FORSCHUNGSZENTRUM FZID

FZID Discussion Papers

CC Innovation & Knowledge




Discussion Paper 42-2012

A Taxonomy of Innovation Networks

Benjamin Schon
Andreas Pyka

Download this Discussion Paper from our homepage:

https://fzid.uni-hohenheim.de/71978.html

ISSN 1867-934X (Printausgabe)
ISSN 1868-0720 (Internetausgabe)

Die FZID Discussion Papers dienen der schnellen Verbreitung von
Forschungsarbeiten des FZID. Die Beitrage liegen in alleiniger Verantwortung
der Autoren und stellen nicht notwendigerweise die Meinung des FZID dar.

FZID Discussion Papers are intended to make results of FZID research available to the public
in order to encourage scientific discussion and suggestions for revisions. The authors are solely
responsible for the contents which do not necessarily represent the opinion of the FZID.



A Taxonomy of Innovation Networks

Benjamin Schon

Andreas Pyka

Chair of Innovation Economics

University of Hohenheim

b.schoen@uni-hohenheim.de

a.pyka@uni-hohenheim.de

ABSTRACT

In this discussion paper we develop a theory-bageology of innovation networks with a
special focus on public-private collaboration. Thaxonomy is theoretically based on the
concept of life cycles which is transferred to domtext of innovation networks as well as on
the mode of network formation which can occur eithgontaneous or planned. The taxon-
omy distinguishes six different types of networksl ancorporates two plausible alternative
developments that eventually lead to a similar oetvstructure of the two types of networks.
From this, important conclusions and recommendatfonnetwork actors and policy makers
are drawn.
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Introduction

The investigation of innovation networks in diffetesettings as well as the assessment of
their performance as a result of their respectharacteristics requires the employment of a
suitable taxonomy. However, developing such a targnis not an easy task. Innovation
networks are not static but permanently evolvinghieir most characteristic features such as
their composition and structure and sometimes evidnregards to their research directions
and goals. Additionally, these processes are higitgrrelated and co-evolutionary and, thus,
hard to be distinguished and analyzed individudllyese changes are mostly small and in-
cremental and endogenous to the network. Theyadiag place permanently but not con-
tinuously during the network evolution. This congplies the identification, distinction and
comparison of innovation networks since the obskmiéferences might simply be due to
different stages in the life-cycle of the respegtimnovation networks. Thus, any useful ty-
pology of innovation networks has to take into asitdhese co-evolving dynamics.

A theoretically and empirically well-founded contdipat incorporates these dynamic aspects
and at the same time allows for a clear cut disbncof the different stages is the life cycle
concept. The life cycle concept was successfulpliep and tested in the context of manufac-
turing industries and their underlying products @aechnologies (Abernathy and Utterback,
1978; Jovanovic, 1994; Klepper, 1996; 1997). Theidoalea of the concept is to divide the
evolution of industries into sequential and distiistpable stages. Such stages also shape the
evolution of innovation networks, which makes tlomaept of life cycles a valuable tool in
investigating the evolution of innovation networks.

While the life cycle concept enables us to distislgunnovation networks along their devel-
opment path, we also need a characteristic featusxplain the observable differences be-
tween innovation networks that are at the sameestétheir life cycle. This is done by intro-
ducing the mode of network formation as the seatintension to our taxonomy. Here, em-
pirical evidence suggests that there are basi¢aly modes in which a social network is
formed — it either emerges spontaneously or istedem a planned manner. Since the mode
of network formation has an enduring impact onftirelamental network characteristics and
their evolution the incorporation of this dimensiallows us to distinguish and compare
therein distinct networks even when they are astme stage of their respective life cycle.

Finally, the observable differences between therdift types of innovation networks have to
be identified quantitatively in order to make thempirically comparable. Since innovation

networks are composed of actors and the relatiodsraeractions between them, the social
dimension is of uttermost importance in this cont&@hus, we need a methodology that al-
lows us to incorporate the social aspects of isteya and cooperation as well as the peculi-
arities of the respective network composition ammdcsure. A methodology that incorporates
all these features is the Social Network AnalySislA). Combining the concepts of life cy-

cles and modes of network formation and applyinghoas and indicators from social net-
work analysis to identify and distinguish differerdtwork types will provide us with a com-

prehensive typology of innovation networks that te¢ke requirements of investigating pub-
lic private innovation networks in services.



The Life Cyle Concept in the Context of InnovationNetworks

The discovery of the industry life cycle (ILC) hbsen one of the most important develop-
ments in industrial dynamics of the last thirty igedMany sectors have been found to follow
a similar development path, going through the saemies of stages which can be described as
a life cycle (Abernathy and Utterback, 1978; Jowaro01994; Klepper, 1996; 1997). Given
that an ILC is followed by many but not by all thectors, a very important question arises
concerning the determinants of and the conditiodeuwhich an ILC can be observed. The
literature has provided a number of answers todhesstion. In the following we review the
literature on the nature and dynamics of the IL@ieetransferring it into the context of in-
novation networks.

The concept of ILCs has had a number of precur&etevant examples of these concepts are
dominant designs (Abernathy, Utterback, 1975), netdgical regimes (Nelson, Winter,
1977), technological paradigms (Dosi, 1982), tetdgioal guideposts (Sahal, 1985) and the
concept of the product life cycle (Vernon, 1966 rGmd Klepper, 1982). As it turns out all
the sectors for which a life cycle was observedmaicitly defined by products and produc-
tion technologies. However, it was not until theQ9 that the term ‘industry life cycle’ was
regularly used. The scholars who contributed tostinely of ILCs did not simply change the
term but considerably improved our understandintpefunderlying dynamics.

The ILC is usually characterized by the existenicseven regularities or principles of evolu-
tion (see Klepper 1996 and Saviotti et al. (2007):

. Entry is dominant in the early phases of the dijele while exits progressively domi-
nate in the course of the cycle

. First movers generally have a leadership positittich guarantees their long-term
viability and, thus, firm size increases in the iseuof the cycle

. Market shares are highly volatile in the begimnirut tend to stabilize over time

. Production increases in the initial stages ardlies in the final stages

. Product innovation tends to be replaced by poasovation

. Product variety disappears over time and a dontidasign emerges

. A massive process of exit (shakeout) occurséndker stages of the life cycle

These characteristics lead to the well known secpieh stages in life cycle concepts. While
there is some variance in the number of distinages in the different life cycle concepts
there are four broader stages that are generaltiynduished: The initial stage (also fragmen-
tation or emergence), the growth stage, the mgtstage (also shake-out), and finally the
decline stage. This leads to the ILC developmetit pa illustrated in figure 1.



Figure 1: The four general stages of the life cycleoncept.
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In the remaining of this section we apply the IL@hcept to the evolution of public private
innovation networks. This proceeding is based enagsumption that networks, just as indus-
tries and technologies, undergo several distinginkhphases which are shaped by processes
similar to those of industries.

In the ILC concept the initia/dmergence stages characterized by the entrance of the first
entrepreneurial firm(s) setting up a business tmroercialize their invention (Ayres et al.,
2003). By this they actually transform the inventioto an innovation. The entrepreneur is
quickly followed by some early followers (imitatprseeking a head start to realize early
mover advantages. The number and rate of new éstaarthis stage is still quite low. Also,
the firms in the industry are still rather smalli@she output produced by each of them. Since
the underlying technology is in its infancy it hast yet created a large demand. Furthermore,
the associated knowledge base can be expecteddedagaphically and institutionally spe-
cific (Van Beuzekom, 2001; Van Reenen, 2002). btdhnology, for example, experts were
located in a handful of US and UK universities @mgo, 1989). For the internet it was a few
US universities, the US military (ARPANET), and CEREuropean Organisation for Nu-
clear Research). These examples also illustratgthdic support and financing can be essen-
tial for the development of the basic technologthét early stage of the life cycle (McMillan
et al., 2000). Government policies in this protdtistry stage are likely to be local in a geo-
graphical and structural sense. They may takedha bf piecemeal, local regional funding
projects and/or academic research grants (CaracasthMuldur, 2001). Such flexible public
support might be appropriate at this stage of ifeeclcle, given the high degree of risk asso-
ciated with highly specialized embryonic technoésgithe high number of technology fail-
ures that occur, and the fact that the relevarinelogical knowledge is not yet widely dif-
fused (Coombs and Metcalfe, 2002; Walsh and Rodp#002).



Transferring this stage of the ILC to innovatioriwarks we are talking about the process of
network formation. Following theoretical reasonisugd empirical evidence network forma-
tion can either be triggered by an enabling actagmerge spontaneously in a self-organised
manner. We will discuss these formation processeistheir implications for the network
composition and structure in more detail below.

The consecutivgrowth stage of the ILC is characterized by an increasing nundfefirm
entries. At this stage a new industry emerges.cEBmral activity at this stage is the marketi-
zation of the new technology. Competition is comtinsly intensifying as competitors start to
realise business opportunities. The new entranie hadisproportionally large share in (in-
cremental) product innovations, providing them vtk incentive to enter the market (Klep-
per, 1996). The new start-up firms are the majoouators and become key players in the
emerging industry (e.g. Saxenian, 1994 for ICT stduin Silicon Valley). With the high
entry rate the number of competing versions antinelogical standards increases. At the
same time the firms grow bigger in size and outpatwever, the firm growths as well as the
associated market share are subject to permanangehNo incumbent firm has yet estab-
lished a dominant position or enforced a technalalgstandard.

Applying these ideas to innovation networks we olese rapid expansion in the number of
members as well as in their diversity. Again, thare different scenarios or mechanisms by
which a network can grow. One scenario resemblesoavball-pattern in which new mem-
bers are recommended by the latest newcomers, amoselves were recommended by ear-
lier network members. Another scenario is the siglecand invitation of new members by
just one or a few very central actors of the ca®wvork. This latter scenario is more likely in
networks that were initiated by one or a few emaphctors — such as government agencies or
departments. Again, we will discuss these scenariasore detail below.

The maturity stage (shake-out) is characterized by a turning poitie fiet number of firms
declines because the exit rate exceeds the en&y Bae to the various substitutive products
and technologies the competition intensifies. Tidvidual firms have to increase their mar-
ket share or are forced to exit the market. Thus,oleserve a shift in the innovative focus
from (incremental) product innovation to (cost-reihg) process innovation which allow for
the realisation of economies of scale (Abernathy @tterback, 1978; Utterback and Suarez,
1993; Utterback, 1994; Klepper 1996 and 1997). Fhi# to cost-based competition leads to
the observed shake-out, which decreases the deidityns in the respective industry. As a
result, vertical and horizontal integration leadrtoreasing market concentration and the vari-
ance in market shares and innovativeness decrizasesing larger firms.

! The first increasing and later decreasing numibéirras is the most consistent regularity found i€ litera-
ture. Of course, the maximum number of firms asl welthe lower value attained in mature phases vary
considerably between industries. However, the tatale pattern is robust. In industrial dynamicBestent
explanations for this shake-out are offered. Whitterback and Suarez (1993) explain it with the eme
gence of a dominant design, Jovanovich and MacBo(E®94) assume external technological shocks,
whereas Klepper (1996) argues that the timing tfyéa determining the shake-out.



Despite the broad observability of the shake-oulLids some authors argue for a relatively
long and stable maturity phase instead of the rasharp turning point in the number of

firms. In other concepts further innovations digrtie ILC at the maturity stage leading to

the start of a new cycle within the same indusiiyshman and Anderson, 1986). The decline
stage is postponed for those firms that are abbdtpt the new technology. This leads to a
development in which the industry growth rate var@ound a certain level (see figure 2);
however, it might also lead to an overall growthilod entire industry with every innovation

increasing the size of the market and the corredipgmumber of firms (see figure 3).

Figure 2: Cycle-Recycle based on Tushman and Andas¢1986; 1990Y.
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The maturity stage of innovation networks is chaased by intensive interaction and con-
siderable knowledge flows. At this stage learnind &nowledge generation reach their peak.
As the underlying technology becomes more appboatirientation the focus shifts from ex-
ploration to exploitation and from radically newlg@ns to their incremental improvement.
This is reflected in the network architectures atrdctures as well as in the roles played by
the different actors. The resulting network stroesurange from a star-network (i.e. there is a

% See also Cox (1963) and Cunningham (1969).
% See Buzzell (1966).



central actor that decides, coordinates and canabblinteractions within the network) to a
completely connected network (i.e. democratic decimaking, self-organisation and self-
control). This has obvious consequences for thesrplayed by the actors in the respective
networks (e.g. central actors, peripheral actaygakactors etc.) as will be discussed in more
detail below.

The decline stageof the ILC is characterised by what Schumpeteledakreative destruc-
tion’. The mature industry is threatened by nevihtetogical developments that substitute its
products and services. Because of the decreasm@rak (market saturation and a shift to-
wards the new products and services) many compangeforced to leave the industry, oc-
cupy a niche or come up with further innovations.

In the context of innovation networks this corrasg® with the dissolving of the network be-
cause the networks’ purpose is accomplished tieegeneration, commercialisation and dif-
fusion of innovation). However, for the purposelut paper the decline stage is not of inter-
est and, thus, will be left aside in the following.

In order to develop a useful taxonomy of innovati@tworks we have to introduce a second
dimension that allows us to explain the differenbesveen networks that are at the same
stage of their life cycle. As it turns out, the reaaf network formation is crucial in explaining
these differences with respect to network charesttes such as structure, composition and
the roles played by different actors. Therefore, nlext section discusses the determinants of
the mode of network formation and its implicatidosthe subsequent network evolution.

The Mode of Network Formation as a Second Dimensioof the Network Typology

In this section we introduce the second dimenstoour taxonomy of innovation networks:
the mode of network formation. This dimension igpartant because the mode of network
formation has major implications for the compogsitistructure and evolution of networks. In
principle, two modes of network formation can bstidguished: A network can either be cre-
ated in a planned manner by an enabling actor @aritspontaneously emerge (see Powell et
al., 1996; Koza and Lewin; 1999; for an overview B®z et al. 2000).

The following section is largely in line with theudy by Doz, Olk, and Ring (2000) who

summarize the existing literature and conduct gelacale study to investigate the two types
of network formation. Their analysis shows that #otual mode of network formation de-

pends to a large extent on the existence of enviemal pressure or opportunities in the form
of economical, technological, legal or demograpifianges (e.g. increasing global competi-
tion, the emergence of new substitutive technokgemvironmental pressure, economic lib-
eralization etc.). Addressing such a threat or dpjpdaty often requires some sort of innova-

tion. Thus, there is an incentive for groups obesto innovate in the same direction. Firms
that are active in the same industry, for examptg, only share the same environment but
also react similarly to changes in their environtndinus, they develop a common interest
when being confronted with such external shockghigs way, environmental pressure leads
to an alignment of interests among the actors ahduastry, market or an otherwise defined
group of actors. The environmental pressure ancedhaterest also facilitate the formation

of familiarity and trust among potential networkgop@rs, which, in turn, moderate opportun-



istic behaviour and facilitate collaboration (Uz897). The more severe the possible conse-
guences of these external changes are the lesstmeredis for an enabling actor to trigger
network formation. Thus, in the presence of envimental pressure and the resulting align-
ment of interests networks may emesgentaneously and in aself-organised manner.

In cases in which the common interest or the néges collaborate is hard to see for the
individual actors, an enabling actor (syn.: cenptahner or triggering actor) is needed to ini-
tiate network formation. This might be the case mh® underlying technology is not well
specified, the relevant knowledge is tacit or diffties in the allocation of costs and benefits
prevent actors from actively seeking collaboratidhere are manifold reasons why the rele-
vant actors might not align to approach an exteitmalat or opportunity. Think of public and
private organizations pursuing different objectiyes. profits vs. welfare) and thus unable to
see the possibility to combining their resources.ddite contrary, the relevant actors do not
see the opportunity of collaboration because theydaect competitors in the same field or
market. Depending on the network at hand the rbl@noenabling actor can be taken by an
individual (e.g. in scientific networks), a firm.¢e in industrial R&D networks), or a public
actor like a government agency or department {ermpvation networks addressing basic re-
search and public goods or servickdhe role of the enabling actor is to contact ptéén
members and inform them about the existing threatpportunity that is best addressed by
collaborating. Therefore, in cases where the needlvantage of collaboration cannot be seen
by the relevant actors, an enabling actor is neéaedeate and design the network in a rather
planned manner.

Having introduced the two theoretical dimensioroof network typology we now turn to the
methodology of Social Network Analysis that allous to distinguish not only the different
types of networks according to the mode they amnéd and the stage of the life cycle they
are in, but also enables us to identify and disfisig the different roles of actors. The next
section provides a short introduction to the metaiod some relevant indicators.

The Method of Social Network Analysis

Social Network Analysis (SNA) is a widely used nuatho investigate all sorts of social net-
works. It provides insights in the roles playeddifferent actors as well as in the structure,
composition, and dynamic of the network itself. Sh#n therefore be used to develop a ty-
pology of different network-structures and netweodinpositions as well as to derive some
predictions about how well they are suited to sergpecific purpose.

Because of this multi-dimensionality of social netlss the SNA is especially eligible for the
investigation of the generation and diffusion ofvnkenowledge within networks. With the
words of Mduller-Prothmann (2006 p.14%pcial network analysis can serve as a proper

4 While the role of the enabling actor is not forlpakestricted to academic and public institutiotiese are
likely to be the key ‘champions’ and key actorshivitsuch networks (Liebeskind et al., 1996; Argyaed
Liebeskind, 1998); this is particularily likely itases where there is no clear business opportforithe
underlying technology - as is the case for manyipgmods and services.

® A short description of the relevant indicators #meir interpenetration can be found in the appendi



method to analyze informal communication of knogdeand, thus, help to localize expertise
and transfer of knowledge'

Following the common dichotomy between 'ego-netwoakd 'socio-networks' we divide the
relevant SNA measures into 'actor-related measanels’network-related measures'.

Actor-Related Measures

From what has been discussed, it became cleanthal actors play the same role in a net-
work. Some actors are very active in their collaltions and entertain many collaborative
relationships, whereas other actors are only mallgitonnected. This is of major impor-
tance for the understanding of innovation netwavkgre most often a few actors are respon-
sible for the connection of various knowledge feelahd/or the respective actors, whereas
others contribute less and exert no influence argoat all. These differences are captured by
the actor-related measures of social network arsafigsdiscussed in the following.

One of the most prominent actor related measurggisofcentrality. The concept of central-
ity is closely related to that gowerandinfluence 'An individual does not have power in the
abstract, they have power because they dominatrothego's power is alter's dependence.’
(Hanneman and Riddle (2005) p. 132). There are.elkiew several measures of centrality,
each of them with a different focal point. Whilettegree centralityaccounts for the amount
of incoming and outgoing ties an actor has to iteal neighbours, theloseness centrality
also considers all indirect ties to all other astiorthe network and therefore provides us with
information about the position of the respectiveoaavithin the networkBetweenness cen-
trality, in turn, is a measure for the control of inforroatflows within the network. It enables
us to identify the importance of an actor by theeekto which it serves as artermediaryor
liaison connecting otherwise unconnected actors or grofipsctors. Thus, the Centrality-
measures are used to identify the most centralsapgosingly ‘'most important' actors of a
network. Actors in a central position face fewemstwaints and have more opportuni-
ties/choices (e.g. in receiving a certain resoubszause of a better bargaining position and
greater influence. Such central actors can bo#itefoor hamper the effectiveness of an inno-
vation network in that they connect different knedge fields or exclude other network
members from getting access to certain information.

The most elementary measure of centrality isddggee centrality. Degree, or the degree of
connection, thereby means the number of ties arr &ets (incoming, outgoing or all). Ac-

cordingly, an unconnected actor has a degree @nOactor that maintains connections to
every other member of the network has a degree ®h& more similar the degrees of the
different actors of a network are, the less cenbraindividual actors are.

The degree-based centrality of an undirected nétigocalculated by the sum of all ties of an
actor nwith the other actors of the network:

Co(n)=d; =D % =>x, fori# j
j j



The variable 'x' stands for the adjacency matridevk; are the single elements of this matrix.
The 'n' stands for the total number of actors enrtbtwork, while pdenotes one single actor.
The inequality ofi # j simply means, that the relation of an actor todalhis excluded.

To eliminate the influence of network size the @egbased centrality measure has to be nor-
malised. This is done by dividing the, 8y the maximal possible centrality value (i.e. @ st
network, where one central actor maintains tieallt@ther actors):This is how the Freeman
graph centralization measures can be understoagly ttxpress the degree of inequality or variance in
a network as a percentage of that of a perfect sework of the same siz&n a network consist-
ing of n actors, the maximal possible centralityjueawould be n-1, which is the maximal
number of ties one actor of the network could hawe normalised degree-based centrality
measure is denoted as,@nd calculated as follows:

PRI
C (n-)= j — j — CD
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fori # j

In innovation networks, the centrality measuged@n be interpreted as the poterdgietess to
external knowledgsources for a single actor. The higher the catynaleasure is, the easier
it is for the corresponding actor to access knogadgorovided by other actors in his network.

One of the major advantages of the concept of @egeatrality is its applicability even to
large networks. However, it has one major shortogmit only accounts for the ties an actor
has to its direct neighbours and therefore neglg@smportance of the position within the
network. An actor with a low degree centrality (feannections to other actors) could for
example be situated in a critical point of the miation flow while another actor with a high
degree centrality has many redundant ties andeigfitre of less importance to the informa-
tion flow than the first actor. This shortcomingdddressed by the measures of Closeness
Centrality and Betweenness Centrality.

The Closeness Centrality not only includes the direct ties of an actor Huirairect ties to all
other actors in the netwofkAccordingly, closeness centrality does not jusasuee the prox-
imity of an actor to its direct neighbours, butpi®ximity to all other actors of the network.
Actors that have shorter geodesic distances tor otieenbers of the network have a higher
closeness. This increases bificiency in receiving or distributing informaticemd, hence,
gives them a certain form gbwer— namely from acting as'eeference poinf® High close-
ness centrality therefore reflectee ability to access information through the comroation
flows within the networkin innovation networks the closeness centralggatibes the strate-
gic position of an actor within the network. If antor with a high closeness centrality left a
network, this would have severe consequences éoiutiictioning of the overall network.

8 Hanneman und Riddle (2005), p. 137.

" While such indirect ties are expected to be weaker and more prone to interference they are easier to maintain in terms of
cost and time.

8 Hanneman und Riddle (2005)



To measure closeness centrality the concept ofebdesics (shortest paths) is used. Analyti-
cally, closeness centrality is then calculatechas¢ciprocal value of the geodesic distances:

Ce(n)=— = =(>d(n.n,))"* fori# |

Ydn.n) =

To make different values of closeness centralitygarable it is again necessary to normalise
the measure by measuring the mean geodesic digtmatieother reachable vertices:

C'.(n) :n(n——l)

> d(n;,n;)

fori # j

The Betweenness Centrality, going back to Freeman (1977), is another very comoamtral-

ity measure. Like the closeness centrality it aleasiders the indirect ties of actors, but is
based on a different concept. While the closenessraity focuses on the proximity of an
actor to all other actors of the network, the betmreess centrality is a measure for the control
of information flowswithin the network and the function of single astasintermediaries
(the actorbetweerother).Betweennestherefore is the extent to which a particular adits
‘between’ all the other actors in the network mmther words, the percentage of times an ac-
tor lies on the shortest path 'between’ two otlsewra. Actors that lie on many shortest paths
between other vertices have a higher betweennassathers. An actor is the mgoewerful
andinfluential, the more indirect ties of other actors are mediated controlled by him/her.
This implicates that actors with a high betweennssstrality do not necessarily have to
maintain many direct ties themselves. It is quitegible that a good part of the information
flows within a network passes through only a viemportant ties. Such actors are therefore
referred to asntermediary liaison or bridges Networks that show a high level of between-
ness are moreulnerableto a disruption of information flows through stegic behaviour or
the retreat of these key-actors.

To calculate the betweenness centrality, it is sea®y to first calculate the shortest geodesic
paths for all pairs of actors in the network. Laakiat all these possible paths, it is tested for
every actor in how many of them he plays a medjatole. The more often an actor has a
mediating role (i.e. lies on these paths), the éigh his betweenness centrality.

Analytically, the betweenness centralityg}ds the probability that the communication be-
tween any two actors k and j goes via actor i. &wee the probability jb for every pair j and

k is calculated by dividing the amount of shorfesths between j and k that go viau(ig) by
the total amount of shortest paths between j agd. Khese probabilities will then be calcu-
lated and summed up for every pair of actors imtevork.

_ gm(m)

jk

bm(m)

Ce(m)=> Dby (n) forizjzk
< K



The betweenness centrality varies between 0 ant)((N-2)/2. To normalise this value, it has
to be divided by the maximum possible betweennafsevan actor could achieve. This
would be the central actor in a star-network an¢his3n+2)/2 (which is the same than (N-
1)(N-2)/2). The normalised betweenness centrdiigydfore is:

2CB (ni )

Cs(n)=——"—"—
B( |) n2_3n+2

The agent-based measures of SNA, as explained aboable us to identify the different
roles that actors may play in a social network sashinnovation networks. Depending on
their position and centrality they fulfil a certdimction within the networR.However, inno-
vations networks also differ with respect to trwierall network properties.

Network-Related Measures

While the arguments above belong to the ego-cepétispective in SNA, the following para-
graph deals with the ‘network perspective’. Thip-ttbown proceeding allows for the assess-
ment of the overall characteristics of a networkvadl as for the identification of its strong
and weak parts. From this, implications can beveerconcerning the need for changes in the
network structure or the absence of an importanttian (e.g. that of a broker or bridge).
Furthermore the number, size and connectivity bfstnuctures (such as cliques and clusters)
allows for the identification of the opportunitiasd constrains that single actors and groups
of actors face, as well as for the prediction efélvolution of the network.

The Network Density describes the general level of linkage among thers in a network. It

is the number of actors who are connected to e#uér,oexpressed as a percentage of the
maximum possible number of connected actors. Theank density therefore is the propor-
tion of ties in a network relative to the total noen possible (i.e. if all actors of a network are
directly connected with each other the densityd8%). It is a valuable measure which de-
scribes the overattoherenceof a network and therefore allows for implicatioz@ncerning
the speedof diffusion of information and knowledge withihe network and the levels sb-

cial capital and/or social constraints that actors face (Hammenund Riddle, 2005). The
density is calculated as follows:

n n
£ £~
Densityz, = — = forizjzk

Wy nfn-1) J
While n(n-1) is the total number of possible ties, k stafut the relation under consideration.
The concept is best suited for analysing and comgatata on multiple networks (e.g. net-
works in different sectors or countries).

° Examples for such roles would beordinators (actors who broker connections within the sameigyamate-
keepers (actors who broker connections between their owsug and another)jaisons or boundary
spanners(actors who broker connections between 2 diffegeatips) peripheral specialistswho are only
connected to one other member.



A common approach to assess the embeddednessroétiherk is to measure tmeean geo-
desic distance. The geodesic distance between two actors is githplshortest walk connect-
ing them (i.e. the smallest number of edges commgpttem). This geodesic path is often also
attributed to be the optimal or most efficient cection between two actors. The average
geodesic distance for one actor to all othersy#ration in these distances, and the number
of geodesic paths to other actors may all desaniportantsimilarities and differences be-
tween the actors how closelythey areconnected to their entire populatio®ther than con-
nectivity it is not about the possibility of reachianother actor, but about the length of this
connection. To apply geodesic distance to entitevorés we calculate the mean geodesic
distances for the network and every actor theismall mean geodesic distance indicates
that information is likely to reach everyone, anddb so fairly quickly. From the average
geodesic distances conclusions can be drawn cangetime speed of diffusignthe cost of
exchangegthe longer the geodesic distance the more expetise exchange is), thelner-
ability and stabilityof the network and thpower and influence as well as constraints and
opportunitiesof single actors.

Yet another network-measure is thegree distribution. It provides some important informa-
tion about the homogeneity or heterogeneity ofatters. A substantial amount of concentra-
tion within a network means that the power of indiial actors varies substantially which in
turn indicates that positional advantages are rathequally distributed in this network. As
we have seen above, the degree of an actor inarieis the number of connections it has to
other actors. Then, the degree distribution is Bintipe probability distribution of these de-
grees over the entire network. Thus, the degrewilifon measures how concentrated
around some central actors the network is. A higgrele distribution describes a network in
which there are no dominant central actors but maal-connected actors, while a low de-
gree distribution indicates the existence of oneamne more central actors. A network char-
acterised by a high degree distribution providesgfrerequisites for quickerandmore cer-
tain information-flow A network characterised by a low degree distrdyuts dominated by
some central actors that control information flamsl hold the network together.

A Taxonomy of Innovation Networks

Employing the introduced concepts of the indusifiy ¢ycle and the network formation we
are now able to distinguish six different typesefworks according to the stage of their life
cycle they are in (formation, growth, and maturayd the kind of their formation (planned or
spontaneous). Networks that are at the same sfdtpeip life cycle are distinguished using
the two indicators from Social Network Analysisttishowed the most significant difference
between our theory-based spontaneous and planhedrks.

Table 1: The six types of innovation networks.

e ooy

Spontaneous
Planned P1 P2 P3



In the following we apply this network typology tdentify the distinctive characteristics of
the different types of innovation networks basedtlo® discussed indicators and measures
from Social Network Analysis. This is done by a gamson of the spontaneous and planned
network for the three stages of the innovation oekwife cycle. To further enhance the un-
derstanding we illustrate the different types dinoeks and provide the respective SNA indi-
cators in brackets. However, these ‘stylized nelka/osire deducted from our theoretical con-
siderations and only serve as an illustrative exanp facilitate the understanding and dis-
tinction of the different network types.

The Formation Phase - Spontaneous Emergence vs. Rted Creation

At this early stage of network formation the cehpacesses are the composition and struc-
turing of the network. The (formal) structure ohetwork determines the communication as
well as the establishment of shared norms, a comiaguage and mutual understanding.
These factors facilitate trust and joint learning.

Since thespontaneous networkemerges due to some sort of external pressuréhanesult-
ing shared interest among a specified group ofragtg. from the same industry or region)
there is a high likelihood that many of the papating actors already know each other. This
might be due to previous market transactions, exachllaboration or informal relations. The
environmental pressure and common interest not faicllitate the achievement of an opera-
tional consensus regarding the composition, stracnd expected lifespan of the innovation
network which leads to more optimistic expectatiabsut the ability and stability of the net-
work, but also facilitates mutual learning (Dozaét 2000). Thus, if not too many resources
are dedicated to finding consensus, spontaneougoriet are better suited for exploitative
research since its members come from related fetdshave rather specialized knowledge
and capabilities in a certain field of technolo@ie resulting network structure is shown in

Other in theplanned network, here, an enabling actor takes the initiative famohs the net-
work according to his own perceptions. He idergifend invites the other members of the
network. By intentionally addressing them and pdowy the incentives to form a collabora-
tive network, the enabling actor largely determirtiee composition and structure of the
planned network. For this kind of network formatibris not necessary that the members
know each other; it is sufficient that the enablardor knows them. Accordingly, the inner
core of a planned network is most likely basedt@ndentral actor’s personal network or on
his pre-existing informal relations (see e.g. Eisedt and Schoonhoven, 1996; Pyka, 1997).
Depending on the purpose of the network they mogime from different fields and sectors
and include public as well as private actors. Wtiis heterogeneity of actors implies differ-
ent aims, cognitive structures and languages winigiose an obstacle to efficient knowledge
sharing and technology transfer it also increalsegpbtential of cross-fertilization and recom-
binant innovation (Nelson and Winter 1982; FlemR@D1; Fleming and Sorenson 2001).
This makes planned networks better suited for eagilee search (March 1991). However, the
costs of consensus finding might be relatively higther than in the spontaneous network,
where consensus is a matter of shared interastthie enabling actor who needs to seek this
consensus among the members of the network. Théingsnetwork structures are shown in
figures 5 and 6.



Figure 4: Stylized S1 Network.

Figure 5: Stylized P1-Network.

Looking at the network indicators it appears tltdegree centrality and degree distribu-

tion (i.e. the number of ties that actors maintaie)a measure of the network centrality is
rather high in the planned network as comparedéospontaneous network (96,36% com-
pared to 20%). The enabling actor possesses a hpechaegree of 100% (i.e. he is directly
connected to all other members of the network),leviiost actors are peripheral and only
connected to him. This leads to a highly unequgteke distribution and a network centraliza-
tion that leaves all the power, influence and cowtion with the enabling actor. In the spon-
taneous network, in turn, most actors maintainnalar number of relationships, which im-

plies that there is no enabling actor dominating nletwork, nor are there many peripheral
actors that are barely connected. Rather, powerirghgence are more evenly distributed

among the network members.



These differences in actor centrality have alscomapplications for other network character-
istics like, for example, theetwork density (i.e. the number of actors who are connected to
each other, expressed as a percentage of the maxpuossible number of connected actors).
In the spontaneous network the density is relatiiggjh at this initial stage of the network
life cycle (0,2879). Therefore, the respective aweévork is very stable and information and
knowledge diffuses quickly throughout the wholewmk. Furthermore, the network contains
a large amount of social capital and its actorsl@se constrained in the channels through
which they exchange knowledge and information.he planned network, in contrast, the
density is relatively low (0,1979), making the slif of the network as well as the knowl-
edge flows highly dependent on the enabling actor.

The Growth Phase - Growth by Attraction vs. Growthby Invitation

As indicated above, the two types of networks dig@r in the way they grow. While addi-
tional members of a spontaneous network are attldny the expected benefits of joining the
network or are recommended by existing memberspldraned network grows the way it was
formed: by the initiative of the enabling actor.ubhin aspontaneous networkadditional
members are recruited via a process of attractidnraternal recommendation. This leads to a
growth process that resembles a snowball-effeestiag members suggest or introduce the
new members. The resulting network is strong ialfitwithout having a strong and powerful
central actor. In thplanned network the central actor identifies and invites additiomam-
bers to the network. This leads to a network inclvhithe central planner is strong, while the
network itself is weak (i.e. fragile). The resuffinetwork structure resembles more a hub and
spoke network than the snowball pattern of the spwous network. The respective network
structures are shown in figures 6 and 7.

Because of these different growth processes oftapenus and planned networks the differ-
ence in their centrality persists. Looking at theseness centrality(i.e. the average distance

between all actors of the network) we observetthasspontaneous network still shows a rela-
tively low centralization (30,06%) compared to fileanned network (98,95%). Thus, because
the central actor in a planned network serves @snaector (syn.: boundary spanner or bro-
ker) all actors are in relatively close proximitye¢ach other. While this once again confirms
the central position of the enabling actor, it dlsticates a quicker and potentially more effi-

cient knowledge flow within the planned network.

Accordingly, theaverage geodesic distandsetween all pairs of actors is relatively shorter i

the planned network (1,905). There, no actor isentban two ‘steps’ away from any other
actor of the network, because they are connectethe central actor. This is different in the
spontaneous network, where some actors have tifermation to be passed on by several
other actors in order to reach their recipient §3)9 This is caused by the snow-ball like
growth process during which many members are recamded or attracted by just one actor
who himself might not be very well connected.
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Figure 6: Stylized S2 Network.

Figure 7: Stylized P2 Network.

The Maturity Phase - Egalitarian Maturity vs. Hierarchical Maturity

The maturity stage of the network life cycle is ity means less dynamic then the first two
stages. The repeated and intensifying interactetwéen the different actors as well as the
ongoing fluctuation in the composition of the netkwalso cause significant changes in its
structure. Although these dynamics are more promiimethe spontaneous network they are,
on a lower scale, also taking place in a plannédar&. Figures 8 and 9 show the structure of
the spontaneous and planned networks at this sfageir life cycle.
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Figure 9: Figure P3 Network.

As in the earlier stages the centrality tiebweenness centrality (i.e. the percentage of times
an actor lies on the shortest path 'between’ twercactors) is significantly higher in the
planned network compared to the spontaneous net{®d;k5% compared to 29,77%). This
is because the enabling actor is connecting adiradbtors and thus lies on many of the short-
est paths between any pair of actors in the netwlarkhe spontaneous network the picture
looks different. Here, the majority of the actaesdn the shortest path between a pair of other
actors. In the spontaneous network the picturedabierent. Thus, the betweenness central-
ity is more evenly distributed then in the planmetwork. Because most actors in a sponta-



neous network are connected to many others, ewaoy also lies on several shortest paths
between two other actors. Therefore we observesdinge pattern as in the first two stages,
with the planned network showing a very high cdidgation and the spontaneous network
showing a rather low one. Once again this illusgahe outstanding role that the enabling
actor plays as a boundary spanner in the planngtiorie He connects otherwise uncon-
nected actors and controls a large part of thernmédion flow between them. This provides
him with enormous power and influence within théwogk and at the same time makes him
‘the weakest point’ (syn.: cut point) when it comesnetwork stability. With him retreating
the network would dissolve.

These insights are confirmed by ttiegree distribution which is significantly higher in the
planned network (95,67 as opposed to 18,33). TiiEates that in the planned network most
actors are so called ‘peripheral actors’ or ‘peeigth specialists’ (they maintain no direct con-
nections except those to the central actor). Inspp@ntaneous network, in turn, we observe
more equally distributed degrees (most actors ra@mird similar amount of ties) which is
positively related to the speed, quality and catyaof knowledge exchange, as well as the
overall stability and density of the whole network.

Table 2 summarizes the predicted differences imeébpective SNA characteristics of sponta-
neous and planned networks in the different phaktwir life cycle.

Table 2: Characteristics of the six types of innov#on networks.

Actor Based Degree

Meeasures Centrality o =l

Closeness

Centrality o el

Betweenness

Centrality %1 high

Network Based

Measures Density high low

Mean Geodesic

Distance Ll e

Degree
Distribution

low high

This taxonomy is based on a highly stylized conoéptetwork evolution. Two scenarios that

are likely to be observed in real world innovatimetworks are the growth by preferential at-
tachment of spontaneous networks and the retrehieofentral actor at a certain point in the
life cycle of planned networks. Both, the procefpreferential attachment as well as the crit-
ical event of the central actor retrieving from tiegwork have a major impact on the network
structure and performance. We will discuss theseeots and their implications in the fol-

lowing section.



Alternative Dynamics — Growth by Preferential Attachment and the Delegating Retreat
of the Enabling Actor

Empirical evidence suggests that networks ofterwgog preferential attachment (Albert
and Barabasi, 2002Y.Other than in the growth by recommendation as dyide our typol-
ogy, this process is based on the idea that pateriv actors try to connect to the most cen-
tral (powerful, influential) actors. Following tHegic of this algorithm, new actors prefer to
attach themselves to existing actors accordingpeddtter’'s degree. The benefit of linking to
an actor with a high degree is that this providhesriew actor with short pathways and a high
connectivity within the network. Preferential atiatent is a likely scenario f@pontaneous
innovation networks. Linking themselves to a central actor provides tieg actors with
better access to the knowledge that flows withanribtwork. Yet another argument for pref-
erential attachment is reputation. As degree chiytia also a measure of prestige and influ-
ence, the new actors benefit from being linked teeiatral actor because this enhances their
own prestige and reputation which, in turn, incesatheir prospects of collaborating with
other attractive partners.

The growth by preferential attachment has seversemuences for the resulting network

structure. If the probability of a new actor to nent with an already existing actor depends
on the latter's degree, the networks produced kg dlgorithm show a skewed, scale-free

degree distribution. Those actors who were relbtigentral (i.e. had above average degrees)
in the first stage of the network life cycle growea more central during the following stages.

Thus, the process of preferential attachment umgerland even enhances the power and in-
fluence of central actors within a network. Theutesg network structure resembles more a

hub and spoke network than the snowball patterrdegeribed above. Thus, the growth by

preferential attachment of the spontaneous netwes@&mbles the growth pattern of a planned
network, where every actor attaches himself toethabling actor (the actor with the highest

degree centrality), except that there is not just central actors but several.

A very likely scenario in the evolution pfanned innovation networks is the retreat of the
enabling actor (central actor) at a certain pamnhetwork evolution. This would redistribute
the network positions of many actors and providedpportunity to significantly change the
overall network structure. Two theoretical consadiens reinforce the likelihood of this
event. First, every actor, including the enabliotpg has only limited resources and capacity
at his disposal (e.g. time, financial resourcef@rimation processing capacity etc.). Therefore
he cannot play the central role indefinitely bued& to delegate at least part of his responsi-
bilities to other members or retreat from the netwance his resources are exhausted. A sec-

9 powell et al. (2005) find evidence for scale-faegree distributions in the collaborations betweietechnol-
ogy firms. This tendency of firms to connect tohligconnected firms is also tested empirically tonell
et al. (2006) but has lead to ambiguous resultsedtity most networks exhibit power law distrilans
with exponents smaller than three in their degr@ag explanation why the actual observed distrilouis
less skewed than one would predict from prefereattachment is that ‘proximity matters’. Followitigis
reasoning new actors — even though attracted bgrtee with highest connectivity — often connecadtors
with lower degree if these are more proximate ip @inthe five distinguished dimensions of proximiiye.
cognitive, organizational, social, institutionahdageographical proximity).



ond rational is that the enabling actors’ only imiten might be to initiate the network forma-
tion and ensure its efficiency by composing andc$tiring it according to his perception be-
fore retreating from his central position. This @at scenario describes what is usually as-
sumed concerning the intention of a public actonprting basic research in a certain field or
fostering innovative collaboration on a regionakde This is confirmed Doz et al. (2000) who
find that public actors are often only interestegioviding the necessary environment before
moving on to other projects.

Looking at the indicators from Social Network Arsil/that we used to distinguish planned
and spontaneous networks it becomes clear thatetheat of the central actor would have
severe consequences for the structure and funegafithe network. The high values of cen-
trality observed in the planned network at all sta{ its life cycle illustrate the outstanding
role that the enabling actor plays as an infornmatimker, intermediary or boundary spanner.
He connects otherwise unconnected actors and ¢emtriarge part of the information flow
between them. As we have established before, k&tismely well informed about what is
going on in the network which gives him enormous/@oand influence within the network
but at the same time makes him ‘the weakest picut point’) when it comes to network
stability. With him retreating in an unplanned manrthe network would simply dissolve.
Thus, his retreat needs to be carefully preparbérelare at least three possible scenarios or
‘exiting strategies’ for the central actor: a) hauld install one successor who takes over his
position and responsibilities; b) he could instahumber of central actors who, together, ful-
fil his role; or c) he could establish the necegsanount of direct ties between all actors of
the network, so the network is stable and functievithout any central actor. Considering
these alternatives it becomes clear that optiowa)ld not solve the problem of limited re-
sources and capacity and, thus, is rather unlikdlo it would have no significant influence
on the network structure. Option c¢) in turn wowddd to a network structure that is similar to
the one we assumed for the spontaneous netwole anaturity stage. However, intentionally
establishing the necessary connectivity amongsh#tierogeneous actors of a planned net-
work seems an unrealistic endeavour. Thus, the prostising and also most likely alterna-
tive is option b). By delegating the responsibility different tasks or technological fields to
different actors, the retreating central actor eesuhat their capacity is not exceeded and, at
the same time, renders the possibility for labauistbn and specialization. All actors serving
a certain function, working on the same problenb@&onging to a certain technological field
will be linked to one rather central actor. Thikais for a closer and more intense interaction
within these groups of rather homogeneous actadstlagreby leads to the establishment of
further direct links between these actors. Theltegunetwork structure is characterized by a
group of central actors (i.e. the central core) #na densely connected among themselves and
to the members of their respective specialized ggolhis basically resembles the network
structure of spontaneous networks growing by pesifigall attachment. Thus, the two alterna-
tive developments we described here both leadret&ork structure that combines the ad-
vantages of short average path length with a hegjvee of clustering (see figures 10 and 11).
This network structure is referred to assmall world’ and is considered to be especially
advantageous for the creation and diffusion of keawledge — i.e. for innovation networks.
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Figure 10: Stylized S3 Network resulting from Growh by Preferential Attachment in S2.
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Figure 11: Stylized P3 Network after the Retreat othe Central Actor.

Following the arguments presented in this paragra@lexpect that over time the distinction
of the two types of networks becomes somewhat dédurAs networks evolve they change
with respect to many, if not most, of their chaeaistics (see e.g. Madhavan et al., 1998). The
network composition might change with the entraniceew actors and the exiting of others.
New relations might be established while othersdigtolved. The content and extent of es-
tablished relations might also change as well asrtiial purpose or objective of the network.
Thus the boundary between the two types of netwbek®mes permeable. What started as a
planned network of largely unrelated actors migitdme more and more like a spontaneous
network as new relations are formed, trust is kanld the formal structures are underpinned
by informal relations (Pyka, 1997; Lorenzoni anggarini, 1999). After interacting repeat-



edly on a formal basis, informal ties are createat £ven outlast the formal collaboration.
Following Hakanson (1989), we therefore postulh#g with an increasing duration of formal
cooperation, formal network structures mutate formal relationships as mutual trust and
confidence between the partners is built. Spontasmeetworks in turn might be threatened by
some sort of lock-in: Constrained by a strong comrmterest and similar capabilities and
knowledge bases spontaneous networks become inifleaind unable to recognize alternative
approaches in responding to changes in their emviemt (Uzzi, 1997). Thus, they might
have to change their focus from exploiting theilserg knowledge base to the exploration of
new alternatives. As argued above, this is bettereaed in a network that shows the charac-
teristics of a planned network (i.e. strong cenéetor, formalization, heterogeneous actors
etc.). Thus, if the network is a success or shosterial for further collaboration a central
actor might take the initiative and create a newwnek on basis of the existing relations.
From this we conclude that long-term network sual/ilepends on the ability to combine the
advantages of the two types of networks. We hageea that while the mode of network
formation might have an enduring impact it doesmeatessarily determine the network struc-
ture at later stages of the network life cyclesp®w@ling on the growth-process of spontane-
ous networks and the network-shaping activitiethefenabling (central) actor in the planned
network, we can also expect some convergence tewhedfavourable small world network
structure. This indicates a process of convergbeteeen the two network types. The con-
vergence of the two forms of networks can be soptets, that it is no longer possible to dis-
tinguish the two types of networks using the inthcafrom SNA.

Concluding Remarks

Drawing from theory and existing empirical evidenge proposed that knowledge-based
networks emerge either spontaneously due to envieotal pressure and a resulting shared
interest or by a ‘planned’ process involving anldimg actor initiating its formation and con-
trolling its growth. Which way a network forms itkeepends on the prevalent conditions.
The initiation stage with the process of networknfation is probably the most important
stage in the life cycle of an innovation netwonics it sets the stage for its further evolution.
Employing indicators from Social Network Analysi®ware able to distinguish these persis-
tent differences between spontaneous and plannedation networks along their life cycle.

However, theory and empirical evidence also ingidhtat the mode of network formation
does not determine all future developments andoouwgs of the respective networks. We find
plausible arguments for alternative developmenhgpahat lead to a rather similar network
structure. In the case of the spontaneous netwerlswggest the concept of preferential at-
tachment as an alternative growth pattern whichnha®r implications concerning the result-
ing network structure at the maturity stage. A spoaous network growing by preferential
attachment leads to a network that is charactetizea short average path length and a rela-
tively high clustering coefficient. These charaistirs describe what has been labelled a
‘small world network’ and are associated to quickowledge diffusion and the possibility to
exchange even complex knowledge. Because of thesadateristics, the small world network
is widely acknowledged as a highly efficient netkvstructure, especially in the context of
knowledge exchange and innovation.



We observe a very similar network structure fonpkd networks in which the enabling actor
retreats from its central position by delegating tunctions to a group of actors. This bears
some important implications for the changing rol@ctors as well as for the management of
public private innovation networks in services (&#INs). Focusing on public private inno-
vation networks we argue that the retreat of theraéactor (e.g. a public body) at the mature
stage of a planned ServPPIN is not only a venhlieed empirically confirmed scenario but
also constitutes a critical event that has sevensaquences for the functioning and stability
of the network. Since the central actor of a plahBervPPIN serves as the connector (also
boundary spanner or information broker) he is dsaeior the knowledge flow as well as the
overall stability of the network. Thus, if he redte without ensuring the viability and stability
of the network, the ServPPIN would dissolves. Duehie limited capacities and resources
that the individual actors have at their disposal because of the possibility to render effi-
ciency-gains through labour division and specisiimaassociated we suggest what we call a
‘delegating retreat’. This scenario envisages thisidon and delegation of the retreating (pub-
lic) actor’s functions and power on the shoulderseaveral public and private actors. These
actors should be members of the network for quitaes time, maintain direct ties to their
relevant peers within the network, and must haweem to be capable of handling this re-
sponsibility. However, the resulting flatteningtbe hierarchy not only imposes more respon-
sibility on the newly assigned central actors butati members of the network. Even the for-
merly peripheral actors are now obliged to estabtisw relationships and to interact more
intensely not only with the new central actors &lsb with the other members of their respec-
tive sub-group. While this constitutes a major @rade for the individual communication
capabilities of the actors, it allows for a moréemsive exploitation and exploration of new
solutions at the cluster and network level respebti

Another important aspect in this development igrign The disruptions and implications as-
sociated with the retreat of the central enablicipraalso depend on the current stage of the
network’s life cycle. To minimize the negative effe and to smoothen the process of restruc-
turing the retreat should take place at a stagéhath the network itself is stable i.e. a mature
stage. At this stage, the network is characterined high network density and connectivity
which ensure its capability to absorb the shocksltimg from the retreat of its central actor.
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