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Chapter 1

Introduction

Around the turn of the millennium, the Organization for Economic Co-operation and Development

(OECD) published an article, which summarizes the organization’s expectations towards technological

developments of the 21st century (Miller et al., 1998). Of particular interest to the authors are innova-

tions in the area of information technology, highlighting their far-reaching impact on, amongst others,

the financial sector. According to the article, the expected increasing interconnectedness of individuals,

markets, and economies holds the potential to fundamentally change not only the flow of information in

financial markets but also the way in which people interact with each other and with financial institutions.

Looking back at the first two decades of the 21st century, these predictions appear to have been quite ac-

curate: The rise of the internet to a “broad platform for a new kind of economy” (Marburger, 2011, p.

209), profoundly impacts how people nowadays receive and process information and subsequently form,

share, and discuss their opinions amongst each other. At the financial markets around the globe, trading

has become more and more accessible to individuals. Less financial and technical knowledge is required

of retail investors to engage in trading, resulting in increased market participation and more heteroge-

neous trader profiles. This, in turn, influences the dynamics in the financial markets and challenges some

of the conventional wisdom concerning market structures. In this context, the interdependencies between

the media, retail investors, and the stock market are of particular interest for practitioners (see, for ex-

ample, Engelberg and Parsons, 2011; Peress, 2014). However, the changed dynamics in the flow and

exchange of data and information are also highly interesting from a researcher’s perspective, resulting

in entire branches of the academic literature devoted to the topic. While these branches have grown in

many different directions, this doctoral thesis explores two specific aspects of this field of research: First,

it investigates the consequences of the increased interconnectedness of individuals and markets for the

dynamics between the new information technologies and the financial markets. This entails both gaining

new insights about these dynamics and assessing how investors process certain company-related infor-

mation for their investment decisions by means of sentiment analysis of large, publicly available data

sets. Secondly, it illustrates how an advanced understanding of high-dimensional models, resulting from

such analyses of large data sets, can be beneficial in re-thinking and improving existing econometric

frameworks.

Before motivating the subsequent chapters, let me first briefly elaborate on the relevance and context

of the latter aspect of this thesis. One inevitable consequence of the increasing usage of computers to

monitor process flows, execute economic and financial transactions, but also to communicate and ex-

change opinions is the accumulation of large amounts of data. These data constitute a potentially rich
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CHAPTER 1. INTRODUCTION

source of information. If analyzed comprehensively, they can provide practitioners and researchers alike

with important insights that help to bridge existing knowledge gaps. However, such analyses impose new

challenges for econometricians, ranging from plain software restrictions that hinder the analysis of large

data sets to analytical challenges – the failure of traditional econometric models to reliably distinguish

between signal and noise in huge data sets (Varian, 2014). While the theoretical foundations of statis-

tical learning that provide the tools to address the analytical challenges have already been laid about

two decades ago (see, for example, the first edition of Friedman et al., 2001), only the more and more

frequent encounter of such large data sets in recent years facilitates rapid methodological progress. From

a practitioner’s point of view, the most interesting part of the latest developments in statistical learning

are the practical implications that follow from the analysis of their data. For researchers, on the other

hand, an enhanced understanding of the high-dimensional models themselves used in the analyses has

to be achieved first. Thus, in addition to the direct outcome of the analysis of high-dimensional mod-

els, new theoretical insights about statistical learning techniques gained from the analysis can be used

to approach other types of econometric problems from a new angle. One such technique that is part of

this thesis is Tibshirani’s (1996) least absolute shrinkage and selection operator (lasso). In contrast to

traditional, lower dimensional regression techniques, the lasso enables researchers to investigate the in-

fluence and relevance of a broad set of features on some response variable. This is particularly relevant

for applications in medical and cancer research on gene expressions (e.g., Simon et al., 2013), yet the

lasso’s properties are also more and more frequently investigated in a time series context (e.g., Wang

et al., 2009). The insights gained from an enhanced understanding of the lasso estimator can then open

new paths for improved solutions to different econometric challenges, as will be illustrated below.

Thus, instead of solely focusing on empirical investigations of the changed dynamics in financial

markets, this thesis is also concerned with methodological considerations in econometrics. By doing

so, the three independent but related research projects of this thesis can give a more holistic picture

of the implications that the profoundly changed flow and exchange of data and information of the last

decades hold for finance and econometrics. As such, the projects (i) highlight the importance of carefully

assessing the dynamics between investor sentiment and stock market volatility in an intraday context, (ii)

analyze how investors process newly available, rich sources of information on a firm’s Environmental,

Social, and Governance (ESG) practices for their investment decisions, and (iii) propose a new approach

to detect multiple structural breaks in a cointegrated framework enabled by new insights about high-

dimensional models.

The increasingly popular body of the behavioral finance literature that investigates the relationship

between investor sentiment and the stock market, which has been briefly touched upon above, consti-

tutes the starting point for the first research project of this thesis. While the question about the nature of

this relationship is not new (for early work concerned with this topic see, for example, Barberis et al.,

1998; Neal and Wheatley, 1998; Lee et al., 1991), the advent of the internet, resulting in increased inter-

connectedness among investors, has been hugely influential in altering the dynamics of the relationship.

Enabling rapid distribution of financial news among market participants and the subsequent formation

and exchange of opinions, analyses of investor sentiment have shifted more and more from relying on

financial columns of newspapers (e.g., Tetlock, 2007; Garcia, 2013) to studying the influence of social

media (e.g., Chen et al., 2014; Zheludev et al., 2014). Of particular relevance in this context is the con-

cept of noise traders as they are characterized by Kyle (1985) or Black (1986). Such noise traders are

3



assumed to be easily swayed by, among others, opinions published online. In turn, they then form their

own opinion based on the content of, for example, social media posts. This often results in impulsive

and mostly irrational trading based on their newly formed believes (Barber and Odean, 2007). While

large institutional investors in general usually are not assumed to behave similarly to noise traders, they

could anticipate and exploit the behavior of these noise traders and gain an advantage by systematically

analyzing and subsequently trading on social media information (De Long et al., 1990).

The value of assessing the information contained in social media is not clear a priori, however, it

holds the potential to enrich and augment existing forecasting models and to provide new insights into

investor behavior as several authors show. In an earlier study, Antweiler and Frank (2004) document the

usefulness of stock messages to help to predict market volatility. In their work, the authors analyze daily

messages posted on the message boards of Yahoo Finance and Raging Bull in the year 2000. While their

sampling period clearly belongs to the early years of online investor sentiment, the authors are among

the first to establish a model that shows the predictive power of investor sentiment, extracted from the

message boards via a Naive Bayes text classifier, for stock market movements. Since then, the focus of

attention has shifted from message boards to social media platforms. Some of these platforms exclusively

target the financial community, which is why they appear to be particularly interesting for researchers.

For example, Chen et al. (2014) use data from Seeking Alpha, which is a crowdsourcing service for

financial markets, and also find predictive power of articles and commentaries posted on that platform

for future stock returns and earnings surprises. However, not only the analysis of discussion platforms

that are particularly targeting participants in the financial markets can help to explore the new dynamics

of the relationship between investor sentiment and stock market movements. Financial communities

are also forming on more general-interest social media platforms such as Twitter (Yang et al., 2015).

Speculating about potential reasons for this, one could argue that noise traders acquire a substantial

part of their financial knowledge from such general-interest platforms instead of relying exclusively on

finance discussion boards. Recalling the definition of noise traders from above, retail investors’ trading

on Twitter information matches the concept of uninformed or irrational trading behavior quite well. If

such retail investors would consult more specialized online stock market communities as their primary

source of financial information, their trading, though still considered as noise trading, might be less

irrational and uninformed. This train of thought has led several authors to put Twitter at the center of

their attention, exploring the usefulness of a Twitter-based sentiment analysis for financial (prediction)

models (e.g., Bollen et al., 2011; Sprenger et al., 2014a,b; Ranco et al., 2015; Oliveira et al., 2017). While

Chapter 2 provides more insights about the findings of the related literature, for now it suffices to say

that despite their different contexts, all of the studies find significant predictive power of microblogging

sentiment for their respective financial variable of interest.

However, the effects that the aforementioned authors find all occur in a daily research framework.

Since Twitter could be considered one of the fastest moving online vehicles with most users receiving

push notifications on their mobile devices to be informed about new events in real-time, one gap in the

literature is the investigation of potential intraday effects of Twitter investor sentiment on the stock mar-

ket. Such an intraday assessment is also becoming increasingly relevant for the financial market, where

the speed with which transactions are being executed has dramatically increased over the past years, as

briefly elaborated above. Especially the assessment of intraday volatility has become increasingly impor-

tant, not only for high frequency traders but also for applications in risk management (Giot, 2005; Engle

4



CHAPTER 1. INTRODUCTION

and Sokalska, 2012). Therefore, the first original work presented in Chapter 2 of this doctoral thesis aims

at closing this gap in the literature. More specifically, the paper titled The Twitter myth revisited: In-
traday investor sentiment, Twitter activity and individual-level stock return volatility, which is joint

work with Simon Behrendt, takes a closer look at the dynamics of individual-level stock return volatility,

measured by absolute 5-minute returns, and Twitter sentiment and activity in an intraday context.1 Af-

ter accounting for the intraday periodicity in absolute returns, we discover some statistically significant

co-movements of intraday volatility and information from stock-related Twitter messages (Tweets) for

all constituents of the Dow Jones Industrial Average (DJIA). However, economically, the effects are of

negligible magnitude, and out-of-sample forecast performance is not improved when including Twitter

sentiment and activity as exogenous variables. From a practical point of view, this chapter finds that

high-frequency Twitter information is not particularly useful for highly active investors with access to

such data for intraday volatility assessment and forecasting when considering individual-level stocks.

Inspired by this first research project, the second original work presented in this thesis keeps its focus

on sentiment analysis in the context of the financial markets. At the same time, it decisively diverges

from Chapter 2 by exploring another increasingly relevant phenomenon in the financial markets to which

investors and the public appear to pay particularly close attention: Companies’ management of environ-

mental, social, and governance issues. Since the New York Stock Exchange has started the Principles of

Responsible Investment (PRI) in 2006, which was shortly thereafter followed by the Sustainable Stock

Exchange Initiative (SSEI) in 2007, the role of socially and environmentally responsible business prac-

tices for publicly listed companies has changed dramatically. ESG investing in assets under management

amounted to about $20 trillion in the year 2018 – roughly a quarter of all professionally managed as-

sets worldwide (Kell, 2018). ESG-focused assets under management are further expanding at a current

growth rate of 20% per year (Reid et al., 2018).

Despite the clear picture that these numbers paint of the relevance of the topic, the extent to which

the recently spiking demand for ever increasing ESG-efforts is driven by investors who are willing to

pay a premium on ESG-affine companies remains unclear. The academic literature, though increasingly

concerned with the issue, has thus far not reached a consensus on the influence of ESG activities on

firm value. While some authors find empirical evidence that speaks in favor of value-adding ESG (e.g.,

Nofsinger and Varma, 2014; Cahan et al., 2015; Lins et al., 2017), there is equally strong support for a

more pessimistic view on the effects of socially and environmentally responsible business practices (e.g.,

Brammer et al., 2006; Krüger, 2015; Capelle-Blancard and Petit, 2019). The increasingly easy access to

publicly available information on companies’ ESG-activities now provides the chance for new insights

about the way in which investors process these information. Instead of relying on annual company reports

or single ESG-events, online media offer the latest ESG-related news on a daily basis. By assessing

the sentiment conveyed by each piece of news, one can then analyze the correlation between ESG-

related news sentiment and stock market movements. Exploiting these newly available tools to monitor

and analyze ESG information or the sentiment formed toward them should serve to reflect the clearly

intangible nature of ESG efforts in the first place. Since to the best of my knowledge the literature has

so far not investigated investors’ reaction to newly arriving ESG information by means of sentiment

analysis, Chapter 3 addresses this research gap.

1This paper has originally been published as Behrendt, S. and Schmidt, A. (2018) The Twitter myth revisited: Intraday
investor sentiment, twitter activity and individual-level stock return volatility, Journal of Banking & Finance, 96, 355-367.
https://doi.org/10.1016/j.jbankfin.2018.09.016
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Moreover and in contrast to the work presented in Chapter 2, the second original work of this thesis

does not base its analysis on a publicly available sentiment index but constructs a domain-specific index

from scratch. Domain-specific here refers to the fact that only ESG-related news are considered for the

calculation of our sentiment time series. Thus, the second project also elaborates in greater detail on

how a sentiment index can be constructed from raw data with an application in behavioral finance that

is of utmost importance for today’s financial markets. More precisely, Chapter 3, Sustainable news – A
sentiment analysis of the effect of ESG information on stock prices, investigates the effect of ESG-

related news sentiment on the stock market performance of the DJIA constituents. Relying on a large data

set of news articles that were published online or in print media between the years of 2010 and 2018,

each article’s sentiment with respect to ESG-related topics is extracted using a dictionary approach from

which a polarity-based sentiment index is calculated. Estimating autoregressive distributed lag models

reveals significant effects of both temporary and permanent changes in ESG-related news sentiment on

idiosyncratic returns for the vast majority of the DJIA constituents. According to the models’ results, one

can assign the stocks to different groups depending on their investors’ apparent predisposition towards

ESG news, which in turn seems to be linked with a stock’s financial performance.

This chapter closes the exploration of the first aspect of this thesis – the implications of the chang-

ing information technologies for the financial markets. Chapter 4 is then concerned with the question of

how an enhanced methodological understanding of high-dimensional datasets can produce new solutions

to familiar problems in econometrics. One such a familiar problem is the identification and subsequent

consistent estimation of structural breaks in real-world time series. Most economic or financial variables,

such as exchange rates, gross domestic product, or spot and futures prices, when observed over multiple

years, are likely to experience structural change of one kind or another. These could be related to eco-

nomic or political events, technological development, or regulatory changes, just to name a few (Perron,

2006; Aue and Horváth, 2013). To complicate matters further, such variables are oftentimes analyzed

in multivariate time series models and thus are potentially cointegrated. Cointegration, as described by

Engle and Granger (1987), is the condition in which two or more time series are nonstationary in levels,

but maintain stable long-run equilibria. Modeling the parameters of this long-run relationship as being

constant over time and thus ignoring potential structural breaks renders a cointegration test and subse-

quent conclusions drawn inaccurate at best, more often outright misleading. Several authors have thus far

contributed to this highly relevant problem in econometrics, as Chapter 4 elaborates in greater detail. The

proposed testing frameworks, however, can be considered as quite rigid and restrictive, since they often

require prior knowledge about the exact amount of break points (Gregory and Hansen, 1996a; Hatemi-J,

2008) or are only applicable for a certain small number of maximum breaks per time series (Kejriwal and

Perron, 2010). Therefore, the third research project presented in this doctoral thesis illustrates the bene-

fits of using dimension reduction techniques for high-dimensional models to overcome the limitations of

conventional econometric models.

The paper Multiple structural breaks in cointegrating regressions: A model selection approach,

which is joint work with Karsten Schweikert, proposes the least absolute shrinkage and selection opera-

tor, which has been briefly mentioned above, as a tool for consistent breakpoint estimation. The aim of

this project is to highlight the usefulness of one of the most commonly applied approaches in statistical

learning for the analysis of potentially cointegrated systems of economic time series. In this paper, we

propose a new approach to model structural change in cointegrating regressions using penalized regres-
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sion techniques. First, we consider a setting with fixed breakpoint candidates and show that a modified

adaptive lasso estimator can consistently estimate structural breaks in the intercept and slope coefficient

of a cointegrating regression. In such a scenario, one could also perceive our method as performing an

efficient subsample selection. Second, we extend our approach to a diverging number of breakpoint can-

didates and provide simulation evidence that timing and magnitude of structural breaks are consistently

estimated. Third, we use the adaptive lasso estimation to design new tests for cointegration in the pres-

ence of multiple structural breaks, derive the asymptotic distribution of our test statistics and show that

the proposed tests have power against the null of no cointegration. Finally, we use our new methodology

to study the effects of structural breaks on the long-run PPP relationship.

The subsequent sections present the three research projects of this thesis in greater detail, in the

same order that they are mentioned above (The Twitter myth revisited in Chapter 2, Sustainable news in

Chapter 3, and Multiple structural breaks in cointegrating regressions in Chapter 4). While each chapter

embodies a standalone paper, which introduces and concludes its respective topic, it is worthwhile to

reflect upon the findings of the three chapters in a broader context, similar to how they are being motivated

in this chapter. The final chapter of this thesis, Chapter 5, is devoted to this purpose.
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Chapter 2

The Twitter myth revisited:
Intraday investor sentiment, Twitter
activity and individual-level stock return
volatility

2.1 Introduction

With the ever increasing speed of trading in recent years, intraday volatility assessment and forecasting

have gained importance for highly active investors such as derivative traders and hedge funds. Intraday

volatility measures are important input factors in high-frequency risk management applications, for the

calculation of time-varying liquidity measures, and to concert limit order placement strategies or the

optimal scheduling of trades (e.g., Engle and Sokalska, 2012; Giot, 2005). However, not only has the

speed of trading increased rapidly but also the way investors can comment or share their opinion about

company and stock market performances on social media platforms.

A growing body of behavioral finance literature links investor sentiment, derived from social media,

to financial markets (for a recent survey, see Bukovina, 2016). While institutional investors have the

means to monitor actively traded stocks constantly, social media represents one channel through which

retail investors can easily access stock market relevant information (e.g., Chen et al., 2014). Stock prices,

reflecting the trading activities of both institutional and retail investors, might reflect retail investor trad-

ing activities that are, at least partially, influenced by sentiment. Let us view the average highly active

investor as a professional or institutional investor, close to the definition of an informed investor. By

contrast, individual or retail investors are often thought of as having psychological biases and are seen

as noise traders in the way portrayed by Kyle (1985) or Black (1986). While professional investors are

seen as rational investors, they can still base decisions on less rational factors such as investor sentiment.

Early research on investor sentiment has proposed that such rational investors could bet against sentiment

driven noise traders to make a profit, albeit with caution to the costs and risks that such strategies would

entail (e.g., De Long et al., 1990; Shleifer and Vishny, 1997). Thus, given that retail investors have been

shown to trade excessively in attention-grabbing stocks (Barber and Odean, 2007) and to trade in con-

cert (e.g., Kumar and Lee, 2006; Barber et al., 2009), one might think that professional investors could

8



CHAPTER 2. THE TWITTER MYTH REVISITED

exploit the behavior of retail investors, who use social media platforms as investment forums to obtain

information about securities’ potential performance.

Recently, the social media platform Twitter has been used to extract a proxy for investor sentiment.

For instance, Bollen et al. (2011) derive six social mood dimensions from Tweets. Their results indicate

that predictions of the DJIA are improved through the inclusion of some of these social mood dimensions.

Sprenger et al. (2014a) derive good and bad news from more than 400,000 Tweets related to the S&P

500 and find that these news have an impact on the market. In addition, Sprenger et al. (2014b) discover

a relationship between stock related Twitter sentiment and returns, volume of Tweets and trading volume

of the respective stock, as well as disagreement and return volatility. Looking at the transmission and

aggregation of information, they also demonstrate that providing above average investment advice is

associated with more quotes and an increase in followers. Along this line, Yang et al. (2015) unravel the

existence of a financial community on Twitter and find that the weighted sentiment of its most influential

contributors has significant predictive power for market movement. While Sprenger et al. (2014b) focus

on some well-known companies from the S&P 100, other studies from the behavioral finance literature

look at stock market indices only. Moreover, all studies mentioned above focus on daily stock market

and social media data.

Taking an intraday perspective and considering individual-level stocks, this paper has two main ob-

jectives: (i) assessing the impact of Twitter investor sentiment and Twitter activity on return volatility and

(ii) testing the performance of intraday volatility forecasts augmented with this additional information.

Following, among others, Andersen and Bollerslev (1997) and Bollerslev et al. (2000), we use high-

frequency absolute 5-minute returns as a measure for volatility, since these display greater dynamics, i.e.,

more persistent autocorrelation patterns and thus conform better to the long-memory property of stock

return volatility, than squared returns (for a discussion of this finding see, for example, Ding et al., 1993;

Forsberg and Ghysels, 2007). Twitter sentiment and activity, the latter measured as the number of Tweets

in a certain time interval, are available to investors through commercial data providers. By assuming the

role of a professional investor with access to such data, we obtain intraday prices, Twitter sentiment, and

the number of Tweets (henceforth Twitter count) at 1-minute frequency for all constituents of the DJIA

and a time period from June 18, 2015 to December 29, 2017 from Bloomberg. We focus on blue-chip

stocks such as the DJIA constituents, since other securities are not equally well covered in terms of Twit-

ter sentiment and activity, rendering an intraday analysis infeasible. Before conducting any meaningful

time series analysis and intraday volatility forecasting, we address the well-documented intraday peri-

odicity in absolute 5-minute returns within the framework of a two-step estimation procedure involving

a Fourier Flexible Form (FFF) estimation (for example, see Andersen and Bollerslev, 1997; Bollerslev

et al., 2000). This approach is readily applied to the intraday absolute returns of the DJIA constituents.

In order to examine the dynamics between Twitter sentiment, activity, and return volatility, the filtered

absolute 5-minute returns obtained from this estimation procedure are then used in a bivariate Vector-

AutoRegressive (VAR) model together with average 5-minute Twitter sentiment and 5-minute Twitter

count, respectively. Finally, we adapt the Heteroscedastic AutoRegressive (HAR) model of Corsi (2009)

to the intraday context and use a panel HAR to forecast filtered absolute 5-minute returns for individual-

level stocks. While we observe some statistically significant feedback effects between intraday volatility

and Twitter sentiment as well as Twitter count for many stocks, the performance of the panel HAR model,

augmented with exogenous information from Twitter, is mixed among the sample of stocks considered in
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2.2. INTRADAY PERIODICITY AND LONG-MEMORY VOLATILITY

this paper. In general, estimated coefficients are small in magnitude and gains in out-of-sample forecast-

ing performance, if present at all, are negligible in every single case. Thus, professional investors do not

benefit from augmenting forecasts with such Twitter data when considering individual-level stocks and

an intraday setting. Our results, obtained from the sample of 30 DJIA constituents, clearly differ from

research that considers aggregated data in the form of stock market indices and daily observations of

index returns and social media sentiment or activity. Gains of using high-frequency financial and social

media data are limited, rendering the discussion more interesting for the case of observations at lower

frequencies. Moreover, one could say that our results are in line with the notion of professional investors

as stated above: the performance of liquid blue-chip stocks should be determined by information that is

related to securities’ fundamentals and not by investor sentiment obtained from social media platforms.

The majority of such stocks are held by institutional investors and thus should be priced more efficiently

(e.g., Boehmer and Kelley, 2009).

Our paper is structured as follows: Section 2.2 describes the absolute return time series data and

shortly outlines the two-step estimation procedure used to account for the deterministic intraday period-

icity that is present in intraday absolute returns. Section 2.3 describes the Twitter data in more detail and

assesses the interactions between intraday Twitter sentiment, Twitter count and intraday filtered absolute

returns in a bivariate VAR framework. Forecasting of intraday volatility, using exogenous information in

the form of Twitter sentiment and Twitter count in a panel HAR setting, is the objective of Section 2.4.

Lastly, Section 2.5 concludes.

2.2 Intraday periodicity and long-memory volatility

2.2.1 Data

Intraday prices for all DJIA constituents at 1-minute frequency are obtained from Bloomberg and cover

the period from June 18, 2015 to December 29, 2017. For each trading day and stock up to 390 prices

are obtained, corresponding to the regular trading hours from 9:30 Eastern Time (ET) to 16:00 ET.

Continuously compounded returns are calculated as the log-price changes from one minute to the next.

Accordingly, 5-minute returns are calculated as the sum of five 1-minute returns. Excluding overnight

returns, this leaves 77 intraday 5-minute returns for each trading day and stock. Occasionally, it is the case

that there is no trading recorded by Bloomberg over a given 5-minute time interval, leading to missing

values. However, these cases are not frequent and missing values should not distort our empirical results.

With a total of 639 trading days, each consisting of 77 intraday 5-minute returns, this leaves us with a

total of 49,203 observations. Thus, for all DJIA constituents denote the series of 5-minute returns as Rt,n,

where t = 1,2, . . . ,639 and n = 1,2, . . . ,77. Another time series that is used in the two-step estimation

procedure to get rid of the pronounced intraday periodicity in absolute returns, explained in more detail

below, consists of daily closing prices ranging from January 4, 2010 to December 29, 2017. Analogously,

daily returns are calculated as the log-price changes between two consecutive days.

2.2.2 Intraday periodicity in absolute returns

When analyzing 5-minute absolute returns, a clear pattern emerges that has been documented in the liter-

ature by, among others, Andersen and Bollerslev (1997), Andersen and Bollerslev (1998), Andersen et al.
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(2000) and Bollerslev et al. (2000): While the volatility process shows clear conditional heteroscedas-

ticity and a pronounced long-memory property on a daily basis, one can observe a strong deterministic

intraday periodicity.

The intraday periodicity is illustrated in Figure 2.1, where the average intraday absolute 5-minute

return is calculated over the cross-section of each of the n intraday bins. Thus, absolute 5-minute returns

are plotted for the “average” trading day. In the following, results are shown for the stocks of two compa-

nies, International Business Machines Corporation (ibm) and Walmart Inc. (wmt), but results are similar

for all remaining constituents of the DJIA and are available upon request.1 Figure 2.1 reveals a distinct

difference in the volatility over the trading day. For both stocks one can see that volatility is high at the

beginning of the trading day, decreases throughout the day with its minimum around lunch hours, and

increases again slightly at the end of the trading day. Several early papers have attributed the pronounced

U-shape pattern in intraday stock market volatility to the strategic interaction of traders around market

openings and closures (for example, see Admati and Pfleiderer, 1988, 1989). Interestingly, in the case of

individual-level stock absolute 5-minute returns, this “U”-shape rather resembles an inverted “J”-shape,

since, on average, volatility right after the market opening dwarfs volatility at the market closing.

Figure 2.1: Average of absolute 5-minute returns
The plots show the average of intraday absolute 5-minute returns calculated for two stocks, (a) ibm and (b) wmt.
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Moreover, this deterministic intraday periodicity induces a certain pattern in the autocorrelation func-

tions (ACFs) of absolute 5-minute returns, which is visible in Figure 2.2. Here, ACFs are plotted over ten

trading days. However, the given pattern is consistent over the whole sample period. On the one hand,

one can observe the above mentioned long-memory properties of absolute 5-minute returns, since the

ACFs decay slowly and are statistically significant over a long time horizon. On the other hand, a clear

repetitive pattern can be seen. The deterministic intraday periodicity induces a distorted U-shape in the

sample autocorrelations, each of these lasting exactly for one trading day.

Previous research has shown that in order to conduct meaningful time series analysis and to derive

1These two stocks are chosen since they display both significant Twitter sentiment and Twitter count terms in all models
that we entertain in our empirical analysis. Table 2.5 in the appendix provides an overview over all stocks.
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intraday forecasts of 5-minute absolute returns, one has to take both of these patterns into account. One

way to purge the intraday absolute 5-minute returns of the periodic component is by applying a two-

step procedure based on an FFF estimation (Gallant, 1981). The approach outlined in the following has

first been introduced by Andersen and Bollerslev (1997) and is easily applied to individual-level stock

absolute return time series. The next section provides a short description of this estimation procedure,

while a longer and more technical description can be found in Appendix 2.6.1.

Figure 2.2: ACFs of absolute 5-minute returns
The plots show ACFs of intraday absolute 5-minute returns over 800 5-minute lags, which correspond to approximately ten
trading days, for two stocks, (a) ibm and (b) wmt.
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2.2.3 Two-step estimation procedure

To model the periodic intraday volatility component in high-frequency absolute returns, we follow An-

dersen and Bollerslev (1997) and decompose 5-minute returns as:

Rt,n−E(Rt,n) = εt,n = st,nσt,nZt,n (2.1)

where σt,n denotes a 5-minute volatility factor for trading day t and Zt,n is an i.i.d. zero mean and unit

variance innovation. The periodic component, st,n, is estimated in a two-step estimation procedure that

involves an FFF regression, which is illustrated in more detail in Appendix 2.6.1. In order to obtain

σt,n, σt is estimated using the longer sample of daily returns from January 4, 2010 until December 29,

2017. The sample is chosen such that there is a larger number of observations available for estimation

but it excludes the financial crisis. We use an asymmetric power ARCH (A-PARCH) to capture the daily

volatility clustering. The A-PARCH of Ding et al. (1993) does not only allow for a leverage effect in the

volatility equation but also accounts for the empirical finding that the sample autocorrelation of absolute

returns is usually higher than that of squared returns. Ding et al. (1993) show empirically that the A-

PARCH is able to capture the long-memory properties of daily absolute returns. The 5-minute volatility

factor for trading day t, σt,n, is then simply estimated by σ̂t,n = σ̂t/N1/2, where N is the number of

observations per trading day.
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The second step involves estimating the parameters of the FFF specification by Ordinary Least

Squared (OLS). Estimation is based on the whole sample of intraday 5-minute returns, instead of sim-

ply estimating the average periodic pattern across the trading day. This two-step procedure is not fully

efficient. However, Andersen and Bollerslev (1998) show that, in general, the parameter estimates are

consistent, given the FFF regression is correctly specified in the second step.

While the actual parameter estimates are difficult to interpret, one can plot the average estimated

intraday periodic volatility factor together with the average absolute 5-minute returns in order to see

whether or not the estimate provides a sufficient approximation of the intraday shape of average returns.

This is depicted in Figure 2.3. The average periodic component seems to approximate the distinct shape

of absolute returns quite well and thus the two-step estimation procedure does seem to be a reasonable

approach in our case.

Figure 2.3: Average of absolute 5-minute returns and intraday periodic volatility component
The plots show the average of intraday absolute 5-minute returns calculated for two stocks, (a) ibm and (b) wmt. In addition,
the dashed line denotes the superimposed estimated average intraday periodic volatility component, appropriately scaled.
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However, while the A-PARCH estimate, σ̂t , may successfully capture the volatility clustering in the

daily returns, it might not be a good model for σ̂t,n. Following, for example, Bollerslev et al. (2000) the

estimated seasonal component in the 5-minute absolute returns is filtered away to see whether or not

the chosen approach is valid empirically. Denote the raw absolute 5-minute returns by |Rt,n|, the filtered

5-minute absolute returns are then given by:

R∗t,n =
|Rt,n|
ŝt,n

, (2.2)

where ŝt,n denotes the normalized estimate for the periodic component, as obtained from the two-step

estimation procedure. In accordance with Andersen and Bollerslev (1997), the autocorrelogram of the

filtered absolute returns should exhibit a strictly positive and slowly declining autocorrelation. This would

indicate that the long-memory properties are the characteristic attribute of the return volatility process,

after the deterministic intraday component is removed. As can be seen from Figure 2.4, this is exactly
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the case for the two chosen stocks.

Figure 2.4: ACFs of raw and filtered absolute 5-minute returns
The plots show ACFs of raw (dashed lines) and filtered (solid lines) intraday absolute 5-minute returns over 800 5-minute lags,
which correspond to approximately ten trading days, for two stocks, (a) ibm and (b) wmt.
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The ACFs of the filtered absolute 5-minute returns seem way smoother than the ACFs of the raw

absolute 5-minute returns with their distinct U-shaped pattern, exhibiting a strictly positive and slowly

declining correlogram. Again, results are similar across all constituents of the DJIA.

2.3 Twitter sentiment and Twitter count effects

2.3.1 Data

In addition to the return time series, intraday Twitter sentiment and count data for all DJIA constituents

at a 1-minute frequency are obtained from Bloomberg for June 18, 2015 through December 29, 2017.

While Twitter count measures the overall activity, i.e., the number of Tweets for a given stock and minute,

Twitter sentiment ranges continuously from −1 (negative investor sentiment) to 1 (positive investor sen-

timent). Both measures are based on an undisclosed algorithm used by Bloomberg. Dealing with Twit-

ter count data from Bloomberg is straightforward: In our data set we code Twitter count as zero for a

given stock in minutes without any Twitter activity and record the number of Tweets in minutes where

Bloomberg registers some Twitter activity. Twitter sentiment is calculated by Bloomberg every minute

for all stocks using the last 30 minutes of available data on positively and negatively associated Tweets.

However, only if the absolute difference between the newly calculated sentiment value and the previous

value is larger than 0.005 does Bloomberg update Twitter sentiment for the respective stock. Accordingly,

in our data set we only update the value for Twitter sentiment if for a given stock and minute a change in

sentiment is observed in the data obtained from Bloomberg. If there is no observed change in sentiment

for a given stock and minute, we instead fill in such missing values with the previously observed change

in Twitter sentiment on a given trading day. Let us be more precise and use an example to illustrate how

we deal with this issue in our data: If the first observed sentiment value for a given stock is at 10:21 ET
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and the second one at 10:43 ET on a given trading day, then all values until 10:21 ET are missing values

in our data set for this stock and trading day. The first non-missing value is at 10:21 ET and all values

between 10:21 ET and 10:43 ET are equal to the sentiment observed at 10:21 ET, only at 10:43 ET do

we again record a change in investor sentiment. Thus, we assume that investor sentiment, as obtained

from Twitter, remains constant for time periods where Bloomberg does not register a change in Twitter

sentiment larger than 0.005 in absolute value. Lastly, in order to match the 5-minute intraday frequency

of the return data, time series of 5-minute Twitter sentiment are obtained as the average sentiment over

five minutes for each stock, whereas time series of Twitter count constitute the absolute number of counts

over each 5-minute time interval for each stock.

Figure 2.5: Twitter sentiment time series and ACFs
Plots (a) and (b) show the time series of Twitter sentiment (TS) for ibm and wmt, respectively. Plots (c) and (d) illustrate ACFs of
the TS for these stocks over 800 5-minute lags, which correspond to approximately ten trading days. The dashed lines indicate
95% confidence bounds.
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The upper panels of Figure 2.5 illustrate the time series of Twitter sentiment for the stocks of ibm

and wmt, the two lower panels show the respective ACFs over ten trading days. While the sentiment

time series for wmt has a higher variability compared to ibm’s sentiment time series, both display long-

memory dependencies in their ACFs. The effect of past sentiment or count values on the present remains
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significant for more than three trading days for both stocks, with significant lags even after nine trading

days for wmt.

Similarly, for Twitter count the upper panels of Figure 2.6 illustrate the respective time series for ibm

and wmt, whereas the two lower panels depict their ACFs. One can see that at most times the number of

Tweets for wmt exceeds the number of Tweets for ibm. However, for both stocks the Twitter count time

series appears to possess a certain long-memory property. Compared to Twitter sentiment, the memory

of the Twitter count time series for ibm seems to be longer, as Plot (c) of Figure 2.5 shows significant

lags even after seven trading days. For wmt, the ACFs of the Twitter count time series behave similarly

to its sentiment counterpart with positive and significant lags for up to 10 trading days. Overall, no

clear recurring (intraday) pattern can be found in the Twitter time series for our sample of the 30 DJIA

constituents.

Figure 2.6: Twitter count time series and ACFs
Plots (a) and (b) show the time series of Twitter count (TC) for ibm and wmt, respectively. Plots (c) and (d) illustrate ACFs of
the TC for these stocks over 800 5-minute lags, which correspond to approximately ten trading days. The dashed lines indicate
95% confidence bounds.
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2.3.2 Interactions between intraday Twitter sentiment, Twitter count and volatility

In order to allow for a feedback effect of return volatility, given by the filtered absolute 5-minute returns

obtained as discussed in Section 2.2, to Twitter sentiment as well as Twitter count and vice versa, a

simple bivariate VAR model is entertained. Stated in structural form:[
1 0

b0
21 1

][
R∗t,n

twitt,n

]
=

[
c1

c2

]
+

p

∑
j=1

[
b j

11 b j
12

b j
21 b j

22

][
R∗t,n− j

twitt,n− j

]
+

[
u1t,n

u2t,n

]
(2.3)

where twitt,n denotes either Twitter sentiment or count. For the specification with Twitter count we need

to relax the assumption of Gaussian white noise innovations {uit,n}T N
t=1,n=1 where i = 1,2, T = 639,

N = 77. This assumption is usually made in the VAR context, yet count data are non-negative inte-

gers and cannot be normally distributed (Cameron and Trivedi, 1986). The relaxation of the normality

assumption of the innovations, however, does not affect our VAR analysis. It has no effect on the estima-

tion of the parameters of the VAR model but is only important for correct inference, which is not a main

issue here. We choose the lag order p of the VAR model according to the average lag length suggested

by the Schwarz information criterion (SC) across all 30 DJIA constituents, which leads to p = 17 for the

specification with filtered absolute 5-minute returns and Twitter sentiment and p = 18 for the specifica-

tion with Twitter count data.2 Even though the ACFs of the VAR residuals still show some significant

spikes for ibm and wmt, in light of the small magnitudes of the coefficient estimates, as reported below,

these statistically significant lags do not appear to be of economic relevance.

The results of both VAR specifications are illustrated in Table 2.1. Since we are mostly interested in

the question of whether or not lags of Twitter sentiment and Twitter count have a significant impact on

filtered absolute 5-minute returns, only the results for Twitter lags significant at a 10% significance level

are displayed. Significant effects might indicate that intraday forecast augmentation of return volatility

could be possible using exogenous information from Twitter. Panel A shows these significant autoregres-

sive terms for the Twitter variables throughout both models. The Granger causality tests, which can be

found in Panel B of Table 2.1, support the finding that Twitter sentiment and count indeed hold statisti-

cally significant information about future return volatility. The hypothesis that the Twitter variables do

not Granger cause volatility can be rejected for both stocks and specifications, except for ibm’s Twitter

sentiment.3 However, the actual estimates of lagged Twitter sentiment and count in the VAR specifica-

tions are rather small in magnitude, indicating a statistically significant but economically not relevant

influence of the Twitter variables on the filtered absolute 5-minute return series. This impression is rein-

forced by the contemporaneous correlation matrices of the reduced form VAR residuals, as presented in

Table 2.2. The correlations between the filtered absolute return and Twitter variable residuals are smaller

than 0.02. Furthermore, decompositions of the filtered absolute returns’ forecast error variances show

no relevant contribution of either Twitter variable for any of the DJIA constituents (less than 2% of the

forecast error variance).

2Robustness checks show that adjusting the lag length for each stock individually does not affect our main estimation results.
3An overview over the Granger causality tests for all 30 DJIA constituents can be found in Table 2.5 in the appendix.
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Table 2.1: VAR model and Granger causality results
The first two columns of Panel A show the results of the VAR model with Twitter sentiment as the second system variable,
the last two columns the ones with Twitter count. Only estimates of the respective Twitter variable significant at the 10% level
are displayed. Coefficient estimates are multiplied by 103. Panel B shows the F-statistics of the Granger causality test. The
respective H0 tested is indicated in the first column. P-values are given in parentheses. Significance of the Granger causality
F-statistics at the 10% level is highlighted in bold face.

Panel A: VAR estimation results ×103

Twitter sentiment Twitter count
ibm wmt ibm wmt

twitt,n−1 0.0024 0.0012
(0.0001) (0.0192)

twitt,n−2 0.2504
(0.0938)

twitt,n−4 −0.0017
(0.0043)

twitt,n−5 0.0019
(0.0013)

twitt,n−9 0.0011
(0.0802)

twitt,n−10 0.2807
(0.0696)

twitt,n−12 −0.2104
(0.0041)

twitt,n−13 0.1922
(0.0088)

twitt,n−14 −0.0017
(0.0039)

twitt,n−18 0.0019 0.0018
(0.0021) (0.0006)

Panel B: Granger causality test
Twitter sentiment Twitter count

H0 ibm wmt ibm wmt
R∗ 6→ twit 1.2607 0.8019 5.9968 40.4163

(0.2076) (0.6929) (0.0000) (0.0000)
twit 6→ R∗ 1.0957 1.7018 3.2663 2.8456

(0.3503) (0.0352) (0.0000) (0.0000)

Table 2.2: Contemporaneous residual correlation matrices
The table shows the contemporaneous correlations between the reduced form VAR residuals. For the VAR in Panel A Twitter
sentiment is used as the second system variable, in Panel B Twitter count.

Panel A: Twitter sentiment
ibm wmt

R∗ twit R∗ twit
R∗

(
1 -0.0079

) (
1 -0.0032

)
twit -0.0079 1 -0.0032 1

Panel B: Twitter count
ibm wmt

R∗ twit R∗ twit
R∗

(
1 0.0068

) (
1 0.0191

)
twit 0.0068 1 0.0191 1

Based on the estimation results of the VAR model, we can now investigate the evolution of shocks to

either the volatility measure or the respective Twitter variable through the system by means of impulse

response analysis. In order to uniquely identify the effect of these shocks, we use a Cholesky decompo-

sition in which return volatility is ordered first, followed by the respective Twitter variable (see Equation
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(2.3)). This ordering implies the exclusion restriction that only shocks to volatility can affect the Twitter

variables contemporaneously, whereas shocks to the Twitter variables cannot affect absolute returns in

the same period. This restriction appears to be sensible, since one would expect a fundamental shock

in volatility to appear first, which then, in turn, influences investor sentiment and activity as captured

by the Twitter variables (see Dimpfl and Jank, 2016; Lux and Marchesi, 1999). Investor sentiment and

activity, on the other hand, can be assumed to be contemporaneously affected by stock performance and

changes in return volatility. Figure 2.7 depicts the impulse responses of volatility and Twitter sentiment

to shocks in one of the system variables. A 10% shock in absolute returns leads to a negative reaction

in Twitter sentiment for both ibm and wmt. However, this effect is statistically not distinguishable from

zero over the first hour (12 lags) after the shock. Only then there appears to be a significant, slightly neg-

ative impact of the volatility shock on Twitter sentiment, but solely for wmt. A one unit shock in Twitter

sentiment leads to minor short-run fluctuations of volatility which are barely distinguishable form zero

for both stocks.

Figure 2.7: Impulse response functions Twitter sentiment
The plots show orthogonal impulse response functions over 24 5-minute lags for the VAR specification with filtered absolute
returns (volatility) and Twitter sentiment as system variables. The dashed lines indicate 95% confidence bounds.
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For the VAR specification with Twitter count as the second system variable, Figure 2.8 shows that

a 10% shock in absolute returns leads to an increase in the number of Tweets. While for ibm this effect

is only slightly significant, the wmt stock shows what appears to be a rather persistent, positive reaction

from the first period onwards. Turning to the reaction of the filtered returns to a shock in Twitter count,

as shown in the two lower graphs, the effect does not appear to be distinguishable from zero.

Figure 2.8: Impulse response functions Twitter count
The plots show orthogonal impulse response functions over 24 5-minute lags for the VAR specification with filtered absolute
returns (volatility) and Twitter count as system variables. The dashed lines indicate 95% confidence bounds.
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The results of the impulse response analysis are robust to a re-ordering of the system variables. All

in all, while there are some significant feedback effects between filtered absolute 5-minute returns and

the Twitter variables, the prospects for a meaningful forecast augmentation using exogenous information

from Twitter seem to be rather poor.
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2.4 Forecasting intraday volatility with Twitter information

In light of the previous analysis in Section 2.3, we choose a different approach to forecast intraday volatil-

ity and adapt Corsi’s (2009) HAR model to the intraday context. The HAR model is chosen since it is

a parsimonious model that has been shown to sufficiently capture the long-memory properties of daily

realized volatility (e.g., Andersen et al., 2007; Chiriac and Voev, 2011). The HAR model contains ag-

gregates of the absolute filtered returns and Twitter time series as right hand side variables, which should

lead to an improvement in terms of predictive power of the HAR model over the previously estimated

VAR model. For example, Dimpfl and Jank (2016) use a HAR model that is augmented with lagged

Google search queries as an additional exogenous variable and find that their model leads to an improve-

ment in forecast precision out-of-sample in comparison to their VAR specification. For our application,

however, the model structure of a conventional HAR model applied to our intraday time series would

inevitably produce spillover effects and averages of Twitter and volatility variables that are calculated

across trading days. As this is not desirable in the intraday context, we facilitate a panel structure in the

HAR model using t = 1, . . . ,639 as the cross-sectional unit (trading days) and n = 1, . . . ,53 for intra-

day periods. Whilst the notation with respect to the indices has not changed in comparison to the VAR

model, the HAR model now entails a panel model interpretation. Patton and Sheppard (2015) follow a

similar approach in that they set up a panel HAR for volatility modeling based on daily observations to

account for firm-specific effects. However, the adaptation of the HAR model to the intraday context has

– to the best of our knowledge – not been pursued by other authors so far. The panel HAR model reads

as follows:4

R∗t,n = c+β1R∗t,n−1 +β12R∗12
t,n−1 +β24R∗24

t,n−1 +δ1twitt,n−1 (2.4)

+δ12twit12
t,n−1 +δ24twit24

t,n−1 + γ1sgn(R̄t,n−1)+ut,n

where sgn(R̄t,n−1) denotes the sign of the average return in the previous 5-minute interval and R∗12
t,n−1 =

1
12

12
∑
j=1

R∗t,n− j and R∗24
t,n−1 =

1
24

24
∑
j=1

R∗t,n− j are lagged averages for one and two hours of the filtered returns,

respectively. twit12
t,n−1 and twit24

t,n−1 are calculated analogously for both Twitter variables. Assuming that

(professional) investors with access to intraday Twitter data can react swiftly to changes in individual-

level stock return volatility and the Twitter variables, further lags are omitted. The sign variable is added

to the model to account for the asymmetric effect of returns, i.e., negative returns have a larger effect

on volatility than positive returns. The panel HAR of equation (2.4) is subsequently estimated using

fixed effects estimation with fixed effects for trading days and adjusted standard errors to account for

heteroscedasticity as well as serial correlation.5

For forecasting purposes, the overall sample is split into a sample containing 90% (44,283 observa-

tions) of the data to which the panel HAR model is fitted. The remaining 10% (4,920 observations) of

the data are used to assess the forecasting performance of the model out-of-sample. This is achieved by

predicting the absolute 5-minute returns using the coefficient estimates of equation (2.4) together with

the exogenously given Twitter sentiment and count data and comparing the predicted values to the actual

4We have also estimated a HAR model with more lags of the dependent and exogenous variable, as well as different hourly
aggregates as independent variables. Since the results stay robust across all models, we have chosen the most parsimonious one.

5The Hausman (1978) test rejects a random effects model in favor of a model with fixed effects. Arellano (1987) standard
errors are used, however, the results are robust to other types of robust standard errors.
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filtered absolute 5-minute returns. As a measure for forecast performance the root mean squared error

(RMSE) is used.

Table 2.3: Panel HAR in-sample results
The table presents the in-sample parameter estimates of the panel HAR model. Panel A shows the results for ibm and wmt with
Twitter sentiment as exogenous variable, Panel B with Twitter count as exogenous variable. P-values are given in parentheses.

Panel A: Twitter sentiment Panel B: Twitter count
ibm wmt ibm wmt

R∗t,n−1 0.0441∗∗ 0.0540∗∗∗ 0.0440∗∗ 0.0536∗∗∗
(0.0227) (0.0000) (0.0226) (0.0000)

R∗12
t,n−1 0.1496∗∗∗ 0.0971∗∗ 0.1496∗∗∗ 0.1013∗∗

(0.0027) (0.0282) (0.0029) (0.0203)
R∗24

t,n−1 −0.0805∗∗ −0.1228∗∗∗ −0.0805∗∗ −0.1230∗∗∗
(0.0348) (0.0000) (0.0371) (0.0000)

sgn(R̄t,n−1) 0.0000 0.0000 0.0000 0.0000
(0.8952) (0.3343) (0.8674) (0.3169)

twitt,n−1 0.0000 0.0000 0.0000∗∗∗ 0.0000∗
(0.7516) (0.7270) (0.0065) (0.0714)

twit12
t,n−1 −0.0001 0.0001∗∗ 0.0000 0.0000

(0.5852) (0.0487) (0.4354) (0.3725)
twit24

t,n−1 0.0001∗∗ 0.0000 0.0000 0.0000
(0.0288) (0.9384) (0.9543) (0.1507)

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2.3 summarizes the panel HAR model with Twitter sentiment (Panel A) and Twitter count (Panel

B) as additional exogenous variables. For both stocks, lagged values of the respective Twitter variable

occasionally show significant coefficient estimates. However, their magnitudes are very small, which

does not allow any further meaningful interpretation of the coefficients.6

Considering these results, the RMSEs – our forecast accuracy measure – as shown in Table 2.4 should

not surprise: Twitter can only slightly lower the forecasting errors across the different HAR specifications

and thus does not appear to hold any additional information that is of practical relevance for forecasting

volatility.

Table 2.4: Panel HAR forecast evaluation
Overview of the RMSE (×104) for the out-of-sample forecast of the panel HAR model with three specifications: first row HAR
model without exogenous variable; second row with Twitter sentiment (T S) as exogenous variable; last row with Twitter count
(TC) as exogenous variable.

ibm wmt

HAR 6.8934 9.0461
HAR + T S 6.8798 9.0309
HAR + TC 6.8706 8.8692

6These results are robust to different lag structures as well as to a panel HAR model which includes both Twitter sentiment
and count as exogenous variables.
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To sum up, the results of the panel HAR models, as shown above, are in line with the results of the VAR

models of the previous section: In terms of statistical significance Twitter sentiment and count are indeed

relevant for return volatility. Nevertheless, the influence of exogenous Twitter information on the stocks’

volatility is, economically speaking, small. With respect to forecasting, Twitter’s predictive power can

be described as weak at best, just as suggested by the preceding empirical analysis.7 Including Twitter

sentiment and Twitter count does not appear to improve forecast performance significantly.

While we have presented detailed results for two stocks only, Table 2.5 in the appendix sums up the

results of our analyses for all constituents of the DJIA. One noticeable difference in our results among

the DJIA constituents is a link that exists with the stocks’ average trading volume. DJIA constituents

that rank low in trading volume more often show a statistically significant influence of Twitter sentiment

and count than those with a high average trading volume. While this influence does not appear to be of

economic significance for any of the 30 stocks, our results of both the HAR and VAR models are thus not

entirely robust across all 30 constituents of the DJIA. Only for the most liquid stocks of the Dow Jones

can we rule out a statistically significant effect of Twitter on the respective stock’s volatility.

2.5 Concluding remarks

In this paper we use intraday Twitter sentiment and Twitter count data to measure investors’ interest in

individual-level stocks, in our case the constituents of the DJIA. Measuring intraday volatility with abso-

lute 5-minute returns and after accounting for the pronounced intraday periodicity in absolute returns, we

find that there are indeed statistically significant feedback effects of return volatility to Twitter sentiment

as well as Twitter count and vice versa in a bivariate VAR framework. However, the estimated coeffi-

cients are of small absolute magnitude and the effects do not have a significant economic impact. While

Twitter sentiment and count Granger-cause return volatility, the contemporaneous correlations between

volatility and both Twitter variables as well as the results from forecast error variance decompositions

indicate that incorporating exogenous information from Twitter into intraday prediction models for re-

turn volatility is unlikely to have a significant impact on forecast performance. We adapt the HAR model

of Corsi (2009) to the intraday context and estimate a panel HAR model, augmented with lagged Twitter

sentiment and Twitter count information. As suspected from the preceding analysis, there are no gains

in out-of-sample forecast performance, compared to models without exogenous Twitter information. We

present our results for stocks of two companies (ibm and wmt) but results are similar for all constituents

of the DJIA and different model specifications.

Thus, it seems that intraday information from Twitter about individual-level stocks, as provided by

commercial data vendors, does not constitute a valuable source of information for future volatility and

professional, highly active investors with access to such data do not benefit with regards to intraday

volatility assessment and forecasting. Our results are in line with the notion of professional investors:

The performance of liquid blue-chip stocks such as the DJIA constituents should be linked to infor-

mation related to fundamentals, indicating that investor sentiment obtained from Twitter should only

have a negligible effect on financial volatility. This is even more so, since the intraday frequencies con-

7In addition to the panel HAR model, an ARMA model with exogenous variables and up to 19 lags has been estimated too.
Though this model is over-parameterized, a necessity to get rid of the autocorrelation in the residuals, the results support the
weak predictive power of both Twitter variables that the panel HAR model has found. Results of the ARMA model are available
upon request.
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sidered here are too high for investors, other than professional investors, to react appropriately to such

information. Thus, the empirical analysis of the effects of investor sentiment obtained from social media

platforms such as Twitter on stock return properties are most likely rendered more interesting for lower

frequencies. This is consistent with previous literature that mainly uses daily observations (e.g., Bollen

et al., 2011; Sprenger et al., 2014b). While we rank our overall results by average trading volume, we

only consider constituents of the DJIA in this paper. Future research should further investigate the feed-

back effects between investor sentiment obtained from social media platforms and intraday volatility of

less liquid stocks, in order to test the validity and robustness of the findings presented in this paper.
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2.6 Appendix

2.6.1 Fourier flexible form estimation procedure

The logarithm of the squared periodic component in Equation (2.1), ln(s2
t,n), can be estimated from the

following FFF regression:

2ln
(
|Rt,n− R̄|
σ̂t/N1/2

)
=c+δ0,1

n
N1

+δ0,2
n2

N2
(2.5)

+
P

∑
p=1

(
δc,pcos

2π p
N

n+δs,psin
2π p
N

n
)
+ vt,n

where R̄ denotes the sample mean of the 5-minute returns (might also be set equal to zero, since it is

not statistically different from zero for any stock in the sample), σ̂t is a previously obtained estimate of

the daily volatility factor, N refers to the number of return intervals per trading day (here N = 77), P is

a tuning parameter for the number of trigonometric terms, and N1 = (N + 1)/2 as well as N2 = (N +

1)(N + 2)/6 are normalizing constants. In accordance with Bollerslev et al. (2000) and other research,

the number of polynomial terms is restricted to two.

We use an A-PARCH specification to estimate σt in a first step. In addition, a simple AR(1)-

GARCH(1,1) specification serves as a benchmark. Results are not much different compared to the A-

PARCH specification. In fact, for many stocks the estimates of σt are very similar across these two

models. Our model specifies the mean equation in terms of an AR(1) process, since for more than half

of the stocks in the sample such an autoregressive structure seems appropriate when considering the sta-

tistical significance of the lagged return coefficient. Specifications have also been tested with an MA(1)

structure in the mean equation. However, the coefficient of the MA term is statistically significant for

a smaller number of stocks. We choose the same model for all stocks, instead of estimating different

models for each of the DJIA constituents. More sophisticated ARMA structures are not applied to the

mean equation, since the simple autoregressive structure already delivers good empirical results. For the

A-PARCH(1,1), the mean equation is given by:

Rt = µ0 +µ1Rt−1 + εt (2.6)

The variance equation is modeled in the following way:

σ
2
t = ω +βσ

δ
t−1 +α(|εt−1|− γεt−1)

δ (2.7)

where δ ∈ R+ is a Box-Cox transformation of σt , and γ the coefficient of the leverage term. Estimates

are obtained by assuming conditionally skewed-t distributed standardized innovations, εtσ
−1
t , and the

5-minute volatility estimator is calculated as σ̂t,n = σ̂t/N1/2.

In the second step, the parameters of the FFF specification are estimated by OLS. The log-transformation

is used to draw in outliers and to render the regression more robust. In line with the literature, P = 6 is

assumed to capture the basic shape of the intraday volatility pattern. Experimenting with different values

for P we find that for P < 6 the trigonometric terms of different orders were statistically significant for

most stocks. However, for P > 6 higher order trigonometric terms are only statistically significant for a

handful of stocks. Thus, P = 6 is chosen as an appropriate order of expansion. Denote the raw absolute
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5-minute returns by |Rt,n|, the filtered 5-minute absolute returns are then given by:

R∗t,n =
|Rt,n|
ŝt,n

(2.8)

where ŝt,n denotes the normalized estimate for the periodic component, as obtained from the FFF regres-

sion. Let x̂t,n denote the estimated value of the right-hand side of the FFF specification. The standardized

periodic component is then given by:

ŝt,n = T N
exp(x̂t,n/2)

T
∑

t=1

N
∑

n=1
exp(x̂t,n/2)

(2.9)

where now 1
T N

T
∑

t=1

N
∑

n=1
ŝt,n ≡ 1.

Apart from daily A-PARCH or GARCH models, Engle and Gallo (2006) propose to model the daily

volatility component based on the square root of daily realized variance, which is given by RVt,N =
1/N
∑
j=1

R2
t−1+ jN,N . Similar to the calculation above, the 5-minute volatility estimator is simply given by

σ̂t,n = (RVt,N/N)1/2. In order to reduce the impact of microstructure effects, 10-minute and 15-minute

returns are used in the realized variance calculation. Results are robust to calculating the daily volatility

component using the square root of daily realized variance over both 10-minute and 15-minute intraday

returns.
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2.6.2 Overview: Results for all DJIA constituents

In Table 2.5 we present an overview of the statistical significance of Twitter sentiment and count in both

VAR and HAR models as well as the Granger causality results for both VAR specifications, considering

the whole sample of all 30 DJIA constituents. Additional data on trading volume is taken from Thomson-

Reuters Datastream for the period from June 18, 2015 to December 29, 2017.

Table 2.5: Model results for all DJIA constituents
The table summarizes our results for all DJIA constituents in descending order of average trading volume (column 2). Each
stock with at least two significant Twitter variables is marked with 5 in columns 3 to 5. Column 3 summarizes results for both
VAR models. Column 4 refers to the panel HAR model in equation (2.4) and column 5 to an alternative model with additional
autoregressive terms for 30 minutes and three hours for both R∗ and twit. F-statistics of the Granger causality test can be found
in columns 6 to 7 and columns 8 to 9 for Twitter sentiment and count, respectively. The H0 tested is indicated above each
column. Significance on the 10% level is highlighted.

Sentiment Count
Ticker Volume VAR HAR1 HAR2 R* 6→T T 6→R* R* 6→T T 6→R*

ge 453.81 5 2.1684 0.6976 5.9543 2.8337
aapl 367.75 5 1.4721 0.6154 5.6040 6.0759
msft 285.29 0.9605 1.4860 1.2739 0.8573
pfe 264.22 5 1.0670 0.1066 3.8680 1.1818
intc 247.81 1.3820 0.3625 2.9899 1.7498
csco 233.83 5 1.0993 1.5003 0.7855 2.8876
jpm 154.75 1.9473 0.9993 1.8870 1.0505
vz 148.85 0.7375 0.6828 0.4858 1.1721
ko 128.42 1.2546 1.3345 0.9386 1.7326
xom 123.74 5 5 1.2731 0.7470 1.1769 1.7594
mrk 102.41 0.6854 1.1696 1.2390 0.4046
pg 96.07 0.6206 0.9298 33.2960 1.5941
nke 94.80 5 0.5325 1.2436 3.4281 2.7298
wmt 94.38 5 5 0.8019 1.7018 40.4163 2.8456
v 85.88 5 5 0.8170 0.5741 1.3083 1.0021
dis 82.61 5 1.7140 0.6003 25.7273 9.8504
dd 76.55 5 1.2967 1.0419 9.6421 4.7287
cvx 76.36 5 1.1816 1.1762 3.0121 2.4587
jnj 69.96 5 2.6715 2.1258 3.4540 2.6726
cat 52.74 2.9053 1.0739 10.3373 4.5908
hd 48.94 5 0.9799 2.1205 9.3463 3.3585
axp 48.54 5 0.7538 2.5288 15.9147 6.1008
mcd 48.41 5 5 1.0901 1.0417 1.9112 1.5883
ibm 42.22 5 5 1.2607 1.0957 5.9968 3.2663
utx 40.30 5 0.6168 1.8660 20.1767 18.2685
ba 37.95 5 0.8354 0.6984 8.1744 2.1790
unh 35.05 5 0.8481 1.3064 4.9244 2.4981
gs 33.80 5 1.0125 1.6159 3.5307 2.1091
mmm 20.98 1.5369 0.9916 0.9079 1.6085
trv 16.64 0.5003 1.1115 0.8267 0.5104
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Chapter 3

Sustainable news – A sentiment analysis of
the effect of ESG information on stock
prices

3.1 Introduction

From reports about child labor or environmentally harmful supply chains to the distribution of poten-

tially health-threatening food – there is almost no multinational enterprise that has never to some degree

been accused of or demonstrably involved in ethically debatable business practices. Such incidents have

been observed frequently for many decades now, usually accompanied by a temporary public outrage

and, depending on the scale of the scandal, followed by expressions of remorse and promises to improve

in the future on the side of the accused business. Recently, however, firms’ performance in the area of

environmental, social, and governance issues appears to be particularly closely monitored by their in-

vestors and the public, manifesting in the emergence of “sustainable investment funds” or demand for

“green finance” (Gilbert, 2019). What has also changed is the amount and quality of data available to

actually investigate if and if so how investors respond to information about a company’s ESG perfor-

mance. Since empirical evidence that could help to answer this question is still sparse and contradictory

in the academic literature, this paper sets out to fill this research gap by extracting ESG information from

publicly available news articles and investigating their relationship with the stock market performance of

the DJIA constituents.

We are building our research on the work of several authors whose theories, findings, and opinions

on this matter are quite controversial. According to an early essay by Friedman (2007), the only social

responsibility of a firm is to create legal profits. This view would imply that any kind of ESG activity,

which is not part of the core business of an enterprise, should not be undertaken by the company nor

should investors incorporate ESG-related information into their investment decisions other than by with-

drawing their capital from companies that engage in such activities. Supporting evidence for this effect

of ESG activities is provided by Brammer et al. (2006), who find that companies with higher social

performance scores show smaller returns than those with lower social performance scores. Similarly,

Krüger (2015) and Capelle-Blancard and Petit (2019) discover that positive ESG-related information

can potentially harm a firm’s market value in the short-run. Providing more insights as to the potential
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mechanism behind such observations, Cheong et al. (2017) find that most companies have a reactionary

attitude towards ESG matters. These companies excessively engage in ESG activities only after they

have experienced negative market and investor sentiment in the previous year, where market and investor

sentiment is captured by a modified version of the index of Baker and Wurgler (2006). While this finding

on its own would only hold implications with respect to how altruistic a company’s motives behind its

ESG efforts are, Goss and Roberts (2011) illustrate possible consequences of such behavior. The authors

argue that the ESG activities of companies, who react with new ESG efforts in direct response to negative

media and investor sentiment, are often perceived as engaging in window-dressing behavior, which will

lower the company’s perceived creditworthiness and increase their cost of capital.

However, other empirical studies give reason to doubt an entirely pessimistic view on a firm’s ESG

activities, providing evidence for some (in-)direct financial benefits for companies from being proactive

in ESG matters. For example, using yearly sustainability ratings, Lins et al. (2017) show that ESG activ-

ities can enhance stakeholder trust, which can then be drawn upon in times of economic distress, such as

during the financial crisis between 2008 and 2009. Nofsinger and Varma (2014) make a similar argument,

elaborating further on the financial performance of socially responsible investment funds under different

market conditions. Similarly, Cahan et al. (2015) find that companies that show a high level of social

responsibility tend to receive a more positive overall news image. The authors argue that such a positive

media image helps to build a better reputation, increases investor trust, and might enable the company to

reap economic benefits from the increased positive public awareness.

From this brief overview of the ESG literature, it becomes obvious that the link between ESG in-

formation and stock market reaction and, thus, investors’ reactions to a firm’s efforts in the domain of

ESG has not been well established yet. Assuming that a firm has no responsibilities other than creating

legal profits, ESG activities should be perceived as unnecessary expenses that destroy firm value. Thus,

investors holding this view should punish any kind of information on new ESG activities. If investors

acknowledge certain positive externalities of ESG-related efforts, they would nevertheless engage in in-

creased selling of their shares when negative ESG news arrive at the market or when newly undertaken

ESG efforts are perceived as a mere tool to “greenwash” a firm’s public image. Positive ESG-related

news, on the other hand, could be seen as an intangible asset that builds investor trust and enhances the

reputation or public image of a company. Thus, there appears to be a certain incentive for a company to

position itself as a sustainable, socially responsible enterprise, if investors appreciate such ESG efforts

and find value in them even though they are not part of the core business. In light of the recent spike of

popularity of the topic and financial resources that are devoted to the domain of ESG, with ESG-focused

assets under management expanding by almost 20% per year, it appears to be of utmost importance –

for both companies and investors alike – to gain a better understanding of the way investors process

ESG-related information (Reid et al., 2018).

In contrast to previous ESG-related research, we set out to investigate the relationship between ESG

information and investors’ reaction by relying on a time series approach: We gather a large data set of

news articles with ESG-relevant content from which we extract the articles’ sentiment. This sentiment

index is then used as an input to AutoRegressive Distributed Lag (ARDL) models to explain stock market

returns for the constituents of the DJIA. With this approach we attempt to make several contributions to

the ongoing discussion, namely (i) bridging the gap between the findings of several event studies (e.g.,

Aktas et al., 2011; Naughton et al., 2014; Capelle-Blancard and Petit, 2019) and studies that use low-
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frequency measures of ESG performance (e.g., Lins et al., 2017; Goss and Roberts, 2011; Cahan et al.,

2015) by building an analysis on daily ESG-related information observed over the course of multiple

years, (ii) extracting this information on a company’s performance in the domains of ESG by official

news releases from a third party (newspaper and online media), and (iii) evaluating the ESG information

using a domain-specific sentiment approach.

Other studies, for the most part, only briefly touch upon the role of sentiment in identifying the

effect of ESG activities on corporate performance (e.g., Cheong et al., 2017; Goss and Roberts, 2011;

Naughton et al., 2014). Linking the information contained in a newspaper article on a certain ESG matter,

assessed via a sentiment index, with investors’ reaction to these information could, however, be a crucial

component to further our understanding of the connection between the two. By placing ESG-related

sentiment at the center of attention, we build upon the findings of several authors of the behavioral

finance literature who identify a significant relationship between sentiment and stock price movements

(e.g., Tetlock, 2007; Garcia, 2013; Li et al., 2014). In light of the findings of this strand of the literature,

the question arises whether changes in ESG-specific sentiment, i.e., sentiment expressed toward ESG-

related activities of companies, also have an impact on a stock’s financial performance.

For our approach, we use the idiosyncratic component of daily stock returns as an indicator for the fi-

nancial performance of a stock. These idiosyncratic returns are estimated as the residual term of an OLS

regression of the DJIA constituents’ log-returns on the log-returns of the S&P 500 index, resembling

the idea of a market model (see, for example, Stapleton and Subrahmanyam, 1983). Using ESG-related

news sentiment, constructed by a domain-specific dictionary approach following Loughran and McDon-

ald (2011) and Myšková and Hájek (2018), we find significant effects of both temporary and permanent

changes in sentiment on the idiosyncratic returns for the vast majority of the DJIA constituents. We

can further identify different groups of stocks according to their ESG - stock-return relationship: The

ESG-affine group can be characterized by investors that tend to react with increased buying activity

to an increase in positive ESG-related information, whereas the ESG-averse group appears to have in-

vestors that rather engage in increased selling of their shares when (positive) ESG-information arrive.

Interestingly, the investors of the majority of stocks appear to have no predisposition with respect to

ESG activities of the stocks they are invested in. Nevertheless, investors of these stocks tend to be rather

pessimistic about positive ESG information, irrespectively of the financial performance of the stocks.

Furthermore, our results indicate an inverse relationship between the financial performance and the ex-

tent to which investors appreciate ESG activities: Those stocks whose investors predominantly punish

increased ESG-related sentiment by withdrawing capital show the highest median log-returns over the

sampling period, while those stocks whose investors appear to appreciate ESG-related news financially

are among the worst performing stocks of our sample. These findings highlight the ambiguous nature

of firms’ ESG activities, whose affects appear to be highly context-specific. Especially if companies are

aiming at using ESG as a strategic element and signal to investors, our findings plead for a thorough co-

ordination of such activities. In this sense, our results can also mediate between the conflicting findings

of the related literature, since they find support for both sides of the argument and offer first insights as to

potential mechanisms leading to these stock-specific ESG reactions that may otherwise appear mutually

exclusive.

The remainder of this paper is structured as follows. First, Section 3.2 places our work into the context

of the relevant literature. Then, Section 3.3 discusses our data set. Section 3.4 continues by presenting
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our sentiment approach as well as the ARDL models that we use in the analysis of news articles and

financial data, before Section 3.5 summarizes our main findings. Lastly, Section 3.6 concludes.

3.2 Related work

3.2.1 A short overview of ESG

The first official mentioning of the term “ESG” is attributed to the study “Who Cares Wins” by the UN

Global Compact in 2004 (Compact, 2004). The subsequent “Who Cares Wins Initiative” in the years

2004-2008 was built upon the idea of creating a triple-win situation for the financial industry, society,

and the environment.1 Its main purpose was to sensitize the financial industry for sustainability topics,

such that ESG issues will be more and more incorporated into investment decision-making. Ten years

later, there are several indications that the initiative is bearing fruits: Estimates on ESG investing in assets

under management in 2018 amount to about $20 trillion, which is roughly a quarter of all professionally

managed assets worldwide (Kell, 2018). Following the call from the UN Global Compact, the New York

Stock Exchange launched the Principles of Responsible Investment (PRI) and the Sustainable Stock

Exchange Initiative (SSEI) in 2006 and 2007, respectively. Both of these initiatives provide assistance and

guidance but also control in ESG matters to listed companies and professionally managed assets. Since

their launch, the financial world has seen a dramatic increase in portfolio managers offering sustainable

investment strategies (Lofts, 2018). As an example, the latest PRI annual report2 shows that many key

targets on their agenda have been exceeded in 2018, with 87% (target 80%) and 57% (target 50%)

of signatories reporting to consider ESG factors in directly managed assets and portfolio construction,

respectively. These developments show that there is a strong concern for the advancement of sustainable

business practices from both politics and the financial world. It is plausible to assume a broad set of

driving forces behind these concerns – ranging from environmental concerns, political agendas, and the

attempt to attract and bind investors long-term on side of the firm to utility gains on side of the investors

when investing according to their ethical values and beliefs (Nofsinger and Varma, 2014). Hence, it

appears to of interest to all parties involved to unravel the effects on investment decisions emerging from

a company’s performance in the domain of ESG.

In face of the recent boost in funding of and attention devoted to ESG-related financial programs, it

is surprising that findings about the way investors process ESG activities remain sparse. As mentioned

above, the recent literature acknowledges a certain response by investors to companies’ ESG initia-

tives, which then affects the firm’s stock market performance (Kim et al., 2014; Cahan et al., 2015;

Lins et al., 2017; El Ghoul et al., 2011). All of these studies use yearly observations, explaining their

findings by concepts evolving around trust-building sustainability efforts, which enable the company to

reap financial benefits such as lower costs of capital, favorable media coverage, and an increased overall

profitability. These insights prescribe a certain long-term view to investors with respect to the topic of

ESG. Such a view seems to be relevant when considering large institutional investors or long-term in-

vestment strategies in diversified portfolios. It is plausible to assume that such investment strategies are

1Though in the context of this paper we exclusively use the term ESG, it is important to note that this also includes all
actions that might in other sources be attributed to Corporate Social Responsibility (CSR). We consider ESG an umbrella term
that collects not only socially responsible actions but also covers the aspects of environment and governance – concepts that are
not explicitly included in the aforementioned concept of CSR.

2The report can be accessed via https://www.unpri.org/annual-report-2018, last accessed Aug 19, 2019.
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not based on day-to-day news but will rather consider yearly sustainability ratings of companies when

incorporating ESG factors into their investment decisions. Nevertheless, this approach ignores both the

changing landscape of constantly monitored businesses, in which news spread rapidly over the internet,

and the potentially impulsive behavior of the large group of retail investors. These retail investors or

noise traders, as described by Kyle (1985) or Black (1986), are assumed to trade irrationally and not

based on fundamentals. Thus, it is plausible that this group of investors are more prone to being influ-

enced by sentiment expressed towards a certain company by, for example, public media. The particularly

intangible nature of ESG information makes them furthermore more vulnerable to “greenwashing” at-

tempts when giving a considerable weight to company reports, which can be assumed to attempt to paint

a more promising picture of the firm’s performance in ESG matters than objectively is true. Fortunately,

the speed with which more objectively presented information arrive and can potentially be processed by

investors has increased dramatically over the past decade, accompanied by increasingly easy access to

these information. Exploiting the new possibilities to look beyond year-on-year data could provide some

additional insights as to if and if so how investors incorporate ESG-related information into their invest-

ment decisions. Not only would this approach account for the increasingly monitored business world

and potential noise trading, such a perspective would also allow us to directly relate changes in a firm’s

ESG performance to stock market movements, instead of relying on a year-on-year average of company

performance.

Increasing the frequency of observations can be achieved by relying on public press-releases such as

news articles and newswires that report on ESG-issues timely. While also newspapers oftentimes fail to

report in a completely objective manner, they should pretty well capture and likewise form public opinion

on the reported topic. If we furthermore are willing to assume a certain degree of due diligence present in

the research process for an article, we can plausibly argue that news on ESG issues constitute a reason-

able compromise between objective ESG reports and fast arriving information. Research conducted by

Krüger (2015) and Capelle-Blancard and Petit (2019) resulted in two of a very few studies that do take

a similar approach and focus on the effects of ESG news. Both paper conduct an event study and find

that investors on average respond negatively to negative news and weakly negatively or insignificantly to

positive events. Similar to the argument made by Friedman (2007), Krüger (2015) explains his findings

as an agency problem inside the firm: While managers earn a good reputation for socially responsible

practices among stakeholders, news on increased spending on such practices are generally bad news for

shareholders. However, he also provides another view on this issue, called “doing well by doing good”,

according to which environmentally and socially sustainable business practices could also create value

for shareholders. Even though he does not find support for this latter view in his study, his agency theory

and “doing well by doing good” summarize the two potential theories behind the opposing views present

in the literature reasonably well. The question we now want to address is: Can we make sense of the

ambiguous findings of the literature or mediate between both theories by taking a more holistic time

series approach to assess the ESG-investor relationship?

3.2.2 Relevant sentiment literature

Our approach evolves around the increasingly popular body of literature that links sentiment, conveyed

by news articles, with the stock market. Research in this area has evolved rapidly over the last two

decades. In one of the first comprehensive studies, Tetlock (2007) establishes predictive power of neg-
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ative words in news articles for downward pressure on stock market prices. While the author uses the

General Inquirer’s Harvard-IV-4 classification dictionary to identify words with a negative connotation,

Loughran and McDonald (2011) advocate using an application-specific dictionary instead of a general

English language dictionary when one wants to accurately capture the sentiment conveyed by a text that

evolves around a certain topic, for example finance. Following their findings, Garcia (2013) approximates

investor sentiment by positive and negative words of two columns of financial news from the New York

Times, as identified by the Loughran & McDonald dictionary. In his autoregressive distributed lag model

of log-returns, he finds that positive words in the financial news help to predict stock returns. Similarly,

Li et al. (2014) show that sentiment analysis, using both the Harvard and the Loughran & McDonald

dictionary, can improve the prediction of price movements at the stock market. We now want to use

these promising approaches and transfer them to the ESG domain. Focusing on news articles, published

either in print or electronically, that contain information on the areas of environmental, social or gov-

ernance practices of a firm, we evaluate the sentiment that each of these articles conveys. Thereby, we

can differentiate between positive and negative ESG-related information and the respective intensity of

sentiment expressed by each piece of news towards an ESG-related subject. In order to assess investors’

responses to such information, referring to well-established models from the aforementioned finance

literature appears to be well-suited for our endeavor.

3.3 Data

For the subsequent analysis, we collect news articles for the 30 constituents of the DJIA for the time

period between January 2010 and December 2018 from the LexisNexis database.3 Due to limited data

availability, the stocks of “The Travelers Companies, Inc.” (trv) and “DuPont de Nemours Inc.” (dd) are

dropped from the sample, such that we are left with data on 28 stocks. A commonly used alternative to

news articles in the sentiment literature as basis for the analysis is social media data. As briefly explained

above, the reason for consulting news articles instead of social media data is related to the focus of our

study on ESG-related information. We try to stay as closely as possible to reports on ESG activities that

evaluate a company’s performance from a rather objective point of view without adding additional noise

to the signal by considering subsequent discussions on these activities in social media. We intentionally

do not consider press-releases on ESG activities by the company itself, since there appears to exist an

undeniable incentive for a company to exaggerate its sustainability or ESG achievements. Furthermore,

such reports are usually only issued annually, which renders an investigation of how investors process

the ESG information timely impractical. Relying on publicly available news, we are also able to increase

the frequency of our data from annual to daily observations.

For our collection of relevant news articles, we narrow the search by relying on 13 ESG-related search

terms in the SUBJECT-line of the LexisNexis search for each of the DJIA constituents. We identify

these 13 subject terms by comparing the most frequently occurring subjects of articles connected to

environmental, social, and governance activities of companies in LexisNexis.4 Panel A of Table 3.7.1

of the appendix lists those subjects that appear to be included in the vast majority of ESG-related news

3Our collection of news articles is based on search results obtained from Lexis Uni, accessible via https://advance.
lexis.com/, last accessed Aug 19, 2019.

4Enlarging our list of search terms leads to larger samples of articles collected, yet, after filtering the results as explained in
this section, only a few more articles are recorded than for the 13 search terms in Panel A of Table 3.7.1 and the results are not
affected.
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articles. Furthermore, we exclude non-business news and duplicated, i.e., very similar, articles from our

search. In order to avoid that an article is attributed to a certain company simply because it is tagged

with that company name, while the article is mainly about another company, we rely on the LexisNexis

relevance score (in percent) and attribute an article to a certain company only when it shows a relevance

score of more than 50% for that respective company. Analogously, we require a relevance score above

50% for at least one of the ESG subjects.5

We obtain daily observations of stock prices for the constituents of the Dow Jones Industrial Average

as well as closing prices for the S&P 500 index between January 1, 2010, and December 31, 2018, from

Yahoo Finance. Table 3.1 provides an overview of all stocks with their respective ticker symbol that

we use in the subsequent analysis, together with a summary of further stock-specific information on the

stock’s industry sector, market capitalization, ownership structure, CSR rating, and relative frequency of

news articles in our sample. More information on the respective data sources are provided in Table 3.1.

Daily closing prices are used to calculate log-returns as rt = (log(pt)− log(pt−1)) · 100 both for

each stock i (ri
t) as well as for the S&P 500 index (rsp

t ). Next, we estimate the idiosyncratic component

of the individual stock returns by entertaining a simple market model, in the spirit of Stapleton and

Subrahmanyam (1983), in which the log-returns of stock i are regressed on a constant and the S&P 500

index log-returns of that respective day by means of OLS, as shown in Equation (3.1).

ri
t = λ +β · rsp

t +νt , (3.1)

where E(νt) = 0, E(νtr
sp
t ) = 0. The residual series of this model, νt , then represents the part of the

log-returns of stock i that cannot be explained by the market return, approximated by the S&P 500 log-

returns, and is hence labeled the idiosyncratic return (irt) of stock i.

For each stock we observe a total of 2,263 trading days over the nine years that our sampling period

encompasses. To each trading day we then match the ESG-sentiment time series, which we extract from

our news data sets as illustrated in the following section.

5Since we explicitly search for both company and ESG-related subjects, the LexisNexis search already returns relatively
high relevance scores on both of these dimensions. Thus, our 50% threshold filter only excludes a few articles.
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Table 3.1: Summary DJIA stocks
This table summarizes information on the 28 DJIA constituents that are used in our analysis. The column GCIS sector provides information on the industry sector to which a respective
stock belongs, according to the MSCI Global Industry Classification Standard, accessible via https://www.msci.com/gics, last accessed Aug 19, 2019. Average market capitaliza-
tion (M-cap) of a stock, expressed in Billion USD, and Ownership, the average fraction of institutional ownership of a certain stock over the sampling period, are both gathered via Thom-
son Reuters Eikon. CSR ratings (CSR) are provided by CSR Hub’s publicly available company overview, available via https://www.csrhub.com/csrhub/?_ga=2.25363325.
1901910551.1561297416-342900800.1561297416, last accessed Aug 19, 2019. More information on the rating methodology can be accessed via https://esg.csrhub.com/
csrhub-ratings-methodology, last accessed Aug 19, 2019. Lastly, Rel news is a relative measure of how many news articles we observe for a specific stock, where Coca-Cola, as the stock
with most ESG-related articles published between 2010 and 2018, receives the value 1.

Name Ticker GICS sector M-cap Ownership CSR Rel news

Apple Inc aapl Information Technology 896.336 0.6393 59 0.8071
American Express Co axp Financials 102.907 0.8375 57 0.1182
Boeing Co ba Industrials 196.544 0.7400 58 0.5918
Caterpillar Inc cat Industrials 72.788 0.6774 54 0.2290
Cisco Systems Inc csco Information Technology 244.472 0.7419 65 0.5096
Chevron Corp cvx Energy 230.818 0.6435 52 0.3908
Walt Disney Co dis Communication Services 243.103 0.7140 56 0.4412
General Electrics ge Industrials 89.781 0.5514 58 0.6036
Goldman Sachs Group Inc gs Financials 71.240 0.7858 54 0.8114
Home Depot Inc hd Consumer Discretionary 217.868 0.7267 57 0.0230
International Business Machines Corp ibm Information Technology 120.539 0.5964 61 0.0460
Intel Corp intc Information Technology 209.747 0.6563 64 0.5681
Johnson & Johnson jnj Health Care 371.124 0.6656 64 0.6615
JPMorgan Chase & Co jpm Financials 358.991 0.7529 58 0.7598
Coca-Cola Co ko Consumer Staples 218.980 0.6650 58 1.0000
McDonald’s Corp mcd Consumer Discretionary 155.200 0.6876 59 0.6416
3M Co mmm Industrials 97.364 0.6904 62 0.3049
Merck & Co Inc mrk Health Care 213.644 0.7513 62 0.3715
Microsoft Corp msft Information Technology 1,012.000 0.7667 66 0.8849
Nike Inc nke Consumer Discretionary 130.864 0.8507 60 0.2427
Pfizer Inc pfe Health Care 236.895 0.7233 56 0.4101
Procter & Gamble Co pg Consumer Staples 274.361 0.6024 59 0.3360
UnitedHealth Group Inc unh Health Care 233.661 0.8931 53 0.1406
United Technologies Corp utx Industrials 106.086 0.8305 57 0.3516
Visa Inc v Information Technology 372.194 0.8977 59 0.2638
Verizon Communications Inc vz Communication Services 235.032 0.6040 56 0.5744
Walmart Inc wmt Consumer Staples 308.138 0.8125 57 0.9334
Exxon Mobil Corp xom Energy 316.655 0.5111 54 0.0778
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3.4 Sentiment and time series approach

3.4.1 Constructing the sentiment index

One crucial element of our approach to assess how investors process ESG information for their invest-

ment decisions is the evaluation of the sentiment conveyed by each of the news articles. As elaborated

above, sentiment extracted from news articles should provide us with the best proxy of a company’s ESG

achievements or shortcomings we can obtain that is neither overly biased towards the firm’s point of

view nor heavily influenced by social media controversies. For computing the sentiment that each indi-

vidual news article conveys, we rely on a dictionary approach, which utilizes pre-defined lists of words

that convey positive and negative meaning, respectively, to identify the sentiment expressed by a text.

A commonly used alternative would be to rely on machine learning algorithms. Computing sentiment

via a machine learning algorithm has the advantage that one does not need to construct positive and

negative word lists but would instead manually classify a subsample of the data according to whether a

certain text conveys positive and negative sentiment. The algorithm then “learns” from this training data

set the most likely classification of new articles by looking for patterns that are unique to either positive

or negative sentiment in the training data. This advantage can, however, also be seen as one drawback of

machine learning approaches, since the quality of the sentiment index is heavily dependent on whether

or not the training data represent a broad range of features, i.e., words and linguistic structures that imply

strong positive or negative sentiment (Siering, 2012). Furthermore, Hutto and Gilbert (2014) point out

that many machine learning algorithms, such as neural networks used to construct a sentiment index,

derive incomprehensible solutions. To avoid these caveats, we instead choose a parsimonious dictionary

approach. More precisely, we use the dictionary developed by Loughran and McDonald (2011), in the

following referred to as LM, which the authors have specifically tailored to the context of financial texts.

Their dictionary is shown to outperform conventionally used English language dictionaries, such as the

General Inquirer’s Harvard-IV-4 classification dictionary, when applied to finance-related texts.

For our sentiment index, we construct sentiment polarity for each article k from the occurrences of

positive and negative words in the LM dictionary as

polarityk =
positivek−negativek

positivek +negativek
, (3.2)

where positivek and negativek stand for the sum of positive and negative LM dictionary words, respec-

tively, that appear in article k. Calculating the sentiment index in this way leads to a variable that is

defined on the interval [−1,1]. We additionally conduct our analysis using the Valence Aware Dictionary

for sEntiment Reasoning (VADER) by Hutto and Gilbert (2014), augmented with the LM dictionary

(VADER-LM). The difference to the polarity measure in Equation (3.2) lies in the emphasis on the inten-

sity of the words, i.e., VADER-LM does not only classify words into positive and negative connotations,

but it also assesses how strongly positive or negative a certain expression appears to be. Since the results

of both approaches are fairly similar with respect to the characteristics observed for the different groups

of stocks that we identify below, we focus in the following on the LM approach as the more parsimonious

sentiment index. Detailed estimation results for the VADER-LM approach can be found in Tables 3.7.2

and 3.7.3 of the appendix.

While the dictionary by Loughran and McDonald (2011) seems appropriate to capture the sentiment
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of news content particularly relevant to investors, there is a shortcoming when applying the dictionary

to our data set of ESG-related news. If an article combines positive finance-related and negative ESG-

specific news, our sentiment index might be biased in favor of the positive financial news at the expense

of adequately representing the ESG-related information. For example, one article in 2010 on the company

Apple reports on increased revenues of the company while their philanthropic activities have declined. To

avoid this pitfall, we follow Nasukawa and Yi (2003) and conduct a domain-oriented sentiment analysis:

We rely on the word list by Myšková and Hájek (2018), which comprises words related to sustainability

topics, based on sustainable development glossaries provided by the United Nations and the Environ-

mental Protection Agency, amongst others, and evaluate our ESG news articles only around sentences

that contain one of the words that are on the list.6 We then additionally control for the remaining content

of an article, which potentially contains other general interest or finance-related information – in the

previous example positive news on the company’s financial performance – such that these two effects do

not become intertwined.

In this way we obtain one ESG-related and one non-ESG-related sentiment index as control variable

for each article in our data set. Next, we match each article’s sentiment score to a trading day of that

respective stock. Since the constituents of the DJIA are traded between 9:30 ET and 16:00 ET, any

article published between 0:00 ET and 16:00 ET on a given trading day t is attributed to this trading day.7

Articles published after 16:00 ET are then attributed to the next trading day. Non-trading days, such as

national (United States) holidays and weekends, are treated similarly in that any article published on a

non-trading day is attributed to the next trading day. Trading days on which we do not record any news

on that specific stock receive a sentiment value of zero. An alternative approach is taken by Behrendt and

Schmidt (2018), who use the last observed sentiment value for any missing observation in an intraday

context. However, in our application to daily observations this would induce an undesirable persistence

of the sentiment time series, since there might be multiple days in a row without new articles released for

a company. In such cases, assuming a perpetuating effect of the last observed sentiment value in ESG-

related news over multiple days does not appear to be reasonable. Rather, we would expect, and often

observe, multiple articles published on the same ESG-related issue over subsequent days as an ESG-story

unfolds further, which is then reliably captured by our ESG-sentiment index. In case of multiple news

articles attributed to the same trading day, we calculate a weighted average of the individual sentiment

scores, loosely following Fang and Peress (2009). More specifically, we give a higher weight to media

sources that are entirely focused on finance-related stories, such as Financial Times and Bloomberg,

which we expect to be more influential and relevant to investors than other general interest news sources.8

3.4.2 Autoregressive distributed lag models

The sentiment index, constructed as described above, then serves as one input for our ARDL models,

with the idiosyncratic returns (irt) as the dependent variable. The ARDL model is chosen since it is one

of the most widely used, parsimonious models to describe a dependent time series variable as a function

6In addition, we test the robustness of our results when assessing only the sentiment of sentences that contained at least one
of the words in the multidimensional dictionary for CSR compiled by Pencle and Mălăescu (2016). However, qualitatively all
findings remain unchanged.

7Assuming that new ESG-related information arriving during the last minutes of a trading day are not reflected in a stock’s
closing price, we also test how our results change when any article published after 15:30 ET receives the date t +1 and is, thus,
attributed to the next trading day. Qualitatively, the results are robust to this alternative approach.

8For an exhaustive list of all financial media sources we consider, please refer to Panel B of Table 3.7.1 of the appendix.
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of its own lagged values as well as contemporaneous and lagged values of several independent variables.

We find support in this approach by, for example, Garcia (2013) who also uses an ARDL model to ex-

plain log-returns by, amongst others, a sentiment index. Inspired by the author’s approach to distinguish

between both positive and negative sentiment as well as the effect of sentiment in the presence or ab-

sence of economic recessions, we entertain several versions of the ARDL model. The lag length of both

independent and dependent variables is set equal to five. While for some stocks of the sample the BIC

information criterion suggests slightly different lag lengths, it appears to be reasonable to focus on the

effect of ESG news that occur within one week of that information arriving at the market. Longer hori-

zons would always increase the likelihood of the effect being diluted by other information arriving later.

Similarly, weekly or monthly measures of ESG-related news sentiment also appear to weaken the signal

contained in the articles, which is why we refrain from entertaining models with such aggregated mea-

sures of sentiment. In contrast to Garcia (2013), we do not include lags of the squared dependent variable

in the models. While including this measure of the returns’ variance as it is proposed in GARCH-in-mean

type models (Engle et al., 1987) does not alter our estimation results qualitatively, it would complicate

the computation of the long-run multiplier considerably, which is explained in detail below. Thus, despite

the potentially time-varying volatility of our idiosyncratic return series we do not find that accounting

for this fact adds value in the context of our analysis. Furthermore, all of the following models have

two control variables in common, namely day-of-the-week dummy variables and the contemporane-

ous effect of non-ESG related information contained in an article.9 OLS with heteroskedasticity- and

autocorrelation-consistent standard errors following White (1980) is used for the estimation of the mod-

els and the reporting of the results.

The first, “naive” ESG model uses contemporaneous and lagged effects of our ESG-sentiment index

to explain daily idiosyncratic returns, and reads

Model (1)
irt = α +β

′
0 ·Ls(St)+ γ

′
0 ·Lv(irt)+δ

′ ·xt + εt , (3.3)

where Ls is a lag operator with s = 0,1, . . . ,5, while Lv is a lag operator with v = 1,2, . . . ,5. St is the

sentiment index at time t, normalized to have zero mean and unit variance, and xt are the previously

mentioned control variables, namely day-of-the-week dummy variables and non-ESG-related sentiment.

εt is a zero-mean residual. Thus, β ′0 is a vector collecting the six coefficients β0,s that belong to the

respective lag s of St , where the first index of 0 is used to differentiate the sentiment coefficients in

Models (1) and (2) from the ones used in Model (3), as will become important in Equation (3.6) below.

Analogously, γ ′0 is a vector of coefficients for lagged idiosyncratic returns. We call this our “naive”

model, since it utilizes the plain ESG news sentiment variable St as an input without making any further

distinction between positive or negative news or the market conditions during which the news arrive. This

model should therefore give us a simple, first impression as to the effect of an increase in ESG-related

news sentiment on idiosyncratic returns.

However, since several authors reveal striking differences between the effect of positive and negative

sentiment in similar frameworks (e.g., Garcia, 2013; Capelle-Blancard and Petit, 2019; Krüger, 2015;

Balahur et al., 2010), our second model makes such a distinction and reads

9Entertaining the models with month-of-the-year and year dummy variables does not change the results substantially. Thus,
we only report the results of the most parsimonious model, while the results of all robustness checks are available upon request.
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Model (2)
irt = α +β

′+
0 ·Ls(S+t )+β

′−
0 ·Ls(S−t )+ γ

′
0 ·Lv(irt)+δ

′ ·xt + εt , (3.4)

where S+t and S−t stand for positive and negative ESG news sentiment, respectively. For the construction

of S+t (S−t ), we interact the standardized St variable with an indicator variable that equals one if St > 0

(St < 0), and is zero otherwise. For better interpretability of the estimates in β
′−
0 , we then take the

absolute value of S−t , such that an increase in S−t indicates an increase in negative sentiment. In order to

facilitate the distinction between the β -coefficients of positive and negative sentiment, we annotate the

β -coefficients of Equation (3.4) with the superscripts + and − for the effects of positive and negative

ESG-related sentiment, respectively.

Next, we further modify the approach taken by Garcia (2013), who investigates differences in the

effects of sentiment on financial data between economic recessions and the absence of recessions. While

investigating the influence of overall economic recessions would require many more years of news arti-

cles, which are more and more scarcely available the further one goes back in time, we do find it plausible

that the current financial performance of a stock influences the degree to which investors pay attention to

and process ESG-related information. Furthermore, we observe a boom in “sustainable finance” only in

recent years, which also speaks against including more years of observations. In this context, one hypoth-

esis would be that if a firm’s stock is currently yielding negative idiosyncratic returns, investors might

perceive reports on ESG efforts undertaken by this firm as window-dressing – an attempt to distract in-

vestors from or attract investors despite of a current lack of performance of the company’s core business.

On the other hand, positive ESG-related news could also keep investors from selling their shares during

falling stock prices, following the argument that proactive engagement in ESG activities enhances in-

vestor trust. In order to investigate potentially varying effects of ESG information on stock prices given

different states of a stock’s current financial performance, we specify a third ARDL model that accounts

both for negative idiosyncratic returns as well as for positive and negative ESG-related news sentiment

and reads

Model (3)

irt = α +Dt
[
β
′+
1 ·Ls(S+t )+β

′−
1 ·Ls(S−t )+ γ

′
1 ·Lv(irt)

]
(3.5)

+(1−Dt)
[
β
′+
2 ·Ls(S+t )+β

′−
2 ·Ls(S−t )+ γ

′
2 ·Lv(irt)

]
+δ
′ ·xt + εt ,

where Dt is a dummy variable that equals 1 if a stock is currently underperforming, i.e., if its idiosyncratic

returns in period t are negative. β
′+
1 (β ′−1 ) then collects the coefficients for the interaction term between

an underperforming stock and positive (negative) sentiment, while β
′+
2 (β ′−2 ) are the coefficients for the

interaction term between a stock that yields zero or positive idiosyncratic returns and positive (negative)

ESG-related news sentiment. In addition to the previously used control variables, the xt of Equation (3.5)

also includes the dummy variable Dt in order to control for the direct effect of negative idiosyncratic
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returns on the dependent variable at time t.10

While potentially each of the lagged β -coefficients of a model holds valuable information with re-

spect to how a stock reacts to a change in ESG-related news sentiment, we only want to distinguish

between the effect of a temporary change in ESG-related sentiment on idiosyncratic returns, also called

the impact multiplier, and the effect of a permanent shock to ESG-related sentiment, the long-run mul-

tiplier (LRM). The impact multiplier as we use this term in the context of our research is given by the

contemporaneous effect at time t of the sentiment variable of interest of the respective model. The LRM,

as derived in Brissimis (1976) and Bewley (1978), is calculated as

θ
(∗)
l =

∑
5
s=0 β

(∗)
l,s

1−∑
5
v=1 γl,v

, for |
5

∑
v=1

γl,v|< 1, l = 0,1,2 ∗=+,− (3.6)

where β
(∗)
l,s and γl,v represent the coefficient estimates of the independent variable of interest and the de-

pendent variable, respectively. The superscript of β is noted in brackets, since only Models (2) and (3)

distinguish between positive and negative sentiment. For more information on the LRM and its deriva-

tion, please refer to Section 3.7.1 of the appendix. Standard errors of each θ
(∗)
l are calculated using

the delta method, relying on the heteroskedasticity- and autocorrelation-consistent variance-covariance

matrix of the ARDL coefficient estimates.

3.5 Results of the sentiment analysis

3.5.1 Sentiment and estimation results

Table 3.2 provides descriptive statistics for the sentiment index that we construct for each of the 28 stocks

over the sampling period prior to standardization. We observe throughout positive mean values for the

sentiment index. Considering that this variable is bounded, all but three stocks’ sentiment appears to

cover the entire range with minimum values of -1 and maximum values of 1. For illustrative purposes,

we show plots of both the time series and ACFs of the sentiment series for two of the 28 stocks in the

sample in Figure 3.1, namely Apple (aapl) and Visa (v).11 Beginning with the time series plots, we

observe that sentiment extracted from ESG-related news articles on the company Apple does not appear

to be predominantly positive nor negative, while for Visa the plot shows fewer negative sentiment scores

than positive ones. The ACFs of both stocks do not show clear patterns or significant lags that would

suggest serially correlated series.

10While the interaction terms of the sentiment variables with Dt are of main interest in Model (3), additionally including Dt
as control variable appears to be very important in order to account for the current performance of the stock. ARDL models
that omit Dt as additional control show coefficient estimates of the sentiment parameters that simply reflect the current under-
performing state (throughout significant, negative coefficient estimates) or not underperforming state (throughout significant,
positive coefficient estimates) of the respective stock but are not informative about the effect of a change in sentiment under
either of these conditions.

11The stocks of Apple and Visa are chosen since they represent all major features that the sentiment time series plots and
ACFs of the entire sample of 28 stocks show, namely differing ratios of positive to negative ESG-related sentiment and non-
significant ACFs. Plots for the remaining stocks of the sample are available upon request.
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Table 3.2: Summary statistics ESG sentiment
This table provides an overview of the descriptive statistics for the LM sentiment index prior to standardization. Company
references to the ticker symbols used in the column Ticker can be found in Table 3.1. N stands for the number of observations
in our sample, while Mean and Sd provide values for the mean and standard deviation of each sentiment time series, respectively.
Min and Max are minimum and maximum values of each series, respectively, and the 25%- and 75%-quantiles are given in the
accordingly labeled remaining two columns.

Ticker N Mean Sd Min Q25 Q75 Max

aapl 2,263 0.0734 0.3695 -1.0000 0.0000 0.1735 1.0000
axp 2,263 0.0374 0.1891 -1.0000 0.0000 0.0000 1.0000
ba 2,263 0.1936 0.3695 -1.0000 0.0000 0.4543 1.0000
cat 2,263 0.0608 0.2303 -1.0000 0.0000 0.0000 1.0000
csco 2,263 0.2121 0.3517 -0.6667 0.0000 0.5000 1.0000
cvx 2,263 0.0544 0.3071 -1.0000 0.0000 0.0000 1.0000
dis 2,263 0.0866 0.3206 -1.0000 0.0000 0.0000 1.0000
ge 2,263 0.1908 0.3505 -1.0000 0.0000 0.4167 1.0000
gs 2,263 0.1415 0.4030 -1.0000 0.0000 0.3394 1.0000
hd 2,263 0.0054 0.0713 -0.6667 0.0000 0.0000 1.0000
ibm 2,263 0.0155 0.1212 -1.0000 0.0000 0.0000 1.0000
intc 2,263 0.0577 0.2082 -0.8333 0.0000 0.0000 1.0000
jnj 2,263 0.1877 0.3683 -1.0000 0.0000 0.4444 1.0000
jpm 2,263 0.1644 0.3861 -1.0000 0.0000 0.4023 1.0000
ko 2,263 0.3007 0.4076 -1.0000 0.0000 0.6364 1.0000
mcd 2,263 0.1095 0.4080 -1.0000 0.0000 0.1753 1.0000
mmm 2,263 0.1011 0.2895 -1.0000 0.0000 0.0000 1.0000
mrk 2,263 0.0969 0.2945 -1.0000 0.0000 0.0000 1.0000
msft 2,263 0.2236 0.4036 -1.0000 0.0000 0.5327 1.0000
nke 2,263 0.0468 0.2493 -1.0000 0.0000 0.0000 1.0000
pfe 2,263 0.0659 0.3041 -1.0000 0.0000 0.0000 1.0000
pg 2,263 0.1010 0.2959 -1.0000 0.0000 0.0000 1.0000
unh 2,263 0.0421 0.1835 -1.0000 0.0000 0.0000 1.0000
utx 2,263 0.1542 0.3267 -1.0000 0.0000 0.0000 1.0000
v 2,263 0.0662 0.2644 -1.0000 0.0000 0.0000 1.0000
vz 2,263 0.0964 0.3445 -1.0000 0.0000 0.1658 1.0000
wmt 2,263 0.1247 0.4186 -1.0000 0.0000 0.3835 1.0000
xom 2,263 0.0140 0.1392 -1.0000 0.0000 0.0000 1.0000
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Figure 3.1: ESG sentiment time series and ACFs
The four panels of this figure show the time series (TS) of ESG-related sentiment for Apple (aapl) and Visa (v) in plots (a) and
(b), respectively. Plots (c) and (d) then illustrate the ACFs of the time series over 30 trading days. The dashed lines indicate
95% confidence bounds.
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Analogously, Table 3.3 summarizes the characteristics of the idiosyncratic return series that serve as

dependent variable in all of our ARDL models. It is important to note here as well as for subsequent

comments on the size of the returns that the log-returns that were used for the estimation of the idiosyn-

cratic returns are multiplied by the factor 100. By construction, we observe that the idiosyncratic return

series for all 28 stocks are centered around zero. This feature is also clearly visible in the time series plots

in Figure 3.2. Furthermore, one sees a few major peaks and valleys in both plots, i.e., spikes of high id-

iosyncratic returns in absolute value. When investigating the corresponding ESG-related sentiment, these

spikes correlate with matching preceding or contemporaneous positive or negative sentiment values. To

give one example, the highest idiosyncratic return for Apple, observed on April 24, 2014, coincides

with a series of ESG-related news for Apple mainly evolving around the company’s announcement to
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offer free recycling of all its devices, published between Monday, April 21, and Thursday, April 24.12

Lastly, the ACF plots of both stocks do not reveal any kind of persistent patterns, which is supported by

Augmented Dickey-Fuller (ADF) tests that show no reason to doubt the stationarity of all idiosyncratic

returns time series.13

Table 3.3: Summary statistics idiosyncratic returns
This table provides an overview of the descriptive statistics for the idiosyncratic returns of each stock. Company references to
the ticker symbols used in the column Ticker can be found in Table 3.1. N stands for the number of observations in our sample,
while Mean and Sd provide values for the mean and standard deviation of the idiosyncratic returns, respectively. Min and Max
are minimum and maximum values of each series, respectively, and the 25%- and 75%-quantiles are given in the accordingly
labeled remaining two columns.

Ticker N Mean Sd Min Q25 Q75 Max

aapl 2,263 0.0000 1.3195 -13.2267 -0.6501 0.6947 7.6713
axp 2,263 0.0000 1.0263 -15.1245 -0.4495 0.5096 8.7987
ba 2,263 0.0000 1.0981 -8.1444 -0.5929 0.5488 9.3516
cat 2,263 0.0000 1.1603 -7.1079 -0.6356 0.6116 6.7664
csco 2,263 0.0000 1.2332 -17.2174 -0.4643 0.4923 12.4507
cvx 2,263 0.0000 0.9429 -5.2926 -0.5111 0.4917 5.1598
dis 2,263 0.0000 0.9225 -9.9465 -0.4878 0.4708 7.7500
ge 2,263 0.0000 1.1645 -10.7603 -0.4693 0.4843 9.7814
gs 2,263 0.0000 1.1570 -11.5849 -0.6108 0.5831 5.2170
hd 2,263 0.0000 0.9245 -4.4652 -0.5089 0.4987 5.9795
ibm 2,263 0.0000 0.9472 -9.3446 -0.3870 0.4367 8.4673
intc 2,263 0.0000 1.1581 -8.2858 -0.5811 0.5746 8.7915
jnj 2,263 0.0000 0.7253 -9.3626 -0.3535 0.3656 3.9404
jpm 2,263 0.0000 1.0283 -9.2806 -0.5443 0.5245 5.9994
ko 2,263 0.0000 0.7471 -7.3232 -0.3895 0.4136 4.7213
mcd 2,263 0.0000 0.8331 -5.2004 -0.3989 0.4159 6.8556
mmm 2,263 0.0000 0.7411 -7.2405 -0.3513 0.3751 5.5859
mrk 2,263 0.0000 0.9829 -6.8579 -0.5173 0.4947 9.2433
msft 2,263 0.0000 1.0583 -12.2876 -0.5490 0.5099 9.6897
nke 2,263 0.0000 1.2244 -12.1845 -0.5636 0.5671 10.7111
pfe 2,263 0.0000 0.8804 -4.7786 -0.4724 0.4626 5.9461
pg 2,263 0.0000 0.7873 -6.7920 -0.3965 0.4006 8.4520
unh 2,263 0.0000 1.1295 -5.8859 -0.5502 0.5688 7.2215
utx 2,263 0.0000 0.7908 -6.8507 -0.3999 0.4145 3.9634
v 2,263 0.0000 1.1401 -14.2343 -0.5387 0.4895 13.0729
vz 2,263 0.0000 0.9248 -4.8525 -0.5033 0.5189 7.4511
wmt 2,263 0.0000 0.9900 -10.4371 -0.4660 0.4918 9.9096
xom 2,263 0.0000 0.8040 -4.4463 -0.4327 0.4359 4.6622

12There were a total of 14 articles published between April 21 and April 24, featuring headlines such as “Apple Cleans Up Its
Act” (April 21, USNews.com), “Apple unveils free recycling of all its devices, vows to increase reliance on renewable energy”
(TheRecord.com), “SOLID WASTE: Apple will offer free recycling at stores” (April 22, Greenwire), or “BUSINESS: Apple,
Google race to reduce greenhouse gas footprints” (April 24, ClimateWire).

13Results of the ADF tests are available upon request.
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Figure 3.2: Idiosyncratic returns time series and ACFs
The four panels of this figure show the time series (TS) of idiosyncratic returns for Apple (aapl) and Visa (v) in plots (a) and
(b), respectively. Plots (c) and (d) then illustrate the ACFs of the time series over 30 trading days. The dashed lines indicate
95% confidence bounds.
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Turning to the estimation results of our models, Tables 3.4 and 3.5 summarize the impact and long-

run multiplier, respectively, for the 28 DJIA constituents that remained in our sample.14 It is important

to note that only those multiplier are reported that are significant on an α ≤ 0.1. In order to facilitate

interpretability of the relatively large tables, we divide each table into four panels according to the esti-

mated multiplier of the respective stocks in the naive model: Panel A presents those stocks that show a

negative sign of the respective multiplier in Model (1), while Panel B presents the stocks with a positive

multiplier effect in Model (1). Panel C then collects those stocks that do not show a significant impact

or long-run multiplier in Model (1) and Panel D, finally, those stocks that throughout all three ARDL

14We additional test the effect of a sample split that divides our time series roughly in two equal shorter samples. For the
results of the ARDL models using these two subsamples, ranging from 2010 to 2014 and 2015 to 2018, respectively, please
refer to Tables 3.7.4 to 3.7.7 of the appendix. The last paragraph of this sections briefly summarizes these results.
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specifications do not show a significant impact or long-run multiplier. The reasoning behind the con-

struction of these panels follows the idea that Model (1) represents a first-best guess with respect to the

correlation between ESG-related sentiment and the respective stock’s performance on the market. The

remaining two models should then help to gain a better understanding of the effects that ESG news have

on the returns of a stock and to identify further patterns or the absence of such. Since Models (2) and

(3) contain multiple sentiment variables, β ’s with super- and subscripts at the head of each column of

Table 3.4 indicate the respective coefficients whose impact multiplier effect, i.e., the contemporaneous

coefficient estimate, a column summarizes. Analogously, Table 3.5 uses θ ’s with super- and subscripts

at the head of each column to distinguish the LRM effects from the impact multipliers of Table 3.4.

Starting with the estimates of the impact multiplier, Panel A of Table 3.4 reveals that only for one

of the DJIA constituents idiosyncratic returns tend to decrease on average when ESG-related news sen-

timent temporarily increases. Since an increase in ESG-related sentiment would indicate more positive

ESG-related information arriving at the market, we could label such a stock an “ESG-averse” stock: In-

vestors tend to punish ESG activities by withdrawing capital, even if those activities or new information

on such were increasingly positive in nature. This hypothesis finds support in the estimate of the con-

temporaneous β
+
0 -coefficient of Model (2), which shows a negative sign, indicating investor resentment

towards positive ESG news. Though for the impact effects we only find one ESG-averse stock, these

considerations will become more important when turning to the LRM effects below. The larger group

of “ESG-affine” stocks, which show a positive contemporaneous reaction in idiosyncratic returns to an

increase in ESG-sentiment, are collected in Panel B of Table 3.4. While, again, by construction, these

five stocks show a throughout positive reaction in idiosyncratic returns to an increase in ESG-sentiment,

we find that this response is sensitive to the nature of ESG news (positive vs. negative) but to weaken

when further interacted with different states of performance of the stock (negative vs. zero or positive

idiosyncratic returns): Idiosyncratic returns on average increase when positive ESG-related information

arrive at the market, whereas they decrease or are not effected when negative ESG news arrive, as indi-

cated by the positive and negative coefficient estimates for the β
+
0 - and β

−
0 -column, respectively. These

effects are only faintly visible in Model (3), in which the coefficient estimates of the interaction terms

are mostly insignificant. Panel C of Table 3.4 then collects stocks for which our naive model does not

show a tendency with respect to how investors value ESG activities, such that we could label them the

“ESG-neutral” stocks. For 17 of these 21 stocks, which are more than half of all DJIA constituents, in-

vestors do not appear to react at all to positive ESG-related information. Interestingly, three out of four

stocks that do react statistically significantly tend to show a decrease in idiosyncratic returns when pos-

itive ESG-information arrives at the market. This tendency is supported by Model (3), in which we find

that irrespectively of the financial performance investors either do not react at all to a temporary increase

in positive sentiment or they engage in increased selling of their shares. These findings suggest that in-

vestors of stocks that don’t have a specific pre-defined opinion towards ESG-activities are particularly

sceptical towards positive ESG-headlines contemporaneously.
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Table 3.4: Impact multiplier of ESG sentiment on idiosyncratic returns
This table summarizes the estimated impact multiplier, i.e., the effects of temporary changes in ESG-related sentiment on
idiosyncratic returns, in all ARDL models that are significant on an α ≤ 10%. Panel A presents those stocks that show a
predominantly negative impact multiplier in Model (1), while Panel B focuses on those stocks that tend to show a positive
reaction in idiosyncratic returns to temporary changes in ESG-related sentiment. Panel C then collects all stocks that do not
show a significant impact multiplier in Model (1), while Panel D collects stocks that show no significant estimates for the impact
multiplier throughout all models. The respective model is indicated by its equation number and respective sentiment coefficient.
β
+
l and β

−
l are the coefficients of positive (+) and negative (−) sentiment variables, respectively, where l = 0 represents the

sentiment coefficient of Model (1) and l = 1,2 represent the interaction terms of positive (1) and negative (2) idiosyncratic
returns with ESG-related sentiment. The idiosyncratic returns used as the dependent variable are computed using log-returns
scaled by the factor 100.

Model (1) Model (2) Model (3)

Ticker β0 β
+
0 β

−
0 β

+
1 β

+
2 β

−
1 β

−
2

Panel A: negative impact multiplier Model (1)
unh -0.0403 -0.0351

Panel B: positive impact multiplier Model (1)
axp 0.0414 0.0640
csco 0.0642 -0.2300 -0.1753
gs 0.0416 0.0633
ko 0.0576 0.1034 0.0485
xom 0.0430 0.0554 0.0302 0.0531

Panel C: insignificant impact multiplier Model (1)
aapl -0.1113 0.0935
cat 0.0558 -0.0629
cvx 0.0636 0.0815
dis -0.0893 -0.0555 -0.0664
ge -0.0794 -0.1008 -0.0960
hd -0.1330
ibm -0.0299 0.0379 -0.0892
intc -0.0518
jnj -0.0644 -0.0688
jpm 0.0890 0.0852 0.0783
mcd 0.0912
mmm 0.0491
mrk 0.0704 0.0628
msft -0.0818 0.0689
nke 0.0568 0.1112 0.0866
pfe -0.0657 -0.1046
pg -0.0424 -0.0436
utx 0.1786 0.0922 0.1117
v -0.0628 -0.0881 -0.0536
vz 0.0524 -0.0434
wmt -0.0959 -0.0678

Panel D: insignificant impact multiplier in all models
ba
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Table 3.5: Long-run multiplier of ESG sentiment on idiosyncratic returns
This table summarizes the long-run multiplier of ESG-related sentiment on idiosyncratic returns in all ARDL models that are
significant on an α ≤ 10%. Panel A presents those stocks that show a predominantly negative LRM estimate in Model (1),
while Panel B focuses on those stocks that tend to show a positive reaction in idiosyncratic returns to permanent changes in
ESG-related sentiment. Panel C then collects all stocks that do not show a significant LRM in Model (1), while Panel D collects
stocks that show no significant LRM effects throughout all models. The respective model is indicated by its equation number
and respective LRM coefficient. θ

+
l and θ

−
l are the LRM estimates for the positive (+) and negative (−) sentiment variables,

respectively, where l = 0 represents the LRM of Model (1) and l = 1,2 represent the LRM belonging to the interaction terms of
positive (1) and negative (2) idiosyncratic returns with ESG-related sentiment. The idiosyncratic returns used as the dependent
variable are computed using log-returns scaled by the factor 100.

Model (1) Model (2) Model (3)

Ticker θ0 θ
+
0 θ

−
0 θ

+
1 θ

+
2 θ

−
1 θ

−
2

Panel A: negative LRM Model (1)
aapl -0.1411 -0.2665 -0.1907 -0.1475
hd -0.0571 -0.0714 -0.0704 -0.0652
unh -0.0678 0.2313
utx -0.0640 0.1805

Panel B: positive LRM Model (1)
ko 0.0446 0.1826 0.1028
mrk 0.0818 0.1330
pfe 0.0820 -0.1057 -0.1061

Panel C: insignificant LRM Model (1)
axp 0.1909 0.4955
ba 0.1697
cat 0.1112 0.2994
cvx 0.0996
dis -0.0754 -0.1882 -0.0808 -0.1081 -0.1528
ge -0.3906
ibm -0.0525 0.0874 -0.2411
intc 0.1044 0.6508
jnj -0.1466 -0.2536
jpm -0.1312
mmm -0.1034
msft -0.1398
nke -0.0848
pg -0.1816 -0.0723 -0.1617
v -0.2523
vz -0.0994 0.1295
wmt -0.1785 -0.1112 -0.2351 -0.1709

Panel D: insignificant LRM in all models
csco, gs, mcd, xom

Table 3.5 reveals that only for a few stocks significant effects in reaction to temporary changes in

ESG-related sentiment manifest into significant long-run multiplier. However, those LRM effects we do

observe appear to broadly support the findings summarized for the impact multiplier estimates: Through-

out all models, the four ESG-averse stocks in Panel A of Table 3.5 show either significant, negative LRM,

i.e., a decrease in idiosyncratic returns, in reaction to an increase in positive ESG-related sentiment or do

not show significant LRM at all. While we find more ESG-averse stocks for the LRM effects than in case
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of the impact multiplier, the group of stocks that show an overall ESG-affine attitude now only consists of

three stocks. These three, however, show similar patterns as we observe for their impact multiplier coun-

terparts. Panel C, again, constitutes the largest group of stocks. For 15 out of the 17 ESG-neutral stocks

we do not observe any significant reaction to an increase in positive ESG-related sentiment, similar to

above. When interacted with the financial performance of a stock, we see that the skeptical attitude of

investors towards positive ESG news that we observe for temporary changes in sentiment is still clearly

visible with predominantly negative LRM effects in the first two columns of Model (3). In contrast to

the impact multiplier effects, investors appear to punish a permanent increase in negative ESG-related

news more severely if paired with a stock that is financially performing well. If, however, a stock yields

negative idiosyncratic returns, investors of the large group of ESG-neutral stocks do not systematically

withdraw their capital.

With respect to the magnitude of the effects, by construction, the long-run multiplier are on average

larger than their impact counterparts. However, all coefficients estimates are relatively small, indicating

that such ESG-based information is unlikely to provide a valuable input to ESG-related trading strategies.

With the smallest, absolute LRM of 0.05 and the largest of 0.49, a permanent change in ESG-related

sentiment by one standard deviation is estimated to lead to a shift in conditional average idiosyncratic

returns of between 0.5 to 4.9 basis points over one day. A one standard deviation temporary shock in

sentiment is estimated to lead to a change in conditional average idiosyncratic returns of between 0.3 to

2.3 basis points.

Summarizing the results of our ARDL models, we find that for the majority of the DJIA constituents

investors do not appear to be inherently inclined to favor or reject ESG activities, but to perceive ESG

news differently depending on the content of the news, the firm’s current stock market performance and

depending on the nature of the ESG-related shock (temporary or permanent) under consideration. For

example, for the majority of the stocks we find that the investors react cautiously both to a temporary and

to a permanent increase in positive ESG-related sentiment by withdrawing capital, similar to the findings

in Krüger (2015). While no clear patterns in investors’ reaction to a temporary increase in negative ESG-

related sentiment can be observed, they do engage in increased selling of their shares if such a negative

shock is of permanent nature and the stock is currently not underperforming. Moreover, there are some

stocks whose idiosyncratic returns react inherently negatively to positive ESG-related news and another

group of stocks whose investors appear to appreciate positive ESG news. The latter finding would speak

in favor of the beneficial aspect of ESG reported by Lins et al. (2017), who attribute this to the trust-

building nature of ESG activities. The group of inherently ESG-affine stocks, however, decreases in

number when considering a permanent shock to ESG-related sentiment, whereas more stocks appear to

be negatively predisposed towards ESG activities in comparison to the scenario of a temporary shock

to ESG-related sentiment. Most of these findings, with the exception of the specific stocks belonging

to each group, appear to be robust both to the alternative sentiment dictionary approach (VADER-LM),

briefly introduced in Section 3.4.1, and to a sample split in 2015, as the Tables 3.7.2 to 3.7.7 of the

appendix show.

3.5.2 Economic implications

In search for more lessons that can be learned from our findings, Table 3.6 summarizes the characteristics

of the different groups of stocks – ESG-averse, ESG-affine, ESG-neutral, and stocks with throughout
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insignificant impact and long-run multiplier – that we have identified via our ARDL estimation results.

More specifically, by investigating averages of some economic indicators for each group we are looking

for feature patterns that are shared among the stocks in each group and differ in comparison across

groups. Since we often have only a few stocks in each group, median instead of mean values over all

stocks in a respective group are reported to prevent large outlier values from overly influencing the group

values. Especially for the ESG-averse and insignificant groups in Panel A of Table 3.6 one needs to keep

in mind that there is only one stock in each of them.

Table 3.6: Group summary descriptives for estimation results
This table provides an overview of some summary statistics for the groups of stocks in Tables 3.4 (Panel A) and 3.5 (Panel B).
The entries in the column Subsample refer to the respective panels of Tables 3.4 and 3.5, i.e., “ESG-averse” refers to Panel
A, “ESG-affine” to Panel B, “ESG-neutral” to Panel C, and “insignificant” to Panel D of each respective table. Each column
shows the group’s median value for the respective category, most of which are explained in Table 3.1. The last two columns,
Log-returns and Sentiment, provide the groups’ median log-returns, multiplied by 100, and sentiment values over the entire
sampling period, respectively. Here, log-returns instead of idiosyncratic returns are chosen since the latter, by construction,
show a mean and median close to zero.

Subsample M-cap Ownership CSR Rel news Log-returns Sentiment

Panel A: impact multiplier
ESG-averse 233.6610 0.8931 53.0 0.1406 0.0923 0.0421
ESG-affine 218.9800 0.7419 57.0 0.5096 0.0223 0.1415
ESG-neutral 230.8180 0.6904 59.0 0.4101 0.0366 0.0964
insignificant 196.5440 0.7400 58.0 0.5918 0.0780 0.1936

Panel B: long-run multiplier
ESG-averse 225.7645 0.7786 57.0 0.2461 0.0755 0.0577
ESG-affine 218.9800 0.7233 58.0 0.4101 0.0320 0.0969
ESG-neutral 230.8180 0.6904 58.0 0.4412 0.0366 0.0964
insignificant 199.8360 0.7148 56.5 0.5756 0.0128 0.1255

Starting from left to right, the stocks’ average market capitalization, expressed in billion US Dollars,

does not appear to be indicative of the group’s reaction towards a change in ESG-related sentiment. By

construction, all constituents of the DJIA show a rather high market capitalization, which is why we

might not see any further patterns here. A high average percentage of institutional ownership, on the

other hand, appears to be a feature of ESG-averse stocks. Intuitively, it is plausible to argue that insti-

tutional shareholders care less about ESG-activities of a company but instead are focused on economic

performance in the short run – a hypothesis that supports the results of Kim et al. (2014). This finding

would also speak in favor of the agency-problem point of view mentioned in Krüger (2015) and the profit

argument made by Friedman (2007). We furthermore look into publicly available corporate sustainabil-

ity ratings published by CSR Hub in order to see, for example, whether ESG-averse stocks might show

differences in their CSR rating from ESG-averse stocks. Indeed, investors of stocks with the lowest CSR

ratings react more aversely to temporary ESG news on average, as Panel A reveals, while companies

with the highest CSR ratings do not necessarily have the most ESG-affine investors. However, for the

LRM results summarized in Panel B the differences in CSR ratings across the groups are only marginal.

Moreover, ESG-averse stocks show a rather low median news coverage, which is a relative measure of

how many ESG-related articles were published over the sampling period for a specific company, where

Coca-Cola (ko) as the company with most news story counts receives the value 1. The clearest pattern in

economic indicators across both our impact and long-run multiplier analysis can be found in the median
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log-returns of the groups. Log-returns, a measure for how well the respective group of stocks performed

over the entire sampling period, are to some extent inversely related to their investors’ attitude towards

ESG activities: Those stocks that show a throughout negative reaction towards increased ESG efforts

have performed best between 2010 and 2018, while the ESG-affine stocks are amongst the worst per-

forming groups of stocks. Similar to the findings in Brammer et al. (2006) and contrary to Lins et al.

(2017), this would imply that stocks whose investors react positively to more positive ESG-related news

do not appear to be able to reap economic benefits from their ESG efforts in comparison with other DJIA

constituents. While yielding the largest returns, the ESG-averse stocks show the lowest sentiment scores

both for a temporary sentiment shock and for the LRM.

3.6 Conclusion

With steadily increasing public and regulatory demand for publicly listed companies to adhere to so-

cially responsible business practices and environmentally sustainable modes of operation, furthering our

understanding of how companies’ efforts in the domain of environmental, social, and governance are

perceived by investors and affect corporate performance appears to be of utmost importance. Using nine

years worth of ESG-related news articles, we entertain several autoregressive distributed lag models to

analyze how idiosyncratic returns of the Dow Jones Industrial Average constituents react towards stock-

specific ESG information. In order to evaluate the content of each ESG-related news article, we extract its

sentiment using the dictionary approach advocated by Loughran and McDonald (2011) and subsequently

calculate a polarity ESG-sentiment index for each trading day of each stock of the sample.

The vast majority of DJIA constituents’ idiosyncratic returns react significantly to a temporary as

well as to a permanent change in ESG-related news sentiment. While we find supporting evidence both

for a beneficial and for a detrimental effect on firm value, for the majority of DJIA constituents the type

of the ESG-information (positive or negative), the duration of the shock (temporary or permanent), and

the stock’s current financial performance are critical for the response in idiosyncratic returns. Investors of

most DJIA constituents are on average either sceptical or indifferent towards positive ESG-related senti-

ment. On the other hand, they are more attentive to a negative, permanent shift in ESG-related sentiment

when, financially, a stock is performing well than when it yields negative idiosyncratic returns. Fur-

thermore, companies with high institutional ownership appear to have predominantly investors that are

particularly ESG-averse, yet these stocks’ returns perform best over the entire sampling period. Stocks

that show the tendency to react with an increase in idiosyncratic returns to positive ESG news, on the

other hand, show one of the weakest financial performances of all stocks of the sample.

Our findings offer several take-aways for companies and investors alike but also show new avenues

for further research. First of all, companies should pay close attention their activities in the domain

of ESG. While our results indicate that ESG activities should not be thoughtlessly used as a means to

greenwash a firm’s public image and oftentimes fail to distract from financial underperformance, they

do appear to hold the potential to mitigate financial losses, if investors’ attitude towards them is gener-

ally positive. Thus, our results mediate the existing opposing views about the value of ESG activities in

both academia and industry in that we show that ESG-efforts are neither unambiguously detrimental nor

valuable, but context dependent. Therefore, it would be worthwhile to further explore the relationship

between ESG-activities and stock market returns in different scenarios. For example, the striking imbal-

50



CHAPTER 3. SUSTAINABLE NEWS

ance in financial performance that we find between the ESG-averse and ESG-affine groups of stocks is

an aspect that would be of utmost interest to both practitioners and researchers. While limitations in data

availability did not allow for a larger sample of stocks for our analysis, access to larger data sets of news

articles could provide additional insights as to whether the patterns we found also hold for, for exam-

ple, the S&P 500 stocks. Larger samples could then also allow to compare or identify industry clusters

or further correlations between market capitalization and ESG-effects. While we intentionally excluded

social media data, such data could proof valuable, if one would want to change the focus to the influence

of ESG-related investor sentiment on returns or volatility. Even though the results of the VADER-LM

approach to calculating the sentiment index broadly supports the findings of the LM approach, it would

be interesting to further investigate the differences between the two, and potentially also several other,

sentiment measures. Lastly, our findings should by no means discourage companies from engaging in so-

cially responsible behavior but rather serve to illustrate the high degree of complexity of the topic, which

requires a coordinated approach by both firms and investors to assess the true value of ESG activities.
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3.7 Appendix

3.7.1 Long-run multiplier derivation

This section provides a brief, closer investigation of the long-run multiplier, which is mainly based on

Brissimis (1976) and Bewley (1978), in order to help to facilitate a better understanding of the concept.

Taking the simplest case of Equation (3.3), in period t +5 it would read

irt+5 = α +
5

∑
s=0

β0,s ·St+5−s +
5

∑
v=1

γ0,v · irt+5−v +δ
′ ·xt+5 + εt+5. (3.7.1)

Next, we define St+5,St+4, . . . ,St as a function of the continuous variable h. Permanent changes to h,

starting in period t, would then lead to ∂St+5−s
∂h > 0 for s = 0,1, . . . ,5. Since the idiosyncratic returns are a

function of St , changes in h would also effect irt . Consequentially, taking the first partial derivative ∂ irt+5
∂h

leads to
∂ irt+5

∂h
=

5

∑
s=0

β0,s ·
∂St+5−s

∂h
+

5

∑
v=1

γ0,v ·
∂ irt+5−v

∂h
. (3.7.2)

Assuming unit changes, i.e., ∂St+5−s
∂h = 1, and substituting the partial derivatives of ∂ irt+5−v

∂h by θ j−v, we

get

θ j =
5

∑
s=0

β0,s +
5

∑
v=1

γ0,v ·θ j−v. (3.7.3)

While not explicitly shown here, the individual multipliers θ j−v are monotonously increasing, however at

a decreasing rate such that the sequence of multipliers converges towards what we consider the long-run

multiplier θ . This LRM, the change in idiosyncratic returns as a reaction to a permanent change in the

sentiment variable St as given in Equation (3.6), can thus be understood as the converging sequence of

the individual multipliers θ j−v. Therefore, we can derive the LRM by setting θ j = θ j−1 = · · ·= θ j−5 = θ

and solving for θ .

Analogously, we can also express the LRM for models (2) and (3) by Equation (3.6) by substitut-

ing the nominator by the respective β -coefficient of the sentiment variable or interaction term between

sentiment and financial performance indicator Dt of each model.
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3.7.2 Supplementary tables

Table 3.7.1: ESG-related subject terms and financial media sources
Panel A lists the ESG-related search terms that are used to filter the LexisNexis data base for news articles, whose subject
belongs to the domain of environmental, social, and governance issues. Panel B provides an overview of the finance-related
publishing sources that we consider particularly relevant to investors, such that their news articles receive a higher weight in
our daily news average sentiment calculation.

Panel A: ESG subjects

Charities Ethics & corporate citizenship
Corporate environmental responsibility Gender equality
Corporate responsibility Societal issues
Corporate social responsibility Sustainable development
Corporate sustainability Sustainable investing
ESG Wages & salaries
Ethical investing

Panel B: Financial media sources

Bloomberg MainStreet
CNBC Money Management
CNN Nordic Region Pensions & Investments News
European Pensions Investments News OptionsProfits
Financial Adviser Pensions Expert
Financial Times Pensions Management
Follow The Money Professional Wealth Management
Foreign Direct Investment RealMoney
Fox Business SEC Filings
Fox News Network Stocks Under $10
FT Energy Newsletters The Daily Swing Trade
FT.com TheStreet
FTAdviser Thomson Reuters
Growth Seeker Tribune Content Agency
High Net Worth USA Today
Information Bank Abstracts USNEWS
Investment Adviser Wall Street
Investorschronicle WebNews English
Jim Cramer’s Action Alerts PLUS WebNews Japanese
Kiplinger Zacks
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Table 3.7.2: Impact multiplier of ESG sentiment on idiosyncratic returns (VADER-LM)
This table summarizes the estimated impact multiplier, i.e., the effects of temporary changes in ESG-related sentiment on
idiosyncratic returns, for the VADER-LM sentiment approach in all ARDL models that are significant on an α ≤ 10%. Panel
A presents those stocks that show a predominantly negative impact multiplier in Model (1), while Panel B focuses on those
stocks that tend to show a positive reaction in idiosyncratic returns to temporary changes in ESG-related sentiment. Panel C
then collects all stocks that do not show a significant impact multiplier in Model (1), while Panel D collects stocks that show no
significant estimates for the impact multiplier throughout all models. The respective model is indicated by its equation number
and respective sentiment coefficient. β

+
l and β

−
l are the coefficients of positive (+) and negative (−) sentiment variables,

respectively, where l = 0 represents the sentiment coefficient of Model (1) and l = 1,2 represent the interaction terms of
positive (1) and negative (2) idiosyncratic returns with ESG-related sentiment. The idiosyncratic returns used as the dependent
variable are computed using log-returns scaled by the factor 100.

Model (1) Model (2) Model (3)

Ticker β0 β
+
0 β

−
0 β

+
1 β

+
2 β

−
1 β

−
2

Panel A: negative impact multiplier Model (1)
ibm -0.0312 -0.0399 -0.0124 0.0065 -41.8248
intc -0.0435 -0.0534 -0.0557 -0.0176
utx -0.0319 0.0247 -0.0332 0.0170

Panel B: positive impact multiplier Model (1)
ba 0.0494 0.0626 0.0478 0.0211
cat 0.0648 -0.0626 0.0665 -0.0364
pg 0.0413 0.0368 -0.0187 -0.0164
xom 0.0323 0.0443 0.0375

Panel C: insignificant impact multiplier Model (1)
aapl -0.0423 0.0487
cvx -0.0287 0.0294
dis -0.0265 -0.0576
ge -0.0325 -0.0345
gs -0.0326
hd -0.0141 -0.0865
jnj -0.0272 -0.0268
jpm 0.0322
ko -0.0187 -0.0347 0.0164 -0.0284
mcd 0.0373 0.0469
msft 0.0258
nke 0.0667
pfe -0.0341 -0.0493 -0.0273 -0.0450 -0.0347
unh -0.0176
v -0.0878 -0.0759

Panel D: insignificant impact multiplier in all models
axp, csco, mmm, mrk, vz, wmt
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Table 3.7.3: Long-run multiplier of ESG sentiment on idiosyncratic returns (VADER-LM)
This table summarizes the long-run multiplier of ESG-related sentiment on idiosyncratic returns for the VADER-LM sentiment
approach in all ARDL models that are significant on an α ≤ 10%. Panel A presents those stocks that show a predominantly
negative LRM estimate in Model (1), while Panel B focuses on those stocks that tend to show a positive reaction in idiosyncratic
returns to permanent changes in ESG-related sentiment. Panel C then collects all stocks that do not show a significant LRM
in Model (1), while Panel D collects stocks that show no significant LRM effects throughout all models. The respective model
is indicated by its equation number and respective LRM coefficient. θ

+
l and θ

−
l are the LRM estimates for the positive (+)

and negative (−) sentiment variables, respectively, where l = 0 represents the LRM of Model (1) and l = 1,2 represent the
LRM belonging to the interaction terms of positive (1) and negative (2) idiosyncratic returns with ESG-related sentiment. The
idiosyncratic returns used as the dependent variable are computed using log-returns scaled by the factor 100.

Model (1) Model (2) Model (3)

Ticker θ0 θ
+
0 θ

−
0 θ

+
1 θ

+
2 θ

−
1 θ

−
2

Panel A: negative LRM Model (1)
aapl -0.1518 -0.2251 -0.0921 -0.0908 -0.1220
hd -0.0590 -0.0622 -0.0776 -0.0175 0.0734
utx -0.0543 -0.0484

Panel B: positive LRM Model (1)
cat 0.1158 0.0898
cvx 0.0609 0.0554
mrk 0.0787 0.0783 0.1077

Panel C: insignificant LRM Model (1)
axp -0.0613 0.0630
ba 0.0895
dis -0.0773
gs -0.0951
ibm 0.0391 -38.9691
intc -0.0809 0.1377
jnj -0.0945 -0.0833 -0.0964
jpm -0.0732
nke 0.0886 0.0838
pg -0.0460
unh 0.0496
wmt -0.0739 0.0486 -0.0964

Panel D: insignificant LRM in all models
csco, ge, ko, mcd, mmm, msft, pfe, v, vz, xom
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Table 3.7.4: Impact multiplier of ESG sentiment on idiosyncratic returns (2010-2014)
This table summarizes the estimated impact multiplier, i.e., the effects of temporary changes in ESG-related sentiment on
idiosyncratic returns, for the subsample encompassing the years 2010 to 2014 in all ARDL models that are significant on an
α ≤ 10%. Panel A presents those stocks that show a predominantly negative impact multiplier in Model (1), while Panel B
focuses on those stocks that tend to show a positive reaction in idiosyncratic returns to temporary changes in ESG-related
sentiment. Panel C then collects all stocks that do not show a significant impact multiplier in Model (1), while Panel D collects
stocks that show no significant estimates for the impact multiplier throughout all models. The respective model is indicated
by its equation number and respective sentiment coefficient. β

+
l and β

−
l are the coefficients of positive (+) and negative (−)

sentiment variables, respectively, where l = 0 represents the sentiment coefficient of Model (1) and l = 1,2 represent the
interaction terms of positive (1) and negative (2) idiosyncratic returns with ESG-related sentiment. The idiosyncratic returns
used as the dependent variable are computed using log-returns scaled by the factor 100.

Model (1) Model (2) Model (3)

Ticker β0 β
+
0 β

−
0 β

+
1 β

+
2 β

−
1 β

−
2

Panel A: negative impact multiplier Model (1)
aapl -0.0648 -0.1092 -0.1794
cvx -0.0314 0.0748 0.1046
v -0.0950 -0.1208 -0.1473

Panel B: positive impact multiplier Model (1)
axp 0.0425 0.0670
csco 0.0952
gs 0.0509 0.1125
ko 0.0493 0.0840
xom 0.0273 0.0459 0.0574 0.0359 0.0569

Panel C: insignificant impact multiplier Model (1)
ba -0.0707 -0.0803
cat -0.1284
ge -0.1455
hd -0.1427 -0.0664 -0.3194
ibm -0.0796
intc -0.0549 -0.1023
jnj -0.0456
jpm 0.1444 0.1149
mcd 0.1390
mrk 0.1351
msft 0.0699 -0.1039
nke -0.0701 -0.0740
pfe -0.1487
pg -0.0502
utx 0.1108 -0.0343 0.0972
wmt -0.0821 -0.0723

Panel D: insignificant impact multiplier in all models
dis, mmm, unh, vz
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Table 3.7.5: Impact multiplier of ESG sentiment on idiosyncratic returns (2015-2018)
This table summarizes the estimated impact multiplier, i.e., the effects of temporary changes in ESG-related sentiment on
idiosyncratic returns, for the subsample encompassing the years 2015 to 2018 in all ARDL models that are significant on an
α ≤ 10%. Panel A presents those stocks that show a predominantly negative impact multiplier in Model (1), while Panel B
focuses on those stocks that tend to show a positive reaction in idiosyncratic returns to temporary changes in ESG-related
sentiment. Panel C then collects all stocks that do not show a significant impact multiplier in Model (1), while Panel D collects
stocks that show no significant estimates for the impact multiplier throughout all models. The respective model is indicated
by its equation number and respective sentiment coefficient. β

+
l and β

−
l are the coefficients of positive (+) and negative (−)

sentiment variables, respectively, where l = 0 represents the sentiment coefficient of Model (1) and l = 1,2 represent the
interaction terms of positive (1) and negative (2) idiosyncratic returns with ESG-related sentiment. The idiosyncratic returns
used as the dependent variable are computed using log-returns scaled by the factor 100.

Model (1) Model (2) Model (3)

Ticker β0 β
+
0 β

−
0 β

+
1 β

+
2 β

−
1 β

−
2

Panel A: negative impact multiplier Model (1)
ibm -0.0383 -0.0704 0.0361 -0.0779
unh -0.0532 -0.0680 -0.0462 0.2419

Panel B: positive impact multiplier Model (1)
ba 0.0972 0.1245 0.0955
ko 0.0697 0.1498 0.0878

Panel C: insignificant impact multiplier Model (1)
aapl 0.1657
cat 0.1124 0.2066
csco -0.2668 -0.2597
cvx 0.0825
dis -0.1030 -0.1259 -0.0667
gs -0.0723
hd 0.0397 0.0790
jnj -0.1158 -0.0883
jpm 0.0580 0.0789
mmm 0.1005
mrk 0.0945 0.1295
nke 0.1071 0.1725 0.1016
pfe -0.0855 -0.0894 -0.0675 -0.0884
pg -0.1112 -0.0738
utx 0.3648 0.2401
v -0.0409 -0.0470
wmt -0.1125
xom 0.0776 -0.1342

Panel D: insignificant impact multiplier in all models
ge, mcd, msft, vz
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Table 3.7.6: Long-run multiplier of ESG sentiment on idiosyncratic returns (2010-2014)
This table summarizes the long-run multiplier of ESG-related sentiment on idiosyncratic returns for the subsample encompass-
ing the years 2010 to 2014 in all ARDL models that are significant on an α ≤ 10%. Panel A presents those stocks that show a
predominantly negative LRM estimate in Model (1), while Panel B focuses on those stocks that tend to show a positive reaction
in idiosyncratic returns to permanent changes in ESG-related sentiment. Panel C then collects all stocks that do not show a
significant LRM in Model (1), while Panel D collects stocks that show no significant LRM effects throughout all models. The
respective model is indicated by its equation number and respective LRM coefficient. θ

+
l and θ

−
l are the LRM estimates for

the positive (+) and negative (−) sentiment variables, respectively, where l = 0 represents the LRM of Model (1) and l = 1,2
represent the LRM belonging to the interaction terms of positive (1) and negative (2) idiosyncratic returns with ESG-related
sentiment. The idiosyncratic returns used as the dependent variable are computed using log-returns scaled by the factor 100.

Model (1) Model (2) Model (3)

Ticker θ0 θ
+
0 θ

−
0 θ

+
1 θ

+
2 θ

−
1 θ

−
2

Panel A: negative LRM Model (1)
aapl -0.2240 -0.3159 -0.2405
msft -0.1044 -0.1486 -0.3109
unh -0.1386 -0.1156 0.3082 0.4966
utx -0.0701 0.2707 0.1462

Panel B: positive LRM Model (1)

Panel C: insignificant LRM Model (1)
axp 0.1992 0.4019 0.1581
ba 0.2500 -0.1016 -0.1896
csco -0.6819
cvx 0.1118
dis -0.0947 -0.2078
ge -0.4639
hd -0.0873 -0.0693 -0.1274 0.1699
ibm 0.1809 -9.7532
intc 0.1230 0.4165 0.6023
jnj -0.2509
jpm 0.2739
ko 0.1784
mcd -0.1256 0.1701
mrk -0.0800
nke -0.2816 -0.1010
wmt -0.1652
xom -0.0787 -0.1190 0.0762

Panel D: insignificant LRM in all models
cat, gs, mmm, pfe, pg, v, vz
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Table 3.7.7: Long-run multiplier of ESG sentiment on idiosyncratic returns (2015-2018)
This table summarizes the long-run multiplier of ESG-related sentiment on idiosyncratic returns for the subsample encompass-
ing the years 2015 to 2018 in all ARDL models that are significant on an α ≤ 10%. Panel A presents those stocks that show a
predominantly negative LRM estimate in Model (1), while Panel B focuses on those stocks that tend to show a positive reaction
in idiosyncratic returns to permanent changes in ESG-related sentiment. Panel C then collects all stocks that do not show a
significant LRM in Model (1), while Panel D collects stocks that show no significant LRM effects throughout all models. The
respective model is indicated by its equation number and respective LRM coefficient. θ

+
l and θ

−
l are the LRM estimates for

the positive (+) and negative (−) sentiment variables, respectively, where l = 0 represents the LRM of Model (1) and l = 1,2
represent the LRM belonging to the interaction terms of positive (1) and negative (2) idiosyncratic returns with ESG-related
sentiment. The idiosyncratic returns used as the dependent variable are computed using log-returns scaled by the factor 100.

Model (1) Model (2) Model (3)

Ticker θ0 θ
+
0 θ

−
0 θ

+
1 θ

+
2 θ

−
1 θ

−
2

Panel A: negative LRM Model (1)
jpm -0.0789 -0.2416
wmt -0.1173 -0.3266 -0.2062 -0.3079 -0.2778

Panel B: positive LRM Model (1)
cat 0.1373 0.2110 0.2159 1.1952
cvx 0.1150
mrk 0.1709 0.1790 0.4020 -0.2378
pfe 0.1168 -0.2066 -0.1282
v 0.0548 -0.2573 -0.1039

Panel C: insignificant LRM Model (1)
aapl -0.2210
ba 0.2305 0.2308
gs -0.2748
hd -0.1232
ibm 0.1611 -0.1277
jnj -0.2420 -0.2822
ko 0.1848
nke 0.1670
pg -0.1912
unh -0.0990
xom 0.1037

Panel D: insignificant LRM in all models
csco, dis, ge, mcd, mmm, msft, utx, vz
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Chapter 4

Multiple structural breaks in cointegrating
regressions: A model selection approach

4.1 Introduction

Reliably detecting structural change in multivariate time series models has increasingly gained impor-

tance over the last decade. A diverse literature has emerged which is concerned with estimation and

testing of unknown structural breaks (see, for example, Perron, 2006; Qu and Perron, 2007; Kejriwal and

Perron, 2010; Aue and Horváth, 2013; Perron and Yamamoto, 2016; Qian and Su, 2016; Kurozumi and

Skrobotov, 2017). It is well-known that coefficients of time series regressions are potentially inconsis-

tently estimated if structural breaks are not accounted for. Further, statistical inference in these situations

is unreliable as the size and power properties of statistical tests are distorted. This holds particularly for

cointegration models in the spirit of Engle and Granger (1987), for which a long-run equilibrium rela-

tionship is estimated under the assumption of parameter constancy. Ignoring break dates at which the

cointegrated system attains a new equilibrium might severely confound the cointegration analysis. Thus,

accounting for unknown structural breaks in cointegration models and consistently estimating them if

they occur during the sample period is of utmost importance for applied economic research.

For this matter, we propose a new approach to detect structural breaks in a potentially cointegrated

regression using penalized regression techniques. Based on this approach, we develop residual-based

tests for cointegration which are valid in the presence of multiple structural breaks.

A structural break in a cointegrating regression, as it will be dealt with in this paper, occurs when

either the intercept or the slope coefficient (or both) change substantially at one point in time. Early

on, Gregory and Hansen (1996a) have recognized the need for cointegration tests which account for the

presence of structural breaks. They allow the cointegrating vector to change at an unknown point in time

during the sample period and use a grid search approach to determine the break date. Their test performs

well in situations where commonly applied residual-based tests fail to detect a cointegration relationship

(Gregory et al., 1996). However, their test is limited to only one such change in the long-run equilibrium

and performs poorly in the presence of more than one break. Moreover, they do not consider whether the

breakpoint’s timing and the magnitude of parameter changes are consistently estimated. Hatemi-J (2008)

developed a test for similar models with two structural breaks. The problem with grid search algorithms

for structural breaks, as they are being used for the aforementioned tests, lies in the exponential increase

in computing time with an increasing number of breaks and the crucial assumption that the exact number
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of breaks has to be known a priori.

Bai and Perron (1998) proposed a procedure which allows to detect multiple structural breaks sequen-

tially. This approach was further developed in Kejriwal and Perron (2010) and Maki (2012), adapting it

to cointegrating regressions. In contrast to grid search algorithms, their sequential approach does not

require the user to know the exact number of breaks. Instead, only a maximum number of breaks needs

to be specified. After estimating a baseline model without structural breaks, each added breakpoint is

tested as to whether it improves the fit of the linear regression model. Westerlund and Edgerton (2006)

design Lagrange Multiplier (LM)-based test statistics invariant to structural breaks to test the null of no

cointegration and Davidson and Monticini (2010) use subsample procedures to account for structural

breaks in their cointegration tests. Carrion-i Silvestre and Sanso (2006) and Arai and Kurozumi (2007)

propose a CUSUM-based approach to test the null hypothesis of cointegration with a structural break

against the alternative hypothesis of no cointegration.

One major disadvantage of most approaches to model structural change in the cointegration literature

is that they mainly focus on improving the cointegration test. However, if we plan to further analyze

cointegrated data after having tested for cointegration, e.g., specifying error correction models, we are

interested in obtaining consistently estimated cointegration residuals. This necessitates to find the exact

break dates and to estimate the magnitude of the breaks consistently. Hence, with our new approach we

pursue three objectives, namely (i) detecting multiple structural breaks in cointegrating regressions, (ii)

consistently estimating the magnitude of those breaks, and (iii) testing for cointegration in the presence

of multiple structural breaks.

We achieve these three objectives by perceiving the task of detecting and estimating structural breaks

as a model selection problem. We could potentially shift and turn the regression hyperplane at every point

in time using the appropriate indicator functions. Finding the true breakpoints corresponds to selecting

the right indicators and eliminating irrelevant indicators. This leads to a high-dimensional setting with

the total amount of parameters of the model close to the number of observations. The lasso estimator,

introduced by Tibshirani (1996), in principle has attractive properties in these settings. However, quite

restrictive regularity conditions about the design matrix are needed for simultaneous variable selection

and consistent parameter estimation. Knight and Fu (2000) discuss the asymptotic behavior of the lasso

estimator under different regularity conditions. They show that the lasso is an inconsistent estimator if the

regressors are highly correlated. Subsequent studies built on their results and propose slightly different

extensions such as the fused lasso (Tibshirani et al., 2005), the adaptive lasso (Zou, 2006) and grouped

lasso (Yuan and Lin, 2006), among others. Particularly, the adaptive lasso is shown to have the oracle

property under a broad set of assumptions which means it performs consistent variable selection and

parameter estimation.

The use of lasso estimators in cointegrating regressions has been discussed in a few recent studies.

To begin with, Mendes (2011) investigates the asymptotic properties of the adaptive lasso estimator in

cointegrating regressions with additional stationary components. He shows that also in this context the

adaptive lasso estimator has the oracle property under some regularity conditions. The adaptive lasso

estimator has further been used by Liao and Phillips (2015) to simultaneously estimate the cointegrating

rank and autoregressive order of a Vector Error Correction Model (VECM). An extension to the con-

ventional Johansen model in high-dimensional settings with a short sampling period can be found in

Wilms and Croux (2016). Their sparse cointegration model using a lasso approach is shown to outper-
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form the Johansen method in terms of forecasting precision if some elements of the cointegrating vectors

are exactly zero. Koo et al. (2017) apply the lasso to predictive regressions involving highly persistent

and potentially cointegrated time series. Their proposed lasso approach leads to superior forecasting

performance relative to the OLS estimator based on the full model.

For our purposes, we rely on a modified version of the adaptive lasso procedure, similar to the one

presented by Kock (2016), and proceed as follows. First, we operate in a setting with a fixed set of break-

point candidates and provide a technical proof that our estimator has the oracle property in cointegrating

regressions. While being quite restrictive, such a setting, nevertheless, appears to be of practical rele-

vance. One could, for example, be confronted with a situation in which a fixed number of crises occurred

at well-known points during the sample period, all of which could potentially have influenced the coin-

tegration relationship. An important question then would be which of these crises actually changed the

long-run equilibrium, i.e., which of these crises led to breaks in either slope or intercept (or both) and

which did not. In this context, we allow the breakpoints of intercept and slope coefficient to occur at

different points in time (i.e., at different crises). Thus, one could also perceive our method as performing

an efficient subsample selection.

Second, we build on these results and extend the procedure to more general situations where we

do not have any prior information about potential breakpoint candidates but the breaks can occur at

any point in time. This corresponds to a diverging number of parameters in the full model. Despite the

increased complexity of the setting, we can provide simulation evidence that our procedure still estimates

the breakpoints consistently. Lastly, we discuss how our modified adaptive lasso procedure can be used

for residual-based tests for cointegration in the presence of multiple structural breaks.

The remainder of this paper is organized as follows. In Section 4.2, we describe the models consid-

ered, discuss the asymptotic properties of the adaptive lasso estimator and propose suitable cointegration

tests under the presence of multiple structural breaks. Section 4.3 is devoted to the Monte Carlo simu-

lation study and Section 4.4 presents an empirical application in the context of Purchasing Power Parity

(PPP). Section 4.5 summarizes our results and states objectives for future research.

4.2 Methodology

To present the main idea, we restrict our analysis to a bivariate cointegration system with structural breaks

in the intercept and slope coefficient. While the focus on bivariate systems might appear restrictive at first

glance, there is abundant, highly relevant empirical research dealing with such systems, ranging from

studies on the PPP and the spot-futures relationship to discussions on asymmetric price transmission

along supply chains (see, for example, Taylor and Taylor, 2004; Bekiros and Diks, 2008; Schweikert,

2019). Possible extensions to multivariate cointegration systems are discussed in Section 4.5.

Let {yt}∞
1 denote a scalar process generated by

yt = µt +βtxt +ut , t = 1,2, . . . , (4.2.1)

where µt and βt are time-varying coefficients and {xt}∞
1 follows a random walk process

xt = xt−1 + vt , t = 1,2, . . . , (4.2.2)
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where x0 = 0. {ut}∞
1 and {vt}∞

1 are mean-zero weakly stationary error processes. We make the following

assumptions about the vector process wt = (ut ,vt)
′:

Assumption 1. The vector process {wt}∞
1 satisfies the following conditions

1. Ewt = 0 for t = 1,2, . . . .

2. {wt}∞
1 is weakly stationary.

3. {wt}∞
1 is strong mixing with mixing coefficients of size −δβ/(δ − β ) and E|wt |δ < ∞ for some

δ > β > 5/2.

We further make some assumptions about the coefficients µt and βt concerning the number of total

changes in a given sample. We treat structural breaks as rare events and assume that parameter changes

persist for some time. This assumption is easily justified by the intended application on economic long-

run equilibrium relationships which, in order to be meaningful, have to hold over long periods of time. For

true random coefficient models without such strict sparsity assumptions, we refer to Quintos and Phillips

(1993), Kuo (1998), Park and Hahn (1999), Xiao (2009a), Xiao (2009b) and Bierens and Martins (2010),

among others.

Assumption 2. The total number of distinct values in any set {µ1, . . . ,µT} is p+ 1, where 0 ≤ p ≤
p∗� T and the total number of distinct values in any set {β1, . . . ,βT} is m+1, where 0≤m≤m∗� T .

Further, we assume that p∗+m∗� T .

We assume that the maximum number of breaks in the intercept, p∗, and slope, m∗, is known be-

forehand and thereby follow Bai and Perron (1998). The true number of p breaks in the intercept and

m breaks in the cointegrating vector is unknown and can be determined from the data. For models with

fixed breakpoint candidates and in contrast to Bai and Perron (1998), we allow that the intercept and

the slope coefficient have a different number of breaks at different points in time. We denote the distinct

coefficients in samples of length T as

µt = µ̃i, for t = T1,i−1,T1,i−1 +1, . . . ,T1,i−1, i = 1, . . . , p+1, (4.2.3)

and

βt = β̃ j, for t = T2, j−1,T2, j−1 +1, . . . ,T2, j−1, j = 1, . . . ,m+1, (4.2.4)

where T1,0 = T2,0 = 1 and T1,p+1 = T2,m+1 = T + 1. The relative timing of breakpoints is denoted by

τ1,i = T1,i/T, i ∈ {1, . . . p} and τ2, j = T2, j/T, j ∈ {1, . . . ,m}, respectively. To study the consistency of

our estimator, we need some additional assumptions about the magnitude of the breaks and the distance

between them.

Assumption 3. (i) The minimum break intervals are defined as I1,min = min
1≤i≤p∗+1

|T1,i−T1,i−1| ≥ T ε1 and

I2,min = min
1≤ j≤m∗+1

|T2, j−T2, j−1|> T ε2 for some constants ε1,ε2 > 0.

(ii) The break magnitudes are bounded by J1,min < |µ̃i− µ̃i−1| < J1,max for 2 ≤ i ≤ p+ 1 and J2,min <

|β̃ j− β̃ j−1|< J2,max for 2≤ j ≤ m+1, where J1,min, J1,max, J2,min and J2,max are positive constants.

Assumption 3(i) requires that the length of the regimes between breaks increases with the sample

size and in the same proportions to each other. This allows us to consistently detect and estimate the
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true break fractions as it makes the break dates asymptotically distinct (Perron, 2006). Assumption 3(ii)

excludes the possibility of infinite shifts in the parameters and requires parameter changes to be of a

substantial magnitude to distinguish active breaks from inactive breaks.

4.2.1 Fixed breakpoint candidates

First, we consider a special setting where we have prior information about the timing of potential break-

point candidates in our sample and are interested in efficient subsample selection. Hence, the values of p∗,

m∗ and (τ1,1, . . . ,τ1,p∗ ,τ2,1, . . . ,τ2,m∗) are known. The total amount of coefficients in the full model, i.e.,

of baseline regressors and all breakpoint candidates, is then given by the fixed scalar d∗ = p∗+m∗+2.

In this case, we can express the long-run equilibrium equation in a regime-specific form such that

yt =
p∗+1

∑
i=1

µ
∗
i ϕt,τ1,i−1 +

m∗+1

∑
j=1

β
∗
j xtϕt,τ2, j−1 +ut , (4.2.5)

where the indicator variable ϕt,τk,l is defined as

ϕt,τk,l =

 0 if t < [T τk,l]

1 if t ≥ [T τk,l]
, k ∈ {1,2}, t = 1,2, . . . , (4.2.6)

and τk,0 = 0. The coefficients in regime-specific form are µ∗1 = µ̃1, µ∗i = µ̃i− µ̃i−1 for i= 2, . . . , p∗+1 and

β ∗1 = β̃1, β ∗i = β̃ j− β̃ j−1 for j = 2, . . . ,m∗+1, i.e., µ∗1 and β ∗1 denote the parameter values until the first

breakpoint (baseline model), while µ∗i , i = 2, . . . , p∗+ 1 and β ∗j , j = 2, . . .m∗+ 1 denote the parameter

changes at all breakpoint candidates. We are primarily interested in a procedure to detect the true number

of breakpoints and to consistently estimate the magnitude of the parameter change. Relevant breakpoints

should be indicated by nonzero coefficients while irrelevant breakpoints should be eliminated from the

model. For that matter, we estimate the cointegrating regression with potentially multiple breaks using

an objective function which shrinks irrelevant breakpoints to zero.

A natural choice for such an objective function would be the lasso of Tibshirani (1996). It allows to

select relevant coefficients, i.e., those corresponding to active breakpoints, and shrinks the coefficients

of irrelevant coefficients, i.e., those corresponding to the other potential but non-active breakpoints, to

zero. However, it is well-known that the least squares estimator of µ has convergence rate
√

T while

the least squares estimator of β is superconsistent at rate T . Since we want to recover breaks in both µ

and β , we should not shrink both types of coefficients with the same tuning parameter. Another well-

known fact is that the plain lasso estimator is not oracle efficient. One way to deal with these issues is to

assign individually chosen weights to each coefficient, as in the adaptive lasso of Zou (2006). With these

weights the coefficients will experience different degrees of shrinkage even though there is still only one

global tuning parameter in the model. The objective function that we will use in the following is a variant

of the adaptive lasso objective function and similar to the objective function used in Kock (2016) who

investigates model selection in stationary and nonstationary autoregressions. He modifies the objective

function such that a different exponent of the weights is added (either γ1 or γ2) which depends on the

convergence rate of the least squares estimator. It allows us to shrink all elements of the sets {µ1, . . . ,µT}
and {β1, . . . ,βT} to zero where no structural change occurs. Subsequently, we detect structural breaks

using the index of all nonzero coefficients left after optimization. The objective function can be written
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as

VT ({µt ,βt}) =
T

∑
t=1

(
yt −

p∗+1

∑
i=1

µ
∗
i ϕt,τ1,i−1−

m∗+1

∑
j=1

β
∗
j xtϕt,τ2, j−1

)2

+ λT

p∗+1

∑
i=2

wγ1
1i |µ

∗
i |+λT

m∗+1

∑
j=2

wγ2
2 j|β

∗
j |, γ1,γ2 > 0, (4.2.7)

where w1i = 1/|µ̂∗I,i| for i = 2, . . . , p∗+1 and w2 j = 1/|β̂ ∗I, j| for j = 2, . . . ,m∗+1 are coefficient-specific

weights based on initial estimates of the coefficients. Note that we do not apply any shrinkage to the

baseline model.

The value of the global tuning parameter, λT , is generally unknown and has to be estimated from

the data. Cross-validation approaches are commonly used for this matter. However, since we later also

consider cointegration tests where the null hypothesis is no cointegration, we cannot meaningfully apply

these approaches. Further, it is unclear how the training sample should be selected if the number of break-

points and their timing are unknown. Instead, we follow Kock (2016) and select the tuning parameter by

minimizing the BIC,

BIC(λT ) = log(û′
λ

ûλ/T )+ log(T )/T ·df, (4.2.8)

where df are the respective degrees of freedom of the model, i.e., amount of nonzero coefficient estimates,

and ûλ are the residuals resulting from the adaptive lasso estimation of Equation 4.2.7.

In the case of fixed breakpoint candidates, the initial estimates µ̂∗I and β̂ ∗I can be obtained from

least squares estimation of the long-run equilibrium equation with multiple structural break indicators.

The least squares estimator is consistent and yields appropriate weights. However, if the total number of

coefficients d∗ exceeds the number of observations T , ordinary least squares estimation is not an option

and alternatives, e.g., ridge regression or the dimension-reduction procedure outlined in Subsection 4.2.2,

have to be considered.

In the following, we establish the first of our main results. We prove that the adaptive lasso estimator

tuned to perform consistent model selection has the oracle property in bivariate cointegrating regressions

with multiple structural breaks. We show that the adaptive lasso performs correct model selection which

requires that the probability of including all truly nonzero coefficients in the model tends to one while

the probability of keeping irrelevant variables tends to zero. This satisfies the first property an oracle

procedure should possess. Further, the estimator should have an asymptotic normal distribution (Fan

and Li, 2001). We show that our estimator has the same asymptotic distribution as the least squares

estimator. However, since our regression involves nonstationary components, the asymptotic distribution

of the least squares estimator is naturally given as a functional of Brownian motions. Hence, we say that

our estimator satisfies a nonstandard oracle property to distinguish it from its stationary counterpart.

We use the following notation to present our main results: A vector of T observations for the variable

yt is denoted by y = (y1, . . . ,yT )
′. Similarly, we denote x = (x1, . . . ,xT )

′ and u = (u1, . . . ,uT )
′ and 1 as a

T -dimensional vector of ones. Further, we define

ϕτk,l = (0 . . .0︸ ︷︷ ︸
Tk,l−1

1 . . .1︸ ︷︷ ︸
T−Tk,l+1

), k ∈ {1,2},

to denote break indicators in vector form. We define the identity matrix I and the matrix
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X = (1,ϕτ1,1 , . . . ,ϕτ1,p∗ ,x,xϕτ2,1 , . . . ,xϕτ2,m∗ ) with column rank d∗ containing the baseline regressors

and all potential break indicator variables. We decompose the matrix X = (X1,X2) into one part

X1 = (1,ϕτ1,1 , . . . ,ϕτ1,p∗ ) containing the constant and the intercept break indicators and one part X2 =

(x,xϕτ2,1 , . . . ,xϕτ2,m∗ ) containing the regressor and the slope break indicators. Σ = E(X ′1X1) is the co-

variance matrix of X1. We define the index set A = A1 ∪A2, where A1 = {1 ≤ i ≤ p∗+ 1 : µ∗i 6= 0}
denotes the set of active intercept break indicators and A2 = {1 ≤ j ≤ m∗+1 : β ∗j 6= 0} denotes the set

of active slope break indicators. |A | denotes the cardinality of the set A and A c denotes the comple-

mentary set, i.e., the index set of truly zero coefficients. In that sense, µ̂T,A1 (µ̂T,A c
1

) represents the vector

of estimated intercept coefficients belonging to the set of active (inactive) breaks, and β̂T,A2 (β̂T,A c
2

) are

active (inactive) slope coefficients. ΣA1 indexes the rows and columns of the covariance matrix belonging

to the active variables. B(s) denotes Brownian motion with variance σ2 and U(s) denotes the weak limit

of ut . For notational convenience we use ‘⇒’ to signify weak convergence of the associated probabil-

ity measures and
p→ to denote convergence in probability. Continuous stochastic processes such as B(s)

on [0,1] are simply written as B if no confusion is caused. We also write integrals with respect to the

Lebesgue measure such as
1∫
0

B(s)ds simply as
1∫
0

B. We use xϕτ2, j = x�ϕτ2, j as short-hand notation for

the Hadamard product involving indicator terms where no confusion arises.

Theorem 1. Suppose that the scalar processes {yt}∞
1 and {xt}∞

1 are cointegrated as described by Equa-

tion (4.2.1), Assumptions 1- 3 hold, λT√
T
→ 0, λT

T 1/2−γ1/2 → ∞ and λT
T 1−γ2

→ ∞. Then, the adaptive lasso

estimator has nonstandard oracle properties:

(a) P(µ̂T,A c
1
= 0)→ 1

P(β̂T,A c
2
= 0)→ 1

(b)

[√
T (µ̂T,A1−µA1)

T (β̂T,A2−βA2)

]
⇒

ΣA1 0

0
1∫
0

Bτ,A2B′
τ,A2


−1

×

 N(0,ϒA1σ2)
1∫
0

Bτ,A2dU +C∗A2


C∗A2

= [Λ,(1− τ2,1)Λ, . . . ,(1− τ2,m∗)Λ]
′ , Λ =

∞

∑
t=0

E(vtu0),

ϒ =


1 τ1,1 . . . τ1,p∗

τ1,1 τ1,1
...

...

τ1,p∗ . . . τ1,p∗

 .
Statement (a) of the theorem establishes the convergence to zero of truly zero coefficients with prob-

ability approaching one. In statement (b), we derive the limit distribution for truly nonzero coefficients.

It follows from statement (b) that truly nonzero coefficients are consistently estimated and converge with

the same rate as the least squares estimators. As in Theorem 1 of Kock (2016), the exponents of the

weights have to satisfy the restrictions γ1 > 0,γ2 > 1/2 to guarantee the nonstandard oracle property.

However, note that for consistency of the estimates, the exponents γ1 and γ2 do not need to deviate from

unity, since the weights w1i and w2 j already account for the different rates of convergence of µ and β .
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The proof of Theorem 1, which can be found in Section 4.6 of the appendix, is given under the assump-

tion that initial least squares estimators are available. The idea of the proof is similar to the proof of

Theorem 2 in Zou (2006) and Theorem 1 in Kock (2016).

Remark 1. It is shown in Theorem 2 of Kock (2016) that selecting the tuning parameter via the BIC

results in consistent variable selection. His results for nonstationary autoregressions extend straightfor-

wardly to cointegrating regressions under our assumptions.

Remark 2. The results presented in Theorem 1 describe the pointwise asymptotic distribution of our

estimator. As Pötscher and Schneider (2009) show, using more general asymptotic theory, the oracle

property does not hold uniformly over the parameter space and the rate of convergence can be substan-

tially slower than (
√

T ,T )′.

4.2.2 Diverging number of breakpoint candidates

If we begin our analysis without any prior information about the timing of the structural breaks, we

could consider each 0 < t < T to be a potential breakpoint for both µ and β . This would result in

a high-dimensional estimation problem with a diverging number of parameters of the full model as

T → ∞. Zhang and Huang (2008) investigate the properties of the lasso estimator in a similar, high-

dimensional setting under a general sparsity condition. They find that the lasso tends to include variables

with large coefficients but also selects some irrelevant variables. Still, the lasso substantially reduces

the dimensionality of the estimation problem and provides coefficient estimates which can be used to

construct weights for the adaptive lasso method.

We follow Horowitz and Huang (2013) and use the adaptive lasso again to distinguish between active

and non-active structural breaks when the number of potential breaks diverges with the sample size,

d∗T = O(T ).1 Since we want to reduce the dimensionality of our estimation problem a priori as much as

possible, we impose two restrictions: First, we apply some lateral trimming to exclude the possibility of

selecting structural breaks at the beginning or the end of the sample. The degree of trimming is denoted

with the parameter ξ . Again, this is motivated by our intended empirical applications in which each

regime relates to a newly attained long-run equilibrium and should persist for some time. Second, we

do not consider breaks in the intercept for our initial estimation. In a later estimation step, we relax this

restriction and instead require the intercept breaks to have the same timing as the slope breaks which is

a common restriction in most studies on structural breaks in multiple regression models (Bai and Perron,

1998). A lateral trimming of 5% leaves us with d∗T = 0.9 · T + 2 parameters of the full model and we

satisfy the condition d∗T < T when T > 20.

To further reduce the dimensionality of the problem and to obtain useful weights, we apply the plain

lasso estimator to our full model,

yt = µ +β
∗
1 xt +

Tξ

∑
j=2

β
∗
j xtϕt,τ2, j−1 +ut , (4.2.9)

where Tξ = [(1−2ξ )T ] and τ2, j ∈ (ξ ,1−ξ ) on an equidistant grid. While the lasso estimator does not

shrink all irrelevant breaks exactly to zero, we nevertheless obtain consistent estimates of all coefficients.

1The subscript T for the scalar d∗T is added to emphasize the dependence of model complexity on the sample size.
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Particularly, we do not eliminate any relevant variables asymptotically if the coefficients exceed a certain

threshold.

When a variable is not selected by the first stage lasso estimation, we do not include the variable in

the subsequent adaptive lasso stage. If the coefficient is nonzero, we take the reciprocal absolute value as

its weight (w j) and optimize the objective function

VT ({µ,βt}) =
T

∑
t=1

(
yt −µ−β

∗
1 xt −

Tξ

∑
j=2

β
∗
j xtϕt,τ2, j−1

)2

+λT

Tξ

∑
j=2

w j|β ∗j |,

where the exponent of the weights is unity (see Equation (4.2.7)). The tuning parameter is selected by

minimizing the modified BIC proposed in Wang et al. (2009),

BIC∗(λT ) = log(û′
λ

ûλ/T )+ log(T )/T ·df · log logd∗T . (4.2.10)

This generalization of the BIC can still identify the true model consistently with a diverging number of

parameters as long as d∗T < T holds. The second stage estimation might still indicate more structural

breaks in the slope coefficient than assumed a priori. This could be caused by noisy parameter estimates

which are close to zero but not exactly zero. We eliminate remaining irrelevant breaks by using a post-

lasso OLS estimation proposed by Belloni and Chernozhukov (2013) as our third and final estimation

stage. We select only m∗ break indicators corresponding to the m∗-th largest parameter changes for the

OLS model. This also allows us to relax the assumption about a constant intercept which might be

unrealistic in practice. At the third stage, we can easily add intercept break indicators with the same

timing as the slope breaks obtained from the adaptive lasso estimation, i.e., m∗ = p∗ and τ1, j = τ2, j

for j = 1,2, . . . ,m∗.2 However, a crucial aspect for our procedure is the performance of the adaptive

lasso estimator if the model is misspecified with respect to the intercept. Taking into consideration the

different convergence rates of the least squares estimators and the much higher variation of the slope

break indicators, we should be able to detect the slope and indicator breaks sequentially. We analyze this

aspect again in our simulation experiments in Section 4.3.

4.2.3 Testing for cointegration

The previous sections have revealed that the (modified) adaptive lasso estimator can be used to detect

multiple structural breaks in cointegrating regressions. These results hinge on Assumption 1, which spec-

ifies ut as a stationary error term. In most practical applications, we do not know with certainty whether a

particular set of nonstationary variables hold a long-run equilibrium relationship. Therefore, we consider

residual-based tests for cointegration which allow for the possibility of multiple structural breaks. The

regression in Equation (4.2.1) becomes spurious under the null hypothesis of no cointegration. In this

case, the error term ut is a cumulative sum of innovations and hence integrated of order one. If we apply

our adaptive lasso estimator in such situations, we not only obtain spurious least squares coefficients but

also have to deal with penalization terms applied to non-existing structural breaks. However, the degree

of shrinkage naturally depends on the value of the tuning parameter λ . Further, we still assume that we

2As Belloni and Chernozhukov (2013) show, the post-lasso estimation only performs well if all components of the true
model are included as a subset of the selected model and the selected model is sufficiently sparse. To avoid multicollinearity in
our design matrix, we treat estimated breakpoints with adjacent break dates as a single breakpoint in the post-lasso estimation.
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know the maximum number of breaks if the variables were indeed cointegrated and thereby limit the

number of location shifts of the error term in situations when the variables are not cointegrated.

Asymptotic distributions of cointegration test statistics in the presence of structural breaks naturally

depend on nuisance parameters. More specifically, we encounter the well-known problem that the break-

points’ locations are only identified under the alternative (Andrews and Ploberger, 1994; Hansen, 1996).

Additionally, we consider cases in which the number of breakpoints is equally unknown and only limited

by a maximum number of breaks. Using a grid of values for the tuning parameter, λ ∈L ⊂ (0,∞), al-

lows us to construct infimum statistics similar to those used in Gregory and Hansen (1996b) and Hatemi-J

(2008). The grid of length L should encompass all model selection choices between the maximum num-

ber of breaks and no structural break. We select λ such that the cointegration test statistic is minimized

and evaluate the null hypothesis only at this point which provides the most evidence for the alternative.

We conduct our cointegration test in three steps. First, we apply the adaptive lasso estimator to a

potentially cointegrated regression with pre-specified maximum number of slope breaks m∗ and constant

intercept. Without prior knowledge of any break date, we begin to shrink the number of breakpoints from

Tξ and select the m∗-th largest breaks. Second, we re-estimate the long-run equilibrium equation with the

selected slope breaks and corresponding intercept breaks (m∗ = p∗ and τ1, j = τ2, j for j = 1,2, . . . ,m∗)

using post-lasso OLS. Finally, we test the residuals for stationarity using ADF-type and bias-corrected

test statistics (Phillips, 1987). The infimum statistics in case of the bias-corrected test statistics Zλ is

given by,

Z∗ = inf
λ∈L

Zλ , (4.2.11)

and the ADF-type statistic is constructed analogously.

We make the following assumptions to present the asymptotic distributions of our test statistics.

The observed data zt = (yt ,xt) is generated as a random walk under the null hypothesis. We define the

innovation vector ∆zt = ξt and its cumulative sum St =
t
∑
j=1

ξ j so that zt = z0 + St . We assume that zt

conforms to the following regularity conditions:

Assumption 4.

1. z0 is a random vector with E|z0|< ∞.

2. Eξt = 0 for t = 1,2, . . . .

3. {ξt}∞
1 is weakly stationary.

4. {ξt}∞
1 is strong mixing with mixing coefficients of size −δβ/(δ − β ) and E|ξt |δ < ∞ for some

δ > β > 5/2.

5. The long-run variance of St ,

Ω = lim
T→∞

T−1EStS′t ,

is positive definite.

We denote the post-lasso cointegrating residuals by êtλ , where the subscript λ indicates that the

residual vector depends on the selected number of breaks and their timing, i.e., on the value of λ . We

consider the following auxiliary regression,

êtλ = ρλ êt−1λ + vtλ , (4.2.12)
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and estimate the bias-corrected first-order serial correlation coefficient as suggested in Phillips (1987),

ρ̂
∗
λ
=

T

∑
t=2

(êtλ êt−1λ − ψ̂λ )

/
T

∑
t=2

ê2
t−1λ

, (4.2.13)

where the bias-correction term, ψ̂λ , is an estimate of the weighted sum of autocovariances,

ψ̂λ =
M

∑
j=1

w( j/M)γ̂λ ( j), γ̂λ ( j) =
1
T

T

∑
t= j+1

v̂t− jλ v̂tλ . (4.2.14)

The kernel weights w(·) satisfy standard conditions and the bandwidth is a function of the sample size

so that M→ ∞ and M/T 5 = O(1). The estimate of the long-run variance of v̂tλ is then given by

σ̂
2
λ
= γ̂λ (0)+2ψ̂λ . (4.2.15)

We employ the standardized bias-corrected test statistic to evaluate the null hypothesis of no cointegra-

tion. The test statistic is given by

Zλ = (ρ̂∗
λ
−1)/ŝλ , ŝ2

λ
= σ̂

2
λ

/ T

∑
t=2

ê2
t−1λ

(4.2.16)

for each λ . Alternatively, we regress ∆êtλ upon êt−1λ and K lagged differences ∆êt−1λ , . . . , ∆êt−Kλ . In

practice, we use order selection rules such as AIC, BIC or a general-to-specific pretesting procedure to

determine the lag truncation parameter. We follow Chang and Park (2002) and require that K increases

with the sample size.

Assumption 5. K increases with T in such a way that K = o(T 1/2).

The ADF test statistic is the t-ratio for the regressor êt−1λ . We express the asymptotic distribution of

our primary test statistic, Z∗, as functionals of Brownian motion.

Theorem 2. If the scalar processes {yt}∞
1 and {xt}∞

1 are generated under the null hypothesis of no

cointegration and Assumption 4 holds, then

Z∗⇒ inf
λ∈L

1∫
0

Wλ dWλ

/ 1∫
0

W 2
λ

1/2 (
1+κ

′
λ

Dλ κλ

)1/2
,

where

Wλ =W1(s)−
1∫

0

W1W2λ

 1∫
0

W2λW ′2λ

−1

W2λ (s),

κλ =

 1∫
0

W2λW ′2λ

−1 1∫
0

W2λW1.

The dimensionality of W2λ depends on the number of selected breakpoint for each value of λ . Dλ is a

quadratic matrix with rank equal to the column rank of W2λ .

Remark 3. The distribution of our test statistic is an infimum statistic over all possible model selection
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outcomes in the post-lasso estimation. Hence, it depends on the choice of the pre-specified grid L . For a

maximum number of m∗ breaks in the slope coefficient, we have m∗+1 choices for the number of breaks

which can be selected by the lasso estimation procedure depending on the value of the tuning parameter.

Suppose that λ →∞, our procedure does not select any (false) structural breaks under the null hypothesis

of no cointegration and no structural breaks. On the other hand, if we tune the adaptive lasso to perform

conservative model selection (λ → 0), we increase the probability of choosing the maximum number of

breaks.

Following Phillips and Ouliaris (1990) and Gregory and Hansen (1996a), we expect that the asymp-

totic distributions of the ADF-type and bias-corrected test statistics are the same if Assumption 5 holds.3

4.3 Simulation results

Monte Carlo experiments are utilized to evaluate the finite sample performance of the (modified) adap-

tive lasso estimator. First, we consider cointegrated systems with several structural break specifications

to investigate the theoretical claims developed in Subsection 4.2.1. Particularly, we want to find out

whether the timing of the breaks is accurately indicated and whether the estimated change in the param-

eters is becoming more accurate if we increase the sample size successively. Second, we evaluate the

performance of our estimator in models with a diverging number of breakpoint candidates described in

Subsection 4.2.2. Here, we are primarily interested in the precision of our estimator when breaks occur in

the intercept and slope coefficients simultaneously but only the slope coefficients are specified correctly.

Third, we study the size and power of our residual-based tests proposed in Subsection 4.2.3 for differ-

ent configurations of the Data Generating Process (DGP) and finite sample sizes. Approximate critical

values of the bias-corrected (Zτ ) and ADF test statistics are reported in Table 4.6.5.

The following DGP is employed to model a bivariate cointegrated system with multiple structural

breaks,
yt = µt +βtxt + et

xt = xt−1 +ωt ωt ∼ N(0,σ2
ω)

∆et = ρ et−1 +ϑt ϑt ∼ N(0,σ2
ϑ
).

(4.3.17)

Using this framework, we study the performance of our estimation procedure and residual-based tests

under different breakpoint specifications. In order to evaluate the performance of the modified adaptive

lasso estimator in a fixed breakpoint setting, we consider seven potential breakpoint candidates located at

the break fractions τ = (0.125,0.25,0.375,0.5,0.625,0.75,0.875). The first specification has one active

break at 0.5 where the baseline coefficients are µ∗1 = 2 and β ∗1 = 2 before the break and µ∗2 = 4 and β ∗2 = 4

after the break. The second specification has a first break of both coefficients at 0.25 and a second break

at 0.75. The final specification involves three breaks at 0.25, 0.5, and 0.75. The parameter values are

increased by 2 at each breakpoint. If the adaptive lasso performs as described by Theorem 1, we should

see that the estimates of truly zero coefficients tend to zero very quickly. In our setting, all indicator

terms except for the true breakpoints should have zero coefficients. Further, we should observe different

convergence rates for the truly nonzero intercept and slope coefficients, where the convergence rate for

the intercept coefficients should be slower.
3Since in the proof of Theorem 2, which can be found in Section 4.6 of the appendix, we only refer to results for a fixed

number of break indicator regressors, we follow Gregory and Hansen (1996a) and expect Theorem 4.2 of Phillips and Ouliaris
(1990) to hold. Our simulation results in Section 4.3 seem to support this claim.
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The results for increasing sample sizes are summarized in Table 4.3.1. To begin with, we observe

quite accurate estimates of the breakpoints for the slope coefficients. The coefficient estimates approach

the true parameter values with increasing sample size, while the variance for truly zero coefficients

becomes very small at sample sizes of T = 800. It appears more difficult to obtain precise estimates of

breaks in the intercept than for the slope coefficients. The estimates for nonzero intercept changes on

average underestimate the true change which can be attributed to a non-detection of true breakpoints in

some replications. Moreover, they have variances which are some magnitudes larger than the variances of

slope changes. At this point, it should be emphasized that we present the results for the fixed breakpoint

setting without imposing a maximum number of breakpoints. Hence, large variances are mostly driven by

adjacent breaks where an initial positive (negative) change is immediately offset by a negative (positive)

change to optimize the fit. This behaviour appears less frequently with increasing sample sizes. Since

parameter changes are estimated from one regime to the next, estimation errors made in previous regimes

accumulate and influence the values of parameter changes at later break dates. Consequently, the variance

of parameter changes at later break dates is generally larger than the variance at earlier break dates. Thus,

these results mostly fulfill our expectations with respect to the different convergence rates of intercept

and slope coefficients.

The results for a diverging number of breakpoint candidates are reported in Table 4.3.2. We consider

one break located at τ = 0.5, two breaks at τ = (0.33,0.67), and four breaks at τ = (0.2,0.4,0.6,0.8) to

have an equidistant spacing on the unit interval. We first compute the percentages of correct estimation

(pce) of m and measure the accuracy of the break date estimation conditional on the correct estimation

of m. For this matter, we compute the average Hausdorff distance4 and divide it by T (hd/T) to compare

the values across different sample sizes. We find that the number of breaks is detected with increasing

precision and the distance between estimated breakpoints and true breakpoints is becoming smaller for

increasing sample sizes. The estimated break fractions are obtained from the second estimation stage

involving a misspecified intercept which is falsely assumed to be constant over the sample period. How-

ever, the estimates are already very accurate at small sample sizes. Using these second stage results, we

are able to specify the post-lasso estimation and obtain consistent estimates for the intercept and slope

changes. As expected, the parameter changes of models with fewer breakpoints can be estimated more

precisely than those of models with a higher number of breakpoints, as indicated by larger variances of

the latter models at all sample sizes.

4We define ∆(A,B) = sup
b∈B

inf
a∈A
|a−b| for any two sets A and B, then max{∆(A,B),∆(B,A)} is the Hausdorff distance between

A and B.
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Table 4.3.1: Estimation results (fixed breakpoint candidates)
This table summarizes the parameter estimates of the model with multiple structural breaks in the intercept and slope coefficient for the case of fixed breakpoint candidates. We use 10,000
replications of the data-generating process given in Equation (4.3.17) with seven breakpoint candidates using equidistant spacing τ = (0.125,0.25,0.375,0.5,0.625,0.75,0.875). The adjustment
coefficient is ρ =−1 (i.i.d. error terms), the variance of the error terms is σ2

ω = 1 and σ2
ϑ
= 1, respectively. The first panel reports the results for one active breakpoint at τ = 0.5, the second panel

considers two active breakpoints at τ1 = 0.25, τ2 = 0.75 and the third panel has three active breakpoints at τ1 = 0.25, τ2 = 0.5, τ3 = 0.75. The baseline coefficients and parameter changes at all
breakpoints take the value 2. We use initial least squares estimates to compute the adaptive lasso weights. Standard deviations are given in parentheses.

SB1: µ∗k = 2, β ∗k = 2, k = {1,2}, (τ = 0.5)
T µ∗1 µ∗2 µ∗3 µ∗4 µ∗5 µ∗6 µ∗7 µ∗8

100 2.143 (7.383) 0.004 (0.734) 0.017 (0.763) 0.032 (24.372) 1.744 (27.585) 0.020 (0.733) 0.003 (0.569) 0.007 (0.548)
200 2.136 (2.530) 0.007 (0.469) 0.002 (0.486) −0.127 (12.809) 1.928 (15.603) 0.019 (0.376) 0.001 (0.390) −0.005 (0.389)
400 2.101 (1.260) 0.004 (0.391) 0.003 (0.389) −0.161 (8.530) 1.963 (10.476) 0.008 (0.293) −0.001 (0.287) −0.002 (0.297)
800 2.063 (0.904) 0.003 (0.349) 0.000 (0.336) 0.064 (4.385) 1.795 (5.870) 0.006 (0.273) −0.002 (0.255) −0.004 (0.255)

T β ∗1 β ∗2 β ∗3 β ∗4 β ∗5 β ∗6 β ∗7 β ∗8

100 2.198 (0.393) 0.000 (0.023) 0.003 (0.054) 0.285 (1.255) 1.364 (1.376) 0.005 (0.073) 0.001 (0.027) 0.001 (0.037)
200 2.078 (0.137) 0.000 (0.002) 0.001 (0.015) 0.211 (0.619) 1.645 (0.688) 0.000 (0.010) 0.000 (0.009) 0.000 (0.011)
400 2.050 (0.076) 0.000 (0.001) 0.000 (0.004) 0.075 (0.307) 1.843 (0.345) 0.000 (0.005) 0.000 (0.001) 0.000 (0.003)
800 2.031 (0.046) 0.000 (0.000) 0.000 (0.001) 0.012 (0.101) 1.938 (0.131) 0.000 (0.002) 0.000 (0.000) 0.000 (0.000)

SB2: µ∗k = 2, β ∗k = 2, k = {1,2,3}, (τ1 = 0.25, τ2 = 0.75)
T µ∗1 µ∗2 µ∗3 µ∗4 µ∗5 µ∗6 µ∗7 µ∗8

100 2.049 (16.263) 0.313 (13.717) 1.616 (20.403) 0.010 (0.613) 0.009 (0.622) −0.009 (21.770) 2.000 (26.376) 0.009 (1.225)
200 1.997 (8.298) −0.069 (8.413) 2.070 (13.372) 0.011 (0.440) 0.004 (0.455) −0.295 (13.982) 2.335 (19.690) −0.010 (1.025)
400 2.126 (3.550) 0.001 (5.305) 1.869 (7.313) 0.007 (0.428) 0.007 (0.441) −0.151 (9.491) 1.959 (16.354) 0.002 (0.867)
800 2.091 (2.273) 0.032 (1.834) 1.868 (3.702) −0.001 (0.413) 0.003 (0.438) 0.026 (4.531) 1.877 (12.696) −0.003 (0.871)

T β ∗1 β ∗2 β ∗3 β ∗4 β ∗5 β ∗6 β ∗7 β ∗8

100 2.641 (0.938) 0.111 (0.779) 1.273 (1.193) 0.005 (0.069) 0.004 (0.061) 0.333 (1.132) 1.243 (1.255) 0.005 (0.071)
200 2.281 (0.453) 0.115 (0.447) 1.604 (0.685) 0.000 (0.009) 0.001 (0.013) 0.225 (0.629) 1.589 (0.764) 0.001 (0.027)
400 2.153 (0.211) 0.034 (0.212) 1.830 (0.325) 0.000 (0.001) 0.000 (0.002) 0.081 (0.301) 1.799 (0.430) 0.000 (0.004)
800 2.100 (0.131) 0.004 (0.048) 1.911 (0.154) 0.000 (0.000) 0.000 (0.001) 0.015 (0.096) 1.902 (0.219) 0.000 (0.001)

SB3: µ∗k = 2, β ∗k = 2, k = {1, . . . ,4}, (τ1 = 0.25, τ2 = 0.5, τ3 = 0.75)
T µ∗1 µ∗2 µ∗3 µ∗4 µ∗5 µ∗6 µ∗7 µ∗8

100 1.979 (20.169) 0.286 (11.902) 1.661 (18.975) 0.092 (15.905) 2.029 (21.521) 0.227 (17.692) 2.009 (22.915) 0.024 (1.388)
200 1.956 (9.361) −0.104 (7.719) 2.181 (14.867) −0.097 (13.264) 2.142 (18.240) −0.381 (14.153) 2.550 (20.722) −0.013 (1.190)
400 2.098 (4.266) −0.015 (5.490) 1.907 (9.705) −0.107 (7.940) 2.199 (15.172) −0.085 (9.055) 2.005 (19.680) 0.006 (1.190)
800 2.080 (2.804) 0.021 (2.011) 1.898 (5.948) 0.041 (3.465) 1.863 (11.065) 0.019 (3.208) 2.159 (18.747) 0.002 (1.337)

T β ∗1 β ∗2 β ∗3 β ∗4 β ∗5 β ∗6 β ∗7 β ∗8

100 2.710 (1.111) 0.138 (0.704) 1.293 (1.232) 0.349 (1.004) 1.408 (1.279) 0.386 (1.020) 1.289 (1.181) 0.005 (0.068)
200 2.325 (0.503) 0.101 (0.415) 1.620 (0.798) 0.195 (0.615) 1.721 (0.877) 0.215 (0.614) 1.603 (0.832) 0.001 (0.020)
400 2.180 (0.248) 0.032 (0.212) 1.851 (0.429) 0.047 (0.263) 1.912 (0.524) 0.054 (0.266) 1.784 (0.529) 0.000 (0.004)
800 2.123 (0.162) 0.004 (0.053) 1.912 (0.224) 0.005 (0.074) 1.980 (0.262) 0.006 (0.064) 1.870 (0.337) 0.000 (0.001)73
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Table 4.3.2: Estimation results (diverging number of breakpoint candidates)
This table summarizes the parameter estimates of the model with multiple structural breaks in the intercept and slope coefficient for the case of a diverging number of breakpoint candidates. We
use 5,000 replications of the data-generating process given in Equation (4.3.17). The adjustment coefficient is ρ = −1 (i.i.d. error terms), the variance of the error terms is σ2

ω = 1 and σ2
ϑ
= 2,

respectively. Models with a better signal-to-noise ratio yield more precise estimates for all sample sizes. The first panel reports the results for one active breakpoint at τ = 0.5, the second panel
considers two active breakpoints at τ1 = 0.33 and τ2 = 0.67 and the third panel has four active breakpoints at τ1 = 0.2, τ2 = 0.4, τ3 = 0.6, and τ4 = 0.8. The baseline coefficients and parameter
changes at all breakpoints take the value 2. We use the procedure detailed in Subsection 4.2.2 to compute the adaptive lasso weights and apply post-lasso estimation to obtain the estimates for the
intercept breaks. Standard deviations are given in parentheses.

SB1: µ∗k = 2, β ∗k = 2, k = {1,2}, (τ = 0.5)
T pce hd/T τ µ∗1 µ∗2 β ∗1 β ∗2

100 99.8 0.54 0.502 (0.041) 2.04 (1.510) 1.98 (2.270) 2.01 (0.156) 1.99 (0.282)
200 100 0.32 0.500 (0.019) 2.02 (0.774) 1.96 (1.247) 2.00 (0.074) 2.00 (0.106)
400 100 0.19 0.499 (0.008) 2.00 (0.405) 1.98 (0.739) 2.00 (0.035) 2.00 (0.048)
800 100 0.15 0.499 (0.006) 2.00 (0.244) 1.99 (0.503) 2.00 (0.017) 2.00 (0.025)

SB2: µ∗k = 2, β ∗k = 2, k = {1,2,3}, (τ1 = 0.33, τ2 = 0.67)
T pce hd/T τ1 τ2 µ∗1 µ∗2 µ∗3 β ∗1 β ∗2 β ∗3

100 98.7 1.26 0.335 (0.054) 0.677 (0.044) 2.07 (2.230) 1.96 (3.470) 1.93 (3.820) 2.03 (0.292) 2.01 (0.500) 1.96 (0.569)
200 99.8 0.80 0.331 (0.038) 0.673 (0.033) 2.03 (1.130) 2.00 (2.250) 1.95 (2.340) 2.01 (0.171) 2.00 (0.201) 1.98 (0.247)
400 99.9 0.48 0.329 (0.020) 0.671 (0.020) 2.02 (0.602) 2.00 (1.009) 2.02 (1.296) 2.00 (0.084) 2.00 (0.121) 1.99 (0.147)
800 99.9 0.37 0.328 (0.009) 0.670 (0.007) 2.01 (0.362) 1.98 (0.733) 2.01 (0.961) 2.00 (0.030) 2.00 (0.044) 2.00 (0.043)

SB4: µ∗k = 2, β ∗k = 2, k = {1, . . . ,5}, (τ1 = 0.2, τ2 = 0.4, τ3 = 0.6, τ4 = 0.8)
T pce hd/T τ1 τ2 τ3 τ4

100 94.4 2.61 0.208 (0.050) 0.410 (0.060) 0.612 (0.057) 0.809 (0.039)
200 97.2 2.49 0.204 (0.044) 0.407 (0.053) 0.610 (0.053) 0.808 (0.035)
400 98.7 1.67 0.202 (0.040) 0.405 (0.045) 0.609 (0.049) 0.806 (0.033)
800 99.2 1.16 0.202 (0.037) 0.403 (0.036) 0.604 (0.034) 0.803 (0.024)

T µ∗1 µ∗2 µ∗3 µ∗4 µ∗5

100 2.11 (3.72) 2.19 (8.47) 1.81 (8.92) 1.85 (6.40) 2.03 (6.44)
200 2.09 (1.92) 2.03 (2.95) 1.92 (3.51) 1.92 (3.81) 1.96 (3.86)
400 2.09 (1.10) 1.94 (2.80) 1.99 (3.40) 1.95 (3.08) 1.97 (2.66)
800 2.07 (0.91) 2.00 (2.41) 1.92 (2.60) 1.99 (1.74) 1.99 (1.68)

T β ∗1 β ∗2 β ∗3 β ∗4 β ∗5

100 2.09 (0.507) 2.01 (1.436) 2.03 (1.428) 1.98 (0.733) 1.89 (0.831)
200 2.06 (0.344) 2.02 (0.427) 2.01 (0.581) 1.99 (0.575) 1.90 (0.564)
400 2.04 (0.266) 2.01 (0.312) 2.02 (0.298) 2.01 (0.362) 1.90 (0.526)
800 2.04 (0.233) 2.00 (0.321) 2.00 (0.246) 2.00 (0.184) 1.95 (0.308)
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Turning to the cointegration test next, we compare the performance of our test against the per-

formance of well-known cointegration tests with structural breaks described in Gregory and Hansen

(1996a), Hatemi-J (2008), and Maki (2012) – henceforth GH-test, HJ-test, and Maki-test.5 Further, we

use the benchmark cointegration test for constant coefficients by Engle and Granger (1987), henceforth

EG-test, to evaluate the performance for a DGP without any structural breaks. The results for T = 100

and T = 200 are reported in Table 4.3.3 and Table 4.3.4, respectively. For the power simulations, we do

not set a fixed number of breakpoint candidates in our adaptive lasso framework, but let every observation

along T , excluding the lateral trimming, be a potential breakpoint.

Our proposed cointegration test based on the adaptive lasso and the biased-corrected test statistic

appears to be slightly oversized for an increasing maximum number of breaks. However, this can also be

observed for the Maki-test and the HJ-test. A reason for this pattern might be the small number of obser-

vations per regime invalidating asymptotic approximations. The size-adjusted power of our test increases

with the sample size and faster speed of adjustment. It is generally low for small adjustment coefficients

and always in favor of the ADF test statistic over the bias-corrected test statistic for larger values of the

adjustment coefficients. Low power against the cointegration alternative with slow adjustment can be

attributed to the inaccuracy of detecting the correct breakpoints if the cointegration residuals are near

unit root processes. Choosing the correct maximum number of breaks exerts substantial influence on the

power curves, as the power of the proposed test is always some magnitudes higher for the correct model

choice. The results thereby show that, in terms of power, it is generally better to select irrelevant breaks

than to restrict the number of breaks and to miss a crucial parameter change, which should also be a

guiding principle in applied work with our proposed general-to-specific modeling approach.

Our test outperforms the EG-test for specifications with structural breaks. Further, it also performs

better than the GH-test for more than one break and better than the HJ-test for more than two breaks if

the adjustment is moderate. The Maki-test appears to perform better for a high number of breakpoints

and slow adjustment. However, it does not provide a comprehensive modeling framework as it does not

attempt to estimate all breakpoints consistently.

5The Maki-test with one break at most (M1) is conceptually identical to the GH-test. The only reason to explain the small
differences observed in the results is the trimming parameter which is ξ = 0.05 for the Maki-test and ξ = 0.15 for the GH-test.
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Table 4.3.3: Size and size-adjusted power of cointegration tests in the presence of multiple regime shifts (T = 100)
This table shows the size and size-adjusted power of cointegration tests in the presence of multiple regime shifts (T = 100). ADFτ,1, ADFτ,2, and ADFτ,4 denote the cointegration test based on the
ADF regression with one, two, and four possible breakpoints, respectively. Correspondingly, Zτ,1, Zτ,2, and Zτ,4 denote the cointegration test based on the bias-corrected test statistic. GH denote
the cointegration test with one structural break (model C/S) by Gregory and Hansen (1996a) and HJ denotes the corresponding test with two structural breaks by Hatemi-J (2008). M1, M2, and M4
denote the cointegration test by Maki (2012) allowing for one, two, and four structural breaks, respectively. EG denotes the Engle-Granger cointegration test with constant coefficients. The results
are obtained from 2,500 replications. All tests are conducted at the 5% significance level.

ρ ADFτ,1 ADFτ,2 ADFτ,4 Zτ,1 Zτ,2 Zτ,4 GH HJ M1 M2 M4 EG

SB0: µ = 2, β = 2

Size: 0.061 0.059 0.053 0.076 0.074 0.083 0.076 0.099 0.054 0.068 0.097 0.041

−0.05 0.102 0.115 0.120 0.080 0.083 0.060 0.069 0.056 0.068 0.072 0.062 0.099
−0.10 0.174 0.165 0.134 0.136 0.114 0.066 0.106 0.078 0.106 0.106 0.080 0.226
−0.25 0.604 0.388 0.173 0.533 0.304 0.101 0.496 0.274 0.492 0.370 0.218 0.885
−0.50 1.000 0.983 0.740 0.998 0.943 0.496 0.997 0.933 0.998 0.968 0.760 1.000

SB1: µ∗k = 2, β ∗k = 2, k = {1,2}, (τ = 0.5)

−0.05 0.095 0.102 0.133 0.073 0.066 0.071 0.663 0.695 0.683 0.571 0.376 0.042
−0.10 0.157 0.176 0.160 0.123 0.106 0.083 0.753 0.746 0.766 0.644 0.450 0.048
−0.25 0.642 0.545 0.353 0.564 0.427 0.197 0.934 0.879 0.935 0.829 0.638 0.066
−0.50 0.995 0.950 0.829 0.992 0.941 0.707 1.000 0.994 1.000 0.995 0.924 0.086

SB2: µ∗k = 2, β ∗k = 2, k = {1,2,3}, (τ1 = 0.33, τ2 = 0.67)

−0.05 0.056 0.107 0.143 0.044 0.065 0.061 0.225 0.815 0.256 0.606 0.370 0.043
−0.10 0.057 0.154 0.181 0.044 0.097 0.083 0.237 0.852 0.272 0.668 0.420 0.045
−0.25 0.080 0.505 0.424 0.064 0.396 0.239 0.283 0.950 0.320 0.827 0.580 0.047
−0.50 0.122 0.966 0.884 0.097 0.955 0.784 0.334 0.999 0.372 0.976 0.888 0.054

SB4: µ∗k = 2, β ∗k = 2, k = {1, . . . ,5}, (τ1 = 0.2, τ2 = 0.4, τ3 = 0.6 τ4 = 0.8)

−0.05 0.028 0.044 0.154 0.021 0.027 0.056 0.089 0.257 0.100 0.108 0.403 0.039
−0.10 0.033 0.047 0.190 0.022 0.032 0.087 0.085 0.263 0.102 0.118 0.432 0.038
−0.25 0.031 0.054 0.431 0.019 0.037 0.249 0.091 0.284 0.107 0.122 0.542 0.038
−0.50 0.032 0.064 0.902 0.022 0.046 0.814 0.100 0.317 0.113 0.148 0.773 0.039
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Table 4.3.4: Size and size-adjusted power of cointegration tests in the presence of multiple regime shifts (T = 200)
This table shows the size and size-adjusted power of cointegration tests in the presence of multiple regime shifts (T = 200). ADFτ,1, ADFτ,2, and ADFτ,4 denote the cointegration test based on the
ADF regression with one, two, and four possible breakpoints, respectively. Correspondingly, Zτ,1, Zτ,2, and Zτ,4 denote the cointegration test based on the bias-corrected test statistic. GH denote
the cointegration test with one structural break (model C/S) by Gregory and Hansen (1996a) and HJ denotes the corresponding test with two structural breaks by Hatemi-J (2008). M1, M2, and M4
denote the cointegration test by Maki (2012) allowing for one, two, and four structural breaks, respectively. EG denotes the Engle-Granger cointegration test with constant coefficients. The results
are obtained from 2,500 replications. All tests are conducted at the 5% significance level.

ρ ADFτ,1 ADFτ,2 ADFτ,4 Zτ,1 Zτ,2 Zτ,4 GH HJ M1 M2 M4 EG

SB0: µ = 2, β = 2

Size: 0.062 0.054 0.051 0.066 0.067 0.074 0.062 0.080 0.045 0.056 0.060 0.040

−0.05 0.162 0.152 0.131 0.140 0.104 0.079 0.102 0.064 0.090 0.092 0.083 0.235
−0.10 0.406 0.296 0.180 0.365 0.231 0.124 0.312 0.154 0.285 0.222 0.167 0.705
−0.25 1.000 0.952 0.557 0.998 0.909 0.386 0.993 0.872 0.990 0.930 0.730 1.000
−0.50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SB1: µ∗k = 2, β ∗k = 2, k = {1,2}, (τ = 0.5)

−0.05 0.148 0.157 0.158 0.128 0.100 0.090 0.707 0.736 0.722 0.598 0.450 0.069
−0.10 0.416 0.358 0.247 0.374 0.278 0.159 0.874 0.848 0.870 0.738 0.588 0.087
−0.25 0.996 0.972 0.784 0.995 0.956 0.682 1.000 0.997 1.000 0.990 0.914 0.121
−0.50 0.998 0.974 0.930 0.998 0.973 0.930 1.000 1.000 1.000 1.000 1.000 0.138

SB2: µ∗k = 2, β ∗k = 2, k = {1,2,3}, (τ1 = 0.33, τ2 = 0.67)

−0.05 0.070 0.138 0.156 0.060 0.092 0.084 0.296 0.830 0.339 0.643 0.436 0.055
−0.10 0.090 0.320 0.291 0.077 0.240 0.187 0.352 0.916 0.388 0.761 0.547 0.058
−0.25 0.134 0.966 0.865 0.114 0.946 0.780 0.418 0.998 0.460 0.973 0.873 0.066
−0.50 0.168 0.987 0.937 0.138 0.986 0.936 0.456 1.000 0.505 0.992 1.000 0.069

SB4: µ∗k = 2, β ∗k = 2, k = {1, . . . ,5}, (τ1 = 0.2, τ2 = 0.4, τ3 = 0.6 τ4 = 0.8)

−0.05 0.038 0.042 0.166 0.030 0.028 0.098 0.104 0.284 0.112 0.143 0.462 0.048
−0.10 0.038 0.049 0.297 0.030 0.035 0.189 0.109 0.302 0.119 0.152 0.545 0.050
−0.25 0.043 0.061 0.866 0.030 0.043 0.769 0.119 0.346 0.131 0.173 0.796 0.052
−0.50 0.044 0.075 0.960 0.033 0.049 0.948 0.132 0.382 0.149 0.214 0.948 0.055
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4.4 Empirical application

This section considers an application of our proposed framework in the context of the long-run PPP be-

tween the US and the UK with more than a century of data and several potential regime shifts. PPP is

a well-known theory in macroeconomics which postulates that the nominal exchange rate between two

currencies should be equal to the ratio of the domestic to the foreign price level. Extensive studies have

been conducted to investigate whether the proposition of PPP holds over the long-run (for a comprehen-

sive review, see Taylor and Taylor, 2004). While unit root tests provide one means to test for the existence

of strong-form PPP, one strand of the literature investigates the potentially cointegrated relationship be-

tween the nominal exchange rate and the price ratio, in order to test for weak-form PPP (see, for example,

Corbae and Ouliaris, 1988; Taylor, 1988; Kim, 1990). However, empirical evidence on the subject still

remains contradictory. Particularly the examined data span seems to have a substantial influence on the

outcomes of empirical studies (Taylor, 2006; Karoglou and Morley, 2012). The diverging findings could

on one hand be rooted in the generally slow adjustment of the real exchange rate which necessitates long

samples for robust results. On the other hand, these long samples might be composed of regimes shaped

by very different macroeconomic environments which have to be accounted for. For example, the US

and the UK moved between several fixed and floating exchange rate regimes in the last century.

We thus consider the potentially cointegrated relationship between the nominal exchange rate and

price ratio, both of which are observed monthly between 1885 and 2015, a suitable application to illus-

trate our methodology with an empirical example. The dataset is an extended version of the data collected

in Grilli and Kaminsky (1991) and Engel and Kim (1999). It is unique in the sense that such a compara-

tively high sampling frequency is not available for other country pairs over such a long sampling period.

The logarithm of the nominal USD/GBP exchange rate is denoted by ext , while pt is the log US price

level and p∗t is the log UK price level, respectively. We estimate the regression,

ext = α +β (pt − p∗t )+ut , (4.4.18)

where ext , pt , and p∗t are generated by integrated processes of order one. Under PPP, we would expect

to observe a mean-zero stationary error term ut so that nominal exchange rate and relative prices are

cointegrated. Strong-from PPP, assuming strict proportionality, would be given by the restriction α = 0

and β = 1. Since we can only speculate which macroeconomic events might have changed the long-run

equilibrium relationship, we apply our adaptive lasso procedure without the pre-specification of break-

point candidates. The maximum number of breaks is chosen to be six, which is a reasonable compromise

between flexibility and average regime length. It also corresponds to the number of changes from fixed

to floating exchange rates and vice versa in our sample. A detailed description of US/UK exchange rate

regimes is provided in Craighead (2010). The minimum length of a regime was chosen to be one year.

First, we assume constancy of the parameters and ignore potential structural breaks. Estimation of the

long-run equilibrium coefficients yields OLS estimates α̂ = 0.46 and β̂ = 0.77. The Engle-Granger test

based on an ADF regression rejects the null hypothesis at the 1% level. Similar results can be obtained for

the Phillips-Ouliaris test. The adjustment is slow (ρ̂ =−0.016) with a half life period of disequilibrium

states of more than 3.5 years. Next, we compare several previously mentioned structural break models

with our model selection approach. The GH-test finds evidence for cointegration with a breakpoint at

1949 m02, while the HJ-test indicates breakpoints at 1949 m02 and 1982 m01. The Maki-test selects the
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breakpoints 1919 m07, 1949 m08, 1967 m11, 1978 m07, 1987 m03 and rejects the null hypothesis of no

cointegration as well. Our new general-to-specific procedure yields break dates 1919 m12, 1946 m07,

1949 m09, 1967 m12, 1982 m11, 2005 m09 and rejects the null hypothesis of no cointegration at the 1%

(5%) level for the ADF (bias-corrected) test statistic.

Figure 4.4.1: Nominal exchange rate and relative price levels time series
This plot shows the nominal exchange rate (solid) and relative price levels (dashed). The shaded areas correspond to the regimes
identified by the adaptive lasso procedure.
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The indicated break dates (see Figure 4.4.1) can all be related to economic events affecting the real

exchange rate. The first regime extends to the end of the First World War and spans the classical gold

standard period with a fixed price of a pound sterling at USD 4.87. The next regime extends to the end of

the Second World War and comprises fixed and floating exchange rate regimes in the inter-war period.

The third breakpoint is found in September 1949 which coincides with a devaluation of pound sterling

by roughly 30% and is followed by another breakpoint after Britain devalued the pound in November

1967. After the Bretton Woods system ended, we find two more breakpoints where the first one can be

associated with a deep recession in the UK and the second one slightly pre-dates the financial crisis.

We have to emphasize that the break dates might be affected by the usual lead and lag effects, since the

parameter changes are representative for the following regime.

Figure 4.4.2 displays the residual plots for (a) the OLS regression and (b) the post-lasso regression.

We can clearly see from the lower panel of Figure 4.4.2 that the post-lasso residuals are characterized by

high and low volatility periods. The high volatility periods match with the floating exchange rate periods,

which supports the hypothesis formulated by Mussa (1986), who argues that the nominal exchange rate

system is a major determinant of the real exchange rate volatility. By contrast, for the OLS residuals,

we do not find a clear pattern and in general observe trending behavior. Accounting for the different

exchange rate regimes yields a much faster adjustment (ρ̂ = −0.062) and a half life of disequilibrium

states of less than a year. Our findings reveal that long-run PPP can only be properly assessed if we model

structural instabilities induced by policy decisions, which lead to substantial moves in the exchange rate.
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Figure 4.4.2: OLS residuals and post-lasso residuals
These plots depict (a) the OLS residual series and (b) post-lasso residual series. Fixed exchange rate regimes are marked by
white areas, floating exchange rate regimes are marked by light-blue areas and both World Wars are marked by orange-red
areas.
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(b) Post-lasso residual series

4.5 Conclusion

In this article, we propose a new general-to-specific method for the accurate detection of an unknown

number of structural breaks in cointegrating regressions. Furthermore, we design a new test for cointegra-

tion under the presence of multiple structural breaks based on our proposed adaptive lasso estimator. Our

main goal is to build a comprehensive modeling framework which does not only focus on improving the

performance of a specific test for cointegration under parameter instability but also provides consistent

estimates of the corresponding parameter changes. Our procedure for a diverging number of breakpoint

candidates imposes very few a priori restrictions on the timing of the breakpoints but only requires to

specify a maximum number of breaks. This promises a high degree of flexibility for applied economists

in finding the right model specification.
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Although some authors have already used lasso estimators in a cointegration framework, our specific

application of the adaptive lasso to cointegrating regressions with multiple structural breaks has not been

discussed in the literature before. Thus, we first prove the suitability of the adaptive lasso estimator in

our context by showing its nonstandard oracle property for a fixed number of breakpoint candidates.

Subsequently, we provide extensive Monte Carlo evidence that our framework can be extended to a

diverging number of breakpoint candidates. Our results show an accurate and consistent estimation of

the parameter changes for different choices for the maximum number of possible breakpoints.

The analysis of this paper is confined to a bivariate cointegration model. A generalization to multi-

variate cointegration models is straightforward in situations where fixed breakpoint candidates are avail-

able and d∗ � T . However, the same does not hold for a diverging number of breakpoint candidates

which would require a different penalty for nonzero parameters reducing the overall number of penal-

ized parameters. A suitable solution could be adapting the group-fused lasso estimator applied in Chan

et al. (2014) and Qian and Su (2016) to nonstationary regressions. Their estimator forces all slope coef-

ficients to have breaks at a common break date.

Our residual-based cointegration tests appear to perform well in terms of power, especially for mod-

erate adjustment. They outperform standard tests and are only inferior to the Maki-test if the adjustment

is very slow. It seems that the adaptive lasso estimator needs a strong signal to find true breakpoints

which directly determines the power of the cointegration tests. It would be interesting to develop an anal-

ogous testing framework which reverses the null hypothesis and alternative similar to the tests described

in Carrion-i Silvestre and Sanso (2006) and Arai and Kurozumi (2007).

These findings show a promising new direction for cointegration model specification and cointe-

gration testing in the presence of multiple structural breaks. While the proposed estimation and testing

procedures provide the possibility of several extensions, they also constitute a solid benchmark for other

general-to-specific approaches dealing with structural change in cointegration models.
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4.6 Appendix

Proof of Theorem 1

According to Assumption 1, the scalar partial sum process in Equation (4.2.2) satisfies the functional

central limit theorem (FCLT). For s ∈ [0,1] and as T → ∞, it holds that

x[T s] = T−1/2
[T s]

∑
t=1

vt ⇒ B(s), (4.6.19)

where B(s) is a Brownian motion process with variance σ2. This is shown by Herrndorf (1984) and

extended to the vector case by Phillips and Durlauf (1986).

Next, we define the objective function VT (b) by

VT (b) =
T

∑
t=1

[
(ut −b′Xtδ

−1
T )2−u2

t
]

+ λT

p∗+1

∑
i=2

wγ1
1i |µ

∗
i +b1i/

√
T |+λT

m∗+1

∑
j=2

wγ2
2 j|β

∗
j +b2 j/T |, (4.6.20)

where b= (b′1,b
′
2)
′, δT = diag(T 1/2Ip∗+1,TIm∗+1) and

b̂= (b̂′1, b̂
′
2)
′ = argminVT (b) (4.6.21)

is the minimizer of VT with b̂1i =
√

T (µ̂T,i−µ∗i ) and b̂2 j = T (β̂T, j−β ∗j ).

First, we consider the asymptotic counterparts to the least squares terms

−2
T

∑
t=1

utb
′Xtδ

−1
T +

T

∑
t=1

b′Xtδ
−1
T δ

−1
T X ′tb.

We use the decomposition X = (X1,X2) to express the weak convergence result

T−1/2Im∗+1X2,[T s]⇒ (B(s),B(s)ϕτ2,1(s), . . . ,B(s)ϕτ2,m∗ (s)) = Bτ(s), (4.6.22)

where

ϕτk,l (s)

 0 if s < τk,l

1 if s≥ τk,l

, k ∈ {1,2}, s ∈ [0,1]. (4.6.23)

Using (A.4) in Gregory and Hansen (1996a) and the continuous mapping theorem (CMT, see Billingsley,

1999), Theorem 2.7), we observe that

T

∑
t=1

b′Xtδ
−1
T δ

−1
T X ′tb⇒ b′

ϒ 0

0
1∫
0

Bτ(s)Bτ(s)′ds

b,
where the weak convergence is uniform over the vector (τ1,1, . . . ,τ1,p∗ ,τ2,1, . . . ,τ1,m∗)∈T . Further, using

(A.3) in Gregory and Hansen (1996a) and Theorem 3.1 in Hansen (1992), we have the weak convergence
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to a stochastic integral

T

∑
t=1

utb
′Xtδ

−1
T ⇒ b′

 U
1∫
0

Bτ(s)dU(s)

+b′



0
...

0

Λ

(1− τ2,1)Λ
...

(1− τ2,m∗)Λ


,

where U ∼ N(0,ϒσ2), Λ =
∞

∑
t=0

E(vtu0) and U(s) is the weak limit of ut .

Under Assumption 2 and Assumption 3, the maximum number of breakpoints is limited and initial

least squares estimates are available for the weights of the adaptive lasso estimator. We investigate the

consistency of the individual coefficients and distinguish between the true coefficients being zero or

nonzero:

(a) If µ∗i 6= 0, we have

λT wγ1
1i

[
|µ∗i +b1i/

√
T |− |µ∗i |

]
=

λT√
T

∣∣∣∣ 1
µ̂I,i

∣∣∣∣γ1√
T
[
|µ∗i +b1i/

√
T |− |µ∗i |

]
(4.6.24)

p→ 0,

since (i) λT√
T
→ 0, (ii)

∣∣∣ 1
µ̂I,i

∣∣∣γ1 p→
∣∣∣ 1

µ∗i

∣∣∣γ1
, if the initial estimator is consistent, and (iii)

√
T
[
|µ∗i +b1i/

√
T |− |µ∗i |

] p→
b1i sgn(µ∗i ) as in Zou (2006).

(b) If µ∗i = 0, we have

λT wγ1
1i

[
|µ∗i +b1i/

√
T |− |µ∗i |

]
=

λT√
T

∣∣∣∣ 1
µ̂I,i

∣∣∣∣γ1

|b1i|

=
λT

T 1/2−γ1/2

∣∣∣∣∣ 1√
T µ̂I,i

∣∣∣∣∣
γ1

|b1i| (4.6.25)

⇒

 ∞ if b1i 6= 0

0 if b1i = 0
,

since (i) λT
T 1/2−γ1/2 → ∞ and (ii) the initial least squares estimator is tight and converges to a normal

distribution,
√

T µ̂I,i⇒W1i ∼ N(0, σ2

τ1,i(1−τ1,i)
).

(c) If β ∗j 6= 0, we have

λT wγ2
2 j

[
|β ∗j +b2 j/T |− |β ∗j |

]
=

λT

T

∣∣∣∣∣ 1

β̂I, j

∣∣∣∣∣
γ2

T
[
|β ∗j +b2 j/T |− |β ∗j |

]
(4.6.26)

p→ 0,
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since (i) λT
T → 0, (ii)

∣∣∣ 1
β̂I, j

∣∣∣γ2 p→
∣∣∣ 1

β ∗j

∣∣∣γ2
, if the initial estimator is consistent, and (iii) T

[
|β ∗j +b2 j/T |− |β ∗j |

]
p→

b2 j sgn(β ∗j ).

(d) If β ∗j = 0, we have

λT wγ2
2 j

[
|β ∗j +b2 j/T |− |β ∗j |

]
=

λT

T

∣∣∣∣∣ 1

β̂I, j

∣∣∣∣∣
γ2

|b2 j|

=
λT

T 1−γ2

∣∣∣∣∣ 1

T β̂I, j

∣∣∣∣∣
γ2

|b2 j| (4.6.27)

⇒

 ∞ if b2 j 6= 0

0 if b2 j = 0
,

since (i) λT
T 1−γ2

→∞, (ii) the least squares estimator is tight and has the following nonstandard distribution

T β̂I, j⇒W2 j =

(
1∫
0

Bτ2, j(s)dU(s)+(1− τ2, j)Λ

)
1∫
0

B2
τ2, j

(s)ds
, (4.6.28)

and (iii) P(W2 j = 0) a.s.→ 0.

Thus, VT (b)⇒V (b), where

V (b) =

 b′Ab−2b′B−2b′C if bk = 0 for all k ∈A c

∞ if bk 6= 0 for some k ∈A c
(4.6.29)

with

A =

ϒ 0

0
1∫
0

Bτ(s)Bτ(s)′ds

 ,

B =

 U
1∫
0

Bτ(s)dU(s)

 , U ∼ N(0,ϒσ
2),

C = [0, . . . ,0,Λ,(1− τ2,1)Λ, . . . ,(1− τ2,m∗)Λ]
′ .

Since VT is a convex function and V has a unique minimum, it follows from Knight and Fu (2000)

that

argminVT (b) = b̂=

[√
T (µ̂T −µ∗)

T (β̂T −β ∗)

]
⇒ argminV (b). (4.6.30)

From these results, we can deduce that

√
T (µ̂T,A c

1
−µ

∗
A c

1
) ⇒ δ

|A c
1 |

0√
T (µ̂T,A1−µ

∗
A1
) ⇒ N(0, [ΣA1 ]

−1
ϒA1σ

2), (4.6.31)
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where δ0 denotes the Dirac measure at 0. Correspondingly, we have

T (β̂T,A c
2
−β

∗
A c

2
) ⇒ δ

|A c
2 |

0

T (β̂T,A2−β
∗
A2
) ⇒

 1∫
0

Bτ,A2B′τ,A2

−1 1∫
0

Bτ,A2dU +C∗A2

 . (4.6.32)

It remains to show that coefficients of inactive variables are set to zero with probability approaching

one. We begin with a proof of P(µ̂T,A c
1
= 0)→ 1. Consider the event that µ̂T,i 6= 0 although i ∈ A c

1 .

We know from the Karush-Kuhn-Tucker (KKT) optimality conditions that the first order condition for a

minimum is given by
2ϕ ′τ1,i

(y− x(µ̂ ′T , β̂
′
T )
′)

√
T

=
λT wγ1

1i sgn(µ̂T,i)√
T

. (4.6.33)

Note that ∣∣∣∣λT wγ1
1i sgn(µ̂T,i)√

T

∣∣∣∣= λT

T 1/2−γ1/2

∣∣∣∣∣ 1√
T µ̂I,i

∣∣∣∣∣
γ1

→ ∞, (4.6.34)

since (i) λT
T 1/2−γ1/2 → ∞ and (ii)

√
T µ̂I,i is tight. The left hand side of the equation is equivalent to

2ϕ ′τ1,i
(u− xδ

−1
T δT (µ̂

′
T −µ∗′, β̂ ′T −β ∗′)′)
√

T
=

2ϕ ′τ1,i
u

√
T
−

2ϕ ′τ1,i
xδ
−1
T δT (µ̂

′
T −µ∗′, β̂ ′T −β ∗′)′
√

T
. (4.6.35)

For the first term, we have the weak convergence

ϕ ′τ1,i
u

√
T
⇒ N(0,σ2

τ1,i) (4.6.36)

and for the second term, we have the weak convergence of
ϕ ′τ1,i

xδ
−1
T√

T
, which depends on the timing of the

break fraction τ1,i relative to all other possible break fractions. Say τ1,i = τ1,p∗ > τ2,m∗ holds, then

ϕ ′τ1,i
xδ
−1
T√

T
⇒

0, . . . ,0,
1∫

0

Bτ2,1(s)ds, . . . ,
1∫

0

Bτ2,m∗ (s)ds

 . (4.6.37)

Further, we have already shown the weak convergence of δT (µ̂
′
T −µ∗′, β̂ ′T −β ∗′)′. Hence, the distribution

of the first term is tight and

P(µ̂T,i 6= 0)≤ P

(
2ϕ ′τ1,i

(y− x(µ̂ ′T , β̂
′
T )
′)

√
T

−
λT wγ1

1i sgn(µ̂T,i)√
T

= 0

)
→ 0. (4.6.38)

Next, we show that P(β̂T,A c
2
= 0)→ 1. Again, we consider the event that β̂T, j 6= 0 although j ∈A c

2 .

The KKT optimality condition in this case is given by

2(xϕτ2, j)
′(y− x(µ̂ ′T , β̂

′
T )
′)

T
=

λT wγ2
2 j sgn(β̂T, j)

T
, (4.6.39)

where the factor T substitutes the factor
√

T in Equation (4.6.33). For the right hand side of the equation,
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we observe that ∣∣∣∣∣λT wγ2
2 j sgn(β̂T, j)

T

∣∣∣∣∣= λT

T 1−γ2

∣∣∣∣∣ 1

T β̂I, j

∣∣∣∣∣
γ2

→ ∞, (4.6.40)

since T β̂I, j is tight. For the left hand side,

2(xϕτ2, j)
′u

T
−

2(xϕτ2, j)
′xδ
−1
T δT (µ̂

′
T −µ∗′, β̂ ′T −β ∗′)′

T
, (4.6.41)

we have the weak convergence of the first term using

(xϕτ2, j)
′u

√
T

⇒
1∫

0

Bτ2, j(s)dU(s)+(1− τ2, j)Λ. (4.6.42)

The expression of the weak convergence result for the second term depends on the timing of the break

fraction τ2, j. Say τ2, j = τ1,m∗ > τ1,p∗ holds, we have

(xϕτ2, j)
′xδ
−1
T

T
⇒

 1∫
0

Bτ2, j(s)ds,
1∫

0

Bτ1,1(s)ds, . . . ,
1∫

0

Bτ2,p∗ (s)ds,

1∫
0

B2
τ2, j

(s)ds,
1∫

0

B2
τ1,1

(s)ds, . . . ,
1∫

0

B2
τ2,m∗

(s)ds

 , (4.6.43)

and as before δT (µ̂
′
T −µ∗′, β̂ ′T −β ∗′)′ is tight. Finally, we have shown that

P(β̂T, j 6= 0)≤ P

(
2(xϕτ2, j)

′(y− x(µ̂ ′T , β̂
′
T )
′)

T
−

λT wγ2
2 j sgn(β̂T, j)

T
= 0

)
→ 0 (4.6.44)

and this completes the proof. �

Proof of Theorem 2

For ease of exposition, we assume that the maximum number of breaks is m∗ = 2 and the true intercept

is known to be µt = 0 for all t. In this case, we obtain three possible model selection outcomes regarding

the number of breaks for the post-lasso regressions:

1. All coefficients of break indicator regressors are shrunk to zero

yt = β1xt + etτ0 . (4.6.45)

2. One structural break is (falsely) detected

yt = β1xt +β2xtϕt,τ2,1 + etτ1 . (4.6.46)

3. Two structural breaks are (falsely) detected

yt = β1xt +β2xtϕt,τ2,1 +β3xtϕt,τ2,2 + etτ2 . (4.6.47)
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Note that the specification of indicator terms in Equation (4.6.46) and Equation (4.6.47), i.e., the

timing of (falsely) detected breaks, depends on the tuning parameter λ . We continue the proof for the

bias-corrected test statistic, Z2, corresponding to the case of two (falsely) detected structural breaks with

unknown timing. The asymptotic distribution of the test statistics for the two remaining cases can be

easily deduced from our derivations. We decompose the cumulative sum into St = (S1t ,S2t)
′. Further, we

define the break fraction vector τ2 = (τ2,1,τ2,2)
′ as a compact set on (0,1)× (0,1) and define the matrix

Xtτ2 = (S′t ,S2tϕt,τ2,1 ,S2tϕt,τ2,2)
′ = (S1t ,X ′2tτ2

)′.

Using the result

T−1/2S[τ2,iT ]⇒ B(τ2,i) (4.6.48)

and the CMT yields the weak convergence of

1
T 2

T

∑
t=[τ2,iT ]

StS′t =
1∫

τ2,i

BB′. (4.6.49)

Further, (4.6.48) and Theorem 4.1 of Hansen (1992) yield the weak convergence of

1
T

T

∑
t=[τ2,iT ]

St−1u′t =
1∫

τ2,i

BdB′+(1− τ2,i)Λ. (4.6.50)

The result in (4.6.49) can straightforwardly be extended to

1
T 2

T

∑
t=1

Xtτ2X ′tτ2
=

1∫
0

Xτ2X ′τ2
, (4.6.51)

where Xτ2 = (B1,B2,B2ϕτ2,1 ,B2ϕτ2,2)
′ = (B1,X ′2τ2

)′ and

ϕτ2,i(s) =

 0 if s < τ2,i

1 if s≥ τ2,i

, s ∈ [0,1], i ∈ {1,2}. (4.6.52)

Define β̂τ2 = (β̂1, β̂2, β̂3)
′ as the post-lasso least squares estimator and set η̂τ2 = (1,−β̂ ′τ2

)′ so that

η̂τ2 ⇒

 1

−
(

1∫
0

X2τ2X ′2τ2

)−1 1∫
0

X2τ2B1

= ητ2 . (4.6.53)

We partition

Λ =

(
Λ11 Λ12

Λ21 Λ22

)
Ω =

(
Ω11 Ω12

Ω21 Ω22

)
(4.6.54)

in conformity with St and define Λ2· = (Λ21,Λ22) and Λ·2 = (Λ12,Λ22)
′.

For each element of S2tτ2 = (S2tϕt,τ2,1 ,S2tϕt,τ2,2) it holds that

∆S2tϕt,τ2,i = ∆S2tϕt,τ2,i +S2t−1∆ϕt,τ2,i (4.6.55)
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and ∆ϕt,τ2,i = ϕt,τ2,i−ϕt−1,τ2,i = 1{t = [τ2,iT ]}. Since ϕt−1,τ2,i∆ϕt,τ2,i = 0 and

d(B2(s)ϕτ2,i(s)) = dB2(s)ϕτ2,i(s)+dϕτ2,i(s)B2(s) (4.6.56)

for the asymptotic counterpart, we have the identities

1∫
0

BdB2(s)ϕτ2,i(s) =
1∫

τ2,i

BdB2(s)+B(τ2,i)B2(τ2,i) (4.6.57)

and
1∫

0

B2ϕτ2,idB2(s)ϕτ2,i(s) =
1∫

τ2,i

B2ϕτ2,idB2(s) =
1∫

τ2,i

B2dB2(s). (4.6.58)

Consequently, we can state the following important weak convergence results

1
T

T

∑
t=2

Xt−1τ2∆S′2tτ2
⇒

1∫
0

Xτ2dB2τ2 +


(1− τ2,1)Λ21 (1− τ2,2)Λ12

(1− τ2,1)Λ22 (1− τ2,2)Λ22

(1− τ2,1)Λ21 (1− τ2,2)Λ22

(1− τ2,2)Λ21 (1− τ2,2)Λ22,

 (4.6.59)

where dB2τ2 = (d(B2(s)ϕτ2,1(s)),d(B2(s)ϕτ2,2(s))) and

1
T

T

∑
t=2

Xt−1τ2∆X ′tτ2
⇒

1∫
0

Xτ2dX ′τ2
+Λτ2 , (4.6.60)

where

Λτ2 =


Λ11 Λ12 (1− τ2,1)Λ12 (1− τ2,2)Λ12

Λ21 Λ22 (1− τ2,1)Λ22 (1− τ2,2)Λ22

(1− τ2,1)Λ12 (1− τ2,1)Λ22 (1− τ2,1)Λ21 (1− τ2,2)Λ22

(1− τ2,2)Λ12 (1− τ2,2)Λ22 (1− τ2,2)Λ21 (1− τ2,2)Λ22

 . (4.6.61)

Under the null hypothesis, the cointegration residuals can be written as êtτ2 = η̂ ′τ2
Xtτ2 and we can

show weak convergence of the sample moments. It holds that

1
T 2

T

∑
t=1

ê2
tτ2

= η̂
′
τ2

1
T 2

T

∑
t=1

Xtτ2X ′tτ2
η̂τ2

⇒ η
′
τ2

1∫
0

Xτ2X ′τ2
ητ2 = σ

2
1∫

0

W 2
τ2
, (4.6.62)
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where Wτ2(s) =W1(s)−
(

1∫
0

W1W ′2τ2

)(
1∫
0

W2τ2W
′
2τ2

)−1

W2τ2 and

1
T

T

∑
t=2

êt−1τ2∆êtτ2 = η̂
′
τ2

1
T

T

∑
t=2

Xt−1τ2∆X ′tτ2
η̂τ

⇒ η
′
τ2

 1∫
0

Xτ2dX ′τ2
+Λτ2

ητ2 = σ
2

1∫
0

Wτ2W
′
τ2
+η

′
τΛτητ . (4.6.63)

Next, we consider the bias-correction term for the first-order serial correlation coefficient. We denote the

kernel weights as w( j/M) = w j and can show that

ψ̂τ2 =
M

∑
j=1

w j
1
T ∑

t
∆êt− jτ2∆êtτ2 +op(1). (4.6.64)

Hence, we have the weak convergence result

ψ̂τ2 = η̂
′
τ2

M

∑
j=1

w j
1
T ∑

t
∆Xt− jτ2∆Xtτ2 η̂τ2 +op(1)⇒ η

′
τ2

Λτ2ητ2 . (4.6.65)

For the long-run variance, we obtain the result

σ̂
2
τ2
⇒ η

′
τ2

Ωτ2ητ2 , (4.6.66)

where

Ωτ2 =


σ2 Ω12 (1− τ2,1)Ω12 (1− τ2,2)Ω12

Ω21 Ω22 (1− τ2,1)Ω22 (1− τ2,2)Ω22

(1− τ2,1)Ω12 (1− τ2,1)Ω22 (1− τ2,1)Ω21 (1− τ2,2)Ω22

(1− τ2,2)Ω12 (1− τ2,2)Ω22 (1− τ2,2)Ω21 (1− τ2,2)Ω22


=

[
1,−κ ′τ2

][1 0

0 Dτ2

][
1

−κτ2

]
= σ

2(1+κ
′
τ2

Dτ2κτ2) (4.6.67)

and

Dτ2 =

 1 (1− τ2,1) (1− τ2,2)

(1− τ2,1) (1− τ2,1) (1− τ2,2)

(1− τ2,2) (1− τ2,2) (1− τ2,2)

 . (4.6.68)
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Now, we use the CMT to show that

Z2 =

1
T 2

T
∑

t=2
êt−1τ2∆êtτ2− ψ̂τ2

1
T 2

T
∑

t=2
ê2

t−1τ2

×

(
1

σ̂2
τ T 2

T

∑
t=2

ê2
t−1τ2

)1/2

⇒
σ2

1∫
0

Wτ2dWτ2 +η ′τ2
Λτ2ητ2−η ′τ2

Λτ2ητ2

σ2
1∫
0

W 2
τ2

×

 1
σ2(1+κ ′τ2

Dτ2κτ2)
σ

2
1∫

0

W 2
τ2

1/2

=

1∫
0

Wτ2dWτ2(
1∫
0

W 2
τ2

)1/2 (
1+κ ′τ2

Dτ2κτ2

)1/2

(4.6.69)

for each configuration of τ2. Correspondingly, the test statistics for the remaining model selection out-

comes have the asymptotic distributions

Z1 ∼
1∫

0

Wτ1dWτ1

/ 1∫
0

W 2
τ1

1/2 (
1+κ

′
τ1

Dτ1κτ1

)1/2
, (4.6.70)

Wτ1 =W1(s)−

 1∫
0

W1W2τ1

 1∫
0

W2τ1W
′
2τ1

−1

W2τ1(s),

κτ1 =

 1∫
0

W2τ1W
′
2τ1

−1 1∫
0

W2τ1W1

 ,
W2τ1 =

[
W2(s),W2(s)ϕτ2,1(s)

]
,

and

Z0 ∼
1∫

0

Wτ0dWτ0

/ 1∫
0

W 2
τ0

1/2

, (4.6.71)

Wτ0 =W1(s)−

 1∫
0

W1W2

 1∫
0

W 2
2

−1

W2(s),

respectively. Naturally, the distributions of Z2 and Z1 depend on the timing of the breakpoint. Finally,

selecting the infimum statistic over all potential model selection outcomes is a continuous transformation

so that we can use the CMT to complete the proof. �
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Table 4.6.5: Approximate critical values
The table summarizes the approximate critical values of our proposed cointegration test, where ADF marks the columns report-
ing critical values of the ADF test statistic while Zτ reports those of the bias-corrected test statistic. Note: The lag truncation
parameter in the ADF regression is determined using the AIC. Critical values for other order selection rules are not reported
but can be obtained from the authors upon request. We use 25,000 replications to compute the finite sample critical values.

ADF Zt
m∗ = p∗ = 1

T 10% 5% 1% 10% 5% 1%

100 −3.91 −4.28 −4.93 −4.09 −4.45 −5.13
200 −3.89 −4.24 −4.88 −4.03 −4.37 −5.04
400 −3.88 −4.23 −4.86 −3.96 −4.31 −4.92
∞ −3.86 −4.19 −4.83 −3.92 −4.26 −4.85

m∗ = p∗ = 2

T 10% 5% 1% 10% 5% 1%

100 −4.51 −4.90 −5.59 −4.79 −5.18 −5.87
200 −4.51 −4.88 −5.53 −4.70 −5.07 −5.73
400 −4.48 −4.85 −5.47 −4.63 −4.99 −5.63
∞ −4.48 −4.84 −5.47 −4.58 −4.94 −5.57

m∗ = p∗ = 3

T 10% 5% 1% 10% 5% 1%

100 −4.96 −5.35 −6.07 −5.34 −5.74 −6.45
200 −4.98 −5.36 −6.01 −5.25 −5.62 −6.30
400 −4.99 −5.34 −6.00 −5.19 −5.54 −6.20
∞ −4.98 −5.34 −6.02 −5.10 −5.48 −6.15

m∗ = p∗ = 4

T 10% 5% 1% 10% 5% 1%

100 −5.29 −5.70 −6.43 −5.79 −6.21 −6.94
200 −5.38 −5.78 −6.46 −5.71 −6.11 −6.84
400 −5.42 −5.80 −6.44 −5.66 −6.03 −6.70
∞ −5.40 −5.78 −6.45 −5.57 −5.95 −6.60

m∗ = p∗ = 5

T 10% 5% 1% 10% 5% 1%

100 −5.58 −6.00 −6.70 −6.18 −6.64 −7.46
200 −5.70 −6.10 −6.79 −6.11 −6.52 −7.29
400 −5.74 −6.16 −6.82 −6.03 −6.43 −7.15
∞ −5.77 −6.16 −6.86 −5.97 −6.35 −7.06

m∗ = p∗ = 6

T 10% 5% 1% 10% 5% 1%

100 −5.77 −6.21 −7.02 −6.46 −6.98 −7.84
200 −5.97 −6.39 −7.08 −6.45 −6.88 −7.67
400 −6.05 −6.47 −7.22 −6.39 −6.80 −7.56
∞ −6.10 −6.49 −7.17 −6.33 −6.72 −7.41
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Chapter 5

Conclusion and final remarks

After having presented the original work of this thesis in the preceding chapters, let me conclude by

briefly reflecting upon the main findings of the individual studies in a broader context. This should serve

to summarize the insights that the studies provide about the two major aspects of this thesis, namely

the implications of the changing information technologies for the financial markets and the opportunities

that an advanced understanding of high-dimensional models holds for re-thinking and improving existing

econometric frameworks. Furthermore, this chapter critically discusses the limitations of each study,

indicates potentially fruitful avenues for future related research and closes with some final remarks.

Chapter 2 starts by addressing one highly relevant aspect of the question about the dynamics be-

tween social media, investors, and the stock market. It analyzes the relationship of Twitter sentiment and

activity with individual-level stock return volatility in an intraday context. Although the study finds a

statistically significant influence of the respective Twitter variable on stock return volatility, these effects

are of negligible size for practitioners who cannot expect to achieve an informational advantage by ana-

lyzing Twitter data for their intraday trading. This finding might appear to contradict one’s expectations,

assuming that information provided by a fast moving microblogging platform such as Twitter fits the

increasing speed of trading in and relatively easy access to the financial markets. Instead, it indicates that

retail investors do not process these information instantaneously or at least not in such a way that antici-

pating their behavior would give institutional investors any kind of advantage. Thus, while the relevance

of recent innovations in information technology, resulting in platforms such as Twitter, for financial mar-

kets are documented in the literature quite well for daily observations (e.g., Bollen et al., 2011; Sprenger

et al., 2014b), their influence does not appear to extent to an intradaily response of the stock market. One

apparent shortcoming is the study’s focus on blue-chip companies. Since the constituents of the DJIA

that we use for the analysis in Chapter 2 all show a fairly high market capitalization and high percentage

of institutional ownership, it would be interesting to rerun the models using stocks in which the amount

of shares held by retail investors is higher. It appears to be reasonable to assume that such stocks are

more easily influenced by investor sentiment due to their differing shareholder structure. Thus, in order

to check the robustness of the key takeaway of our study, testing the assumption of no informational

gain for intraday trading through systematic analysis of Twitter sentiment for this second class of stocks

constitutes a valuable contribution. While we did not find these stocks being sufficiently covered by the

Twitter community to allow the construction of a sentiment and Twitter activity time series, alternative

online platforms such as Seeking Alpha or StockTwits might provide adequate data for such an analysis.

Shifting the focus from social media to publicly available news in general, Chapter 3 exploits the
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availability of daily news on firms’ performance in the domain of environment, social, and governance,

to investigate how investors incorporate these information into their investment decisions. The findings

reveal that investors’ predisposition towards ESG activities appears to differ quite distinctively between

the firms of the sample: While for the majority of stocks in the sample investors, on average, react to

ESG-information differently depending on the type of information and the stock’s current financial per-

formance, one group of companies that shows the highest median log-returns over the sampling period

has rather ESG-averse investors, while the investors of another small group of stocks that shows the

lowest median returns are rather ESG-affine. In light of the recent spike in popularity of ESG-investing

touched upon in Chapter 1 the highly context-sensitive findings of this study clearly highlight the com-

plexity of ESG-investing itself. Nevertheless, there are two key takeaways from Chapter 3: First, it is

important for companies to realize that their ESG-activities are being closely monitored by investors

and the public, as almost all stocks of the sample show a significant reaction in idiosyncratic returns to

changes in ESG-related sentiment. This is likely due to the increasingly easy access to company-specific

information that investors enjoy nowadays as well as the aforementioned lower entry barriers to trading

for retail investors. It could also be indicative of the more and more pronounced necessity that companies

are facing to include sustainability dimensions into their business models to secure their success, as Mar-

burger (2011) argues. Secondly, due to the complexity of the topic, the work presented in Chapter 3 still

has some shortcomings, which I want to address in the following. These, in turn, present potential ways

in which future research can further contribute to unraveling the value of ESG information to investors

and companies.

First of all, while the research presented in Chapter 3 already uses a fairly large data set of news ar-

ticles, for some of the stocks data are still only quite sparsely available, which limits the general validity

and explanatory power of the results. Even larger data sets of news articles could be obtained from vari-

ous subscription-based resources.1 Tapping into such data bases could also be useful to control for further

news stories that are not included in the analysis. So far, each article that is used in the analysis has some

ESG-related content. The main model used for the estimation of the effect of changes in ESG-related

sentiment then only controls for non-ESG related news that are part of these ESG articles. Constructing

an investor sentiment time series from general interest news, which can be entirely unrelated to sustain-

ability and environmental topics, could serve as an useful, additional control variable to further isolate

investors’ reaction to ESG news. Another valuable contribution that future work could be devoted to is

to further conceptualize the financial theory of ESG-investing. While the presented research assumes

retail investors that directly engage in trading as a reaction to ESG-related news, a more advanced under-

standing of the role of ESG-concerned portfolio management in financial markets appears to be highly

relevant. With respect to the ESG news themselves, it would also be interesting to explore to which kind

of ESG-related content retail investors are most prone to react to. This could then be used to refine the

lexicon approach used in Chapter 3 by giving a higher weight to more important ESG-related words than

to less important ones. In this context, Chapter 3 often mentions potential “green-washing” attempts of

companies. While in the context of the presented work it appears to be reasonable to assume that official

news sources have fewer incentives to green-wash a company’s ESG-image, the way in which media and

companies themselves engage in such attempts is highly interesting from both the researcher’s as well as

the practitioner’s point of view.

1The following page provides several such sources of news databases, the majority of which are fee-based https://
guides.library.cornell.edu/news_online, last accessed July 31, 2019.
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By proposing a new approach of detecting and consistently estimating multiple structural breaks

in bivariate, potentially cointegrated systems, the last chapter of this doctoral thesis gives one example

of how an advanced understanding of high-dimensional models can provide opportunities to improve

existing econometric frameworks. Though often neglected, utilizing new insights gained in one domain

of research, such as statistical learning, to approach well-known but not yet ideally solved problems

of another domain from a different angle can often prove to be a worthwhile endeavor. In this spirit,

the study presented in Chapter 4 builds upon recent advances in the understanding of the properties of

the lasso to reframe the problem of identifying structural breaks in cointegrated regressions as a model

selection problem. Despite its focus on bivariate systems and thus the method’s limited applicability to

more general cases, the flexibility and accuracy of the approach to detect and estimate multiple structural

breaks provides a good alternative to conventional methods, which are often shown to be less flexible

and accurate. Our findings should furthermore encourage future research on the topic of detecting and

estimating structural breaks to further explore the benefits of reframing this as a model selection problem.

Possible extensions, besides the obvious generalization to more than two system variables, could be

using a group-lasso approach to model structural breaks in multiple-equation systems or in VECMs.

From a more general perspective, there appear to be more domains of research that could benefit from

re-thinking their respective existing econometric framework by considering alternative, potentially high-

dimensional approaches. The literature on modeling expected surgery procedure times in hospitals, for

example, has only recently started to explore the implementation of dimension reduction techniques to

produce more flexible and accurate forecasts (see, for example, Jovanovic et al., 2016). Another domain

of research that is both related to the other two main chapters of this thesis and is shown to benefit

from dimension-reduction techniques is sentiment analysis. While sentiment is traditionally modeled via

lexicon approaches or machine learning algorithms, Hu et al. (2013) demonstrate that the lasso could

also be a very useful tool to assess the sentiment of microblogging data.

Let me conclude the last chapter of this doctoral thesis by providing some closing remarks on the

presented research. Given the considerably vast frame of the implications of a changing landscape in

information technology and recent advances in high-dimensional modeling for financial markets and

econometric modeling that this thesis is embedded in, one inevitably has to be selective in the specific

aspects that are being covered. Thus, through a combination of subjectively perceived relevance of the is-

sues, personal interest, and opportunity the three main chapters of this thesis are formed. They should first

of all serve to illustrate the importance of exploring recent dynamics between (online) media, investors,

and financial markets, for which the first two research projects appear to be well suited. Moreover, all

three main research projects of this thesis show the benefits that can arise by combining econometric

theory and real-world applications. Lastly, the original work presented above has the potential to stim-

ulate the academic discourse and should encourage further research to critically discuss the studies and

their approaches to advance our understanding of the changing dynamics in financial markets and new

opportunities for improving existing econometric frameworks.
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