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1. General Introduction 

 Nitrification and denitrification 

One of the most important macronutrients for plant growth is nitrogen (N), which is mainly taken up by 

plant roots in its inorganic forms ammonium (NH4
+) and nitrate (NO3

-). NH4
+ derives by the breakdown 

of organic matter in the soil by microbes (mineralization) or by organic or mineral fertilizer application. 

NO3
- is the product of a soil metabolic microbial process called nitrification, where mainly bacteria and 

archaea under aerobic conditions oxidize NH4
+ to NO3

-. Nitrification represents one of the key microbial 

processes and is one of the rate-limiting steps of the nitrogen cycle (Skiba et al. 2011). The oxidative 

transformation of NH4
+ is a two-step reaction mainly driven through aerobic, chemolithoautotrophic 

microbes. The first conversion step, the oxidation of NH4
+ to nitrite (NO2

-), is conducted by ammonia-

oxidizers such as the common bacteria Nitrosomonas sp. (Belser 1979; Ferguson et al. 2007; Sahrawat 

2008), whereas the second step is carried out by nitrite-oxidizing bacteria as, e.g. Nitrobacter sp. Under 

both oxidation steps the released energy is used by microbes for their metabolism. The reduction of 

NH4
+ (or ammonia [NH3] under high pH conditions) facilitated by the enzyme ammonium 

monooxygenase (AMO) is described by the following chemical reaction (Arp & Stein 2003): 

2 NH4
+ + 3 O2 → 2 NO2

- + 2 H2O + 4 H+       (1) 

In the second reduction step, the enzyme hydroxylamine oxidoreductase (HAO) reduces NO2
- to NO3

- : 

2 NO2
- + O2 → 2 NO3

-          (2) 

Generally, nitrification depends on temperature, pH, water and O2 availability and finally substrate 

(NH4
+) availability (Sahrawat 2008). In this regard, alteration of this microbial process by temperature 

(Shammas 1986) has been reported with a maximum NH4
+ oxidation rate at around 30°C (Borchardt 

1966; Wild et al. 1976). Furthermore, nitrification is pH dependent, whereby an optimum pH for 

Nitrosomonas was reported as 8.3 to 8.8 and for Nitrobacter 7.7 to 9.3 (Meyerhof 1917; Hofman & Lees 

1953; Engel & Alexander 1958). However, nitrification also exists in acidic soils with a pH below 5.5 

caused by obligate acidophilic ammonia oxidizers archaea (AOA) such as Candidatus Nitrosotalea 

devanaterra (Lehtovirta-Morley et al. 2011, 2016) that also might have a higher optimum temperature 
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for ammonium oxidation (Ouyang et al. 2017). Total nitrification activity is related mainly to autotrophic 

nitrifiers activity, whereas heterotrophic nitrification by bacteria and fungi exists, but contributes to a 

smaller extent, with reported values between 7 – 19% (Barraclough & Puri 1995; De Boer & Kowalchuk 

2001; Islam et al. 2006). Concerning the abundance and activity of ammonium oxidizing bacteria (AOB) 

and AOA and their respective importance on entire nitrification, studies of the last decade delivered 

rather contradicting results. In this respect AOB abundance and activity appeared to be positively 

correlated with N availability (topsoil vs. subsoil, N application) which could not be confirmed for AOA 

(Jiang 2011; Di et al. 2009, 2010). Other studies suggested that abundance rather than growth and 

activity of AOA and not AOB control nitrification in acidic soils (Leininger et al. 2006; Gubry-Rangin 

et al. 2010; Zhang et al. 2012).  

From an agroecological point of few, nitrification is also an important process for plant N nutrition, 

since the much more mobile mineral N form NO3
- can be taken up in larger quantities by plant roots via 

mass flow. NH4
+, due to its cationic charge, is less mobile in the soil and mostly attached to negative 

charged particles as e.g., clay minerals, and is taken up by the plant via diffusion. However, before NO3
- 

can be assimilated by the plant, it has to be first reduced which constitutes a higher cost in terms of 

energy for the plant. The two enzymes nitrate reductase and nitrite reductase are responsible for these 

two reduction steps. In contrast uptake of NH4
+ maintain a faster assimilation of taken up mineral N. 

However, high NH4
+ concentrations in the plant can be toxic to the plant (Britto & Kronzucker 2002). 

In this regard, mentioned advantages and disadvantages of plant uptake of either NH4
+ or NO3

- lead 

consequently to the adaption that most plants cover their N demand through uptake of both mineral N 

forms (Marschner 2011). On the other hands certain species tend to prefer either one of the mineral N 

forms, which is related to evolutionary developed specialization (Boudsocq et al. 2012; Britto & 

Kronzucker 2013). 

From an environmental point of view, nitrification has been identified as the major pathway associated 

with N losses in both, natural and agricultural systems (Subbarao et al. 2006a, 2009). Due to its anionic 

charge and consequently its mobility in the soil matrix, NO3
- is susceptible to be leached from the soil 

and contributes to pollution of water bodies. Besides N losses through NO3
- leaching, NO3

- can be further 
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reduced to gaseous nitrogen oxide (NOx) forms by denitrifying microbes mainly under anaerobic 

conditions (e.g. after heavy rains and slow drainage). The most prominent product is nitrous oxide (N2O) 

which is a very potent greenhouse gas (GHG) that could contribute to a major extent to climate change 

with an estimated global warming potential of 265 times as CO2 (IPCC 2014). However, N2O emission 

could also occur directly after the first step of the nitrification process (1) denitrification contributes to 

a larger extent to N2O production (Firestone & Davidson 1989). 

Generally, natural grasslands or forest are characterized by low nitrification and denitrification rates and 

by a tight N cycle, however exceptions exist (Robertson & Groffman 2015). In this regard, N leaching 

losses are usually small and not severe for the N balance of most ecosystems. This is in stark contrast to 

agricultural systems, that are nowadays oversaturated with reactive N due to high amounts of N 

fertilization in different forms. Large amounts of N are applied to crops but N use efficiency (NUE) of 

the systems are poor and losses of N to the environment are high (Raun & Johnson 1999; Coskun et al. 

2017a). In terms of N fertilizer losses, nitrification has an important role and predominant N losses occur 

in the form of NO3
- or in the gaseous form of N2O. Therefore, strategies to control nitrification might 

contribute to reduce the N footprint of agroecosystems.  

 Synthetic nitrification inhibitors  

Several synthetic substances with the capacity to inhibit soil microbial nitrification in soils have been 

developed and tested decades ago (Fillery 2007). The substances block the enzymatic pathway of the 

ammonia monooxygenase (AMO) responsible for the first step in the oxidation of NH4
+ to NO3

- in soils 

(Ruser et al. 2015). The globally most important substances for synthetic nitrification inhibitors (SNIs) 

are nitrapyrin, dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP) (Crawford & Chalk 

1992; Zerulla et al. 2001; Upadhyay et al. 2011; Guo et al. 2013). Since nitrification and accordingly 

NO3
- production is slowed-down, denitrification (under anaerobic conditions) rates have also been 

observed to be reduced by up to 35% under application of SNIs due to substrate (NO3
-) shortage for 

denitrifiers (Ruser et al. 2015). Retardation of nitrification in agricultural systems is supposed to increase 

the time plants could take up N in the form of NH4
+. Consequently, SNIs could thereby improve N 
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recovery and reduce (NO3
-) leaching and diminish associated environmental impacts (Subbarao et al. 

2006b; Gopalakrishnan et al. 2007). 

Some SNIs such as DCD have been evaluated as highly specific to NH4
+ oxidizers with no harmful 

effect on abundance of other microbes in the soil (Guo et al. 2013). However, others observed a 

significant reduction of non-target soil bacteria (Patra et al. 2006). SNIs appeared to differ in terms of 

inhibition effects on AOB and AOA (Wakelin et al. 2014; Ruser et al. 2015) or even between different 

AOB (O’Sullivan et al. 2017b). However, also side effects on N dynamics due to SNIs are reported as, 

for instance an increase of biological immobilization of NH4
+. In this regard, mineral N is sustainably 

present in its cationic form, which is preferred over NO3
- by N immobilizers and assimilated by them 

respectively (Sahrawat 1989; Hauck 1990; Crawford & Chalk 1992). However, it should be considered 

that N immobilization is strongly driven by available C and not mainly by inorganic N availability (Shen 

et al. 1984; Chalk et al. 1990). 

Certain issues restrict the wide-spread use on SNIs primarily in smallholder farming systems of the 

tropics. High amounts of 15-30 kg ha-1 of DCD for proper nitrification inhibition are needed and the 

related high costs, the limited availability on the market, and its water solubility and consequently its 

susceptibility to leaching are some of the constraints for increasing application (Zerulla et al. 2001; 

Fillery 2007; Gopalakrishnan et al. 2009; Upadhyay et al. 2011). Various studies have been conducted 

to investigate the efficacy of many SNIs. Nitrapyrin can be easily volatilized and cannot be applied with 

solid N fertilizers and furthermore has shown reduced efficiency under higher temperatures (Chen et al. 

2010), whereas this counts for all the here introduced SNIs (Ruser et al. 2015). With suggested 

application rates of 0.5 – 1.0 kg DMPP ha-1 this SNI seems to be very efficient in comparison to DCD 

(Zerulla et al. 2001) but case studies have shown that N2O emissions were not more reduced by DMPP 

compared to DCD application (Di & Cameron 2012). The efficiency of DMPP seems to depend also on 

the applied form, which is either applied as liquid or sprayed on granulated fertilizers (Weiske et al. 

2001; Di & Cameron 2012; Ruser et al. 2015). There is evidence that application of liquid DMPP might 

result in spatial separation of the SNI and NH4
+ due to different diffusion or absorption to clay particles 

in the soil profile which makes NH4
+ susceptible to nitrification again (Azam et al. 2001; Linzmeier et 
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al. 2001). Overall umpteen studies suggest that SNIs are playing a minor role in terms of nitrification 

control in tropical smallholder agro-ecosystems mainly due to the high costs and unpredictable 

efficiency. Further low-cost options to develop rather low nitrifying systems would therefore be an 

important contribution to reduce negative impacts of crop and livestock production (Subbarao et al. 

2013b).  

 Biological nitrification inhibition (BNI) 

Since N is indispensable for the synthetization of organic compounds containing amine (-NH2) groups, 

this element often represents the rate-limiting step of growth for both, plant and microbe populations in 

ecosystems. Consequently, competition for N is always high and plants and microbes (and fungi) have 

evolutionary adapted to this situation and developed strategies to succeed in terms of N uptake and 

assimilation. Apparent from the already described environmental factors influencing nitrification, the 

influence on the nitrification process by plants themselves is a research field that re-gained major 

attention in the last decade (Fillery 2007; Skiba et al. 2011; Subbarao et al. 2013b; Coskun et al. 2017a). 

The ability of plants to control nitrifiers with secondary substances is one of these strategies to compete 

for scarce N resources in the soil (Skiba et al. 2011; Coskun et al. 2017b), and has been investigated 

some decades ago by Munro (1966), Meiklejohn (1968), particularly in forest based and grassland 

ecosystems. The release of tannins, phenolic acids or flavonoids from decaying leaves with an inhibiting 

effect on Nitrosomonas and Nitrobacter bacteria was studied for climax ecosystems (Rice & Pancholy 

1973, 1974). In contrast to the work of Rice & Pancholy, Moleski (1976) concluded that the release of 

tannins inhibiting nitrification derived mainly by root exudation rather than from decaying leaves, stems 

or roots. However, Purchase et al. (1974) suggested that nitrification in Hyparrhenia grasslands was low 

due to NH4
+ shortage caused by microbial immobilization of N, favored by turnover of grass roots that 

increased the amount of available carbon (C) and necessarily the N demand of microbes. Inhibition of 

Nitrosomonas europaea by monoterpenes derived from decaying needles from coastal redwood 

(Sequoia sempervirens) has been reported by Ward et al. (1997). Others, who applied the isolated 

substances directly to liquid cultures of Nitrosomonas (Bremner & McCarty 1988) investigated a 

possible inhibiting effect by terpenoids from ponderosa pine (Pinus ponderosa Dougl.). However, the 

effect observed under controlled liquid conditions, was absent even when higher amounts of the 
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substances were extracted from pine needles and applied to soils. Consequently, Bremner & McCarty 

(1988) came to the same conclusions as Purchase et al. (1974): low nitrification was rather due to low 

NH4
+ availability caused by heterotrophic microbial immobilization stimulated by available organic C 

increase. In line with this, Stienstra et al. (1994) intended to separate the allelopathic effect from the N 

immobilization effect on the repression of nitrifiers in grasslands dominated by Holcus lanatus. The 

authors concluded that stimulation of NH4
+ immobilization caused the effect. In contrast, the study of 

Paavolainen et al. (1998) concluded that nitrification inhibition in forest soil is a combined direct and 

indirect inhibitory effect by monoterpenes. Moore & Waid (1971) targeted the suppressive effect on 

nitrification of root washings applied to incubated soil with high NH4
+ addition, to compensate for the 

N immobilization effect. It has been concluded that the substances had a direct inhibiting effect on 

nitrification, although the mechanism could not be explained in more detail.  

Overall, the early work that targeted the link between plant derived substances and slowed-down NH4
+ 

oxidation did not deliver clear evidence of two important points: firstly, if the plant derived substances, 

that slowed-down nitrification, are actively or passively released and secondly if the secondary 

metabolites that reached the soil from plant biomass either stimulated N immobilization or had a direct 

and specific toxic effect on nitrifiers (Erickson et al. 2000). Smits et al. (2010) further discovered that 

plant species affect the ecosystems as such that they may either repress or in contrast even increase the 

nitrification potential of a certain habitat. Furthermore, not yet understood environmental factors seem 

to play a key role in terms of nitrification inhibition. Field studies conducted in tropical grassland 

ecosystems have shown that even in close neighborhood, low- and high-nitrifying sites that contain the 

same plant species (Hyparrhenia diplandra) under the same soil type could co-exist (Lata et al. 1999). 

This finding provided evidence that plants, especially grasses in N poor savanna ecosystems, actively 

shape soil microbial nitrification (Lata et al. 2004; Smits et al. 2010; Coskun et al. 2017b).  

One of the most prominent examples in terms of nitrification control is the tropical pasture grass 

Brachiaria humidicola (Bh) for which lower NO3
- levels in soils have been reported already some 

decades ago (Sylvester-Bradley et al. 1988). Bh gained increasing intention in terms of its potential to 

control nitrification, since unique substances such as brachialactone in collected root exudates were 
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identified to be responsible for biological nitrification inhibition (BNI) (Subbarao et al. 2009). In the 

early work on altered nitrification by plants, the mechanisms for release of substances from plant roots 

could not be identified. Subsequently, BNI substance released by Bh in hydroponic studies could be 

triggered by supplying NH4
+ (Subbarao et al. 2007b). However, BNI substance release could not be 

confirmed when roots were exposed to a NO3
-. Furthermore, a low pH was identified as a factor fostering 

the release of root derived BNI substances. Apart for Bh, NH4
+ and low pH have also been reported to 

be responsible for BNI substance release by sorghum (Sorghum bicolor) roots (Zakir et al. 2008). An 

additional factor that influences a significant BNI substance release of Bh seems to be plant age, since 

researchers working with young plants could not confirm a BNI effect by Bh (Miranda et al. 1994; 

Castoldi et al. 2013; O’Sullivan et al. 2017b). Concerning pot studies, substantial nitrification 

suppression by Bh has been confirmed one year after planting (Nuñez et al. 2018). However, there is 

lack of information concerning quantification of BNI substances released to the rhizosphere and 

therefore the interaction of plant age and effective BNI is poorly understood.  

BNI by collected root exudates or extracts have, besides for Bh and sorghum, meanwhile also been 

documented for rice (Pariasca-Tanaka et al. 2010; Sun et al. 2016), a wild relative of wheat (Leymus 

racemosus [Lam.] Tzvelev) (Subbarao et al. 2007c), weeds such as wild radish, brome grass, wild oats, 

annual ryegrass (O’Sullivan et al. 2017a) and matgrass (Nardo-Galion saxatilis) (Smits et al. 2010). 

Whereas the exact active release mechanism of BNI substances for most of these plants, and also for 

Bh, is still unknown (Skiba et al. 2011), it is claimed for sorghum that BNI release is functionally linked 

to plasma membrane H+-ATPase activity in roots (Zhu et al. 2012; Zeng et al. 2016). Concerning the 

mode of action, BNI exudates from Bh block both the ammonia monooxygenase (AMO) and 

hydroxylamine oxidoreductase (HAO) of Nitrosomonas europaea in contrast to SNIs that solely block 

the AMO pathway (McCarty 1999; Subbarao et al. 2007a; Gopalakrishnan et al. 2009). 

 Methods to characterize BNI 

The methodological work that has been used to target BNI effects by plants are based on consequences 

of plant presence with BNI ability or BNI root exudates and extracts. In this regard, quantification of 

mineral N or gene abundance of nitrifiers are used to indicate a possible BNI effect. A common method 
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is the incubation of soil from field plots or pot experiments (rhizosphere soil), where plants with BNI 

potential were cultivated (Sylvester-Bradley et al. 1988; Gopalakrishnan et al. 2009; Castoldi et al. 2013; 

Karwat et al. 2017). Modified versions of this incubation studies were introduced to solely investigate 

the root exudate or extract effect on N dynamics: a standard soil was treated with prior collected root 

extracts or exudates and NO3
- formation after NH4

+ application monitored over time (Gopalakrishnan et 

al. 2009; Nardi et al. 2013; Meena et al. 2014). Furthermore, Ishikawa et al. (2003) simply monitored 

mineral N in frequently taken sub-samples from pots where plants with potential BNI capacity have 

been harvested previously. Short-term incubation methods as the shaken slurry method by Hart et al. 

(1994) were used to reduce the experimental time. Emphasizing on the determination of the potential 

nitrification activity (PNA) in soil samples with excess NH4
+, the formation of nitrate (NO3

−) is 

monitored in sub-samples taken over time from the permanent shaken slurry (Smits et al. 2010; Nardi 

et al. 2013). Another technique targets directly the nitrifying enzyme activity in soil from pot or field 

studies (adapted from Lensi et al. 1986): NO3
- production after NH4

+ addition in an aerobic incubation 

is deduced by N2O measurements under addition of C2H2 (inhibits reduction of N2O) in a subsequent 

anaerobic incubation (Lata et al. 2004). All of these methods alter nitrification due to changes of O2, soil 

water content and destruction of soil aggregates. Consequently, soil incubations have the potential to 

uncover potential BNI effects, but straightforward conclusions to in-field BNI effects are difficult due 

to disturbance of the soil-plant system.   

Soil-free incubation methods or so called bioassays, are also described in the literature, as the incubation 

of target bacteria (Nitrosomonas europaea, Nitrosospira multiformis or Nitrobacter spp.) with either 

root extracts or root exudates in liquid NH4
+ cultures. For one method, nitrifying bacteria have been 

genetically modified, carrying genes for bioluminescence activity from the marine bacteria Vibrio 

harveyi coupled to the first NH4
+ oxidation step (Iizumi et al. 1998; Subbarao et al. 2006a, b; 

Gopalakrishnan et al. 2007, 2009; Zeng et al. 2016). Other assays measure nitrification activity of non-

modified nitrifiers simply by determining produced NO2
- by a Griess reagent (O’Sullivan et al. 2016, 

2017; Souri & Neumann 2018). However, the bioassay methods only take into account certain bacterial 

strains and exclude the role of other nitrifying bacteria and in particular ignore nitrifying archaea. 

Furthermore, the genetically modified Nitrosomonas europaea is not available on the market and, 

https://link.springer.com/article/10.1007%2Fs11104-014-2107-8#CR16
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besides of a luminometer, a laboratory with the status to work on genetic modified organisms is needed, 

which are certain constraints in a practical way. Using the Griess-method with simply non modified 

nitrifiers avoids these complications and even allows high throughput of samples via microplate reading 

(O’Sullivan et al. 2017b). However, the crucial point of reported discrepancy of plants expressing their 

BNI potential in hydroponic cultures and in field studies (Subbarao et al. 2007a) remains. 

To investigate the BNI effect on total nitrifier populations in soils, the abundances of ammonia oxidizing 

bacteria (AOB) and archaea (AOA) have been determined by quantification of the respective ammonia 

monooxygenase subunit A gene (amoA). Data on gene copy numbers of nitrifiers determined by using 

real-time quantitative polymerase chain reaction (qPCR) have been used to indicate the suppressive 

effect by BNI on ammonia oxidizers (Ishikawa et al. 2003; Subbarao et al. 2009). This approach from 

the field of microbial ecology has certain constrains as huge discrepancies of DNA extraction protocols 

among laboratories, or alteration of target genes by the amplification signal (Smith & Osborn 2009). 

Furthermore, microbial abundance fluctuates and amoA gene numbers deliver only a snapshot of nitrifier 

community abundance. Furthermore, BNI release has been shown to underlie fluctuations over time due 

to stimuli in the soil (supporting information in Subbarao et al. 2009). It is therefore suggested that a 

single study, either soil or hydroponic based, delivers only an incomplete picture and to understand 

further the complex nature of BNI methods need to be combined and further developed.  

Simple methods as the measurements of NO3
- and NH4

+ contents in soils where plants are grown in the 

field or in pots (Sylvester-Bradley et al. 1988; Karwat et al. 2017) give valuable reference information 

on BNI fluctuations. The advantage of this method is, that it is simple since soil sampling and mineral 

N determination requires cheap equipment such as an auger, KCl solution, funnels, flasks, paper filters 

and color agents and a device to read mineral N in the soil extracts. Constraints to be mentioned are 

biased mineral N concentrations by leaching, plant uptake and the microbial biomass, and the fact that 

mineral N could change quickly in the field.  

N2O measurements with the chamber method has been used to investigate a possible impact of BNI on 

both, N2O emissions by nitrification and denitrification (Ishikawa et al. 2003; Subbarao et al. 2009; 
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Byrnes et al. 2017; Karwat et al. 2017). However, fluctuations of N2O are high and, in terms of 

denitrification, are altered by the water saturation level, temperature, and soil organic matter contents.  

 The tropical pasture grass Brachiaria humidicola 

Brachiaria humidicola (Rendle) Schweick (koroniviagrass, creeping signal grass, false creeping 

paspalum) is a C4 pasture grass belonging to the family Poaceae and is originally from Eastern Africa 

and meanwhile used widely in South-American pasture systems established on previous natural 

savannas (Schultze-Kraft & Teitzel 1992; Miles et al. 2004). As most tropical African grasses it has an 

evolutionary developed tolerance to grazing pressure over Asian, European or American grasses due to 

its adaption to larger grazers that only survived in African savannas (Parsons 1972). Its aggressive, 

strong stoloniferous growth makes it very competitive and enabled it to enforce its distribution also from 

developed pastures into natural savanna systems of Latin America (Williams & Baruch 2000). 

Brachiaria humidicola (Bh) is mainly used in grazed pastures, but finds also use as ground cover in tree 

plantations or as erosion control on hillsides (Schultze-Kraft & Teitzel 1992). It is adapted to low fertility 

acidic soils with high Al-saturation, and is tolerant to flooding due to the ability to form aerenchyma as 

known for rice (Baruch et al. 1995; Cardoso et al. 2014). Its deep rooting ability (Rao et al. 1996; Fisher 

et al. 1994; Amézquita et al. 2004) might also enhance the organic matter content of deeper soil layers 

and store severe amounts of C there.  

In terms of N uptake and assimilation Bh appeared to be less aggressive in N uptake after N dressing in 

the form of NH4
+ compared to two other related grass species as Brachiaria decumbens and Brachiaria 

brizantha (Miranda et al. 1994; Nakamura et al. 2005). Another difference of Bh compared to the latter 

species is, that it (e.g., Bh cv. CIAT 679) can take up both N forms, whereas Brachiaria brizantha (e.g., 

cv. Marandú) has shown to take up only small amounts of NH4
+, but rather feeds on NO3

- (Castilla & 

Jackson 1991). The ability of Bh to bear even high quantities of available NH4
+ might be an adaption 

simultaneously developed with BNI and could facilitate its reported higher tolerance to acidic soils 

compared to other Brachiaria species (Rao et al. 1996).  

Due to its BNI ability it is expected to reduce the losses of N and tighten the nutrient cycling, which is 

of great importance to persist in low nutrient savanna soils (Rao 1998). Besides of Sorghum bicolor, 
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most studies on elucidating the BNI phenomenon in the recent years included Bh. The large collections 

of contrasting BNI genotypes derived by year-long breeding efforts at CIAT (Miles et al. 2004) together 

with a list of intensive investigations of the BNI process made it a prefect model plant for the research 

purposes of this dissertation. 

 Importance of BNI by Brachiaria humidicola in agroecosystems 

During the 1970s, exotic grasses, mainly Brachiaria species, were introduced to the Brazilian savannas 

(Cerrados) and replaced the extensive cattle ranching systems with low livestock capacity of the native 

vegetation based pastures (Macedo 1995; Spain et al. 1996). To date, Brachiaria grasses are probably 

the most important grasses covering 50% of the total grassland area of Brazil (Jank et al. 2014). Also, 

the native savanna vegetation of the Colombian and Venezuelan plains (Llanos) have been replaced by 

mainly Brachiaria grasses (San José et al. 2003). Overall, out of the 250 million hectares of South 

America about 20 million hectares are planted with improved pastures, where Brachiaria grasses are 

the most important species used (Boddey et al. 1996). The demand for livestock products as meat and 

milk is expected to increase by 100% by the year 2050, and production systems need to be modified to 

decrease the negative environmental impacts that livestock production causes (Rao et al. 2015). The role 

of BNI by Bh in tropical savanna systems could be an important one, due to the wide acceptance of the 

grasses by farmers, and furthermore due to the increasing pressure to convert Latin American grassland 

systems into pastures (Lopes et al. 2004). Some points that need to be addressed to develop more 

environmental friendly pastures systems are the reduction of soil borne N2O emissions, NO3
- leaching 

and the linked pollution of water bodies. BNI by Bh could contribute to tighten the N cycle and reduce 

N leakage from pasture systems. Since Bh is widely used as a pasture grass not only in tropical Latin 

America, but also in Africa, the Pacific Islands and Australia (Miles et al. 2004), the observed BNI might 

already contribute to reduction of NO3
- leaching and N2O emissions on a large scale (Peters et al. 2013).  

Another strategy to reduce N losses via nitrification and denitrification could be to include plants that 

govern the microbial oxidation of NH4
+ via BNI into cropping-cycles, to create low-nitrifying agro-

ecosystems where N losses are minimal (Subbarao et al. 2013b, 2015). This would not only have 

environmental benefits, but as well might reduce fertilizer expenditure due to higher NUE and 
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potentially increase crop yields. This is especially of crucial importance for smallholder farmers in so-

called “developing countries”, where N fertilizer application is scarce due to economic reasons but low 

plant N availability often limits crop yields. Other visions include the detection of the genomic region 

responsible for BNI trait expression and transfer it through breeding strategies into modern crop varieties 

cultivated under high fertilizer N input (Subbarao et al. 2007c). 

Whereas tropical natural grasslands used as pastures are not fertilized, and pastures with introduced 

grasses are only initially receive nutrient application during establishment (Fisher et al. 1997; Miles et 

al. 2004), improved pastures frequently receive P and N fertilization (Fonte et al. 2014). Effective BNI 

expression due to NH4
+ presence (Subbarao et al. 2007b) could be a good argument for applying mineral 

N and contribute to avoid pasture degradation. Commonly, fertilization takes part when degraded 

pastures are converted into crop areas, since income of sold crop yields could cover the fertilizer N costs 

and justify the investment (Kluthcouski et al. 1991). In this case it is speculated that residual BNI by Bh 

reduces losses of applied N to the cropping system (Karwat et al. 2017). Further examination of a 

possible indirect efficacy on denitrification, and therefore on N2O emissions from N fertilized crop 

systems on converted Bh pasture land are necessary (Ishikawa et al. 2003).   

The rotation of crops and pastures (a.k.a. ley farming) as a tool of integrated management system to 

regenerate degraded pastures is used in Latin America (Lopes et al. 2004). For instance, the barreirão 

system of the Brazilian Cerrados, where pastures are sown simultaneously with crops (as e.g. rice, 

maize, sorghum or millet) to use the grass as N catch plant (sown deeper to delay establishment) after 

crop harvest where mineral fertilization has been applied (Kluthcouski et al. 2004; de Oliveira et al. 

2004). Brachiaria decumbens and Brachiaria brizantha are widely distributed in the 200 million 

hectares of the Brazilian savannas. Enhanced yields of the subsequent crop (e.g. rice) under the 

barreirão system have been documented (Muzilli et al. 2004). If pastures are sown subsequently after 

the crop, the grass benefits from the residual fertilizer left-behind in the soil (or from mineralized N of 

crop residues) from the previous cropping system. Due to the improved nutrient availability by the 

previous N fertilized culture, crop-pasture rotations constitute a tool for grassland rehabilitation. BNI 

by Brachiaria grasses (Subbarao et al. 2006b) might therefore play a role in terms of N recycling in ley 
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farming systems. However, research that targets the contributing role of BNI on N recycling is still 

pending (Karwat et al. 2017). Furthermore, there is generally a growing interest in terms of using plants 

to manipulate the nitrification rate in soils with the target of reducing losses of N from the soil–plant 

system (Bowatte et al. 2015). N2O emissions even from extensive pasture systems become important 

since bovine urine oversaturate certain spots of the pastures with N. Consequently, N losses of these 

spots could be reduced when pasture grasses as Bh with BNI are used and nitrification is slowed down 

after urea hydrolysis to NH4
+ (Byrnes et al. 2017). Additionally, recycling of N excretion by animals in 

pasture systems is economical sound, since as already mentioned, fertilizer N addition is scarce due to 

economic reasons.  

The meanwhile most widely distributed Bh accession in Latin America is cv. Tully (CIAT 679; CPI 

16707; BRA 001627) and has been introduced to Ecuador already in 1983 and to Colombia in 1992 

(Miles et al. 1996). Its BNI potential has been classified to be mid-high, but other less widespread used 

accessions with a significant higher BNI potential as, e.g. CIAT 26159 exist (Subbarao et al. 2007a, 

2009; Nuñez et al., 2018). Consequently, this suggest that BNI contributes already to reduced N losses 

in large regions of tropical savanna regions of Latin America through the wide distribution of cv. Tully. 

However, not yet commercially available accessions identified in breeding populations at CIAT or 

EMPRAPA would have the potential to further increase the beneficial impact of BNI in terms of reduced 

N losses (Rao et al. 2014).  

Other environmental or agroecological significant issues like C sequestration into soils (Gaitán et al. 

2016) and reduction of soil erosion could be addressed by Bh due to its reported deep rooting and dense 

aboveground growth habit (Fisher et al. 1994; Rao et al. 1996; Amézquita et al. 2004). The grass could 

therefore, when managed in an adequate way, play an important role in terms of enhancing the usual 

low nutrient quality of savanna soils and ameliorant the C footprint of the agroecosystem (Rao 1998). 

 Project description  

This dissertation was conducted in the framework of the project “Climate-smart crop-livestock systems 

for smallholders in the tropics: Integration of new forage hybrids to intensify agriculture and to mitigate 

climate change through regulation of nitrification in soil” (Rao et al. 2014). The project was financed 
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by BMZ-Beaf (GIZ Project Number: 11.7860.7-001.00) and was a joint project of the International 

Center for Tropical Agriculture (CIAT) in Colombia, University of Hohenheim (UHOH), Corporación 

Colombiana de Investigación Agropecuaria (CORPOICA), Universidad de los Llanos, Universidad 

Nacional Agraria (UNA), Consorcio para Manejo Integrado de Suelos (MIS), GIZ-Programa Manejo 

Sostenible de Recursos Naturales y Fomento de Competencia Empresariales (GIZ-MASRENACE). The 

project duration was from March 2012 – December 2015.  

The main goal was to improve agricultural productivity and mitigate climate change through more 

efficient nutrient use and reduced greenhouse gas emissions from smallholder crop-livestock systems. 

The purpose was that small-scale farmers as well as research and development institutions apply the 

innovative approach of BNI by Brachiaria humidicola (Bh) forage grass hybrids to realize benefits in 

economic and environmental sustainability from integrated crop-livestock production systems. 

The research (Chapter 2, 3 and 4) conducted for this dissertation contributed to the identification B. 

humidicola (Bh) hybrids with different levels of BNI. Therefore 118 apomictic hybrids of B. humidicola 

were evaluated for their growth and nutritive value and their potential ability to inhibit nitrification in 

soil under greenhouse conditions. A selection of Bh hybrids with contrasting levels of plant BNI were 

evaluate for their growth, nitrogen (N) uptake, N use efficiency and forage quality in the wet and dry 

season under field in the Llanos of Colombia two years. Indicators of BNI activity were developed for 

use under field conditions based on the role of BNI in improving the efficiency of utilization of N 

fertilizer. The methodological approaches included in Chapter 2, 3 and 4 of this dissertation were applied 

to evaluate contrasting hybrids with different BNI capacity to recover native and applied N and minimize 

leaching and gaseous losses of N2O in soil column experiments in the greenhouse at UHOH and at CIAT 

Colombia. Furthermore, the research of this dissertation contributed to the determination of the residual 

value of the BNI function in long-term pastures on N use efficiency and grain yields of subsequent crops.  

 Research Justification 

Nitrification and denitrification has been identified as the two main microbial processes contributing to 

N leakiness of agroecosystems. Retarded NH4
+ oxidation could extent the time for plants to take up N 

and consequently might improve N uptake and NUE of the system (Subbarao et al. 2013b). Furthermore, 
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this would reduce the leaching losses of NO3
- and consequently also the denitrification losses (e.g. N2O), 

which illustrates potential environmental benefits. Controlling nitrification by the application of SNIs is 

not a viable option in the humid tropics since climatic factors have shown to constrain their efficacy. 

Furthermore, the high cost of SNIs restrict smallholder farmers from its adoption. The pasture grass Bh 

has shown to have a high BNI potential under controlled and field studies (Ishikawa et al. 2003; 

Subbarao et al. 2009; Byrnes et al. 2017). Bh is one of the most widely used forage grasses in the tropical 

Americas and beneficial effects in terms of low N losses and high N recycling might be linked to BNI 

(Miles et al. 2004; Peters et al. 2013). Although its BNI potential has been demonstrated, predictions of 

the in vivo BNI performance in the field are weak, due to the lack of feasible methods. Discrepancies 

have appeared between the measured BNI potential under controlled conditions and BNI performances 

of certain Bh genotypes (Subbarao et al. 2007a; Nuñez et al. 2018). Furthermore, reduced NO3
- losses 

from soil under BNI influence have been hypothesized by many researchers, but the proof is still 

pending. New Bh genotypes are under development at CIAT Colombia whereby BNI is already on the 

list of considered traits for developing improved Bh genotypes (Rao et al. 2014). It is known that BNI 

is differently expressed among contrasting Bh CIAT accessions, and even higher BNI potentials as 

identified for the standard cv. CIAT 679 (Tully) have been documented (Subbarao et al. 2007a, b, 2009). 

New developed Bh hybrids from CIAT should be screened for BNI to identify high BNI candidates for 

further breeding purposes (Arango et al. 2014). Although, incubation methods, either hydropic or soil 

based, are widely accepted among the research community, additional methods for a rapid screening of 

in vivo BNI performance are needed. Approaches with minimal disturbance of the soil-plant system 

would further allow to characterize the BNI phenomenon over a longer period and clarify certain 

fluctuations on the ability of Bh to depress nitrifiers.  

The pressure on native savannas in the Colombian Llanos increases and large areas have been replaced 

by Brachiaria grasses (San José et al. 2003). Furthermore, conversion of these Brachiaria pastures into 

maize or soybean systems are widely practiced (Lopes et al. 2004). However, the role of the residual 

BNI effect on subsequent N fertilized crops is still unknown e.g., the persistence of the BNI effect after 

pasture conversion and consequently a hypothesized higher N uptake by the subsequent crop. This is of 

main importance since N losses are severe from highly N fertilized crop systems, such as soybean or 
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maize systems. Although pasture systems generally have tight N recycling, certain spots of punctual N 

losses might be significant due to bovine urine disposal and justifies to further investigate the role of 

BNI by Bh (Byrnes et al. 2017). The potential of BNI to contribute to reduced N losses in 

agroecosystems is not yet exhausted on a large-scale. There is evidence that new developed Bh hybrids 

exceed the BNI potential known from the widely used standard cultivar CIAT 679 cv. Tully (Arango et 

al. 2014). Consequently, methods for screening the BNI potential and the in vivo performance in the 

field need to be developed to be able to identify the next generation of Bh germplasm with a significant 

beneficial BNI effect. 

 Hypotheses and Objectives 

The following hypotheses were addressed in the framework of this dissertation: 

1) The residual BNI effect caused by long-term cultivation of Brachiaria humidicola will be expressed 

after pasture conversion into a maize crop system in terms of higher N uptake, lower soil NO3
- 

levels, lower N2O emissions and lower N fertilizer losses by the subsequent crop compared to a non-

BNI control site. Furthermore, reduced nitrification rates in incubated soil are expected in the 

previous Bh rangeland. The residual BNI effect will reduce over time, since BNI substances will be 

decomposed or leached, and consequently nitrification is expected to increase again. Bh biomass 

turnover will, apparent from BNI substance release, affect N nutrition of the maize crop positively.  

2) Strong in vivo BNI performance by Bh in soil reduces formation of NO3
- and as a consequence NO3

- 

uptake by Bh. Therefore, low plant NO3
- uptake is reflected in low activity of the enzyme nitrate 

reductase, responsible for NO3
- assimilation, in plant tissues of Bh. 

3) Effective BNI will reduce nitrification and consequently less 15N discrimination among the NH4
+ 

and the NO3
- pool occurs in soil. High BNI will be expressed in a respective lower 15N shoot 

signature of Bh under conditions where NO3
-  is leached from the system, since Bh would feed on a 

respective less 15N enriched NH4
+pool, as in contrast to low BNI and high nitrification.   
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The following objectives of this dissertation were: 

1) To detect a possible residual BNI effect by Bh on a subsequent (non BNI) maize cropping system, 

with a main focus on N fertilizer recovery, and to characterize the persistence of the residual BNI 

effect and additional factors influencing nitrification. (Chapter 2) 

2) To proof that the activity of the enzyme nitrate reductase in Bh tissues is inversely related to 

nitrification inhibition and therefore a suitable method to detect differences in terms of in vivo BNI 

(Chapter 3) 

3) To investigate if the fractionation of stable N isotopes due to the nitrification process as well as N 

losses (e.g. NO3
- leaching) will influence the natural 15N abundance in Bh tissues, and hence if plant 

δ15N signals could serve as indicator for BNI and long-term N losses (Chapter 4)  

 Outline of the study 

This dissertation has been submitted as a cumulative thesis and is composed by three scientific articles, 

of which one has been published (Chapter 2) and two have been submitted (Chapter 3 and Chapter 4). 

The general introduction (Chapter 1) approaches the relevance of the microbial processes nitrification 

and denitrification from an agroecological and enviro-agronomical point of view, explains the 

possibility to inhibit or retard these microbial processes with synthetic derived substances to inhibit 

primarily nitrification and secondly denitrification. The process of biological nitrification inhibition 

(BNI) by the tropical pasture grass Bh is the central focus of this dissertation. Knowledge gaps of the 

BNI topic are addressed in the following parts of the thesis. Chapter 2 examines the residual BNI effect 

with a focus on its persistence in terms of N uptake by maize, N losses, nitrification rates, nitrous oxide 

emissions and its contribution to yield formation of the two subsequent maize crops in the following 

two rainy seasons in the Llanos region of Colombia. It further discusses a combined effect of residual 

BNI substances and the effect of Brachiaria residues on the following maize cropping system. Chapter 

3 focuses on the link between BNI impact on soil parameters and the enzymatic activity of nitrate 

reductase in leaves of Bh, influenced by NO3
- uptake and consequently by nitrification. The aim was to 

test the method as a proxy for in vivo BNI by Bh with minimum disturbance of the soil-plant system. 

Chapter 4 aims to link BNI to isotopic N fractionation between different soil mineral N pools caused by 
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nitrification The aim was to use the 15N natural abundance as indicator for BNI and N losses under field 

and greenhouse conditions. This dissertation closes with the general discussion (Chapter 4) including 

also an outlook concerning the future research needs of the topic.  
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 Abstract 

Background and Aims 

The forage grass Brachiaria humidicola (Bh) has been shown to reduce soil microbial nitrification. 

However, it is not known if biological nitrification inhibition (BNI) also has an effect on nitrogen (N) 

cycling during cultivation of subsequent crops. Therefore, the objective of this study was to investigate 

the residual BNI effect of a converted long-term Bh pasture on subsequent maize (Zea mays L.) 

cropping, where a long-term maize monocrop field (M) served as control.  

Methods 

Four levels of N fertilizer rates (0, 60, 120 and 240 kg N ha-1) and synthetic nitrification inhibitor 

(dicyandiamide) treatments allowed for comparison of BNI effects, while 15N labelled micro-plots were 

used to trace the fate of applied fertilizer N. Soil was incubated to investigate N dynamics. 

Results 

A significant maize yield increase after Bh was evident in the first year compared to the M treatment. 

The second cropping season showed an eased residual effect of the Bh pasture. Soil incubation studies 

suggested that nitrification was significantly lower in Bh soil but this BNI declined one year after pasture 

conversion. Plant N uptake was markedly greater under previous Bh compared with M. The N balance 

of the 15N micro-plots revealed that N was derived mainly (68-86%) from the mineralized soil organic 

N pool in Bh while plant fertilizer N recovery (18-24%) was not enhanced.  

Conclusions 

Applied N was strongly immobilized due to long-term root turnover effects, while a significant residual 

BNI effect from Bh prevented re-mineralized N from nitrification resulting in improved maize 

performance. However, a significant residual Bh BNI effect was evident for less than one year only. 

 

Keywords: Biological nitrification inhibition; N use efficiency; N recovery; Soil incubation; Nitrate 

leaching; 15N. 
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 Introduction 

Lost fertilizer nitrogen (N) from agricultural systems harms the environment via increased nitrate (NO3
-

) amounts in water-bodies and nitrous oxide (N2O) emissions to the atmosphere (Baligar et al. 2001). 

Nitrification is the microbial oxidation of ammonium (NH4
+) to NO3

-, whereas the latter mineral N form, 

due to its anionic charge, is very mobile in the mainly negative charged soil matrix compared to cationic 

NH4
+. Denitrifying microbes use NO3

- for their metabolism mainly under anaerobic conditions and 

contribute to N losses in gaseous forms. Natural grassland or forest systems generally have lower 

nitrification potentials compared with human made agricultural systems supplied with high N inputs 

that spur soil nitrification and consequently favor high N losses (Robertson and Groffman 2015). 

Strategies to suppress nitrification after N fertilization could result in higher uptake of N in the form of 

NH4
+ by crops and might be additionally beneficial for plants preferring N-NH4

+ (Boudsocq et al. 2012), 

while reducing N losses to the environment. Synthetic nitrification inhibitors (SNIs) like nitrapyrin, 3,4-

dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) were shown to inhibit the activity of 

soil nitrifiers, but persistence of their effectiveness depends strongly on environmental factors (Zerulla 

et al. 2001, Fillery 2007, Ruser & Schulz 2015). In addition, prices for SNIs are beyond the reach of 

smallholders that manage low input systems in tropical and subtropical regions. 

Research evidence for inhibition of NO3
- accumulation in a Colombian pasture soil under Brachiaria 

humidicola (Rendle) Schweick (Bh) was generated for the first time by Sylvester-Bradley et al. (1988). 

The development of a bioassay (Subbarao et al. 2006a) using the inhibitory action of Bh root exudates 

on recombinant Nitrosomonas europaea (Iizumi et al. 1998) subsequently allowed the detection of 

biological nitrification inhibition (BNI) in several tropical pasture grasses (Subbarao et al. 2007a). Using 

hydroponic systems, it was claimed that the exudation of BNI substances from roots of Bh is an active 

release of biological nitrification inhibitors that are triggered by the presence of NH4
+ (Subbarao et al. 

2007b). These Bh exudates contained BNI active substances like methyl-p-coumarate and methyl 

ferulate, while the shoot tissue contained other very effective BNI substances such as linoleic acid (LA) 

and linolenic (LN) acid (Gopalakrishnan et al. 2009). Additionally, the cyclic diterpene brachialactone 
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was suggested to be the main substance in root exudates of Bh that suppresses nitrification (Subbarao et 

al. 2009). Moreover, BNI exudation is favored by low pH (Subbarao et al. 2007b). 

However, little is known about the turnover of such compounds in soils. First studies under controlled 

conditions by Subbarao et al. (2008) indicated that LA maintained 50% of its inhibitory effect in terms 

of NO3
- produced per g dry soil after 120 days, whereas the BNI effect of LN was stable until the end 

of the incubation period (4 months). Since it was observed that a major BNI effect in Bh pastures can 

be established within 3 years (Subbarao et al. 2009), it is also likely that next to the active release of 

BNI substances root decomposition could contribute to the accumulation of BNI products in soil. 

Consequently, such a mechanism could result in a steady release of BNI substances inhibiting microbial 

nitrification for a prolonged time. This would be advantageous over SNIs that are exposed to rapid 

leaching under high rainfall and temperature conditions. Furthermore, Brachiaria grasses are known for 

their deep rooting systems (Fisher et al. 1994; Boddey et al. 1996; Rao 1998) that could release BNI 

substances and inhibit nitrification and denitrification also in deeper soil layers. 

Not much is known about how long and to what extent the BNI effect in soil remains after removal of 

Bh pastures. Furthermore, most of these substances are apparently anionic (Subbarao et al. 2007b) and 

will not be fixed by predominantly negatively charged soil aggregates. Additionally, microbes may start 

decomposing BNI substances once released to the soil as observed for other organic root derived 

substances (Lynch & Whipps 1990). A BNI persistence is of major interest for arable systems that obtain 

substantial N inputs often associated with high N losses. Tropical natural grasslands used as pastures 

are not fertilized and pastures with introduced grasses are commonly only initially fertilized during 

establishment (Miles et al. 2004). However, fertilization takes part when degraded pastures are 

converted to crop areas (Kluthcouski et al. 2004). For instance, intensive cropping systems like mono-

cropped maize often have low nitrogen use efficiency (NUE) (Raun & Johnson 1999). This is evidenced 

by high unaccounted N losses of 52 – 73% (Francis et al. 1993) in maize cropping systems via NO3
- 

leaching and N2O emission (Hilton et al. 1994) under high rainfall conditions. Specifically, when plants 

are still young and the root system is still small N-NH4
+ fertilizer is rapidly nitrified accelerating 

environmental problems (Schröder et al. 2000). 
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To counteract these N losses, it could be speculated that pre-cropping of BNI plants contributes to 

inhibition of nitrification and consequently reduces N losses of applied fertilizer of subsequent cropping 

systems if the BNI active substances persist sufficiently long enough in soils. This is of great importance 

since Bh is one of the most exploited species planted in approximately 118 million hectares in Latin 

America (Miles et al. 2004). Potential benefits for subsequent crops in agro-pastoral rotation systems 

have been shown for upland rice after pasture (Sanz et al. 2004) although a possible contribution of BNI 

has not been established. The present study was conducted as part of a larger project on BNI (Rao et al. 

2014). The first objective of this study was to test the residual BNI effect from a Bh pasture on 

subsequent maize crop performance in terms of grain yield, total N uptake and fertilizer N recovery. 

The second objective was to investigate the impact of residual BNI effect on soil N dynamics. Three 

hypotheses were tested: (I) A significant residual BNI effect is still present in the soil after removal of 

Bh, but is diminished in the second maize crop season compared to the first year after pasture conversion. 

(II) Nitrification inhibition is reflected by lower NO3
- amounts, lower nitrous oxide emissions, lower N 

fertilizer losses and consequently by improved soil N recovery in converted soils. (III) The turnover of 

Bh pasture residues in the converted soils have a positive effect on N nutrition, NUE and improved 

maize grain yield. 

 Materials and Methods 

2.3.1 Field site and experimental set-up 

The study location was established at the Corpoica La Libertad Research Center in the Piedmont 

(Andean foothills) region of the Llanos of Colombia (4°03'46”N, 73°27'47”W). Mean annual rainfall is 

about 3,685 mm with an average temperature of 21.4°C at an elevation of 338 m above sea level.  
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The experiment included two fields (each 0.5 ha) in close vicinity (~2.3 km away). The first one, a 15 

years-old productive Brachiaria humidicola (Rendle) Schweick cultivar Tully (CIAT 679) pasture (Bh) 

with high BNI potential (Subbarao et al. 2007a, 2009) was used to establish a maize (Zea mays L.) 

cropping field to test the residual BNI effect. As non BNI control field, a nearby cropped area, where 

maize (M) was grown as monocrop for the last 15 years was chosen. Fields were chisel plowed 2 times 

on May 25, 2013 and sprayed with glyphosate afterwards to impede regrowth of Bh and weeds. 

Dolomitic lime was applied at a rate of 2 t ha-1 to the field of the previous pasture whereas the maize 

field received 0.5 t ha-1 of lime. The different amounts of chalk were applied to align the different pH 

values of the two field sites (Table 2.3.1).  

Each field site was split into 3 blocks with each block containing 4 main plots (20 x 20 m) that received 

different N fertilizer rates (0, 60, 120 and 240 kg N ha-1). A sub-plot was nested within the main plot 

with a size of 4.8 x 2.25 m (10.8 m²) consisting of a synthetic nitrification inhibitor (DCD, 

dicyandiamide) treatment for the 3 levels of N (60, 120 and 240 kg N ha-1). Basal fertilization included 

(per ha) 36 kg N applied in the form of diammonium phosphate (DAP), 75 kg potassium (K) and 40 (50 

in 2014) kg phosphorus (P) combined with 30 kg Boronzinco® (4.5 kg Zn, 0.15 kg Cu, 0.75 kg B, 1.8 

kg S) and 100 kg Delfoscamag® (3.3kg P2O5, 13 kg MgO, 30 kg CaO, 8 kg S). Control plots (“0 N”) 

were not supplied with N but with all other mentioned elements. For the second and third N split dressing 

in 2013, N was supplied in the form of urea equally at 15 (17 in 2014) days after sowing (DAS) and 41 

DAS, respectively. DCD was applied to respective sub-plots at the second and third N split application 

in both seasons with a total fertilizer N contribution rate of 20% DCD-N.  

Maize was cropped in the last months (12 July 2013 and 27 June 2014) of the rainy seasons (Fig 2.3.1). 

In 2013, a maize hybrid (Pioneer 30K73) was sown in both fields using a planting density of 50,000 

plants ha-1. In the second season (2014) a maize hybrid (Monsanto Dekalb 1596) with improved 

tolerance to fungal infection was chosen for both sites and sown at the recommended 60,000 plants ha-

1. Due to different maturity of the two hybrids, maize cobs in the first season (2013) were harvested at 

120 DAS, while in the second season (2014) they were harvested at 138 DAS. Grain yields were 
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extrapolated based on the number of rows ha-1. Agronomic N use efficiency (ANUE) was calculated by 

dividing the applied fertilizer N amounts by N in maize grain yields. 

 

Fig 2.3.1 Distribution of monthly precipitation (mm month-1) and average temperature (C°) during the years 2013 

and 2014 at Corpoica La Libertad Research Center with indication of the Brachiaria humidicola CIAT 679 long-

term pasture (Bh treatment) and the duration of the 2 maize crop experiments in the rainy seasons. 

 

2.3.2 Mineral N determination  

Mineral N (Nmin) determination was done in 2013 at 41 DAS (before third N split application) and at 82 

DAS. In 2014, mineral N was measured before second and after third N dressing. Soil Nmin was extracted 

at the field site with 1 M KCl. At each sampling date, 8 samples were taken randomly with an auger 

from the topsoil layer (0-20 cm) from each main and DCD subplot from the Bh and M fields (in 2014 

only in the most contrasting N treatment plots, 0 N and 240 N). Two representative sub-samples of 20 

g fresh soil were taken. One sub-sample was used for determination of the soil dry matter by the 

gravimetric method, whereas another sub-sample was mixed in plastic bottles with 200 ml of KCl 

solution for Nmin determination. The bottles were shaken intermittently by hand for about half an hour 

and filtered through Whatman Grade 2 filter paper. Filtered extracts kept at 4°C. NO3
- were measured 

in yellow ionized form derived from alkalization with sodium salicylate and NH4
+ as green ammonium 

salicylate complex with a Synergy Ht ultraviolet spectrophotometer and analyzed with Gen5™ Data 

Collection and Analysis Software (BioTek™). 
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2.3.3 Soil incubations 

Soil was collected from the fields for incubation studies conducted under controlled conditions. This 

method was chosen to determine differences in nitrification activity among the field sites (I), and 

secondly to test the efficiency of DCD (II) that was used as an alternative for having a non-BNI control 

in the trial. Topsoil (0-20 cm) was collected from main plots before sowing in both seasons and air dried 

for 48 hours and sieved (2 mm mesh size) and visible root residues and small stones were removed. 

Afterwards, 5 g of soil were filled in small glass flasks followed by application of 1.5 ml ammonium 

sulfate ((NH4)2SO4) solution as substrate for nitrifiers. The N concentration applied to the flask was 

226.4 mg N-NH4
+ kg dry soil-1. DCD was diluted with the NH4

+ solution at 20% of DCD-N contribution 

of the total N applied to the incubated soil (according to pre-tests, data not shown). Flasks were sealed 

with parafilm that contained 2 holes for aeration and incubated at 25°C in the dark for 11, 13, 15, 17 and 

19 days when soil Nmin was extracted with 50 ml 1 M KCl. Nitrification in soil was expressed as net 

increase (deviation from basal N) of µg N-NO3
- g organic N-1 (Norg

-1 = total N – Nmin), whereas apparent 

net mineralization was calculated as µg N-NH4
+ g Norg

-1 over time. Total N was measured with an isotope 

ratio mass spectrometer (IRMS) as for other soil samples explained below. 

2.3.4 15N micro-plots 

For the N treatments 60 N (only 2013) and 120 N (2013 and 2014), 15N labeled N fertilizer was used to 

trace the fate of applied N and to determine 15N recovery in different soil layers and in maize plant tissue. 

Micro-plots were set up within the respective main plots of the N treatments mentioned above. 

Aluminum sheets were riveted together to a frame that was penetrated into the soil to a depth of 50 cm 

below the soil surface. Micro-plots had a size of 1.2 m² (2 m x 0.6 m) in 2013 and 1.0 m² (2 m x 0.5 m) 

in 2014 (due to higher planting density) and included 6 maize plants. 10.3883 atom % 15N enriched 

ammonium sulfate (15NH4)2SO4 (Sigma-Aldrich®) was used to prepare the applied nutrient solution that 

was sprayed with a hand pump on the soil surface. Two liters of the corresponding N solution were 

applied at sowing, 16 DAS and 41 DAS in 2013 according to the N rates of the respective main plots. 

Second and third N dressing date in 2014 were changed to 25 DAS and 46 DAS due to practical 
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workload. As control to the 120 N micro-plots, DCD was mixed with (15NH4)2SO4 and conventional 

(NH4)2SO4 and applied to corresponding DCD micro-plots. 

2.3.5 Maize and soil harvest in 15N micro-plots 

All plants from the micro-plots were harvested at the same time after sowing in the respective seasons 

(at 120 DAS in 2013 and at 138 DAS in 2014). Samples were oven dried at 60°C for 7 days, then 

separated into grains, spindle, shoot, leaves and roots and shredded separately. Plant materials were ball-

milled and an amount of exactly measured 3-4 mg of the low N containing tissues (stems, roots, leaves) 

was filled into tin capsules (5 x 9 mm HEKAtech GmbH, Germany), while 2-3 mg of the ground maize 

grains were used for 15N determination. For the calculation of the 15N excess in the maize tissue, the 

background signal of non-enriched maize plant samples of the main and DCD subplots were measured. 

Soil samples were taken right after harvest of the maize plants from the micro-plots. For estimation of 

soil 15N recovery, firstly the topsoil layer 0-10 cm and 10-20 cm were removed from each of the micro-

plots and placed separately on plastic sheets and homogenized and sub-samples were taken. Afterwards, 

6 cores were taken with an auger for the respective soil layers 20-40 cm, 40-60 cm, 60-100 cm and sub-

cores mixed to receive two samples per layer per micro-plot. To calculate the natural 15N enrichment of 

the soil, corresponding samples were taken with an auger from the main plots at the same soil layers. 

All soil samples were oven dried (40°C), homogenized, ground with a porcelain mortar and ball-milled. 

Furthermore, a set of intact cores of the respective main plots were taken for determination of bulk 

density and texture analysis according to the method of Zamudio et al. (2006). 

2.3.6 15N, total N analysis and calculation 

Samples were analyzed for total N and 15N by using a Euro Elemental analyzer coupled to a Finnigan 

Delta continuous-flow IRMS (Thermo Scientific, Bremen, Germany). The amount of the sampled 

material per capsule was calculated and adjusted to reach the optimal N target amount of about 50 µg N 

per sample. Yield and N recovery calculation were carried out following IAEA (2001) guidelines.  
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Maize yield for respective tissues was calculated according to the equation: 

DM yield (kg/ha) = FW(kg)× 
10000 (m2/ ha)

area harvested (m2)
×

SDW (kg)

SFW (kg)
      (1) 

Where DM refers to dry matter and FW to fresh weight per area harvested. SDW and SFW correspond 

to dry weight and fresh weight of a sub-sample, respectively.  

N yield for maize plants was estimated as:       

N yield (g/m²) = 
DM yield (g/m²)×N(%)

100
        (2) 

N fertilizer yield (g/m²) = N yield (g/m²)× 
%Ndff

100
       (3) 

Where %Ndff corresponds to ‘N derived from the fertilizer’ 

%Ndff =
00

15N atom % excess in sample

0 
15N atom % excess in fertilizer 

×100        (4) 

Fertilizer N recovery in maize plants or soil samples was calculated according to  

00
15N recovery % = 

00
15 Nexcess amount sample (g)

0 
15N excess applied (g)

×100      (5) 

00
15N excess amount sample (g) = 

N amount sample (g)  ×0 
15N atom excess sample

100
    (6) 

00
15N excess applied (g) = 

N amount applied (g)  ×0 
15N atom excess fertilizer

100
    (7) 

00
15N atom excess sample = 00

15N atom % sample  - 00
15N atom % background   (8) 

15N atom% background was measured in maize plants or soil samples taken from the main plots where 

the respective micro-plots were installed. 

2.3.7 Nitrous oxide emission measurements 

Static rings with an inner diameter of 16 cm (2013) and 21 cm (2014) were installed in all main and sub-

plots at the two fields M and Bh. For gas sampling, a chamber (volume 3901 cm³ in 2013, 6927 cm³ in 

2014) was placed on the rings and sealed with a rubber band. A thermometer was installed through a 
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sealed hole inside the chamber for initial temperature determination. After a settling time of 15 minutes 

four gas samples (0, 10, 20 and 30 minutes after chamber placement on the ring) were taken per chamber. 

Samples were taken with a syringe (5 ml) through the septum on the top of the chamber. In 2013, the 

first gas sampling took place 4 days after the second N split application in the main and DCD sub-plots 

(18 DAS), while second gas sampling was at 45 DAS, four days after the last N split application. For 

the second maize crop season (2014), the methodology was slightly adjusted due to practical and 

financial constraints. Gas emission was measured after the last N split (41 DAS) at 43 DAS, 45 DAS 

and 48 DAS in the main and DCD sub-plots of the 0 N and 240 N treatments.  

N2O flux was calculated according to:  

  FN = kN2O (T0/T1) (V/A) (dc/dt)  

where FN is the flux of N-N2O in µg m-2h-1, T0 = 273 K, T1 = initial temperature in the chamber in K, V 

= volume in m3 of the chamber, A = chamber area in m2, dc the slope across the four N2O measurements 

per chamber in ppm N2O and dt = slope of measurement intervals in h. Factor kN20 (1.25 µg N µL-1) was 

used to convert N2O in ppm to µg N-N2O µL-1. 

2.3.8 Statistical analysis 

For statistical analysis, the SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) was used. For intra-

field data analysis, a linear model with effects for blocks, N fertilizer rates, +/-DCD application and 

seasons (2013 or 2014) was fitted for within-trial data analysis using the GLIMMIX procedure. 

Studentized residuals were inspected graphically for normality and homogeneity. Factors or interactions 

among factors being not significant for α=0.05 were removed from the model. Means of factors found 

significant in the type-III F-test (when p-value <0.05) for the respective model were compared by using 

the LINES option in the LSMEANS statement. Precise p-values are presented to point out to differences 

in terms of significance among treatments below the cut-off level (p=0.05). In order to account for pre-

treatment field differences, mineral N results were partially expressed in relation to soil organic N 

content. For inter-field data analysis of not replicated pre-culture effects (Bh or M) we abstained from 

use of an adjusted (fixed effect) model but used simple plot t-tests for selected parameters without 
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directly inferring a causal relationship. Due to this limitation, we included additional controls (e.g. +/- 

DCD) in the intra-field trials to assess BNI effects.  

 Results  

2.4.1 Soil incubations 

Laboratory incubation of soils collected before sowing maize in the first season (2013) after Bh revealed 

significant lower evolving NO3
- values during the incubation period compared to soils from the non BNI 

field M (Fig 2.4.1). The incubation results demonstrated also an efficient nitrification inhibition by the 

applied SNI (DCD). Additionally, nitrification inhibition with DCD was not significantly different from 

the BNI effect. Net mineralization was significantly higher for M compared to M+DCD or Bh. During 

the incubation M showed minor changes in terms of NH4
+ mineralization, but decreasing N-NH4

+ values 

under BNI (Bh) and SNI (M+DCD) suggested a strong immobilization of applied mineral N in the soil 

in 2013. In contrast, soil incubations before maize sowing in 2014 showed similarly high nitrification 

activity in soils from Bh and M (Fig 2.4.1). As already observed in 2013, the application of DCD in 

2014 to both Bh and M reduced nitrification activity severely.  

In 2013, field NO3
- values in topsoil at 42 DAS (Table 2.4.1) one day before the third N split fertilizer 

application and at the end of the vegetative phase (82 DAS) were low in both fields with no major 

significant residual effect to previous applications of N or DCD. Comparison of the 2 sampling dates 

within each field indicated higher NO3
- values at 82 DAS compared to 42 DAS for Bh (p=0.0012) 

whereas this was not significant for the M field (p=0.1488). In 2014, both soil mineral N forms were 

measured but only in the two most contrasting N rate treatments. At 32 DAS no significant N fertilization 

effect on the N form or quantities in the topsoil were observed. However, three weeks after third and 

last N dressing (66 DAS) Bh topsoil was significant higher in N-NH4
+ compared to N-NO3

- (p=0.0027) 

whereas this could not be observed for M treatment (p=0.1866) (data not shown). 
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Fig 2.4.1 Mineral N dynamics in the incubated soils. Net nitrification activity expressed as µg N-NO3
- g Norg (upper 

graphs) and net NH4
+ mineralization activity in µg N-NH4

+ g Norg (lower graphs) in incubated soils 11 to 19 days 

after initiation. Soil samples were taken before maize sowing in 2013 and 2014. Field sites differed in their 

preceding land use (Bh = long-term Brachiaria humidicola pasture, M = Zea mays mono-crop). DCD was added 

to M soil as synthetic nitrification inhibition control. Error bars indicate standard error (SE) of the mean. Values 

with same letters at equal sampling points are not statistically significantly different for least squares means (α = 

0.05). 
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2.4.2 Maize yields in first cropping season, 2013 

Maize grain yields from plots established after the previous Bh pasture did not differ among 0 N and 60 

N (Fig 2.4.2 A). In contrast, a yield increase of more than 10 times (p=0.0012) was observed in the M 

field between yields of the 0 N treatment with 215 kg maize grain and 2226 kg maize grains at 60 N 

(Fig 2.4.2 B). Further N application above 60 kg N ha-1 did not result in higher yields in both fields, but 

yields after Bh were higher than the control. Plants in DCD sub-plots showed lower grain yields in Bh 

at 60 N and 120 N compared to DCD free Bh. However, this was not observed for the higher N levels 

in both fields. Maize yields were always higher for Bh than in the M field for all respective N and DCD 

treatments.  

The agronomic N use efficiency (ANUE) in plots after the previous pasture (Fig 2.4.2 c and d) 

outperformed those in the continuous maize field with ANUE of 85 kg grain/kg N fertilizer and 37 kg 

grain/kg N fertilizer, respectively when 60 kg N/ha was applied. ANUE decreased with rising N fertilizer 

amounts in Bh (p<0.0001) and M (p=0.0023) from 60 N to 120 N and was significantly lower for the 

DCD treatment at 60 N but not for 120 N and 240 N. 



44 

 

 

Fig 2.4.2 Maize grain yields (kg ha-1) of the first season (2013) for Bh (a) and M (b). Agronomic nitrogen use 

efficiency (ANUE) (grain yield in kg ha-1 per kg of applied N) of the first cropping season (2013) for Bh (c) and 

M (d). Fields differed in their preceding land use (Bh = long-term Brachiaria humidicola pasture, M = Zea mays 

mono-crop). Each field site included four different N fertilization treatments from 0 – 240 kg N ha-1. Data are 

mean values calculated from three randomized field plots. Additionally, a synthetic nitrification inhibitor (+ DCD) 

was used as control. Error bars indicate standard error calculated by the means of the whole sample size within the 

same field. Values with same letters within each graph are not statistically significantly different for least squares 

means (α =0.05). 

2.4.3 Maize yields in second cropping season, 2014 

In the second cropping season, a clear yield response (Fig 2.4.3 a and b) to rising N supply rates was 

observed in the main plots at both field sites up to a threshold of 120 kg N ha-1, but N fertilization was 

of less importance to yield formation in Bh (p=0.0082) compared to M control (p<0.0001). Under both 

pre-crop treatments, DCD resulted in lower yields compared to respective N fertilizer levels. A t-test on 

same N fertilizer levels and DCD treatments suggested only for 0 N significant higher yields for Bh 

compared to M.  
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The ANUE (Fig 2.4.3 c and d) showed smaller differences among Bh and M than in 2013. Increasing N 

rates reduced ANUE stronger in M (p=0.003) than in Bh (p=0.0112). DCD application resulted in lower 

ANUE in Bh at 60 N and 120 N compared to non DCD plots whereas in M this was confirmed for low 

N comparison (60 N) only.  

When ANUE in the first and second season were compared, higher ANUE was found in Bh in 2013 at 

60 N and all + DCD treatments, but not for fertilization at 120 N and 240 N. In the control field M the 

trend was the opposite compared to Bh: generally higher ANUE in 2014 compared to the first season, 

except at 60 N and 120 N + DCD. 

 

Fig 2.4.3 Maize grain yields (kg ha-1) of the second season (2014) for Bh (a) and M (b). Agronomic nitrogen use 

efficiency (ANUE) (grain yield in kg ha-1 per kg of applied N) of the second cropping season (2014) for Bh (c) 

and M (d). Fields differed in their preceding land use (Bh = long-term Brachiaria humidicola pasture, M = Zea 

mays mono-crop). Each field site included four different N fertilization treatments from 0 – 240 kg N ha-1. Data 

are mean values calculated from three randomized field plots. Additionally, a synthetic nitrification inhibitor (+ 

DCD) was used as control. Error bars indicate standard error calculated by the means of the whole sample size 

within the same field. Values with same letters within each graph are not statistically significantly different for 

least squares means (α =0.05). 
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2.4.4 15N recovery in maize plants and soil profile 

In 2013 under low N fertilizer rates (60 kg N) an average of 12.0% of applied 15N was recovered in plant 

parts in M plots compared to a not significant higher plant N recovery of 18.2% in Bh (Fig 2.4.4.1). 

Application of 120 kg N ha-1 showed as well no difference in plant 15N recovery between M (26.2%) 

and Bh (23.6%). In M, plant 15N recovery was increased at 120 N compared to 60 N, but DCD had no 

significant effect on plant N recovery at the same N fertilizer level.  

In 2014 plant 15N recovery values at 120 N were above 30% in both fields, however, they were not 

significantly higher than in the respective treatments in 2013. As in 2013, DCD did not significantly 

increase plant N recovery either. Overall, soil 15N recovery was not affected significantly by N rate, 

DCD or the interaction of both (N rate*DCD) within the respective fields and seasons. Total soil 15N 

recovery in 2014 for Bh ranged between 42.0% (120 N) and 48.6% (120 N + DCD) being statistically 

similar to M values of 46.9% at 120 N and 37.8% at 120 N + DCD.  
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Fig 2.4.4.1 Percentage of recovered 15N labeled N fertilizer in maize plants, soil profile (0-60 cm) and unaccounted 

N losses in 15N micro-plots during two maize cropping seasons (2013 and 2014). Micro-plots have been installed 

in two field sites differing in terms of the previous land use (Bh = long-term Brachiaria humidicola pasture, M = 

Zea mays mono-crop system). Plant and soil samples were taken at 120 days after sowing (DAS). Values with 

same lowercase letters within the same site and year, and within similar colored bars (plant/soil/losses) are not 

statistical significant different (α = 0.05). Same uppercase letters indicate no statistically significantly difference 

within the same site and bars of same color among the two field seasons (2013 and 2014). 

In both cropping seasons, most of the detected 15N within the soil profile was still found in the topsoil 

layer 0-10 cm (Fig 2.4.4.2). No consistent significant treatments effects on depth movement were found. 

However, apparently DCD application decreased the relative 15N recovery in the subsoil (0-60 cm) in 

both fields in 2013, indicated by a 15N topsoil:subsoil recovery ratio for Bh (p=0.054) of 2.9 (Bh 120 

N) and 5.0 (Bh 120 N + DCD) and 2.1 (M 120 N) and 4.6 (M 120 N + DCD) (p=0.674). However, this 

pattern was not confirmed in the second season. 

Unaccounted N losses (Fig 2.4.4.1) in 2013 for Bh varied between 45.1% (120 N) and 48.3% (120 N + 

DCD) compared to 44.8% and 46.7% for M in the respective N treatments (Fig 2.4.4.1). In Bh micro-
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plots N losses were not affected by the fertilizer rate or DCD application or its interaction (N rate*DCD). 

Furthermore, the cropping season effect was significant (p=0.0224) for Bh. N loss comparison among 

the fields on the same N levels showed no significant (t-test) difference in terms of lost N amounts in 

both seasons.  

In both years, Bh showed higher total plant N yields compared to M (Table 2.4.4) being expressed more 

strongly in the first season after Bh pasture conversion. Within Bh plant N uptake was not significantly 

affected by N rate, DCD, year or its interaction. Maize cultivated on the previous pasture field (Bh) took 

up higher amounts of N from the soil in 2013 than from applied fertilizer N (p<0.0001), however not in 

2014 (p=0.6298). The opposite was observed for maize in the control field (M) in 2013, i.e. N uptake 

from the fertilizer was higher (p=0.0093) compared to soil N uptake when N rate was 120 N (+/- DCD) 

in the first season, whereas in 2014 it was vice versa. 
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Fig 2.4.4.2 Percentage of recovered 15N labeled N fertilizer in 5 different soil layers of the soil profile in the first 

(2013) and second (2014) season at 120 days after sowing (DAS), respectively. Due to stones samples from 60-

100 cm could not always be taken. Soil samples were collected from 15N micro-plots installed in main plots of 

different fertilizer N rates: 60 kg N ha-1, 120 kg N ha-1 and 120 kg N ha-1 + DCD. Micro-plots have been installed 

in two field sites differing in terms of the previous land use (Bh = long-term Brachiaria humidicola pasture, M = 

Zea mays mono-crop system). Error bars indicate standard error of means of three samples taken from three 

randomized micro-plots. 
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2.4.5 Nitrous oxide emission 

Nitrous oxide emissions (N2O) in the first maize season (2013) showed no significant N rate, DCD or 

N rate*DCD effect for both fields but large differences among the three field plot replications (Table 

2.4.1). Inter-field analysis via t-test indicated significantly lower N2O emissions in M than in Bh for 

some N rates or +/-DCD treatments, but a clear trend was absent. During the second cropping season 

(2014) after pasture conversion N2O flux values were not significantly different than in 2013, due to the 

observed large variability. N fertilizer application increased N2O emissions particularly at the third 

sampling date in 2014 (7 days after N fertilization, 48 DAS) for M (p=0.0432). However, at the same 

time N2O emissions were decreased when DCD was applied together with 240 N being significant for 

M. The pattern looked similar for Bh although effects on emissions were not significant. The control (0 

N) showed low N2O emissions in both fields at all 3 sampling dates indicating that the observed increase 

in N2O emissions under 240 N was due to N fertilization. The comparison of the trials Bh and M via t-

test indicated no significant differences in N2O emissions among the fields in 2014. 

 Discussion 

2.5.1 Residual effect of Bh on maize crop performance 

The hypothesis that the previous Bh CIAT 679 pasture has a positive effect on maize growth could be 

confirmed. Even when no N fertilizer was applied grain yields kept up with the commonly found range 

of 3.0 - 4.5 t ha-1 for the Colombian Eastern plains (Thomas et al. 2004). This is in line with observations 

by Moreta et al. (2014), who showed higher maize grain yields on a previous Bh pasture field compared 

to those on a previous maize-soybean rotation or on a converted native savanna field. Long-term pasture 

use (Bh) was likely to have enhanced the soil organic matter content compared to the control (M) field. 

Furthermore, the shift from pasture to crop could have had positive effects in terms of reduced pests and 

diseases as known from field research in the Brazilian Cerrados (Lopes et al. 2004). As shown by Fisher 

et al. (1994) and Amézquita et al. (2004), improved pastures of Bh can have positive effects on soil 

physical, chemical and biological properties. An estimated amount of root N of 18 kg ha-1 in Brachiaria 

pastures has been reported (Rao, 1998), and is likely to even increase under well managed long-term 

pasture use as found by De Oliveira et al. (2004). Decomposition studies with litter bags have shown 
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that even 140 days after incorporation 40% of nutrients can remain in the soil in the form of Bh litter 

(Thomas & Asakawa 1993), whereas the half-life (in terms of N release) for maize residues has been 

documented between only 43 – 35 days (Thomas et al. 2004). Therefore, it is suggested that mineralized 

N from enhanced organic matter contributed to the observed improved crop nutrition of the subsequent 

maize crop in the first season of the present study. Furthermore, the importance of additional fertilizer 

N on maize yield formation was higher for M than for Bh, which relied to a larger extent on N derived 

from soil. ANUE results further supported the beneficial effect of the long-term Bh pasture. However, 

Basamba et al. (2006) reported lower yields under no- and minimum tilled Colombian savanna Oxisols 

in the following maize cropping seasons compared to a maize monoculture, suggesting that converting 

(no BNI) native grassland into arable land does not necessarily result in a positive yield increase of the 

subsequent crop. Furthermore, an experiment in 1989 showed that upland rice yields were significantly 

higher after a 10-year-old Brachiaria decumbens (Bd) pasture compared to rice after the conversion of 

a savanna, even when no N was applied (Sanz et al. 2004). This is analog to the observation of the 

present study. However, BNI as additional benefit from Bd has not been mentioned in the article, 

although BNI activity has not only been detected in Bh but also in Bd (Subbarao et al. 2007a). Thus, the 

focus on the combined effect of organic matter dynamics as well as a BNI effect in our field trial on 

crop performance after Bh pasture use is therefore new and has probably not been studied since the 

residual BNI of Brachiaria grasses was not yet known or simply ignored.  

2.5.2 Evidence of the residual BNI effect 

We hypothesized that the BNI effect induced by Brachiaria humidicola will be present in the soil even 

when the pasture has been removed and that this has a positive effect on the succeeding maize crop. 

Residual BNI activity was evident in reduced nitrification in soil from the previous Bh pasture in 2013 

in the incubation study. This is in line with similar early observations by Sylvester-Bradley et al. (1988), 

Ishikawa et al. (2003) and Subbarao et al. (2006a & 2007a) who also found lower nitrification in terms 

of low NO3
- values over time and stable NH4

+ values under existing Bh pastures. In terms of soil 

incubation effects, however, two processes might operate simultaneously, i.e. a net substance effect 

(exudates or extracts from plant tissues applied to soil) as well as a residual fine root effect influencing 
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N dynamics through N mineralization and immobilization (Purchase et al. 1974). According to 

Robertson and Groffman (2015), microbial nitrifiers are rather weak competitors for available NH4
+, 

and nitrification accelerates when NH4
+ supply exceeds the demand of the plants. Organic matter with a 

high C:N ratio causes microbial immobilization (Urquiaga et al. 1998; Sakala et al. 2000), and Thomas 

and Asakawa (1993) documented C:N ratios of Bh litter within a range of 89 – 160. However, 

immobilization and consequently substrate shortage was also observed in the control soil (M) since 

maize roots and maize stover as well have high C:N ratios (Paré et al. 2000), although net nitrification 

prevailed. Application of DCD to M soil resulted in low nitrification in both incubation studies, and on 

the other hand confirmed the presence of active BNI effects after Bh. However, the effect might be partly 

reduced by the accompanied decreasing NH4
+, which was probably the consequence of immobilization 

favored by DCD (Juma & Paul, 1983; Clay et al. 1990), since soil microorganisms seem to have a 

preference for NH4
+ rather than for NO3

- (Recous et al. 1992). Under field conditions, the observed 

varying NO3
- levels in topsoil indicated that nitrification was not consistently or completely inhibited 

by the residual BNI effect, not even throughout the first cropping season.  

Subbarao et al. stated in their review (2006b) that the suppression of nitrification is a potential key 

strategy to improve N recovery and ANUE. The present study confirmed that in the first season the 

residual BNI effect contributed to enhanced N yields and improved ANUE. Uptake of soil derived N by 

the maize crop was higher for Bh compared to M, a potential consequence of enhanced retention of 

mineralized N and consequently N nutrition of maize. However, the residual BNI effect was not 

reflected in higher fertilizer 15N uptake nor were fertilizer 15N losses reduced compared to the control 

site. Our data suggested that applied 15N was very rapidly immobilized in the topsoil and that maize in 

the Bh field compensated the low N availability by taking up mineralized N from sub-soil layers, which 

explains the enhanced N nutrition of maize in the Bh site.  

According to our study, the lack of the residual BNI effect on N2O emissions suggests that residual BNI 

does not necessarily have a similar effect as the in situ pasture BNI effect described by Subbarao et al. 

(2009) where N2O emissions were found to be reduced. It has been shown by Fisher et al. (1994) and 

Amézquita et al. (2004) that accumulation of Bh root biomass can vastly enhance soil C. Others reported 
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that denitrification is also spurred by available C substrates (Bergstrom et al. 1994). For the Bh site 

enhanced C availability is expected as indicated by the higher organic matter contents favoring 

denitrifiers (Firestone & Davidson, 1989), that might have masked a sound N2O reduction due to 

residual BNI in the subsequent maize crop. Due to the high rainfall (i.e. 3,685 mm/year) in the area 

temporal anaerobic conditions that favor denitrification are expected during and shortly after heavy 

rainfall despite reasonably good drainage of these Oxisols. 

2.5.3 Persistence of BNI 

Generally, turnover of plant residues in humid tropical systems is fast (Urquiaga et al. 1998). Therefore, 

it was hypothesized that the BNI effect from previously released root exudates or contained within 

incorporated Bh material would diminish over time. Subbarao et al. (2007a) could show that in soil from 

10-year-old Bh field plots, including the CIAT 679 accession, inhibited nitrification activity lasted up 

to 30 days after incubation initiation. After 15 years of pasture use with Bh CIAT 679 we expected a 

substantial amount of BNI substances in the soil as shown by Subbarao et al. (2008), however a 

technique to measure these active compounds in the soil has still not been developed. The present study 

confirmed that nitrification inhibition in soil could be observed until about 6 weeks after removal of Bh. 

However, a BNI effect before the second cropping season 2014 could not be confirmed in the incubation 

assay any more. Our results thus suggest that a substantial residual BNI effect on soil processes lasted 

for less than one year. Consequently, it could be speculated that BNI inhibitor compounds are exposed 

to decomposition limiting their persistence in soils. Lower BNI persistence over time was expected since 

Bh root exudates contain hydrophobic and hydrophilic substances (Ipinmoroti et al. 2008) where the 

latter are prone to leaching, and furthermore, that several released substances from incorporated Bh litter 

may attract heterotrophic microbial populations that metabolize C (Lynch & Whipps 1990).  

2.5.4 Effect of DCD on maize crop performance 

The synthetic control treatment (DCD) showed no efficient nitrification inhibition in the field in contrast 

to its efficiency under controlled conditions. Furthermore, no significant beneficial effects of DCD on 

plant N recovery, soil N recovery nor a reduction of 15N losses in the micro-plots in the previous Bh 

pasture could be found in both years, while for M even significant increased 15N losses in both years 
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were observed. Regardless of its ability to prevent N losses from soil DCD in the presented study did 

not favor crop growth and performance. Losses of the mobile DCD from system with high rainfall have 

been observed by Amberger (1989). Weiske et al. (2001) could also not confirm a positive DCD effect 

on maize, but observed lower emission of N2O since DCD has been shown to retard nitrification (Prasad 

et al. 1971) and consequently reduce NO3
- as substrate for denitrifiers. Earlier, Clay et al. (1990) reported 

reduced maize grain yields combined with lower total N uptake by the crop. According to the reduced 

NH4
+ mineralization results in the presented incubation study it is suggested that DCD favors N 

immobilization. Such an effect has been observed also by others (Guiraud et al. 1989; Clay et al. 1990; 

Ernfors et al. 2014) and could have had a negative impact on N nutrition of the maize plants. Its stability 

and effectiveness is also known to be negatively affected by high soil temperature (Ruser & Schulz 

2015). We thus cannot confirm high effectiveness of DCD in the field, like others, e.g. Merino et al. 

(2001) who found no N2O reduction in a DCD treated and mineral fertilized grassland soil in Northern 

Spain.  

 Conclusions 

This is the first in depth study on the potential residual BNI effect of Bh on a following maize cropping 

system. The residual effect of the long-term Bh pasture increased maize grain yields in the first season 

under all evaluated N fertilizer rates and in the second season after pasture conversion for the treatment 

without N fertilizer compared to arable land. This was associated with a higher total N uptake under the 

previous Bh pasture compared to M as well as significant reduced nitrification in incubated soils under 

Bh confirming a residual BNI effect. The study further suggested that applied N was partially 

immobilized due to large amounts of incorporated Bh roots during conversion with a high C:N ratio; 

and N was subsequently slowly re-mineralized and consequently contributed to maize N nutrition. 

Hence, maize performance in Bh depended less on fertilizer N compared to the control field M. The 

contribution of applied N to yield formation increased in the second season due to a diminished influence 

of the Bh residues. Mineral N in topsoil was not significantly influenced by the amount of N fertilizer a 

few days after final N dressing in 2013 that supports the strong immobilization observed in vitro. At a 

later stage increased amounts of available N-NO3
- were visible being a good indication for the superior 
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plant growth and grain production in the BNI field however also a possible reduced residual BNI effect 

in the topsoil at 120 days after Bh incorporation.  

It was challenging to identify the net residual BNI effect of the previous Bh pasture due to interactions 

with decomposing Bh plant material. Thus, parallel processes interact where previously released BNI 

substances from Bh inhibit or retard nitrification while decomposition is accompanied by a 

mineralization and green manure effect, that provides NH4
+ as substrate for nitrifiers and the 

immobilization effect due to a high C:N ratio that can indirectly decrease nitrification. Furthermore, the 

link between BNI and N2O emission seems not to be clear yet and more frequent sampling might capture 

the peak of N2O emission and identify a possible positive effect due to residual BNI. As control to BNI 

in the field DCD turned out to lose its nitrification inhibition effect too fast under these humid tropical 

conditions and therefore alternative substances (DMPP) should be considered for further testing. 

Generally N losses from extensively managed pasture systems are low even when N is supplied to fight 

degradation of the grassland over time. BNI could therefore play a more important role in terms of its 

residual effect for subsequent crops under high N fertilization compared to possible N loss reduction 

under present Bh pastures. Therefore, it is suggested to investigate further mechanism and persistence 

of a residual BNI effect and its influence on soil N dynamics in field studies. 
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 Abstract 

Brachiaria humidicola (Bh) controls soil microbial nitrification via biological nitrification inhibition 

(BNI). The aim of our study was to verify if nitrate reductase activity (NRA) in Bh roots or leaves are a 

proxy of in vivo performance of BNI in soils.  

NRA was measured using roots and leaves of contrasting accessions and apomictic hybrids of Bh grown 

under controlled greenhouse and natural field conditions. Nitrate (NO3
-) contents were measured in soil 

solution and in Bh stem sap to validate NRA data.  

NRA was detected in Bh leaves rather than roots, regardless of NO3
- availability. NRA correlated with 

NO3
- contents in soils and stem sap of contrasting Bh genotypes substantiating its use as a proxy of in 

vivo performance of BNI. The leaf NRA assay facilitated a rapid screening of contrasting Bh genotypes 

for their differences in in vivo performance of BNI under field and greenhouse conditions, but 

inconsistency of the BNI potential by Bh germplasm were observed.  

In conclusion, it is suggested that the NRA in leaves of Bh serves as a proxy to assess potential in vivo 

BNI activity under greenhouse and field conditions.  

 

 

 

 

 

 

 

Key words: biological nitrification inhibition (BNI), nitrate reductase activity (NRA), nitrate 

assimilation, plant nitrate status, enzymatic assay, tropical forages, 3,4-dimethylpyrazole phosphate 

(DMPP), Brachiaria humidicola  
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 Introduction 

Plants control soil nitrification via root exudation, a process termed biological nitrification inhibition 

(BNI) (Coskun et al. 2017b). BNI is induced by a wide range of forage species including Brachiaria 

humidicola (Bh) (Sylvester-Bradley et al. 1988; Ishikawa et al. 2003; Subbarao et al. 2007a). So far, 

detection of BNI in Bh relied solely on the application of a bioluminescence assay using a recombinant 

Nitrosomonas europaea (NE) strain (Subbarao et al. 2006; Subbarao et al. 2007a). A modified assay 

using a non-modified NE strain along with a Nitrosospira multiformis (NM) strain has been published 

recently (O’Sullivan et al. 2016, 2017). Both methods rely on hydroponics in which plants have to be 

cultivated for root exudate collection. It could be assumed that this procedure may lead to an 

overestimation of the BNI potential and may also be obscured by either active or passive (e.g., root 

damage) release of BNI substances. Hence, determined nitrification inhibition by NE and NM in vivo 

might not reflect the actual BNI performance in the intact plant-soil system. There is thus an urgent need 

to establish alternative proxies for both pot and field studies to monitor the in vivo performance of BNI 

and to link this with identified BNI potentials from experiments under laboratory conditions without 

disturbance of the soil-plant system. 

If ammonium (NH4
+) availability in soils is high and BNI is low, microbial nitrification produces 

substantial amounts to nitrate (NO3
-). If not leached or denitrified, NO3

- is taken up by Bh followed by 

two reduction steps to NH4
+ for further assimilation, while excess NO3

- is stored in vacuoles (Tegeder 

& Masclaux-Daubresse 2017). The responsible enzyme catalyzing NAD(P)H reduction of NO3
- to nitrite 

(NO2
-) is nitrate reductase (Evans & Nason 1953). Nitrate reductase activity (NRA) can be measured in 

vivo in intact plant tissue based on this first reduction step prior to NO3
- assimilation (Jaworski 1971). 

The relationship between soil nitrification and leaf NRA has been earlier demonstrated for the savanna 

grass Hyparrhenia diplandra (Lata et al. 1999), but the actual link between leaf NRA in Bh and its BNI 

under environmental conditions is yet to be verified. Cazetta & Villela (2004) reported that NRA, 

measured in vivo in Brachiaria radicans, was higher in leaves than in stems. Macedo et al. (2013) found 

higher NRA rates in leaves compared to roots of Brachiaria brizantha. However, it is not known so far 

if Bh reduces NO3
- in leaves and roots so that NRA could be used as a proxy for in vivo performance of 

BNI, specifically for Bh genotypes with acknowledged contrasting BNI potential (Subbarao et al. 2009). 
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In this study, it was our primary goal to verify the potential of NRA as a proxy for the detection of in 

vivo performance of BNI by selected Bh accessions and genotypes grown under contrasting fertilization 

regimes. Accordingly, we tested the following hypotheses: (1) NRA in roots and leaves of Bh is 

controlled by different N forms and concentrations (Experiment 1). (2) There is a strong correlation 

between leaf NRA, soil NO3
- and plant NO3

- (Experiment 2). (3) NRA of contrasting Bh genotypes under 

field conditions can be linked to their BNI potential, whereby low NO3
- availability due to strong in vivo 

BNI performance by Bh is reflected in low NRA in plant tissues of Bh.  

 

 Material and Methods 

3.3.1 Nitrate reductase activity measured in intact plant tissues of Bh 

In vivo nitrate reductase activity (NRA) was measured according to Jaworski (1971). Segments of 

freshly cut roots, stems or recently expanded leaves (~1 cm2) were used as incubation tissue. The enzyme 

nitrate reductase (NR) and the reduction equivalent nicotinamide adenine dinucleotide phosphate 

(NADP) were provided internally by the fresh plant material. The in vivo assay solution comprised 100 

mM phosphate buffer with a pH of 7.5, 30 mM KNO3 and 5% propanol, as well as simulated cytosolic 

plant cell conditions to ensure adequate enzyme activation. Potassium nitrate (KNO3) ensured unlimited 

substrate availability for NR. Propanol was added to strengthen the reduction of NO3
- to NO2

- and to 

hinder further reduction of NO2
- to NH4

+. Anaerobic conditions during the incubation avoided the 

interference of molecular oxygen (O2) and NO3
- as oxidation substrate for NR. All operations were 

conducted under dim light to reduce photosynthetic activity. A polystyrene isolating box filled with ice 

pads was used to diminish the metabolic activity and enzyme degradation in plant tissue. Afterwards, 

600 mg plant material was homogenized and split into 2 equal sub-samples (T0 and T30). Sub-samples 

were transferred into 50 ml falcon tubes and 10 ml of the in vivo solution was added. The T0 (control) 

tubes were placed in a water bath at 100°C for 5 minutes and stirred at 80 rpm to degrade and inactivate 

NR. Thereafter, T0 and T30 tubes were incubated at 35°C in a water bath for 30 minutes at 80 rpm. T0 

tubes were treated equally since a complete NR inactivation cannot be assured despite boiling since 

small amounts of NO2
- were still present. Therefore, evolved NO2

- in the T0 samples was set as point 



63 

 

zero. Moreover, T30 tubes were put into a boiling water bath to minimize further reduction of NO3
- 

through NR after the 30 min incubation period. Afterwards, all tubes were cooled to room temperature 

and 10 ml of color reagent were added to determine NO2
- via a staining procedure consisting of 1% 

sulfanilamide in HCl and 0.02% Griess reagent (N-(1-naphthyl)-ethylenediamine hydrochloride). A 

NO2
- stock solution with potassium nitrite (KNO2) of 25 µM was prepared to calibrate the color reaction. 

The absorbance was determined at 540 nm with a stationary multi-mode microplate reader SIAFR model 

(BioTek Instruments, Vermont, USA). For measurements under field conditions, a portable DR 1900 

spectrophotometer (Hach Company, Loveland, USA) was used. 

 

3.3.2 Experiment 1: NRA initiation in roots and leaves of Bh under different N forms 

At the University of Hohenheim (UHOH), young Bh CIAT 679 cv. Tully stolons were transferred into 

2 L plastic pots filled with a sand-perlite (70:30) substrate. There, twenty pots containing one stolon per 

pot were installed in a greenhouse under light bulbs with a photosynthetically active radiation (PAR) of 

800 µmol m-2 during a photoperiod of 12 h day-1. Plants were irrigated daily with 100 ml of a nutrient 

solution according to Yoshida et al. (1976) for 30 days. N was provided by either as NH4
+ (BNI & 

nitrification stimulation) or NH4
++DMPP (3,4-dimethylpyrazole phosphate, synthetic nitrification 

inhibition as control) or NO3
- (to detect maximum NRA as control). The latter N treatment contained 3 

different N-NO3
- concentrations (low [0.1 mM], mid [1 mM] and high [10 mM]) to detect NRA 

sensitivity to substrate availability. Each treatment was replicated 4 times and pots were arranged as 

complete randomized block design. After this pre-establishment phase, the grass was cut back to 10 cm 

and irrigated with 500 ml tap water to leach remaining N of the substrate. Ten days later, N depletion 

was apparent by N deficiency symptoms (i.e., light green leaves of plants). Then, irrigation was repeated 

using the respective nutrient solutions to induce a de novo synthesis of the NR. The NRA baseline 

sample was collected one day before N fertilization. Sampling of leaves was conducted 12 hours after 

plants were re-supplied with the respective N form and amount. Final harvest leaf and root tissue was 

performed 72 hours after N supply and NRA determination was conducted as described above. 
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3.3.3 Experiment 2: Relationship among NRA activity and soil nitrification under 

different N forms in a Bh hybrid population under controlled conditions 

A two factorial (genotype × N fertilizer form) experiment under the same conditions as Experiment 1 

(in terms of light & photoperiod) was performed with 4 replications arranged in two blocks (α design) 

to perform a genotypic evaluation on BNI potential using the novel NRA assay. The experimental pots 

were manufactured from common PVC-drainpipes (Ø 11cm × 100 cm) to enable deep rooting and 

monitoring of NO3
- dislocation within the soil profile. A ferralitic substrate was used, resembling similar 

soil characteristics of a tropical Oxisol. The soil derived from a site named “Eiserne Hose” (50°31'2.0' 

latitude and 8°50'55.9' longitude, Lich, Germany) and was characterized as a fossil tertiary clay loam 

(laterite) with a pH of 5.7, 0.25% carbon (C) and 0.029% N. This substrate was amended with sand (25 

vol%) to improve drainage properties. PVC drainpipes were equipped with rhizons (Eijkelkamp 

Agrisearch Equipment, Rhizon Soil Moisture Sampler, Ø 2.3 × 50 mm, hydrophilic polymer, porosity 

0.1 µm) installed horizontally at 7.5 cm and 50 cm depth within the soil column. This enabled non-

destructive sampling of soil solution (e.g., monitoring of real-time NO3
- levels as nitrification indicator 

in the topsoil) by applying a suction pressure through a common medical syringe. The experiment 

included 5 Bh apomictic hybrids (i.e., Bh08-population) with unknown BNI capacities provided by 

CIAT Colombia (Rao et al. 2014). Two CIAT standard accessions (CIAT 679 cv. Tully, CIAT 16888), 

which were reported with mid-high and high BNI activity, respectively (Subbarao et al. 2006, 2009), 

were included as controls. Bh stolons were planted in August 2014 and frequently cut and fertilized with 

macro- and micro-nutrients. N was applied according to the three N form treatments of Experiment 1.  

The sampling period started in December 2015 when plants had been cultivated for 16 months. Prior to 

sampling, the grass was fertilized with Yoshida solution containing NPK (in kg ha-1) analog to 50 N, 50 

P and 20 K. Fertilizer N was applied according to the three N treatments to trigger NRA differently, as 

described in Experiment 1. After 2 weeks, plants were cut back to 10 cm above soil surface and fertilized 

with 150 ml of nutrient solution containing 50 kg N ha-1 of the respective N treatment to re-induce 

synthesis of NR. To determine the dynamics of NRA among genotypes, detailed sampling of newly 

developed and fully expanded leaves was conducted for 2 contrasting (selected based on soil NO3
- 

monitoring, see below) genotypes (CIAT 679 versus Bh08-675) before, 2 and 5 days after N fertilization 
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(DAF) for all 3 N treatments. As baseline, leaves were collected before N supply to all pots. At final 

harvest (9 DAF), leaves were obtained from all 7 Bh genotypes to determine the intraspecific leaf NRA 

and soil nitrification activity (described below) linkage. NRA was measured as described above. 

Simultaneously to each NRA sampling, soil solution samples through the installed rhizons were taken 

from the topsoil to measure real-time soil NO3
- levels as an indicator for soil nitrification. Soil solution 

sampling was conducted 3 hours after irrigation with 100 ml of tap water to ensure sufficient soil 

moisture and time for equilibrium establishment regarding NO3
- concentration in the soil solution. Ten 

ml of soil solution was collected by syringes, filtered through Whatman No 2 and frozen immediately 

until NO3
- was quantified photometrically (AutoAnalyzer 3 / QuAAtro AQ2, SEAL Analytical, 

Southampton, UK). A first soil NO3
- measurement was conducted before N fertilization to ensure that 

further measured NO3
- at 2, 5 and 9 DAF were mainly due the effect of the applied N fertilizer. 

 

3.3.4 Experiment 3: Leaf NRA as BNI indicator under field conditions  

The field site was situated at La Libertad Research Station of Corpoica (Corporación Colombiana de 

Investigación Agropecuaria) in the Piedmont region of Colombia at an altitude of 336 meters above sea 

level with a mean annual temperature of 26°C and annual rainfall of 2,933 mm. The soil was classified 

as an Oxisol (USDA soil taxonomy) with a pH of 5.5. The trial was established by CIAT Colombia in 

August 2013 and arranged as randomized complete block design. Intraspecific Bh hybrids were planted 

with each 3 replicates to evaluate their BNI activity compared to CIAT Bh accessions. Each plot had a 

size of 4×4 m (16 m2). Before planting in 2012, the plots received a basal fertilization (in kg ha-1): 100 

N, 40 P, 75 K, 110 Ca, 65 Mg, 19 S and 35 Borozinco®. 

At the end of the rainy season in October 2015, all Bh genotypes selected for this study were depleted 

in N fertilization for 27 months. All test plots were then separated into N fertilized and N unfertilized 

(control) split-plots. Subplots of 1 m2 were installed randomly with strings within each split-plot. The N 

dosage for the N fertilized split-plot was 100 kg N ha-1 (as di-ammonium-phosphate (DAP) and urea). 

Additionally, each plot including the N free plots received fertilization (in kg ha-1) of 25 P, 50 K, 50 Ca, 

15 Mg, 11 S, 0.5 B, 0.0875 Cu, 1.5 Si and 2.5 Zn in solid form. For NRA determination, the hybrids 

CIAT 16888 (high BNI control) and CIAT 679 (mid-high BNI control), CIAT 26146 (mid-low BNI 
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control according to Rao et al. 2014 and Arango et al. 2014) were selected for leaf sampling. 

Additionally, 3 Bh08 apomictic hybrids (Bh08-1149, Bh08-700, Bh08-675) were included in this 

experiment. 

Leaf samples were collected from the subplots from all 6 selected Bh genotypes before, 3, 8 and 11 

DAF. The samples taken from the N unfertilized part were used to determine the baseline NRA, whereas 

NRA determined in leaves from the N fertilized plots served to assess the effect of N fertilization on 

NRA. As further indicator for contrasting NO3
- uptake patterns among Bh hybrids and accessions, NO3

- 

was measured in stem sap collected at 3, 8 and 11 DAF. For this step, finely cut stems of the respective 

plants for NRA measurement were squeezed into a plastic syringe. The effluent sap was collected in a 

petri dish and homogenized with a pipette tip and transferred onto NO3
- test strips and analyzed using 

Nitracheck 404 (both Merck Millipore, Billerica, USA). 

Soil samples from the topsoil (0-10 cm depth) of each subplot were taken with an auger (Ø 2.5 cm) at 8 

DAF. From each plot, 2 representative subsamples of 20 g fresh soil were taken. Determination of the 

soil dry matter by gravimetry was conducted with one subsample, whereas another subsample was 

mixed in plastic bottles with 200 ml of 1 M KCl solution for NO3
- extraction. The bottles were shaken 

for 30 min and filtered through Whatman Grade 2 filters. Extracts were kept at 4°C until NO3
- was 

measured with a microplate reader (BioTek Instruments), in yellow ionized form derived from 

alkalization with sodium salicylate. 

To monitor nitrification dynamics, topsoil samples were collected before N application from the plots, 

air dried for 48 hours and sieved (2 mm mesh size). Small stones and visible root residues were removed. 

A representative sample of 5 g of soil from each plot were filled in small glass tubes followed by 

application of 1.5 ml ammonium sulfate ((NH4)2SO4) solution as substrate for nitrifiers. Tubes were 

sealed with parafilm that contained 2 holes for aeration and placed to a dark incubation chamber with 

constant 25°C and 60% air humidity. Soil NO3
- was extracted before incubation start (basal), and after 

5, 11, 14, 20 and 25 days (based on pre-tests) with 50 ml 1 M KCl. Soil NO3
- was corrected by basal 

NO3
- levels for each sampling time. NO3

- concentration in incubated soil was expressed as mg N-NO3
- 

kg dry soil-1. 
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3.3.5 Statistical analysis 

SAS version 9.4 was used for statistical analysis (SAS Institute Inc., Cary, NC, USA). For Experiment 

1, proc glimmix procedure was chosen to fit a mixed model with fixed effects and respective interactions 

for supplied N form (either NH4
+, NH4

+ + DMPP, NO3
-), tissue (roots or stems), N concentration 

supplied (low, mid, high NO3
-), and sampling time (0, 12 or 72 hours after N fertilization). Interactions 

of factors were removed from the model when interactions were not significant (p>0.05). Replication 

(REP) × sampling time was set as random effect. The mixed model for Experiment 2 was developed 

with proc mixed procedure using genotype (GT), days after fertilization (DAF), and N form and 

respective interactions as fixed and REP × block (BLK) and REP × BLK × DAF as random effects. The 

proc mixed and glimmix approaches were also used for analyzing the data of Experiment 3. The mixed 

models included the fixed factors of N fertilization (N applied, no N applied), GT and DAF. REP × 

DAF, REP × GT and DAF × REP × GT were set as random and DAF was set as repeated statement. 

For all mixed model approaches, the following statistical procedure was similar: studentized residuals 

were inspected graphically for normality and homogeneity. Factors or interactions among factors being 

not significant at α=0.05 were removed from the model. Means of factors found significant for the 

respective model were compared by using the lines option in the lsmeans statement. Linear regressions 

presented from Experiments 2 and 3 were conducted with SigmaPlot version 12. When data passed the 

normality test (Shapiro-Wilk) and the constant variance test, the R squared (R²) and p-values were taken 

from the estimate of the procedure. 

 

 Results 

3.4.1 NRA in roots and leaves and its induction by different N forms and NO3
- 

concentrations (Experiment 1) 

NRA was strongly expressed in leaf tissue but not in roots (p<0.0001) in all 3 N treatments (NH4
+, 

NH4
++DMPP, NO3

-) when sampled 72 hours after N supply (Fig 3.4.1.1). The N form influenced NRA 

in leaves (p<0.0001), but not in roots (p=0.364). Highest NRA was detected in leaves of plants fertilized 

with N-NO3
- and the lowest NRA was measured in plants fertilized with N-NH4

+ + DMPP. NRA rates 
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increased over time (Fig 3.4.1.2a) being higher in leaves sampled at 72 hours after N fertilization 

compared to sampling at 12 hours after N supply (p<0.0005). The difference among the two sampling 

time points was strongly expressed under NO3
- followed by NH4

+ nutrition and the NH4
+ + DMPP 

treatment. Low NO3
- supply resulted in lowest NRA induction (p<0.0001), whereas intermediate and 

high NO3
- availability showed no difference in NRA rates (p=0.0639) (Fig 3.4.1.2b). 

 

Fig 3.4.1.1 Nitrate reductase activity (NRA) in root and leaf tissue of Brachiaria humidicola (accession CIAT 

679) under 3 different nutritional N forms (Experiment 1). Bars are means of 4 replications. Standard errors are 

given in error bars. Least square means that share a common letter are not significantly different for α = 0.05 within 

the respective fertilizer form treatment. Same upper case letters indicate no significant difference for α = 0.05 

between the N form treatments tested for each tissue separately.  
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Fig 3.4.1.2 Nitrate reductase activity (NRA) in leaf tissue of Brachiaria humidicola (accession CIAT 679) before 

N supply, at 12 h and 72 h after N fertilization (Experiment 1). N was applied in 3 different nutritional N forms 

shown in Fig 2a. NO3
- treatment included 3 different nutrient solutions (high N, intermediate N and low N supply), 

shown in Fig 2b. Bars represent means of 4 replications. Standard errors are given in error bars. Least square means 

that share a common letter are not significantly different for α = 0.05 within the respective sampling time.  
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3.4.2 Relationship between leaf NRA, soil NO3
- and plant NO3

- concentration under 

controlled (Experiment 2) and field conditions (Experiment 3) 

A positive linear regression (p=0.012) between NO3
- in the topsoil at 2 DAF and NRA at 9 DAF was 

observed (Fig 3.4.2.1a) for the 7 Bh genotypes of the pot trial (Experiment 2). The positive relationship 

(p=0.0032) between soil NO3
- at 5 DAF and leaf NRA at 9 DAF was even stronger (R²=0.85) (Fig 

3.4.2.1b). However, no significant correlation was detected for leaf NRA and soil NO3
- measured at the 

same date (p=0.3429, regression not shown). 

NO3
- measured in stems of the 6 Bh genotypes in the field (Experiment 3) correlated with NRA (Fig 

3.4.2.1c) measured at the same sampling date (11 DAF) (p=0.0394), but not when sampled at 3 

(p=0.2526) or 8 (p=0.2437) DAF. However, a nonlinear regressions analysis including all sampling 

dates (3, 8 and 11 DAF) and all the 6 Bh genotypes tested in Experiment 3 showed that NRA in leaves 

increased contiguously with NO3
- in stems (p<0.0001, regression not shown). Analog to the observed 

relationship between soil NO3
- and leaf NRA in the greenhouse, the trend of the 6 Bh genotypes tested 

in the field was similar: increased NO3
- in topsoil (0-10 cm, 8 DAF) was correlated positively with NRA 

(p=0.0083) measured in leaves 3 days later (11 DAF) (Fig 3.4.2.1d). 
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Fig 3.4.2.1 Linear regression between nitrate reductase activity (NRA) in leaf tissue at 9 days after N-NH4
+ 

fertilization (DAF) and NO3
- measured in soil solution from the topsoil at 2 (a), 5 DAF (b) of 7 Brachiaria 

humidicola (Bh) genotypes. Sampling was conducted at 16 months after establishment of the greenhouse trial 

described in Experiment 2. Results of Experiment 3 (field trial) are shown in graphs c and d: linear regression 

between NRA in leaf tissue and NO3
- concentration in stem sap (c) that was simultaneously sampled at 3 DAF of 

6 Bh genotypes. Sampling was conducted at 27 months after establishment of the field trial. Linear regression 

among NRA measured in vivo in leaf tissue at 11 DAF and NO3
- (d) in topsoil at 8 DAF. 
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3.4.3 Leaf NRA development for 2 contrasting Bh genotypes under different N 

fertilization forms (Experiment 2) 

The influence of the fertilizer N form on leaf NRA was highly significant (p<0.0001) for the Bh grasses 

of the greenhouse pot trial. Among the 2 selected Bh genotypes (i.e., CIAT 679, hybrid Bh08-675), the 

dynamics of NRA was similar in terms of the 2 different N fertilizer control treatments (Fig 3.4.3.1, a 

& e). NH4
+ + DMPP nutrition resulted in lowest NRA, whereas NO3

- nutrition showed greatest NRA 

rates. NH4
+ nutrition (BNI trigger, Subbarao et al. 2007b) was reflected in higher NRA values as the 

treatment NH4
+ + DMPP, indicating nitrification activity when DMPP was not added. On the other hand, 

NRA was lower under NH4
+ nutrition than under pure NO3

- supply, indicating BNI activity for both 

genotypes. NRA differences among the genotypes appeared only under NH4
+ supply between 2 and 5 

days after N supply (Fig 3.4.3.1c). In this case, NRA was higher in CIAT 679 than in the hybrid Bh08-

675 at 5 and 9 days after fertilization for the NH4
+ treatment. NO3

- in the topsoil showed a similar trend 

as the NRA for the respective genotypes (Fig 3.4.3.1, b, d, f). The nitrification inhibiting effect of DMPP 

was clearly reflected in constant low value of NO3
- in solution. Collected soil solution samples from 50 

cm depth depicted NO3
- concentrations in the soil solution that were below the detection limit of 5 mg 

N-NO3
- L-1 (data not shown). This indicated that NO3

- losses via leaching through the soil column were 

very small and did not affect NO3
- uptake by the grass. NO3

- measured in stems simultaneously to the 

leaf NRA assessment and the soil NO3
-sampling at day 5 showed higher NO3

- in the stem sap of CIAT 

679 than Bh08-675 (data not shown). 
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Fig 3.4.3.1 Nitrate reductase activity (NRA) measured in vivo in leaf tissue (left) and NO3
- (mg N-NO3

- L-1) in soil 

solution (right). The contrasting Brachiaria humidicola genotypes CIAT 679 (mid-high BNI control) and Bh08-

675 hybrid (unknown BNI potential) of 4 replications (plants from randomized soil columns). N fertilizer was 

supplied in 3 different N forms. Leaf samples were collected before N supply, and at 2 days and 5 days after N 

fertilization (DAF). NH4
+ fertilized plants were additionally sampled at 9 DAF. Sampling was conducted at 16 

months after establishment of the greenhouse trial (Experiment 2). 
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3.4.4 Leaf NRA of contrasting Bh genotypes under field conditions (Experiment 3) 

NRA in leaves sampled in the field (Fig 3.4.4.1) before N fertilization from 6 contrasting Bh genotypes 

(Experiment 3) detected already significant differences among the hybrids (p<0.0001). The high BNI 

accessions (CIAT 16888) and mid-high BNI cultivar (CIAT 679) showed the lowest NRA rates and 

were different from NRA of the hybrids Bh08-1149 and Bh08-675. A general trend of NRA over time 

until 11 DAF was determined with relatively clear patterns for all accessions and genotypes tested. At 

the final sampling, NRA for CIAT 16888 was the lowest followed by CIAT 679. CIAT 26146 as low 

BNI control showed higher NRA in comparison to CIAT 16888 (p=0.001). 

 

Fig 3.4.4.1 Nitrate reductase activity (NRA) measured in vivo in leaf tissue over time of Brachiaria humidicola 

genotypes including CIAT 679 (mid-high BNI control), CIAT 16888 (high BNI control), CIAT 26146 (low BNI 

control) and 3 Bh08 hybrids (unknown BNI potentials). Samples were taken at 0, 3, 8 and 11 days after NH4
+ 

fertilization (DAF) from plants of 3 fully randomized field plots. Least square means with the same letter indicate 

no significantly different NRA least square means at α = 0.05 at equal DAF. Sampling was conducted at 27 months 

after establishment of the field trial (Experiment 3). 
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3.4.5 Incubation of soil from contrasting Bh genotypes from the field site (Experiment 3) 

Differences of nitrification were analyzed in terms of significance of the interaction of NO3
- 

concentrations (mg N-NO3
- kg dry soil-1) × days after incubation initiation (Fig 3.4.5.1). Incubated soil 

from CIAT 26146 (low BNI control) showed the strongest NO3
- increase over time (p<0.0001), whereas 

it was less pronounced for high BNI control CIAT 16888 (p=0.0292) and not significant for mid-high 

BNI control CIAT 679 (p=0.0897). The nitrification development of Bh08-1149 (p=0.1102) was 

comparable to CIAT 679, and Bh08-675 (p=0.0317) close to CIAT 16888. Bh08-700 revealed the 

second strongest NO3
- increase over time (p=0.0016) after low BNI control CIAT 26146. 

 

Fig 3.4.5.1 Nitrate (NO3
-) formation over time in incubated soil sampled from replicated field plots (3 per 

genotype) where Brachiaria humidicola (Bh) genotypes including CIAT 679 (mid-high BNI control), CIAT 16888 

(high BNI control), CIAT 26146 (low-mid BNI control) and 3 Bh08 hybrids (unknown BNI potentials) have been 

grown for about 27 months (Experiment 3). Soil was taken before N fertilization. One representative sample per 

field plot was incubated in the laboratory, dots indicate means of the 3 field plots of each respective genotype. 

Significance levels: n.s. = not significant “NO3
- in soil concentration” × “days after incubation initiation” effect; 

significance of the tested interaction effect was indicated at p-level < 0.05*, <0.01**, <0.001*. 
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 Discussion  

3.5.1 NRA measured in vivo in Bh leaves serves as a BNI indicator 

To date, there is no suitable method available for sensitive BNI screening in Brachiaria humidicola (Bh) 

with minimal disturbance of the soil-plant system for both field and pot studies (Subbarao et al. 2006, 

2017; Lata et al. 1999). To overcome this constraint, we demonstrate here that nitrate reductase activity 

(NRA) in grass leaves serves as a sound proxy of in vivo performance of BNI in Bh, an approach 

substantiated by combining earlier reports studying BNI potentials (Subbarao et al. 2009) or NRA in 

Brachiaria (Cazetta & Villela 2004; Macedo et al. 2013). Its potential for a reliable determination of 

BNI was verified by strong correlations of NO3
- in solution, either through enhanced soil nitrification 

activity or direct NO3
- supply via fertilization. However, no significant correlation was detected for leaf 

NRA and soil NO3
- measured at the same date, indicating a delay between re-supplied NO3

-, its uptake 

by roots and transfer into xylem for transportation to the cytoplasm, where it was finally reduced via 

NR (Li et al. 2013; Tegeder & Masclaux-Daubresse 2017). This retarded reflection of nitrification 

derived NO3
- in NRA should be emphasized in prospective studies. 

Specifically, under field conditions, CIAT 16888 with its reported high BNI potential (Subbarao et al. 

2009) revealed the lowest NRA in leaves throughout the measurement period and lowest contents of 

soil NO3
- than tested Bh lines with low BNI but high NRA (i.e., Bh08 hybrids, CIAT 26146) (Nuñez et 

al. 2018). On the other hand, we also observed different levels of in vivo BNI performances via leaf 

NRA along with correlated (nitrification derived) NO3
- in soil solution between CIAT 679 and Bh08-

675 in the greenhouse versus field study. This clearly exemplified the complex and yet poorly 

understood nature of BNI expression in Bh germplasm. Our observation was further in line with that of 

Subbarao et al. (2006) who firstly classified CIAT 679 as a medium BNI ecotype, while the same 

accession was later classified as high BNI capacity close to CIAT 16888 (Subbarao et al. 2009). 

In vivo BNI in the Bh accessions measured via NRA in the field was not related to observed BNI 

potentials in soil incubation assays. Such discrepancy between BNI released in hydroponics and 

nitrification levels in a field study for different Bh genotypes have been previously reported (Subbarao 

et al. 2006). There is evidence that Bh root exudates comprise about ten, mostly anionic compounds 

with BNI potential (Subbarao et al. 2007b), although their biochemical nature is still not identified. It 
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could be thus assumed that different Bh genotypes release BNI substances of different composition and 

concentration (Subbarao et al. 2007a), whereby hydrophobic and hydrophilic phases, as well as their 

cationic and anionic nature (Ipinmoroti et al. 2008) is supposedly influencing their ability to be adsorbed 

to soil particles. However, it is still unknown if this mechanism as an effect on the persistence and 

efficacy of root derived substances, or if this rather leads to fixation and inactivation of the BNI relevant 

compounds. Consequently, genotypic BNI substance composition × edaphic interactions on BNI 

efficacy deserve more attention in research. Here, BNI exudate fingerprinting of contrasting Bh 

genotypes combined with in vivo BNI efficacy with the NRA assay could provide a concerted 

assessment of a specific Bh genotype under certain edaphic conditions. Moreover, it is known that the 

activation of NR or translation of an existing mRNA for the responsible enzyme depends on climatic 

factors such as the level of radiation and temperature during the day (Beevers & Hageman 1969). 

Therefore, it is suggested that absolute NRA values among different genotypes shall be performed in 

fields under similar environmental conditions to allow a reliable and comparable determination of in 

vivo BNI in Bh. To compensate for such natural fluctuations, NRA values obtained from the field 

experiment represented the net NRA.  

 

3.5.2 Different forms and availability of N influence the in vivo NRA in Bh leaves 

BNI activity reduces soil nitrification and hence alters the ratio of plant available NH4
+:NO3

- in soils 

resulting in plant uptake of predominantly NH4
+ (under high BNI) or NO3

- (under low/no BNI and high 

soil nitrification). According to this ecological concept, sole NH4
+ nutrition, particularly when combined 

with high BNI or a nitrification inhibitor (+DMPP), revealed thus a lower NRA expression. This again 

confirmed that NRA of Bh is strongly coupled to NO3
- nutrition of Brachiaria (Cazetta & Villela 2004; 

Macedo et al. 2013) and other plant species (Andrews 1986; Beevers & Hageman 1969). Moreover, 

Castilla & Jackson (1991) reported that hydroponics, where N was supplied as NH4
+ in conjunction with 

NO3
-, forced Bh to take up both N forms, without any observed preference for either one mineral N 

from. This is of main importance for linking in vivo NRA with BNI since privileging NH4
+ and avoiding 

NO3
- uptake might not reflect differences among candidates of medium and high BNI. This would be 

the case when substrate (NH4
+) availability exceeds plant demand. The close relationship between NRA 
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of the incubated leaves and the soil NO3
- combined with plant NO3

- uptake indications revealed that in 

vivo NRA was assessed by the pre-sampled N status of the plant, and that a de novo synthesis of NR in 

post-sampled leaves could be excluded. Likewise, significant NRA differences of contrasting Bh CIAT 

accessions were measured before N addition in the field study. Accordingly, it is suggested to further 

investigate the applicability of the NRA assay on potential long-term BNI accumulation under low N 

availability besides from the presented in vivo BNI expression after NH4
+ application.  

 Conclusions 

Our NRA assay was verified as BNI proxy applicable for greenhouse and field studies. It was validated 

as a rapid and reliable method linked to the actual soil nitrification after NH4
+ fertilizer supply. The 

possibility to perform several sampling intervals using the same plants allowed to detect fluctuations of 

BNI without major disturbance of the studied plant-soil environment. In comparison to commonly used 

hydroponic-root exudation studies, this methodological advancement represents a clear advantage for 

reliable real-time BNI performance monitoring for many food and feed crops under natural conditions 

(Zakir et al. 2008; Pariasca-Tanaka et al. 2010; Subbarao et al. 2013b; Sun et al. 2016; O’Sullivan et al. 

2016). 

It was demonstrated that NO3
- is mainly reduced in leaves of Bh genotypes, regardless of NO3

- 

availability in soil. The close relationship between increase of both, soil NO3
- and NRA suggested that 

NRA might serve as a valuable indicator of in vivo performance of BNI in Bh. A delay effect between 

increasing NO3
- availability in the soil and its reflection in the in vivo leaf NRA was observed and should 

be considered in determining the suitable time for sampling of leaf tissue. Our results confirmed the BNI 

potentials of included Bh CIAT accessions (Subbarao et al. 2006, 2009; Rao et al. 2014; Arango et al. 

2014) in the field, however, this potential could not be expressed under greenhouse conditions. 

Accordingly, future studies need to elucidate synergistic effects of edaphic and biochemical origin that 

potentially alter in vivo BNI, apparent from detected triggers (NH4
+ and low pH) of BNI.  

Further testing of the possibility to use leaf NRA as an indicator of in vivo performance of BNI would 

allow the investigation of the role of BNI over a longer period. This would enhance the understanding 

of the relationship between in vivo BNI expression and N supply from soil to plant. It should be further 

investigated if other plants, where BNI has been detected (Zakir et al. 2008; Pariasca-Tanaka et al. 2010; 
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Subbarao et al. 2013; Sun et al. 2016; O’Sullivan et al. 2016), also reduce NO3
- mainly in leaves and if 

the developed NRA assay could be adopted for in vivo monitoring of BNI performance of plants.  
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 Abstract 

The tropical forage grass Brachiaria humidicola (Bh) suppresses the activity of soil nitrifiers through 

biological nitrification inhibition (BNI). As a result, nitrate (NO3
-) formation and leaching are reduced 

which is also expected to tighten the soil nitrogen (N) cycle. However, the beneficial relationship 

between reduced NO3
- losses and enhanced N uptake due to BNI has not been experimentally 

demonstrated yet. Nitrification discriminates against the 15N isotope and leads to 15N depleted NO3
-, but 

15N enriched NH4
+ in soils. Leaching of 15N depleted NO3

- enriches the residual N pool in the soil with 

15N. We hypothesized that altered nitrification and NO3
- leaching due to diverging BNI magnitudes in 

contrasting Bh genotypes influence soil 15N natural abundance (δ15N), which in turn is reflected in 

distinct δ15N in Bh shoot biomass. Consequently, high BNI was expected to be reflected in low plant 

δ15N of Bh. It was our objective to investigate under controlled conditions the link between shoot value 

of δ15N in several Bh genotypes and leached NO3
- amounts and shoot N uptake. Additionally, plant 15N 

and N% was monitored among a wide range of Bh genotypes with contrasting BNI potentials in field 

plots for 3 years. We measured leaf δ15N of young leaves (regrown after cutback) of Bh and combined 

it with nitrification rates (NRs) of incubated soil to test whether there is a direct relationship between 

plant δ15N and BNI. Increased leached NO3
- was positively correlated with higher δ15N in Bh, whereas 

the correlation between shoot N uptake and shoot δ15N was inverse. Field cultivation of a wide range of 

Bh genotypes over 3 years decreased NRs in incubated soil, while shoot δ15N declined and shoot N% 

increased over time. Leaf δ15N of Bh genotypes correlated positively with NRs of incubated soil. It was 

concluded that decreasing plant δ15N of Bh genotypes over time reflects the long-term effect of BNI as 

linked to lower NO3
- formation and reduced NO3

- leaching. Accordingly, a low δ15N in Bh shoot tissue 

verified its potential as indicator of high BNI activity of Bh genotypes. 

 Key words: isotopic discrimination, isotopic fractionation, N uptake, N assimilation, nitrate leaching, 

soil incubation  
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 Introduction 

Biological nitrification inhibition (BNI) by the tropical forage grass Brachiaria humidicola (Sylvester-

Bradley et al. 1998; Subbarao et al. 2007) is an ecologically evolved trait to compete with nitrifying soil 

organisms for available ammonium (NH4
+). Certain root derived exudates (Coskun et al. 2017b), e.g. 

brachialactone, have been verified to block the activity of ammonia monooxygenase (AMO) and 

hydroxylamine oxidoreductase (HAO) pathways in nitrifiers such as Nitrosomonas europaea (Subbarao 

et al. 2009). By preventing the microbial transformation of less soil mobile NH4
+ to more soil mobile 

nitrate (NO3
-), BNI is expected to reduce leaching of nitrogen (N) from ecosystems (Subbarao et al. 

2009; 2013; Coskun et al. 2017a). Recent research has been undertaken to investigate the BNI effect by 

Bh on N dynamics, for example on the reduction of nitrous oxide (N2O) emissions from soils (Byrnes 

et al. 2017), or on the influence of residual BNI effect on N uptake of subsequent crops (Karwat et al. 

2017). However, indicators for reduced NO3
- leaching losses by effective BNI do not exist yet. The 

reduction of NO3
- leaching from agroecosystems due to BNI is one of the claimed central features in 

terms of BNI implementation (Subbarao et al. 2013; Coskun et al. 2017a).  

Nitrification and N leaching are two main soil processes that lead to 15N:14N isotope fractionation 

(Mariotti et al. 1981). This results in a 15N enriched NH4
+ and a 15N depleted NO3

- pool in soils (Delwiche 

& Steyn 1970; Herman & Rundel 1986; Jones & Dalal 2017). Under high rainfall conditions, 

nitrification derived 15N depleted NO3
- is exposed to high leaching, whereby plants then would feed on 

remaining 15N enriched NH4
+. In contrast, plants with effective BNI are expected to suppress microbial 

NO3
- formation. Consequently, less 15N depleted NO3

- would be lost from the system. Under both 

scenarios, Bh feeds mainly on NH4
+, towards which it has a higher tolerance than other Brachiaria 

species (Castilla & Jackson 1991; Rao et al. 1996). The 15N signature of soil mineral N can be reflected 

in a corresponding shoot 15N signature (Takebayashi et al. 2010). Previous field studies demonstrated 

that foliar δ15N increased in conjunction with increasing nitrification and N leaching by precipitation 

(Pardo et al. 2002; Stamatiadis et al. 2006; Huber et al. 2013; Yé et al. 2015). From these studies, the 

relationship between plant δ15N and soil nitrification and N losses was apparent, which indicates a 

possible strong relationship between BNI and the δ15N in plant tissue.  
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What remains unclear is if shoot δ15N of Bh genotypes is linked to plant induced BNI, and if this relates 

to reduced nitrification, thus reduced NO3
- leaching. We therefore hypothesized that (i) effective BNI is 

linked to reduced soil nitrification rates, enhanced N nutrition, reduced NO3
- leaching; and that (ii) this 

link is expressed in respective low δ15N in plant shoot tissue due to nutrition of Bh on a less naturally 

enriched N pool of 15N. In contrast, it was expected that respectively higher nitrification rates (NRs) and 

higher NO3
- leaching is expressed in higher δ15N of shoot biomass due to the uptake of 15N enriched soil 

N. 

 Material and Methods 

4.3.1 Experiment 1: Relationship between δ15N of Bh, N uptake and NO3
- leaching under 

controlled conditions 

A greenhouse study at the University of Hohenheim (UHOH), Stuttgart, Germany, was implemented as 

an α-design, i.e. a design with incomplete blocks, that are grouped into complete replicates. The trial 

contained four complete replicates with two blocks per replicate. The aim was to monitor the effect of 

N loss and N uptake after N fertilization on the δ15N in shoot biomass of different Bh genotypes. 

Experimental soil columns were manufactured from PVC-drainpipes (Ø 11 cm × 100 cm) in order to 

enable deep rooting of Bh and monitoring of NO3
- dislocation within the soil profile. A fossil tertiary 

clay loam (collected in Lich, Germany, 50°31'2.0"N, 8°50'55.9"E) with pH 5.7, 36% clay content, 0.25% 

total C and 0.025% total N was used. The original soil was amended with sand (25 vol%) in order to 

improve drainage, and the resulting substrate was filled into the experimental pipes.  

Five apomictic Bh hybrids (Bh08 selection: Bh08-1149, Bh08-700, Bh08-675, Bh08-696, Bh08-1253) 

and two germplasm accessions of Bh (CIAT 16888, CIAT 679 cv. Tully) were used as test genotypes 

(Rao et al. 2014). Bh stolons were first propagated from a Bh stock collection at UHOH and transferred 

to a turf-based culture substrate for 3 weeks for root establishment. Then, the young Bh plants were 

transplanted in August 2014 to the experimental pipes and were exposed to supplementary artificial light 

(photosynthetically active radiation averaging 800 µmol m-2 s-1) for 12 h photoperiod. Day and night 

temperature regimes were adjusted to 25°C and 20°C, respectively. Plants were raised with a basal 

fertilizer of N-P-K-S (analog to 30-60-150-35 kg ha-1). After the establishment phase of 6 weeks, plants 
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were cut to 2-3 cm height to facilitate regrowth. The experimental phase commenced with application 

of 150 kg N-NH4
+ ha-1 as (NH4)2SO4 (δ15N = -0.1) to stimulate the growth and activity of soil nitrifiers. 

Plants were watered every second day (with 100 ml H2O), whereas the amount of water applied was 

doubled at 8, 19 and 28 days after N fertilization (DANF) in order to increase leaching of NO3
- derived 

from nitrification. 

Rhizons (Soil Moisture Sampler, Ø 2.3 × 50 mm, porosity 0.1 µm, Eijkelkamp Agrisearch Equipment, 

Giesbeek, Netherlands) were installed horizontally into the pipes at 7.5 cm and 50 cm depth. This 

procedure enabled sampling of soil solution by suction pressure using a common medical syringe. Soil 

solution sampling (0, 3, 6, 7, 10, 14 and 20 DANF from topsoil and at 0, 18 and 27 DANF from 50 cm 

depth) was conducted at 3 hours after irrigation with 100 ml of tap water to warrant sufficient soil 

moisture and time for establishing equilibrium for NO3
- level in the topsoil. A sample of 10 ml of soil 

solution was collected and frozen immediately. Concentration of NO3
- in soil solution samples was 

analyzed by complete reduction to NO2
- through hydrazine (in alkaline solution, with copper as catalyst) 

and subsequent reaction with sulphanilamid and Griess reagent (N-(1-Naphthyl)ethylenediamine) to 

form a pink compound measured photometrically at 550 nm (method DIN38405, ISO/DIS 13395; 

photometer: AutoAnalyzer 3, QuAAtro AQ2, SEAL Analytical Ltd., Southampton, UK).  

Resin bags (ion-exchange resin in a fine nylon mesh) were installed at the bottom of the experimental 

pipe to trap leached NO3
-. This allowed the quantification of cumulative NO3

--losses during the 

experiment. For this purpose, Resinex MX-11 (Jacobi Carbons GmbH, Frankfurt, Germany), a mixed 

anion/cation exchange resin with a maximum anion sorption capacity of 0.4 eq l-1 was used. Each bag 

contained 200 ml resin amended with 200 ml of washed sand in order to slow down percolate passage 

through the coarse resin matrix. The anion traps were removed at the end of the experiment (i.e. at 42 

DANF). The resin was thoroughly homogenized and an aliquot of 40 ml resin of each bag was further 

processed. Extraction of NO3
- was performed twice with 200 ml 2 M KCl and extracts were subsequently 

analyzed photometrically for NO3
- content (see analysis of percolate samples). A pre-test on the 

extractability of Resinex MX-11 verified that a two-fold extraction was sufficient to achieve extraction 

rates of 98% of trapped NO3
-. 
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At 42 DANF, soil solution sampling showed NO3
- levels below the detection limit using a fast NO3

- test 

(< 5 mg NO3
- L-1). This indicated that the main effect of N fertilization should be reflected in terms of 

the δ15N and N uptake amount (mg N g plant dry matter-1). The aboveground shoot biomass (cut 3 cm 

above soil surface) of all 7 Bh genotypes was sampled subsequently and oven-dried (3 days 60°C). Dry 

matter was determined and ground aliquots of plant material were filled into tin capsules (HEKAtech 

GmbH, Wegberg, Germany).  

15N and N% were measured for all plant samples from Experiments 1-3 at UHOH by using a Euro 

Elemental analyzer coupled to a Finnigan Delta continuous-flow isotope ratio mass spectrometer IRMS 

(Thermo Scientific, Bremen, Germany). The 15N natural abundance of the sample relative to the standard 

(atmospheric N2) was expressed as: δ15N‰ = [(Rsample / Rstandard) -1] × 1000 (‰) where R represents the 

isotope ratio (15N/14N) and Rstandard is 15N/14N for atmospheric N2 that is 0.0036765 (δ15N‰ = 0) 

(Robinson 2001). 

4.3.2 Experiment 2: Differences in δ15N leaf and shoot of a wide range of Bh genotypes 

grown under field conditions 

A field trial was established in August 2013 with a range of Bh genotypes with contrasting BNI activity 

at Corpoica-La Libertad Research Center in the Piedmont region of Colombia (4°03'46” N, 73°27'47” 

W). The experimental field site was located at an altitude of 338 meter above sea level with an annual 

mean temperature of 21.4°C and an average annual rainfall of 3,685 mm. The soil is classified as an 

Oxisol with a pH of 4.9, clay content of 42%, total N of 0.11% and C/N ratio of 12.4. The trial included 

4 out of the 5 Bh apomictic hybrids used in Experiment 1 and 4 Bh germplasm accessions. Each main 

plot had a size of 4×4 (16 m2) and received basal fertilization (kg ha-1) in September 2013 of 69 N (urea, 

δ15N=0.05), 25 P, 50 K, 50 Ca, 15 Mg, 10 S, 0.5 B and 2.6 Zn. The second N (100 kg N ha-1 as urea) 

fertilization (26 October 2015) was conducted after leaf sampling for Experiment 3 to stimulate both, 

BNI and soil nitrification. 

For forage productivity and forage quality evaluation, grasses were cut every six weeks from October 

2013 to November 2015. Aboveground shoot biomass samples of each plot were oven dried at 60°C. A 

sub-sample was ground and sent to UHOH for IRMS analysis (see above in Experiment 1). 
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4.3.3 Experiment 3: δ15N of young regrown Bh leaves linked to BNI indicated by soil 

incubation 

Two years after initiation of the field trial described for Experiment 2, a substantial BNI effect was 

expected based on preliminary tests (soil incubation, data not shown). The grass was cut at 5 October 

2015 (end of the rainy season) and all plots received maintenance fertilization (kg ha-1) of 40 P, 75 K, 

110 Ca, 65 Mg, 19 S, 0.9 B and 5.3 Zn. No N fertilizer was applied. It was intended that the plants take 

up soil mineral N and consequently reflect the δ15N of the soil mineral N. To avoid border effects during 

sampling, one sub-plot (1 m²) per main plot were was randomly defined and marked. At 11 days after 

grass cutting (16 October), recently fully expended (second youngest) leaves from the regrown plants 

within the sub-plots were collected from the plots of 3 CIAT accessions as well as from Bh08 hybrids. 

Oven-dried and ground shoot samples were sent to UHOH for 15N and N% measurement (see above in 

Experiment 1). 

Before cutting the grass in the field trial (Experiment 3) and adding the fertilizer in October 2015, topsoil 

samples (0-10 cm) were collected with an auger from 8 randomly chosen points within each sub-plot. 

About 500 g of soil per sub-plot was thoroughly mixed, air-dried for 48 h, sieved (2 mm mesh size) and 

small stones as well as visible root material were removed. Representative sub-samples of 5 g of soil 

from each plot were filled in small glass tubes followed by application of 1.5 ml ammonium sulfate 

((NH4)2SO4) solution as substrate for soil nitrifiers. Tubes were sealed with parafilm that contained 2 

holes for aeration and placed in a dark incubation chamber with constant 25°C and 60% air humidity. 

Soil NO3- was extracted before starting the incubation (basal) and after 5 and 25 days (main active 

phase of nitrification) with 50 ml of 1 M KCl. NO3
- concentrations were determined as described above 

(Experiment 1). Nitrification rates (NRs) were expressed as mg N-NO3
- kg dry soil-1 day-1. 

 

4.3.4 Statistical analysis 

Statistical analysis was performed using the SAS ® version 9.4 (SAS Institute Inc., Cary, NC, USA) 

with a mixed model approach. The assumptions of homogeneity of variance and normal distribution of 
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residual errors were tested through the plots of studentized residuals vs. predicted value and quantile-

quantile-plots, respectively, for all data sets. For the analysis of data from Experiment 2, the following 

model was set up: Genotype + Year + Rep + Genotype × Year. Block was set as random factor. Model 

based least square means were used for data visualization with SigmaPlot for Windows version 12.0. 

(Copyright Systat Software, Inc.). The same software was also used for correlation analysis conducted 

for Experiments 1 and 3. 

 Results 

4.4.1 Experiment 1 (Greenhouse at UHOH, Germany) 

Plant δ15N at harvest (42 DANF) was found to be negatively correlated with plant N uptake amounts 

(p<0.001) (Fig 1a). Furthermore, the relationship between plant δ15N and the amount of cumulative 

leached NO3
- (p=0.018; R²=0.16) was moderately positive (Fig 4.4.1.1b). In case of low N uptake, plant 

δ15N was high, whereas plants with high N uptake were found to have lower plant δ15N (Fig 4.4.1.1a). 

Increased leaching of NO3
--N lead to an increase of the δ15N of remaining N accumulating in the grass 

shoot biomass (Table 4.4.1). Furthermore, plant δ15N of all samples was relatively enriched compared 

to the δ15N of the applied NH4
+ fertilizer (δ15N=-0.1). A linear regression analysis showed an inverse 

relationship (p<0.001; R²=0.37) between plant N uptake and leached N (supplementary material). 
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Fig 4.4.1.1 Linear regression of δ15N (‰) values of Brachiaria humidicola (Bh) aboveground biomass and plant 

N uptake (mg N pot-1) (a) and cumulative leached NO3
- (mg N pot-1) (b). The greenhouse experiment included 7 

Bh genotypes and was established in August 2014. Plants were sampled at 42 days after NH4
+ fertilization (6 

weeks after transplanting to experimental pots). Plant N uptake and leached NO3
- are cumulative amounts 

determined at the date of harvest.  

 

4.4.2 Experiment 2: Yearly δ15N monitoring of Bh genotypes in the field (Field trial La 

Libertad, Colombia) 

The overall year effect showed an obvious trend of decreasing plant δ15N over the experimental seasons 

(p<0.0001) (Fig 4.4.2.1). One month after experiment establishment and N fertilization (October 2013), 

most genotypes tended to a plant δ15N of around 7‰, except for the Bh08-1149 hybrid with a δ15N of 

almost 8‰. One year later (October 2014), δ15N of all genotypes had dropped below 5‰, however, a 

genotypic effect on δ15N abundance was absent (p=0.13). At the last sampling (November 2015), δ15N 

of CIAT 26149 and CIAT 26146 had higher δ15N than the other 3 CIAT accessions and the two Bh08-

hybrids (p=0.02).  

To investigate an expected relationship between δ15N and N uptake by Bh, a regression analysis was 

conducted between the measured plant δ15N and the N concentration (N%) in the respective sampled Bh 
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grass genotypes (Fig 4.4.2.2). A negative correlation (p<0.001) was observed between plant δ15N and 

plant N%, indicating that the higher the N status of the plant is the lower the respective δ15N becomes.   

 

Fig 4.4.2.1 δ15N (‰) plant signature of Brachiaria humidicola (Bh) aboveground biomass of 5 contrasting (in 

terms of BNI) CIAT accessions and 2 hybrids (Bh08-population) with unknown BNI capacity sampled after the 

rainy season in the Colombian Llanos. The field trail was established in August 2013 N fertilizer was applied as 

urea in September 2013 (69 kg N ha-1) and in October 2015 (100 kg N ha-1). 
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Fig. 4.4.2.2 Linear regression of δ15N (‰) and N concentration (%)of Brachiaria humidicola (Bh) aboveground 

biomass of contrasting genotypes (in terms of BNI) sampled after the rainy season in the Colombian Llanos. The 

field trail was established in August 2013 N fertilizer was applied as urea in September 2013 (69 kg N ha-1) and 

in October 2015 (100 kg N ha-1). 

 

4.4.3 Experiment 3: Genotypic leaf δ15N and relation to soil nitrification (Field trial La 

Libertad, Colombia) 

Means of δ15N values of regrown leaves at 11 days after regrowth (October 2015) of the selected Bh 

genotypes were positively correlated with the observed nitrification rates of the respective Bh genotypes 

(p=0.007) (Fig 4.4.3.1). Leaf δ15N means were found to be different among genotypes (p=0.001), 

whereas the genotype effect was not significant for NRs (p=0.74) (Table 4.4.3). In more detail, CIAT 

26146 had highest δ15N leaf signal and the corresponding incubated soil showed highest NR. CIAT 

16888 and CIAT 679, with reported high BNI, had, compared to CIAT 26146, significantly lower 15N 

leaf signals and were among the genotypes tested those with lower nitrification rates.  
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Fig 4.4.3.1 Linear regression of δ15N (‰) in the second youngest leaf of Brachiaria humidicola (Bh) aboveground 

biomass and nitrification rates (mg N-NO3
- kg dry soil-1) determined from incubated soil sampled from the 

respective field plots. The field trial included Bh CIAT accessions with potential of high BNI (CIAT 16888), mid-

high BNI (CIAT 679) and low BNI (CIAT 26146). Additionally, 3 hybrids (Bh08-population) with unknown BNI 

capacity were sampled. The field trail was established in August 2013 in the Colombian Llanos. N fertilizer was 

applied as urea in September 2013 (69 kg N ha-1). Plants were cut back at 5 October 2015 and topsoil (0-10 cm) 

samples were collected from incubation in the laboratory. Leaves of Bh were sampled 11 days after regrowth.  

Table 4.4.3 Nitrification rates (NRs) determined from incubated soil sampled from field plots of 3 Brachiaria 

humidicola (Bh) CIAT accessions and 3 Bh hybrids. Plant δ15N in leaves of the respective Bh plants. SE = standard 

error of the mean. Genotype effect of NRs was not significant (p=0.79). Genotype effect of plant δ15N was p=0.02. 

Different letters indicate significant different means according to Multiple Comparison Procedures (Holm-Sidak 

method).  

B.humidicola Nitrification rate 
SE  Plant δ15N SE  

genotype mg N-NO3
- kg soil day-1  

CIAT 16888 2.24 1.3 3.3a 1.4 

CIAT 679 1.96 0.4 3.5a 0.9 

CIAT 26146 3.86 1.9 10.8b 0.5 

Bh08-1149 1.80 1.2 4.7a 1.2 

Bh08-700 2.91 0.7 7.5ab 0.9 

Bh08-675 2.27 0.5 6.5ab 1.0 
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 Discussion 

4.5.1 Lower plant δ15N is linked to reduced NO3
- losses and high plant N uptake 

Our results of the greenhouse study confirmed the hypothesis that low plant δ15N is linked to enhanced 

N nutrition and reduced NO3
- leaching. Hence, the altered plant isotopic signals were indirectly linked 

to isotopic fractionation of 15N:14N between product (NO3
-) and substrate (NH4

+) during bacterial and 

archaeal nitrification (Delwiche & Steyn 1970; Shearer et al. 1974). This led to subsequent leaching of 

the relatively 15N depleted NO3
-. Our observations (Experiment 1) indicated that with increasing 

amounts of leached NO3
-, the δ15N of the Bh grass increased (Fig. 1b). These results suggest that losses 

of 15N depleted NO3
- resulted in relative enrichment of the plant available N. Similar observations of 

leaching processes leading to an 15N enrichment of the remaining soil NH4
+ have been made by Pardo 

et al. (2007), Craine et al. (2009), and Stevenson et al. (2010). Furthermore, our observation of the 

positive relationship between increasing 15N:14N in vegetation due to increasing nitrification and N 

losses has also been described for leaves of forest trees (Pardo et al. 2002; Garten et al. 2008), cotton 

(Stamatiadis et al. 2006), mixed systems such as grass-heath-woodlands (Huber et al. 2013), as well as 

for comparative studies between perennial and annual grasses (Yé et al. 2015). Furthermore, evaluations 

at various sites demonstrated lower δ15N of NO3
- compared to δ15N of NH4

+ in soil due to nitrification 

(Takebayashi et al. 2010). The yearly field evaluation revealed that 15N signals in Bh decreased with 

improved N status of the grass over time, indicating increased utilization of plant N as also observed in 

Central European grasslands by Kleinebecker et al. (2014). We suggest that in our field trial this was 

caused by decreasing NO3
- losses from the system due to expanded plant (e.g. root system) growth and 

development over the years.  

4.5.2 Long-term BNI effect in the field expressed in low plant δ15N 

The general trend of decreasing plant δ15N of Bh genotypes in the field study over the years indicated 

that N isotope fractionation and consequently the δ15N of the mineral N in the soil changed over time. 

Thus, our results confirmed that during the early stage after establishment of the Bh genotypes, there 

was no significant influence of BNI on microbial nitrification. This observation is consistent with other 

studies on BNI expression with young Bh plants (Miranda et al. 1994; Castoldi et al. 2013; O’Sullivan 
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et al. 2016). Therefore, it is suggested that applied urea N (hydrolyzed to NH4
+ within a few days) during 

transplanting had a strong stimulation effect on growth and activity of soil nitrifiers, and that the 

microbial formed NO3
- was leached rapidly in the first rainy season when the grass was still small. BNI 

was unlikely to be strongly expressed, since plants were less than two months old and a strong BNI 

effect, due to an accumulation of BNI substances in the soil, needs about one year of Bh establishment 

(Nuñez et al. 2018). The high δ15N of Bh plants observed in October 2013 could therefore reflect the 

strong 15N enrichment of the soil mineral N pool caused by substantial nitrification and leaching loss of 

15N depleted NO3
- during the establishment of the trial (Nadelhoffer & Fry 1994; Song et al. 2014). Plant 

δ15N after the second rainy season (October 2014) were lower than the first sampling. BNI ability has 

been shown to be promoted with developing root biomass leading to less nitrification over time 

(Subbarao et al. 2009). Reduced N losses during the second rainy season explained the lower plant δ15N 

caused by a lower 15N enrichment of soil mineral N pool. The general tendency of decreasing 15N natural 

abundance of Bh genotypes over the years was also visible in the third year. This indicated further 

reduction of NO3
- formation and loss due to increase of BNI. This was verified by other soil incubation 

studies (Arango et al., unpublished) revealing low nitrification rates during the second (2014) rainy 

season. In contrast, incubation of soil sampled during the third rainy season (2015) evidenced 

significantly lower average nitrification rates (3.5 mg N-NO3
- kg dry soil-1 day-1). However, since root 

systems expand over the years a general higher uptake of NH4
+ is expected. This could, additionally to 

BNI substance release, increase the competiveness of Bh for NH4
+ and indirectly reduce nitrifier activity.  

4.5.3 Link between high BNI and low leaf δ15N of Bh genotypes 

In our study, we linked leaf δ15N to BNI by Bh. It was evident that low nitrification in incubated soil 

taken from plots, where Bh was cultivated for more than two years, correlated with lower leaf δ15N. 

Exudation of brachialactone by Bh and other known nitrification inhibiting substances (Subbarao et al. 

2009; Gopalakrishnan et al. 2009) are supposed to increase the relative NH4
+-to-NO3

- uptake, thereby 

reflecting primarily the δ15N signal of the plant available soil NH4
+ pool (Kahmen et al. 2008). 

Furthermore, Bh root exudates have been shown to reduce Nitrosmonas europaea populations in soil 

(Gopalakrishnan et al. 2009). Our results thus support the hypothesis that high BNI (low nitrification 
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rates) results in lower leaf δ15N, as observed in our field study. Robinson (2001) suggested to measure 

whole plant δ15N when studies intend to indicate source δ15N in plant tissues to avoid uncertainties in 

isotopic discrimination during partitioning in the plant. In this respect, however, it has to be considered 

that intra-plant 15N discrimination (e.g. root-to-shoot) is generally small when N availability is low or 

when NH4
+ is the primary mineral N form taken up by the plant (Evans 2001).  

4.5.4 Different plant δ15N among contrasting Bh genotypes in terms of BNI 

BNI differences among Bh accessions or hybrids have been revealed (Subbarao et al. 2007; Rao et al. 

2014; Nuñez et al. 2018) and the effect of high BNI is expected to reduce NO3
- formation and leaching 

(Subbarao et al. 2009, 2013). But experimental evidence for the latter is lacking. We observed a strong 

genotypic effect on leaf δ15N in our field studies. For instance, Bh genotypes with low nitrification rates 

in the field (CIAT 16888, CIAT 679, CIAT 26159) showed a strong BNI effect from their root exudates 

on Nitrosomonas europaea (Subbarao et al. 2007). At the end of the field study, the same genotypes 

showed lower δ15N than CIAT 26149 with known low BNI potential (Subbarao et al. 2007). 

Furthermore, the higher leaf δ15N of CIAT 26146 compared to CIAT 16888 and CIAT 679 fit to our 

hypotheses, and earlier BNI evaluations (Subbarao et al. 2009; Nuñez et al. 2018). However, apart from 

BNI, other factors could have altered shoot δ15N of Bh genotypes. Exemplary is the acknowledged 

symbiosis of mycorrhizae with plants (Evans 2001). However, under low N availability the cycling of 

N through the fungus to the plant is rather negligible for plant δ15N (Högberg et al. 1999). 

 Conclusion 

We studied the interlinkages of plant δ15N, BNI, microbial nitrification, N uptake and N leaching losses 

under controlled as well as under field conditions based on a selection of contrasting Bh genotypes. Our 

main conclusion is that high BNI activity decreases plant δ15N of Bh. Thus, the 15N natural abundance 

of grass tissue might be linked to BNI activity in soil, suppressing the growth and activity of bacterial 

and archaeal nitrifiers. As a result, this led to enhanced NH4
+ uptake by Bh and reduced NO3

- losses. 

This ecological concept is enhanced if: (i) BNI is expressed in soil due to long-term presence of Bh; (ii) 

there is a continuous substrate (NH4
+) supply (mineralization, fertilization) so that the source N for plant 

uptake is never converted completely (into NO3
-); and (iii) a significant amount of NO3

- formed by 
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nitrification is leached of the rooting zone of the plants. Since Bh can take up both N forms (Castilla & 

Jackson 1991), the cumulative 15N shoot signal would be confounded in case of NH4
+ and NO3

- uptake 

without nitrate loss. Furthermore, other microbial enzymatic reactions should not mask the 

discrimination process by nitrifiers, such as: (i) volatilization (driven by high soil pH, heat, not 

incorporated N fertilizer); (ii) denitrification (anaerobic conditions, high C availability, NO3
- substrate 

present). However, nitrate substrate left would even be higher enriched in 15N; and (iii) uptake of 15N 

depleted N derived by free living N fixing bacteria. 

Our observations suggest that high BNI along with reduced microbial nitrification (one of the main 

reactions causing 15N:14N fractionation) and N leaching (enriching the remaining soil mineral N with 

15N) are reflected in low δ15N leaf or shoot biomass signals under environments with high NO3
- leaching 

potential. We also suggest that the method described here can serve as an indicator of the extent of NO3
- 

leakiness for BNI field evaluations over the years, if combined with other BNI indicators like the 

abundance and activity of soil nitrifiers under the given conditions set out above. 
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 Supplementary material 

 

Supplementary Figure 1. Linear regression of plant N uptake (mg N pot-1) of Brachiaria humidicola 

(Bh) and cumulative leached NO3
- (mg N pot-1). The greenhouse study (Experiment 1) included 7 Bh 

genotypes and was established in August 2014. Plants were sampled at 42 days after fertilization (6 

weeks after transplanting to experimental pots) with (NH4
+)2SO4. Plant N uptake and leached NO3

- are 

cumulative amounts determined at the date of harvest. 
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5. General Discussion  

 Does residual BNI improve nitrogen use efficiency of subsequent crops? 

Bh pastures have been characterized by low soil NO3
- levels and low nitrification rates (Sylvester-

Bradley et al. 1988; Subbarao et al. 2009). However, the underlying reasons have been unknown for 

some time, until it could be demonstrated in studies under controlled environments that substances 

extracted from Bh (root and shoot) tissue or collected root exudates (Table 5.1) effectively slowed-down 

nitrification when applied to incubated soil or reduced the activity of nitrifying bacteria cultures in 

hydroponics (Subbarao et al. 2007b, 2008; Gopalakrishnan et al. 2009). BNI substances, that seemed to 

be actively released as brachialactone (Subbarao et al. 2009) might accumulate in soil due to continues 

release from Bh roots, indicated by increasing BNI over years in field and pot experiments (Nuñez et al. 

2018). On the other hand, BNI effective free fatty acids and fatty acid esters detected in Bh shoots 

(Subbarao et al. 2008) as well as methyl-p-coumarate and methyl ferulate extracted from Bh roots 

(Gopalakrishnan et al. 2007) might be released during Bh biomass decomposition in the soil. It is likely 

that nitrification is inhibited for prolonged time due to an expected subsequent delivery of BNIs after 

Bh pasture conversion. Therefore, the residual BNI effect by Bh could play an important role in terms 

of N conservation of subsequent N fertilized cropping systems prone to N losses by nitrification (Karwat 

et al. 2017). Rotation of Brachiaria grass with crops, as e.g. maize, rice or soybean, is a known 

management tool in the Brazilian Cerrados to afford the N fertilizer costs for pasture regeneration 

(Kluthcouski et al. 2004; de Oliveira et al. 2004). The practice was established without the knowledge 

of a possible contribution of the residual BNI effect by Brachiaria grasses (Subbarao et al. 2006a, 2009) 

on enhanced N uptake (due to prolonged NH4
+ presence by BNI) by subsequent crops (Muzilli et al. 

2004; Lopes et al. 2004). The case study represented in this dissertation (Chapter 2) showed that the 

conversion of a 15-year-old Bh (cv. Tully) pasture into a maize crop system had a positive effect in 

terms of maize grain yields and plant total N uptake. However, reduced N fertilizer losses, or higher 

fertilizer N uptake by maize due to residual BNI could not be confirmed.  

 

 



100 

 

Table 5.1: BNI substances from Brachiaria humidicola (adapted and modified from: Coskun et al. 2017b)  

 

BNI substances released by Bh inhibit nitrification and consequently slow down microbial conversion 

of NH4
+ to NO3

-. Therefore, residual BNI due to substance delivery from decomposing Bh biomass in 

soil is expected to restrict nitrifiers’ activity and consequently prolong N being available in the form of 

NH4
+, which is less prone to be lost by leaching compared to highly soil mobile NO3

-. Therefore, 

remaining BNI substances retaining nitrification might increase agronomic NUE of crop plants by a 

reduction of N losses from NH4
+ derived by fertilization of from organic matter mineralization (Coskun 

et al. 2017a). In the case study presented in this dissertation (Chapter 2) higher maize grain yields were 

determined in the experimental field site (Bh) of a converted, previous Bh pasture compared to maize 

yields of the control field (M) where maize mono-cropping has been conducted for the previous 15 

years. Furthermore, total N uptake was higher as well as agronomic N use efficiency (ANUE) in maize 

of the Bh field site. However, labeling of NH4
+ fertilizer with 15N allowed to distinguish of maize 

fertilizer N uptake and soil derived N uptake. It could be demonstrated that mineral N from organic 

matter turnover (e.g. in previous Bh plots, first cropping season) was of major importance compared to 

N from mineral fertilizer application in terms of maize N nutrition. 15N recovery of 15N labeled fertilizer 

N in the soil profile indicated in this respect that high amounts of applied N were accumulated in the 

soil profile after harvest, especially in the topsoil (0-10 cm), indicating a strong microbial NH4
+ 

immobilization in the Bh field. Furthermore, information on 15N recovery in maize plants and the soil 

profile allowed to calculate apparent losses of applied 15N. Reduced losses of applied NH4
+ fertilizer due 

Root exudate Brachialactone Bh Blocks AMO and HAO

Methyl ferulate  Bh  roots Released via root decomposition

Methyl p-coumarate Bh  roots Released via root decomposition

Linoleic acid Bh  shoots Blocks AMO and HAO; inhibits urease

Linolenic acid Bh  shoots Blocks AMO and HAO

Methyl linoleate Bh  shoots Most stable BNI in soil; inhibits urease

Tissue extract

Category Compound Source Comments
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to BNI is one of the central promises of BNI (Subbarao et al. 2013b). However, in the presented case 

study this hypothesis could not be confirmed in terms of the residual BNI effect of Bh on a N fertilized 

maize-cropping system.  

Other factors, besides from a potential residual BNI effect, need to be taken into account that likely 

contributed to boost maize yields and N uptake after Bh incorporation in the field: the higher organic 

matter of the Bh site compared to the M site. Furthermore, another factor that is expected to has 

interfered with nitrification was the observed N immobilization. Consequently, substrate (NH4
+) 

shortage for nitrifiers caused by high NH4
+ uptake by heterotrophic microbes was likely to have occurred 

due to long-term accumulation of Bh root biomass with a high C:N ratio (Urquiaga et al. 1998). Both 

mentioned factors might have an altered confounded effect with residual BNI on nitrification activity 

and maize N nutrition. Soil incubations indicated that a significant residual BNI effect was present at 

the beginning of the first maize crop season, but a corresponding low nitrification could not be detected 

in incubated soil taken before the second cropping season. Consequently, it was concluded that a residual 

BNI effect was present in the first maize-cropping season in the previous, converted Bh pasture, but that 

a significant residual BNI effect was absent in the second season. Since more direct methods to measure 

BNI substances, such as brachialactone, in the soil have so far not been developed and without the 

information of the quantity, effectivity and persistence of these substances, more general conclusion in 

terms of the residual BNI effect could not be drawn in the presented study. However, studies on crop-

pasture systems in the Colombian Llanos, e.g. rice planted after conversion of a Brachiaria decumbens 

(Bd) pasture compared to rice cultivation after conversion of a native savanna site (NS) recorded rice 

grain yields exceeding 3 t ha-1 for production on the previous Bd pasture, whereas rice yields following 

NS were below 2 t ha-1 (Sanz et al. 1994). Years later, various grasses and cereal plants were screened 

for BNI (Subbarao et al. 2007a). Among the 18 plant species, Bd showed the second highest total BNI 

release after Bh, and Bd had even higher specific BNI (per g root dry weight) then Bh. Consequently, it 

could be assumed that in the field experiment of Sanz et al. (1994) higher rice yields after Bd compared 

to rice after NS was also influenced positively by a residual BNI effect, however this factor has not been 

accounted for in this early work on crop-pasture rotations. 
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 How long does the residual Bh BNI effect in a cropping systems last? 

Persistence of a potential residual BNI effect might depend on factors as turnover of BNI substances 

from Bh subsequent indirect delivery of BNI active compounds from decaying Bh biomass in soils. 

Different substances were extracted from both, shoots and roots of Bh and have shown to impede 

nitrification in incubated soil or inhibit directly the activity of nitrifying bacteria as, e.g. Nitrosomonas 

sp. (Subbarao et al. 2008, 2009; Gopalakrishnan et al. 2009). The BNI persistence by different 

substances (extracts from Bh shoots and roots or Bh root exudates) varied in studies from 30-120 days 

and depended on the soil type, water content, as well as on the applied amount of a respective BNI 

substance (Ipinmoroti et al. 2008; Gopalakrishnan et al. 2007, 2009). Although not all substances have 

been identified and isolated, there is strong evidence that compounds differ in biochemical terms as e.g. 

water solubility and ion charge patterns (Subbarao et al. 2007b; Ipinmoroti et al. 2008). Anionic or 

cationic charge of a BNI substance would decide over its ability to be adsorbed to soil particles. 

However, it is further unknown if BNI substance lose their effectiveness when attached to the soil matrix 

or if retention time would be positively affected. Furthermore, the hydrophobic and hydrophilic nature 

of a substance might determine the tendency of it to migrate to deeper soil layers, or even be leached 

from the soil matrix. The case study of this dissertation (Chapter 2) could determine that a residual BNI 

effect in incubated soil from the Bh site was still present 6 weeks after pasture conversion. However, a 

significant residual BNI efficacy could not be confirmed before the second maize crop season after Bh 

pasture conversion. Different results in terms of presence and persistence of the residual BNI effect 

appear from a comparable approach that investigated the residual BNI effect of a 10-year-old Bh pasture 

converted to maize cropping (Arango et al., unpublished). Soil Incubation results from this study 

suggested that the residual BNI effect was not present in the first year but rather in the second and third 

year after Bh pasture conversion. It is assumed that the residual BNI effect persisted longer in the study 

of Arango et al. (unpublished) compared to the study in this dissertation (Chapter 2) due to 3 major 

reasons: slower Bh plant residue turnover in the soil, and therefore delayed BNI substances release from 

Bh biomass (i); lower rainfall and consequently expected lower BNI substance losses due to leaching 

(ii); and higher BNI substance fixation in the previous Bh pasture due to high clay contents in the sub-

soil. Summarizing the current findings on residual BNI persistence the operating point is the interaction 
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of the potential BNI substance amount (derived before pasture conversion and released during Bh 

composition) and the biochemical nature of the respective BNI substances with edaphic factors as soil 

texture, drainage and charge of soil particles are suggested to alter the persistence of a residual BNI 

effect.  

 Is BNI a pathway to a climate smart agriculture? 

NH4
+ based fertilizer is rapidly nitrified, specifically when plants are still young and the small NH4

+ 

uptake is low due to small roots systems (Schröder et al. 2000). NO3
- leaching and N2O emissions 

represent major pathways of N losses from agricultural systems and contributing to the low nitrogen use 

efficiency (NUE) in N fertilized cropping systems under high rainfall conditions of the tropics (Francis 

et al. 1993; Hilton et al. 1994; Raun & Johnson 1999). Whereas NO3
- itself is one of the nutrients that 

pollutes water bodies, N2O emissions contributes negatively to climate change due to its high GHG 

potential (Baligar et al. 2001). Since BNI activity by plants potentially reduces NO3
- formation and 

therefore indirectly N2O emission it could be speculated that BNI could be used to make agroecosystems 

more environmental friendly (Subbarao et al. 2013b; Coskun et al. 2017a). Especially the indirect 

reducing effect of N2O formation by induced NO3
- shortage fostered by BNI is a promising point among 

BNI researchers (Rao et al. 2014). Punctual losses of N in tropical rangeland systems can occur by high 

amounts of urine by cattle (Ferreira et al. 1995). If Brachiaria grasses are used in pasture systems, it 

could result in reduced N2O emissions as reported by Byrnes et al. (2017) and potentially also reduce N 

losses via NO3
- leaching. The field study of this dissertation (Chapter 2) aimed to investigate for the first 

time the residual BNI effect on N2O emissions. Significant reduced N2O emission in the maize system 

established on the previous Bh pasture site could not be confirmed. Generally, the measured N2O values 

were low for an intensive N fertilized maize systems. For instance, emissions for the M site were even 

lower than reported for a Bh CIAT 679 pasture (Subbarao et al. 2009). However, certain factors might 

have altered the N2O emissions and masked a possible potential N2O reduction effect by residual BNI. 

Denitrification depends on soil water saturation levels and linked O2 levels, NO3
- availability for 

denitrifiers, and availability of C for heterotrophic denitrifying microbes (Firestone & Davidson 1989). 

The expected large accumulated C in soil by Bh root biomass (Fisher et al. 1994; Amézquita et al. 2004), 

indicated by the soil organic matter levels in the Bh field site of the study (Chapter 2) might have spurred 
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denitrification. The lower organic matter of the soil from the control field M complicated a direct 

comparison of measured N2O emissions between the fields. Furthermore, the synthetic nitrification 

inhibitor showed no depressing effect in terms of N2O formation and could consequently not be used as 

a reliable control in the field study. According to the study of Chapter 2, it was suggested that the residual 

BNI effect on N2O emissions does not necessarily reduce N2O emissions as the in situ pasture BNI effect 

(Subbarao et al. 2009; Byrnes et al. 2017).  

Both microbial reactions, nitrification and denitrification, contribute to N2O emissions. Molecular 

methods could be used to detect contribution of either both groups. This is crucial since BNI primarily 

inhibits nitrification and only indirectly denitrification, by reducing the substrate (NO3
-) for denitrifying 

microbes. For instance, DNA extraction from soil with subsequent quantification of nitrifiers genes 

(amoA) or denitrifiers genes (nosZ) combined with N20 measurements (Henderson et al. 2010) would 

give a rather complete picture to clarify both, the effect of the actual and the effect of residual BNI on 

N2O emissions.  

 δ15N in plant tissue as proxy of BNI induced altered N losses  

The negative economic and environmental factors due to NO3
- leaching from agricultural land have been 

described by many authors (Coskun et al. 2017a). One of the main hypothesis related to BNI is that it 

could be used as tool to reduce NO3
- leaching in agroecosystems (Di et al. 2016; Subbarao et al. 2017). 

Evidence of low soil NO3
- levels linked to BNI activity by Bh appear in many studies (Sylvester-Bradley 

et al. 1988; Ishikawa et al. 2003; Subbarao et al. 2009). Furthermore, a reduction of nitrification itself 

by application of Bh root exudates could already be revealed (Gopalakrishnan et al. 2009). However, 

the theoretically linked reduced NO3
- leaching due to actual or residual BNI has not yet been 

demonstrated (Chapter 3). In regard of this underlying idea, it is expected that BNI extends the retention 

time of N in the form of the less mobile NH4
+. It is consequently speculated that plant N uptake is 

enhanced and N losses (in form of leached NO3
- derived by nitrification and N2O by reduction of NO3

- 

due to denitrification) is reduced due to effective BNI (Subbarao et al. 2006a, b, c, 2013b).  

Quantifying NO3
- leaching losses in the field is labor intensive and prone to be biased my many factors. 

For instance, resin cores installed under an undisturbed soil profile to capture total leached NO3
- over 
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certain periods and extraction of NO3
- from the resin could give certain indices about cumulative NO3

- 

leaching (Bischoff 2007). Whereas the use of NO3
- traps with cationic resins is feasible in pot studies 

(Chapter 4) certain difficulties in the field complicate the use of this technique. For instance, biofilms 

could consume captured NO3
- from the resin. Furthermore, water logging might cause denitrification 

and consequently provoke losses of NO3
- from the trap in the form of N2O, or lateral water flow biasing 

the trapped amount of NO3
-. Another issue is the destruction of the soil profile during installation of the 

anion trap from a side tunnel in the field. The mentioned complications could have discouraged BNI 

research to examine if the hypothesis of reduced NO3
- leaching due to BNI holds true. Consequently, 

development of simple indicators for NO3
- leaching could contribute to check the mentioned hypothesis. 

Furthermore, enhanced plant N uptake linked to BNI is another promising point (Subbarao et al. 2012). 

However, this could only be shown for the residual BNI effect on maize (Karwat et al. 2017) and for 

BNI on NUE (NH4
+ uptake by roots from nutrient solutions) in certain rice genotypes (Sun et al. 2016). 

Consequently, the expected positive impact of BNI on enhanced N uptake is still pending.  

To illuminate the positive effects of both, reduced NO3
- leaching and higher N uptake, a new method 

was tested, as described in Chapter 4. Briefly, it could be demonstrated in a greenhouse study, that the 

natural abundance of 15N in Bh grass is certainly linked to N uptake and N leaching loss of NO3
-. 

Furthermore, reduced NO3
- formation in incubated soil from Bh field plots was linked to respective 

lower δ15N values of Bh. Consequently, it was concluded, that plant δ15N could serve to indicate 

differences in total NO3
- leaching losses between Bh genotypes under the same experimental conditions. 

δ15N of plants are influenced by physiological and biochemical processes of the N cycle (Högberg 1997; 

Robinson 2001) where nitrification is one of the main enzymatic reactions showing strong 15N:14N 

fractionation.  

However, a major drawback of the 15N natural abundance method is, that also other processes such as 

denitrification and NH3 volatilization potentially alter the 15N signature of soil mineral N pools. Possible 

isotopic effects due to denitrification (Mariotti et al. 1988) need to be considered under anaerobic 

conditions, e.g. in deeper soil layers were NO3
- would consequently become enriched due to gaseous 

losses of 15N depleted N2O. If plant δ15N is altered by denitrification depends on the spatial availability 



106 

 

of the remaining NO3
- for the plant. The other important process, NH3 volatilization, is driven by high 

temperatures and high soil pH, and furthermore is accelerated when NH4
+ based fertilizers are not 

incorporated (Harrison & Webb 2001). Consequently, remaining mineral N would become 15N enriched 

due to losses of 15N depleted NH3 (Ariz et al. 2011). Potential uptake of this relatively 15N enriched N 

would increase plant δ15N. Eventually, the 15N plant signature could not be related to nitrification if NH3 

volatilizations occurs. However, the presented experiments in the framework of this dissertation have 

been conducted with low pH soil. Consequently, NH3 volatilization is supposed to be a negligible 

process in terms of 15N: 14N fractionation in our studies. 

In terms of N isotopic fractionation by denitrification and NH3 volatilization that potentially could mask 

the actual isotopic fractionation effect by nitrification, some theoretical considerations could be made 

to avoid complications. Consequently, nitrification is the main process responsible for 15N:14N 

fractionation in soils with pH < 7. On the other hand, if pH > 7, volatilization of NH3 might also influence 

the 15N signature of the remaining NH4
+. To avoid complications with NH3 volatilization, applied N 

should be quickly incorporated (e.g. applied as solution), especially under high temperatures. To 

minimize the influence of denitrification on 15N abundance of NH4
+, anaerobic conditions (e.g. over long 

periods) should be avoided. Consequently, the presented research on 15N natural abundance in Bh shoot 

tissue has been conducted under low pH soil aerobic conditions. 

N isotopic fractionation could also occur during N transport within plants, and therefore different δ15N 

values could be observed in different plant tissues. However, a significant correlation between δ15N in 

main leaves and stolon leaves of the same Bh plant was measured by the author (data not shown). 

Consequently, it appeared that either the comparison of stolon or main leaves among different treatments 

(e.g. Bh genotypes) could deliver the same information. Generally, each transformation step of mineral 

N into finally assimilated organic N in plants discriminates against 15N. This within-plant fractionation 

is especially crucial (for grasses as Bh) between root and shoot. This occurs since mineral N assimilation 

might take part in a different tissue as metabolized products (amino acids) are stored. For instance, NO3
- 

first has to be reduced in two steps (by nitrate reductase and nitrite reductase) to NH3 before it can be 

assimilated into glutamate and glutamine respectively by glutamine synthetase and glutamate synthase. 
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Nitrate reductase has been shown to cause 15N:14N fractionation when substrate (NO3
-) to enzyme (NR) 

ratio was high (e.g. under high NO3
- availability) (Mariotti et al. 1982). This enzymatic step is of 

importance when the site of NO3
- reduction and NH3 assimilation in the plant is not identical. It could 

be demonstrated for Bh, that NO3
- reduction takes mainly part in the shoot (Chapter 4). NH3 assimilation 

takes normally part in the roots and therefore high 15N discrimination between shoot and root in Bh 

under high NO3
- availability is suggested. Evidence for this appeared in an experiment related to Chapter 

4 (Figure 5.2.1), where significant different 15N values in root and shoots of Bh were observed under 

high NO3
- nutrition. Furthermore, the observed δ15N values in the two tissues of Bh indicated that 15N 

discrimination between shoot and root is primarily driven by N availability and not by the N form (Fig 

5.2.2). However, the information derived from this study is limited since plants were harvested already 

72 hours after N addition. Therefore, a possible effect on root and shoot δ15N due to expected decreasing 

substrate-to-enzyme-ratio over time is missing and straightforward conclusions could not be drawn.  

 

Fig 5.2.1 15N‰ values in second last developed leaves and cumulative root samples of Bh (CIAT 679) corrected 

by the 15N‰ values of the respective N fertilizer signature. Bh has been grown in a sand-perlite mix, N has been 

fertilized in form of NO3
- as nutrient solution. Treatments differ in terms of N-NO3

- concentration in the applied 

nutrient solution. Respective δ15N‰ signal of the fertilizer: NO3
- = 17.08. Bars with same letters are not 

significantly different.  
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Fig 5.2.2 15N‰ values in second last developed leaves and cumulative root samples of Bh (CIAT 679) corrected 

by the 15N‰ values of the respective N fertilizer signature. Bh has been grown in a sand-perlite mix, N has been 

fertilized in form of either NO3
-, NH4

+ or NH4
++DMPP as nutrient solution. Respective δ15N‰ signal of the 

fertilizer: NO3
- = 17.08; NH4

+ = -0.11; NH4
+ & DMPP = -0.205. Bars with same letters are not significantly 

different. 

Further complications of the 15N natural abundance method in terms of indicating lower NO3
- losses due 

to BNI theoretically appear for low BNI Bh genotypes or young Bh plants. The 15N signature of the plant 

could be confounded under substantial nitrification activity by uptake of both, NH4
+ and NO3

- with 

respective different δ15N values. Since it appeared that Bh is highly efficient in the uptake of both N 

forms (Castillo & Jackson, 1991), a mix of NH4
+ and NO3

- nutrition might display a major error source. 

To interpret the δ15N values appropriately and link them to BNI reduced NO3
- leaching, the experiment 

needs to be designed in a way that nitrification derived 15N depleted NO3
- is rather leached and that the 

grass cannot take it up. The complication appeared in terms of the fact that a significant BNI effect could 

not be confirmed in Chapter 4.3.1, since plants were simply too young or root density was too low to 

manifest a significant depressing effect on nitrification. However, in a later stage of the greenhouse trial 

sampling of Bh grass with a higher root density (when a possible BNI effect would have been more 

likely) leaching of NO3
- could have been biased by high NO3

- uptake by the larger rooting system. The 
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dilemma of insufficient rooting (BNI not dominant over gross nitrification in the pot) and excessive 

rooting (large plant uptake of NO3
- and consequently biased trapped NO3

- for quantification) is evident 

for all pot studies. However, in the field, soil depth is not limited and NO3
- leaching is more likely as 

compared to depth limited systems, as e.g. pot studies. Therefore, using δ15N values of Bh plants as 

indicator of long-term NO3
- losses and BNI efficiency might rather be an appropriate tool for field 

studies. 

A general question is when plant samples should be taken after N addition to reflect BNI in δ15N shoot 

samples. NH4
+ has been identified to trigger BNI substance release and is also necessary as substrate for 

nitrifiers. However strong discrimination against 15N during uptake and assimilation has been observed 

by the author in some greenhouse and field studies, when δ15N was monitored in sampled leaves 

(Egenolf et al. 2015). Consequently, it is suggested to wait until substrate-to-enzyme-ratio is more 

balanced, sometime after N application. On the other hand, 15N signature of NO3
- will increase when 

substrate is fully converted (Robinson et al. 2001). Complete conversion of substrate could occur e.g., 

in experiments with closed systems (e.g. nutrient solutions, pot studies with sand). At the point of full 

substrate conversion to product, the plant signature would theoretically be close or equal to the original 

substrate signature (Yoneyama et al. 2001) and isotopic15N:14N discrimination by nitrification is 

masked. Although, the product will always be relatively 15N reduced compared to substrate under 

constant subsequent supply or infinite substrate flow (Evans 2001), as for instance, in the field or pot 

studies due to soil buffer capacity.  

From an agroecological point of view, enhanced N uptake and reduced NO3
- losses from Bh pastures 

might be of minor importance. However, there is insufficient information concerning differences of 

NO3
- leaching losses of N fertilized (enhanced or well-managed) Bh pastures compared to non N 

fertilized Bh pastures. Overall, Bh is very efficient in N uptake, has no preference for one mineral N 

form and a large root system. Even a low BNI type with an extensive root system could catch nitrification 

derived NO3
- during leaching also from deeper layers, even under submergence. Therefore, speculating 

that BNI by Bh might play a major role for N uptake of the grass per se is doubtful, since even low BNI 
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accessions (e.g. CIAT 26146) have shown high N uptake and high biomass production in field and pot 

studies (Moreta et al., unpublished).  

 Nitrate reductase activity as proxy to identify differences in terms of BNI after N 

addition  

Discrepancies between BNI potentials of Bh genotypes assessed by the bioassay method (Subbarao et 

al. 2006b, 2009) and the BNI effect observed in incubated soil are known from other studies (Subbarao 

et al. 2006a; Nuñez et al. 2018). Furthermore, these methodological approaches to characterize BNI by 

Bh are either destructive or conducted under artificial environments, that hinder drawing of 

straightforward predictions on the real-time BNI performance. Furthermore, potential fluctuations of 

BNI expression of Bh in the field with these methods could only be observed with labor-intensive time-

shifted sampling. Additionally, the soil incubation might confound a BNI effect by soil attached BNI 

substances and an N immobilization depressing effect on nitrification (Chapter 2). In Chapter 3 of this 

dissertation an approach was introduced to identify contrasting in vivo BNI expression under field 

conditions, with a minimal disturbance of the soil-plant system. This new proxy for BNI enables a real-

time BNI assessment based on a well-adapted enzymatic assay known for decades already (Jaworski 

1971). Leaf samples simply serve as the target tissue and the measured activity of the nitrate reductase 

activity (NRA) has been shown to be linked with BNI potentials (determined by the soil incubation 

method), soil nitrification indicators (soil NO3
-) and NO3

- plant status (NO3
- in stem sap). The main 

advantage of the NRA assay compared to bioassays in hydroponics is, that it reflects the effect of BNI 

on the complete nitrifier populations in the soil, and not just on a few selected bacterial strains (Subbarao 

et al. 2006a; O’Sullivan et al. 2016, 2017). An advantage of the NRA method compared to soil 

incubations is that it does not alter soil microbial dynamics per se, since the root-soil system remains 

untouched. Enzymatic assays measuring NRA have been used by others to indicate potential NO3
- 

assimilation (Barford & Lajtha 1992), or to subscript contrasting nitrification activities in tropical 

grassland savannas (Lata et al. 1999). The underlying theory is that BNI reduces NO3
- derived by 

nitrification, and that in this regard less NO3
- is taken up by the plants. Less NO3

- uptake and assimilation 

is consequently reflected in respective low leaf NRA (Högberg et al. 1986; Högbom et al. 2002). The 

presented study (Chapter 3) not only contributes to BNI research with a new potential in vivo BNI proxy, 



111 

 

but it also delivered some valuable insights into the N assimilation pattern of Bh. One is, that Bh reduces 

NO3
- mainly in shoots and not in roots. Higher in vivo NRA in sampled leaves was clearly related to 

higher NO3
- soil and plant status (excess NO3

- stored in vacuoles [Tegeder & Masclaux-Daubresse, 

2017]) of the pre-sampled Bh grass. Contrasting Bh genotypes did not show significant different NRA 

per se under efficient synthetic nitrification inhibition (NH4
++DMPP) or pure NO3

- nutrition. However, 

different NRA patterns among the genotypes were finally observed under NH4
+ application, and this 

was clearly related to contrasting soil nitrification patterns that consequently was due to different BNI 

patters of the Bh genotypes.  

However, it could be speculated about certain limitations of the NRA method for further BNI detection. 

From the conducted research the presented NRA method could not detect expected small BNI 

differences between certain Bh genotypes. For instance, Bh CIAT 679 was classified as medium-BNI 

and CIAT 16888 as high-BNI (Subbarao et al. 2007a, 2009). However, in the case study of Chapter 3, 

classification with the NRA and the soil incubation method indicated that the two CIAT accessions did 

not differ in terms of BNI. However, the observed similar BNI expression of the 2 CIAT accession is in 

line with the observation by Nuñez et al. (2018). Therefore, either the NRA method and the 

methodological approaches by Nuñez et al. (2018) are lacking the necessary sensitivity to capture BNI 

differences of the two CIAT accessions, or it should be considered, that the used bioassay method by 

Subbarao et al. under- or overestimates the actual BNI of certain genotypes. Eventually, Bh genotypes 

have expressed BNI differently in the mentioned experiments of the different authors. This is evident 

from additional NRA data related to Chapter 3 (Table 5.3.1), which could be related to soil NO3
- 

indicators. Therefore, it is suggested that the NRA assay was able to capture this genotypic BNI 

inconsistency. However, the particular factors that restricted the expression of the high BNI potential of 

the CIAT accessions in the greenhouse study could not be identified.  
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Table 5.3.1 Nitrate reductase activity (NRA in µmol NO2
- g FW-1 h-1) measured in leaves of different Bh genotypes 

sampled 9 days after N fertilization from a greenhouse and 8 days after N fertilization from a field experiment (cp. 

Chapter 3). SE = standard error of the mean. Different letters indicate significant differences among the means per 

row at = 0.05.  

          

Bh genotype Experiment 2 (Greenhouse) Experiment 3 (Field) 

     

          

 NRA day 9 SE NRA day 8 SE 

 (µmol NO2
- g FW-1 h-1) (µmol NO2

- g FW-1 h-1) 

     

         

CIAT 679 1.00b 0.18 0.80cd 0.28 

CIAT 16888 1.31a 0.11 0.40d 0.07 

Bh08-1149 0.60c 0.11 1.11ab 0.30 

Bh08-0700 0.48c 0.06 0.98ab 0.22 

Bh08-0675 0.30c 0.03 1.38a 0.18 

          
 

Other morphological differences among contrasting BNI Bh genotypes e.g. different root systems, might 

also play a role in terms of secondary effects on nitrification activity. For instance, a genotype with a 

large root system might contribute to more organic C supply (in form of root residues) to the rhizosphere 

and foster N immobilization, which might negatively affect nitrification. The difference between the 

direct effect of BNI substances and a potential secondary effect on nitrification by root biomass could 

unlikely be detected by the NRA method. Plant NO3
- uptake rate is also rate limited by the rooting size, 

e.g. if there are severe differences among the root systems among Bh genotypes. Consequently, this 

could also influence NO3
- uptake amounts and ultimately in vivo NRA. Furthermore, enzyme activity in 

plants is generally dependent on the energy status of the plant, e.g. on photosynthesis. Two important 

environmental factors are primarily important for photosynthetic activity and linked metabolism such 

as enzyme synthesis. NRA is influenced by temperature (Fig 5.3.1) and radiation, and consequently 

comparisons of absolute NRA values can only be conducted among Bh candidates under similar 

environmental conditions. In case the method is used to screen for in vivo BNI in large field sites, factors 

affecting NRA, such as light and temperature, should be taken into account. For instance, trees or hedges 

might provoke heterogeneous shading of the trial and could therefore cause a decreasing effect on the 
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enzyme activity. However, it is possible to compensate for natural fluctuations due to heterogeneity, as 

demonstrated in the field study of Chapter 3: absolute NRA was corrected by gross-NRA (subtraction 

of the NRA under -N conditions from NRA under +N treatment) which results in the net effect of the N 

fertilizer treatment on NRA.  
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Fig 5.3.1 Nitrate reductase activity (NRA) in leaves of two Brachiaria humidicola (Bh) accession (CIAT 679 and 

CIAT 16888) and daily maximum temperature (in °C). Leaves were sampled frequently for NRA determination 

in July 2015 after cutting back the grass from a field site at CIAT, Colombia. The field trial was established on 

August 2004, on a Vertisol, pH 7.4. Data source: Sparke et al., 2016.  

 

The NRA method depends on a representative uptake of nitrification derived NO3
- to straightforward 

reflect soil BNI effects in the activity of leaf NR. Strong NO3
- leaching could therefore be a potential 

biasing factor. To avoid this, the field study of Chapter 3 has been conducted at the beginning of the dry 

season to avoid a major bias by high NO3
- leaching, that occurs mainly in the rainy season. On the other 

hand, plants enhance rooting under lower water availability and could enhance N uptake compared to 
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the dry season. Consequently, it should be tested if the NRA method would also be a suitable method in 

seasons or environments with high precipitation intensity, since this has so far not been tested.  

For Bh no preference for either NO3
- or NH4

+ could not be detected (Castilla & Jackson 1991) but in 

terms of suitability of the NRA assay to screen for BNI in other plants, a potential N form preference 

need to be taken into account. If there is a preference of a plant species for NO3
-, e.g. as for Sorghum 

bicolor (Li et al. 2013), it could still be speculated that this would not influence the uptake of NO3
- per 

se, since the rate limiting step is NO3
- availability in the soil. The latter depends mainly on the 

nitrification activity which is dominated by BNI. Therefore, successful BNI in vivo characterization of 

plants with NO3
- preference should be tested. In contrast, NH4

+ preference might constitute a potential 

bias of the NRA. A plant privileging NH4
+ would only under NH4

+ shortage feed on NO3
- and therefore 

NRA would not indicate soil NO3
- availability. It could therefore be hypothesized that the NRA assay 

might not be a suitable BNI screening tool for e.g. Oryza sativa (Li et al. 2013) which prefers NH4
+ over 

NO3
-. For further testing, it is suggested to determine the tissue where NR is primarily active. For 

instance, for Zea mays NRA has been shown to be 7 times higher in leaves as in roots (Murphy & Lewis 

1978), and it would therefore be suggested to use shoot (leaves or stems) as target tissue.  

 Alternative methods to investigate BNI applicability and accuracy  

Overall alternative methods for BNI detection and characterization with a minimum of disturbance of 

the plant-soil-microbe-system would be beneficial to capture fluctuations, triggers and impact of BNI 

efflux. Some of the methods discussed in this dissertation could be further developed.  

The observation of mineral N in the soil incubation studies used in the case studies of this dissertation 

could not distinguish between the primary effect of BNI substances on nitrification and a secondary 

effect of fine roots as C source increasing NH4
+ immobilization thereby constraining nitrification. This 

is a known effect as for instance it was shown that nitrification in incubated soil was inhibited by simply 

adding glucose (as C source treatment) that increased N uptake by heterotrophs (Nardi et al. 2013). The 

use of 15N labeled NH4
+ and its subsequent detection in microbial organic N would be an option to get 

insights into gross mineralization rates (Miranda et al. 1994; Urquiaga et al. 1998) while the use of 

15NO3
- could inform about gross nitrification. Furthermore, soil N dynamics are altered by drying and 
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crushing and mixing the soil (Schimel et al. 1989). Consequently, combined with 15N labeled N, the use 

of intact soil cores should be contemplable (Davidson et al. 1991) and might deliver further insights into 

N dynamics altered by BNI.  

Another method that has shown potential for further testing was the measurement of taken up pre-

assimilated NO₃ ⁻ (Chapter 3) in Bh stems. Prior to its reduction and assimilation NO₃⁻ is generally 

accumulated in vacuoles of roots and shoots of plants (Li et al. 2013; Tegeder & Masclaux-Daubresse 

2017). In the presented case study (Chapter 3) NO₃⁻ in stem sap was accomplished by squeezing out 

stem samples and followed by NO₃⁻ quantification with test stripes. The detected NO₃⁻ levels in stems 

of contrasting Bh genotypes were significantly linked to soil NO₃⁻ indicators and the NRA of leaves 

samples. It is therefore assumed that there is an inverse relationship between BNI and NO₃⁻ in tissue 

contents. However, the method needs further standardization in terms of the target tissue and the 

representative amount that is sampled. The potential advantages would be the easy handling and 

relatively cheap equipment. Furthermore, the method is also non-invasive in terms of the plant-soil 

system and would allow in-field BNI characterization.
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Summary 

Nitrogen (N) losses from agroecosystems harm the environment via increased nitrate (NO3
-) amounts in 

water-bodies and nitrous oxide (N2O) emissions to the atmosphere. NO3
- is the product of the soil 

metabolic microbial process nitrification. Bacteria and archaea oxidize ammonium (NH4
+) to NO3

- under 

aerobic conditions. Furthermore, under mainly anaerobic conditions, microbial denitrification reduces 

NO3
- to gaseous N forms. In particular, the herby produced potent greenhouse gas nitrous oxide (N2O) 

negatively affects the atmosphere. Synthetic nitrification inhibitors have been shown to lose their 

efficacy under humid tropical conditions shortly after application and are furthermore too costly for 

smallholders in the tropics. The tropical forage grass Brachiaria humidicola (Rendle) Schweick (Bh) 

has been shown to reduce soil microbial nitrification via root derived substances. Therefore, biological 

nitrification inhibition (BNI) by Bh might contribute to reduction of N losses from agroecosystems.  

Whereas N losses from well managed tropical pasture systems are expected to be rather low, crops 

cultivated under high N fertilization are characterized by high N losses and low N use efficiency. 

Rotation of Brachiaria pastures with crops such as rice, maize or soybean are common. However, the 

role of a potential residual BNI by Bh on a subsequent (non-BNI) crop system has so far not been 

investigated. Genotypic differences in terms of BNI within Bh have been reported. Furthermore, there 

is evidence that higher BNI potentials of recently developed Bh hybrids exceed the BNI effect of Bh 

standard cultivars. However, BNI potentials evaluated by hydroponic based methods of certain Bh 

genotypes could not consequently be confirmed in the field. The development of new BNI indicators 

for use under field conditions could contribute to close the gap between assessed BNI potentials 

determined under controlled conditions and BNI efficiency in the field. BNI might reduce nitrification 

derived NO3
- formation and could consequently reduce NO3

- leaching losses. However, reduced NO3
- 

leaching by effective BNI has not been demonstrated yet. 

The present doctoral thesis aimed at assessing the potential of the actual BNI by Bh, as well as the 

residual BNI effect with new developed methodologies. The overall research was based on the following 

major objectives: (1) characterization of the residual BNI effect by Bh on recovery of N by subsequent 

cropped maize (Zea mays L.) under different N fertilization rates; (2) investigate if low enzymatic nitrate 



132 

 

reductase activity (NRA) in leaves of Bh is linked to reduced NO3
- nutrition by effective BNI; (3) 

identify a possible link between plant δ15N of Bh and the BNI effect of different Bh genotypes on 

nitrification, plant N uptake and NO3
- leaching losses. The overall objective was to use and test new 

methodologies with a minimum of disturbance of the plant-soil system, to characterize BNI of different 

Bh genotypes in greenhouse and field studies.  

The methodological approach comprised a combination of greenhouse based pot and field experiments. 

Bh plant material included accessions developed by the International Center for Tropical Agriculture 

(CIAT) with known BNI capacity, as well as newly developed Bh hybrids by CIAT with unknown BNI 

potentials. Soil incubation studies were used to monitor the influence of BNI on N dynamics such as 

nitrification, mineralization and N immobilization. Synthetic nitrification inhibitors, e.g. dicyandiamide 

(DCD) or 3,4-dimethylpyrazole phosphate (DMPP), were used as controls to BNI. Monitoring of N2O 

emissions was conducted with the closed chamber method with subsequent gas sample analysis with a 

gas chromatograph. Furthermore, two different stable N approaches were used: the 15N natural 

abundance method, and the 15N dilution method where plant and soil samples were measured with a 

continuous-flow isotope ratio mass spectrometer (IRMS). An enzymatic assay based on the activity of 

the enzyme nitrate reductase (NR) in leaves of Bh has also been tested.  

The first research study focused on the investigation of a potential residual BNI effect of a converted 

long-term Bh pasture on subsequent maize cropping, where a long-term maize monocrop field served 

as control. The residual BNI effect was characterized in terms of enhanced maize grain yield, total N 

uptake and 15N (labeled) fertilizer recovery. Furthermore, the impact of residual BNI effect on soil N 

dynamics was investigated. The residual BNI effect was confirmed for the first maize crop season after 

pasture conversion on the basis of lower nitrification in incubation soil, higher total N uptake and higher 

maize grain yields. However, the residual BNI effect did not result in higher 15N fertilizer uptake or 

reduced 15N fertilizer losses, nor in reduced N20 emissions. Applied N was strongly immobilized due to 

long-term root turnover effects, while a significant residual BNI effect from Bh prevented re-mineralized 

N from rapid nitrification resulting in improved maize performance. A significant residual Bh BNI effect 

was evident for less than one year only. 
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In the second research study it was the aim to verify the potential of nitrate reductase activity (NRA) as 

a proxy for the detection of in vivo performance of BNI by selected Bh accessions and genotypes grown 

under contrasting fertilization regimes. NRA was detected in Bh leaves rather than in roots, regardless 

of NO3
- availability. Leaf NRA correlated with NO3

- contents in soils and stem sap of contrasting Bh 

genotypes substantiating its use as a proxy of in vivo performance of BNI. The leaf NRA assay facilitated 

a rapid screening of contrasting Bh genotypes for their differences in in vivo performance of BNI under 

field and greenhouse conditions; but inconsistency of the BNI potential by selected Bh genotypes was 

observed.  

The third research study emphasized to link the natural abundance of 15N (δ) in Bh plants with reduced 

NO3
- losses and enhanced N uptake due to BNI. Increased leached NO3

- was positively correlated to 

rising δ15N in Bh grass, whereas the correlation between plant N uptake and plant δ15N was inverse. 

Long-term field cultivation of Bh decreased nitrification in incubated soil, whereas δ15N of Bh declined 

and plant N% rose over time. δ15N of Bh correlated positively with assessed nitrification rates in 

incubated soil. It was concluded that decreasing δ15N of Bh over time reflects the long-term effect of 

BNI linked to lower NO3
- formation and reduced NO3

- leaching, and that generally higher BNI activity 

of Bh is indicated by lower δ15N plant values.  

Within the framework of this thesis, a residual BNI effect by Bh on maize cropping could be confirmed 

for one season due to the combined methodological approaches of soil incubation and 15N recovery. The 

development of the NRA assay for sampled Bh leaves was validated as a rapid and reliable method 

linked to the actual soil nitrification after NH4
+ fertilizer supply. Consequently, the assay could be used 

for both greenhouse and field studies as BNI proxy. The possibility to perform several sampling intervals 

using the same plants allowed to detect fluctuations of BNI without major disturbance of the studied 

plant-soil environment. This methodological advances in methodology show a clear advantage in terms 

of real-time BNI performance monitoring in comparison to commonly used hydroponic-root exudation 

studies. The gathered data from the third study indicated that decreasing δ15N of Bh over time reflects 

the long-term effect of BNI linked to lower NO3
- formation and reduced NO3

- leaching, and that 

generally higher BNI activity of Bh is indicated by lower δ15N plant values. Consequently, it was 
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suggested that δ15N of Bh could serve as an indicator of cumulative NO3
- losses. Overall, this doctoral 

thesis suggests the depressing effect on nitrification by Bh might be a combined effect by BNI and 

fostered N immobilization. Furthermore, BNI by Bh might be altered by different factors such as soil 

type, plant age and root morphology of the genotypes. Finally, future studies should consider that Bh 

genotypes express their respective BNI potential differently under contrasting conditions. 
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Zusammenfassung (German summary) 

 

Stickstoff(N)-Verluste von Agrarökosystemen schädigen die Umwelt einerseits durch erhöhte 

Nitrat(NO3
-)-Auswaschung in Gewässern, und andererseits durch Emissionen von Lachgas (N2O) in die 

Atmosphäre. NO3
- ist das Produkt des bodenmetabolischen mikrobiellen Prozesses der Nitrifikation. 

Bakterien und Archaeen oxidieren Ammonium (NH4 
+) unter aeroben Bedingungen zu NO3

-. Darüber 

hinaus reduziert die mikrobielle Denitrifikation, welche vorwiegend unter anaeroben Bedingungen 

stattfindet, NO3
- zu gasförmigen N-Formen. Insbesondere das hierbei produzierte hochpotente 

Treibhausgas N2O hat negative Folgen für die Atmosphäre. Synthetische Nitrifikationshemmer verlieren 

ihre Wirksamkeit unter feuchten, tropischen Bedingungen kurz nach der Anwendung, und sind 

außerdem für Kleinbauern in den Tropen zu teuer. Das tropische Futtergras Brachiaria humidicola 

(Rendle) Schweick (Bh) reduziert nachweislich die mikrobielle Nitrifikation im Boden durch Abgabe 

von Wurzelexsudaten. Daher könnte die biologische Nitrifikationshemmung (BNI) durch Bh zur 

Verringerung von N-Verlusten aus Agrarökosystemen beitragen. 

Während N-Verluste aus gut bewirtschafteten tropischen Weidesystemen eher von geringer Bedeutung 

sind, ist der Kulturpflanzenanbau, welcher hohe N-Düngungsmengen einsetzt, durch hohe N-Verluste 

und niedrige N-Nutzungseffizienz gekennzeichnet. Rotationen von Brachiaria-Weiden mit 

Nutzpflanzen wie Reis, Mais oder Sojabohne sind generell in den Tropen verbreitet. Die Rolle eines 

potentiellen BNI-Folgeeffekts durch Bh in einem nachfolgenden (Nicht-BNI) Kultursystem wurde 

jedoch bisher noch nicht untersucht. Von genotypischen Unterschieden innerhalb von Bh in Bezug auf 

BNI wurde berichtet. Darüber hinaus gibt es Hinweise darauf, dass höhere BNI-Potentiale von kürzlich 

entwickelten Bh-Hybriden den BNI-Effekt von Bh-Standardsorten übersteigen. Jedoch konnten BNI-

Potentiale bestimmter Bh-Genotypen, die durch nährlösungsbasierte Versuche bestimmt wurden, nicht 

unter bodenbasierten Topf- und Feldversuchen stringent bestätigt werden. Die Entwicklung neuer BNI-

Indikatoren für den Einsatz unter Feldbedingungen könnte dazu beitragen, die Diskrepanz zwischen den 

unter kontrollierten Bedingungen bestimmten BNI-Potentialen und der BNI-Exprimierung im Feld zu 

verstehen. Die Hypothese, BNI könnte die nitrifikationsbasierte NO3
- Bildung reduzieren, und folglich 

die Verluste durch NO3
-Auswaschung verringern, wurde jedoch noch nicht überprüft. 
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Die vorliegende Doktorarbeit zielte darauf ab, das Potential des tatsächlichen BNI-Effekts durch Bh, 

sowie den verbleibenden BNI-Effekt nach Umbruch des Bh Systems, mit neu entwickelten Methoden 

zu bewerten. Die gesamte Forschungsarbeit basierte auf den folgenden Hauptzielen: (1) Der 

Charakterisierung des verbleibenden BNI-Effekts durch Bh auf die N-Aufnahme durch nachfolgenden 

Maisanbau (Zea mays L.) unter verschiedenen N-Düngungsraten; (2) Der Untersuchung, ob eine 

niedrige enzymatische Nitratreduktase-Aktivität (NRA) in den Blättern von Bh mit einer verringerten 

NO3
- Ernährung durch einen effektiven BNI-Effekt verbunden ist; (3) Der Identifikation einer möglichen 

Verbindung zwischen der δ15N Pflanzensignatur von Bh Hybriden und deren BNI-Wirkung auf 

Nitrifikation, Pflanzen-N-Aufnahme und NO3
-Auswaschungsverluste. Das übergeordnete Ziel bestand 

darin, neue Methoden mit einer minimalen Störung des Pflanzen-Boden-Systems zu verwenden und zu 

testen, um den BNI-Effekt verschiedener Bh-Genotypen in Gewächshaus- und Feldstudien zu 

charakterisieren. 

Der methodische Ansatz umfaßte eine Kombination von gewächshausbasierten Topf- und 

Feldversuchen. Das verwendete Bh Versuchspflanzenmaterial beinhaltete Akzessionen mit bekannter 

BNI-Kapazität, die vom Internationalen Zentrum für tropische Landwirtschaft (CIAT) entwickelt 

wurden, sowie neu entwickelte CIAT-Bh-Hybriden mit noch unbekannten BNI-Potentialen. 

Bodeninkubationsstudien wurden verwendet, um den Einfluß von BNI auf die N-Dynamik wie z.B. auf 

die Nitrifikation, die Mineralisierung und die N-Immobilisierung zu untersuchen. Synthetische 

Nitrifikationsinhibitoren, wie z.B. Dicyandiamid (DCD) oder 3,4-Dimethylpyrazolphosphat (DMPP), 

wurden als Kontrollen für BNI verwendet. Die Überwachung der N2O-Emissionen wurde mit der 

geschlossenen Kammermethode und anschließender Gasprobenanalyse durch einen 

Gaschromatographen durchgeführt. Darüber hinaus wurden zwei verschiedene stabile N-

Isotopenansätze verwendet: die natürliche 15N-Abundanzmethode und die 15N-Verdünnungsmethode, 

bei der Pflanzen- und Bodenproben mit einem Isotopenverhältnis-Massenspektrometer mit 

kontinuierlichem Fluß (IRMS) gemessen wurden. Ein enzymatischer Test, der auf der Aktivität des 

Enzyms Nitratreduktase (NR) in Blättern von Bh basierte, wurde ebenfalls durchgeführt. 

Die erste empirische Studie konzentrierte sich auf die Untersuchung eines möglichen Folgeeffekts durch 

BNI einer umgebrochenen Langzeit-BH-Weide auf anschließenden Maisanbau. Als Kontrolle wurde 
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ein Mais-Monokultur-Langzeitfeld verwendet. Der BNI-Folgeeffekt wurde im Hinblick auf erhöhte 

Maisertragsausbeute, Gesamt-N-Aufnahme und 15N-Düngemittelrückgewinnung charakterisiert. 

Darüber hinaus wurde der Einfluß des verbleibenden BNI-Effekts auf die N-Dynamik untersucht. Der 

verbleidende BNI-Effekt wurde für die erste Maiserntezeit nach Bh-Weideumbruch auf der Basis von 

geringerer Nitrifikation in Inkubationsstudien, höherer Gesamt-N-Aufnahme und höheren Maiserträgen 

bestätigt. Der BNI-Folgeeffekt führte jedoch weder zu einer höheren 15N-Düngeraufnahme oder 

reduzierten 15N-Düngerverlusten, noch zu reduzierten N20-Emissionen. Applizierter N wurde aufgrund 

von langfristigen Wurzelumsatzeffekten stark immobilisiert, während ein signifikanter BNI-Folgeeffekt 

durch Bh die schnelle Nitrifizierung des remineralisierten N verhinderte, was zu einer verbesserten 

Maisleistung führte. Ein signifikanter BNI-Folgeeffekt war jedoch nur für weniger als ein Jahr 

nachweisbar. 

In der zweiten Forschungsstudie wurde das Ziel verfolgt, das Potential der Nitratreduktaseaktivität 

(NRA) als Indikator für den aktuellen BNI-Effekt ausgewählter Bh-Akzessionen und Genotypen, die 

unter kontrastierenden Düngungsregimen getestet wurden, zu verifizieren. NRA wurde in Bh-Blättern, 

jedoch nicht in Wurzeln nachgewiesen, unabhängig von der NO3
- Verfügbarkeit. Die Blatt-NRA 

korrelierte mit NO3
- Gehalten im Boden und im Presssaft von Bh-Halmen von kontrastierenden Bh-

Genotypen, was seine Verwendung als Proxy des in-vivo BNI-Effekts belegte. Der Blatt-NRA-Test 

erleichterte ein schnelles Screening von kontrastierenden Bh-Genotypen in Bezug auf Unterschiede des 

in-vivo BNI-Effekts unter Feld- und Gewächshausbedingungen. Es wurde jedoch eine Inkonsistenz des 

BNI-Potentials innerhalb der ausgewählten Bh-Genotypen beobachtet. 

Die dritte Forschungsstudie untersuchte, ob die natürliche Abundanz von 15N (δ) in Bh-Pflanzen mit 

reduzierten NO3
- Verlusten und einer verstärkten N-Aufnahme durch BNI verknüpft werden kann. 

Erhöhte NO3
- Auswaschung war positiv mit steigendem δ15N in Bh korreliert, während die Korrelation 

zwischen Pflanzen-N-Aufnahme und δ15N in der Pflanze negativ war. Die Langzeit-Feldkultivierung 

von Bh verringerte die Nitrifikation in inkubierten Bodenproben, wohingegen δ15N-Werte in Bh 

abnahmen und die Pflanzen-N% im Laufe der Zeit anstiegen. δ15N-Werte in Bh korrelierten positiv mit 

Nitrifikationsraten in inkubierten Bodenproben. Schlußendlich konnte angenommen werden, dass die 

δ15N-Abnahme über die Zeit in Bh den BNI-Langzeiteffekt in Verbindung mit geringerer NO3
- Bildung 
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und reduzierter NO3
- Auswaschung widerspiegelt, und dass eine allgemein höhere BNI-Aktivität von 

Bh durch niedrigere δ15N-Pflanzenwerte angezeigt wird. 

Im Rahmen dieser Doktorarbeit konnte ein verbleibender BNI-Effekt durch Bh auf darauffolgenden 

Maisanbau aufgrund der kombinierten methodischen Ansätze der Bodeninkubation und der 15N-

Rückgewinnung für eine Saison bestätigt werden. Zudem wurde die NRA-Blatt-Methode entwickelt, 

welche eine schnelle und zuverlässige Analysemethode für die tatsächliche Bodennitrifikation nach 

NH4
+-Düngung darstellt. Folglich könnte der Test sowohl für Gewächshaus- als auch für Feldstudien 

als BNI-Proxy verwendet werden. Die Möglichkeit, mehrere Probenahmen unter Verwendung derselben 

Pflanzen durchzuführen erlaubt es, Fluktuationen von BNI ohne größere Störung der Pflanzen-Boden-

Umgebung nachzuweisen. Diese Fortschritte in der Methodik zeigen einen deutlichen Vorteil in Bezug 

auf den Echtzeit-BNI-Effekt im Vergleich zu den üblicherweise verwendeten Wurzelexudationsstudien, 

welche auf künstliche Nährlösungsversuche basieren. Die gesammelten Daten aus der dritten Studie 

zeigen, dass eine Abnahme von δ15N-Werten in Bh über die Zeit den BNI-Langzeiteffekt in Verbindung 

mit geringerer NO3
- Bildung und reduzierter NO3

- Auswaschung widerspiegelt. Zudem wird eine 

allgemein höhere BNI-Aktivität von Bh durch niedrigere δ15N-Pflanzenwerte angezeigt. Daraus läßt 

sich folgern, dass δ15N von Bh als Indikator für kumulative NO3
- Verluste dienen kann. Insgesamt legt 

diese Dissertation nahe, dass die hemmende Wirkung auf die Nitrifikation durch Bh ein kombinierter 

Effekt von BNI und einer verstärkte N-Immobilisierung sein könnte. Darüber hinaus könnte der BNI-

Effekt von Bh durch verschiedene Faktoren wie Bodenart, Pflanzenalter und Wurzelmorphologie der 

Genotypen variieren. Ebenfalls sollten zukünftige Studien berücksichtigen, dass Bh-Genotypen ihr 

jeweiliges BNI-Potential unter gegensätzlichen Bedingungen unterschiedlich exprimieren. 

 


