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Summary

Summary

Implementation of process analytical technologies (PAT) in food applications has attained a
remarkable motivation due to higher quality and safety standards in this field. PAT applications
also include rapid and non-invasive approaches which can be obtained from spectroscopic
techniques. Fluorescence spectroscopy together with chemometrics is considered to be an
outstanding analytical tool for fast and non-invasive technique for food analysis which can be
used in various food applications on industrial scale. It is known for its sensitivity and specificity
which can analyze the different foods and its ingredients while chemometrics helps to extract
the useful information from the spectral data. The different chemometrics tools used for
guantitative and qualitative analysis of spectral data, has increased the importance of this
spectroscopic technique in generating the new ideas and hypothesis to develop new analytical
methods which lead towards betterment in industrial operations for process and quality
monitoring. In this doctoral project, fluorescence spectroscopic together with chemometric has
been utilized to develop some new methods for determination of different parameters of wheat
which provides the central idea of the thesis.

First manuscript presents the potential of fluorescence spectroscopy to predict the analytical,
rheological and baking parameters of different wheat flours by just taking the spectral signature
without any sample preparation. Twelve different wheat flours milled from wheat cultivars were
used to analyze the analytical, rheological and baking parameters using the conventional
methods. These measured parameters were predicted from the spectral data taken for different
wheat flours using genetic algorithm coupled with partial least square regression. The model
obtained for protein, wet gluten and sedimentation value showing high R? = 0.90, 0.92 and 0.81
respectively. Similarly, the rheological parameters like dough development time and water
absorption were also predicted with low root mean square error of cross validation (RMSECV)
and high R*=0.95 and 0.77 respectively while pasting temperature showed R?=0.78.
Furthermore, moisture and volume of bread were predicted with high accuracy showing
R?=0.86 and 0.95 respectively in the baking parameters. Other rheological and baking
parameters like dough stability, softening, farinograph quality number, baking loss, crumb
hardness and springiness were not predicted well due to poor correlation and high error.

In the second paper, characterization of complex farinographic kneading process is performed
by using the fluorescence spectroscopy in combination with chemometric tools. The aim of this
investigation is to determine the impact of hydration of flour onto the spectral signals,
classification of farinographic curve and separation of wheat flours based on their bread making

performance. Secondly the middle curve of farinograph was predicted out of the fluorescence

Vi



Summary

spectra using partial least square regression (PLSR) which can help to predict optimal dough
development time. The spectra of the flour showed high intensities in protein, NADH and
riboflavin regions which reduce to 36 %, 58 % and 61 % respectively after the hydration process
depicting its influence due to structural changes in protein and oxidation of NADH. The
farinographic curve was divided into four phases and principal component analysis (PCA) has
been used to extract the qualitative information regarding the farinographic curve from the
fluorescence spectra to categorize all farinographic phases into hydration, dough development,
and stability and softening. Similarly, different pre-processing tools like standard normal variate
and generalized least square weighting generate good separation of various wheat flours during
the farinographic kneading process into different quality groups (E, A, B and C) on the basis of
their bread baking performance from the spectral data using PCA. Additionally, PLSR was
applied to predict the middle curve of farinograph out of spectral data showing a descent
coefficient of determination R?> = 0.75 with RMSECV of 14 Brabender units. However, more
research can lead towards the development of a sensor for determination of optimal dough
development time.

In another study, the nutritional parameters of 26 different types of wheat flour obtained from
different vendors from the supermarket were predicted using fluorescence coupled with linear
and non-linear chemometric tools. PCA applied on the spectral data for different types of the
wheat flours showing a clear separation. On the other hand, PLSR was used to quantify the
nutritional parameters of different types of wheat flours showing a good prediction for fat,
moisture and carbohydrates using cross-validation, with a R? of 0.88, 0.86 and 0.89,
respectively whereas the protein, sucrose and salt contents presented a little correlation in
PLSR. Therefore, locally weighted regression, a non-linear chemometric tool improves the
prediction ability of all of the nutritional parameters by decreasing the error with an increasing
R? The energetic value, protein, fat, carbohydrate, moisture, sucrose, salt and saturated fatty
acid contents showed R? of 0.96, 0.93, 0.99, 0.99, 0.98, 0.88, 0.95, and 0.99 respectively, for
different wheat flours.

The aforementioned results clearly demonstrate the potential of the fluorescence spectroscopy
in determination of analytical, rheological, baking and nutritional parameters of the wheat flours.
They present that it can be used to characterize and categorize the farinographic kneading
process, which is important in the bread-baking industry. More research in this direction can
result in developing a sensor for predicting the quality parameters and processing operations in
the cereal based industries rapidly and non-invasively which are important for regulatory and

screening of the wheat on quality characteristics for marketing and end product evaluations.
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Zussamenfassung

Zusammenfassung

Aufgrund immer hoherer Anforderungen an Produktqualitat und Sicherheitsstandards ist eine
Integration von aktueller Prozessanalysentechnik (PAT) in der Lebensmittelverarbeitung von
zunehmender Bedeutung. Methoden der PAT umfassen unter anderem echtzeitfahige und
kontaktfreie spektroskopische Verfahren wie beispielsweise die Fluoreszenzspektroskopie. In
Kombination mit chemometrischen Auswerteverfahren ermdoglicht die Fluoreszenzspektroskopie
eine schnelle, hoch sensitive und spezifische Analyse von Rohstoffen, relevanten
ProzessgroRen und Lebensmitteln. Chemometrische Verfahren werden angewendet, um
sowohl gualitative als auch quantitative Analysen durchzufihren. Zudem finden sie Anwendung
fur eine effektive und sichere Prozessfihrung und On-line-Qualitatskontrolle. Im Rahmen der
vorliegenden Dissertation wurde die Fluoreszenzspektroskopie mit chemometrischen
Auswerteverfahren  kombiniert, um eine neue Methode zur Bestimmung von
Qualitatsparametern fir Weizenmehle und -teige zu entwickeln.

In der ersten Publikation wird das Potential der Fluoreszenzspektroskopie aufgezeigt,
teigrheologische Eigenschaften und Backeigenschaften aus Spektren von unterschiedlichen
Mehlen direkt vorherzusagen. Es erfolgte keinerlei Proben Auf- und Vorbereitung, die 12 Mehle
unterschiedlicher Weizensorten wurden direkt vermessen. Zur Auswertung kam eine
Kombination aus genetischem Algorithmus und Partial Least Square Regression zum Einsatz.
Mit den berechneten chemometrischen Modellen konnten der Proteingehalt (Rz = 0,90), der
Feuchtklebergehalt (R2 = 0,92) und der Sedimentationswert (R? = 0,81) vorhergesagt werden.
Die Vorhersage der rheologischen Eigenschaften wie Teigentwicklungszeit (R2=0,95) und
Wasseraufnahme (R2=0,77) gelang ebenfalls mit niedrigen Kreuzvalidierungsfehlern und
hohem Bestimmtheitsmal3. Darlber hinaus konnten Feuchtigkeit (R2=0,86) und
Volumenausbeute (R2 = 0,95) mit hoher Genauigkeit bestimmt werden. Weitere Parameter wie
Teigstabilitat, Teigerweichung, Farinograph Qualitdtszahl, Backverlust, Krustenharte und
Krumenelastizitéat konnten aufgrund schlechter Korrelationen jedoch nicht gut bzw. nur mit
grol3en Fehlern vorhergesagt werden.

Die zweite Publikation befasst sich mit der Charakterisierung von Knetprozessen mittels
Fluoreszenzmessung und chemometrischer Verfahren. Das Ziel dieser Untersuchung war zum
einen den Einfluss der Wasseraufnahme wahrend der Teigbildung auf die Fluoreszenz zu
untersuchen und zum anderen die Mehle entsprechend der gemessenen Farinograph
Knetkurven zu Kklassifizieren. Dazu wurde die Mittelwert-Farinographkurve aus den

Fluoreszenzspektren mittels PLS Regression vorhergesagt. Die Teigentwicklungszeit konnte mit
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diesem Verfahren abgeschatzt werden. Die Spektren der Mehle bzw. Teige zeigten eine hohe
Intensitat in den Protein-, NADH- und Riboflavin-Bereichen. Diese wurden nach der Hydratation
jedoch schnell um 36 %, 58 %, und 61 % reduziert, was auf eine Strukturveranderung der
Proteine und eine Oxidation von NADH wahrend der Wasseraufnahme schlieen lasst. Mittels
der Spektren und einer Hauptkomponentenanalyse wurde zudem eine Klassifikation in die 4
Phasen des Knetens Wasseraufnahme, Teigentwicklung, stabile Phase und Teigerweichung
durchgefuhrt. Anhand der Fluoreszenzspektren konnte bestimmt werden, in welcher Phase sich
der Teig gerade befindet. Eine Unterscheidung der Mehle entsprechend ihrer Qualitéat (E, A, B
und C) war nach der Anwendung verschiedener Vorverarbeitungsalgorithmen wie ,standard
normal variate® Korrektur und ,generalised least squares weighting“ ebenfalls anhand der
Spektren moglich. Bei der Berechnung der Farinograph-Mittelwertkurve mittels PLS Regression
wurde eine Korrelation von 0,75 und ein Kreunzvalidierungsfehler von 14 Brabender Einheiten
erzielt. Die Ergebnisse deuten darauf hin, dass basierend auf der Fluoreszenzmessung ein
Sensor entwickelt werden kann, mit dem die Teigentwicklungszeit direkt vorhergesagt werden
konnte.

In der dritten Publikation wurde untersucht, ob die Nahrwertparameter von 26 verschiedenen
Weizenmehlsorten und Typen, welche aus unterschiedlichen Quellen bezogen wurden, aus
Fluoreszenzspektren vorhergesagt werden kénnen. Dabei kamen sowohl lineare als auch
nichtlineare Regressionsmodelle zum Einsatz. Mittels linearer PLS Regression war die
Quantifizierung von Fett-, Feuchte- und Kohlenhydratgehalt mit Bestimmtheitsmaf3en von
jeweils 0,88, 0,86 und 0,89 mdglich. Fur Salz-, Protein- und Saccharosegehalt war eine
quantitative Bestimmung mittels PLSR allerdings nicht moglich. Mittels ,locally weighted
regression“ einer nichtlinearen Regressionmethode war die Vorhersage von Brennwert
(R2=0,96) und den Gehalten von Protein (R2=0,93), Fett (R2=0,99), Kohlenhydraten
(R2=0,99), Feuchte (R2=0,98), Saccharose (R2=0,88), Salz (R2 = 0,95) und gesattigten
Fettsduren (R2 = 0,99) erfolgreich.

Die erzielten Ergebnisse zeigen das grof3e Potential der mit chemometrischen Methoden
kombinierten Fluoreszenzspektroskopie fiir die Analyse der Teig- und Backeigenschaften von
Weizenmehlen auf. Weiterhin kénnen die entwickelten Techniken die klassischen analytischen
Verfahren ergdnzen oder diese sogar ersetzen. Analytische-, rheologische- und
Néahrwertparameter sowie gangige Kennzahlen fir die Backqualitat konnten bestimmt werden.
Weitere Untersuchungen kdnnten zu einer Entwicklung eines Sensorsystems fuhren, mit dem
alle wichtigen Qualitatsparameter von Mehl sehr schnell und kontaktfrei bestimmt werden

kénnten. Somit ware zum Beispiel eine lickenlose On-line-Qualitatskontrolle méglich.
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1.1. General introduction
The role of process analytical technologies (PAT) in food applications has grown due to the

advancement in industrialization and increased public interest towards the production of high
guality food, changes in eating habits and consumer behavior. Furthermore, food and drug
administration (FDA) has established some guidelines for the industry in 2004 which leads
towards the popularity of PAT from the last decade (van Den Berg et al., 2013). Basically, PAT
deals with a well establish system for ensuring quality from raw material to the end product,
describing the process attributes and critical points during the whole operation. PAT involves in
developing sensors which serve as rapid, non-invasive, cost effective and reagent free analysis.
These sensors are important not only for industrial point of view to attain the high demand and
advancement in technology but also for safe environmental concerns (Hitzmann et al., 2015).
Hence it is the need of the time to develop some PAT measurements in food applications. To
achieve this objective, spectroscopic techniques cannot be ignored which are considered as
rapid and non-invasive for food production and process monitoring. In this thesis, the potential
of fluorescence spectroscopy is explored which is known for its specificity and sensitivity
(Sadeckd & Téthova, 2007). It is being used in different fields including food research and
analysis. Previously, it was used to quantify only the fluorescent molecules like the riboflavin
in cereal (Zandomeneghi et al., 2003) while estimation of non fluorescent molecules in recent
applications has increased its importance. For example, it was applied to determine fatty acid
profile in meat (Ait-Kaddour et al., 2016) and to estimate sucrose, glucose and fructose in figs
(Jiang et al., 2013). The role of chemometric tools cannot be denied to extract the useful
information from the spectral data, in developing the new analytical methods for screening of the
food operation which is important for its production, marketing and regulatory purpose (Karoui &
Blecker, 2010).

The raw material has a strong impact on the final product quality and understanding of their
relationship is necessary to achieve process stability. The major ingredient in the baking
industry is wheat which is considered one of three most important cereal crops. It is cultivated
on one third area covered by cereal cultivation in the world (Hadaruga et al., 2016). Milling of
wheat grains result in the flour which is being used in bread, cookies, cakes, pasta and variety
of other cereal based products. The characterization of the wheat flour is really important for the
production of high quality wheat based food products. Different analytical parameters like

protein, wet gluten, sedimentation value and falling number have strong impact on the quality of
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the final product. For example protein concentration in flour is important to predict the volume of
the bread (Dowell et al., 2008) whereas gluten in wheat flour is responsible for three
dimensional network giving the visco-elastic characteristics to the dough which help to achieve
the desired quality characteristics of bread (Goesaert et al.,, 2005). Similarly, sedimentation
value describes the quality of the protein present in wheat flour whereas falling number
discusses the alpha amylase activity. Determination of both parameters can help the bakers to
predict the end quality of wheat based products.

Different rheological parameters (water absorption, dough development time and pasting
temperature etc.) play their role in predicting not only the quality of the final products but also
describe the behaviors of the wheat flour during the processing operations in the baking industry
for better machine ability of the materials (Ktenioudaki et al., 2010). Furthermore, final quality of
the product is assured by using baking and bread parameters like volume and moisture of
bread, baking loss, hardness and springiness of bread crumb. Moreover there are some
process operations like kneading of the dough which is very complex and undergoes many
changes. These changes include the development of gluten network which provide the higher
guality characteristics to the bread. Furthermore, determination of accurate water absorption of
the flour during the kneading process determines the behavior of further processing operations
and the quality of end product (Miralbés, 2004). On the other hand, the prediction of nutritional
profile of the wheat flour is considered important which not only provide the highlights to the
consumer about the nutrition but also give an insight to the miller for proper labeling of the flour

according to the labeling law.

Currently, conventional methods are being used in the cereal industry based on time consuming
sample preparations. These methodologies are insufficient due to the increasing demand of
better productivity and higher quality standards during the entire process operations from raw
material to the final product. Hence, the replacement of conventional, time consuming and
chemical based analysis in the cereal industry is necessary with advanced instrumentation like
fluorescence spectroscopy which characterizes as rapid and non destructive methodology,

forms the basis of the present thesis.

1.2. Thesis outlines
This thesis explores the potential of fluorescence spectroscopy for characterization of wheat

flour using different chemometrics tools in combination with various preprocessing

methodologies.
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Chapter 2 deals with the development of an innovative approach for prediction of analytical,
rheological and baking parameters of wheat flours using chemometrics tools based on
fluorescence spectral data without sample preparations procedures.

Chapter 3 gives a detail overview for separation of different phases of farinographic curve into
hydration dough development, dough stability and softening phases for wheat flour using
principal component analysis (PCA) out of fluorescence spectral data taken during the kneading
process. Furthermore, the potential of fluorescence spectroscopy to classify different cultivars of
the wheat into different quality groups (E, A, B and C) based on bread making performance is
also described.

Chapter 4 introduces the potential of fluorescence spectroscopy coupled with linear and non
linear chemometric tools for quantification of the nutritional profile of 26 different types of wheat
flours

Concluding remarks are presented in Chapter 5.
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ABSTRACT

The potential of fluorescence spectroscopy for predicting analytical, rheological and baking parameters of
twelve wheat flours were investigated. Partial least square regression models coupled with genetic al-
gorithm were applied on spectral data to optimize the prediction of the aforementioned quality pa-
rameters using different pre-processing methodologies. Good linear regression models were obtained for
protein, wet gluten and the sedimentation value from the analytical parameters group with a R? of 0.90,
0.92 and 0.81 respectively. Similarly prediction was obtained for rheological parameters like the dough
development time and water absorption, with a very low root mean square error of cross validation
(RMSECV) and an optimal R? of 0.95 and 0.77 respectively while it settled at 0.78 for pasting temper-
ature. Furthermore, baking parameters like the moisture and volume of bread were predicted with a
decent accuracy showing a R? of 0.86 and 0.95 respectively. Hence, fluorescence spectroscopy can be
used as rapid method in predicting the wheat quality and its baking characteristics by just taking the
spectra of flour with no sample preparation.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Wheat is one of the important cereal crops, which is being used
as a main ingredient in various foods like bread, pasta, noodles,
cakes and biscuits (Mutlu et al., 2011). The quality of the wheat flour
is vital for the quality of the end-product, which affects its com-
mercial value. The key determinants of wheat quality characteris-
tics are evaluated by analytical quantification of a range of
parameters like wet gluten content, protein concentration, sedi-
mentation value and falling number. All these parameters have
their own distinct role in predicting the quality of wheat flour. The
protein content play a vital role in describing flour characteristics
while the development of gluten after hydration states the ability of
flour and its efficiency of retaining gas during fermentation and
ensures the successful completion of the final product (Pareyt et al.,
2015). Sedimentation value elaborates quantity of the protein
(Carter et al., 1999) whereas falling number is used to estimate the
alpha (o) amylase activity (Kruger and Tipples, 1980) in wheat

* Corresponding author.
E-mail address: mhaseeb.ahmad@uni-hohenheim.de (M.H. Ahmad).

http://dx.doi.org/10.1016/j.jfoodeng.2016.03.006
0260-8774/© 2016 Elsevier Ltd. All rights reserved.

flours and both are important to determine the final quality of
cereal based food products.

The rheological parameters of the wheat flours are important as
well for the prediction of the baking value. Among different devices
for estimation of these parameters, the farinograph has a dominant
position from the point of view of the cereal scientist and the
bakers (Hruskova et al, 2006). The water absorption can be
determined with farinograph which is important to describe the
mechanical characteristics of dough and successful completion of
wheat based cereal products. Other dough profile characteristics
like the dough development time (DDT), its stability and softening
also have their respective impacts on the further processing of the
wheat flours. Among them, the optimum DDT is important, since it
transforms into the dough ability for gas retention and expansion
during proofing, influencing as well the baking operation for
attaining high volume and better final product characteristics
(Dempster et al, 2005). Similarly the gelatinization or pasting
temperature of various wheat flours is employed to determine
rheological parameters which have a significant impact on the
finished product characteristics (Ragaee and Abdel-Aal, 2006).
Moreover, baking characteristics and the other bread parameters
like the volume, the baking loss and the textural profile analysis
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(TPA) have also been used to describe the evolution of the quality of
wheat based products (Scanlon and Zghal, 2001).

Hence, all aforementioned analytical, rheological and baking
parameters evaluating methods can be employed on large and
small scale applications. However their determination requires a lot
of time and efforts to perform as they are laborious and destructive
in nature. Due to the advancement in technology and awareness of
environmental and safety reasons, there is need to develop fast,
non-invasive and chemical free estimation methods. Fluorescence
spectroscopy (Faassen and Hitzmann, 2015) offers a great alterna-
tive for this purpose. The viscosity of a sample influences the
fluorescence quantum yield; therefore, even rheological charac-
teristics can be determined using this measurement technique
(Sharafy and Muszkat, 1971). It has been extensively used in dairy
industry to monitor the changes in milk due to mild and intensive
thermal treatments (Kulmyrzaev et al., 2005; Schamberger and
Labuza, 2006) as well as in the classification and monitoring the
process of different types of cheese (Karoui et al., 2007a, 2007b),
prediction of rheological parameters (Karoui and Dufour, 2006), the
stability of yogurt during storage (Christensen et al,, 2005) and
optimization of ice cream formulations (Granger et al., 2006). It is
applied in meat industry to classify the meat based on their quality
(Sahar et al., 2009) and to determine the freshness of fish (Dufour
et al.,, 2003). Furthermore, it has been employed to determine the
origin of honey (Karoui et al., 2007¢) and in some other application
to quantify the total plate count in chicken meat (Sahar et al., 2011)
to ensure the availability of a high quality and safer food to the
consumer. As for its application in cereal research is concerned, the
fluorescence spectroscopy is being used in small and large scale
cereal-based analytical approaches. A series of approaches have
been applied to quantify and visualize wheat gluten, starch and air
bubbles in different mixing stages of dough (Kokawa et al., 2012) as
well as in the pie pastry analytics (Kokawa et al., 2015). It has been
used to perform the classification of different types of cereals
(Karoui et al., 2006) to determine its power to describe the fluo-
rescence of various fluorophores present in them (Zandomeneghi,
1999) as well as for the classification of red and white wheat ker-
nels (Ram et al., 2004). Monitoring of the on-line pH plus the de-
gree of acidity during sourdough fermentation (Grote et al., 2014),
aging of cakes (Botosoa et al., 2013), separation of farinographic
phases and classification of wheat cultivars during the kneading
process (Ahmad et al, 2016) represent other applications for this
type of spectroscopy employed in the cereal research.

Similarly other spectroscopic techniques like near infrared (NIR)
spectroscopy has been applied to describe the rheological charac-
teristics like dough development time and baking parameters of
wheat flours (Arazuri et al., 2012; Dempster et al., 2005; Dowell
et al., 2006). A multivariate evaluation approach is employed to
determine the feasibility of NIR and mid-NIR spectroscopy for
analyzing the composition of wheat bran (Hell et al., 2016). Due to
the accuracy of the spectroscopic techniques coupled with che-
mometric models proved to be a suitable approach to predict the
quality parameters of wheat flour. This approach can therefore help
the bakers and the cereals scientists to estimate the analytical,
rheological and the baking parameters of different wheat flours in a
fast and non-invasive way by just acquiring a spectral reading.

Hence, this contribution aims to demonstrate the feasibility of
the prediction of the analytical parameters (protein, wet gluten,
sedimentation and falling number) out of the fluorescence spectra
using chemometric evaluation approaches. Similarly, farinographic
(water absorption and dough development time), pasting temper-
ature, baking and bread characteristics of different types of wheat
flours will also be estimated using the same approach.

2. Materials and methods
2.1. Raw materials

Eleven different cultivars of winter wheat were obtained from
KWS SAAT SE Einbeck, Germany. These cultivars belong to different
quality groups of wheat, which were classified after their analytical
and baking performance. These groups are elite (E), quality (A),
bread (B) and other purposes (C). Bussard, Milaneco and Montana
are the part of E while Malibu, Julius and Magic belong to the A
group. Similarly the B group comprises of Bonanza, Ferrum, Salix
and Loft whereas the C group contains only the Rockefeller cultivar.
Commercially available wheat flour used for baking purpose was
also obtained from the local mill and named as Rettenmeier flour
(Rettenmeier Miihle GmbH, Horb, Germany).

2.2. Milling of wheat cultivars

All the wheat cultivars were milled for flour using the Quadrate
junior laboratory mill (Type 279001, Brabender OHG, Duisburg,
Germany). After milling the flour was stored at refrigeration tem-
perature to avoid the changes in the flour.

2.3. Determination of the analytical parameters

Different analytical parameters were determined for all types of
wheat flour using the standard methods provided in the Interna-
tional Cereal Chemist (ICC) and in the Approved Analytical Methods of
Cereal Chemists (AACC). The moisture was determined using the
Infrared moisture analyzer MA 51 (Sartorius AG, Gottingen, Ger-
many). The protein concentration, the falling number, the sedi-
mentation rate and the wet gluten were measured using the ICC
methods (ICC, 1994) 105/1,107/1,116/1 and 137/1 respectively. The
measurement of the farinographic parameters has been performed
using the AACC 54-21 (AACC, 1999) while the pasting temperature
was determined using the Rapid Visco-Analyzer (RVA, Newport
Scientific) according to the ICC 162 method (ICC, 1994). All mea-
surements were performed in duplicate and mean value was used
for the prediction models.

2.4. Bread preparation

Wheat flour breads were prepared using 2 % salt, 1 % sugar, 2 %
fat, 1 % dry yeast based on the flour weight and water was used
according to the farinographic measurement. The water and other
ingredients were added in the mixing bowl of the type SP 12 spiral
mixer (DIOSNA Dierks & sons GmbH, Osnabriick, Germany) one
after the other, then mixed for 1 min at low speed for uniform
distribution of the ingredients and then the kneading process was
performed according to the respective dough development time
taken from the farinographic measurements. The dough was
collected from the mixing bowl and placed it in proofing chamber
(Stammkalte, Wachtel GmbH, Hilden, Germany) for bulk fermen-
tation at 30 °C with a relative humidity (RH) of 80 % for 20 min.
Then it was manually handled to distribute the air cell in the dough
and scaled to 500 g into 2 baking tins of 28 x 10 x 9.5 cm. These
were again placed into the proofing chamber for 50 min (30 °C, 80 %
RH). After the proofing process, baking was carried out for 35 min at
235 °C in a convection oven (Piccolo DMS, Wachtel GmbH & Co.
Hilden, Germany). After baking, the breads were cooled at room
temperature for 120 min then the measurements were performed.
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2.5. Bread parameters

2.5.1. Volume of bread

After cooling the volume of bread was measured using the
VolScan Profiler 600 mm (Stable Micro Systems Ltd., Godalming,
England). The rotation speed and vertical step was set at 1 rpm and
5 mm respectively. Two breads were scanned one after the other in
one replication and the average value of both has been taken for the
volume measurement.

2.5.2. Texture profile of bread

Bread slices of 2.5 cm thickness were cut with a rotary slicer,
then the TPA of bread was tested using the Texture-Analyser
TA.XT2™ (Stable Micro Systems Ltd., Godalming, England) with a
cylinder of diameter 2.5 cm using a test speed and control force of
1 mm/s and 5 g respectively. The relaxation time between two
compression cycles was 15 s with a strain of 40 %. All measurements
were performed in duplicate. Three slices were used to take the
textural profile of every bread and the average value of the texture
profile of bread was used.

2.5.3. Moisture of bread
The moisture of breads was measured using the 1700-1 method
described in ICC methods (ICC, 1994).

2.6. Fluorescence spectra collection of the wheat flour

50 spectra of each of the wheat flours were taken using 2D-
fluorescence spectroscopy BioView (Delta Light & Optics,
Hersholm, Denmark) sensor, equipped with an xenon light source
and 15 filter wheels. This setup can measure the florescence spectra
in the range between A 270550 nm and A 310-590 nm for excitation and
emission respectively using different filter wheels, which rotate for
achieving various wavelength combinations with a bandwidth in
step of 20 nm. The spectrum obtained comprised of 120 wave-
length combinations.

2.7. The chemometric modeling

2.7.1. Data sets and the computational platform

Data sets using 50 spectra of each type of the flours were ar-
ranged as predictor matrix of independent variables containing 600
spectra in total for the chemometric modeling of analytical, rheo-
logical and baking parameters of the various types of the wheat
flours. The measured analytical, rheological and baking parameters
were also taken into the data set as the predicted matrix of the
dependent variables. All the data were packed into a matrix and
further treatments analyzed on the MATLAB 2013b (The Mathwork
TM, MA, United States) platform using the PLS and the statistical
toolboxes.

2.7.2. Pre-processing of data

Data pre-processing has become very important to extract the
meaningful information and used to enhance the predictive capa-
bility for determining the analytical parameters out of the spectral
data. Spectral scaling and specific transformation methodologies
such as the de-trending, the standard normal variate (SNV), the
multiplicative scatter correction (MSC) as well as the generalized
least square weighting (GLSW) were used throughout the data
evaluation process.

Detrending is a pre-processing technique, which removes the
trend of data so that deviations from the overall trend will emerge
(Barnes et al., 1989).

SNV is a scatter correction method, which will scale every ith
value of the spectrum to the standard deviation of the entire

spectrum. The transformation is performed according to the
Equations (1) and (2).

Xsnvi = (Xi — X) /ox (1)

UX:\J(i(Xi“X)Z)/("—l) 2)

Here X;.X, ox and n are the ith spectrum, mean, standard de-
viation and number of wavelength variables respectively.

Similarly, MSC is also used to remove undesired scatter effect in
the spectral data. The concept behind the MSC is based on the
correction of the measured spectrum according to a reference
spectrum like the average spectrum for instance. MSC is a two-step
process applied to all the spectrums in the dataset. First the
regression coefficients  and « are computed for all the recorded
spectra regressed against a reference spectra Xrpf, Then all the
spectrums will be corrected using the slope and intercept param-
eters found in the previous step according to the Equation (3)
(Nache et al., 2015).

Xeorri = (Xi — ) /P (3)

The GLSW (Zorzetti et al., 2011) is an advanced transformation
method. It can be applied as a clutter filters that downweigh the
information which is common throughout the spectra, leaving
untouched the relevant variance. After many trials the weighting
factor o was set at 0.01 which provided the most accurate linear
regression model.

2.7.3. The wavelength selection using the genetic algorithm

A raw fluorescence spectrum is composed of 120 wavelength
combinations. Among them, some wavelength combinations
contain no information for any predictive models increasing thus
just the complexity of the evaluation task. Therefore the genetic
algorithm (GA) was applied to simplify and enhance the predictive
capability of regression model used to predict for various param-
eters of the wheat flours. The concept of the GA is based on Darwin
and Mendelian paradigm, which assume that the evolution will
promote only the best genes in the population. GA was here applied
for selecting the wavelength combinations on different parameters
of various types of wheat flours using a gene block size of one
wavelength and a population of 128 individuals evolving for 100
generations and using dual-crossover for breeding and a fixed
mutation rate of 0.005.

2.74. PLSR modeling

After pre-processing of the spectral data, partial least square
regression (PLSR) has been used to predict different parameters of
various types of flours. In PLSR modeling the spectra belonging to
same flour were put in one block. Hence 12 blocks were made for 12
different types of wheat flours spectra. Eleven blocks were used for
calibration and the 12th one has been used for the prediction.
Cross-validation has been thus performed until all the spectral
blocks were once predicted in process of PLSR modeling. The fitness
of the model was evaluated using the coefficient of determination
(Equation (5)) and the root means square error of the cross-
validation (Equation (4))

n 2
rmsecy = |y (TP 4)
i=1
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Table 2
n 2 n —2 Prediction of the analytical parameters of wheat flours using the genetic algorithm

RE=1- Z (m; —p;i) Z (m; —m) (5) and PLSR using maximum 8 latent variables.
i1 = Analytical parameters Pre-processing RMSECV Ry
Here mj.p;. and n are measured, predicted, mean value and Protein [%] GLSW- detrending 0.38 0.90
total number of spectra in data set respectively. Wet gluten (%) GLSW-+ detrending 1.32 092
Sedimentation [mL] GLSW+ detrending 3.62 0.77
Falling number [s] MSC+ detrending 3298 048

3. Results and discussion

Table 1 summarizes the various measured analytical, rheolog-
ical, and baking parameters of different types of wheat flours. The
maximum and minimum values of the parameters of wheat flours
describe the broad variability in the data. It was observed that
protein, wet gluten, sedimentation value and falling number of
different wheat flours varied in the range of 9.1-134 %,
21.56-35.82 %, 34.45—-61.05 mL and 259—410 s respectively. The
rheological and baking parameters also showed differences, which
exhibit that various types of wheat flours have significantly
different characteristics. The variations in analytical, rheological,
and baking parameters are due to the different amounts of proteins,
wet gluten and 2 amylase activity, which has a strong impact on
rheological and baking characteristic of the wheat flours. For
example, water absorption, DDT and other rheological parameters
highly depend on percentage of protein and wet gluten, whereas
the final bread characteristics like volume, crumb hardness and
springiness have strong correlation with the analytical and rheo-
logical parameters of wheat flours. So, it was obvious that the
various cultivars of wheat have strong variation in their analytical,
rheological and baking characteristics, which was used to get the
robust calibration model for estimating them with fluorescence
spectroscopy.

3.1. Prediction of the analytical parameters of wheat flours

The prediction of the analytical parameters of the various types
of wheat flours using fluorescence spectra with GA-PLSR modeling
technique is shown in Table 2. The obtained results for the protein
content and wet gluten were accurately predicted providing a low
RMSECV of 0.38 % and 1.32 % respectively. The obtained R? for the
protein content reached 0.90 while it settled at 0.92 for wet gluten
using 8 latent variables. Similarly the sedimentation value was
moderately predicted with 3.62 mL RMSECV and a R? of 0.77. On the
other hand, the prediction of the falling number showed a R? of
only 0.48. This might be due the fact that different types of wheat
flours showed high peaks in the protein region of the spectra,
which can be correlated towards the predictions of protein, wet

Table 1

gluten and sedimentation value, whereas the falling number is
connected to the 2 amylase activity that probably cannot be directly
predictable from the spectral data. In Fig. 1, the measured vs. cross-
validated predicted scatter plots are also presented for the protein
content (1a), the wet gluten (1b) and the sedimentation value (1c).
Due to the lack of studies regarding the use of the fluorescence for
the evaluation of the aforementioned parameters, a comparison of
the obtained results is problematic to accomplish. However, the
prediction of the protein content in the present work shows a very
good correlation as compared to the previous findings of Karoui
and Dufour (2008) for instance which found an R? of 0.65 for the
prediction of the protein content in cheese with a portable spec-
trofluorometer. Similarly, Diez et al. (2008) report an R2 of 0.9 for
soluble protein contents in heat-treated infant formula using
fluorescence, which is in line with the results of the present
contribution. Moreover, the results are also consistent with previ-
ous reports which used NIR spectroscopy for determination of
analytical parameters of wheat flour for rapid method development
(Miralbés, 2003).

3.2. Rheological parameters prediction

Table 3 presents measured vs. cross-validated predicted rheo-
logical parameters of different cultivars of wheat flour.

Among different rheological characteristics, DDT and water ab-
sorption are the most important farinographic parameters as it
determines the quality of final product. Protein contents have a
strong impact on water absorption and dough development time
which strengthen our expectation to get good prediction model
from fluorescence spectral data as it shows high peaks in the pro-
tein region of the spectra. DDT was predicted with a high R? of 0.95
and a low RMSECV and percent RMSECV of 1891 s and 7.1 %
respectively using 6 latent variables (Fig. 2a). Similarly, the ob-
tained results for the water absorption prediction models showed a
good value R? of 0.77 with a low RMSECV of 1.69 % using 4 latent
variables (Fig. 2b). Due to the accurate water absorption, a

Statistics of analytical, rheological and baking parameters of different types of wheat flours and their breads.

Parameters Minimum Maximum Mean value Standard deviation
Moisture [%] 11.68 134 12.56 0.56
Protein [¥] 9.1 13.4 10.88 1.15
Wet gluten [%] 2156 35.82 27.38 4,69
Sedimentation [mL] 3445 61.05 2.11 8.18
Falling number [s] 259 410 351.88 4234
Pasting temperature [°C] 65.75 87.47 83.95 5.64
Water absorption [%] 54.8 66 61.46 3.47
Dough development time [s] 87 352 138.42 78.39
Dough stability [s] 90 744 369.63 202.42
Dough softening [BU] 40 76 62.54 12.45
Farinograph quality number [mm] 28.17 125.5 61.91 33.75
Volume of bread [mL] 2392.62 3589.79 2808.73 364.3
Baking loss [%] 11.17 12.42 11.8 3.8
Moisture of bread [%] 20.72 32.01 25.49 293
Crumb hardness [N] 221 6.08 3.93 1.09
Crumb springiness [N] 0.99 1.73 1.07 0.21
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Fig. 1. Scatter plots representation of the protein (a), wet gluten (b) and the sedi-
mentation value (c) prediction models for different cultivars of wheat flours plus
Rettenmeier flour.

Table 3

Prediction of the rheological parameters of wheat flours with the genetic algorithm
and PLSR after pre-processing with GLSW and detrending using maximum 7 latent
variables.

Rheological parameters RMSECV Ry
Water absorption [%] 1.69 0.77
Dough development time [s] 18.91 0.95
Dough stability [s] 241.25 0.12
Dough softening [BU] 21.38 0.23
Farinograph quality number [mm)] 36.4 0.11
Pasting temperature [°C] 2.65 0.78

characteristic farinographic curve obtained which should be in the
tolerance range of 480—520 Brabender units (BU). An error in water
absorption rejects the farinographic curve due to deviation from
the aforementioned tolerance range. Therefore the present pre-
diction model for water absorption shows high accuracy which
saves tedious and time consuming procedure for developing far-
inographic curve. Hence it is obvious that the DDT and water ab-
sorption linearly correlated with the spectral data as it was
observed from the PLSR model coupled with genetic algorithm
approach. Moreover, the other farinographic parameters like the
dough stability, dough softening and the farinographic quality

50 . . . A . A )
50 100 150 200 250 300 350 400
Measured DDT [s]

« CV predicted water absorption [%)]
Fit

o
e omm——

65 |
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CV predicted water absorption [%]
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Fig. 2. Representation of measured and cross-validated predicted scatter plots of
dough development time (a) and water absorption (b) for different cultivars of wheat
flours plus Rettenmeier flour,

number could not be accurately predicted due to the high RMSECV
and low R? as described in Table 3. Furthermore, the pasting tem-
perature, which is also shown in Table 3 indicates a decent pre-
diction with a RMSECV of 2.65 °C and R? settled at 0.78 for different
cultivars of wheat flours.

The results showed in the present contribution are comparable
with the previous findings of Miralbés (2004) who used NIR
spectroscopy on different types of wheat and obtained a prediction
error of 0.46 % for water absorption with no prediction of DDT.
However, he got good prediction of other farinographic parameters
like dough stability, dough softening and farinograph quality
number.

Similarly, the DDT, dough stability and softening shows better
prediction performance as compared to the findings of Mutlu et al.
(2011) who has used neural networks on NIR spectral data of wheat
flour to predict these parameters. However, he found higher cor-
relation for water absorption (R?> = 0.83) than the rest of the liter-
ature studies. Moreover, the prediction of the pasting temperature
is in line with the findings of Bertrand and Scotter (1992) who has
applied principal component regression to study starch gelatini-
zation using NIR with good results. Similarly (Cozzolino et al., 2013)
found the R?> = 0.36 for pasting temperature in barley using NIR
spectroscopy which is much lower than the findings of the present
contribution.

3.3. Prediction model for baking and bread parameters
Table 4 presents the results of the baking and bread parameter

prediction models of the different wheat flours. Here the cross-
validated GA-PLSR models for different types of wheat flours
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Table 4
Prediction of the baking parameters of wheat flours with the genetic algorithm and
PLSR using maximum 9 latent variables.

Baking parameters Pre-processing RMSECV Ry
Volume of bread [mL] GLSW+ detrending 78 0.95
Baking loss [%] SNV detrending 0.29 045
Moisture of bread [%] GLSW+ detrending 1.08 0.86
Crumb hardness [N] GLSW+ detrending 0.68 0.57
Crumb Springiness [N] GLSW-+ detrending 0.19 0.16

produced good results for the moisture of bread, whose prediction
achieved a RMSECV of 1.08 % and an R? = 0.86. Similarly the volume
of the bread also showed a good RMSECV of 78 mL and a high R? of
0.95 as it can be seen in the scatter plots from Fig. 3. Protein content
in wheat flour strongly correlated with the volume of baked goods
and its fluorescence may be the reason for this linear relation be-
tween spectral data and volume of bread. Previous authors have
tried to develop the prediction models for the bread volume as a
function of the protein, wet gluten sedimentation, falling number
and other rheological parameters of wheat grain and flour (Dowell
etal.,, 2008; Renata and Janusz, 2011). But these models still involve
the laborious determination of these parameters by conventional
methods. The present contribution produces not only better results
than the previous findings but also provides a non-invasive
methodology for prediction of the loaf volume. Similarly the
other spectroscopic methods like NIR in combination with neural
networks produced an R? of 0.69 for the prediction of the bread
volume (Mutlu et al., 2011) which is lesser to the findings of the
present contribution.

On the other hand, the baking loss and some textural profile
characteristics like crumb hardness and springiness showed a poor
correlation and a lower accuracy models and cannot be predicted
using this type of approach as presented in Table 4. The results
regarding the bread hardness and springiness are not consistent
with the previous findings of Allais et al. (2006) who has obtained
high R? (>0.90) for biscuits and lady finger batter using the fluo-
rescence spectra taken in the region of tryptophan and NADH. The
current approach cannot achieve the high R?> which might be due
the fact that crumbs hardness and springiness adherent to the
starch and its retrogradation process and is difficult to extract the
hidden information from the spectral signature of the wheat flours.

4. Conclusion

Hence, the obtained prediction models for quantification of
analytical, rheological and baking parameters of 12 different types
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Fig. 3. Representation of measured and cross-validated predicted scatter plots of
volume of bread for different cultivars of wheat flours plus Rettenmeier flour.

of wheat flours using fluorescence spectroscopy coupled with
linear regression methods showed the feasibility of this approach.
The percent RMSECV for dough development time, water absorp-
tion, protein, wet gluten and volume of bread was found less than
10% which indicate the accuracy of this application and opens the
way to develop a sensor, which can be used as a rapid and non-
invasive method for determining and predicting wheat quality
characteristics by just taking their spectral signatures. However,
more research is required in this direction to make this approach
applicable on industrial scale for screening and regulatory
purposes.
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ABSTRACT

Fluorescence spectroscopy provides an ideal tool to explore chemical changes during dough mixing
process. This paper aims to make use of this tool to investigate the influence of hydration of flour onto
the spectral signals, classification of farinographic curve and separation of wheat flours based on their
bread making performance. Secondary the quantitative information regarding the prediction of middle
curve out of the fluorescence spectra was attempted using chemometric approaches. The spectral data of
Rettenmeier flour presents high fluorescence signal in the protein, NADH and riboflavin regions which
diminish to 36 %, 58 % and 61 % respectively after the hydration process depicting its influence due to
changes in protein structure and oxidation of NADH. The principal component analysis (PCA) has been
used to extract the qualitative information regarding the farinographic curve from the fluorescence
spectra during the hydration phase of the Rettenmeier flour. Using this approach all four farinographic
phases was clearly separated into hydration, dough development, and stability and softening. Similarly,
PCA was used to separate twelve different wheat flours on the basis of their bread baking performance
into E, A, B and C groups during the kneading process out of spectral data pre-processed with standard
normal variate (SNV) and generalized least square weighting (GLSW) methods. Middle curve of farino-
graph was predicted using the partial least square regression (PLSR) modeling approach out of spectral
data with a cross-validated error (RMSECV) of 14 Brabender units (BU) and a coefficient of determination R?
0.75. The results demonstrate that fluorescence spectroscopy can be used to characterize and categorize
the farinographic kneading process, which is important in the bread-baking industry.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

During the process of mixing the dough, different types of
changes takes place which can be categorized using the fluores-

Dough rheological properties are very important describing
bread making characteristics and can be measured by using
different instruments like the farinograph, the extensograph,
mixolab and the amylograph (Xu, Bietz, Felker, Carriere, & Wirtz,
2001). Among them, the farinograph is the most used analytic
tool in cereal industry since the last century. It provides important
information about the water absorption which is essential for the
further processing of the flour and the dough profile characteristics
like the dough development time along with its stability and
softening (Stojceska & Butler, 2008). It provides a characteristics
curve which is generated by the increase in the consistency of the
dough during the mixing and can be measured in Brabender units
(BU).

* Corresponding author.
E-mail address: mhaseeb.ahmad@uni-hohenheim.de (M.H. Ahmad).

http://dx.doi.org/10.1016/j.foodcont.2016.01.029
0956-7135/© 2016 Elsevier Ltd. All rights reserved.

cence spectroscopy that is very popular due to its high sensitivity
and specificity (Faassen & Hitzmann, 2015; Lenhardt, Bro, Zekovic,
Dramicanin, & Dramicanin, 2015). It provides the information
about the fluorophores like the aromatic amino acids (tryptophan,
phenylalanine and tyrosine), vitamins (riboflavin and pyridoxine)
and cofactors (NADH, FAD and FMN) which are present in the
sample (Andersen & Mortensen, 2008). It is being used in different
fields of biological sciences and becoming more frequently applied
in the food research (Christensen, Nergaard, Bro, & Engelsen, 2006).
It has become an important tool in combination with multivariate
analysis for the prediction and classification of food samples
(Karoui & Baerdemaeker, 2007). It is employed in dairy to investi-
gate different types of cheese (Kulmyrzaev et al., 2005) to detect the
changes in milk due to heat treatments (Kulmyrzaev, Levieux, &
Dufour, 2005) and the storage stability of yogurt (Christensen,
Becker, & Frederiksen, 2005). It has been applied for
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determination of fish freshness (Dufour, Frencia, & Kane, 2003;
Hassoun & Karoui, 2015), classification and spoilage of meat
(Sahar, Boubellouta, & Dufour, 2011; Sahar & Dufour, 2015) and to
detect the oxidation of different types of oils (Mabood et al., 2015).
Furthermore, it is used to classify the food products according to
their origin like in the analysis of honey (Karoui, Dufour, Bosset, &
Baerdemaeker, 2007). Similarly, fluorescence spectroscopy has
proved its use in different approaches in the cereal research. Cereals
can be classified by using synchronous fluorescence spectroscopy
(Zekovic, Lenhardt, Dramicanin, & Dramicanin, 2012). Front-face
fluorescence spectroscopy can be also used to determine and
classify the different wheat varieties and its products (Karoui,
Cartaud, & Dufour, 2006) while using specific geometry it can
determine the different fluorophores in cereals (Zandomeneghi,
1999). Other applications are the determination of the distribu-
tion of ferulic acid in different types of cereal grains (Ndolo, Beta, &
Fulcher, 2013) and the on-line monitoring of pH and degree of
acidity during sourdough fermentation (Grote, Zense, & Hitzmann,
2014). Furthermore, lipid oxidation has been monitored during
twenty days storage of cakes using this technique (Botosoa, Chené,
& Karoui, 2013). Hence, fluorescence spectroscopy is being used in a
variety of purposes; however this technique has not yet been
applied to characterize the farinographic kneading process.

To interpret the fluorescence spectral data and extract the useful
information, multivariate data analysis has to be applied (Cozzolino,
Cynkar, Shah, & Smith, 2011). Principal component analysis (PCA)
and partial least square regression (PLSR) are well known for their
use in variety of purposes. PCA is mainly used for classification and
data exploratory processes (Golshan, MacGregor, Bruwer, &
Mhaskar, 2010) while the PLSR is a supervised method, which is
used to model the correlation of the spectral variables with the
measured parameters (Mehmood, Liland, Snipen, & Sabe, 2012).
Several studies have depicted good results using PCA showing its
ability in differentiation of barely samples on the basis of year of
harvest and location (Cozzolino, Allder, Roumeliotis, & Eglinton,
2012), process control in maize drying (Liu, Chen, Wu, & Zhang,
2006) and many other food applications. However, before any
data evaluation is performed, the spectral data set must be pre-
processed in order to remove the noise and light scattering effect
generated by the data acquiring procedure. Amongst the plethora
of the existing pre-processing methods, standard normal variate
(SNV) is often applied normalization method which well-serve the
aforementioned purpose.

In this contribution, the effect of the hydration of the wheat
flour will be determined on the fluorescence spectra taken before
and after water addition. The farinographic curve will be catego-
rized into different phases like hydration, dough development,
stability and softening using PCA applied to the fluorescence
spectra. Similarly PCA will be investigated for identifying different
cultivars of wheat to differentiate on the basis of quality groups
according to German protocol like E (elite), A (quality), B (bread)
and C (other purposes). The middle curve of farinogram will be
predicted by using PLSR modeling out of the fluorescence spectra
for developing the sensor which can give information about dough
mixing stages and optimum time of kneading in future researches.

2. Materials and methods
2.1. Raw materials

Eleven winter cultivars of wheat were provided by KWS SAAT SE
Einbeck Germany. These belong to different quality groups (A, B, C
and E class). Bussard, Montana and Milaneco belongs to E while
Magic, Malibu and Julius are the part of the A quality group. Simi-
larly, quality group B includes Bonanza, Ferrum, Salix and Loft. On

the other hand, Rockefeller is the only cultivar which belongs to
quality group C. The cultivars of wheat were milled for flour using
the Brabender Quadrumat®™ Junior laboratory mill (Type 279001,
Brabender OHG, Duisburg, Germany). Additionally, Rettenmeier
flour was provided by a local mill (Rettenmeier Miihle GmbH, Horb,
Germany) which is commercially available for baking purposes.

2.2. Fluorescence spectroscopy

Two dimensional fluorescence spectrometer BioView" was used
to acquire the fluorescence spectra during the farinographic mea-
surement. The setup consists of two filter wheels mounted with 15
filters. It measures the excitation (270—550 nm) and the emission
(310-590 nm) with a 20 nm step bandwidth respectively. The
excited light after passing through the first filter enter in the sample
through an optical fiber. This excites the fluorophores in the sample
and the emission light guided back through a second filter. The light
intensity is measured with a photomultiplier and recorded as a raw
fluorescence spectrum. A fluorescence spectrum comprised of 120
wavelength combinations.

2.3. Modification of the farinographic bowl for fluorescence
measurement

The normal farinographic bowl was modified and equipped
with a port for the BioView" (Delta Light & Optics, Hersholm,
Denmark) sensor as shown in Fig. 1a. This was used to acquire the
spectra during the entire process of the farinographic measurement
as shown in Fig. 1b while Fig. 1¢ presents the schematic diagram of
working setup for the recording of the fluorescence spectra during
the mixing with farinograph. All twelve flours were used to make
the farinogram in this modified farinographic bowl (FD0234H
Farinograph, Brabender® GmbH & Co. KG, Duisburg, Germany) ac-
cording to method AACC 54-21 (AACC, 1999) while taking the
fluorescence spectra. Typically a spectrum was recorded in 53 s,
thus 22 spectra were taken during the 20 min process of farino-
graphic measurement. Hence, 220 spectra were taken for 10 rep-
licates of Rettenmeier flour in the first phase of farinographic
measurement. On the other hand, 264 spectra were acquired for
eleven wheat cultivars plus Rettenmeier flour in the second phase.
Furthermore, Rettenmeier flour was also used to take spectra before
and after the hydration process to monitor the effect of the water
onto the fluorescence signal.

2.4. Classification of the farinographic curves

Farinogram provides a characteristics curve which is developed
using the measured increase in consistency in the mixture of water
and flour by the application of the force imparted by the Z shaped
blades of the farinograph. Fig. 2 shows the farinographic curve for
Rettenmeier flour which is categorized into four different phases.
The hydration phase develops after the addition of water to the
Rettenmeier flour until it reaches 500 BU line. The region around the
peak of the curve represents the dough development phase. Dough
stability phase starts after the dough development time until the
upper curve remains on 500 BU line. Last phase is dough softening
which began when upper farinographic curve leaves the 500 BU
line.

2.5. Chemometric data analysis
The spectral data have been imported into a Matlab workstation
(The Mathwork™ MA, United States) where all further data eval-

uation stages were performed. There were two sets of spectral data:
one containing the ten measurements of Rettenmeier flour (220
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Fig. 1. Chart describing the experimental procedure. Modified farinographic bowl (A), fluorescence sensor connected to farinographic bowl (B) and schematic diagram for taking

fluorescence spectra during the kneading process in farinograph (C).

spectra) and the second data set composed of spectra taken from
eleven different cultivars plus Rettenmeier flour (264 spectra) dur-
ing the process of farinographic mixing. First spectral data set was
used to perform PCA exploratory analysis of the separation into
different phases of farinogram. The second data set was subjected
to PCA to classify the various types of wheat flours on the basis of
bread making performance into different quality groups. Addi-
tionally, PLSR modeling was used to predict the middle curve of
farinogram.

Before the employment of the PCA and PLSR modeling, the
spectral data was pre-processed using standard normal variate
(SNV) and generalized least square weighting (GLSW)
transformation.

SNV (Barnes, Dhanoa, & Lister, 1989) transformation is a method
of pre-processing which eliminates the variation induced into
spectra by the scattering effect due the diversity of particle size. It is
applied to take out the mean spectra from the individual variable

which is then divided by its standard deviation using the formula
shown in Equation (1)

Xsny, = (Xi = X) /ox (1)

Here Xsny, .X. Xjand ox are the transformed spectral data
point, mean, ith intensity value in a spectrum and its standard
deviation, respectively.

GLSW is an advanced transformation technique which is used to
remove the clutter variance within the class from the spectra
(Nache, Scheier, Schmidt, & Hitzmann, 2015). The fluorescence
spectra have been filtered here by using GLSW with a down-
weighting factor of 0.01 which provides an optimal filtration by
retaining the maximum variance in the spectra without any loss of
information and achieve a maximum performance in chemometric
modeling.

Principal component analysis (PCA) is one of the basic methods
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Fig. 2. Representation of the of farinographic phases for Rettenmeier flour: Hydration (1), dough development (2), dough stability (3) and dough softening (4).

of chemometrics used for exploratory analysis of multivariate data.
It is applied to reduce the dimensionality of the multivariate data to
a number of latent variables, called principal components (PCs)
without losing the information (Mehdizadeh, Minaei, Hancock, &
Torshizi, 2014), First PC captures the maximum variance which
reduces with each successive PCs. PCA was applied on data sets
which were pre-processed with SNV and GLSW to separate the
farinographic curve and to categorize the different wheat flours
into various groups during the kneading process.

PLSR is a supervised method which is applied to get the corre-
lation between the predictor data X and the predicted set of data y
(Chung, Heymann, & Griin, 2003). Here X represents the spectral
data and y denotes the middle curve of farinogram. PLSR model was
applied on the second set of spectral data containing eleven
different cultivars plus Rettenmeier flour using cross-validation. In
this validation method, the spectra belonging to the one flour putin
one block (22 spectra). Eleven blocks were used for the calibration
while validation was performed using the twelfth block. This pro-
cess was repeated until all the blocks used for validation purpose
one by one.

The performance of the model was estimated by computing the
root mean square error of cross validation (RMSECV) and the coeffi-
cient of determination (R?). These are calculated using the Equations
(2) and (3),

RMSECV — (2)

R2=1—Z":(ms—m)2 (3)

Here m; and p; represents the measured and the predicted value
of the ith sample, while m and n represent the mean and number of
sample respectively. Here number of sample are (n = 12) due to the
twelve different flours investigated.

3. Results and discussion

Table 1 summarizes the mean, standard deviation and range
values of the middle curve of farinogram for first (middle curve of
farinogram for ten replicates of Rettenmeier flour) and second
(middle curve of farinogram for eleven cultivars of wheat plus
Rettenmeier flour) data set. The variation in the data is important
for accurate and robust modeling.

3.1. Hydration effect on the fluorescence spectra

The contour plot of the fluorescence spectra for the Rettenmeier
flour is presented in Fig. 3. The plots show peaks in different regions
of the spectra. Before the addition of water, high fluorescence in-
tensities were observed in the NADH-specific area of the spectra
defined by Aexcitation 330—390 nm and Aemission 430—490 nm. After
the addition of water, there is pronounced decrease in the fluo-
rescence intensity in this region. The highest intensity value
dropped from 3640 units to 1520 units after the hydration process,
which is the reduction of 58 %. This may be due to the fact that the
NADH which is naturally present in the flour oxidizes after the
addition of water that lowers the fluorescence intensity in this
region (Parmentier, Vandamme, Beauprez, & Arnaut, 2012). Ferulic
acid fluorescence can also be observed in the same region as
described in the literature (Pussayanawin, Wetzel, & Fulcher, 1988).
However, there was an increase in the fluorescence intensity after
the hydration process (Garcia et al., 2016) which is contrary to the
present findings.

Another peak was visible in the protein area of the spectra
which was present in the Jexcitation 270—310 nm and Zemission
310—390 nm before the addition of water. These protein peaks are
due to the presence of tryptophan which is highly fluorescent flu-
orophore present in adequate amount in wheat flour. The
quenching of tryptophan fluorescence due to the interaction with
tyrosine residues was observed after the hydration of wheat flour
(Sironi, Guerrieri, & Cerletti, 2001) which can be allocated towards
the structural changes of proteins. The highest peak due to the
tryptophan fluorescence was 2230 units which diminished to 1430
units after the hydration of wheat flour with variation of 36% that is
similar to the previous findings. Furthermore a distinct peak was
observable in the spectral area defined by Aexcitation 430—470 nm
and Zemission 510—570 nm which has assigned to different fluo-
rophores like carotenoid pigments (Gillbro & Cogdell, 1989) or
glycoflavones in wheat germ (Barnes & Tester, 1987). Furthermore,
one author allocated the attributed fluorescence of this region due
the riboflavin as he enriched the flour with it which resulted in its
determination (Zandomeneghi et al., 2003). Due to the hydration,
61 % reduction of fluorescence signals was observed in this region
of spectra. Moreover the pyridoxine is present in wheat flour
however its typical peak was masked due to the high intensity in
NADH and ferulic acid region of fluorescence spectra in the contour
plots shown in Fig. 3. Altogether considering these effects, it sus-
tains the idea that the hydration of the flour directly affects its
fluorescence intensity.
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Table 1

Representation of mean, standard deviation and ranges values of the middle curve of farinogram developed for different cultivars of wheat plus Rettenmeier flour.
Data set Mean value of middle curve of farinogram [BU] Standard deviation [BU] Range [BU]
“First data set 456 27 354-503
“Second data set 475 24 397-518

4 Middle curve of farinogram of 10 replicates of Rettenmeier flour.
b Middle curve of farinogram of 11 wheat cultivars plus Rettenmeier flour.
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Fig. 3. Contour plot of Rettenmeier flour before (a) and after (b) the hydration process.

3.2. The effect of the pre-processing on the spectral signal

The raw fluorescence spectra recorded during the kneading of
wheat flour with farinograph is presented in Fig. 4a. Each spectral
line indicates one run of farinographic measurement. Here the
distinct peaks can be observed in the various regions of the fluo-
rescence spectra. The highest peak was observed in the NADH and
ferulic acid regions of the spectra. NADH and ferulic acid show
peaks in excitation 350 nm with emission 450 nm and 440 nm
respectively (Schulman, 1985) and exhibit strong relationship with
fluorescence in wheat flours as described by previous researches
(Garcia et al., 2016; Zandomeneghi, 1999). The riboflavin region of
the spectra showed the small peaks and can easily detectable by
using these line spectra. Similarly, the peaks obtained due to the
fluorescence of pyridoxine were found in the region of excitation
333 nm and emission 375 nm (Nakai & Horimoto, 2006). Further-
more, the peaks in the protein region of the spectra can be allocated
due to fluorescence of aromatic amino acids like tryptophan,
tyrosine and phenylalanine present in wheat flour (Garcia et al.,
2016). Fig. 4b represents spectra which have been normalized
and filtered with SNV and GLSW pre-processing techniques.

3.3. Separation of farinographic curve with PCA

PCA was carried out on the first data set that contains the
fluorescence spectra of ten replicates of Rettenmeier flour during the
farinographic kneading process. Fig. 5 presents the distinct sepa-
ration of the spectral variables into the all four different phases
specific to a farinographic curve achieved by single value decom-
position employed in the PCA computation. These farinographic
phases (hydration, dough development, dough stability and soft-
ening) have specific characteristics associated with the structural
and development changes of gluten network. For example,

hydration phase hydrates the flour particles and smoothens its way
towards the next phase of the farinographic curve, the dough
development. Dough development phase is responsible for the
development of the three-dimensional gluten networks which
confer visco-elastic properties to the dough. These properties are
crucial since they provide the information for the further process-
ing of the dough in the production lines. These structural changes
in the protein network can be assumed clear differentiation be-
tween the hydration and the dough development phase. The next
phase is the dough stability, a span-zone between where the upper
curve touches and leaves the 500 BU line. It determines how much
the flour is stable during the application of the torque. Some spectra
of the dough stability phase appeared in the dough development
phase. This might be due to the fact that dough development is
considered to be a part of the dough stability phase. But for the
separation dough development and stability phases, it was a little bit
modified. The last phase is the dough softening in which the gluten
completely breaks down and the dough become very viscous and
adhesive. A few spectra of the dough stability and softening phases
show similarities which might be due to the complexity of the
farinographic kneading process as depicted in Fig. 5 as a function of
principal component 1 and 2.

In order to investigate the nature of the distinct separation of
the farinographic phases attained with the PCA, the eigenvectors
associated with the first two principal components were analyzed
as shown in Fig. 6. The first principal component which describes
the main direction of the variance accounted by the highest peaks
observed in the ferulic acid, in the riboflavin region as well as in the
protein region of the spectra which was an expected feature due to
the application of the GLSW spectral pre-processing. Similarly, the
second principal component similarly captures variance describing
the same peaks as the main one, however with some extra peaks in
the riboflavin area of the spectra. The multitude of the peak
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Fig. 4. Pre-processing effect onto fluorescence spectra of Rettenmeier flour: (A) Raw spectra and (B) SNV + GLSW transformed spectra.
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Fig. 5. Principal component analysis (PCA) scatter plot showing the separation of the different phases specific to the farinographic curve during kneading of 10 fluorescence
measurements of Rettenmeier flour.

features represented with the help of PCA, suggested that the Fig. 6 also presents the residuals computed in the PCA process that
kneading is a very complex process and the interaction between contain the rest of the variance which in fact has the highest rep-
different fluorophores can be associated and explained by the resentation of ~82 %. It does not present any relevant information as
separation of the farinographic curve into the different phases. it mainly contain variance present in the same class, not useful for
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Fig. 6. Representation of the eigenvectors associated with the first two principal components for separation of farinographic phases of Rettenmeier flour out of fluorescence spectra.

the PCA modeling approach which was filtered out of the model by
the GLSW pre-processing technique. The pre-processing increases
however the variation between the classes which leads to a sig-
nificant separation of the phases and to a very simple PCA model
with only two sufficing factors. The present results revealed the
similar trend as was observed in the previous application of this
chemometric approach for the classification of soil using different
pre-processing methodologies (Rozenstein, Paz-Kagan, Salbach, &
Karnieli, 2015).

34. PCA for classification of the wheat flours into different groups
during kneading

PCA was applied on second data set obtained by taking the
fluorescence spectra of eleven different cultivars plus Rettenmeier
flour during the farinographic kneading process. Different wheat
cultivars used in this contribution were divided into various groups
according to their bread-producing performance and analytical
parameters. The wheat belonging to the quality group E (elite) is
considered excellent while quality group A is good for bread mak-
ing performance. The third group which is relatively less suitable
for bread making belongs to group B and the group C is considered
to be used for cookies, animal feed and other purposes as it is un-
suitable for bread. PCA scatter plots from Fig. 7 shows a complete
separation for all the wheat quality groups during the kneading
process. First principal component accounts for 18.7 % variation in
the data presenting a clear separation of quality group B and C from
the quality group A and E. Rettenmeier flour was found to be in
between these groups showing similarity with the quality group B.
On the other hand, second principal component explains 8.49 %
variation with a clear differentiation of quality group C from all
other classes of wheat flours during the kneading process. The low
explained variance (~27 %) by the first two principal components is
due to the application of GLSW as described in the previous section.
The eigenvectors associated with first two principal components
(results not represented) showed peaks in different regions (pro-
teins, ferulic acid and riboflavin) of the spectra. It can be the reason
for differentiation of the wheat cultivars during the kneading
process into different quality groups with the help of PCA as they
have the different analytical and baking characteristics. The results
of the present contribution are in line with the previous

contribution of Cozzolino, Roumeliotis, and Eglinton (2014) who
has classified barley based on year of harvesting and locality with
the help of partial least square discriminant analysis using Rapid
Visco Analyser (RVA) data. Similarly, Karoui et al., (2006) has used
non-destructive sampling procedure to differentiate various cereal
products with the help of fluorescence spectroscopy which lacks in
the present contribution but it still provides a novel idea for dif-
ferentiation of wheat cultivars.

3.5. Prediction of the farinogram middle curve

Middle curve of farinogram usually describes the hydration,
dough development time, dough stability and softening phases. As
it provides a complete overview about the farinograph, that is why,
it was predicted by using PLSR modeling. The PLSR model managed
to accurately predict the middle curve of the farinogram using 7
principal components. Fig. 8 represents the model fit results with a
cross-validated error of 14 BU and a coefficient of determination R?
of 0.75 which suggests that the middle curve can be decently
predicted from the fluorescence spectra showing the relative error
less than 10 %. Therefore, in the fluorescence signals the informa-
tion regarding the farinographic curve is included. However it is not
as easy to extract as more information might be hidden.

The prediction of middle curve of farinograph reported here the
feasibility study using PLSR modeling out of fluorescence spectral
data. It requires considerable more number of samples and com-
plex chemometrics techniques like non-linear modeling and vari-
able selection methodologies for improvement of the results of the
present contribution to replace the farinograph from cereal
industry.

4. Conclusion

Farinograph is the most popular method in the baking industry
for quality monitoring and therefore for classification of the cereal
products. This work presents the potential of the fluorescence
spectroscopy for the characterization of the farinographic kneading
processes by separating the farinographic curve into four different
phases which are characterized due to the developmental and
structural changes taken place during the mixing. These phases are
hydration, dough development, dough stability and dough
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Fig. 7. Principal component analysis (PCA) scatter plot showing the separations of four different classes of wheat plus Rettenmeier flour during the kneading process.
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softening. An impact of hydration on different types of fluorophors
has been explored which can be acknowledged as a decrease of
intensity in the protein, NADH, ferulic acid, pyridoxine and ribo-
flavin regions of spectra. Different quality groups of wheat ac-
cording to their bread making performance can be categorized into
four groups using PCA applied to the florescence spectra. Similarly
the middle curve of farinogram can be decently predicted using
PLSR modeling on the fluorescence spectroscopic data with an R? of
0.75. The characterization of the farinographic kneading process
with fluorescence spectroscopy provides a new approach to esti-
mate the changes in the dough using a cheap, fast and non-invasive
alternative method. This approach will lead the way into devel-
oping soft-sensor applications for identification of the wheat cul-
tivars and the optimum time for mixing of dough.
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Summary The purpose of this study is to evaluate the potential of fluorescence spectroscopy to predict the nutri-
tional parameters of twenty-six commercially available wheat flours from different vendors. Principal com-
ponent analysis (PCA) was used to clearly identify the correlations among different types of flours. A
partial least square regression (PLSR) model gives a good prediction for moisture, fat and carbohydrates
using cross-validation, with a R*> of 0.86, 0.88 and 0.89 respectively. However, the protein, sucrose and
salt contents showed little correlation in PLSR. Locally weighted regression (LWR) provides a significant
improvement in the prediction of all of the nutritional parameters. The error decreases with an increasing
R? 10 0.96, 0.93, 0.99, 0.98. 0.99, 0.88, 0.95 and 0.99 for the energetic value, protein, fat, moisture, carbo-
hydrate, sucrose, salt and saturated fatty acid contents respectively, for different wheat flours. Hence, fluo-
rescence, which is a non-invasive and rapid method, can be used to evaluate the nutritional parameters of

different types of wheat flours.

Keywords

Introduction

Cereal-based foods are a complex mixtures of different
nutrients that play an important role in human nutri-
tion and have a strong influence on life quality and
physical fitness (Kulmyrzaev er al., 2007; Topping,
2007). Among the cereal-based foods, wheat is one of
the most cultivated cereal crops (Goesaert et al., 2005)
and is produced and consumed in every part of the
world for different products, such as bread, cookies,
cakes and pasta. Wheat flour contains macro- and
micronutrients, which have a vital role in human nutri-
tion (Topping, 2007). Therefore, the estimation of the
nutritional composition of wheat flour represents an
important step in the production of a flour-based end-
product and is a prerequisite for its marketing. Due to
increased public awareness of nutrition, there is a high
demand for quick and non-invasive methods for the
estimation of nutritional parameters. To date, chemical
methods are widely used for these types of analyses,
which are laborious, expensive and produce many
non-desired waste pollutants. Fluorescence spec-
troscopy offers a good alternative and is recognised as
rapid and efficient tool for monitoring the structural
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changes in fluorescent molecules (fluorophores) present
in the particular food or ingredient as a result of ana-
lytical treatment, storage and contamination (Karoui
& Blecker, 2011). Chemometric tools (descriptive and
predictive methods) are a useful fingerprinting method
when mixed fluorophores are scanned in the fluores-
cence spectrum, as has been performed in cereals
(Zekovic et al., 2012), culinary oils (Sikorska er al.,
2005) and meat (Sahar et al., 2016). Similarly, chemo-
metrics has been applied for online process monitoring
of sourdough fermentation to predict the pH and
degree of acidity at different temperatures and dough
yields (Grote et al., 2014).

Theoretically, fluorescence spectroscopy cannot be
used to analyse non-fluorescent molecules; however, it
has been employed to estimate them indirectly due to
the correlation with fluorescent molecules. Fluores-
cence spectroscopy is applied to estimate glucose dur-
ing online monitoring of bio-processes (Ohadi er al.,
2015) and to predict the vitamin C content due to the
changes in heat-treated infant formulas (Diez er al.,
2008). Quantification of glucose, fructose and sucrose
in figs (Jiang et al., 2013), the prediction of acrylamide
in biscuits during the baking process (Sereys et al.,
2013) and the estimation of fat and fatty acid in meat
(Ait-Kaddour ez al., 2016) have increased the impor-
tance of this type of spectroscopy for the determination
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of non-fluorescent molecules. On the other hand, the
prediction of riboflavin in yogurt (Becker ez al., 2003)
and wheat flours (Zandomeneghi ez al., 2003) proves
the applicability of fluorescence spectroscopy in deter-
mining the unique nutritional profile.

Similarly, other spectroscopic techniques are used in
directly or indirectly estimating the nutritional parame-
ters for different types of foods. NIR has been employed
to determine the energetic value and macronutrients in
commercially available homogenised meals (Kim ez al.,
2007), whereas FTIR is applied for the direct evaluation
of the energetic value, carbohydrates, protein and indi-
rect prediction of calcium content of different yogurt
samples (Moros et al., 2006). Furthermore, Raman
spectroscopy is used in determining fat, carbohydrate
and other nutritional parameters in milk powders and
infant formulas (Moros et al., 2007). Hence, these types
of applications are important in determining the nutri-
tional parameters not only in the food industry, but can
also be employed in the hotel management chain, home
use and in hospitals for diabetics and other types of
patients (Moustakas & Pitris, 2009).

Fluorescence spectroscopy has been used in deter-
mining unique nutritional parameters but has never
been applied to predict the complete nutritional profile
like other spectroscopic techniques. Therefore, in the
present study, the potential of fluorescence spec-
troscopy was analysed to determine the nutritional
parameters of wheat flours with the help of linear and
non-linear chemometrics. Here, principal component
analysis (PCA) is used to differentiate among different
types of wheat flours. Nutritional parameters, such as
the energetic value, protein, fat, carbohydrates and
other nutrients, of different types of wheat flours are
predicted using partial least square regression (PLSR)
and locally weighted regression (LWR) based on the
fluorescence spectra.

Materials and methods

Raw materials

Twenty-six samples of various types (405, 550, 1050
and whole wheat flour) of commercially available
wheat flour from different vendors were purchased
from the local supermarket. A total of 9, 8, 4 and 5
samples of type 405, 550, 1050 and whole wheat
(WWEF) flour respectively, were used. This classifica-
tion of the commercially available wheat flours into
different types is based on the different mineral profiles
corresponding to the respective extraction rate during
milling using the German standard DIN 10355 (Schol-
lenberger er al., 2002). The nutritional parameters of
the different types of wheat flours were recorded from
the packing label as given in Table 1. The moisture
content of the samples of different types of flours was

International Journal of Food Science and Technology 2016

also determined using an infrared moisture analyser
(MA 51: Sartorius AG, Goéttingen, Germany). Analy-
sis of variance (ANovA) and hierarchical analysis were
applied to interpret the recorded nutritional parame-
ters of the various types of wheat flours.

Data collection by fluorescence spectroscopy

The fluorescence spectra were acquired using the 2D-
fluorescence spectrophotometer BioView® (Delta Light
and Optics, Horsholm, Denmark). BioView® uses two
filter-wheels mounted with fifteen filters, which are
used for the excitation and emission spectra. These fil-
ters select the 20 nm step-widths of excitation and
emission light in the range of 270-550 and 310-
590 nm respectively. A xenon flash lamp is used for
excitation and is located in front of the filter-wheel.
After passing through the light guide, the excited light
goes into the optical well then into the sample. The
fluorophores are irradiated with the respective wave-
length, and the fluorescent light is sent back through
the second optical fibre towards the emission filter.
The filter-wheel shifted to the next filter of excitation
of wavelength and fluorescence spectrum was taken
through the complete cycle of emission. The data are
transferred to the computer through an infrared single
fibre modem. The computer is equipped with software
that controls the BioView sensor and also performs
the analysis of the data (Lindemann ez al., 1998; Rossi
et al., 2012). Three spectra for each wheat flour were
taken and then averaged. The data set comprises 104
spectra for all twenty six types of wheat flours, con-
taining four spectra from each sample, which make a
block. Hence, twenty-six blocks were created contain-
ing four spectra in one block of the same flour sample.

Spectral data analysis

Principal component analysis (PCA), partial least square
regression (PLSR) and locally weighted regression
(LWR) chemometric methods were used to evaluate the
nutritional parameters from the spectral data sets. The
chemometric evaluation was performed on a MATLAB
2013b (The Mathwork™, Natick, MA, USA) platform
using PLS toolbox (7.5: Eigenvector Research, Inc.,
Manson, WA, USA) as well as the Unscrambler software
(Version 10.3; CAMO Software AS, Oslo, Norway).

Pre-processing of spectral data

Pre-processing of the spectral data is a mandatory pro-
cedure prior to any type of spectral quantitative or
qualitative evaluation to make the extracted informa-
tion more accessible and to improve the goodness of
fit in the chemometric modelling approaches (Nache
et al., 2015).
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Table 1 Commercial wheat flours from different vendors and their nutritional parameters

Sample Types of Energy value (kJ/ Moisture Protein Fat Carbohydrate Sucrose Salt Saturated fatty acids
no. flour 100 g) (%) (%) (%) (%) (%) (%) (%)
1 405" 1457 12.74 10.0 1.0 72.0 0.70 0.010 0.10
2 405 1446 13.43 10.0 1.0 71.0 0.40 0.010 0.20
3 405 1446 12.44 12.0 1.0 69.0 0.40 0.010 0.10
4 405 1480 13.36 11.0 1.0 72.0 0.70 0.010 0.20
5 405 1433 12.34 11.0 1.1 69.0 0.50 0.010 0.10
6 405 1483 13.16 12.8 0.7 71.0 0.50 0.005 0.20
7 405 1470 13.64 10.6 1.0 71.8 0.40 0.005 0.20
8 405 1467 11.94 9.8 1.0 70.9 0.43 0.002 0.15
9 405 1459 13.52 10.0 1.0 72.3 0.70 0.003 0.10
10 550° 1444 11.70 9.8 1.1 70.8 0.43 0.002 0.17
1 550 1474 12.58 11.0 1.1 72.0 1.10 0.010 0.20
12 550 1409 13.33 10.0 1.1 71.0 0.40 0.002 0.20
13 550 1474 14.00 10.6 1.1 72.0 1.10 0.005 0.20
14 550 1480 13.08 11.0 1.1 72.0 1.10 0.010 0.20
15 550 1447 12.05 9.8 11 71.0 0.50 0.010 0.20
16 550 1468 11.18 9.8 1.1 70.8 0.43 0.002 0.17
17 550 1468 12.24 9.8 1.1 70.8 0.43 0.002 0.17
18 1050° 1459 11.67 11.6 1.8 67.7 0.74 0.002 0.26
19 1050 1454 12.28 121 1.7 67.2 0.70 0.005 0.30
20 1050 1383 12.20 12.0 1.8 67.0 0.50 0.002 0.30
21 1050 1459 11.17 11.6 1.8 67.7 0.74 0.002 0.26
22 WWF? 1381 11.61 11.0 1.8 60.0 0.60 0.020 0.30
23 WWF 1373 11.60 1.4 2.4 59.5 0.72 0.003 0.34
24 WWF 1373 11.58 11.4 2.4 59.6 0.70 0.008 0.30
25 WWF 1374 10.85 11.4 2.4 59.5 0.72 0.003 0.34
26 WWF 1376 11.23 11.0 2.4 60.0 0.70 0.010 0.30

Flour type 405 contains less than 0.5% mineral contents.
*Flour type 550 contains 0.5-0.63% mineral contents.
SFlour type 1050 contains 0.91-1.2% mineral contents.
"Whole wheat flour contains 1.2-1.8% mineral contents.

Before applying any chemometric evaluation, the
spectral data were pre-processed using solo and combi-
nations procedures of standard normal variate (SNV)
and 2nd derivative to remove the scattering eflect
induced by the spectra acquiring procedures and
changes due to the diversity of particles during the
measurements.

SNV transformation (Barnes er al., 1989) is a scat-
tering correction technique in which the mean and
standard deviation of each spectrum are used. The
mean spectrum is subtracted from each data point and
then divided by its standard deviation. Eqns (1) and
(2) were used to calculate the SNV transformation

Xsnv; = (Xi — X) /oy

o= [(ZL 007 -

here, Xsnv; 1s the scattering corrected spectral data

point of X, which is the ith variable of the spectra. X

(1)

(2)
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and n are the mean and the total number of variables
respectively. Then, SNV transformed data were sub-
jected to the second derivative with fifteen window
points using the Savitzky—Golay method.

Chemometric models

Principal component analysis (Clément et al., 2010) is
one of the basic methods of exploratory data analysis
and reduces a large set of spectral data into a small
number of principal components without loss of major
information. The first latent variable has the highest
variance, and each successive latent variable describes
a relatively lesser amount of wvariance. In our
approach, PCA was applied to separate the different
types of flour on the set of spectral data, which is pre-
processed by SNV.

Partial least square regression is a quantitative
chemometric tool that decomposes the spectral data
and reference values simultaneously to maximise the
covariance between them by compressing the data into
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a smaller number of factors, which leads to a linear
relationship (El Masry et al., 2012). In the present
contribution, PLSR was used on pre-processed spectral
data to determine the nutritional parameters of the
wheat flours. The spectra belonging to the same flour
sample were put into one block. Cross-validation was
performed using PLSR by the leave one block out
method. Calibration was performed using twenty five
blocks every time, and the last block was used for test-
ing the model. This process was repeated until all the
blocks were used to predict the nutritional value of
wheat flours. In another approach, an SNV trans-
formed data set was divided into 70% and 30% for
calibration and prediction respectively, to estimate the
nutritional parameters of the wheat flours.

A non-linear regression method was used to predict
the nutritional parameters for different types of wheat
flours to improve the linear regression modelling
results. Locally weighted regression (LWR) (Naes
et al., 1990) was applied to estimate the non-linear
correlations between some of the dependent variables
and the spectral data. LWR is based on the applica-
tion of the local models around the point of interest
on different subsets of the data to predict the y values
(Nache et al., 2015). The LWR algorithm was applied
using twenty-six local points for weighing to predict
every sample using two latent variables in the models.
The LWR models were validated using the leave one
out cross-validation technique.

Goodness of the fit in linear and non-linear regression

The goodness of a model fit was evaluated using the
root mean square error of cross validation (RMSECV)
and the coefficient of determination (R%). The
RMSECV and R*> were calculated using eqns (3) and
(4) (Zhu et al., 2015).

RMSECV = Z (mi — pi)/n (3)

/Z (m; —m)?* (4

here, m;, p;, m and n are the measured, predicted, mean
value and number of observations respectively. The R’
values ranging from 0.5-0.65, 0.66-0.81, 0.82-0.91 and
above 0.91 describe poor, moderate, good and excellent
prediction respectively (Kulmyrzaev et al., 2007).

R —I— i~ (m; —

Results and discussion

Table 1 describes the measured nutritional parameters
of all the evaluated categories of wheat flour, which
shows the variation in the data set. For example,
the energetic value of whole wheat flour is very low
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compared to the other types of flours due to the pres-
ence of high dietary fibre, which has no role in the
energy value (Topping, 2007). Similarly, other nutri-
tional parameters also show the variation, which can
be elaborated by application of analysis of variance
(aNovA). The results of the ANova (not shown) show
that flours 550 and 405 are not significantly different
from each other, although they were from different
vendors. However, flour 1050 varies significantly in
carbohydrate, protein and fat contents from the afore-
mentioned flour types. Furthermore, whole wheat flour
(WWEF) is completely distinct from the other types of
the flour used in this research. These variations in the
data set are important for developing a robust and
accurate calibration model.

Characteristics of the fluorescence spectra of flours

In Fig. 1, the contour plots of different types of wheat
flours are presented. Each spectrum of the wheat flours
shows three distinct peaks that can be attributed to the
different types of the fluorophores. The highest peak
was observed at Acxcitation 310-370 nm and Aepmission 410
470 nm, which can be attributed to ferulic acid (Garcia
et al., 2016) and NADH, which are naturally present in
the wheat flour. Another peak was observed at Aeycitation
270-310 nm and Aepmission 310-370 nm, which belongs to
the protein area of the spectra due to the fluorescence of
tryptophan, phenylalanine and tyrosine (Grote et al.,
2014). This peak has the lowest intensity for whole
wheat flour (Fig. 1d) due to the cascade effect as a result
of the ferulic acid content (Garcia er al., 2016). The
third peak, which is attributed to the riboflavin content
of the wheat flour, falls in the range of Aucitation 410
450 nm and Aepission S10-550 nm (Zandomeneghi et al.,
2003). The whole wheat flour has relatively higher inten-
sity in this region of the spectrum compared to the other
types of the flour due to the presence of more riboflavin.
Pyridoxine and vitamin E also show peaks in their
respective regions, but they are masked due to the high
intensity in the ferulic acid region of the spectrum. All
these differences in the different regions of the fluores-
cence spectra can be further explored to describe the
correlation among various types of flours using princi-
pal component analysis (PCA).

Exploratory analysis of the spectral data using principal
component analysis

The exploratory evaluation of the spectral data of the
different types of wheat flour was performed with the
help of the PCA data analysis technique, which is used
to reduce the high dimensionality of the spectral data
to a set of compressed vectors (principal components,
PC) that are easier to evaluate. The presented scatter
plots indicate clear separation among the scores belong-
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Figure 1 Representation of the contour
plots for different wheat flours, type 405 (a),
type 550 (b), type 1050 (c) and whole wheat
flour (d).

ing to the various types of wheat flours, as shown in
Fig. 2. After the SNV transformation, most of the vari-
ance present in the data set was captured in the first
two principal components, which account for up to
96% of the variance in the data. The scores for flour
types 405 and 550 are highly correlated and are located
in the same area due to their comparable nutritional
values for carbohydrates, fat and the protein. These
flour types are in contrast with the remaining flours,
type 1050 and the whole wheat flour. The whole wheat
flour has different protein, vitamins and cofactors
(NADH, FMN and FAD) compared to the other types
of flours, which separate themselves in a non-correlated
score space region in the plot. Similar results were
obtained using the hierarchical analysis applied to the
nutritional parameters of the wheat flours (dendrogram
not shown), which confirms the results of the PCA.

Nutritional parameters prediction using partial least
square regression

Table 2 presents the PLSR, which includes the evalua-
tion results of the cross-validated chemometric models
used to estimate the prediction performances of the
nutritional parameters of the wheat flours. Here, the
fat, carbohydrates and moisture contents provided

good prcdiclion from the fluorescence spectral data,
expressing an increased coeflicient of determination
(R°) and a decreased prediction error. The prediction
of the protein, sucrose and the salt contents produced
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linear regression models with a lower performance
compared with the aforementioned prediction models
because the R> levels did not reach an acceptable level.
However, the energetic value was predicted with the
cross-validated model error settled at 22.73 kJ/100 g
with an R” of 0.65, indicating poor prediction. Simi-
larly, the saturated fatty acid contents of the different
types of wheat flours also have a moderate correlation
with an R* of 0.76.

Figures 3a, b and ¢ show the scatter plots for the
measured and predicted parameters. In the case of fat
determination, the RMSECV reached 0.18%, whereas
the R’ \thl(.d at 0.88 and the carbohydrates prediction
gave a 1.49% RMSECV with an R* of 0.89. Further-
more, the RMSECV was 0.32% and the R* reached
0.86 for the moisture determination. The per cent error
was less than 10% in the prediction case for all the
aforementioned parameters.

The results of the PLSR modelling by dividing the
data set into 70% and 30% for calibration and predic-
tion respectively are given in Table 3. The fat, carbo-
hydrate, moisture and saturated fatty acid can be

accurately predicted. The root mean square error of

prediction (RMSEP) was 0.13%, 1.04% and 0.33%
for fat, carbohydrate and moisture respectively with
R? in the range of good prediction. The energetic value
can be moderately predicted with a RMSEP 18.47 kJ/
100 g. The other parameters, including the protein,
sucrose and salt contents, did not have good predic-
tion ability, providing a high RMSECV.
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Table 2 Statistics of cross-validated PLSR modelling for prediction
of the nutritional parameter of wheat flours

Parameter RMSECV' R
Energy value (kJ/100 g) 22.730 0.65
Moisture (%) 0.320 0.86
Protein (%) 0.740 0.24
Fat (%) 0.180 0.88
Carbohydrate (%) 1.490 0.89
Sucrose (%) 0.180 0.26
Salt (%) 0.004 0.17
Saturated fatty acids (%) 0.036 0.76

‘Root mean square error of cross-validation.
*Coefficient of determination for cross-validation.

Non-linear regression approach for the nutritional
parameters prediction

LWR was employed to estimate the nutritional param-
eters of wheat flours with the target of improving the
prediction for some of the nutritional attributes, which
are not reliably predicted by PLSR.

The results of the LWR technique are shown in
Table 4. LWR significantly improves the predictive
ability of the nutritional parameters of wheat flours
compared with the results of the linear regression
approach presented in Table 2 for the fluorescence
spectral data. The results regarding all nutritional
parameters (except sucrose) showed excellent R*> with
reduced RMSECV (Table 4). With reference to
Tables 2 and 4, the R” shifts from 0.24 to 0.93 for the
protein content, with a reduction of the RMSECYV from
0.74% to 0.23% using LWR. Similarly, LWR improved
the results of the energetic value and saturated fatty
acids by minimising the RMSECYV from 22.73 kJ/100 g
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AType (1050) ¢ WWF

Figure 2 Principal component analysis
(PCA) score plot showing the separation of
different types of wheat flours using PCA
with 2 PCs.

to 7.61 kJ/100 g and 0.036% to 0.007% respectively
showing excellent R> compared with the results of the
PLSR modelling. Furthermore, the sucrose contents of
the wheat flour showed significant enhancement in the
predictive model using this type of approach, leading to
a good R* = 0.88, which is slightly lower compared to
the other nutritional parameters. The improvement in
the results indicates that there is a non-linear relation-
ship between the spectroscopic data and the nutritional
parameters of the wheat flours.

Discussion of the results

In this contribution, fluorescence spectroscopy shows
strong potential to predict the nutritional parameters
of wheat flour. The chemometrics tools, including
PCA, PLSR and LWR were applied to extract the use-
ful information from the fluorescence spectra to obtain
robust and accurate predictive models. PCA describes
the separation of the various types of flours due to the
fluorescence of different fluorophores, such as protein,
ferulic acid, NADH and vitamins, including riboflavin
(Zandomeneghi et al., 2003), because they have differ-
ent compositions. PLSR modelling has shown a good
linear relationship with some of the nutritional param-
eters of the wheat flours, such as fat, carbohydrate
and moisture (Figs 3a, b and c). These parameters are
non-fluorescent, and the exact reason for their predic-
tion is based on assumptions. Because flour is a com-
plex mixture of different fluorescent and non-
fluorescent molecules whose interaction and correla-
tion can be a reason for the good prediction of the
aforementioned parameters. For example, vitamin E is
fat soluble, is present in wheat flour (Nielsen &
Hansen, 2008) and shows fluorescence in the region of
Aexcitation/Memission = 295/340 nm (Schulman, 1985). The
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Figure 3 Representation of measured vs. CV predicted plots for
fats (a), carbohydrates (b) and moisture (¢) using PLSR model for
different types of wheat flours (RMSECV in %).

Table 3 Statistics of calibration and validation PLSR modelling for
nutritional parameters of wheat flours

Parameter RMSEC' RMSEP* R
Energy value (kJ/100 g) 15.860 18.470 0.77
Moisture (%) 0.330 0.330 0.86
Protein (%) 0.630 0.740 0.27
Fat (%) 0.130 0.130 0.93
Carbohydrate (%) 1.040 1.140 0.93
Sucrose (%) 0.140 0.170 0.47
Salt (%) 0.003 0.003 0.35
Saturated fatty acids (%) 0.029 0.030 0.81

‘Root mean square error of calibration.
‘Root mean square error of prediction.
fCoefficient of determination.

fluorescence of this vitamin may be the reason for the
prediction of fat in the different types of wheat flours.
The prediction of total lipids (R* = 0.68) and the satu-
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Table 4 Locally weighted regression (LWR) for calibration of nutri-
tional parameters of wheat flours using cross-validation

Parameter RMSECV’ R%,*
Energy value (kJ/100 g) 7.6100 0.96
Moisture (%) 0.0940 0.98
Protein (%) 0.2270 0.93
Fat (%) 0.0350 0.99
Carbohydrate (%) 0.4030 0.99
Sucrose (%) 0.0760 0.88
Salt (%) 0.0009 0.95
Saturated fatty acids (%) 0.0070 0.99

'Root mean square error of cross-validation.
‘Coefficient of determination for cross-validation.

rated fatty acid composition (R? = 0.66) in meat mus-
cles using this technique strengthens the present
contribution (Ait-Kaddour et al., 2016). However, tak-
ing the full spectra of different types of flour instead
of the specific wavelength combinations might be the
reason for the better prediction performance of the fat
content (R*=0.88) and saturated fatty acids
(R* = 0.76) using the PLSR modelling in the present
work compared to the aforementioned study regarding
meat. Furthermore, no sample preparation operations
(freeze-drying and powder formation) provide signifi-
cant advantage over the previous contributions. Simi-
larly, the hydration of the wheat flour has a strong
impact on the fluorescence intensity in different regions
of the spectra (Garcia et al., 2016), which may be cor-
related with the estimation of moisture, whereas indi-
rect determination of the glucose during the bio-
process (Ohadi er al., 2015) and in figs (Jiang et al.,
2013) using this type of spectroscopy can be related to
carbohydrate prediction. The other parameters, such
as the protein, sucrose and salt contents, do not have
a linear relationship (Tables 2 and 3). Therefore, LWR
(a non-linear approach) has strong potential to
improve the performance of the model described by
(Nache er al., 2015) for the prediction of pH and lac-
tate content of the meat. LWR led to better predictive
models (Table 4), which indicates that this approach is
adequate for the prediction of nutritional parameters.
The results of the present contribution showed the
better estimation of the nutritional attributes com-
pared to the previous findings of Moros ef al.
(2006), who has used FTIR for the prediction of the
nutritional profile in yogurt samples (unable to pre-
dict fat) and Ferreira er afl. (2013) for the proximate
composition of soybeans with NIR spectroscopy
(R® = 0.63-0.81). However, the results generated by
Raman spectroscopy for the nutritional parameters
in infant formula are superior to the present contri-
bution due to lower prediction errors (Moros ef al.,
2007). Moreover, this contribution suggests the

International Journal of Food Science and Technology 2016

31

7



Estimation of Nutritional Parameters of Wheat Flour

Estimation of nutritional parameters M. H. Ahmad et al.

potential of fluorescence spectroscopy for the deter-
mination of the complete nutritional profile, which is
important for the labelling of food products. The
obtained model using LWR with excellent predictive
performance for the nutritional parameters could be
applicable in the baking and the cereal-based food
industries to predict the quality attributes of the
end-product.

Conclusion

This contribution discusses the prediction of the nutri-
tional parameters of different types of wheat flour
based on fluorescence spectroscopy. Linear regression
approaches, such as PLSR, can predict the fat, carbo-
hydrate and moisture contents of all wheat flour types
and provide a moderate prediction for the energetic
value and saturated fatty acids content. However, the
protein, sucrose and salt contents show poor correla-
tion using this modelling technique. Therefore, a non-
linear evaluation technique was applied. LWR showed
excellent correlation for proteins, salt and sucrose and
improved the prediction of the fat, moisture, and car-
bohydrate levels and saturated fatty acid content; as
well as the prediction of the energetic value of the dif-
ferent types of wheat flours. In short, fluorescence
spectroscopy can be used for the prediction of the
nutritional parameters of wheat flour. This technique
may be applicable to the other types of foods, but
more research is needed.
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Concluding remarks

This thesis illustrates the usefulness of fluorescence spectroscopy for characterization of wheat
flours and its dough preparations in combination with chemometric tools. This was
demonstrated by retrieving hidden information in fluorescence spectra of the wheat flour using
chemometrics to predict the critical parameters (protein, dough development time and water
absorption etc.) which are important for wheat based industry. This approach is helpful to
develop a rapid and non-invasive sensor based on fluorescence to characterize wheat flour by
just taking the spectral signature which in turn predicts the final product quality.

Kneading of the dough is a complex process operation which undergoes a number of changes
particularly the development of three dimensional gluten networks. Different instruments are
being used in kneading of dough like farinograph. It estimates the water absorption and dough
profile like dough development time, dough stability and softening. These characteristics are
important for prediction of the quality of intermediate and end product during processing.
Classification of farinographic curve using PCA into hydration, dough development, stability and
softening phases out of fluorescence spectra has open the new horizons for development of
sensors which can be helpful for determination of optimum dough development time.
Furthermore, quantification of farinographic curve from fluorescence using PLSR modeling can
predict the quality characteristics of the dough. Similarly, classification of different wheat
cultivars into different groups like E, A, B and C on bread making performance using PCA
during the kneading process gives a new idea to categorize the wheat according to its
respective use. It is important for the industrial point of view for screening and regulatory

purposes.

Food labeling is an important step for marketing due to the high awareness of the consumers
towards nutrition. Conventional methods are being used which are laborious and based on
chemicals. Prediction of complete nutritional parameters of wheat flour using PLSR and LWR
with the help of fluorescence spectroscopy provides a new vision for food labeling by just taking
the spectral reading rapidly and non-invasively. More research in this direction leads this

approach in other food applications by just taking the spectral signature of the sample.

In short, fluorescence spectroscopy seems to be outstanding analytical tools for characterization
of the wheat flour and its dough preparations based on the finding of present investigations. As
the above mention approaches were conducted on laboratory scale using a small number of

samples. Therefore, it is recommended to increase the number of sample to make them feasible
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to adopt by the industry to combat with the growing concerns in technology for attaining high
standards of quality and safety. Furthermore, application of the abovementioned techniques can
shift the batch process operations to continuous which show a huge advantage what the

conventional analytical methodologies can not offer.
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