsorption of glyphosate in soil leads to slower degradation (Sørensen et al., 2006) due to 

the limitation of bioavailability.  

There are two pathways of glyphosate degradation:  

a) decarboxylation, (catalyzed by oxidoreductases) forming the intermediate 

metabolite AMPA; 

b) dephosphorylation, (catalyzed by C-P lyases cleaving the carbon-phosphorous 

bond) forming intermediate metabolite sarcosine and glycine (Sz k cs and Darva, 

2012).  

The AMPA pathway is commonly seen in mixed soil bacterial cultures (Rueppel et al., 

1977) and the glycine pathway is characteristic for Pseudomonas and Arthrobacter sp. 

(Jacob et al., 1988). It is not clear which of these pathways is more common. However, in 

soils treated with glyphosate, AMPA is commonly detected (Rueppel et al., 1997; 

Borggaard and Gimsing, 2008) and it is more mobile in soil (Duke and Powles, 2008) 
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while the presence of sarcosine is rare possibly due to its quicker degradation (Moshier 

and Penner, 1978). AMPA formation is rapidly mediated by microbial activity but not by 

chemical action in the water and in various loams soils. It finally degrades to carbon 

dioxide (Rueppel et al., 1977; Sprankle et al., 1975). Chemical processes of degradation 

are not effective due to the presence of a highly stable carbon-phosphorus bond (Gimsing 

et al., 2004). Nevertheless, the mechanisms of AMPA degradation are still not completely 

understood (Kononova and Nesmeyanova, 2002).  

Bacterial glyphosate degradation has been also reported for strains of Flavobacterium, 

Agrobacterium, Bacillus, Rhizobium and Achromobacter, while degradation by fungal 

strains (e.g., Trichoderma, Penicillium, and Fusarium) is less well documented (Arfarita 

et al., 2013), although an important role of fungal glyphosate degradation has been 

postulated already by Krzyśko-Lupicka et al., (1997). This is in line with reports on 

increased fungal populations after soil application of glyphosate (Araujo et al., 2003).  

There are reports of glyphosate leaching (Napoli et al., 2015) and delayed degradation 

(Helander et al., 2012) after field application. This delayed decomposition can be due to 

partly binding to soil matrix and formation of complexes with metallic ions (Al, Fe, Mn, 

and Zn) (Vereecken, 2005). Panettieri et al. (2013) investigated the influence of 

glyphosate on microbial activities and found differences in results obtained from 

incubated soil and agricultural plots. Those differences were explained as an effect of 

meteorological factors like temperature variations, light intensity, wind and rain strength 

on the degradation of agrochemicals. These changes could be related to stimulation or 

inhibition of microbial communities and/or related to activation of other patterns of 

chemical oxidation. Temperature also plays a vital role in degradation as reported by 

Stenrød et al. (2005). During the period of thawing, microbial activity increases 

subsequently higher degradation rate but decreases during freezing period. Degradation of 

glyphosate reduced between 6 to 10% with 10 
o
C decrease in temperature. 

In aquatic systems, the primary mode of degradation of glyphosate is microbial, and half-

life is 12 days to 10 weeks (Ruppel et al., 1977), but degradation in water is slower than 

soil due to fewer microbes (Ghassemi, 1981). 
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1.5 Ecological risk assessment of glyphosate 

Glyphosate was stated to be a “unique ideal herbicide” and a “once in a century 

herbicide” (Duke and Powles, 2008). Early findings, mostly before 2010, justified that 

glyphosate was widely recognized as having a low impact on the environment, on 

workers who deal with the chemical, and on consumers through food (Cuhra et al., 2016). 

In recent years, the established assumptions on the glyphosate safety have come under 

revision. It is found to have more profound and complex toxicological effects on the 

environment, workers, and consumers due to high residues in food. These differences in 

conclusions have initiated a global scientific debate on glyphosate. Now glyphosate is a 

controversial product, and more studies are urgently required (Soil Association, 2016; 

Nguyen et al., 2016). 

Glyphosate residues in feed and food are a major concern since GR crops accumulate 

glyphosate (Bøhn et al., 2014) and preharvest application of glyphosate on crops leave 

higher concentrations of its residues. These glyphosate contaminated crops are being used 

for cattle feed. Therefore, glyphosate residues can be found in cattle as a potential health 

risk for them and end consumers human beings (Cuhra et al., 2015). Glyphosate has been 

found to have antibiotic qualities (Abraham, 2010). The effect of glyphosate on 

microorganisms heterogeneous and dependent on the presence of shikimate pathway.  

There are increasing numbers of reports suggesting glyphosate as ecological risk, e.g., it 

can be hazardous for vertebrates (Paganelli et al., 2010), it has adverse effects on the 

availability of plant nutrient uptake, can exert non-target  effects on susceptible crops 

(Bott et al., 2011) and impact  on rhizosphere microorganisms and plant pathogens 

(Kremer and Means, 2009). Additional risks are the development of resistant weeds 

(Owen, 2008), accumulation or delay in degradation, contamination of ground and surface 

water through leaching and runoff (Helander et al., 2012). Glyphosate-based herbicides 

can adversely affect aquatic invertebrate ecology (Cuhra et al., 2013). It has also shown a 

negative impact on amphibian larvae (tadpoles) (Relyea, 2006) and earthworms (Gaupp-

Berghausen et al. 2015). These effects can last longer with persistence of the herbicide, 

and recent research suggests that glyphosate persists longer with the return of crop 

residues on the field containing glyphosate to the soil (Mamy et al., 2016). 
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Some other studies indicate that commercial glyphosate-based formulations are more 

toxic than glyphosate itself because of surfactants (Coalova et al., 2014) and a potential 

carcinogenicity, which is still a matter of controversial discussions. 

1.5.1 Glyphosate damage to non-target plants  

Through spray, drift glyphosate may reach to non-target plants in minor but effective 

dose. In wheat, 10% of the labeled usage rate of glyphosate caused >90% yield losses 

(Deeds et al., 2006). Drift dose of glyphosate produced lower biomass of young wheat 

plants (Kutman et al., 2013). 

In soil, glyphosate is generally less bioavailable due to soil adsorption. However, after 

pre-sowing application, weeds absorb it, and it remains stable in weed residues being 

temporarily protected from microbial degradation (Bott et al., 2011). Subsequently, it can 

be released from the damaged roots of dying target plants (Neumann et al., 2006) with the 

potential to damage adjacent plants and seedlings by contact contamination 

(Tesfamariam, 2009). Also, Coupland and Casely, (1979) reported the release of 

glyphosate through root exudates. They detected the significant amount of 
14

C-glyphosate 

in the surrounding solutions of the intact root of quackgrass (Elytrigia repens). 

1.5.2 Glyphosate Resistant weeds (GR)  

Some scientists considered the evolution of weed resistance to glyphosate is unlikely 

because of its unique mechanism of action (Bradshaw et al., 1997). They were proven 

wrong in 1996 when in Australia the first population of GR Lolium rigidum was reported 

(Pratley et al., 1996). Next year in 1997 in Malaysia, GT goosegrass (Elevsine indica) 

(Lee and Ngim, 2000), followed by GR horseweed (Conyza Canadensis) in the United 

States (VanGessel, 2001), GR Italian ryegrass (Lolium multiflorum) in Chile (Perze and 

Kogan, 2003). The glyphosate resistance in weeds continued, and by 2014, the number of 

GR weeds species reached 32 weeds worldwide, including 15 species in the United States 

(Heap, 2015). There are two most common identified mechanisms of glyphosate 

resistance in GR weeds. The first mechanism is alternations of target site through a 

genetic mutation in EPSPS in the way that either EPSPS was no longer inhibited by 
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glyphosate or over-expressed. The second mechanism is a reduced translocation of 

glyphosate to meristems (Powles and Yu, 2010). The development of GR weeds is a 

direct consequence of the massive use of GR cropping systems exclusively based on the 

herbicidal action of glyphosate and limited crop rotation (Green and Owen, 2010) 

1.5.3 Plant Nutrients  

Cropping systems, where glyphosate is being used for weed management, have been 

shown to induce a deficiency of Fe, Mn, Zn and B (Neumann et al., 2006). This can be a 

result of an effect of glyphosate on the composition of soil microbial communities, 

associated with changes in soil nutrient dynamics (Johal and Huber, 2009; Kremer and 

Means, 2009). In the upper Midwest of the United States even growing incidence of 

potassium deficiency was noticed in maize grown in rotation with GR soybeans (Lane et 

al., 2012) with frequently applied glyphosate. Fungi can take up and sequester potassium 

in the fungal biomass (Weed et al., 1969), which was found to be stimulated by 

glyphosate application. Also, glyphosate-induced impairment of micronutrient uptake and 

transport in plants has been described. Internal micro nutrient immobilization has been 

discussed as the putative cause, induced by the ability of glyphosate to form stable 

complexes with Fe and Mn and other metals (Cakmak et al., 2009). 

1.5.4 Toxicity on Other Organisms 

There are different opinions in the literature about the safety of this herbicide as some 

reports have not found any significant risk to human and animal health by the use of 

glyphosate since its target enzyme EPSPS (5-enolpyruvyl-shikimate synthase) is absent in 

animals (De Roos et al., 2005; Solomon et al., 2007). Some other studies revealed toxicity 

of sub-lethal exposures of glyphosate in fish (Szarek et al., 2000, Guilherme et al., 2012), 

earthworms (Gaupp-Berghausen et al. 2015; Yasmin and D’Souza, 2007; Verrell and 

Buskirk, 2004), mice (Prasad et al., 2009) human cell lines (Koller et al., 2012) and 

workers exposed to glyphosate formulations (Bolognesi et al., 2009).  

The entry of glyphosate into the food chain has been facilitated with the invention of GR 

crops and pre-harvest applications of the herbicide. In GR soybean high concentrations of 
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glyphosate were detected (Bøhn et al., 2014) reaching up to 100 mg kg
-1 

(Biotech, 2013).
 

Reports are confirming the presence of glyphosate in groundwater, human and animal 

urine, human breast milk, and farmed animal meat (Krüger et al., 2014, 2013; Honeycutt 

and Rowlands, 2014; Borggaard and Gimsing, 2008; Niemann et al., 2015). The ingestion 

of lowest concentrations (0.1 mg mL
-1

) (Krüger et al., 2013) of glyphosate can disturb the 

normal gut bacterial several studies raised concerns about the effects of glyphosate on gut 

microbiota (Ackermann et al., 2015; Shehata et al., 2013). In 2014, Krüger et al. detected 

Glyphosate residues in malformed euthanized one-day-old Danish piglets and suspected 

correlation to glyphosate. 

There are different views about a potential carcinogenicity of glyphosate and/or its 

formulations. In 1985, the United States Environmental Protection Agency (U.S EPA, 

1985) studied the effect of glyphosate on the tumor in mice. They concluded glyphosate 

as possibly carcinogenic to humans and assigned Group C. In 1991, they re-evaluated the 

study and shifted it to Group E, which indicates none- carcinogenic in humans (IARC, 

2015). Similarly, the Joint Meeting on Pesticide Residues, sponsored by the Food and 

Agriculture Organization of the United Nations and the World Health Organization 

(JMPR, Geneva, 2006) and then the United States Environmental Protection Agency 

(U.S. EPA, 2013) also declared that glyphosate was unlikely to be carcinogenic to 

humans. In 2014 on behalf of the European Union, the German Federal Institute for Risk 

Assessment reviewed all toxicological studies of glyphosate in animals and humans. They 

concluded the absence of carcinogenic or mutagenic properties of glyphosate (BRf, 2015). 

Contradictory, in 2015, on behalf of World Health Organization (WHO), International 

Agency for Research on Cancer investigated and found evidence of carcinogenic 

properties of glyphosate in animals. They declared glyphosate as “probably carcinogenic 

to humans.” It was categorized in Group 2A. This category is used for pesticides showing 

sufficient evidence of carcinogenicity in animals but limited evidence in humans (non-

Hodgkin lymphoma) (Guyton et al., 2015; IARC, 2015). In a recent study, Chang and 

Delzell (2016) reported the absence of a relationship between glyphosate exposure and 

risk of cancer. The exact mechanism of the genotoxic effects of glyphosate formulations 

is unknown (Yadav et al., 2013). 
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The European Commission announced in 2016 an extension of the current approval of 

glyphosate for a limited period. The final decision about the future of glyphosate is 

subjected to further findings of the European Chemical Agency. However, this current 

extension contains three recommendations, which include a ban on toxic co-formulations 

of glyphosate-based products called POE-tallowamine, a minimization in the use of 

glyphosate in public parks, public playgrounds, and gardens and a minimization the use of 

glyphosate to speed up the harvest.  

1.5.5 Aquatic Ecosystem 

Glyphosate may reach to aquatic systems wind-driven or through the accidental drift of 

the herbicide spray, as suspended particulate matter or through surface runoff (Feng et al., 

1990). Glyphosate and AMPA were amongst the first major pollutants of surface waters 

(IFEN, 2006). In the mid-1990s, glyphosate was listed among pesticides, which were of 

potential concern in surface water contamination in the Mediterranean region of Europe 

(Barcelo, 1997). In two tributaries of river Ruhr in North-Rhine-Westphalia, Germany, 

glyphosate, and AMPA were found in concentration up to 590 ng L
-l
 (Skark et al., 1998). 

In Norway, glyphosate and AMPA were detected in 54% of tested water samples 

(Ludvigsen and Lode, 2001a). Similarly, in 2002 in the United States and Midwest, 

glyphosate was detected in 35 to 40% surface water samples with a maximum 

concentration of 8.7 µg L
-l
 and AMPA in 53 to 83% of the samples with a maximum 

concentration of 3.6 µg L
-l
 (Battaglin et al., 2005). In Italy, the concentrations of 

glyphosate and AMPA in surface water exceeded the 0.1 mg L
-1

, which is the European 

maximum threshold (Europaeu, 2013). Worldwide glyphosate represents the most 

detected herbicide residues in freshwater ecosystems, of which AMPA is represented 

most in France (Villeneuve et al., 2011). There are reports of significant off-target 

displacements of glyphosate, functional and structural changes in the freshwater biota, 

consistent with the decrease in water quality (Pérez et al., 2007; Vera et al., 2010). 

Glyphosate is toxic to microalgae and other aquatic microorganisms (Ma et al., 2003). 
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1.5.6 Microorganisms 

Several studies have noted variable effects of glyphosate on soil microbial community 

function (Bünemann et al., 2006; Duke et al., 2012; Soil Association, 2016; Nguyen et 

al., 2016). Some reported no significant (Rosenbaum et al., 2014) or even positive impact 

of glyphosate on microbial communities (Araújo et al., 2003). In contrast, reports 

confirmed mid-range concentrations of glyphosate (10-100 mg kg
-1

) (Nguyen et al., 2016) 

could suppress soil microbial biomass (Andréa et al., 2003; Lancaster et al., 2010). These 

effects can be temporary (Zabaloy et al., 2008; Nye et al., 2014) due to changes in 

chemical bioavailability with aging, fluctuations in environmental (Brock et al., 2008). 

Busse et al. (2001) found contradictions in results of in vitro and field study due to rapid 

binding of glyphosate with soil colloids. In a recent meta-analysis, Nguyen et al., (2016) 

could not confirm that glyphosate has a consistently positive or adverse impact on soil 

microbial communities. They reported that the impact of glyphosate on microbial 

communities depends on the time of incubation, a dose of glyphosate applied and soil 

characteristics. Therefore, they concluded that the toxicity or safety of glyphosate to the 

whole soil microbial biomass and activity should not be generalized. It should be 

qualified with details of the conditions under which glyphosate is applied.    

1.6 Aim of the study 

In no-tillage farming in Southwest Germany, intensified problems had been observed in 

the recent years. The problems were apparent mainly in winter wheat/oilseed rape  

cropping systems. These plant damages featured growth depressions, chlorosis, necrosis, 

and reduced formation of fine roots. The damage symptoms could be partly assigned to 

short waiting times after weed control with a total herbicide like glyphosate before sowing 

the subsequent crop. Under unfavorable conditions, this can entail contamination with 

glyphosate from root and plant residues of the declining weed population and can promote 

the development of pathogens within the dying weeds (green bridge) (Smiley et al., 1992, 

Neumann et al., 2006; Tesfamariam et al., 2009; Bott, 2010).   

However, observations on adjacent field plots (Figure 5), which had been managed for 

different periods with no-tillage, suggested that, besides the described short-term waiting 
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time effects, obviously additionally long-term effects were responsible for the occurrence 

of damage symptoms. The cause for these long-term effects was unknown. By contrast, to 

the short-term waiting time effects, which were usually appearing in autumn shortly after 

emergence, the long-term effects with similar damage symptoms were characteristic for 

the beginning of the growth period in early spring. The effects have repeatedly been- 

observed with increasing frequency in different years on different field sites, both, in 

winter wheat and winter rape associated with yield losses of 30% and more. An 

examination of the underlying factors was therefore of great practical interest for the 

further development and improvement of no-tillage farming. In preliminary trials, it was 

possible to reproduce the damage symptoms under laboratory conditions (Figure 6). This 

was of substantial significance for a causal analysis of the underlying mechanisms under 

controlled conditions. 

 

Figure 5: Spring damage in closely neighbored winter wheat plots with long-term no-tillage 

history, 2008 (Hirrlingen, Tübingen).  
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Figure 6: Reproduction of damage effects in winter wheat in soils with long-term no-tillage 

cropping history in pot experiments under controlled environmental conditions. 

Therefore, the objectives of this study focused on (i) the identification of causes for the 

observed damage symptoms and (ii) initiating the exploration of potential counteractive 

measures using experiments under laboratory and field conditions. Based on these 

objectives, three working hypotheses were formulated. 
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Hypothesis I 

The damage effects have a biotic provenience by the promotion of pathogens with low 

host specificity. 

Hypothesis II 

The damage effects have an abiotic provenience caused by toxic impacts of allelopathic 

compounds or herbicide residues in soil as a consequence of long-time herbicide 

application. 

Hypothesis III 

Soil supplementations with plant growth-promoting microorganisms with root growth 

stimulating properties or adsorbents for toxic organic compounds are capable of 

alleviating plant damages.  
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2 Material and Methods 

2.1 Experiments in soil culture 

Soil samples were collected from selected no-tillage field sites with neighbored plots 

characterized by a different history of no or reduced tillage farming: (i) long-term 8-15 

years (LT); (ii) short-term 1-5 years (ST).  

2.2 Sampling of field soils 

Samples were collected yearly during spring (April) and autumn (November/December) 

from the field sites located in Southwest Germany in the administrative district Tübingen.  

 

Figure 7: Location of no-tillage field sites used for soil sampling in Southwest Germany, 

administrative district Tübingen (Google Maps). 
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Sampling for pot experiments was conducted in: (i) Windelsheim, with paired plots at the 

local subdistricts Remmingsheimer Weg (Rem) and Sülcher Wegle (SW); and (ii) in 

Hirrlingen, with paired plots at Schwarze Länder (SL), Gassäcker (HirG) and Hirrlingen 

Friedhof (HirF) (Figure 7, Table 6). Pooled samples of topsoil (0-15 cm) were collected 

from various parts of long-term (LT) and short-term (ST) no-tillage plots with each 8-12 

sampling points per plot.  

Table 6: Location and management of no-tillage field sites in the local sub districts used for soil 

sampling. *Locations further investigated in the study. GL= Conversion from grassland 

Local subdistrict No-tillage 

management 

Cadastral 

unit 

No-tillage 

cultivation period  

Hirrlingen 

*Gassäcker 

*Gassäcker 

 

*Schwarze Länder 

*Schwarze Länder 

 

*Friedhof 

*Friedhof 

 

Beim Steinbruch 

Beim Steinbruch 

 

Eichenberg 

Eichenberg 

 

Wendelsheim 

*Remmingsheimer Weg 

*Remmingsheimer Weg 

 

*Sülcher Wegle 

*Sülcher Wegle 

 

Long-term 

Short-term 

 

Long-term 

Short-term 

 

Long-term 

Short-term 

 

Long-term 

Short-term 

 

Long-term 

Short-term 

 

 

Long-term 

Short-term 

 

Long-term 

Short-term 

 

1431 

1430 

 

1358 

1359/60 

 

304, 300 

303 

 

493, 495 

494 

 

1058, 1054-56 

1057 

 

 

1533-1536 

1537 

 

3237/1-3241 

3247-3259 

 

 

1992 

2010 GL 

 

1992 

2008 GL 

 

1999 

2006 

 

1992 

2008 

 

1992 

2008 

 

 

1998 

2010 

 

 1998 

 2005 
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2.3 Soil storage and preparation 

Fresh soil samples were stored at 2 
o
C - 8 °C in darkness. For setup of the pot 

experiments, they were further homogenized and sieved 2 mm mesh size to break soil 

aggregates and Remove crop residues.  

2.4 Soil analysis 

Determination of nutrient status, microbial activity, and herbicide residues. 

2.4.1 Soil chemistry 

 Analyzed by the certified laboratory of the LA Chemie, University of Hohenheim, 

Stuttgart, Germany. Macronutrients, such as phosphorus (P) and potassium (K) were 

measured by spectrophotometry (Gericke and Kurmies, 1952) and electro-ultrafiltration 

(EUF) after calcium-acetate-lactate (CAL) extraction (Schüller, 1969). Magnesium (Mg) 

was determined in 0.0125 M CaCl2 extracts. The micronutrients Iron (Fe), manganese 

(Mn) and zinc (Zn) were measured by atomic absorption spectrometry after calcium 

chloride/ DPTA extraction (VDLUFA, 2004). Soil pH was measured in 0.01 M CaCl2, 

and the carbon content was determined by elemental analysis.  

2.4.2 Soil respiration 

Microbial respiration in soil was measured during seven days, using an automated 

“Respicond” system (Type Company, Town, State) according to (Nordgren, 1988). 

Samples of 20 g fresh soil from autumn sampling stored at 2 °C (see  2.1,  2.2) were 

adjusted to 20 % (w/w) soil moisture before analysis. The evolution of CO2 originating 

from soil respiration in sample jars was measured by CO2 capturing in KOH (0.3 M) 

traps. This results in a decrease of the conductance in the hydroxide solution, which is 

measured with platinum electrodes in each incubation vessel. The conductometer signals 

were digitalized via a converter attached to a microcomputer, which then calculated CO2 

evolution and evolution rate.  
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2.4.3 Herbicide residues 

Residues of more frequently applied herbicides such as glyphosate, the glyphosate 

metabolite AMPA, pendimethalin and propyzamide were measured from freshly collected 

pooled soil samples (500 g, see  2.1,  2.2) by the certified lab of the Agricultural 

Technology Center (LTZ) Augustenberg, Karlsruhe, Germany. For determination of 

water-soluble residues of glyphosate and AMPA, water extracts (100 g L
-1

 demineralized 

water) were prepared from fresh soil samples adjusted to a moisture level 20% (w/w). 

After sedimentation of the solid soil fraction, the supernatant was cleared by filtration 

(Whatman GF/D glass-fiber filters and Blue ribbon filters, Macchery and Nagel, Düren, 

Germany) and subsequently evaporated to dryness using a rotary evaporator and a speed-

vac concentrator. The soluble herbicide fraction was analyzed in the dried residue of the 

supernatants, and the concentration in the soil solution was calculated back to a soil 

moisture level of 20 % (w/w). 

2.5 Soil sterilization  

Freshly collected soil samples (see  2.1,  2.2) were exposed to gamma ray sterilization 

(26.2 kGy) in in 2.5 kg plastic bags (BBF irradiation service, Kernen, Germany). 

2.6 Plant culture 

Plant culture was performed in pot experiments with two crops under controlled 

conditions in a growth chamber, adjusted to a 16 hours light period, a 25° C / 20° C 

day/night temperature regime with 55% - 60% air humidity and light intensity of 

300 μmol m
-2

s
-1

. 

2.6.1 Test plants 

Investigated crops comprised winter wheat (Triticum aestivum cv. Isengrain), glyphosate-

resistant (GR) soybean (Glycine max cv. BSR Valiosa RR) and it’s near isogenic, 

parental, non-resistant line Glycine max L. cv. BR16 Conquista (Bott et al., 2008). 
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2.6.2 Pot experiments on LT and ST no-tillage soils 

 Experiments were conducted in plastic pots (10 x 11 cm top radius, 7 cm bottom radius) 

filled with, 500 g of freshly sieved soil (see  2.2). Soil moisture was adjusted to 70% of the 

maximum water-holding capacity. The soil was not fertilized to keep it similar to field 

conditions. In wheat and soybean experiments, 20 and 10 seeds, respectively, were sown 

at a depth of 0.5-1.0 cm. The soil surface was leveled after sowing and subsequently 

covered with a layer of fine quartz sand to reduce mechanical disturbance during watering 

and evaporation. The final weight of each pot was recorded, and daily replacement of 

water losses was performed gravimetrically with distilled water. 

2.6.3 Soil amendments with biochar 

A pyrolysis biochar produced from a mixed woody substrate obtained from landscape 

conservation work (Pyreg GmbH, Doerth, Germany; Holweg, 2011) was used for the 

experiments. Biochar was mixed into the soil in pot experiments (see  2.6.2) at a rate of 

5% (v/v).  
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Table 7: Chemical composition (A) and appearance (B) of the biochar employed for the 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6.4 Detoxification of glyphosate by biochar amendments 

Four pot experiments were conducted to test the effect, concentration-dependency and 

application methods of biochar in the growth substrate on glyphosate toxicity to winter 

wheat. To induce glyphosate toxicity, the herbicide was applied as Roundup Ultramax
®
 at 

a rate 6 L ha
-1

 as calculated by Bott et al. (2011) and mixed into the substrates followed 

by biochar applications in different concentrations (v/v). Soil samples were collected from 

Hirrlingen, Gassäcker ( 2.1, Table 6). Sowing was performed one day after glyphosate 

application with 400 g substrate and 10 seeds per pot.  

Total-N  

 

 

[% DM ] 

 

 

0.58 

P 0.32 

K 0.89 

Mg 0.45 

CaO 2.77 

S 0.03 

Organic matter  52.32 

Pb  

 

mg kg-1 DM 

  

8.02 

Cd 0.09 

Cu 13.56 

Zn 83.91 

Hg 0.00 

Cr 22.57 

Ni 34.54 

 Dry Matter % 69.36 

pH                                           8.32 

Density 4.34 mL g-1 

A 

B 
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A. Glyphosate was applied to soil and after one day, different doses of biochar (0%, 

5%, 10%, 20% v/v) were added and mixed homogeneously.  

B. Since glyphosate soil contamination under field conditions is usually restricted to 

the uppermost soil layers (Aletto et al., 2010), glyphosate and biochar were applied 

only to upper 5 cm of the topsoil representing approximately 50% of the total soil 

volume (200 g). The Remaining 200 g untreated soil was filled into the pots as a 5 

cm bottom layer. Treatments comprised: i) Control (untreated soil), ii) Gly, iii) 

Gly+Biochar 5%, iv) Gly+Biochar 10%, v) Gly+Biochar 20% (v/v). 

C. As a worst-case scenario, a 1:1 peat culture-substrate / quartz sand mixture TKS
®
2 

(Floragard Vertriebs GmbH, Oldenburg, Germany) representing a growth medium 

with minimal glyphosate inactivation by adsorption was used for an experiment 

using cylindrical pots with a size of 18 x 9.5 cm. Glyphosate (Roundup Ultramax
®

 

8 L ha
-1

) and biochar (0%, 1% and 5% w/v) were applied to a 200 g top-layer of 

the substrate (see  2.6.4 B), while the bottom of the culture vessels was filled with 

untreated substrate followed by sowing of 10 seeds of winter weed per pot.   

Table 8: Nutrients in TKS® Floragard Vertriebs GmbH, Oldenbur, Germany. 

pH Salinity (g L-1) N (mg L-1) P2O5 (mg L-1) K2O (mg L-1) Structure 

5.6 1.6 290 160 340 Medium coarse 

2.6.5 Application of microbial bio-effectors 

To test mitigation potential of plant damage on soils with long-term no-tillage 

management by inoculation with plant growth-promoting microorganisms, one pot 

experiment and three field experiments were conducted. Commercial bioeffectors 

containing microbial species with a proven potential for root growth promotion and 

glyphosate degradation according to literature reports were selected.    

i) Proradix
 ®

 (PRO, Sourcon Padena, Tübingen, Germany) contains a formulation of the 

bacterial strain Pseudomonas DMSZ 13134.  
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ii) Trichostar
®
 (TRI, Gerlach Natürliche Düngemittel, Hannover, Germany) contains a 

spore formulation of the fungus Trichoderma harzianum.  

iii) FZB 42
®
, RhizoVital

®
 (RHI, ABITEP, Berlin Germany) contains an endospore 

formulation of the bacterium Bacillus amyloliquefaciens. In the pot experiment (see 

 2.6.2), bio-fertilizers were applied by fertigation according to the recommendations of the 

manufacturer's soil samples collected from the LT and ST no-tillage field sites at 

Hirrlingen, Friedhof (see  2.1, Table 6). For the field experiments, LT no-tillage sites in 

Hirrlingen, (Schwarze Länder), and Wendelsheim (Sülcher Wegle, Remmingsheimer 

Weg, see  2.1, Table 6) were selected. The microbial bio-effectors and distilled water 

controls were applied by fertigation according to manufacturer’s instructions to 1 m
2
 plots 

selected for intense plant damage with three replicates per treatment followed by visual 

scorings of plant damage after four weeks. 

2.7 Plant analysis 

Data on plant growth, such as seedling emergence plant height, and chlorosis scoring 

were recorded at different growth stages. Destructive determinations of root and shoot 

biomass, root length, mineral nutrient status, and metabolites were conducted at final 

harvest. 

2.7.1 Seedling emergence 

Numbers of emerged seedlings were counted at equal time intervals during the 

germination period, and emergence percentage was calculated relative to the number of 

initially sown seeds.  

2.7.2 Plant height 

Plant height was measured from the shoot base to the top of the longest leaf (wheat) and 

to the shoot vegetation point (soybean) with the help of a measuring tape. 
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2.7.3 Root and shoot biomass:  

Depending on plant growth and expression of symptoms, plants were harvested after a 

growth period of two to four weeks. Shoots were cut at the stem base, fresh weight was 

recorded and the plant material was oven-dried at 60 °C for dry weight determination and 

analysis of mineral nutrients. Root systems were washed out of the soil, gently dried 

between layers of paper towels to remove excess moisture and fresh weight was recorded. 

From the total root material of each pot, a representative sample of 1 g fresh weight was 

stored in 20% ethanol for analysis of root morphology. The Remaining parts of the root 

system were oven-dried at 60 °C for dry weight determination.  

2.7.4 Root morphology  

Root samples were spread and separated carefully in the water on a transparent plastic 

tray to exclude root overlapping. After that, the root samples were digitalized by scanning 

(Epson Perfection V700 Photo, Epson, USA). Scanner settings: 400 dpi, 8 bit gray scale, 

image format: jpeg. The digitalized images were analyzed for, total root length, average 

root diameter and root length in different diameter classes using the root analysis software 

WinRHIZO
TM

 (Regent Instruments Inc. Quebec, Canada).  

2.7.5 Chlorosis scoring 

Green values were recorded from the youngest fully developed leaves with a SPAD-50 

plus meter Konica Minolta, Tokyo, Japan). For each pot, 30 measurements were taken 

and the average was recorded. 

2.7.6 Mineral analysis of shoot tissue 

Mineral analysis of shoot tissues was performed according to Tesfamariam et al. (2009). 

Freshly harvested shoots were oven-dried at 60 
o
C and then homogenized in a mechanical 

grinder (MM301, Retsch, 2005, Haan, Germany). The fine powder was transferred to a 

muffle furnace at 500 
o
C for 4 hours for ashing. After cooling, the samples were extracted 

with 2 mL of 3.4 M HNO3 (v/v) and then heated again until dryness. They were further 

dissolved in 2 mL of 4 M HCl, afterward diluted 10 fold with hot distilled water and 
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boiled for 2 minutes. For measurement of Fe and Mn, 0.1 mL Cs/La buffer was added to 

4.9 mL of ash solution. For P measurement, according to Gericke and Kurmies, (1952), 3 

mL color reagent, molybdate-vandate-solution, was added to a sample of the ash solution. 

Mn, Fe, Zn and Cu were determined by atomic absorption spectrometry (UNICAM 939, 

Offenbach / Main, Germany). The concentration of P was measured by spectrophotometry 

(Spektralphotometer, U-3300, Hitachi, 1994, Tokyo, Japan), Ca and K with flame 

photometry (ELEX 6361, Eppendorf, 2001, Hamburg, Germany).     

2.7.7 Shikimate analysis 

Shikimate analysis was performed according to Tesfamariam et al. (2009). Root samples 

were frozen in liquid nitrogen right after harvest. Root material was homogenized using 

mortar and pestle with the addition of orthophosphoric acid (1 mL 100 mg
-1

 fresh weight). 

Subsequently, the samples were centrifuged for 5 min at 14,000 × g. The supernatant was 

diluted with 2.5 mM H2SO4 and subjected to HPLC analysis (HPLC System SIL-20AC, 

Shimadzu, Portland, Oregon, USA). Separation was performed by ion exclusion 

chromatography using an Aminex 87H column (Bio-Rad, Richmond, CA, USA), 

designed for organic acid analysis. A sample volume of 20 µL was injected into the 

isocratic flow (0.5 mL min
-1

) of the eluent (2.5 mM H2SO4) at 40 °C.  Organic acids were 

measured by direct UV detection at 210 nm. Shikimic acid was identified and quantified 

by comparison of retention time and absorption characteristics with a known standard.  

2.8 Experiments in hydroponics 

Two hydroponic experiments were performed to test the plant effects of long-term root-

exposure to trace concentrations of glyphosate and AMPA detected in the water-soluble 

phase of soil extracts. 

2.8.1 Plant culture 

Seeds of winter wheat were pre-germinated in rolls made from sheets of filter paper 

(58×58 cm, MN710, Macherey and Nagel, Düren, Germany), folded lengthwise two times 

to obtain a 4-layer paper strip. The strips were soaked with 60 mL of distilled water, and 
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ten seeds were placed at a distance of 2 cm along the upper edge of the strip, which was 

subsequently folded, forming a paper roll with the seeds inside. The paper rolls were 

placed in upright position into a plastic germination box (30×20×10 cm) and incubated at 

25 °C in darkness for 4 days, followed by 24 h incubation in a climate chamber with a 

16h light period (300 μmol m
2
 s

-1
), 60% relative humidity and 24°C/18°C day/night 

temperature regime. After that, the seedlings were transferred to hydroponic culture, 

performed in black 2.5 L plastic pots. Each ten seedlings were fixed at the shoot base with 

foam strips into perforated PVC lids, covering the plastic pots filled with nutrient 

solution. The nutrient solution modified after Hoagland and Arnon (1950): 2000 μM 

Ca(NO3)2, 700 μM K2SO4, 500 μM MgSO4, 250 μM KH2PO4, 100 μM KCl, 20 μM Fe-

EDTA, 1 μM H3BO3, 0.5 μM MnSO4 x H2O , 0.5 μM ZnSO4 x 7 H2O, 0.2 μM CuSO4 x 5 

H2O, 0.01 μM (NH4)Mo7O24 x 4H2O. The nutrient solution was replaced every interval of 

1-2 day and continuously aerated with pipes connected to an aquarium pump. 

2.8.2 Herbicide treatments 

Both, glyphosate its major soil metabolite AMPA were applied in the concentration range 

(1.5-5 µg L
-1

) detected in the soil solution of long-term no-tillage soils (see  2.4.3).  

The cumulative effects of applications daily applications (untreated control, glyphosate, 

AMPA, glyphosate+AMPA) on winter wheat were assessed after a culture period of four 

weeks. An additional time course experiment was conducted with sequential harvests at 

21, 28, 35 and 41 days after sowing (DAS). To counteract effects of glyphosate/AMPA 

inactivation by complexation with the high concentrations of cationic nutrients in the 

growth medium, nutrient solution was supplied at intervals of three days, while water was 

the culture medium for the remaining time (Table 9). 
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Table 9: Weekly plan for application of herbicides, nutrient solution and distilled water in the 

hydroponic culture of winter wheat. 

Day 1 Day2 Day3 Day4 Day5 Day6 Day7 

Herbicide Herbicide Herbicide Herbicide Herbicide Herbicide Herbicide 

Nutrient 

Solution 

Distilled 

Water 

Distilled 

Water 

Nutrient 

Solution 

Distilled 

Water 

Distilled 

Water 

Nutrient 

Solution 

       

2.8.3 Monitoring of plant growth 

After harvest, plants were analyzed as described in section  2.7.  

2.8.4 Root vitality staining (TTC) 

Staining was performed according to Chen et al. (2006) using 2,3,5-triphenyl tetrazolium 

chloride (TTC), which is reduced by dehydrogenase activities forming a red-coloured 

agent and formazan dye as an indicator for metabolic activity. For staining, roots washed 

for 10 minutes in distilled water, were incubated in darkness for 24 h in TTC solution 

(0.08% TTC in 0.05 M sodium phosphate buffer, pH 7.4). After staining, fresh weight 

was recorded and formazan was extracted from root segments located (0-1 cm behind the 

root tip and 1-3 cm behind the root tip. Extraction was performed with 10 mL of 95% 

(v/v) ethanol followed by incubation in a water bath at 80 °C for 20 min. After cooling, 

the formazan concentration was recorded spectrophotometrically at 485 nm. 
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2.9 Transcriptome analysis of wheat roots exposed to trace 

concentrations of glyphosate and AMPA  

Winter wheat (Triticum aestivum cv. Isengrain) was grown in hydroponics (see  2.8.1) 

with the addition of 5 µg L
-1

 glyphosate (G), 2.5 µg L
-1

 AMPA (A), a combination of both 

and a control treatment, free of the herbicides (see  2.2). 

2.9.1 Harvest of root tissue 

At 19 DAS, the complete root system of each plant was harvested with a razor blade, 

shortly dried between paper towels to remove excess moisture, weighed, and quickly 

frozen in liquid nitrogen. From each pot, root samples were pooled and stored at -80 °C 

until further processing. 

2.9.2 RNA isolation 

A representative sample of frozen root tissue of three replicates was ground in liquid 

nitrogen. Total root RNA was extracted using the RNeasy
®
 Mini Kit-Qiagen (Qiagen, 

Hilden, Germany). The extracted total RNA was tested spectrophotometrically for quality 

and quantity with the Nanodrop 2000/200c system (Thermo Fisher Scientific Inc. v 1.4.2). 

The RNA integrity was determined by 2100 Bioanalyzer instruments (Agilent 

Technologies, USA). 

2.9.3 RNA-Seq analysis 

Total RNA was processed for conversion to cDNA and library creation using the TruSeq 

RNA Sample Preparation Kit v2 (illumina
®

 Inc. USA). The obtained cDNA was further 

processed for libraries preparation, and the prepared RNA libraries were paired-end 

sequenced (100x) using the illumina
®
 HiScanSQ system. 

2.9.4 Data processing 

The initial data output was 14.13 Gb (giga bases) in AMPA (A), 13.09 Gb in Glyphosate 

(G), 6.42 Gb in Glyphosate+AMPA (GA) and 8.02 Gb in control. Further, these sequence 
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data were processed with RobiNa (Lohse et al., 2012). After filtering and alignment of the 

data, the data volume reduced in different treatments as 2.94 Gb in A, 1.31 Gb in G, 1.3 

Gb in GA and 1.64 Gb in control. The processed data were used for determination of fold 

change values and relative read numbers using DESeq (Version 1.8.3) (Anders and 

Huber, 2010). The public available wheat transcriptome database from IWGSP1.23 was 

employed for mapping. The reference transcriptome was annotated via Mercator 

(http://mapman.gabipd.org/web/guest/mercator) and distributed into plant functional 

categories (bins) according to Mapman (Usadel et al., 2009). Metabolic pathways were 

visualized with Mapman 2.5.IR2 and its integrated module Pageman. In Pageman, 

significant differences were determined using the Wilcoxon Rank Sum test and the 

Benjamini-Hochberg procedure (PageMan Z-score below -1.96 or above 1.96, MapMan 

probability below 0.05). Each metabolic pathway was presented as a bin. The total 

changes in bins were compared in all treatments using color codes. 

2.10  Statistics 

All experiments were performed with four replicates using completely randomized 

designs. Statistical analysis was conducted using the Sigma Plot
®

 12 statistics software 

package (Sigma plot, Systat Software Inc. U.S.A) and SPSS
®

 by IBM. 
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3 Results 

3.1 Limited performance of winter wheat as affected by long-term no-

tillage farming   

3.1.1 History 

The investigated area is located in the valley of the “Neckar” river and the mountain 

region “Schwäbische Alb” approx. 10-15 km South of Tübingen, 340-380 m above sea 

level (            Figure 8,            Figure 9). Typical soil types in the region are heavy clay-

loam soils partially covered with loess topsoil layers. The average annual temperature is 9 

°C with average precipitation of 600 mm, frequently associated with drought periods 

during spring and early summer.  

 

            Figure 8: Satellite map of the investigated field site Wendelsheim (Google Maps). 
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           Figure 9: Satellite map of the investigated field sites Hirrlingen (Google Maps). 

Some of the investigated field sites have a long-term no-tillage history (LT) of 

meanwhile 10-20 years. During the investigated period, (2010-2012) winter wheat (75 %) 

and winter rape (25%) were the predominant crops, even with several years of winter 

wheat mono cropping for economic reasons in some cases. For historical reasons, very 

small plot sizes of 0.15 ha and less were quite abundant in the investigated area, forcing 

the farmers to increase their cropping areas by exchanging field sites. In many cases, this 

created heterogeneous fields consisting of plots with 10-12 years no-tillage history (LT) 

directly neighbored by plots with only 2-3 years short-term (ST) no-tillage management. 

In 2008, limited plant development in early spring on LT plots as compared to adjacent 

ST plots was observed for the first time in winter wheat (Figure 10) and later in winter 

rape also. 
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Figure 10: Arial view of plant growth on the long-term (LT) no-tillage field site “Schwarze 

Länder” after 11 years and neighboring plots with short-term no-tillage (2 years. ST) 

(Courtesy; Dr. K. Weiss, Tübingen). 

3.1.2 Symptoms of plant damage observed on LT no-tillage field sites 

In the LT no-tillage plots, problems were repeatedly observed on different field sites 

between 2008 and 2012 (Figure 11). Frequently, plants germinated and developed well 

after sowing in autumn, even without strong symptoms of frost damage during the winter 

period. However, symptoms of stunted growth, chlorosis and dying back selectively 

appeared in the LT no-tillage plots during re-growth in early spring, while directly 

neighbored ST plots remained unaffected (Figure 11). 
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Figure 11: Repeated expression of winter wheat damage in spring on different no-tillage field 

sites in South West Germany with long-term (11-15 years) no-tillage cropping history. 

The closer examination of damage symptoms in LT plots revealed weak seedling 

development, stunted shoot growth with chlorosis and necrosis on older leaves, and 

strongly impaired root growth with extremely limited development particularly of fine 

roots (Figure 12). During further plant development, the weakest seedlings frequently 

died, and virus infections were particularly abundant in LT plots. 
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Figure 12: Habitus of winter wheat on the long-term (LT) no-tillage field site REM and root 

growth in ST and LT plots. 

3.2 Causal analysis of plant damage on long-term no-tillage field 

sites 

A major focus of the present study was the characterization of factors determining the 

observed symptoms of plant damage on the LT no-tillage field sites, by comparison with 

neighbored ST no-tillage plots without expression of plant damage.  

3.2.1 Soil fertility 

 Soil fertility is a major factor determining plant growth. In no-tillage farming, the 

duration of no-tillage can change nutrient availability and soil bulk density with impact 

on plant growth and development (Wilhelm et al., 1982).   

During the examination period, fertilization management on the respective field sites was 

mainly focused on the application of nitrogen fertilizers as calcium-ammonium-nitrate 

(CAN) in Hirrlingen and ammonium-urea solution in Wendelsheim. The available soil P 

(phosphorus) status (CAL extraction) was characterized as sufficient, and therefore, no P 

LT no-tillage 

Filed  

ST no-tillage LT no-tillage 
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application was performed during the examination period. In Hirrlingen, additionally, 

micronutrient fertilization was performed (2 x 8 kg ha
-1

 year
-1
) “Epso Combi Top” (K&S 

Kali GmbH, Kassel, Germany) for winter wheat and “Epso Micro Top” (K&S Kali 

GmbH, Kassel, Germany) for oilseed rape. 

The commonly observed damage symptoms of impaired root growth stunted plant 

growth, chlorosis and necrosis may indicate potential deficiencies of other nutrients not 

applied as fertilizers: i.e., impaired root growth is typical for magnesium (Mg) or 

potassium (K) deficiency. Limitations of phosphorus (P) and zinc (Zn) can cause 

inhibition of shoot growth. Deficiencies of Mg and Manganese (Mn) can induce chlorosis 

of older leaves, and severe deficiency of K causes chlorosis and necrosis (Marschner’s, 

2012).  

To address the question whether damage symptoms on the LT field plots could be related 

to soil nutrient limitation, comparative soil analyses were performed on selected LT and 

ST no-tillage plots in the years when damage symptoms were observed (Table 10). 

However, no apparent nutrient deficiencies or toxicities were detectable in all 

investigated soils. While available P was usually higher in LT soils as compared with 

short-term soils, similar or lower levels were detected for the remaining nutrients in the 

LT soils but without a regular pattern for the investigated soil pairs.  

In addition, soil pH is a major factor determining the solubility of mineral nutrients and 

toxic elements. However, in all soils, the pH remained in a narrow range between 6.8 and 

7.1. As expected for LT no-tillage soils, the humus content in the topsoil layer was 

increased by 1-1.5 %.  

Taken together, the reported findings suggest that the observed damage symptoms could 

not be attributed to limited soil fertility of the LT no-tillage soils.   
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Table 10: Analysis of mineral nutrients, pH and humus in long-term (LT) and short-term (ST) no-tillage soils (see  2.4.1 for 

methodology) collected from the field sites Schwarze Länder (SL) 2008 & 2011 and Remmingsheimer Weg (REM) 2011. 

Phosphorus (P) and potassium (K) were extracted using the calcium-acetate-lactate (CAL) method. Magnesium (Mg) was 

measured in CaCl2 extracts. The micronutrients iron (Fe), manganese (Mn) and zinc (Zn) were measured after 

calciumchloride/DPTA extraction (CAT). Soil pH was measured in CaCl2 extracts, and humus percentage was determined by 

elemental analysis (EA). 

Soil Nutrients, 
pH& Humus  

               Year 2008              Year 2011 

Standard values 
Field Site SL Field Site SL Field Site REM 

LT 
no-tillage 

ST 
no-tillage 

LT 
no-tillage 

ST 
no-tillage 

LT 
no-tillage 

ST 
no-tillage 

Phosphorus  
(P2O5 mg 100 g-1) 

9.1 8.8 25.0 17.0 34.0 20.0 10-20 (in heavy soils) 1  
 

Elemental P  
(P2O5x0.4364) 
 

4.0 3.8 10.9 7.4 14.8 8.7 4.36 - 8.73 (in heavy soils) 1  
 

Potassium  
(K2O mg 100 g-1) 

46.0 33.0 44.0 48.0 49.0 52.0 21 - 30 (in heavy soils) 1  
 

Elemental Potassium (K2Ox0.8301) 38.2 27.4 36.5 39.8 40.7 43.2 17.43 - 24.90 (in heavy soils) 1  
 

Magnesium (mg 100 g-1) 
 

43.0 41.0 28.0 30.0 17.0 41.0 11 - 15 (in heavy soils) 1 

Iron (mg kg-1) 
 

66.2 94.6 59.9 66.6 30.4 67.9 Approx. 70 (in all soils) 2 

Manganese (mg kg-1) 
 

224.0 332.0 124 207 61.9 242 40 - 60 (with pH > 6,5) 3  

Zinc (mg kg-1) 
 

3.5 6.6 5.10 6.60 2.70 4.40 1 - 3 (in all soils) 3  

Soil organic carbon % 
 

2.4 2.0 5.16 4.11 5.45 4.04 1.3 - 2.7 (in heavy soils) 4 

pH (CaCl2) 
 

7.0 6.7 7.1 7.0 7.1 7.1 5.7 - 6.7 (Humus > 4%)4 

6.6 - 7.2 (Humus < 4%)4   
1
LTZ Augustenberg, 2011, 

2
Steiermark, 2016, 

3
Landwirtschaftskammer, 2008, 

4
LfL, 2012
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3.2.2 Soil structure 

One of the basic soil properties affected by tillage is the bulk density. Higher bulk density 

reduces soil porosity by changing the ratio of water-to-air capacity proportionally in favor 

of water capacity (Badalíkov  and Kň kal, 2000). Badalíkov  (2010) reported increased 

soil bulk density along with decreased total porosity as result of reduction in soil tillage. 

In winter wheat, root length and density as well as plant height and aboveground biomass 

was reduced with increase in soil density (Wilhelm et al., 1982), symptoms similarly 

observed in the present study. However, soil organic matter influences the extent of 

possible compaction and determines the moisture content at which maximum compaction 

occurs: with higher organic matter, there is less maximum compaction and a higher 

moisture requirement to cause maximum soil compaction (Lull, 1959). In most cases, 

according to the principle of conservation tillage, no-tillage systems soils are high in 

topsoil organic matter. Accordingly, also on the investigated LT field sites higher topsoil 

humus contents have been determined as compared to ST plots (Table 10). Moreover, 

activity of earthworms with a positive impact on soil structure is frequently enhanced in 

no-tillage systems (Kemper et al., 2011). 

However, as a striking observation, the symptoms of plant damage observed on LT field 

plots could be reproduced in pot experiments with homogenized and sieved soil samples 

(2 mm mesh size) taken from the respective field sites (Figure 13). Since no soil structure 

effects can be expected in homogenously sieved soils, these findings demonstrate that soil 

structure was obviously not a critical factor for the expression of damage symptoms.  
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Figure 13: Inhibition of wheat (cv. Isengrain) growth in pot experiments taken from different field 

sites with LT no-tillage history as compared with soils from neighboured ST plots.  

3.2.3 Symptoms of plant damage in pot culture 

3.2.3.1 Habitus 

Interestingly, plant damage on LT field plots in pot experiments was not only 

reproducible for the location of different field sites and the years when plant damage 

occurred (Figure 13), but also the variation in damage intensity on a specific LT plot was 

reflected in corresponding results in pot culture (Figure 14). In later stages of plant 

development, plants grown on LT soils in pot experiments also showed similar symptoms 

of necrosis in older leaves as observed under field conditions (Figure 15).        
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Figure 14: Variation in intensity of plant damage on long-term no-tillage field plots (Hirrlingen, 

Friedhof) under field conditions and in pot experiments conducted with the respective 

soils. 

Winter Wheat Hirrlingen 
2 Years no-tillage 

Winter Wheat Hirrlingen 
10 Years no-tillage 

Winter Wheat Hirrlingen 
10 Years no-tillage 
Severely Damaged 
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Figure 15: Necrosis and chlorosis of older leaves in winter wheat (cv. Isengrain) grown on the soil 

of a long-term no-tillage (LT) plot in Wendelsheim, Remmingsheimer Weg (REM) 

under field conditions (left) and in pot culture (right).  

3.2.3.2 Germination and seedling growth 

Germination (emergence) was not regularly affected in pot experiments with LT field 

soils (Figure 16). However, plant height (Figure 13) and shoot biomass (Figure 17) on LT 

soils was generally lower than on soils collected from ST plots. 

Field observation Pot culture 
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Figure 16: Germination percentages of winter wheat (cv. Isengrain) after 16 days growth in soil 

samples collected in spring from long-term and short-term no-tillage fields in different 

years. (1) Hirrlingen Friedhof (HirF) 2010 (2) Remmingsheimer Weg (REM) 2011 (3) 

Sülcher Wegle (SW) 2011 (4) Hirrlingen Gassäcker (HirG) 2012. Values are means of 4 

replicates ± SE. Means with different letters are significantly different. NS = not 

significant. (t- test, α = 0.05). 
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Figure 17: Shoot biomass production per plant in winter wheat (cv. Isengrain) (1) after 21 days of 

growth on soil collected from Hirrlingen Friedhof (HirF) 2010 (2) after 18 days of 

growth on soil collected from Remmingsheimer Weg (REM) 2011 and (3) after 21 days 

of growth on soil collected from Hirrlingen Gassäcker (HirG) 2012. Values are means 

of 4 replicates ± SE. Means with different letters are significantly different (t- test, α = 

0.05). 

3.2.3.3 Root growth and morphology 

Similar to the field observations (Figure 12) root growth was particularly affected on soils 

from LT field plots. While average root diameter (Figure 18) and frequently also root 

biomass was increased in soils from LT field sites, but total root length was drastically 

reduced by 40-60 % (Figure 19). This finding indicates a higher proportion of fine roots 

in plants grown on the soil from LT plots.  
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Figure 18: Average root diameter of winter wheat (cv. Isengrain) grown in pot culture on soils 

collected from two field sites (1) after 21 days of growth on soil collected from 

Hirrlingen Friedhof (HirF) 2010 (2) after 18 days of growth on soil collected from 

Remmingsheimer Weg (REM) 2011 and (3) after 21 days of growth on soil collected 

from Hirrlingen Gassäcker (HirG) 2012 with long-term (LT) and short-term (ST) no-

tillage history. Values are means of 4 replicates ± SE. Means with different letters are 

significantly different (t- test, α = 0.05). 
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Figure 19: Root length of winter wheat (cv. Isengrain) grown in pot culture on soils collected 

from two field sites (1) after 21 days of growth on soil collected from Hirrlingen 

Friedhof (HirF) 2010 (2) after 18 days of growth on soil collected from 

Remmingsheimer Weg (REM) 2011 and (3) after 21 days of growth on soil collected 

from Hirrlingen Gassäcker (HirG) 2012 with long-term (LT) and short-term (ST) no-

tillage history. Values are means of 4 replicates ± SE. Means with different letters are 

significantly different (t- test, α = 0.05).   

The negative impact of long-term no-tillage on fine root production was confirmed by 

analysis of different root diameter classes (Figure 20) showing a 30-50 % reduction of the 

finest root fraction but an increased contribution of thicker roots to the total root length on 

LT soils (Figure 20). 
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Figure 20: Root length distribution in different root diameter classes of winter wheat (cv. 

Isengrain) grown in pot culture on two field sites (Upper row) after 18 days of growth 

on soil collected from Remmingsheimer Weg (REM) 2011 and (Lower row) after 21 

days of growth on soil collected from Hirrlingen Gassäcker (HirG) 2012 with long-term 

(LT) and short-term (ST) no-tillage history. Values are means of 4 replicates ± SE. 

Values are means of 4 replicates ± SE. Means with different letters are significantly 

different. NS = not significant. (t- test, α = 0.05).  
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expression of adaptations for chemical nutrient mobilization (Neumann and Römheld, 

2002). Accordingly, improved P acquisition efficiency was found in wheat genotypes 

with high root length densities (Manske et al., 2000). However, even with the highest 

rooting densities, usually less than 20 % of the topsoil volume is exploitable by plant 

roots (Neumann and Römheld, 2002). Therefore, the acquisition of nutrients with low 

solubility is particularly affected by stress factors limiting root growth. Accordingly, in 

the present study, particularly P acquisition was limited in winter wheat plants grown on 

LT no-tillage soils (Figure 21) due to the massive reduction of fine root production 

(Figure 20). Although, as compared with ST soils, the available P levels in LT soils were 

even higher (Table 10). The P status of the plants grown on LT soils was in the deficiency 

range but sufficient for plants on ST soils (Figure 21). By contrast, no regular patterns 

were detectable for other nutrients (Table 11). 

Table 11: Nutrient status (based on shoot dry weight) of winter wheat (cv. Isengrain) grown in 

pot culture on two field sites: Hirrlingen, Friedhof (HirF) 2010 and Wendelsheim, 

Remmingsheimer Weg (REM) 2011 with long-term (LT) and short-term (ST) no-tillage 

history and the nutrient deficiency limit (Bergmann, 1988). Values are means of 4 

replicates ± SE. Means with different letters are indicating significant differences at α 

= 0.05% (t- test), NS = not significant.  

Nutrients Deficiency 

limit 

Hirrlingen, Friedhof 

2010  

LT no-tillage                 ST no-tillage 

Wendelsheim,Remmingsheimer Weg 

2011   

LT no-tillage              ST no-tillage 

P (mg g-1) 04 3.4±0.06 (B) 4.2±0.06 (A) 3.8±0.13 (B) 5.0±0.11 (A) 

K (mg g-1) 32 46.0±1.15 (B) 56.5±1.23 (A) 59.4±2.06 (B) 65.6±1.14 (A) 

Ca (mg g-1) 02 6.6±0.08 (B) 8.5±0.11 (A) 7.6±0.23 (A) 5.1±0.31 (B) 

Mg (mg g-1) 1.5 2.7±0.05 (A) 2.4±0.04 (B) 1.6±0.06 (NS) 1.7±0.05 (NS) 

Fe (mg kg-1) 25 240.3±77 (NS) 250.3±19 (NS) 125.9±27.6 (NS) 138.7±36.8 (NS) 

Mn (mg kg-1) 35 166.1±3.86 (A) 71.5±0.70 (B) 18.7±0.65 (A) 14.0±0.75 (B) 

Zn (mg g-1) 15 37.7±0.69 (NS) 37.2±0.55 (NS) 25.9±1.05 (NS) 26.3±0.61 (NS) 

Cu (mg kg-1) 05 10.2±0.24 (B) 13.2±0.41 (A) 18.7±0.65 (A) 14.0±0.75 (B) 
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Figure 21: Phosphorus status of winter wheat (cv. Isengrain) grown in pot culture on two field 

sites (Wendelsheim, (1) after 21 days of growth on soil collected from Hirrlingen 

Friedhof (HirF) 2010 and (2) after 18 days of growth on soil collected from 

Remmingsheimer Weg (REM) 2011, with long-term (LT) and short-term (ST) no-tillage 

history relative to the critical shoot P concentration for P deficiency (Bergmann, 

1988). Values are means of 4 replicates ± SE. Means with different letters are 

significantly different (t- test, α = 0.05). 

3.3 Plant pathogens as potential causes for plant damage on long-

term no-tillage soils  

A shift from conventional tillage to no-tillage influences various soil factors, such as 

moisture content, temperature, bulk density, organic matter distribution or physical 

structure of crop residues. These changes in soil properties can also affect the composition 

and activity of soil-microbial populations (Rothrock, 1992). Particularly in long-term no-

tillage systems, substantial alterations in root pathogen populations have been reported, 

including increased severity of Pythium and Rhizoctonia root rot or take-all disease 

(Bailey et al., 2000; Smiley et al., 2009). Under no-tillage, soil-borne pathogens surviving 

in previous year-crop residues can make diseases more problematic, and monoculture or 

late sowing with germination in wet and cool soils bears the risk of highest disease 

severity (Smiley et al., 2009).  
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In the present study, damage symptoms on long-term no-tillage plots were usually 

observed in early spring, providing ideal cold and wet weather conditions for the 

development of many root pathogens. High soil organic matter (Table 10) and in some 

cases even wheat monoculture are additional factors promoting the growth of pathogens. 

However, on aerial plant parts, classical symptoms of fungal (rust, mold, mildew, leaf 

spot,) or bacterial diseases (leaf spot, canker, blight) were not detectable, although, in 

some years, barley yellow dwarf virus infections have been identified in later spring. On 

the other hand, the observations of impaired fine root production and root thickening 

(Figure 12, Figure 18) are comparable to symptoms of Rhizoctonia or Pythium root rot 

(Smiley et al., 2009). Impaired root growth with a high visible fraction of course roots 

was comparable to pathogen attack. In winter wheat, Rhizoctonia root rot symptoms are 

stunted growth, root rot and delayed maturity. It is caused by Rhizoctonia solani AG-8. 

Disease severity increases with no-tillage and annually planting wheat or planting winter 

wheat too late. Similarly, Pythium root rot is caused by Pythium spp., which expresses its 

symptoms as seed rot, damping-off, stunting and delayed maturity and cool, wet soil, 

plant winter wheat annually and/or too late, can lead to highest disease severity (Smiley et 

al., 2009). Under no-tillage, surviving soil borne pathogens of the pervious year in crop 

residues make the disease more problematic. This result many plant pathogens increased 

to damaging levels. Fusarium spp. is major soil borne pathogen of wheat and Bailey et al. 

(2000) reported its higher incidence under no-tillage, though root diseases severity was 

low in no-tillage as compared to conventional tillage. Stunt nematodes are also parasitic 

nematodes, infecting and feeding on roots of cereals, grasses and other plant species. 

They feed on epidermal cells and root hairs, mostly in the region of cell elongation. This 

can cause similar symptoms of leaf chlorosis (Figure 15), root thickening and inhibition 

of root elongation (Figure 12, Figure 19) (Smiley, 2006).  

3.3.1 Effect of soil sterilization 

Due to the reproducibility of plant damage symptoms, observed on long-term no-tillage 

field plots, in pot experiments (see  3.2), it was possible to assess a potential involvement 

of pathogens by experiments on sterilized soils. For many soil sterilization methods, a 

major drawback is a possible alteration of soil chemical and physical properties and 
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chemical changes in soil organic matter. Autoclaving is the most commonly used method 

by use of high temperature and pressure, i.e., 120°C at 103 kPa. However, the efficiency 

is low and can be improved by repeated autoclaving two or three times, but this can cause 

significant modifications of soil structure and chemistry, making comparisons with 

unsterilized controls difficult. On the other hand, poisons and fumigants are highly 

effective sterilizers, but they frequently change the soil chemistry by leaving toxic 

residues (McNamara et al., 2003). Gamma (γ) irradiation affects soil organisms by direct 

ionization of cells and by the creation of harmful radicals within the extracellular water 

and intercellular fluids (Jackson et al., 1967). For plant growth, degradation or sorption 

experiments, soil sterilization with γ- irradiation is a reliable method due to the absence of 

contaminations and comparatively small effects on soil physical and chemical properties. 

The optimal dose of γ- irradiation is essential for the desired sterilization success, since at 

lower doses, many microorganisms may survive, while higher doses increase the risk of 

changes in soil properties. At a dose of 15 kGy fungi and actinomycetes and at higher 

doses between 20-70 kGy also soil bacteria can be eliminated (McNamara et al., 2003). 

Therefore, gamma ray doses of 26 kGy were employed for all soil sterilization 

experiments conducted in the present study, with three pairs of long-term and short-term 

no-tillage soils and winter wheat as a test crop.  

3.3.1.1 Germination 

On two out of three investigated soil pairs, long-term no-tillage negatively affected 

germination percentage (Figure 22, Figure 23). On the LT no-tillage soil collected from 

HirF in 2010, germination percentage of winter wheat at two weeks after sowing was not 

improved by soil sterilization, thereby excluding pathogens as a cause for reduced 

germination.  
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Figure 22: Effect of soil sterilization on germination % of winter wheat (cv. Isengrain) at 2 weeks 

after sowing in LT and ST no-tillage soils (field site: HirF2010). Values are means of 4 

replicates ± SE. Mean values with different letters are indicating significant 

differences where small letters compare sterilization and big letters compare tillage 

duration. Two-way ANOVA (p<0.05) followed by Tukey’s test (α = 0.05). 

By contrast, germination on LT no-tillage soil collected from the SW field site was 

significantly improved by soil sterilization (Figure 23), as a definite indication for the 

presence of soil pathogens affecting germination on this soil. 

bB 

aA 

bB 

aA 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

2010 HirF-LT 2010 HirF-ST 

G
e

rm
in

at
io

n
 %

 

UnSterilized 

Sterlized 



Chapter 3 Results  65 

 

Figure 23: Effect of soil sterilization on germination % of winter wheat (cv. Isengrain) at 16 days 

after sowing in LT and ST no-tillage soils (field site: SW2011). Values are means of 4 

replicates ± SE. Mean values with different letters are indicating significant 

differences where small letters compare sterilization and big letters compare tillage 

duration. Two-way ANOVA (p<0.05) followed by Tukey’s test (α = 0.05). 

3.3.2 Root growth  

During further seedling development, long-term no-tillage management affected root 

growth particularly. On long-term no-tillage soils collected from the field sites REM and 

HirF both, root length (Figure 24) and fine root development (Figure 25) were 

significantly reduced. No significant differences were recorded between sterilized and 

unsterilized soils.    
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Figure 24: Effect of soil sterilization on total root length of winter wheat (cv. Isengrain) at 3 

weeks after sowing in LT and ST no-tillage soils (field sites: REM2011 and Hir2010). 

Values are means of 4 replicates ± SE. Mean values with different letters are 

indicating significant differences where small letters compare sterilization and big 

letters compare tillage duration. Two-way ANOVA (p<0.05) followed by Tukey’s test 

(α = 5%).  

 

Figure 25: Effect of soil sterilization effect on fine root growth of winter wheat (cv. Isengrain) 

after 3 weeks of sowing in LT and ST soils (Field sites: HirF2010 and REM2011). Values 

are means of 4 replicates ± SE.  Mean values with different letters are indicating 

significant differences where small letters compare sterilization and big letters 

compare tillage duration. Two-way ANOVA (p<0.05) followed by Tukey’s test (α = 5%). 
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In summary, the soil sterilization experiments with three soil pairs characterized by long-

term or short-term no-tillage history revealed a positive effect of soil sterilization on plant 

performance only in one case on soil collected from the field site SW2011, where 

germination was improved by soil sterilization on the long-term no-tillage soil. In all 

other cases, soil sterilization did not affect. These findings suggest that increased 

pathogen pressure on LT no-tillage soils was not the primary cause for the observed 

symptoms of plant damage.  

3.4 Allelopathic interactions as potential causes for plant damage on 

long-term no-tillage soils  

Allelopathy refers to both detrimental and beneficial biochemical interactions among all 

classes of plants including those mediated by microorganisms (Molisch, 1937). Negative 

allelopathic effects are caused by the release of inhibitory substances into the environment 

by living plants via root exudates, leaching, volatilization, and decomposition of plant 

residues (Rice, 1984), termed as allelochemicals (Wittaker and Feeny, 1971). These 

substances can be helpful in pest and disease control and reduction of competition. Wheat 

(Triticum aestivum) is a well-characterized allelopathic plant species. Allopathic effects of 

root exudates, straw, affect various agricultural weeds. Aqueous extracts of residues and 

range of simple phenolics and hydroxamic acids have been discussed as active 

compounds (Wu et al., 2001). Autotoxicity is an intraspecific type of allelopathy; it 

occurs when the same species inhibit germination and growth of a plant species through 

the release of inhibitory substances (Putnam, 1985). For example, the root exudates and 

leachates from the straw of wheat and oats exhibit an autotoxic potential on seedling 

growth (Schreiner and Reed, 1907; Wu et al. 2001). These auto-allopathic substances 

from living winter wheat and straw can accumulate in soils with continuous wheat 

cropping and in long-term no-tillage farming due to the accumulation of straw, finally 

causing auto-inhibitory effects on germination, seedling development, and root and shoot 

growth (Wu et al., 2001). This situation may also apply to the long-term no-tillage field 

sites investigated in the present study.  
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By sequestering plant-available organic constituents in the soil solution, added carbon can 

remove allelochemicals from the soil in situ. This approach can be employed to identify 

the presence of phytotoxic organic compounds in soils by growing test plants with and 

without soil amendments of carbon (Inderjit and Nilsen, 2003). Accordingly, in the 

present study, a pyrolysis biochar (Table 7) commonly used for soil improvement was 

employed as a carbon material with the potential to adsorb organic phytotoxins (Sun et 

al., 2012), and added to a long-term no-tillage soil collected from the field site HirG2012 

(Table 6). The addition of biochar at a concentration of 5% (v/v) completely removed the 

inhibitory effects on plant growth observed during emergence and early growth of winter 

wheat (Figure 26). 

 

Figure 26: Mitigation effect of biochar amendment [5% v/v] on plant damage of winter wheat 

(cv. Isengrain) during emergence and early growth on long-term no-tillage soil 

collected from the field site HirG2012.  

The rapid mitigation effect of the biochar treatment was detectable already during the first 

week after sowing (Figure 26, upper row) suggests efficient immobilization of a toxic 

compound in the LT no-tillage soil rather than a nutritional effect e.g. by release of 

            ST no-tillage                         LT no-tillage                                        
LT no-tillage  
                                                                          
+5%Biochar 
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minerals sequestered in the biochar (Table 7), expected to require much longer incubation 

periods. Additionally, biotests with different plant species (wheat, soybean, sunflower) 

were performed to test a putative allelopathic potential of long-term no-tillage soils. In a 

pot experiment with soybean (Glycine max) as test plant similar damage symptoms 

appeared as previously observed in winter wheat, comprising stunted shoot growth, 

chloroses, reduced leaf number, inhibited root elongation and less fine root development 

(Table 12) induced by a culture period of four weeks on long-term no-tillage soil 

collected from the REM2011 field site. 

Table 12: Growth of soybean (Glycine max L. cv. BR16 Conquista) on LT and ST no-tillage soils 

(field site REM2011). Values are means of 4 replicates ± SE. Means with different 

letters are significantly different (t- test, α = 0.05).  

Growth Features LT ST 

Germination% after 14 days a 25.00±15.00 (B) 45.00±5.00 (A) 

#Average Number of leaves 3.59±0.21 (B) 6.04±0.82 (A) 

Root fresh weight (g) 1.08±0.15 (A) 1.81±0.14 (B) 

Total root length (cm) 81.08±6.09 (B) 380.53±37.70 (A) 

Average root diameter (mm) 0.63±0.02 (A) 0.44±0.01(B) 

Root length % of diameter 0-0.2mm 2.92±0.67 (B) 21.05±1.55 (A) 

Root length % of diameter 0.2-0.4mm 23.83±3.62 (B) 42.93±0.49 (A) 

Root length % of diameter 0.2-0.6mm 46.62±3.09 (A) 21.37±0.61 (B) 

Root length % of diameter  >0.6 mm 46.62±3.09 (A) 21.37±0.61 (B) 

#-t-test is performed on transformed data (square root transformation). 

Similar damage symptoms were also observed in a previous experiment with sunflower 

on short-term and long-term no-tillage soils collected from the field site SL 2008 (Bott, 

2010). 
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Figure 27: Shoot growth of Sunflower (Helianthus annuus) on LT and ST no-tillage soil (field site 

SL2008). Values are means of 4 replicates ± SE. Means with different letters are 

significantly different (t- test, α = 0.05) (Bott, 2010; personal communication).  

Taken together, so far the rapid induction of damage symptoms during emergence and 

early growth in different plant species including wheat, and the remediation effects of 

biochar amendments point to an allelopathic potential of the soils collected from field 

sites with long-term no-tillage history. However, this scenario can hardly explain the field 

observation, showing that emergence and seedling development of winter wheat in 

autumn remains unaffected and damage symptoms usually appear at the begin of the 

growth period in early spring. If an autotoxicity potential would have accumulated in the 

respective soils as a consequence of a long-term wheat-dominated no-tillage management, 

damage symptoms should appear already during early growth as observed in the pot 

experiments.    

Another interesting observation, hardly compatible with the assumption of a cumulative 

autotoxicity effect, is the finding that the toxicity potential of long-term no-tillage soils 

collected in early spring obviously disappears completely in summer soil samplings 

(Figure 28, Figure 29). Instead of cumulative enrichment over time, this would indicate a 

periodic degradation of toxic compounds in the LT no-tillage soils with the highest 

accumulation potential in early spring, reaching inhibitory levels for plant growth and 

subsequently followed by degradation during the further vegetation period.    
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Figure 28: Changes in shoot growth of winter wheat (cv. Isengrain) grown on ST and LT no-tillage 

soils (field site HirG2012) collected in early spring and early summer. 
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Figure 29: Changes in root length of winter wheat (cv. Isengrain) grown on ST and LT no-tillage 

soils (field site HirG2012) collected in early spring and early summer. Values are 

means of 4 replicates ± SE. Means with different letters are significantly different (t- 

test, α = 0.05). 

3.5 Herbicide residues as potential causes for plant damage on long-

term no-tillage soils 

Some herbicides can show persistent soil activities over months and even years, providing 

an efficient long-term weed control but also bearing a risk of damaging sensitive 

subsequently grown crops. This is usually considered by specific waiting time 

recommendations for replanting, but the degradation speed of herbicide residues is 

influenced by many factors including soil properties and climatic conditions (Rueppel et 

al., 1977). Residual effects have been documented for different groups of herbicides 

including sulfonylureas, dinitroanilines, propyzamides and others (Hang et al., 2012; 

Agriculture Victoria, 2013) also used in the no-tillage cropping systems investigated in 

the present study. Therefore, residual levels of commonly used herbicides in soil pairs 

with short-term and long-term no-tillage history were determined to identify potential 

relationships with the observed crop damage symptoms.  
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3.5.1 Herbicide soil concentrations 

Glyphosate was the only herbicide regularly used in all investigated plots, while 

sulfonylureas, pendimethalin, and propyzamide were applied more occasionally in various 

years and field sites. 

Table 13: Herbicide residues detected in soil samples from the field site HirF with short-term and 

long-term no-tillage history and corresponding symptoms of plant damage in the field 

and in pot experiments. Each soil sample was a pooled combination of 12 sub-

samples. *Below detection limit. 

Herbicide in soil [mg kg-1]  2 years no-tillage  10 years no-tillage  

(Moderate damage)      

10 years no-tillage 

(Heavily damaged) 

Glyphosate       < 0.05* 2.6 2.9-4.0 

AMPA 0.2 1.6 1.2 

Pendimethalin 0.1 0.2 0.8 

 

 

Field site 

 

 

 

 

Pot culture 

   

 

Table 13 shows residual concentrations of frequently used herbicides on plots with long-

term and short-term no-tillage history at the field site HirF and the respective symptoms 

of plant damage. For all investigated residues, higher levels were detected on long-term 

no-tillage plots, and the degree of plant damage was positively correlated with the soil 
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concentration of the herbicide residues, with the highest levels measured for glyphosate 

and its metabolite AMPA. However, due to rapid and intense immobilization of 

glyphosate in soils, the residues are generally regarded as non-phytotoxic (Gimsing et al., 

2004). To evaluate a potentially plant-available glyphosate fraction in the long-term no-

tillage soil, water extraction was performed (100 g air- dried soil L
-1

) with a soil sample 

pooled from 12 topsoil samplings at a depth of 15 cm, followed by filtration, 

centrifugation and vacuum -concentration. Assuming a soil moisture level of 20 %, the 

concentration of water-soluble and therefore, potentially plant-available residues re-

calculated for the soil solution, comprised approximately 3 µg L
-1

 for glyphosate and 1.5 

µg L
-1

 for AMPA, representing 0.023 % of the total soil residues. 

To achieve a more comprehensive overview, an additional herbicide residue analysis was 

performed on six field sites with closely neighbored short-term and long-term no-tillage 

plots, including also samplings at different time points of the vegetation period (Table 14, 

Table 15). Glyphosate residues were detected on all investigated field sites with a 

consistent pattern of higher levels on plots with long-term no-tillage history as compared 

with the corresponding short-term no-tillage plots (Table 14). This may indicate a lower 

degradation potential for glyphosate and AMPA on LT no-tillage soils. Spring samplings 

showed higher glyphosate and AMPA concentrations than summer samplings (Table 14). 

This is in line with the decline of plant damage symptoms in summer samplings on soil 

collected from LT no-tillage plots as compared with soil samplings performed in early 

spring (Figure 28, Figure 29). 

In contrast to Glyphosate and AMPA, the residues of Pendimethalin and Propyzamide did 

not show a consistent pattern related to the history of no-tillage management (Table 15). 
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Table 14: Glyphosate and AMPA residues detected in soils collected from different field sites with 

long-term and short-term no-tillage history. 

Field site/year 

Hirrlingen 

Glyphosate [mg kg-1] 

    (Roundup®) 

LT                   ST 

AMPA [mg kg-1] 

   (Roundup®) 

LT                   ST 

Steinbruch /091 0.130                n.d. 0.506           0.298 

Eichenberg /091 n.d.                   n.d. 0.402           0.152 

Friedhof / 091 0.094                n.d. 0.363           0.055 

Friedhof / 102 2.630                n.d. 1.620           0.160 

Grassäcker /123 0.034                n.d. 0.211           0.092 

Schwarze Länder/123 n.d.                   n.d. 0.123           0.071 

         1Summer sampling, 2Spring Sampling, 3Reduced glyphosate dose, n.d. below the detection limit 

Table 15: Pendimethalin and Propyzamide residues detected in soils collected from different field 

sites with long-term and short-term no-tillage history. 

Field site/year 

Hirrlingen 

Pendimethalin [mg kg-1] 

         (Product: Stomp) 

LT                   ST 

Propyzamide [mg kg-1] 

           (Product: Kerb) 

LT                   ST 

Steinbruch /091 0.173                0.090    n.d.                    n.d. 

Eichenberg /091 0.064                0.164   n.d.                    n.d. 

Friedhof / 091 0.120                0.055   n.d.                    n.d. 

Grassäcker /122 n.d.                    n.d. 0.008                 0.012 

Schwarze Länder/122 n.d.                    n.d.        0.006                 0.003 

         1Summer sampling, 2Spring Sampling, 3Reduced glyphosate dose, n.d. below the detection limit 

 

3.5.2 Soil microbial activity 

Microbial metabolization is the most important process for determining herbicide 

persistence in soils (Souza et al., 1999) and is also regarded as the primary route of 
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glyphosate turnover (Tu et al., 2001). In the case of glyphosate, AMPA is produced as an 

intermediate product of microbial degradation, which is further metabolized to water, CO2 

and phosphate (Forlani et al., 1999). Accordingly, the degradation rate of glyphosate is 

correlated with the rate of soil respiration (Franz et al., 1997). Therefore, higher 

concentrations of glyphosate residues on long-term no-tillage soils (Table 16) may be a 

consequence of lower soil microbial activity. To test this hypothesis, soil respiration was 

measured in soil samples collected from five different field sites characterized by closely 

neighbored plots with long-term and short-term no-tillage history. In four out of five 

tested soil samples, soil respiration was lower in LT than ST no-tillage plots, supporting 

the assumption that soil-microbial activity and thus glyphosate degradation was reduced 

by long-term no-tillage management.  

Table 16: Soil respiration on five field sites with LT and ST no-tillage history. Measurements were 

performed in 12 pooled topsoil subsamples per plot. Values are means of 4 technical 

replicates. 

Field Site LT 

Soil Respiration 

(µg CO2 g Soil-1) 

ST 

Soil Respiration 

(µg CO2 g Soil-1) 

Gassäcker 7.54 5.62 

Schwarze Länder 12.66 17.87 

Beim Wald 8.34 21.37 

Mittlere Weiherfichte 8.47 10.92 

Sportplatz 8.09 9.85 

 

3.5.3 Glyphosate residues in LT no-tillage soils as potential cause for plant 

damage 

Based on the results obtained so far, delayed microbial degradation of glyphosate residues 

in LT no-tillage soils, reaching phytotoxic concentrations even in the water-soluble 

fraction, could be a major factor for induction of damage in plants exposed for longer 
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periods (autumn-spring) to these conditions. If this hypothesis holds true, and glyphosate 

toxicity is primarily responsible for plant damage on LT no-tillage soils, genetically 

modified, glyphosate-resistant (RR) plants should not be affected under these conditions. 

3.5.3.1 Growth of glyphosate-resistant and non-resistant soybean on long-term 

no-tillage soils 

To test a potential contribution of glyphosate toxicity to plant damage induced by LT no-

tillage management, glyphosate-resistant (Roundup Ready
®

; RR) soybean (Glycine max 

cv. BSR Valiosa RR) and its parental, near isogenic, non-resistant (NR) line (Glycine max 

L. cv. BR16 Conquista) (Bott et al., 2008) were cultivated in a pot experiment on LT and 

ST no-tillage soils collected from the field site REM2011. All test plants grown on LT no-

tillage soil showed the typical damage symptoms, comprising stunted shoot growth 

(Figure 30), reduced fine root production and root thickening (Table 17) on the soil 

collected from LT no-tillage plots. There were no significant differences between RR and 

NR soybean cultivars, suggesting that inhibition of the shikimate pathway as the primary 

cause for glyphosate toxicity (Duke and Hoagland, 1985; Panettieri et al., 2013) was not 

responsible for plant damage on LT no-tillage soils. 
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Figure 30: (1) Plant height and (2) root fresh weight of glyphosate-resistant (RR: Glycine max cv. 

BSR Valiosa) and non-resistant (NR: Glycine max L. cv. BR16 Conquista) soybean 

after 4 weeks of growth on LT and ST no-tillage soil collected from the field site 

REM2011. Values are means of four replicates ± SE. Mean values with different letters 

are indicating significant differences where small letters compare soybean cultivars 

and big letters compare tillage duration. Two-way ANOVA (p<0.05) followed by 

Tukey’s test (α = 5%). 
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Table 17: Effect of tillage duration and variety on root growth characteristics of 24-days old 

soybean plants grown in soil from the field site REM2011. Values are means of four 

replicates ± SE. Different letters (A, B) indicate significant difference between 

treatments (Two-way ANOVA (p<0.05) followed by Tukey’s test (α = 5%), P values are 

in bold italic. LT is long-term tillage, ST is long-term tillage, RR is Glyphosate resistant 

soybean cultivar (Glycine max cv. BSR Valiosa), NR is Glyphosate conventional soybean 

(Glycine max L. cv. BR16 Conquista) variety, NS = not significant. 

Treatment Average root 

diameter (mm) 

Total root length distribution in different diameter classes  

0.0-0.2 mm 0.2-0.4 mm 0.4-0.6 mm >0.6 mm 

L S means  tillage × cultivar 

LT NR 0.633 2.918 23.829 46.613 26.635 

LT R 0.634 1.812 26.24 47.525 24.319 

ST NR 0.439 21.05 42.928 21.366 14.656 

ST R 0.452 19.504 44.174 21.053 15.450 

SE 0.0164 1.026 2.807   2.109 2.038 

Tillage Duration <0.001 <0.001 <0.001# <0.001 <0.001 

LT 0.634 (A) 2.365 (B) 25.035 (B) 47.069 (A) 25.477 (A) 

ST 0.446 (B) 20.277 (A) 43.551 (A) 21.210 (B) 15.053 (B) 

Soybean Variety 0.650 0.220 0.913# 0.889 0.715 

RR 0.543 (NS) 10.658 (NS) 35.207 (NS) 34.289 (NS) 19.885 (NS) 

 NR 0.536 (NS) 11.984 (NS) 33.378 (NS) 33.990 (NS) 20.646 (NS) 

Tillage×Variety 0.704 0.834 0.748# 0.777 0.460 

#Two-way ANOVA is performed on transformed data (square root transformation). 

3.5.3.2 Shikimate accumulation  

Glyphosate expresses herbicidal activity through inhibition of the shikimate pathway. 

This blockage of this metabolic pathway leads to increased intracellular accumulation of 

shikimate as a physiological indicator of glyphosate toxicity (Reddy et al., 2010). 

Therefore, shikimate concentrations were determined in the root tissue of winter wheat 

plants grown on LT and ST no-tillage soils collected from the field site REM2011 (see 

 3.2.3). Although plants grown on LT no-tillage soil showed typical damage symptoms 
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with stunted root growth and less fine root production (see  3.2.3.3) root concentrations of 

shikimate were even lower than in undamaged plants grown on soil with short-term no-

tillage history (Figure 31). 

 

Figure 31: Shikimate concentrations detected in root tissue of winter wheat (cv. Isengrain) after 

19 days of pot culture on LT and ST no-tillage soil. Values are means of 4 replicates ± 

SE. Means with different letters are indicating significant differences at α = 0.05% (t- 

test).  

Similar to the induction of damage symptoms in glyphosate-resistant soybean plants 

grown on long-term no-tillage soils, the absence of shikimate accumulation in damaged 

winter wheat plants demonstrates that there is no relationship with glyphosate-induced 

inhibition of the shikimate pathway. 

3.5.4 Dissection of phytotoxic effects induced by glyphosate and its 

degradation products in a soil-free system 

 Apart from glyphosate, also AMPA as a major degradation product in soils has a certain 

phytotoxic potential (Reddy et al., 2004) and synergistic effects of both compounds may 

also occur. Glyphosate and AMPA were not only detected as bound residues at the soil 

matrix but even in the water-soluble. Therefore, potentially plant-available phase in soil 

with long-term no-tillage history, still detectable even in spring samplings conducted six 

months after glyphosate application (see  3.5.1). Although only detectable in trace 
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concentrations (glyphosate approx.3 µg L
-1

; AMPA approx. 1.5 µg L
-1

), the damaged 

winter wheat plants sampled in spring have obviously been exposed to these water-

soluble residues for at least six months, and even higher concentrations can be expected 

shortly after herbicide application in autumn.  

3.5.4.1 Shoot growth of winter wheat in hydroponic culture 

To investigate the effects of long-term plant exposure to trace concentrations of 

glyphosate residues detected in the water-soluble fraction of long-term no-tillage soil in 

the absence of any other potentially toxic compound, experiments were conducted with 

winter wheat in hydroponic culture. Glyphosate, AMPA, and a combination of both were 

applied to the growth medium in concentrations of 3 and 5 µg L
-1

 for glyphosate and 1.5 

and 3 µg L
-1

 for AMPA. Growth media with herbicide amendments were replaced at 

intervals of 1-2 days over a growth period 4 and 6 weeks. To compensate for rapid 

inactivation of the herbicides by cation complexation in mineral nutrient solutions (Duke, 

1988), nutrient solution was applied only once at intervals of three days and water was 

used as growth medium for the remaining time.  

Already after three weeks exposure to trace concentrations of glyphosate and AMPA, 

visible chlorosis symptoms appeared in all herbicide-treated variants, comparable with 

leaf chlorosis also observed in early spring in winter wheat plants grown on soils with 

long-term no-tillage history (Figure 32). This was also confirmed in a second experiment 

by repeated measurements of SPAD values over a culture period of six weeks (Figure 33). 

However, shoot biomass production, plant height or leaf numbers were not affected at this 

stage (data not shown). 
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Figure 32: Winter wheat exposed to trace concentrations of Glyphosate (5 µg L-1) and AMPA 

(3 µg L-1) in hydroponics show chlorosis symptoms similar to plants grown under field 

conditions on the long-term no-tillage soil.  
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Figure 33: SPAD values of winter wheat (cv. Isengrain) measured during six weeks of growth in 

hydroponic culture. Untreated control (C), AMPA 3 µg L-1 (A), glyphosate 5 µg L-1 (G) 

and the combination of glyphosate and AMPA (GA). Values are means of 4 replicates 

per treatment. Means values with different letters are indicating significant 

differences (Tukey’s test, α = 0.05). NS = not significant. 

3.5.4.2 Root growth of winter wheat in hydroponic culture 

Similar to winter wheat plants grown on LT no-tillage soils, also root growth was 

impaired in hydroponics by exposure to the glyphosate and AMPA trace concentrations 

detected in the soil solution. Reduced fine root development (Figure 34) was recorded 

after four weeks culture period in response to treatments with glyphosate (3 µg L
-1

) and 

AMPA (1.5 µg L
-1

).  
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Figure 34: Root morphology and fine-root length of winter wheat (cv. Isengrain) grown for 4 

weeks in hydroponic culture with and without amendments of glyphosate 3µgL-1 and 

AMPA 1.5µgL-1. Values are means of 4 replicates per treatment. Means values with 

different letters are indicating significant differences (Tukey’s test, α = 0.05). 

This effect was even more expressed in the second experiment with a culture period of six 

weeks, and glyphosate and AMPA applications at concentrations of 5 and 3 µg L
-1

, 

respectively (Figure 35). 

Again, mainly fine root production was affected, but surprisingly the inhibitory effect was 

restricted mainly to the AMPA and glyphosate+AMPA treatments, while no significant 

root growth inhibition was observed after glyphosate application alone (Figure 35). 

Control (C) 

Root length (0.1-0.2 mm) 

737 cm (A) 

 

 

 

 

Glyphosat+AMPA (GA) 

Root length (0.1-0.2 mm) 

586 cm (B) 
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Figure 35: In seven-diameter classes root length of winter wheat (cv. Isengrain) grown in 

hydroponic culture after 6 weeks with d2 (AMPA 3µgL-1, glyphosate 5µgL-1 and 

glyphosate+AMPA). Values are means ± SE of 4 replicates per treatment. Means 

values with different letters are indicating significant differences (Tukey’s test, α = 

0.05). NS = not significant.  

3.5.4.3 Shikimate accumulation in the root tissue 

In accordance with the observations in plants cultivated on soils with short-term and long-

term no-tillage management (Figure 31), there was no indication for increased shikimate 

accumulation in the root tissue as a physiological indicator of glyphosate toxicity in the 

variants treated with glyphosate and glyphosate+AMPA (Table 18). Since root damage 

was observed particularly in the presence of AMPA, and the phytotoxic potential of 

AMPA is not associated with inhibition of the shikimate pathway and accumulation of 

shikimate (Reddy et al., 2004; Duke, 2011). These findings suggest that plant damage 

observed on long-term no-tillage soils is mainly a consequence of a phytotoxic AMPA 

effect rather than glyphosate toxicity. This effect is expressed after long-term plant 

exposure to the residues of glyphosate degradation and promoted by the delayed 

microbial turnover of glyphosate and AMPA in these soils (see  3.5.1,  3.5.2). 
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Table 18: Shikimate accumulation in the root tissue of winter wheat (cv. Isengrain) grown in 

hydroponic culture after 4 weeks with amendments of glyphosate (3µg L-1), AMPA 

(1.5µg L-1), glyphosate+AMPA (3+1.5 µgL-1) and an untreated control. Values are 

means ± SE of 4 replicates per treatment. NS = not significant (Tukey’s test, α = 0.05). 

Treatment Shikimate Concentration 

Control 2.4 ± 0.6 (NS) 

Glyphosate 2.8 ± 0.3 (NS) 

AMPA 2.4 ± 0.4 (NS) 

Glyphosate+AMPA 2.4 ± 0.3 (NS) 

    

3.5.4.4 Root vitality status  

Impaired root growth of winter wheat exposed to AMPA toxicity in hydroponic culture 

was also associated with reduced metabolic activity, indicated by vital staining with 

triphenyltetrazolium chloride, which is converted to a red formazan by the activity of 

dehydrogenases in plant tissues, reflecting the activity status of the metabolism (Stūrīte et 

al., 2010). In accordance with the damage symptoms mainly affecting the growth of the 

fine lateral roots, particularly the zone of lateral root formation (6-8 cm behind the root 

tip) was affected by glyphosate+AMPA treatments, resulting in less color development 

(Figure 36 upper row). In undamaged roots, the central cylinder with the pericycle as the 

origin of lateral root formation showed the most intensive staining, which disappeared 

almost completly in the roots damaged by the long-term glyphosate+AMPA treatment 

(Figure 36 lower row). 

0.5 mm 0.5 mm 
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Figure 36: Triphenyltetrazoliumchloride (TTC) vital staining of apical and subapical root zones in 

seminal roots of winter wheat (cv. Isengrain) grown in hydroponic culture for 39 days 

with and without amendments of glyphosate 5µgL-1 and AMPA 3µgL-1. 

3.5.4.5 Root transcriptome analysis of winter wheat exposed to trace 

concentrations of glyphosate and AMPA in hydroponic culture 

 In contrast to glyphosate, much less is known about the mechanisms determining phyto-

toxicity of AMPA (Duke, 2011; Gomes et al., 2014) and also the effects of long-term 

exposure to sub-toxic trace concentrations and synergisms between residues of different 

herbicides are poorly understood (Serra et al., 2013).  

To collect more information on metabolic pathways and reactions affected by long-term 

exposure of wheat roots to trace concentrations of AMPA and glyphosate, a RNAseq 

transcriptome analysis was conducted with wheat (Triticum aestivum, cv. Isengrain) 

plants exposed to glyphosate (5µg L
-1

); AMPA (3µg L
-1

), and a mixture of 

glyphosate+AMPA in a hydroponic culture system (see  3.5.4.1). Three complementary 

DNA (cDNA) libraries were constructed from mRNA isolated from root systems of wheat 

C = Control, GA = Glyphosate+AMPA 
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plants exposed to the AMPA, glyphosate, and glyphosate+AMPA treatments, 

respectively. Harvest was performed at 19 DAS, just prior to the appearance of visual 

damage symptoms to minimize the risk of analyzing secondary effects, triggered, e.g., by 

the AMPA-induced impairment of root growth (see  3.5.4.2) and root activity (see  3.5.4.4). 

After Illumina
®
 sequencing, transcription profiles were compared to those of untreated 

control plants. The processed data (2.94 Gb in A, 1.31 Gb in G, 1.3 Gb in GA and 1.64 

Gb in control) (see  2.9.3) was distributed into functional metabolic categories (bins), 

according to Mapman (Usadel et al., 2009). Treatment-specific changes in bins were 

documented with the Pageman module of Mapman. The largest numbers of changes 

relative to the untreated control were recorded for the AMPA (total 160 bins) and the 

glyphosate+AMPA (total 130 bins) treatments but only 68 bins in the glyphosate variant 

with 78 up-regulations and 82 down-regulations for AMPA, 44 up-regulations and 86 

down-regulations for glyphosate+AMPA and 49 up-regulations versus 19 down-

regulations for glyphosate (Figure 37). 

 

Figure 37: A Quantitative overview of transcriptional changes in gene expression in roots of 

winter wheat (cv. Isengrain) exposed for 19 days to trace concentrations of AMPA (3 µg L-1), 

glyphosate (5 µg L-1), and glyphosate+AMPA in a hydroponic culture system. 
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Since inhibitory effects on root growth were mainly restricted to the AMPA and 

glyphosate+AMPA treatments (Figure 35), particular emphasis was placed on 

transcriptional modifications simultaneously expressed in both treatments but not 

detectable in the glyphosate treatment. Interesting changes potentially related to root 

development and stress responses comprised alterations in hormone metabolism; up-

regulation of cytokinin related genes, down-regulation of ethylene- and jasmonate-

associated gene expression (Figure 38). Also expression of genes, related to stress 

responses and aquaporins, particularly plasma-membrane intrinsic proteins (PIPs) with 

essential functions in water transport and emergence and elongation of lateral roots (Péret 

et al., 2012), was down-regulated in the roots AMPA and glyphosate+AMPA treated 

plants. The same holds true for the synthesis of aromatic amino acids, simple phenolics 

and lignin, nitrilases, ß1-3 glucan hydrolases, peptide transport, and metal binding; while 

strong up-regulation was observed in genes involved in ribosome biogenesis. A complete 

overview on alterations in gene expression is given in the appendix. 
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Figure 38: Overview on up-regulation (blue) and down-regulation (red) of gene expression in 

winter wheat (cv. Isengrain) roots with herbicide treatments inducing root growth 

inhibition (AMPA, glyphosate+AMPA). 
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3.6 Remediation Strategies 

The characterization of factors, determining the observed plant growth suppression on LT 

no-tillage soils (see  3.2) may offer a perspective to identify adapted strategies for 

remediation or at least mitigation of damage symptoms.    

3.6.1 Application of microbial bio-effectors  

Since delayed microbial degradation of plant-available glyphosate soil residues in spring 

has been identified as the most likely critical factor for plant damage on the investigated 

long-term no-tillage field sites, plant co-inoculation with glyphosate-degrading 

microorganisms may offer a protective strategy to promote degradation of glyphosate 

residues in the rhizosphere (Kryuchkova et al., 2014). For many soil microorganisms 

including bacteria and fungi, degradation potential for glyphosate is well documented. 

The most widespread commercial microbial plant-inoculants are members of the bacterial 

genera Pseudomonas, Bacillus, Rhizobium and the fungal genera Trichoderma and 

Penicillium, mainly sold as biocontrol agents and plant growth-promoting 

microorganisms (Calvo et al., 2014). However, also glyphosate degradation has been 

reported as a widespread feature in these microbial groups (Jacob et al., 1988; Arfarita et 

al., 2013). Moreover, impairment of root growth has been identified as one of the major 

restrictions on the growth of plants exposed to herbicide residues on LT no-tillage soils 

(Figure 19, Figure 20) and stimulation of root growth is a major mode of action in 

microbial plant-growth promotion (Calvo et al., 2014). Therefore, the potential of selected 

commercially available microbial bio-effectors to mitigate symptoms of plant damage in 

winter wheat, cultivated on LT no-tillage soils was investigated in pot and field 

experiments. Table 19 summarizes the investigated commercial bio-effectors, their active 

microbial strains and the expected effects on plant growth according to the specifications 

of the manufacturers. 
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Table 19: Tested bio-effector products with their active biological agents and expected activities. 

Bio-effector Product Producer Type Expected Activity 

PRORADIX® 

Pseudomonas sp. DMSZ 13134 

 

Sourcon-padena GmbH 

(Tübingen, Germany) 

Bacteria 

(Gram -) 

- Stimulates root growth 

- Supports mycorrhiza 

- Pathogen suppression 

TRICHOSTAR® 

Trichoderma harzianum 

GERLACH Natürliche 

Düngemittel GmbH 

(Hannover, Germany) 

Fungi - Nutrient mobilization 

- Growth stimulation 

- Pathogen suppression 

RHIZOVITAL 42® 

Bacillus amyloliquefaciens FZB42 

ABiTEP GmbH 

(Berlin, Germany) 

Bacteria 

(Gram+) 

- Nutrient mobilization 

- Root growth stimulation 

- Pathogen suppression 

- Supports mycorrhiza 

 

3.6.1.1 Starter application of microbial bio-effectors (pot experiment) 

The respective microbial bio-effectors were applied by fertigation as starter applications 

before sowing in the dosage recommended by the manufacturer to winter wheat (Triticum 

aestivum cv. Isengrain) cultivated in pots (see  2.6.2) on LT and ST soil samples collected 

from Hirrlingen Friedhof (Table 6). 
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Figure 39: Germination of winter wheat (cv. Isengrain) at 2 weeks after sowing on short-term 

(ST) and long-term (LT) no-tillage soil collected from the field site “Hirrlingen 

Friedhof” with and without (C) application of microbial bio-effectors: Rhizovital 42® 

(FZB), Proradix® (PRO) and Trichostar® (TR). Values are means ± SE of 4 replicates per 

treatment. Means values with different letters are indicating significant differences 

(Tukey’s test, α = 0.05). 

Germination of winter wheat was significantly reduced on LT no-tillage soil. No 

mitigation effect was induced by application of the various Bacillus-, Pseudomonas-, and 

Trichoderma-based microbial bio-effectors.  

  

Figure 40: Habitus of winter wheat (cv. Isengrain) at 4 weeks after sowing on short-term (ST) and 

long-term (LT) no-tillage soil collected from the field site “Hirrlingen Friedhof” with 

and without (C) application of the microbial bio-effector Rhizovital 42® (Bacillus 

amyloliquefaciens FZB42).  
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Stressed plants cultivated on LT soil, showed no significant treatment differences were for 

shoot and root biomass production at four weeks after sowing in response to application 

of bioeffectors. However, growth-promoting effects of the microbial inoculants were 

observed on ST soil. Shoot biomass production increased by 20-30% (Figure 41A) and 

root fresh weight increased by 9-36% (Figure 41B) as compared to the untreated control. 

 

Figure 41: (A) Shoot and (B) root dry matter of winter wheat (cv. Isengrain) at 2 weeks after 

sowing on short-term (ST) and long-term (LT) no-tillage soil collected from the field 

site “Hirrlingen Friedhof” with and without (C) application of microbial bio-effectors: 

Rhizovital 42® (FZB), Proradix® (PRO) and Trichostar® (TR). Values are means ± SE of 4 

replicates per treatment. Means values with different letters are indicating significant 

differences (Tukey’s test, α = 0.05). 
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3.6.1.2 Spring application of microbial bio-effectors under field conditions 

Apart from starter applications in the pot experiment, the selected microbial bio-effectors 

were tested also under field conditions with spring applications (begin of May) on LT no-

tillage field sites, after expression of plant damage symptoms in Hirrlingen, (Schwarze 

Länder) and Wendelsheim (Sülcher Wegle, Remmingsheimer Weg), (see  2.2, Table 6). 

Proradix
®
, Rhizovital

®
 and Trichostar

®
 were applied in three replicates on 1 m

2
 plots by 

fertigation according to the instructions of the manufacturers. Control plots were treated 

with distilled water. 

Visual scoring of plant damage after 8 weeks revealed strong suppression of plant growth 

on all investigated field sites due to early summer drought (Figure 42). No protective 

effects could be recorded in any of the bio-effector treatments. An exemplary overview of 

field performance of plants with and without bio-effector treatments is given in Figure 42 

for the field site Wendelsheim, Remingsheimer Weg.  
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Figure 42: Field performance of winter wheat a8 weeks after spring application (May 4th) of 

microbial bio-effectors (Proradix® PRO, Rhizovital 42® FZB 42, Trichostar® TRI) and a 

water control at the long-term (LT) no-tillage field site Wendelsheim, Remingsheimer 

Weg. 

3.6.2 Detoxification of herbicide residues by immobilization 

Based on the observation that biochar amendments to LT no-tillage soil could mitigate 

plant damage of winter wheat in greenhouse culture (see  3.4, Figure 26), it was 

hypothesized that the observed mitigation effect was due to detoxification of plant-

available glyphosate residues in soil by immobilization. As previously reported, other 

herbicides and organic contaminants were adsorbed by activated carbon or biochar (Bes 

and Mench, 2008; Loganathan et al., 2009; Kookana, 2010). 

             Rem-LT-Control                               Rem-LT-PRO 

 

   Rem-LT-FZB 42                     Rem-LT-TRI 
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3.6.2.1 Glyphosate detoxification potential of biochar in a peat culture substrate-

sand mixture 

A peat culture substrate (TKS
®
, Table 8) sand mixture (TKSS 50/50% v/v) was used as a 

plant growth medium with very low adsorption potential for glyphosate to induce a 

maximum level of toxicity. Roundup Ultramax
®

 was used as a glyphosate source in an 

overdose application rate of 8 L ha
-1

 and was homogeneously mixed in the 7 cm top layer 

of the culture substrate before sowing of winter wheat in a pot experiment (see  2.6.4C) to 

simulate soil surface contamination under field conditions. Pyrolysis biochar (Table 7) 

was applied at concentrations 0, 1.0 and 5.0 % (v/v).  

As expected, the herbicide treatment (TG) exerted strong inhibitory effects on 

germination and plant growth of winter wheat grown on the TKSS substrate In the TG 

treatment all plants showed abnormal development with stunted growth, strong chlorosis 

and impaired root growth (Figure 43A). This damage was reduced, and plant growth was 

improved by application of 5% (v/v) biochar (TGB5) but not by the lower application rate 

of 1% (TGB1) (Figure 43B) while control plants not exposed to glyphosate showed 

normal development (C, TB1, TB5). 
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Figure 43: (A) Habitus of winter wheat (cv. Isengrain) at two weeks after sowing, grown on peat 

culture substrate/sand mixture (TKSS 50/50 v/v) contaminated with glyphosate (TG) 

applied as Roundup® Ultramax (8 L ha-1). (B) Mitigation of glyphosate-induced growth 

inhibition (TG) by biochar amendments (TGB1, TGB5) as compared with control 

variants without glyphosate application (C, TB1, TB5). 

Accordingly, shoot biomass production after a culture period of two weeks was reduced 

by approximately 70 % in response to glyphosate application, which was partially 

reverted by 5 % biochar application, but not in the 1 % biochar treatment. Also, root 

growth was strongly affected by glyphosate application. However, no quantitative 

analysis was performed in this case due to strong adsorption of peat particles to the root 

system which could not be separated mechanically.  
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®
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Figure 44: Shoot biomass of winter wheat (cv. Isengrain) a two weeks after sowing, grown on 

peat culture substrate/sand mixture (TKSS 50/50 v/v) with (TG, TGB1, TGB5) and 

without (C, TB1, TB5) application of glyphosate (Roundup Ultramax® 8 L ha-1) and 

biochar amendments of 1 % (TB1, TGB1) and 5 % v/v (TB5, TGB5). Values are means 

of 4 replicates per treatment. Means values with different letters are indicating 

significant differences (Tukey’s test, α = 0.05).  

3.6.2.2 Glyphosate detoxification potential of biochar in soil culture 

To investigate the glyphosate detoxification potential of biochar demonstrated in the 

artificial peat culture substrate-sand mixture also under soil conditions, Roundup 

Ultramax as a glyphosate source was homogeneously mixed in a pot experiment with 

HirG-ST field soil at a high dosage of 4 L ha
-1

 with biochar amendments of 0, 5, 10 and 

20 % (v/v) 

After sowing of winter wheat (cv. Isengrain), biochar treatments increased the speed of 

seedling emergence with the fastest emergence rate with a biochar dose of 10 % and 20% 

(v/v) Figure 45. 
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Figure 45: Emergence percentage of winter wheat (cv. Isengrain) during first week pot culture 

with glyphosate, contaminated soil and homogeneously applied biochar treatments. 

Values are means of 4 replicates per treatment. NS = not significant. (Tukey’s test,  

α = 0.05).   

After a culture period of three weeks, 5 % (v/v) biochar application significantly 

improved root development (biomass, root length) of winter wheat grown on the 

glyphosate contaminated soil but this effect disappeared at higher application rates of 

biochar (Figure 46, Table 20). Shoot biomass production was not significantly increased 

by the biochar treatments. 
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Figure 46: Habitus of winter wheat (cv. Isengrain) at three weeks after sowing in glyphosate-

contaminated soil (Roundup Ultramax® 6 L ha-1) with and without biochar 

amendments (5%, 10% and 20% (v/v) homogeneously mixed with the soil. 

 

 

       Glyphosate       Glyphosate+Biochar 5%         Glyphosate+Biochar 10%    Glyphosate+Biochar 20% 
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Table 20: Shoot and root growth of winter wheat (cv. Isengrain) at three weeks after sowing in 

glyphosate contaminated soil (Roundup Ultramax® 6 L ha-1) with and without biochar 

amendments (5%, 10% and 20% (v/v) homogeneously mixed with the soil. Values are 

means of 4 replicates per treatment. Means values with different letters are indicating 

significant differences (Tukey’s test, α = 0.05).  

3.6.2.3 Application of biochar and Roundup® to the topsoil  

Due to rapid soil adsorption, most of the applied glyphosate will remain in the uppermost 

soil layers (2-5cm). This holds particularly true for minimal- or no-tillage systems (Alletto 

et al., 2010; Bott et al., 2011) with minimal soil disturbance. To simulate this situation a 

pot experiment was conducted by mixing Roundup Ultramax
®

 at rate of 6 L ha
-1

 (G) 

and/or biochar 5% (GB5), 10% (GB10) and 20% (GB20) only into the uppermost soil 

layer of approximately 5cm rest of the 5cm and control (C) was untreated soil.  

After a culture period of three weeks, particularly fine root production was affected by 

glyphosate application with a trend for mitigation induced by all biochar treatments 

although the differences were not significant. Similarly, trends of mitigation were 

observed in seedling emergence and total root length with best results in 5% (GB5) 

application (Table 21). 

Growth Features Glyphosate 

(Roundup®) 

Glyphosate 

+Biochar 5% 

Glyphosate 

+Biochar 10% 

Glyphosate 

+Biochar 20% 

Shoot fresh weight (g) 0.24 ± 0.01 (AB) 0.28 ± 0.01 (A) 0.29 ± 0.02 (A) 0.23 ± 0.01 (B) 

Root fresh weight (g) 0.11 ± 0.01 (B) 0.21 ± 0.03 (A) 0.15 ± 0.01 (AB) 0.14 ± 0.01 (AB) 

Root length (g) 265.9 ± 10.4 (B) 406.3 ± 50.25 (A) 295.2 ± 20.52 (AB) 282.2 ± 12.20 (B) 
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Table 21: Shoot and root growth of winter wheat (cv. Isengrain) at three weeks after sowing in glyphosate contaminated topsoil layer (5cm) 

(Roundup Ultramax® 6 L ha-1) with and without biochar amendments (5%, 10% and 20% (v/v) mixed with the topsoil layer soil. Values 

are means of 4 replicates per treatment. Means values with different letters are indicating significant differences (Tukey’s test, α = 

0.05). NS = not significant. 

Growth Features Control Glyphosate 

(Roundup®) 

Glyphosate 

+Biochar 5% 

Glyphosate 

+Biochar 10% 

Glyphosate 

+OBiochar 20% 

Emergence 90.0 ± 5.77 (NS) 85.0 ± 6.45 (NS) 100.0 ± 0.00 (NS) 92.50 ± 2.5 (NS) 87.50 ± 6.3 (NS) 

Shoot fresh weight (g) 0.298 ± 0.02 (NS) 0.322 ± 0.01 (NS) 0.299 ± 0.01 (NS) 0.295 ± 0.0 (NS) 0.315 ± 0.0 (NS) 

Root fresh weight (g) 0.196 ± 0.02 (NS) 0.237 ± 0.03 (NS) 0.201±0.01 (NS) 0.202 ± 0.0 (NS) 0.209 ± 0.0 (NS) 

Total Root length (cm) 4453.7 ± 361.6 (NS) 2717.2 ± 112.9 (NS) 3753.6 ± 691.6 (NS) 3332.5 ± 243.4 (NS) 3363.00 ± 368.0 (NS) 

Fine root length (cm)  

0-0.2mm diameter 

154.4 ± 7.95 (A) 84.5 ± 6.52(B) 107.5 ± 25.73 (AB) 100.4 ± 8.54 (AB) 105.70 ± 16.0 AB 
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4 Discussion 

During the last decades, no-tillage and reduced-tillage cropping systems have been 

increasingly adopted by many countries, mainly to counteract soil erosion and offering 

numerous additional benefits that conventional tillage could not match (Uri, 2000; Borie 

et al., 2002; Wang et al., 2006). The expected advantages comprise reduced costs for 

energy and fewer labour requirements due to fewer field operations (Tebrügge, 2001), 

beneficial effects on topsoil structure, organic matter retention, soil fauna and flora, water 

holding capacity, resistance against temperature extremes, and finally soil fertility (Baker 

et al., 2007), associated also with reduced greenhouse gas emissions (FAO, 2015).   

However, in contrast to the promising expectations, experiences with long-term no-tillage 

management systems in Southwest Germany demonstrated that the beneficial effects 

could not be maintained over longer time periods. Starting with occasional observations 

on plant damage and yield losses on long-term no-tillage field plots (10 years and more) 

in comparison with directly neighbored plots brought into no-tillage management just two 

years before, e.g., by grassland conversion, there was increasing evidence for yet 

unexplained constraints for no-tillage cropping.  

Therefore, the aim of this study was a characterization of critical factors, determining the 

unexpected limitations and to define potential options for mitigation. Since direct 

investigations with long-term field experiments were not feasible for the schedule 

available within a Ph.D. project, a “field to lab approach” was employed, starting with the 

selection of suitable field sites with closely neighbored long-term and short-term no-

tillage plots and similar pre-cropping history. Finally, five field sites were selected for 

more detailed investigations out of a group of potentially suitable locations (Table 6). 

After characterization of type, intensity and timing of appearance of common plant 

damage symptoms, reproducibility of the effects were tested in pot experiments with soil 

samples collected from the respective field sites under controlled conditions, to facilitate 

the identification of factors triggering the observed symptoms of plant damage. After 

characterization of potentially critical factors, further investigations were conducted in 

soil free systems to isolate the impact of single stress factors and to identify the 
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underlying mechanisms. Also, potential mitigation strategies were first tested in pot 

experiments and partially followed by pilot experiments under field conditions.     

4.1 Plant nutrient availability on long-term and short-term no-tillage 

field sites 

Alteration of soil conditions by tillage can significantly affect soil productivity and 

sustainability through influences on depth distribution, soil organic matter (SOM), 

microbial activity, and nutrient dynamics (Doran and Smith, 1987; Follett and Peterson, 

1988; Mahboubi et al., 1993). Numerous reports in the past decade have found greater 

organic carbon and microbial activity in the soil surface layer of no-tillage soil as 

compared to conventional tillage as a response to crop residue accumulation at the soil 

surface (Dalal et al., 1991; Bauer and Black, 1994; Franzluebbers et al., 1995). This effect 

was also detectable on the investigated long-term no-tillage field sites in this study, 

generally showing higher organic carbon percentage than the corresponding short-term 

no-tillage plots (Table 10) but unexpectedly this was associated with growth suppression 

of winter wheat on the respective soils (Figure 12, Figure 13). Soil nutrient analysis 

revealed no apparent nutrient deficiencies or toxicities of P, K, Mg, Zn, Mn and Fe and no 

systematic nutrient patterns in three investigated soil pairs, characteristic for long-term 

versus short-term no-tillage field plots (Table 10). Also, nitrogen was not a limiting 

nutritional factor since it was regularly applied in the recommended dosage on all 

investigated field sites. Soil pH as an important factor, determining nutrient availability in 

soils, varied between 6.6 and 7.2 (Table 10) in the optimum range for wheat cultivation 

(Lufa, 2012) and similar to reports in earlier studies (Lal et al., 1994; Pikul and Aase, 

1995), soil pH was not influenced by long-term no-tillage management. The 

corresponding analysis of the plant nutritional status also provided no indications for 

nutrient deficiencies or toxicities except P, which was usually sufficient (Bergmann, 

1988) only in winter wheat plants grown on the short-term no-tillage plots but declined 

below the deficiency threshold on long-term no-tillage soils (Figure 21). This was 

associated with limited root growth and particularly reduced the formation of fine roots 

(Figure 20). Since soil P availabilities ranged between moderate and high levels (LTZ 

Augustenberg, 2011) and P concentrations on long-term no-tillage plots were not 
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particularly low, the low P status of the respective plants must be rather attributed to 

limitations in P acquisition due to root growth inhibition, than to limited soil P availability 

related to the tillage management.        

4.2 Pathogen pressure on long-term no-tillage soils 

Tillage can control plant diseases by breaking fungal hyphae networks in the soil and 

controlling weeds, which serve as host-bridge (Roget et al., 1987). In no-tillage systems, 

root diseases are representing one of the major problems, as disease pressure increases 

due to increased crop residues at the soil surface, particularly under cool and wet soil 

conditions in early spring (Paulitz et al., 2002). The concentration of plant debris in the 

top 10-15 cm soil can promote the over wintering and survival of various pathogens 

waiting for the next crop. The organic residues provide energy to pathogens before and 

during the infection period. This energy source is important for the interactions between 

host and pathogen, pathogen survival (Boosalis et al., 1981), germination (Tousson et al., 

1963) and capability to cause infection (Garrett, 1976). Roots confined to, or growing 

near the soil surface may be prone to pathogen attack. Pathogen inoculum concentrations 

in no-tillage systems can be much greater than in conventionally plowed soils (Khan, 

1975; McFadden and Sutton, 1975). Particularly high inoculum concentrations have been 

observed in the case of monocropping because of attraction and accumulation of host-

crop specific pathogens. Disease severity was also higher under zero tillage with short 

non-host crops rotations (Gossen and Derksen, 2003). Accordingly, crop rotations can 

break soil pathogen cycles and reduce weed pressure (Karlen et al., 1994).    

Many of the conditions promoting disease pressure in no-tillage farming as described 

above, also applied to the no-tillage systems investigated in the present study: during the 

years preceding the investigated period, winter wheat (75 %) and winter rape (25%) were 

the predominant crops in short crop rotations, or even with several years of winter wheat 

mono-cropping for economic reasons in some cases. Similar to root-rot diseases dominant 

in no-tillage systems (Paulitz et al., 2002), the observed symptoms of plant damage on 

long-term no-tillage plots were reflected in impaired root growth and fine root 

development (Figure 12) and usually appeared in early spring providing the most 
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favorable weather conditions for pathogen development (Paulitz et al., 2002). In some 

years even increased levels of barley yellow dwarf virosis had been observed in later 

spring.  

For further assessment of potential pathogen effects, the possibility to reproduce the 

damage symptoms under laboratory conditions (Figure 14) was of substantial 

significance, since it opened the perspective to employ gamma ray soil sterilization with 

minimal side effects on physicochemical soil properties (Stroetmann et al., 1994). To 

investigate the impact of potential pathogen effects on plant growth on long-term no-

tillage soils in controlled environments. Except the field site SW2011, soil sterilization 

had no mitigation effect on the expression of plant damage symptoms on long-term no-

tillage soils in all investigated soil samples (Figure 22, Figure 25), suggesting that 

increased pathogen pressure was not the primary cause for the observed growth 

suppressions in winter wheat. Only on the soil collected from the long-term no-tillage 

SW2011 field site, germination of winter wheat seedlings was significantly increased by 

soil sterilization, suggesting the presence of a damping-off disease in this particular case. 

However, due to the absence of comparable effects in other soils, the SW2011 field site 

was no longer included in further investigations.   

4.3 Allelopathic interactions in long-term no-tillage soils   

In no-tillage systems, crop residues are left on the field contributing to increased 

accumulation and stabilization of organic carbon in the topsoil layer (Dalal et al., 1991; 

Bauer and Black, 1994; Franzluebbers et al., 1995). However, during degradation, plant 

residues can also release toxic compounds, so called allelochemicals with detrimental 

effects on growth of other plants (Patrick and Koch, 1958; Kimber, 1973; Rahman et al., 

2005) or even on the plant species providing the respective crop residues (auto-

allelopathy; Lodhi et al., 1987; Protic et al., 1980). Especially in monoculture 

agroecosystems, the risk of allelopathic effects is high, due to the input of the same type 

of toxic compounds over longer time periods into the same soil volume, causing 

cumulative effects. According to Chapman (1966), root excretions, plant residues, and 

microbial colonization of plant residues can all contribute to the accumulation of growth 
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inhibitors in soils. Particularly in wheat, both, allelopathic and auto allelopathic effects are 

well-documented (Schreiner and Reed, 1907; Guenzi and McCalla, 1962; Rahman et al., 

2005, Fragasso et al., 2013), leading to inhibition of germination, and impaired root and 

shoot development. Both, root exudates and decaying plant residues of wheat exhibit 

allelopathic potential and various low-molecular weight phenolics, as well as hydroxamic 

acids, short chain fatty acids, naphtoic and azaleic acids, carboxylic acid methyl esters, 

triterpenoids and even microbial antibiotics such as patulin have been identified as 

potentially active compounds (Waller et al., 1987; Fragasso et al., 2013).  

Also on the long-term no-tillage field sites investigated in the present study, wheat-

dominated crop rotations or even wheat monoculture may have promoted long-term 

accumulation of allelochemicals, increasing the risk of auto-allelopathic effects. A 

potential accumulation of phytotoxins in the respective soils was further supported by the 

finding that detrimental effects on plant growth were rapidly eliminated already during 

the germination period by application of biochar, which exhibits binding potential for 

various organic compounds with phytotoxic properties (Loganathan et al., 2009; 

Kookana, 2010). This view was also supported by the experiments with soil sterilization, 

showing no mitigation effects on growth inhibition of wheat plants, cultivated on long-

term no-tillage soils (Figure 24), thereby excluding pathogens as a major cause for plant 

damage. A general phytotoxic potential of the respective soils was further confirmed by 

reproduction of inhibitory effects in pot experiments with various plant species including 

wheat (Figure 19), soybean (Table 12) and sunflower (Figure 27).   

However, some observations are not easily compatible with the concept of auto-

allelopathic effects by accumulation of phytotoxins, released from crop residues or as root 

exudates of wheat on the investigated long-term no-tillage soils: (i) in the pot 

experiments, reproducing the symptoms of plant-damage in the field (Figure 14), crop 

residues had been largely removed by soil sieving prior to the start of the experiments. (ii) 

Typical for allelopathic effects, plant damage symptoms detected in the pot experiments 

appeared rapidly after sowing (Putnam, 1985) and affected already germination or early 

growth of the seedlings (Figure 24). However, under field conditions, germination and 

early development of winter wheat remained completely unaffected in most cases, and 
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damage symptoms preferentially appeared with the start of the re-growth period in spring, 

up to six months after sowing. (iii) Moreover, if wheat root exudates are acting as 

allelochemicals with auto-toxicity effects, plant growth on long-term no-tillage soils 

should be increasingly affected during the growth period due to the increase in root 

development and root density in the topsoil, but this was not the case. By contrast, the 

phytotoxic potential of long-term no-tillage soil completely disappeared when soil 

sampling for the biotests in pot experiments was not conducted in early spring but later 

during the vegetation period at the beginning of summer (Figure 28). This demonstrates 

that no further accumulation but rather a degradation of phytotoxins occurred during the 

growth period of winter wheat on long-term no-tillage field sites.       

4.4 Herbicide residues in long-term no-tillage soils   

In no-tillage management, weed control is one of the major challenges due to the absence 

of mechanical weed removal. Alternative methods, using special mechanical techniques, 

electricity, and integration of cover crops are still under development and frequently 

require the additional input of labor and machinery, at least partially counteracting the 

benefits of no-tillage management. Therefore, application of herbicides is still the most 

widely used method for weed control in no-tillage systems. Some herbicides can stay 

active in soils for extended time periods of weeks months or even years depending on 

environmental factors such temperature, soil moisture, and microbial activity. This can be 

an advantage for long-term weed control, but severely delayed degradation can also cause 

problems by damaging sensitive crops grown subsequently on the herbicide-treated field 

sites (Hang et al., 2012; Agriculture Victoria, 2013). The damage potential of herbicide 

residues in soils depends on persistence and bioavailability of the residues. For many 

herbicides degradation and/or bioavailability are restricted in the environment through 

sorption, hydrolysis, volatilization, transport, and accumulation of bound residues (Sims 

and Cupples, 1999). In soils or on plant surfaces, herbicides can be degraded to some 

extent by photochemical reactions, but microbial degradation is the major the degradation 

process in agricultural soils (Cox et al., 1996).   
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Also on the investigated long-term no-tillage field sites various herbicides with known 

residual activity, such as sulfonylureas, dinitroanilines (pendimethalin), propyzamides 

(Hang et al., 2012; Agriculture Victoria, 2013) were applied at least occasionally. By 

contrast, glyphosate as the most widely used herbicide particularly in reduced tillage 

systems was regularly applied on all investigated field sites. This is characteristic for 

winter wheat/winter rape-dominated cropping systems, where glyphosate application has 

been documented in 87% of the rape cropping area and in 23 % of the wheat cropping 

systems mainly for stubble management and pre-sowing application, comprising 38 % of 

the total glyphosate use in Germany (Dickeduisberg et al., 2012). However, in contrast to 

many other herbicides, residual effects of glyphosate applications are not widely 

documented in the literature. A risk of contact contamination of crops with glyphosate-

treated weed straw residues shortly after the application is documented even in the 

application instructions (Monsanto UK, 2016). However, Tesfamariam et al. (2009) and 

Bott (2010) showed in elegant experiments with the removal of areal plant parts of 

glyphosate-treated weeds, that even root residues bear a risk of contact contamination for 

the subsequent crop, showing growth depressions and shikimate accumulation in the root 

tissue as physiological indicator for glyphosate toxicity. Accordingly, genetically 

modified glyphosate-resistant soybean plants were not affected (Bott, 2010). Since 

pathogen damage (see  3.3) or allelopathic effects (see  3.4) could not provide satisfactory 

explanations for the observed symptoms of plant damage on the investigated long-term 

no-tillage field sites, residual effects of long-term herbicide applications need to be also 

taken into consideration.  

An overview of herbicide residues in six closely neighboured long-term and short-term 

no- tillage field plots revealed a consistent pattern with higher residual soil levels of 

glyphosate and its main metabolite AMPA at the long-term no-tillage sites (Table 14). 

The absolute concentrations were highly variable, but the highest levels were recorded for 

soil samplings conducted in early spring with a sharp decline in summer samplings. This 

was in line with the observation that the plant damage potential of a long-term no-tillage 

was high in spring samplings but completely declined in soil samples collected at the 

same site in summer (Figure 28). Moreover, the degree of plant damage recorded in the 

field on a short-term and long-term no-tillage field site in spring was reflected in the soil 
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concentration of glyphosate and AMPA residues, reaching values of 2.6-4.0 mg kg
-1

 soil 

even six months after the last glyphosate application (Table 13); - a concentration range 

reported for field soils shortly (15 d) after application of high doses (4-6 kg ha
-1

) of 

glyphosate (Franz et al., 1997).  
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Table 22: Glyphosate persistence in soil (Field Data) (modified after Franz et al., 1997). 

Soil type Rate  

(kg ha-1) 

Observation  

Time (days) 

Soil Residues 

Glyphosate AMPA 

Irrigation Ditchbanks  

A 5.6 158 0.37 μg g-1 0.74 μg g-1 

B 5.6 172 0.33 μg g-1 0.82 μg g-1 

Forest Soils  

Clay loam 2.0 92 0.08 kg ha-1 0.09 kg ha-1 

Mull/brown soil 2.0 92 0.06 kg ha-1 0.02 kg ha-1 

Brown soil-weak 2.0 92 0.22 kg ha-1 0.11 kg ha-1 

Podsol mull/brown 2.0 92 0.15 kg ha-1 0.08 kg ha-1 

Soil-weak podsol 

(Weakly formed iron) 

2.0 98 0.27 kg ha-1 0.03 kg ha-1 

Podsol 4.0 98 0.38 kg ha-1 0.05 kg ha-1 

Iron podsol 2.0 104 0.05 kg ha-1 0.02 kg ha-1 

Iron podsol 4.0 104 0.13 kg ha-1 0.05 kg ha-1 

Agriculture Soil  

Loam 2.6 249 0.9 μg g-1 0.3 μg g-1 

Fine silt 2.6 249 1.0 μg g-1 0.2 μg g-1 

Sandy loam 4.0 103 1.1 μg g-1 - 

Clay loam 2.0 15 0.8 μg g-1 - 

Clay loam 4.0 15 1.5 μg g-1 - 

Clay loam 6.0 15 2.4 μg g-1 - 

 

No comparable relationships were detected for the residues of other herbicides such as 

Pendimethalin or Propyzamide (Table 15). Although, glyphosate persistence in soils can 

be highly variable (Franz et al., 1997) depending on soil properties, applied rate and 

observation time (Table 22), the observed levels of glyphosate residues recorded in spring 
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on long-term no-tillage field sites, expressing plant damage (Figure 11, Figure 12), are 

unusually high (Table 13, Table 22), suggesting a reduced degradation potential in these 

soils.  

In soils, the primary route of glyphosate degradation is microbial, although some 

photodegradation and chemical degradation may occur (Tu et al., 2001). Microbial 

glyphosate degradation in soils usually follows a biphasic pattern with rapid 

decomposition rates associated with increased microbial activity shortly after glyphosate 

application, which are rapidly slowing down due to soil adsorption of glyphosate, 

reducing the availability for soil microorganisms with degradation potential (Sprankle et 

al., 1975; Nomura and Hilton, 1977, Araújo et al., 2003). It is well documented that in 

reduced or no-tillage systems, the alterations in soil-physical and chemical conditions can 

induce changes in structure and activity of soil microbial communities (Helgason et al., 

2009). However, this was mainly characterized by increases in soil microbial populations, 

activity (Staley, 1999) and microbial biomass (Kandeler et al., 1999, Balota et al., 2003) 

with increased abundance of fungi, bacteria, arbuscular mycorrhizal fungi and 

actinobacteria (Mathew et al., 2012; Feng et al., 2003; Helgason et al., 2009; Pankhurst et 

al., 2002) and a higher diversity of bacterial communities (Ceja-Navarro et al., 2010). 

Also increased the abundance of pathogens has been reported (see  3.3), particularly under 

mono-cropping or short non-host crop rotations (Khan, 1975; McFadden and Sutton, 

1975; Gossen and Derksen, 2003). These changes can be attributed to crop residues left in 

the topsoil, which provide organic matter and also to reduced soil disturbance, preventing 

disruption of microbial consortia and soil aggregates (González-Chávez et al., 2010). 

Accordingly, also in this study, the investigated long-term no-tillage soils showed 

increased levels of organic matter (Table 10), but surprisingly, the degradation potential 

for glyphosate soil residues obviously declined.  

In face of this unexpected result, soil respiration as indicator for microbial activity was 

determined in samples collected from five closely neighbored pairs of field plots with 

long-term and short-term no-tillage history (Table 16), since the degradation of 

glyphosate is related to microbial activity, and its degradation rate is correlated with the 

rate of soil respiration (Franz et al., 1997). In accordance with increased levels of 
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glyphosate residues in long-term no-tillage soils, in four out of five cases, soil respiration 

was reduced by long-term no-tillage management (Table 16), suggesting a lower 

microbial activity, contrary to the experiences of other studies reported in the literature. In 

contrast to our results, Zablotowicz et al. (2009) found no differences in glyphosate 

degradation, comparing topsoil samples from long-term conventional tillage and no-

tillage soybean field sites. However, there are also studies showing a decline in 

glyphosate degradation potential in soils repeatedly supplied with glyphosate (Andréa et 

al., 2003). Apart from tillage management, also glyphosate itself has distinct effects on 

soil microorganisms, reflected by the well documented increase in microbial activity 

shortly after glyphosate application due to stimulation of microorganisms with glyphosate 

degradation potential (Araújo et al., 2003). For certain pathogenic fungi, both, stimulatory 

(Fusarium) and inhibitory effects (Puccinia) have been reported (reviewed by Duke et al. 

(2012). Also for certain strains of plant growth-promoting bacteria (Bradyrhizobia, Mn-

reducers) inhibitory effects of glyphosate are documented while other strains remained 

unaffected (Duke et al., 2012) and contradictory reports are also available for arbuscular 

mycorrhizal fungi (Duke et al., 2012; Zaller et al., 2014). Glyphosate has antimicrobial 

properties since many soil microorganisms express a glyphosate-sensitive shikimate 

pathway similar to higher plants and accordingly antibiotic applications of glyphosate 

have been patented (Abraham, 2010). Although it has been claimed that the glyphosate 

concentrations required for antibiotic effects are far above the levels commonly detected 

in field soils (Monsanto, 2013). Toxic effects on soil microorganisms have been reported 

at glyphosate soil concentrations around 1 mg kg
-1

 (Roslycky, 1982), which is comparable 

to the soil concentrations detected in this study on long-term no-tillage field sites, 

associated with plant damage (Table 13).  

The availability of modern high throughput sequencing technologies offers the 

opportunity to the responses of the whole soil microbiome to agricultural management 

practices and first studies have already employed these methods to investigate potential 

effects of long-term glyphosate use on rhizosphere microbial communities with a 

common outcome that Actinobacteria populations declined (Barriuso et al., 2010; 2011; 

Molli et al., 2016). However, under real field conditions, it is difficult to separate 
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glyphosate effects from effects related to the tillage management since both factors are 

acting simultaneously with a potential to impact on soil microbial communities.  

4.5 Phytotoxicity of herbicide residues in long-term no-tillage soils 

Even high soil residues of herbicides are not necessarily correlated with a high risk of 

phytotoxicity. In the case of glyphosate, strong and rapid anion exchange adsorption to 

clay minerals, iron, and aluminum oxides as well as adsorption to organic matter by 

formation of hydrogen bonds has been reported (Aubin & Smith, 1992; Haney et al., 

2000; Veiga et al., 2001), which strongly limits the bioavailability as a major principle of 

glyphosate detoxification in soils but also increases the persistence of bound residues 

(Veiga et al., 2001).  

Consequently, the water-soluble and therefore, a potentially plant-available fraction of 

glyphosate residues (Zablotowicz et al., 2009) was extracted from soil samples collected 

in spring on from a long-term no-tillage field site with high potential for plant damage 

(Hirrlingen, Friedhof, Table 13). Calculated back to an assumed soil moisture level of 20 

% (w/w) favorable for plant growth, soil solution concentrations of 3.1 µg L
-1

 of 

glyphosate and 1.5 µg L
-1

 of AMPA have been determined. Since these concentrations 

were detected in spring, six months after the last glyphosate application, it can be 

assumed that the damaged wheat plants on long-term no-tillage fields were continuously 

exposed during the culture period to these low concentrations of glyphosate and AMPA 

and even somewhat higher levels can be expected shortly after herbicide application. 

However, the observed concentrations are by far lower than the toxicity threshold of 

approximately 2 mg L
-1

 (approx. 10 µM), reported for root exposure of winter wheat to 

glyphosate between 1 and 10 d in hydroponics (Mülleder, 2009; Bott, 2010). This raises 

the question whether long-term exposure to sub-toxic concentrations of plant-available 

glyphosate soil-residues can induce phytotoxicity by cumulative effects. To test this 

hypothesis, hydroponic culture experiments were conducted with winter wheat, with 

continuous root exposure to glyphosate in concentrations of 3–5 µg L
-1

 and the main 

metabolite AMPA (1.5-2.5 µg L
-1

) supplied during 3-6 weeks to the liquid growth 

medium. To simulate the situation in the soil also a combination of glyphosate and AMPA 
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was applied. The growth medium was replaced daily to account for microbial degradation 

of the herbicides. Under field conditions, microbial degradation of herbicide residues in 

the soluble phase will be compensated by continuous desorption from the solid phase to 

reach the solubility equilibrium. To minimize the effects of glyphosate inactivation by 

complexation with the high concentrations of divalent cations (Sprankle, 1975) supplied 

in the nutrient solution, mineral nutrients were supplied only every second day and during 

the remaining time, the herbicides were applied in pure aqueous solution. 

During the first week of the culture period, a trend for increased shoot biomass production 

and root growth was observed in the glyphosate variant (data not shown), which may 

represent the well documented hormesis effect of plant exposure to subtoxic levels of 

glyphosate with stimulatory effects on plant growth (Schabenberger et al., 1999; Duke et 

al., 2006, Cedergreen, 2008) although the underlying mechanisms currently are not well 

understood. However, the growth stimulatory effects disappeared after three weeks and 

turned into negative responses indicated by chlorosis development (Figure 32) and 

inhibition of fine root development, with an initial reduction by 20 % after three weeks 

(Figure 34) and about 50 % reduction after six weeks of the culture period (Figure 35) 

similar to the damage symptoms observed in the pot experiments and under field 

conditions (Figure 19, Figure 12). Accordingly, also Cedergreen (2008) reported the only 

short-term expression of hormesis effects of glyphosate, which were not sustained over 

longer time periods. Surprisingly, significant inhibitory effects on fine root production 

were observed only in the treatments with AMPA and the combination of glyphosate and 

AMPA but not with glyphosate alone (Figure 35). This finding suggests that 

unexpectedly, long-term exposure to AMPA and not to glyphosate was responsible for 

root growth depression in winter wheat. Accordingly, no shikimate accumulation was 

detected in the root tissue (Table 18) since in contrast to glyphosate, AMPA toxicity is not 

associated with inhibition of the shikimate pathway and accumulation of shikimate 

(Reddy et al., 2004; Duke, 2011) and the same observation was also made in soil culture 

in pot experiments with wheat plants damaged on soils collected from long-term no-

tillage field sites (Figure 31). The identification of long-term exposure to AMPA as major 

stress factor inducing the observed plant damage symptoms on long-term no-tillage soils 

is also in line with the finding that transgenic, glyphosate-resistant soybean was similarly 
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affected as compared with a non-resistant cultivar, since tolerance to glyphosate in the 

genetically modified soybean plants is not associated with tolerance also to AMPA 

toxicity (Reddy et al., 2004).  

A histological evaluation of AMPA-induced damage symptoms in roots of winter wheat, 

using vitality staining with triphenyltetrazolium chloride as physiological indicator for 

metabolic activity (Stūrīte et al., 2010), revealed no inhibition in the root tips and the 0-3 

cm subapical root zones of seminal roots in winter wheat, treated with a mixture of 

AMPA and glyphosate but a substantial decline in vitality in the more basal zone of 

lateral root emergence, particularly expressed in the central cylinder as origin of lateral 

root initiation (Figure 36). Assuming a cumulative effect as a prerequisite for the 

induction of AMPA toxicity, this pattern would make sense: in the young meristematic 

and actively growing parts of the root may not be able to accumulate AMPA up to toxic 

concentrations due to permanent formation of new cells by the activity of the meristem. 

However, the more basal, older parts of the root are exposed to the initially sub-toxic 

concentrations of glyphosate and AMPA over longer time periods, which may finally 

affect the information of new laterals in these root zones due to cumulative effects. This 

may be of particular importance on the long-term no-tillage field sites in spring when new 

root formation usually starts in overwintering crops just in the topsoil with the highest 

levels of herbicide residues (Aletto et al., 2010) to replace root decay during the winter 

period (Chen et al., 1983). Cumulative effects are possible since, in contrast to soil 

microorganisms, plants are usually not able to degrade glyphosate and AMPA (Reddy et 

al., 2004, Duke, 2011).  

4.6 Physiological basis of plant damages induced by glyphosate 

residues in long-term no-tillage soils  

 Glyphosate in soil solutions is prone to rapid microbial turnover yielding AMPA as 

major degradation product (Franz et al., 1997; Van Eerd et al., 2003). Reddy et al. (2004) 

proposed a similar degradation mechanism of glyphosate in soybean plants and concluded 

co-occurrence of glyphosate and AMPA in plant tissues, although, among crops, 

glyphosate degradation to AMPA seems to be mainly expressed in soybean. Glyphosate 
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penetrates into plant tissues and reaches to active metabolic tissues. Similarly, organs with 

high rates of metabolic activity and growth are important sinks of glyphosate and AMPA 

(Feng et al., 2003). Toxic effects of glyphosate have repeatedly been reported even in 

glyphosate-resistant (GR) plants. These effects comprise induction of chlorosis and 

limitation of photosynthesis, disturbances in mineral nutrition and oxidative stress 

(Zobiole et al., 2009, 2012). Also in our experiments with GR soybean grown on 

herbicide contaminated long-term no-tillage soil, the strong damage was observed. Ready 

et al. (2014) explained the damage in GR plants as AMPA toxicity, which is generally 

less severe than glyphosate toxicity but the underlying mechanisms are still poorly 

understood. Due to the high structural similarity of AMPA as well as glyphosate with 

glycine and alanine may induce chlorosis, also observed in our study (Figure 33) due to 

competitive interactions during synthesis of these amino acids required for chlorophyll 

formation (Gomes et al., 2014). Accordingly, Serra et al. (2013) reported 87% and 64 % 

reduction of glycine and glutamic acid, respectively in Arabidopsis thaliana after 72 h 

exposure to low concentrations of AMPA (300 µg L
-1

). Recently, Samsel and Seneff 

(2016) also discussed the risk that the structural similarity of glyphosate with glycine, 

which also applies for AMPA, could lead to the replacement of glycine in proteins, 

associated with impairment of protein (enzyme) functions.  

In the study by Serra et al. (2013), glyphosate and AMPA were applied separated and in 

combination to Arabidopsis thaliana. Glyphosate alone and in combination with AMPA 

significantly inhibited root growth, while AMPA alone did not affect. By contrast, we 

noticed root growth inhibition in AMPA and glyphosate & AMPA treatments but no 

significant effects induced by single application of glyphosate. However, in our study 

mainly the production of fine lateral roots was affected, while Serra et al. (2013) 

investigated only primary root elongation and applied higher herbicide concentrations 

(300 µg L
-1

 vs 1.5-5 µg L
-1

) for a shorter period (72 h vs 3–6 weeks) with a different plant 

species. Lee et al., (1983) reported perturbances of indole acetic acid (IAA) metabolism 

as a key regulator of root growth. Both, IAA conjugation and oxidation were increased, 

associated with reduced levels of free IAA and growth inhibition in tobacco callus, treated 

with sub-lethal concentrations of glyphosate or AMPA. However, so far little attention 
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has been given to the effects of AMPA in plant hormone metabolism and biosynthetic 

pathways (Gomes et al., 2014). 

Based on the very limited information available in the literature on physiological effects 

of sub-lethal doses of glyphosate and particularly AMPA on higher plants, a RNAseq 

transcriptome study was initiated with winter wheat exposed in hydroponic culture to 

concentrations of glyphosate (G), AMPA (A) and a combination of both (GA) determined 

for the soil solution on long-term no-tillage field sites (see  4.5). Root material for analysis 

of gene expression was harvested at 19 days after sowing (DAS) just prior to the 

appearance of visible damage symptoms. Transcription profiles were compared to those 

of untreated control plants. After data processing and distribution into functional 

metabolic categories (bins) according to Mapman (Usadel et al., 2009), the largest 

number of changes in gene expression relative to the untreated control was recorded for 

the AMPA (total 160 bins) and the glyphosate+AMPA (total 130 bins) treatments but 

only 68 bins in the glyphosate variant. Since significant effects on root growth inhibition 

were recorded only in the AMPA and AMPA+glyphosate variants (Figure 35), particular 

emphasis was placed on bins showing alterations in gene expression for both, AMPA and 

AMPA+glyphosate treatments but not in the glyphosate variant (Figure 38).  

4.6.1 Hormonal balances 

In this category, up-regulation of cytokinin-related bins and down-regulation of bins 

related with ethylene metabolism (Figure 38) suggested disturbances in hormonal 

balances. Both ethylene and cytokinins are involved in lateral root (LR) formation. The 

gaseous hormone ethylene is reported to promote the development of lateral root 

primordia (LRP) and has stimulatory effects on LR growth (Clark et al., 1999; 

Ivanchenko et al., 2008) by regulating auxin transport and signaling (Stepanova and 

Alonso, 2009). The root growth-promoting effect of ethylene is higher in regions nearer 

the growing tips (Ivanchenko et al., 2008; Negi et al., 2008). Ethylene affects LR 

development in dose dependent manner (Moriwaki et al., 2011): in low concentration, it 

promotes LR initiation. In higher doses, it inhibits LRP initiation but promotes the 

emergence of existing LRPs (Ivanchenko et al., 2008). Similar to ethylene, also cytokinin 



Chapter 4 Discussion  120 

action shows a biphasic pattern with respect to root development. Higher concentration of 

cytokinins can act as auxin antagonists and suppress LR formation in various plant 

species, such as Arabidopsis, rice (Oryza sativa), alfalfa (Medicago sativa) and poplar 

(Populus alba) (Bellini et al., 2014). Cytokinins exert their inhibitory effects on lateral 

root formation by interference with cytokinin signaling and affecting PIN-mediated auxin 

transport (reviewed by Fukaki & Tasaka, 2009). However, the reported inhibition of auxin 

transport seems also to play a role in the induction of lateral root formation at low 

cytokinin concentrations by mediating the formation of auxin gradients required for 

initiation of LRPs (Jung and McCouch, 2013). Moreover, almost every aspect of root 

apical meristem activity is controlled by auxin/cytokinin interactions (Schaller et al., 

2015). Based on the documented importance of ethylene and cytokinins for lateral root 

growth, it is feasible to assume that the observed changes in gene expression of ethylene-, 

and cytokinin-related genes by long-term exposure to trace concentrations of AMPA (and 

glyphosate+AMPA) are a likely cause for the observed disruptions of lateral root 

development, which needs to be further investigated to clarify the underlying 

mechanisms.   

4.6.2 Aquaporins 

Major intrinsic proteins (PIPs, TIPs, Aquaporins) represent another group of genes 

strongly down-regulated in AMPA-, and AMPA+glyphosate treated wheat roots (Figure 

38). Aquaporins are membrane channels, facilitating water movement across cell 

membranes. They belong to the large family of MAJOR INTRINSIC PROTEINS (MIPs) 

and were identified in plants in 1987 (Fortin et al., 1987). Lateral roots are derived from 

secondary meristems (LRPs), formed in the central cylinder and LR emergence requires 

mechanical force to drive out the developing roots (Vilches-Barro and Maizel, 2015). 

This driving force is provided by increased turgor pressure mediated by water movement 

through aquaporins. In most cases, aquaporins are localized to the plasma membrane 

(Plasma Membrane-intrinsic proteins, PIPs) but the Tonoplast Intrinsic Proteins (TIPs) are 

targeted to the tonoplast (Maurel et al., 2008; Li et al., 2014). In Arabidopsis, the 

expression pattern of AtTIP1; 1 promoter is correlated with cell enlargement in roots, 

hypocotyls, leaves and flower stems (Ludevid et al., 1992). PIPs play an important role in 
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LR emergence (Péret et al., 2012). Plant roots use auxin for the regulation of aquaporins, 

and this fine-tuning of water flow speeds up LR emergence (Vermeer et al., 2014). Péret 

et al. (2012) demonstrated auxin-regulated water exchange between the stele, the LRP, 

and the overlaying tissues by controlling aquaporin expression. This happens with the 

most highly expressed aquaporin genes, PIP2;1 by auxin-dependent reduction in 

expression in cortical cells. On the other hand at the base of the LRP and underlying stele, 

the PIP2;8 is activated, leading to repressed water uptake in overlaying tissues but water 

transport is directed from the overlaying tissues into the primordium. This type of 

coordinated regulation of aquaporins is required for the proper emergence of LRs 

(Vilches-Barro and Alexis Maizel, 2015) and the aquaporin genes involved in this process 

are promising candidates to be investigated by for quantitative expression analysis in 

AMPA-treated wheat roots by RT-qPCR. The finding that AMPA affects the expression 

of ethylene and cytokinin-related genes may offer a link also to the expression patterns of 

aquaporins since both hormones are involved in regulating the formation of auxin 

gradients in the root tissue responsible for the coordinated expression of aquaporin genes 

triggering lateral root formation (see  3.5.4.5). 

4.6.3 Stress defense 

The third group of genes significantly down-regulated by AMPA and AMPA+glyphosate 

treatments was represented by genes involved in stress defense (abiotic stress, jasmonate, 

redox-related, phenolics, and also aquaporins). In contrast to glyphosate, where induction 

of oxidative stress is well-documented, based on experiments investigating oxidative 

stress markers it is hypothesized that this is not the case for AMPA (reviewed by Gomes 

et al., 2014). Also in our study, no AMPA-induced up-regulation of oxidative stress-

related genes could be detected. However, the coordinated down regulation of various 

stress-related genes after long-term exposure to AMPA observed in the present study 

(Figure 38) may indicate a general decline in stress tolerance implicating a higher 

sensitivity to various abiotic and biotic stress factors, which was accordingly 

characteristic also for the plants grown on long-term no-tillage field sites characterized by 

high levels of herbicide residues (see  3.5.4.5). 
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Taken together, the transcriptome analysis provided valuable information on candidate 

genes and physiological processes to be confirmed by RT-qPCR and to be addressed in 

more detailed studies to clarify the underlying mechanisms. For a complete picture also 

covering alterations at the post-transcriptional level, as a next step a proteome and 

metabolome analysis would be recommended for wheat plants exposed to long-term 

exposure of AMPA and glyphosate+AMPA, preferentially conducted during the 

expression of first visible damage symptoms. Particular emphasis should be placed on 

hormonal changes during initiation and emergence of lateral roots.  

4.7 Mitigation Strategies 

The present study suggests that delayed degradation of glyphosate soil residues seems to 

be a primary factor for induction of crop damage, observed on the investigated long-term 

no-tillage field sites. Pant damage appears to be mediated by yet unknown cumulative 

effects of long-term root-exposure to sub-toxic levels of herbicide residues, with the 

microbial degradation product AMPA but surprisingly not glyphosate as a major toxic 

compound. The major damage symptoms were characterized by inhibition of fine root 

production, limiting acquisition of water and nutrients, finally responsible for stunted 

growth and weak plant development. Since inhibition of glyphosate degradation was 

mainly restricted to the winter period and early spring and disappeared with higher soil 

temperatures during summer, fortunately, long-term accumulation of herbicide residues 

was not a problem. This situation may offer the opportunity to find protective measures 

for the plants, restricted to the critical re-growth stage in early spring. However, the long-

term goal must be focused on the restoration of the herbicide degradation potential of the 

respective soils.   

4.7.1 Inoculation with plant growth-promoting microorganisms 

Since impairment of root growth and nutrient acquisition were identified as major stress 

factors for plants grown on the selected long-term no-tillage field sites (Figure 19, Table 

11), approaches to overcome or at least mitigate the inhibition of root growth and to 

increase nutrient availability, could offer a measure to improve plant performance during 
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the critical period in early spring. Artificial inoculation of crops with selected strains of 

symbiotic or associative microorganisms, expressing plant growth-promoting properties 

could provide a potential strategy in this direction. Root growth promotion by production 

of auxins (Steenhoudt and Vanderleyden, 2000) or preventing accumulation of excessive 

levels of ethylene with inhibitory effects on root growth (Li et al., 2000), as well as 

mobilization of phosphate and other sparingly- available nutrients (Rodríguez et al., 2006; 

Bashan and De-Bashan, 2010) are discussed as major modes of action of the respective 

microbial inoculants. Selected strains of the bacterial and fungal genera Pseudomonas, 

Bacillus, Rhizobium, Azospirillum, Burkholderia, Trichoderma, and Penicillium, as well 

as various arbuscular mycorrhizal fungi are among the most widely used commercially 

available inoculants with the ability to colonize plant roots as rhizosphere microorganisms 

or even as endophytes. Moreover, various strains of Pseudomonas, Bacillus, Rhizobium, 

Trichoderma, and Penicillium exhibit glyphosate degrading potential (Jacob et al. 1988, 

Arfarita et al. 2013). This could offer the possibility to restore glyphosate degradation on 

long-term no-tillage field sites at least in the rhizosphere of the target plants. Biocontrol 

potential against root pathogens, also frequently reported for these inoculants (Fröhlich et 

al., 2011), could be an additional beneficial feature. Although, after application to natural 

soils, the inoculant populations decline more or less rapidly due to competition between 

inoculants and indigenous microbial populations of the substrate (van Veen et al., 1997), 

even a transient expression of the beneficial effects over a limited period would be helpful 

to protect the plants on the long-term no-tillage soils during the critical time period in 

spring. Recently, several studies have reported the isolation of microbial strains with a 

particularly high potential for glyphosate degradation (Eman et al., 2013; Kryuchkova et 

al., 2014). However, a mitigation strategy with potential for practical application would 

require inoculants in sufficient amounts to be applied under field conditions. Therefore, a 

range of commercial formulations, containing spores of Bacillus amyloliquefaciens 

(RhizoVital
®

 42 TB, ABiTEP, Berlin, Germany), Trichoderma harzianum (Trichostar
®

 

Trichoderma T58, GERLACH Natürliche Düngemittel GmbH & Co. KG Hannover) and 

a dry formulation of Pseudomonas sp. DSMZ 13134 (Proradix
®
, Sourcon Padena, 

Tübingen-Germany), were tested in a pilot study. 
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In winter wheat, grown in a pot experiment on soils collected from long-term and short-

term no-tillage field sites, plant growth suppression was induced on the long-term no-

tillage soil (Figure 13). Interestingly all tested microbial inoculants stimulated plant 

growth, demonstrating the principal effectiveness of the plant growth-promoting 

microorganisms but unfortunately, this effect was restricted to the short-term no-tillage 

soil (Figure 41). The same inoculants were also tested under field conditions with spring 

applications on three long-term no-tillage field sites, expressing symptoms of plant 

damage in winter wheat. However, also under field conditions, no beneficial effects of the 

plant growth promoting microorganisms were recorded (Figure 42). These observations 

are in line with general findings on high variability in performance of microbial 

inoculants, depending on a wide range of environmental conditions (Crowley and Kramer, 

2007). In the field experiment, early summer drought most probably affected the survival 

and the colonization efficiency of the inoculated microorganisms, as previously reported 

also in field experiments with Proradix
®

 used for inoculation of barley (Fröhlich et al, 

2011). Since rhizosphere microorganisms depend on carbohydrate supply via root 

exudation of the host plant, every stress factor affecting root growth and activity will also 

impair interactions of the host plant with the microbial inoculants and finally root 

colonization and the expression of plant growth-promoting effects. This scenario applies, 

both, for the drought-stress induced suppression of plant growth in the field experiments 

and also for the pot experiment with strong impairment of root growth on the long term 

no-tillage soils. Moreover, within selected microbial species, not all strains exhibit 

tolerance to herbicide residues, such as glyphosate as demonstrated, e.g., for Rhizobia 

(Duke et al., 2012). Therefore, it is by far not sure that the selected inoculants represented 

glyphosate-tolerant strains.  

4.7.2 Detoxification potential of biochar amendments 

Facing the lack of protective effects of the investigated microbial inoculants against plant 

damage on long-term no-tillage soils (see  3.6.1), the application of biochar was tested as a 

“non-biotic alternative”, supposed to be less sensitive to variable environmental 

conditions. Adsorption onto activated carbon is the best available method used, e.g., in 

filter technologies for removal of agrochemicals and other synthetic organic chemicals 
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including glyphosate from drinking water (Nourouzi et al., 2010). Activated carbon is 

charcoal, which is usually treated with oxygen to increase its micro-porosity and surface 

area. The enhancement of surface area of charcoal by thermal and chemical treatments is 

referred as “activation” (Ahmad et al., 2014). However, a large-scale application of 

activated charcoal in agricultural practice would not provide an economical solution.   

Similar to activated carbon, the use of so-called biochar has gained increased attention for 

removal of organic contaminants from water and soil (Zhang et al., 2013). Soil 

amendment of biochar is a historical practice observed in indigenous cultures in Australia, 

Africa, South America and Asia (Joseph et al., 2013). The origin of biochar is connected 

to the Amazon region, where the dark earth was created through slash and char techniques 

locally known as Terra Preta de Indio (Lehmann and Joseph, 2009). In this soil, enriched 

in black carbon-like biochar, increased bacterial diversity was reported (Kim et al., 2007; 

O’Neill et al., 2009). According to the “International Biochar Initiative”, it represents a 

solid material obtained from the thermochemical conversion of biomass in an oxygen-

limited environment’’ (IBI, 2012). Lehmann and Joseph (2009) defined biochar as ‘‘a 

carbon-rich product obtained when biomass such as wood, manure or leaves is heated in a 

closed container with little or unavailable air’’. Biochar is a solid co-product of pyrolysis 

of biomass with potential as a soil amendment, which gains increasing interest for further 

examination from scientific and commercial perspectives (Jaiswal et al., 2014).  

Biochar produced by burning of wood, wheat, and rice residues showed 400-2500 times 

more effectiveness in adsorption of pesticides as compared to the soil (Yang and Sheng, 

2003; Yu et al., 2006; Xu et al., 2008). Wang et al., (2010) and Jones et al., (2011) 

reported that biochar reduced herbicide leaching. Hanger et al., (2013) showed that birch 

wood-derived biochar could reduce glyphosate leaching but did not affect glyphosate 

degradation in soil. There are contradicting reports concerning the role of biochar in 

degradation of chemical pesticides. Yang et al., (2006) and Jones et al., (2011) reported 

higher persistence of pesticides like simazine and diuron in biochar-amended soils, 

probably as a consequence of reduced bio-availability by immobilization. By contrast, 

Zhang et al., (2005) reported accelerated the degradation of benzonitrile in the presence of 
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biochar and explained it as result of increased soil nutrient content through biochar 

application, which can stimulate soil-microbial activity. 

Other benefits attributed to biochar application comprise improvement of soil structure 

(Verheijen et al., 2010), increased soil water holding capacity (Glaser et al., 2002) and 

decreased nutrient leaching (Sohi et al., 2009). In some biochars, high ash continent 

contributes to input of plant nutrients like potassium, calcium and magnesium (Deenik et 

al., 2011; Rajkovich et al., 2012) and also effects on disease suppression, such as foliar 

gray mold and powdery mildew in tomato, sweet pepper and mite damage in sweet pepper 

(Elad et al., 2010) have been reported.   

Taken together, the amendment of biochar may offer a perspective to reduce the 

concentration of bio-available herbicide residues and other toxins on long-term no-tillage 

sites during the critical growth phase in spring and adapt it to the reduced degradation 

potential on the respective soils. Degradation of herbicide residues may even be increased 

by beneficial effects on soil microbial activity, repeatedly observed after biochar soil 

amendments (Kolb et al., 2009; Kolton et al., 2011; Rutigliano et al., 2014). A plant-

strengthening effect may further arise from an additional input of nutrients and potential 

suppression of pathogens. Therefore, the effects of biochar amendments on the growth of 

winter wheat were tested in model experiments on soils collected from long-term and 

short-term no-tillage field sites and on soils and substrates intentionally contaminated 

with glyphosate. 

On long-term no-tillage soil with growth-suppressive potential on winter wheat, 

application of a pyrolysis biochar produced from woody substrate obtained from 

landscape conservation work (Pyreg GmbH, Doerth, Germany), completely restored 

normal plant development at an application rate of 5% (v/v). The beneficial effects were 

first detectable already during the first week after sowing (Figure 26), suggesting 

adsorption of a toxic soil contamination as the primary cause for the protective effect. 

Improved nutrient supply or stimulation of microbial activity for degradation of toxic 

compounds would most probably require longer time periods for expression of symptoms.  
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To evaluate the potential of the selected biochar preparation for detoxification of 

glyphosate residues, two additional winter wheat pot experiments were conducted:  

On a peat culture substrate - sand mixture (1:1) characterized by an extremely low 

adsorption potential for glyphosate, with artificial contamination using a commercial 

glyphosate formulation (Roundup Ultramax
®

) at high application levels (8 L ha
-1

) to 

create a worst-case scenario, and biochar applications at different concentrations (0, 1 and 

5 % v/v).   

A soil experiment conducted on a short-term no-tillage soil showing no potential for plant 

damage, artificially contaminated with Roundup Ultramax
®

 (6 L ha
-1

) and supplied with 

biochar concentrations of 0, 5, 10 and 20% (v/v).  

In both cases, glyphosate application induced plant damage (Figure 26, Figure 43), as 

expected most strongly expressed on the peat culture substrate/sand mixture (Figure 43) 

with the lowest adsorption potential for glyphosate. Also in both cases, glyphosate 

damage was rapidly mitigated by biochar amendments with an optimum concentration of 

5% (v/v) detectable already during seedling emergence. Lower concentrations were 

inefficient, and higher concentrations started to induce inhibitory effects again (Table 20, 

Table 21). These findings demonstrated that the selected biochar was able (i) to detoxify 

glyphosate residues in soils even at high contamination rates, and (ii) to protect plants also 

from the toxic effects on the investigated long-term no-tillage soils. However, in 

accordance with literature reports (Graber et al., 2010) high doses of biochar (≥ 10% v/v) 

exhibited growth inhibitory effects, since biochar contains different types and amounts of 

organic compounds, which can be phytotoxic at certain levels (Graber et al., 2010; 

Spokas et al., 2011; Kloss et al., 2012; Rogovska et al., 2012).   

Based on the optimum biochar concentration of 5% (v/v) and a specific volume of 4.3 mL 

g
-1

 for the selected biochar product, the field application rate would translate into 

approximately 35 t ha
-1

, incorporated into the 10 cm topsoil layer. This is in the upper 

range of biochar soil amendments reported in other field studies (Kammann et al., 2016).  

Under real field conditions, the required amounts may be lower, since the optimum 

biochar concentration of 5 % (v/v) was determined under worst-case conditions, shortly 
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after application of extremely high Roundup
®

 doses of 6-8 L ha
-1

, while the application 

rates on the investigated field sites ranged around 2 L ha
-1

. However, in no-tillage 

systems, incorporation of soil amendments may be problematic due to mechanical 

disturbance of the topsoil layers. Nevertheless, under practical conditions, biochar 

applications in the seeding row may be sufficient to create a protective effect for the 

seedlings, since the highest contamination with glyphosate residues is expected in the 

uppermost soil layers (Alletto et al. 2010). This would further reduce also the biochar 

requirements, as an important economic factor in the face of current prices between € 300 

to € 1,000 per ton (Kammann et al., 2016). Therefore, an additional pot experiment was 

conducted with glyphosate and biochar amendments restricted to the 5 cm topsoil layer. 

However, under these conditions, only a trend for improved fine root production was 

detected in the biochar treatments (Table 21).   

As a next step, field-testing of biochar application would be indispensable but was 

unfortunately not possible within the available time frame of the thesis. However, it is 

also evident that even a successful biochar application could only provide a symptom-

oriented, short-term mitigation strategy since the causes of the observed re-growth 

problems on the investigated long-term no-tillage field sites are not addressed with this 

approach. Moreover, the potential of the applied biochar for adsorption and inactivation 

of soil glyphosate residues may also cause problems, since similar inactivation effects can 

also be expected for other organic compounds, such as seed fungicides, insecticides and 

other herbicides with soil activity (Kookana et al., 2011; Nag et al., 2011) or secondary 

metabolites involved in plant-microbial signaling.         

4.7.3 Long-term remediation strategies 

As a consequence of increasing problems with yield depressions on the investigated long-

term no-tillage field sites, meanwhile also changes in management practices have been 

introduced, partly by conversion into ecological farming. Other farmers still perform no-

tillage cropping, including regular glyphosate application but established more variable 

crop rotations including winter wheat, oilseed rape, maize and soybean and started to use 

cover crops, such as mustard, pea and Crotalaria (Schiebel, 2015). In all cases, a distinct 
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recovery from re-plant damage has been observed during the last two years with 

beneficial effects also on crop health, such as reduced Fusarium disease. These 

observations may be explained by re-establishment of a more variable soil microflora, 

induced by the increased crop diversity, recruiting individual crop specific rhizosphere 

microbiomes (Mendes et al., 2013). Since many soil microorganisms of different 

phylogenetic origin can degrade glyphosate (Jacob et al., 1988; Arfarita et al., 2013), a 

higher soil microbial diversity is likely to promote the degradation of glyphosate soil 

residues and counteracts selective accumulation of crop-specific pathogens (Karlen et al., 

1994, Gossen and Derksen, 2003). Therefore, the observed re-plant damage effects on 

long term no-tillage field sites, associated with delayed degradation of herbicide residues 

may be rather attributed to a reduction in microbial diversity, as a consequence of narrow 

crop rotations and monoculture, than to direct effects of long-term glyphosate use.  
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5 Concluding remarks 

Well-documented challenges of no-tillage farming systems, comprise risks for promotion 

of soil pathogens (Khan, 1975; McFadden and Sutton, 1975) and allelopathic effects, 

(Patrick and Koch, 1958; Kimber, 1973; Rahman et al., 2005), particularly under 

conditions of limited crop rotations (Friedrich and Kassam, 2012; Ratnadass et al., 2012). 

The present study suggests that this can also apply for phytotoxic effects of glyphosate 

soil residues, as a consequence of delayed microbial degradation. The latest observations 

indicate that a lack of crop diversity seems to be more important in this context than 

potential direct effects of glyphosate on microbial communities. This is in line with the 

findings of a recent review covering more than 300 studies on the impact of herbicide 

application on soil functions (Rose et al., 2016). With some exceptions (e.g., repeated 

application of sulfonylureas), by far the majority of the studies reported only limited or 

only transient effects on beneficial soil functions relevant for agricultural practice after 

herbicide applications in recommended doses. However, this should not be generalized, 

since obviously, the behavior of herbicide residues in soils can be modified by 

management practices (e.g., crop rotation, cover crops) and may lead to unexpected 

residual effects, even when herbicide application is performed according to the 

recommendations. Of particular importance is the finding that under these conditions, 

even sub-toxic concentrations and even metabolites of minor toxicity, such as AMPA can 

affect crop performance by cumulative effects. The mechanisms are still largely unknown 

and require further investigations at the molecular and physiological level. The same 

holds true for potential synergisms or antagonisms (Serra et al., 2013) since frequently 

combinations of herbicides, fungicides, and insecticides are applied during the culture 

period. Also, the impact of soil properties and climatic factors needs to be addressed more 

in detail. 

The importance of crop diversity management for the sustainability of no-tillage systems 

is further illustrated by a recent meta-analysis, summarizing the effects of crop rotation 

and cover crops on yield formation in no-tillage systems obtained from 610 field 

experiments in 63 countries (Pittelkow et al., 2015). As also observed in the present 

study, the results of the meta-analysis demonstrate continuously increasing yield losses in 
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no-tillage systems lacking crop rotations and/or cover crops (Figure 11, Figure 13), with 

increased pathogen pressure, accumulation of allelochemicals and herbicide residues as 

potential causes.               

       

Figure 47: Meta-analysis of yields losses, depending on the time of no-tillage cropping and the 

integration of crop rotations and cover crops. Numbers within bars indicate the 

number of observations (modified after Pittelkow et al., 2015 and Finckh et al., 2016).    
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Complete overview (Pageman) on alterations in gene expression 
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