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1.0 Introduction to the thesis 

1.1 Background and rationale 

Many of today’s most pressing problems facing developing countries, such as food 

security, climate change, and environmental protection, require large area data on soil functional 

capacity – the capacity of land to sustain delivery of essential ecosystem services, such as soil 

fertility and carbon sequestration. Livelihoods and economies in most developing countries 

depend critically on the ecosystem services that land provides, however, current information on 

land health and degradation is grossly inadequate (UNEP, 2012a). The lack of reliable data poses 

a fundamental bottleneck to the development of sound policies and for assessing progress 

towards goals throughout the developing world (UNEP, 2012a). Many Sub-Saharan Africa 

(SSA) landscapes are now characterized by a combination of poor soil health, poor crop health, 

poor water quality, and consequently contributing to poor human health and low levels of 

economic development (Shepherd and Walsh, 2007). African smallholder farmers are locked 

into poverty traps that are preventing urgently needed investments to maintain soil resources, and 

thus likely to result in further decline in agricultural productivity and provision of ecosystem 

services (AfSIS, 2012-2013; Nziguheba et al., 2010, Shepherd and Walsh, 2007).  

In January 2005, the UN Millennium project released a plan on meeting the UN 

Millennium Development Goals by 2015 and one of the key recommendations was on soil 

nutrient replenishment (UN Millenium Project, 2005; Nziguheba et al., 2010; Sachs and 

McArthur, 2005). Another major component was the Hunger Task Force recommendation to 

focus on soil health as an essential part of the synergistic intervention to fight malnutrition 

(Sanchez and Swaminathan 2005) and to increase food production. The Alliance for a Green 

Revolution in Africa (AGRA) was launched in 2007, together with major programs in improved 

soil health with the overall vision to eliminate hunger and poverty in SSA (Sanchez et al., 2009a; 

Nziguheba et al., 2010). The first step towards this vision of AGRA is increased crop yields 

through rapid, sustainable agricultural growth based on smallholders, followed by a multisector 

approach that exploits the synergies among improved crop production, nutrition, health, and 

education (AGRA, 2013; Nziguheba et al., 2010). Achieving this major vision and other future 

plans will require reliable up-to-date information about soil health. However, existing gaps in 

knowledge about the condition and trend of SSA soils is highly fragmented hence the urgent 
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need for accurate, up-to-date, geo-referenced soil information that will provide the basis for a 

sound decision-making in the implementation of soil management strategies for Africa and other 

core investments in infrastructure for development such as soil fertility. 

 

1.2 Overview of soils in African context  

The capacity of soils to deliver key ecosystem services - provisioning and regulating 

character - largely depends on the underlying soil properties which result from soil formation and 

management (which aims at changing soil properties for improving the soil’s capacity to deliver 

services). Information on soil properties and how to manage them is of key importance for 

improving the soil’s services delivery capacity and has been subject to large efforts of soil 

research and soil mapping (Leenars, 2013). In Sub-Saharan Africa, soil research started in the 

late 1880s with an initial focus on soil fertility for commodity crops for export and from the 

1950’s onwards, food crops received research attention (Leenars, 2013). Soil mapping started 

started in 1920’s but very few countries were mapped prior to World War II, but since then soil 

survey organizations have carried out some detailed surveys and reconnaissance (Leenars, 2013). 

However, since the 1980’s, after publication of the first soil map of the world (FAO-UNESCO, 

1981) soil survey and mapping in Africa has diminished, and soil data collection carried out were 

sporadically in the context of soil fertility research (Leenars, 2013). The existing soil maps of the 

world (and in particular Africa), referred to as legacy soil data, are in large parts no longer 

reflecting the actual state of the soil resources. 

In the context of an urgent need to combine existing regional and national updates of soil 

information worldwide and incorporate these with the information contained within the 

1:5,000,000 scale Food and Agriculture Organization of the United Nations (FAO) – United 

Nations Educational, Scientific and Cultural Organization (UNESCO) Soil Map of the World 

(FAO, 1971-1981), the FAO, International Institute for Applied Systems Analysis (IIASA), 

ISRIC-World Soil Information, Institute of Soil Science – Chinese Academy of Sciences 

(ISSCAS) and Joint Research Centre of the European Commission (JRC) have recently 

completed a Harmonized World Soil Database (HWSD) based on existing global and national 

soil polygon maps. The HWSD contributes sound scientific knowledge for planning sustainable 

expansion of agricultural production to achieve food security and provides information for 
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national and international policymakers in addressing emerging problems of land competition for 

food production, bio-energy demand and threats to biodiversity (FAO/IIASA/ISRIC/ISS-

CAS/JRC, 2012). However reliability of the information contained in the database is variable: 

the parts of the database that still make use of the Soil Map of the World such as West Africa are 

considered less reliable, while most of the areas covered by SOTER databases are considered to 

have the highest reliability (Central and Southern Africa) (FAO/IIASA/ISRIC/ISSCAS/JRC, 

2012). 

The Map in Figure 1.1, adapted from the JRC Africa Soil atlas (Jones et al., 2013), shows 

the distribution of the dominant World Reference Base (WRB) Reference Soil Groups for Africa 

(IUSS Working Group WRB, 2006). The central, wetter part of the tropical and subtropical 

Africa is dominated by Ferralsols and they are associated with Acrisols but towards drier parts, 

Lixisols start to dominate (Jones et al., 2013). Large areas of Plinthosols occur in West Africa, 

while the desert regions in the north and the south are dominated by Calcisols, Leptosols, 

Regosols, Arenosols, and Gypsisols (Jones et al., 2013). Vertisols, Andosols and Nitosols are 

mostly associated with the African Rift Valley, with Vertisols mainly in Sudan and Ethiopia. 

Andosols are found along the Rift Valley in Eastern Africa, around Mount Cameroon, and in 

Madagascar (Jones et al., 2013). In the Mediterranean region, areas of Kastanozems and 

Phaeozems occur (Jones et al., 2013). Gleysols and Fluvisols are found throughout Africa, the 

latter associated with Africa’s flood plains, river fans, valleys, tidal marshes, deltas and 

mangroves while Solanchaks and Solanetz are mainly associated with coastal plains (Jones et al., 

2013). Especially in southern Africa, Durisols occur locally. Alisols, Cambisols, Histosols, 

Luvisols, Planosols, Podzols and Umbrisols are reported to be scattered throughout the Africa 

map and to be locally important (Jones et al., 2013). Histosols are rather rare in Africa, occurring 

mostly in wetlands, isolated pockets in low-lying areas or depressions and in coastal regions 

where organic debris accumulates, and their distribution is limited by the rapid decomposition of 

organic material in tropical regions due to the permanently high temperatures (Jones et al., 

2013). In urbanized areas and near large mines, Technosols may occur, however, most of these 

areas will be too small to be visible at the continental scale (Jones et al., 2013).  

The continent of Africa contains all but one of the WRB Reference Soil Groups and 

illustrates a great soil diversity (Jones et al., 2013). Jones et al. (2013) reported that over 60% of 

the soil types represent hot, arid or immature soil assemblages: Arenosols (22%), Leptosols 
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(17%), Cambisols (11%), Calcisols (6%), Regosols (2%) and Solonchaks/ Solonetz (2%) and a 

further 20% or so are soils of a tropical or subtropical character: Ferralsols (10%), Plinthosols 

(5%), Lixisols (4%) and Nitisols (2%) while a considerable area (6%) is occupied by a further 16 

reference groups that cover an area of less than 1% of the African land mass. This illustrates that 

a considerable number of soil types are associated with local soil-forming factors such as 

volcanic activity, accumulations of gypsum or silica, waterlogging, etc. (Jones et al., 2013).  

 

Figure 1.1: Map showing the distribution of the dominant World Reference Base (WRB) 
Reference Soil Groups for Africa (IUSS Working Group WRB, 2006) adapted from the JRC 
Africa Soil atlas (Jones et al., 2013). 
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1.3 Overview of the Africa Soil Information Service (AfSIS) project 

Because knowledge about the condition and trend of African soils is highly fragmented 

and dated, there is an urgent need for accurate, up-to-date, and spatially referenced soil 

information to support agriculture in Africa. This coincides with developments in technologies 

that allow for accurate collection and prediction of soil properties. The Globally Integrated 

Africa Soil Information Service (AfSIS) is a large-scale, research-based project developing 

continent-wide digital soil maps for Sub-Saharan Africa using new types of soil analysis and 

statistical methods, the compilation and rescue of legacy soil profile data, new data collection 

and analysis, system development for large-scale soil mapping using remote sensing imagery and 

ground observations and conducting agronomic field trials in selected sentinel sites (AfSIS, 

2012-2013). The AfSIS project is funded by Bill and Melinda Gates Foundation (BMGF) and 

Alliance for a Green Revolution in Africa (AGRA), and implemented by the International Centre 

for Tropical Agriculture (CIAT) in partnership with the World Agroforestry Centre (ICRAF), 

Earth Institute of Columbia University and ISRIC-World Soil Information Centre. The project 

area is proposed to include in the first Phase ~17.5 million km2 of continental Sub-Saharan 

Africa (SSA), and 591,740 km2 of Madagascar, giving a total area of ~18.1 M km2, an area that 

encompasses more than 90% of Africa’s human population living in 42 countries (AfSIS, 2012-

2013). This area excludes hot and cold desert regions based on the recently revised Köppen-

Geiger climate classification (Kottek et al., 2006), as well as the non-desert areas of Northern 

Africa. AfSIS has just completed the process of surveying and sampling this area using a 

spatially stratified, random sampling approach consisting of 60, 100-km2 sentinel landscapes, 

which are statistically representative of the variability in climate, topography and vegetation of 

the project area (AfSIS, 2012-2013). New data collection approaches used a hierarchical 

sampling approach that replicates soil and other biophysical measurements at different spatial 

scales, linking consistent, geo-referenced ground observations to laboratory measurements, 

agronomic field trials as well as remote sensing data (AfSIS, 2012-2013). 

For over a decade ICRAF has been working on soil infrared spectral methods for rapid 

prediction of soil functional properties which are now being widely applied in land health 

surveillance schemes that employ a standardized protocol (the Land Degradation Surveillance 

Framework (LDSF)) for landscape level measurement and mapping of soil conditions. The 
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framework is being applied throughout SSA under the AfSIS Project as well as in an increasing 

number of land management projects such as the Ethiopian Soil Information System (EthioSIS). 

The essence of the AfSIS project is that the collection and interpretation of data on soil health 

becomes an integral part of planning, monitoring, and impact assessment process at different 

scales and for different audiences in a globally consistent scientific framework (AfSIS, 2012-

2013). The baseline for such a system is the LDSF which is used for soil health surveillance, 

defined as the ongoing, systematic collection, analysis and interpretation of data important for 

planning, implementation, and evaluation of soil management policy and practice, and is closely 

integrated with the timely dissemination and application of the data that is used in prevention and 

control of soil degradation (Vågen et al., 2013). The concepts used in the LDSF are similar to 

those used in the public health sector. The AfSIS project aims to develop a practical, timely, and 

cost-effective soil health surveillance service to map soil conditions, set a baseline for 

monitoring changes, develop global standards and methodologies, and provide options for 

improved soil and land management in SSA (AfSIS, 2012-2013). 

A number of databases have been developed and extended to support the new data 

collection efforts, new techniques in laboratory analysis, and continent-wide digital soil mapping 

under the AfSIS project (AfSIS, 2012-2013). For example, the Africa Soil Profiles Database now 

contains over 12,000 geo-referenced legacy soil profile records for 37 countries (Leenars, 2013). 

The ICRAF-ISRIC visible near infrared (VNIR) spectral library of world soils is another 

valuable resource for research and applications for sensing soil quality both in the laboratory and 

from space and the Soil Survey (LDSF) Field Database which comprises of georefenced data and 

images collected using the LDFS will further ensure that sampling locations can be revisited at 

later points in time to quantify where specific changes have occurred (AfSIS, 2012-2013). In 

addition, the Soil Analytical Database provides reference laboratory measurements for one of 10 

plots for all 16 clusters in each sentinel landscape, for a total of 32 reference samples (that is, 

top- and sub- soil from 16 plots) per sentinel landscape (AfSIS, 2012-2013). The samples from 

the remaining nine plots are analyzed using spectral diagnostics. The Soil Spectral Database 

contains both spectral measurements from the reference samples and the remaining nine samples 

from each cluster for all of the AfSIS sentinel landscapes (AfSIS, 2012-2013). The present study 

supported ICRAF’s methods development for the AfSIS Project.  
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1.4 Soil health and degradation 

Soil health has been defined as: “the capacity of soil to function as a living system, with 

ecosystem and land use boundaries, to sustain plant and animal productivity, maintain or 

enhance water and air quality, and promote plant and animal health. Healthy soils maintain a 

diverse community of soil organisms that help to control plant disease, insect and weed pests, 

form beneficial symbiotic associations with plant roots; recycle essential plant nutrients; improve 

soil structure with positive repercussions for soil water and nutrient holding capacity, and 

ultimately improve crop production" (FAO, 2008). Many of Africa's soils are derived from 

ancient granite rocks and thus they are inherently low in plant nutrients and compounding this 

natural deficit, nutrients leach and are taken away from the soil and fields with cultivation, with 

wind and water erosion, and with every harvest (AGRA, 2013).  

Pressure on land resources and ecosystems has intensified greatly over the past several 

decades due to land use changes created by e.g. increasing population, economic development 

and global markets, exacerbated locally by land governance issues (UNEP, 2012b). Increased 

population pressure in Africa has resulted in surging demands for food and livestock feed are due 

to factors such as urbanization and changing diets that include more animal products (UNEP, 

2012b) and consequently continuous cropping without soil conservation practices or fallow 

periods. This has, in turn, caused soil degradation and nutrient depletion across much of the 

continent. The Agricultural Production and Soil Nutrient Mining in Africa report highlights the 

continent's ‘soil health crisis’, revealing that three-quarters of Africa’s farmlands are severely 

degraded (Henao and Baanante, 2006). Restoration of soil fertility is necessary to increase crop 

yields and food production in order to combat the worsening food security situation in Africa, 

however, information about the extent and intensity of soil nutrient mining and a better 

understanding of its main causes are essential to the design and implementation of policy 

measures and investments to reverse the mining and subsequent decline in soil fertility (Henao 

and Baanante, 2006). In this context, rapid screening of soil properties using spectroscopic 

techniques should be viewed as key a contributor to the joint goals of increased agricultural 

production, food security, economic development, land conservation, and environmental 

protection. 
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1.4.1 Major nutrient constraints 

Soil fertility decline is perceived to be widespread in the soils of the tropics, particularly 

in soils of SSA and most studies have used nutrient balances (in which fluxes and pools were 

estimated from published data, data derived from pedotransfer functions, or some other method) 

to assess the degree and extent of nutrient depletion. These approaches have created awareness 

but suffer methodological problems as several of the nutrient flows and stocks are not measured 

(Hartemink, 2006). Soil fertility decline includes nutrient depletion (larger removal than addition 

of nutrients), nutrient mining (large removal of nutrients and no inputs), acidification (decline in 

pH and/or an increase in exchangeable Al), the loss of organic matter, and an increase in toxic 

elements such as aluminum (Hartemink, 2006). Organic carbon is together with pH, reported to 

be the best simple indicator of the health status of a soil with moderate to high amounts of 

organic carbon associated with fertile soils with a good structure (FAO/IIASA/ISRIC/ISS-

CAS/JRC, 2012).  

Soil nutrient mining, the consumption of a key component of the soil’s natural capital, is 

the result of overexploitation of agricultural land and this continued nutrient mining of soils 

would mean a future of even increased food insecurity and environmental damage (Henao and 

Baanante, 2006). Escalating rates of soil nutrient mining make nutrient losses highly variable in 

agricultural areas in the sub-humid and humid savannas of West and East Africa, and in the 

forest areas of Central Africa but in general depletion rates range from moderate, about 30 to 40 

kg of nitrogen, phosphorus, and potassium (NPK)/ha yearly in the humid forests and wetlands of 

southern Central Africa and Sudan to more than 60 kg NPK/ha yearly in the sub-humid savannas 

of West Africa and the highlands and sub-humid areas of East Africa (Henao and Baanante, 

2006). A review by Cobo et al. (2010) confirmed that soil nutrient mining results from 57 

selected studies in Africa commonly showed most systems had negative N and K balances (i.e. 

85 and 76% of studies showed negative means, respectively) while the trend for P was less 

severe (i.e. only 56% of studies presented means below zero). Due to low input use in Africa soil 

nutrient balances are often negative. The review results by Cobo et al. (2010) were genarally 

consistent with the claim of nutrient mining across the continent at least for N and K (e.g. 

Hartemink, 2006).  
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1.4.2 Total versus plant-available nutrients 

A concept that has been emphasized is that soil is not a static system but the soil chemical 

elements are in a state of flux: there are additions, losses, crop removal, and internal cycling 

processes (Wong et al., 1991). These processes are often driven by temperature, rainfall, and 

additions of organic matter to the soil, any or all of which can be extreme in the tropical 

environments of SSA. The variations in soil nutrients are also derived from differences in the 

composition of the parent material and from fluxes of matter and energy into or from soils over 

geologic time or management (Helmke, 2000, Rawlins et al., 2012). Soil nutrient levels can 

either be described as total nutrients or plant-available nutrients and both forms give a much 

better indication of the nutrients that a particular soil type is likely to contribute to plants over the 

crop cycle.  

Total nutrient content is not a satisfactory index for measuring nutrient availability due to 

the different and complex distribution patterns of the elements among various chemical species 

or phases in soils (Chen et al., 1996). In addition, the total levels of nutrients in the soil are of 

less interest from an agronomic viewpoint, as they are often poorly correlated with plant-

availability. Another reason is also because not all of the total nutrients in the soil are 

immediately available for use by plants and microorganisms. It is thus desirable to determine 

bioavailable nutrients from the total content and this is achived by chemical extraction methods 

(single extraction or sequential extraction). There are reports of the use correlation coefficients 

between extractable nutrients and total contents as a criterion for bioavailability (Chen et al., 

1996). The higher the correlation coefficient is, the more suitable the extraction method should 

be, however, different extractants differ in their reaction modes and there is a great variation of 

the amount of nutrients extracted, meaning that the various extractable fractions could differ 

largely in available nutrients (Chen et al., 1996). In addition, element bioavailability is regulated 

by many factors, such as soil chemical and physical properties and plant types (Chen et al., 

1996). The efficiency of a production system depends on the importance of crop uptake versus 

the total supply of nutrients and high losses of nutrients limit the efficiency. Differences among 

soils are difficult to distinguish and thus the correlation method is not capable of investigating 

the specific nature of the bioavailabilty of elements in a particular soil (Chen et al., 1996). 

However, there is a relationship between total and available nutrients for some elements since 

plant-available element composition is related to what is totally available and to those of parent 
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materials. Thus, there is a need to assess the concentration of total elemental composition in the 

soil since it influences the availability of a range of essential and potentially toxic elements, 

which consequently has implications for their uptake by crops (Rawlins et al., 2003).  

 

1.5 Implications for food security 

Monitoring the dynamics of the total and plant-available nutrients would promote their 

efficient use by crops and prolong the productive life of the soils (Wong et al., 1991). Low soil 

fertility is one of the major factors responsible for depressed yields on small-scale farms across 

Africa and for Africa’s low agricultural productivity relative to other regions. Thus, African 

countries today face the challenges of increasing agricultural production with scarce overall 

resources and raising productivity in a way that conserves the natural resource base and prevents 

further degradation that has characterized Africa soils for generations (Henao and Baanante, 

2006). In addition, information on the variation in soil chemistry, distinct from soil fertility, at 

different sites is desperately needed for, e.g. planning land use and management, and in spite of 

intensive land use, such information concerning element concentrations of Africa soils is still 

scarce. Thus, this study forms part of SSA-wide efforts through the AfSIS Project to provide 

accurate, up-to-date information about Africa soil condition to support policy and action on food 

security, production, regulation and supporting ecosystem services. The soil information will be 

essential to increase land productivity and food production, arrest hunger and ecosystem 

degradation, and to adapt to climate change in Africa. AfSIS will provide options for improved 

soil and land management through the dissemination of data on soil functional properties that 

will benefit farmer communities, public and private extension services, national agricultural 

research and soil survey organizations, the fertilizer sector, project and local planners, national 

and regional policymakers, and scientists (AfSIS, 2013). 

 

1.6 Guidance approaches for agricultural and environmental management 

In Sub Saharan Africa, data availability and quality are far from optimal and thus are 

important constraints on the potential to carry out agricultural and environmental health 

management. Presently, environmental quality guidelines (EQGs) are not available for tropical 

SSA soils. The available EQGs have been developed for soil element concentration values in 
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various continents other than Africa in attempts to determine and predict concentrations above 

which effects occur and below which effects do not occur (Chapman et al., 2003), but these 

values vary by jurisdiction, land use and by proponent. A growing recognition of the need for 

reliable environmental and health data is emerging in many countries, while the development of 

remote sensing technologies is greatly increasing the potential for environmental survey and 

monitoring (Briggs, 2000). Because SSA is yet able to establish comprehensive systems of 

environmental health mapping, opportunity to develop prototype EQGs systems does exist in 

many areas (Briggs, 2000). In addition, because problems of inconsistencies and uncertainties in 

diagnosis could occur, considerable effort is needed in capturing suitably georeferenced element 

concentration data (Briggs, 2000). Thus, considerable scope does exist to obtain relevant data, at 

least in some parts of SSA, and the possibility of developing routine systems for data collection 

is improving thanks to new rapid methods for soil assessments reviewed below.  

It should be noted that the role of EQGs in environmental quality assessments should be 

restricted to assisting in determining whether element concentrations pose relatively low or very 

high potential for significant toxicity to animal and plants (Chapman et al., 2003). Thus, the 

assessment of soil quality for naturally occurring elements in SSA must take into consideration 

regional variations in background concentrations, which strongly depend on geological and 

biological characteristics, as well as recent management in natural environment. This is because 

much of the variation in the concentration of major and trace elements in the soil is accounted for 

by the parent material from which the soil formed (Rawlins et al., 2012), or by non-

anthropogenic sources, including weathering, volcanic, and hydrothermal activities (Chapman et 

al., 2003). 

 

1.7 Promising methods for rapid soil assessment 

Conventional assessments (methods and measurements) of soil capacity to perform 

specific agricultural and environmental functions are time consuming and resource intensive, 

limiting the use of large number of samples (Shepherd and Walsh, 2002).  Dense sampling is 

often required to adequately characterize spatial variability in an area (Shepherd and Walsh, 

2002) and, in addition, repeatability, reproducibility and accuracy of conventional soil analytical 

data are major challenges. New, rapid methods to quantify soil properties are needed to support 
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national soil health surveillance systems especially in African developing countries where 

reliable data on soil properties is sparse, and to take advantage of new opportunities for digital 

soil mapping. Spectroscopic techniques, some of which are reviewed below, have shown 

promise as rapid highly reproducible methods of characterizing soils.  

 

1.7.1 Infrared spectroscopy (IR) 

Infrared diffuse reflectance spectroscopy (IR) has already shown promise as a rapid 

analytical tool with the use of visible (vis), near-infrared (NIR) and mid-infrared (MIR) diffuse 

reflectance Fourier transform spectroscopy (DRIFTS) in soil analyses having received much 

attention with an exponential increase in publications over the last 20 years (Guerrero et al., 

2010). The increase in the potential for soil analysis is attributed to the large amount of 

information that the spectra hold, as well as recent advances in computation, instrument 

manufacturing, developments in multivariate statistics (chemometrics) and the great number of 

potential applications in soil science, including: soil colour, organic and mineral composition of 

soil and the amount of water present (hydration, hygroscopic, and free pore water), nutrient 

retention capacity, iron form and amount, carbonates, soluble salts, and aggregate and particle 

size distribution simultaneously (Guerrero et al., 2010; Shepherd, 2010).  

Although soil scientists have investigated reflectance spectroscopy for several decades, 

the technology has not been widely taken up and routinely applied in soil studies in the African 

context. Thus, a roundtable of experts, which met in Nairobi in February 2006, proposed an 

approach that aims to provide reliable data on the condition of the soil resource base and 

degradation trends; application of the latest scientific and technological advances, including 

remote sensing and geographic information systems (GIS) as well as IR for rapid soil analysis 

(Swift and Shepherd, 2007). These techniques are now being applied to a new digital soil map of 

the world (Sanchez et al., 2009b). The ability to rapidly characterize large numbers of samples 

with IR opens up possibilities for soil evaluations that consider uncertainty in predictions and 

interpretations of soil properties. However, IR has some limitations in that it cannot predict 

extractable P and K well (Ludwig et al., 2002; Malley et al., 2009), which in addition to N are 

the main limiting nutrients in African soils. There are also uncertainties over how many samples 

are needed to provide robust global calibrations given the extreme variability in soil 
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characteristics (Brown et al., 2006), especially in parent material. In addition, calibrations have 

to be adjusted for different soil types (Shepherd, 2010). Therefore, other new high-throughput 

spectral techniques using laser and X-ray technology could be valuable tools to supplement IR 

and stabilize calibrations across different soil types.  

 

1.7.2 Total X-Ray Fluorescence Spectroscopy (TXRF) 

One alternative spectral technique using X-ray technology that could be a valuable tool to 

supplement IR is total X-ray fluorescence spectroscopy (TXRF). The main principle of this 

technique is that atoms, when irradiated with X-rays, emit secondary X-rays – the fluorescence 

radiation. In TXRF, an X-ray beam is directed onto the sample at a very small angle, less than 

the critical angle of total reflection for X-rays thus causing a total reflection of the beam’s 

photons after touching the sample prepared as thin film on a sample support. Since the 

wavelength and energy of the fluorescence radiation is specific for each element, TXRF analysis 

is possible because the concentration of each element can be calculated using the intensity of 

fluorescence radiation (Bruker, 2007; Towett et al., 2013). Advantages of the technique include 

minimal sample preparation, and low matrix interference, removing the need for external 

calibration (Stosnach, 2005). Standardization is internal and only requires addition of an element 

that is not present in the sample for quantification purposes. X-rays diffracted off soil samples 

are used to simultaneously quantify most of the elements present from sodium to uranium in the 

periodic table (Stosnach, 2005, Towett et al., 2013). TXRF can also be used as a versatile 

technique to investigate heavy metal pollution in soils (Stosnach, 2005) as well as trace elements 

in soil-water extracts (Shepherd, 2010). Lower limits of detection (LLD) are in the parts per 

million-concentration range for suspended soil and parts per billion levels in soil-water. There 

are possibilities to correlate extractable nutrient analysis with total element analysis and also to 

measure element concentrations in soil extracts. The total element concentration spectra can be 

used to capture key mineralogical differences in soils and as an input to pedotransfer functions. 

Thus TXRF could provide a powerful complement to IR, especially for predicting nutrient 

supply capacity, which is most important when considering soils as the substrates for plant 

growth and subsequent benefit to human health.  



 
 

15 
 

The total concentration of different elements in the soil has implications for human, plant 

and animal health, e.g., soil geochemistry influences the availability of a range of essential and 

potentially toxic elements which has implications for their uptake by grazing animals and crops 

(Rawlins et al., 2003). Therefore, understanding the nature of the key variables explaining 

diversity of total and water extractable concentrations of elements in the soil using TXRF and 

relating these to the mineralogy of parent rock can help to determine whether, and the extent to 

which, soil may have been contaminated by anthropogenic activities and thereby contribute to 

the protection of environmental health (Rawlins et al., 2003; Voortman, 2011). TXRF could also 

provide a particularly useful tool for prediction of soil properties in data sparse regions, 

especially in Africa where variations in soil mineralogy and nutrient balance critically determine 

vegetation composition and agricultural potential (Voortman, 2011). The presence of different 

vegetation types is reported to be a reliable indicator of differences in soil chemical properties 

and various properties of the exchange complex, micronutrient levels, and interactions among 

plant nutrients, significantly explain differences in vegetation and also the distribution of 

vegetation types (Voortman, 2011).  

 

1.7.3 X-Ray Diffraction (XRD) 

Soil mineralogy is a key determinant of many soil functions, for example nutrient 

quantities and intensities, pH and buffering, anion and cation exchange capacity, aggregate 

stability, soil carbon protection, dispersion, and resistance to erosion. These properties in turn 

determine soil agricultural and environmental qualities. However, soil mineralogy is not 

routinely used to predict soil functional properties because of the expense and nature of available 

instrumentation (e.g. large equipment with high power and cooler requirements). The recent 

availability of XRD technology and improved software for mineral identification and 

quantification could enable routine analysis of soil mineralogy as well as for prediction of soil 

properties (Shepherd, 2010). Results of X-ray diffraction analysis can be used to identify the 

main crystalline phases present in soil samples (Manhães et al., 2002). X-ray diffraction data 

could potentially be used to stabilize IR calibrations across soil types and as an input into 

pedotransfer functions. Because the environmental regulatory framework relies on total element 

concentration to delineate environmental contamination, XRD has the potential to identify in situ 
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contaminant speciation, not achievable via other conventional chemical analyses, and thus could 

constitute an analytical step toward the reliable prediction of contaminant geochemistry 

(Dermatas et al., 2007). 

 

1.8 The link between variability of soil properties and soil forming factors 

Most of the soils in SSA are characterized by spatial diversity and local homogeneity 

(Voortman et al., 2003, Voortman, 2011), and, although in this study we anticipate having some 

knowledge of the average differences in soil nutrient concentration among sites, it is difficult to 

predict, accurately, the sites where nutrient deficiencies severely limiting crop growth is likely to 

develop. Thus, the quantification of the variability and patterns in soil total element 

concentrations at finer scales will require detailed analysis of site-specific variability of soils and 

of the soil chemical properties using rapid analysis techniques such as TXRF, XRD and MIR. 

However, in order to be able to make a sound interpretation of soil spectral results using TXRF, 

XRD and MIR and the variation and patterns among the soil properties, it is required to establish 

the linkages between variability of soil properties and climate, parent material, vegetation types, 

land use patterns, management and, other soil-forming factors.  

In Africa a large fraction of cultivated soils developed from crystalline parent material 

under conditions of Precambrian Basement Complex and this has important implications for soil 

chemistry and the type, level, and spatial diversity of the nutrient deficiencies in these soils 

(Voortman, 2011). In particular, Voortman (2011) argued that under the conditions of 

Precambrian Basement Complex of Mozambique, the ecological diversity of land types might be 

more closely related to mineralogy of parent rock than is commonly acknowledged. However, 

the findings by the author from a Mozambique case study generate new questions regarding their 

general applicability in a wider context of the SSA in terms of key factors, or unifying principles 

for African land resource ecology (Voortman, 2011).  

Parent materials, topography, organisms and climate are factors of soil formation (Jenny, 

1941) that could be held responsible for the variability of total element concentration. The 

variation of total element concentration in soils of SSA could thus be related to some relatively 

easily measurable site characteristics, such as parent material type, slope, mean annual 

temperature, rainfall, etc. Therefore, regressing the site characteristics with patterns of variation 
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in soil total element concentration will help examine the relationships between soils properties 

(e.g. total element composition), parent materials, climate, vegetation composition, mineralogy 

and many other site factors as well as soil-forming factors. For example, clay minerals are the 

most reactive inorganic components of soils and since they help to determine soil properties and 

largely govern their behaviors and functions, regressing the soil chemistry to mineralogy will 

help foster the interest of plant and food production (Viscarra Rossel, 2011). In addition, the type 

of clay mineral dominantly present in the soil often characterizes a specific set of pedogenetic 

factors in which the soil has developed (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012). Although 

SSA soils are generally of low fertility, the question whether this is causally related to high 

rainfall (the effect of leaching) was investigated by Voortman (2011) who provided evidence in 

his study of the Miombo soil ecosystem that the inverse relationship between high rainfall and 

soil fertility does not hold systematically. 

Soil chemistry research through total element concentration and total nutrient fixing 

capacity of a soil could be studied apart from soil fertility and still have implications for soil 

fertility. The total nutrient fixing capacity of a soil is well expressed by its CEC and soils with 

low CEC have little resilience and cannot build up nutrient stores (FAO/IIASA/ISRIC/ISS-

CAS/JRC, 2012). Currently, we do not know precisely whether the site variation in the total 

element concentrations of some nutrients, such as K, would affect crop or vegetation growth. 

According to Voortman (2011), the macronutrients, N, P and K play a modest role only in 

explaining land resource ecology on a Precambrian Basement Complex. Their results indicated 

that soil fertility and land resource ecology on soils derived from Precambrian Basement 

Complex rocks is a more complex issue than only N, P and K levels in the soil. Voortman (2011) 

suggested that research in both agricultural and natural systems that would provide fundamental 

insights, should, next to P and K (total and available) consider Ca, Mg, K, Na, S, and also Al and 

its saturation percentage if the pH drops below 5.5. The suggested essential micronutrients to be 

considered also include Cu, Fe, Mn, Zn, Cr, Ni, Si, and Se. Even though knowledge on actual 

soil conditions is very weak, micronutrient deficiencies are most likely to be widely prevalent on 

the basis of the parent rock in which soils have developed (Nubé and Voortman, 2006). The 

authors also noted that key ecological factors primarily correspond with properties of the cation 

exchange complex and with micronutrients and in particular the ratios of nutrients discriminate 

well between different ecological conditions. Thus, because of these relationships, it has been 
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concluded that patterns of land use and vegetation can be used as a first indicator for the nutrient 

status of a soil and for a preliminary identification of potential plant nutrient deficiencies, so as 

to enable the structuring of well-targeted agronomic research (Voortman, 2011). Thus, with data 

on element concentration, land use planning and management and consequently linkages to the 

quality of human nutrition can be made (e.g. Nubé and Voortman, 2006; Voortman, 2011).  

 

1.9 Justification and opportunities 

Key research gaps exist on the optimal use and combination of the spectroscopic 

analytical techniques in Sub-Saharan Africa soils for predicting properties such as soil macro- 

and micro-nutrient content and soil nutrient retention capacity. In the current study, TXRF and 

XRD were tested in conjunction with IR to potentially provide powerful soil functional 

diagnostic capabilities for the direct prediction of key soil functional properties for agricultural 

and environmental applications. Optimal combinations of these spectral methods for use in 

pedotransfer functions for low cost, rapid prediction of properties of Africa soils also need to be 

investigated to establish the added value or redundancy when IR is complemented with TXRF, 

and XRD data (Shepherd, 2010). Prediction models for soil organic carbon, soil fertility 

properties (soil extractable nutrients, pH and exchangeable acidity) and soil physical properties 

(water holding capacity, soil stability and soil texture) need to be developed using IR. Despite 

the importance of soil mineralogy in determining soil functional properties, there have been few 

attempts to link the two quantitatively. High throughput XRD performed on neat soil samples 

provides new opportunities to use mineralogical information in pedotransfer functions that are 

expensive and time-consuming to measure, and can solve specific agricultural and environmental 

problems. TXRF, in addition to providing chemical fingerprinting that relates to mineralogy, can 

also directly determine total and extractable nutrients, thus complimenting IR.  These techniques 

thus present new opportunities to revolutionize the way in which agronomy and soil science is 

done, greatly enhancing the potential for providing evidence-based decision support at multiple 

scales. There is now real possibility to harness such developments to enable science-based 

diagnostic surveillance approaches to agricultural and environmental management (Shepherd and 

Walsh, 2007).  
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1.10 Hypotheses 

The overall goal of this current study was to help develop and test rapid, timely, cost-

effective, and high throughput spectroscopic methods for soil health surveillance service to 

analyse soil properties, soil conditions, and set a baseline for monitoring changes. The 

hypotheses were that: 

a) There are wide variations and coherent patterns in relationships among the total element 

concentrations measured using TXRF attributable to differences in parent materials between 

sites, and to local pedologic and hydrological factors within sites or due to differences in 

management in Sub-Saharan Africa soils.  

b) Fingerprinting of soil element composition using TXRF may form a useful basis for 

classifying soils in a way that relates to soil-forming factors and inherent soil properties. 

c) Element fingerprinting picks up differences in mineralogy that have diagnostic value and 

could account for differences in relationships between spectra (e.g. TXRF) and soil test 

values caused by mineralogical differences. 

d) There are strong relationships between soil functional properties (carbon pools, extractable 

nutrients, exchangeable acidity, P sorption, water holding capacity, soil stability) and patterns 

in TXRF, XRD, and MIR data of Sub-Saharan Africa soils. 

e) There is redundancy in information among soil TXRF, XRD, and MIR data, and only a 

subset of these techniques (e.g. MIR plus XRD or TXRF) is needed to provide robust 

pedotransfer functions for predicting soil functional properties. 

 

1.11 Objectives 

The overall objective of this research was to develop, test, and combine different infrared and 

X-ray spectral diagnostic techniques for the direct prediction of key soil properties for 

agricultural and environmental applications particularly for Sub-Saharan Africa. The specific 

objectives of this study were to: 

i. develop and test an improved analytical method for the direct quantification of total 

element concentrations in soils using the S2 PICOFOXTM TXRF spectrometer,  
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ii. test the accuracy of the TXRF using a determined instrument sensitivity curve by 

comparing results with those measured using total acid dissolution ICP-MS analysis 

(international standard method) for a range of elements,  

iii. quantify the variability in total element composition of soils from a diverse set of Africa 

soils ,  

iv. explore the patterns in total element composition of soils analysed using a principal 

component analysis,  

v. test the relationships between total element concentrations and nutrient supply capacity 

by relating Mehlich-3 soil tests (acid-extractable nutrients) to total element analysis 

patterns in soil,  

vi. examine relationships between soil element fingerprints and site characteristics including 

mineralogy, climate, landform, vegetation type, plant material and management 

(cultivation), 

vii. test whether TXRF can improve MIR predictions of soil test values, especially for those 

variables for which MIR tends to give poor predictions (e.g. extractable P and K; some 

micronutrients), and 

viii. examine the extent  to which the TXRF technique added value to the MIRS technique for 

improving global predictions of soil total and extractable nutrients. 

 

1.12 Outline of the study 

This thesis consists of five chapters. Following the current introductory chapter, chapter 2 

provides an overview of the possibility to extend the use of TXRF for the direct quantification of 

total element concentrations through developing a method applicable for soil analysis. In the 

chapter, we develop and test an improved method for the direct quantification of total element 

concentrations in soils using S2 PICOFOXTM TXRF spectrometer, and determine the instrument 

sensitivity curve and compared the accuracy of the TXRF results with those measured total acid 

dissolution ICP-MS analysis (international standard method) for a range of elements. In chapter 

3 we quantified the variability and explored patterns in total element composition using total X-

ray fluorescence spectroscopy of soils from 34 randomly-located 100-km2 sentinel sites 

distributed across Sub-Saharan Africa: Ghana (3 sites), Tanzania (8 sites), Ethiopia (4 sites), 
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Mali (3 sites), Burkina Faso (1 site), Mozambique (4 sites), Nigeria (3 sites), Zambia (1 site), 

Kenya (3 sites), Guinea (2 sites), and Malawi (2 site). In the same chapter, we also explore the 

relationships between total element concentrations and nutrient supply capacity by relating 

Mehlich-3 soil tests (acid-extractable nutrients) to total element analysis patterns in soil and, in 

addition, examine relationships between element fingerprints and site characteristics including 

mineralogy, climate, landform, vegetation type, plant material and management (cultivation). 

The fourth chapter explores the possibility of combining mid infrared reflectance spectroscopy 

(MIRS) and total X-ray fluorescence spectroscopy (TXRF) for the prediction of soil total 

nutrient concentrations and soil texture. Finally, the fifth chapter reviews the answers provided to 

the research questions and considers the innovative aspects of the findings. The fifth chapter also 

discusses the methodological recommendations for future research in soil science, environmental 

and agricultural applications using spectroscopy, and present implications for food security in 

Sub-Saharan Africa. 
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2.1 Abstract 

Total X-ray fluorescence spectroscopy (TXRF) determines concentrations of major and 

trace elements in multiple media. We developed and tested a method for the use of TXRF for 

direct quantification of total element concentrations in soils using a S2 PICOFOXTM 

spectrometer (Bruker AXS Microanalysis GmbH, Germany). We selected 15 contrasting soil 

samples from across Sub-Saharan Africa for element analysis to calibrate the instrument against 

concentrations determined using the inductively coupled plasma - mass spectroscopy (ICP-MS) 

standard method. A consistent underestimation of element concentrations using TXRF compared 

to ICP-MS reference analysis occurred, indicating spectrometer recalibration was required. 

Single-element recalibration improved the TXRF spectrometer’s sensitivity curve. Subsequent 

analysis revealed that TXRF determined total element concentrations of Al, K, Ti, V, Cr, Mn, Fe, 

Ni, Cu, Zn, and Ga accurately (model efficacy/slope close to 1:1 line, and R2 > 0.80) over a wide 

range of soil samples. Other elements that could be estimated with an acceptable precision (R2 > 

0.60) compared with ICP-MS although generally somewhat under- or overestimated were P, Ca, 

As, Rb, Sr, Y, Pr, Ta and Pb. Even after recalibration, compared to ICP-MS the TXRF 

spectrometer produced underestimations for elements Na, Mg, Ba, Ce, Hf, La, Nd, W and Sm 

and overestimations for elements Bi, Tl and Zr. We validated the degree of accuracy of the 

TXRF analytical method after recalibration using an independent set of 20 soil samples. We also 

tested the accuracy of the analysis using 2 multi-element standards as well as the method 

repeatability on replicate samples. The resulting total element concentration repeatability for all 

                                                             
1This chapter has been reprinted from: 

Erick K. Towett, Keith D. Shepherd, Georg Cadisch. 2013. Quantification of total element concentrations in soils 
using total X-ray fluorescence spectroscopy (TXRF). Science of the Total Environment, 463–464: 374–388.  
http://dx.doi.org/10.1016/j.scitotenv.2013.05.068. Copyright © 2013, Elsevier. 
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elements analysed were within 10% coefficient of variability after the instrument recalibration 

except for Cd and Tl. Our findings demonstrate that TXRF could be used as a rapid screening 

tool for total element concentrations in soils assuming sufficient calibration measures are 

followed. 

 

2.2 Introduction 

Soil is a critical natural resource that plays a key role in determining human well-being, 

providing key ecosystem services, supporting food production, and the natural recycling of C 

and essential nutrients in the environment (Smith et al., 2009). Although soils are recognized to 

be critically important, our knowledge of the concentration of naturally-occurring elements in 

soils is limited (Smith et al., 2009). Many Sub-Saharan Africa landscapes are now characterized 

by a combination of poor soil and crop health, low water quality, and consequently contributing 

to poor human nutrition and low levels of economic development (Swift and Shepherd, 2007). 

Shepherd and Walsh (2007) noted the urgent need to develop rapid screening tools to 

characterize soils in support of agricultural development in developing countries, which are 

robust enough to be used under basic conditions and to be applied at scale. 

Spectroscopic techniques have shown promise as rapid and highly reproducible methods 

of characterizing soil properties. Near- and mid infrared diffuse reflectance techniques have 

recently been successfully applied to characterize chemical properties of a range of soils (e.g. 

Janik and Skjemstad, 1995; Madari et al., 2006; Minasny and McBratney, 2008; Minasny et al., 

2009; Kamau-Rewe et al., 2011; Shepherd and Walsh, 2002; 2004; and Viscarra Rossel et al., 

2006), and have been employed at larger scale in combination with enhanced geostatistics (Cobo 

et al., 2010). However, their applicability is limited to a small range of elements and matrix 

interferences often require extensive calibration for different environments. X-ray fluorescence 

(XRF) spectrometry, a non-consumptive technique for multi-element determination, has been 

used to assess total elemental concentrations in soil and is applicable to a wide range of matrix 

types. Apart from demanding sample preparation requirements (e.g. pressed pellets), a major 

disadvantage of conventional XRF has been the poor elemental sensitivity. Compromised 

element sensitivity is, in large part, a consequence of high background noise levels, resulting 

from instrumental geometries and sample matrix effects (Mukhtar and Haswell, 1991). Total X-
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ray fluorescence spectroscopy (TXRF) was designed to reduce matrix effects by changing 

geometries. Sample preparation requirements are also reduced with TXRF compared with XRF. 

In TXRF, a monochromatic X-ray beam is directed onto the sample at a very small angle 

(<0.1º), less than the critical angle of external total reflection for X-rays. This causes a total 

reflection of the beam’s photons after touching the sample and thus the beam has a minimum 

interaction with the sample support over which a few microlitres/micrograms of the sample are 

deposited (Dhara and Misra, 2011; Stosnach, 2007). This unique geometry makes TXRF an 

advanced variant of conventional XRF and leads to excitation of the sample by incoming as well 

as totally reflected beams (Dhara and Misra, 2011). By illuminating the sample with a totally 

reflected beam, the absorption as well as the scattering of the beam in the sample matrix is 

reduced (Stosnach, 2007). The resulting benefits are a greatly reduced background noise, and 

consequently much higher sensitivities and a significant reduction of matrix effects eliminating 

the need for external calibration (Bruker, 2007a; Stosnach, 2005, 2007). In addition, the 

preparation of samples as a thin layer largely precludes matrix effects such as absorption or 

secondary excitation (Marguí, et al., 2010; Stosnach, 2005) and consequently it has been 

proposed that a single element can be used as internal standard for all elements (Dhara and 

Misra, 2011). These features, i.e., sample excitation by incoming and totally reflected beams and 

lower background noise, also result in comparatively better detection limits in TXRF than in 

XRF by several orders of magnitude (Dhara and Misra, 2011). Moreover, since the sample is 

deposited on a limited area of the TXRF sample support, sample contamination can be controlled 

(Dhara and Misra, 2011). The TXRF technique has been applied for elemental analysis for both 

the quantitative and qualitative determination of elements with Z > 11 (Z = atomic number). 

Since the wavelength and energy of the fluorescence radiation is specific for each element, 

TXRF analysis is possible because the concentration of each element can be calculated using the 

intensity of fluorescence radiation (Bruker, 2007a). The radiation is labeled K-, L- or M- 

radiation depending on the ionized shell of an atom, and an additional indication e.g. Kα1, Kβ1, 

Lα1 etc. is made depending on the refilling shell (Bruker, 2007b). The fluorescence radiation 

emitted by the sample is then determined by an energy-dispersive detector and the intensity is 

measured by means of an amplifier coupled to a multichannel analyzer (Bruker, 2007a; 

Stosnach, 2007).    
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TXRF is efficient and fast and requires only minimum specimen quantities (Bennun and 

Sanhueza, 2009; Klockenkämper, 1997). It has been employed in a variety of disciplines, 

including biology, physics, biomedicine, chemistry, archaeology, medicine, and geology 

(Bennun and Sanhueza, 2009; West et al., 2011). TXRF analysis of soils using the S2 

PICOFOXTM TXRF spectrometer (Bruker AXS Microanalysis GmbH, Germany) has been 

proposed to allow rapid and simultaneous determination of the concentrations of many elements 

from Na to U in the periodic table (Shepherd, 2010; Stosnach, 2005). However, relatively few 

papers exist on direct quantification of total element concentrations in soil samples using the 

TXRF method. Marguí et al. (2010) and Rousseau (2001) studied several rapid and simple 

analytical approaches that reduced matrix effects, improved detection limits and explored new 

sample preparation methods for total selenium determination in soils using TXRF. Although the 

S2 PICOFOX TXRF instrument comes factory calibrated, it is necessary to do quality control to 

ensure a high quality of the analytical results, particularly for soils with their varying matrix 

effects.  

When testing the accuracy of the quantification, it is insufficient to assess an individual 

instrument parameter, but rather the performance of the complete analytical procedure, from 

sample preparation to analytical result. The accuracy is tested by means of multi-element 

standards with known concentrations: upon spectra evaluation, the nominal values are compared 

with the measured values, and in the case of a deviation of more than 10% an error analysis must 

be performed (Bruker, 2007b). One of the error sources that can be a reason for the deviation 

between nominal and measured values is error in the TXRF calibration. The remedy for 

calibration error is the comparative measurement with other reference standards and recalibration 

if necessary. The quality of the results obtained using the TXRF technique is greatly impacted by 

the accuracy of the instrument sensitivity curve as well as the results of the standards used to 

calibrate the instrument (Bennun and Sanhueza, 2010). The accuracy and detection limit of the 

technique are also affected by instrumental, sample and data processing errors (Mori and 

Uemura, 1999). Instrumental error factors originate from source X-ray stability, accuracy of 

glancing angle, position accuracy of sample stage and spurious peaks interferences, while the 

sample error factors arise from lateral and depth distribution of the analyte, surface roughness 

and diffraction of primary X-rays (Mori and Uemura, 1999).  
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The objectives of this study were to (i) develop and test an improved analytical method 

for the direct quantification of total element concentrations in soils using the S2 PICOFOXTM 

TXRF spectrometer, and (ii) using a determined instrument sensitivity curve, test the ability to 

calibrate/validate against total acid dissolution ICP-MS analysis (international standard method) 

for a range of elements. Soil samples from a wide range of soils in the Sub-Saharan Africa 

tropics and textures as well as elemental ranges were used to develop a generalizable approach. 

 

2.3 Materials and Methods 

The S2 PICOFOX spectrometer used in this study is a portable benchtop TXRF 

instrument, featuring an air-cooled low power X-ray metal-ceramic tube with a Molybdenum 

target, working at 50 W of max power, and a liquid nitrogen-free Silicon Drift Detector (SSD) 

(Bruker, 2007b). A summary of the technical specifications of the instrument is given in Table 

2.1. The compact S2 PICOFOX TXRF system design allows even mobile use for measurements 

on-site or in the field because it is independent of any cooling media (Bruker, 2007b). Further 

benefits of the TXRF system are the absence of a vacuum chamber, the absence of matrix or 

memory effects and the ability for multi-element analysis (Bennun and Sanhueza, 2010). We 

purposely selected 15 representative soil samples with a wide range of properties and elemental 

concentrations to calibrate the S2 PICOFOX for total element analysis in soils and an additional 

20 soil samples as an independent validation set. These samples were analysed by both the 

TXRF technique and the conventional standard method of total acid dissolution inductively 

coupled plasma – mass spectroscopy (ICP-MS) sodium peroxide (Na2O2) based fusion. 

 

Table 2.1: Technical specifications of the S2 PICOFOX TXRF spectrometer. 
X-ray tube  50 kV, 1 mA, Mo target 
Element range Na to U 
Optics Multilayer monochromator, 17.5 keV 
Detector, area, resolution Silicon drift, 10 mm2, <160 eV 
Carrier Quartz or other material, 30 mm diameter 
Sample station Cassette for 25 discs 
Control PC, data transfer via serial interface 
Size, weight 590 x 450 x 300 mm, 37 kg 
Power consumption Max 150 W 
Voltage, frequency 100-230V ± 10%; 50-60 Hz 
Manufacturer Bruker AXS Microanalysis GmbH 
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2.3.1 Sample selection and preparation 

The 15 soil samples, for use in the testing of the applicability, accuracy and recalibration 

of the TXRF method, were selected from a set of 100 reference soils collected from various 

locations across Africa. They were obtained from the World Agroforestry Centre (ICRAF) 

archive Africa soil library. Selection of the 15 samples was based on principal components 

analysis (PCA) of the following variables from reference analytical data from both ICRAF and 

Crop Nutrition Services Laboratories in Nairobi, Kenya: Sand, Silt, Clay, Fe, Ca, pH and C. 

After corresponding transformation to achieve close to statistical normality Euclidian distances 

were calculated based on the number of principal components recommended by the PCA and 

thereafter percentiles were calculated and ranked in an ascending order. The 15 samples were 

randomly selected from each of the quartile ranges, with 4 samples from each quartile range 

except the first quartile range where 3 samples were selected, using all the variables to ensure 

that we had a wide variation in possible matrix influences from within the set of 100 samples. An 

independent validation set of 20 soil samples was selected based on the Kennard-Stone sample 

selection algorithm (Kennard and Stone, 1969) using a PCA of TXRF total element 

concentration data from a set of 603 samples associated with the Africa Soil information Service 

(AfSIS) project (www.africasoils.net), taken from nineteen 100-km2 stratified random sites 

across Africa: Ghana (3 sites), Tanzania (8), Congo (2), Mali (2), Burkina Faso (1), Malawi (1) 

and Mozambique (2) (AfSIS, 2011). The soil samples were air-dried and passed through a 2-mm 

sieve before being oven-dried at 40 ºC overnight. A sub-sample 5 g of each soil sample was 

ground to a fine powder <200 µm using a Retsch RM 200 mill (Retsch GmbH, Haan, Germany) 

and thereafter, 3 g of each soil sub-sample was further milled to <50 µm using a micronising mill 

(McCrone, Westmont, U.S.A.). 

 

2.3.2 Cleaning and preparation of TXRF sample carriers 

The following tasks connected to cleaning of TXRF quartz glass sample carriers were 

done under a laboratory fume hood to avoid contamination: (i) mechanically wiping each sample 

carrier with a fluff-free tissue paper soaked in acetone (Panreac Quimica, Spain), (ii) mounting 

the sample carriers onto a washing cassette then transferring the cassette into a 1000 ml glass 

beaker containing hot alkaline cleaning solution (RBS 50 (Chemical Products S.A., Belgium) 
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diluted to ratio 5:50, RBS:double distilled water), (iii) rinsing the sample carriers with deionized 

double distilled water, then transferring the washing cassettes into 1000 ml glass beaker filled 

with 10% nitric acid (Sigma-Aldrich, Germany) before heating for 2 hours on a hot plate 

previously set to 80 °C in a chemical fume chamber, (iv) thoroughly rinsing the sample carriers 

with deionized double distilled water before transferring into a 1000 ml glass beaker containing 

hot (80 °C) distilled water then rinsing the sample carriers with ultra-pure water prepared using a 

Centra R60, Purelab Flex 2 (Elga, UK), (v) drying the sample carriers in an oven set at 80 °C for 

30 minutes before carefully wiping the sample carriers with tissue paper soaked in acetone, and 

finally (vi) adding 10 µl silicon solution (Serva Electrophoresis, Germany) at the center of the 

sample carriers and drying the sample carriers in an oven at 80 °C for another 30 minutes to 

leave a surface residue of silicon that helped homogenise the soil suspension for TXRF analysis. 

 

2.3.3 TXRF measurements 

We tested a method for the direct quantification of total element concentration in soils 

using TXRF and for this an amount of approximately 50 mg of each finely ground soil sub-

sample (3 g) was mixed with 2.5 ml of Triton X-100 (Fischer Scientific, UK) solution (0.1 vol. 

%) to form a soil suspension and then spiked with 40 µl of 1000 mg l-1 Selenium (Fluka 

Analytical, Germany) as the internal standard. Selenium, an ubiquitous natural constituent in 

soil, originating from parent materials in the earth’s crust is widely variable but on a worldwide 

basis, Kabata-Pendias and Mukherjee (2007) estimated an average Se content of 0.3 mg kg-1 in 

surface soils with levels typically ranging from 0.05 to 3.5 mg kg-1. Even though there are 

enriched Se concentrations (up to above 100 mg kg-1) in soils derived from volcanic dust 

(Kabata-Pendias and Mukherjee, 2007) data specific to Se concentration in Africa soils were 

determined for the set of 100 reference soils collected from various locations across Africa by 

TXRF at the ICRAF Spectral Diagnostics Laboratory as ranging from 0.01 to 0.3 mg kg-1. We 

also determined concentrations of different elements in the set of 100 reference soils, but found 

virtually all elements in some soils and compared with elements Sc (2.5 - 5.8 mg kg-1) and Y (5.7 

to 79 mg kg-1) recommended initially by the instrument manufacturers as internal standards, Se 

was thus appropriate for use as internal standard in TXRF analysis of soil due to the low natural 

background concentration. However, for future studies, if the soil/sediment samples have 
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extraordinarily high Se concentrations the application of Se is not ideal, and we recommend that 

a quick qualitative scan be applied and if high Se-signals are detected, a different internal 

standard (e.g. Bismuth) can be applied.  

Triton X-100, an organic compound, applied for TXRF sample preparation, enhances the 

homogeneity of samples (Stosnach, 2005). The solution was placed into an ultrasonic water bath 

at room temperature and sonicated in continuous mode for 15 minutes. The solution was then 

thoroughly homogenised using a digital shaker and 10 µl of the turbid soil solution immediately 

dispensed on to a clean siliconised quartz glass sample carrier, ensuring a homogenous sample. 

Each soil sample, prepared as a thin film on the quartz disk, was then dried for 10-15 minutes on 

a hot plate (Staurt® SD300) set at 52 ºC and placed in a clean laminar flow hood. The final 

samples for TXRF analysis contained thin, circular soil films on the quartz glass sample carriers. 

Samples were then measured with the spectrometer in triplicate, and the relative abundance of 

each line was determined, as depicted in Figure 2.1. The data acquisition time was 1000 s per 

sample, thus requiring about 7 hours for analysis of each batch of 25 samples. Each batch of 

samples included 1 gain correction mono-element standard sample, which, in our case was 

Gallium, used for spectra correction of certain detector artefacts such as background and escape 

peaks. A drift in the spectroscopic amplification was compensated or reset by means of a gain 

correction, a process in which a correction value is transferred to the spectroscopic amplifier 

after a duplicate measurement of a known fluorescence peak (Bruker, 2007b). The relative 

abundance of intensities of the different elements, as depicted in Figure 2.1, are processed by 

referring to one in particular (the internal standard) (Bennun and Sanhueza, 2010). The 

interpretation of the TXRF spectra and data evaluation was performed using the software 

program SPECTRA 6.3 (Bruker AXS Microanalysis GmbH). 

 

2.3.4 Pile-up peak correction  

Pile-up peaks (also called sum-peaks) occur in samples with high concentrations when 

two X-ray photons hit the TXRF detector at the same time causing the detection of a peak at 

double energy of the photon (Bruker, Personal communications). Three aqueous multi-element 

standards were used for pile-up peak corrections for some elements e.g. Fe, Ca, and K, including 

the following: (i) Multi-element solution “general”: 1 mg l-1 each of Ca, Ti, V, Cr, Mn, Fe, Co, 
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Ni, Cu, Zn, As, Se and Sr; (ii) Multi-element solution “light elements”: 100 mg l-1 Mg and 10 mg 

l-1 each of Al, P, S, K and Ca; as well as (iii) Multi-element solution “heavy elements”: 0.1 mg l-1 

each of Pb, and Bi and 10 mg l-1 each of Pd, Cd and Sb. Pile-up peak corrections were done 

manually using the SPECTRA software utilizing the data from multi-element standards for the 

elements e.g. Fe, Ca and K. The X-ray fluorescence lines of the individual elements were stored 

in the software in the form of an atomic library and later identification of the elements was done 

by an interactive comparison of the observed spectra lines and measured spectrum (Figure 2.1). 

In order to allocate the correct intensities to the individual elements in the spectrum, a 

deconvolution routine (SuperBayes) of the SPECTRA software was applied which used 

measured mono-element profiles for the evaluation of peak intensities (Bruker, 2007b).
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Figure 2.1: TXRF spectra of six of the calibration soil samples measured with the S2 PICOFOX spectrometer showing peaks and the 

abundance of each line determined for all elements. 
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2.3.5 ICP-MS reference measurements 

The selected soil samples were sent to the Analytical Geochemistry Laboratory, British 

Geological Survey (BGS), UK, for conventional total acid dissolution ICP-MS analysis. Two 

further sample preparation and analysis routines were used by the BGS laboratory prior to 

analysis of the set of 15 soil samples (BGS, Documented In-House Methods, Personal 

communications):  

(i) Fusion of 0.25 g of sample with 1 g of sodium peroxide (Na2O2) flux (used as the 

standard method in this study); and  

(ii) Digestion of 0.25 g of sample with a mixture of 2.5 ml HF, 1 ml HClO4 and 2.5 ml HNO3 

concentrated acids. 

The independent validation set of 20 soil samples was prepared and analysed using only 

the first routine, i.e. fusion of 0.25 g of sample with 1 g of sodium peroxide (Na2O2) flux. 

 

2.3.6 Evaluation of TXRF method precision 

One of the TXRF method’s most important source of errors that must be minimized is 

variation due to sample preparation (Rousseau, 2001), thus all samples and reference materials 

were prepared and presented to the instrument in an identical and reproducible manner. In slurry 

sampling, only a small amount of sample can be assayed, so samples must be very homogenous 

to ensure representative results (Sánchez-Moreno et al., 2010). In our method, homogenous soil 

sample suspensions were obtained by fine grinding of the sample and shaking the mixture with 

an ultrasonic bath for about 30 minutes. Materials with low density are prone to float or 

agglomerate while other materials present a hydrophobic behavior, so a dispersing agent, Triton 

X-100 was used in the slurry media to get a homogenous suspension. In addition, since the 

internal standard was added to the solution in a well-defined concentration, the uncertainty of the 

variations of the different depositions of the sample on the sample holder were avoided. In order 

to provide a quantitative estimate of the analytical precision for the TXRF analysis for each 

element, the coefficient of variability (CV) based on triplicate analysis of each sample was 

calculated.   
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2.3.7 TXRF method recalibration and determination of accuracy 

A consistent systematic underestimation of all element concentrations using actual (non-

adjusted) TXRF analysis compared to reference analysis methods (ICP-MS) was observed with 

the exception of Na, Co, Zr, La, Sm, and Bi which were overestimated, indicating spectrometer 

recalibration was required (Annex Table A2.1). The single-element recalibration method was 

used, involving the calculation of the calibration value for each element utilizing TXRF count 

statistics and concentration data of the 15 soil samples. For this, the Excel spreadsheet array 

function "linest", which is a linear least squares curve fitting routine that fitted a line in the form 

y=mx+b with a non-zero intercept and produced uncertainty estimates for the fit values, was 

utilized. The recalibration of the TXRF spectrometer then followed a sequence that determined 

the relative intensity of different elements in the measured spectrum, giving rise to a sensitivity 

curve as depicted in Fig. 2.2. The adjusted sensitivity values varied systematically with atomic 

number as would be expected. For the K-lines the element range goes from Na to Zr and for L-

lines from Pd to U in the periodic table (Figure 2.2). The relative element sensitivities are always 

just valid for a particular system configuration (Bruker 2007a), and thus we suspect that changes 

of the excitation version or detector as was the case in our TXRF system led to new element 

sensitivities that were significantly different from the original ones (Figure 2.2). Recalibration 

was also necessary primarily because the prepared suspension samples did not fulfill the “no 

matrix approach” as ideal TXRF samples with a thickness of < 100 µm and thus, we have 

adsorption effects in the TXRF system which decrease with decreasing fluorescence energy 

(Stosnach, 2013, personal communications). Another minor reason was (especially for Fe) that 

the concentration range in the soil samples was by orders of magnitude higher than the original 

calibration range (Stosnach, 2013, personal communications). 

The independent evaluation of the accuracy of the quantification results after 

recalibration was tested using the set of 20 independent soil samples. In addition, further 

evaluation of accuracy was done using Merck (Merck KGaA, Darmstadt, Germany) and Bernd 

Kraft (Bernd Kraft GmbH, Duisburg, Germany) multi-element standards, with known 

concentrations of 100 mg l-1 and 10 mg l-1 simultaneously, by comparing the nominal values with 

the measured values. All standard reference samples for investigations were prepared and 

presented to the spectrometer using the same experimental conditions as the soil samples 

investigated for this study. 
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Figure 2.2: Set of relative element sensitivity curves of the TXRF spectrometer for original (▲) 

and new (♦) K-lines values as well as original (●) and new (■) L-lines values. One possible 

explanation why the primary calibration has changed significantly is due to a change in the X-ray 

detector of the S2 PICOFOX instrument. 

 

2.4 Results and Discussion 

2.4.1 Comparisons of the analytical results after recalibration 

Recalibration was successful except for a few elements (Figure 2.3; Annex 2.1). 

Elements accurately determined by TXRF (model efficacy or slope close to 1:1 line, and R2 > 

0.80) compared to ICP-MS were Al, K, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Ga (Figure 2.3a). 

Most elements with high TXRF accuracy i.e. Al, K, V, Cr, Mn, and Ga also had a good 

analytical precision with CV’s ranging from 6-10% (Table 2.2). Other elements estimated with 

an acceptable accuracy (R2 > 0.60 to 0.80) although generally somewhat under- or overestimated 

were P, Ca, As, Rb, Sr, Y, Pr, Ta and Pb (Figure 2.3b). Compared to ICP-MS the TXRF 

spectrometer produced non-systematic underestimations for elements such as Na, Mg, Ba, Ce, 
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Hf, La, Nd, W and Sm, and overestimations for elements Bi, Tl and Zr, even after recalibration 

(Figure 2.3c; Annex 2.1). However, the ranges in bias and differences between ICP-MS and 

TXRF results were reduced by the recalibration procedure used (Annex 2.1). Because of the 

significant improvements found, we suspect that using a larger set of calibration samples would 

further improve the accuracy of the instrument. The over- or underestimation for some elements 

that had TXRF values higher or lower than those of the ICP-MS analyses could be attributed to a 

number of factors during sample preparation and TXRF data processing such as sample matrix, 

acid dissolution methodology, and the methods reproducibility of the analyses (Lin, 2009). We 

speculate that TXRF data processing in a complex sample matrix such as soil was a likely cause, 

especially issues to do with line interference for some elements as well as concentrations close to 

the detection limit. We also hypothesize there were minimal problems of contamination due to 

working under a clean laminar flow hood chamber but there is need to confirm this in future 

studies e.g. contaminations from solution used during sample preparation or silicon on the 

sample holder.  

Despite the fact that most elements could be quantified in our soil samples using TXRF, 

the technique appeared to be inappropriate for some elements due to other limitations. We 

suspect that line interferences for Na, La, Ce, Ba, Nd, Hf, Ti, W and Bi, and low concentrations 

close to the detection limits for Sm, made these elements difficult to analyse (Figure 2.3c, Table 

2.2).  We hypothesize that the conspicuously high TXRF estimates of Zr (Figure 2.3c) result 

from the extremely low energy of their fluorescence lines and in addition Zr has an interference 

with Mo making it difficult to accurately quantify this element in a spectrometer system that uses 

Mo X-ray tube for excitation (Figure 2.1). In further studies there is need to confirm sample 

(slurry) homogeneity before/during pipetting and in addition, confirm whether there are elements 

that are highly concentrated in minor mineral phases (e.g. Zr in Zirconia). Lanthanum and Ce 

were detected with difficulty in soil samples because of the line interferences with Ba, Sm and 

especially Ti (Figure 2.1) (Stosnach, 2010, personal communications). In the soil samples, the 

element Ag could not be detected using a molybdenum tube except by means of its low intensity 

L-line, but this line was strongly overlapped by the dominating K-lines of the matrix elements K 

and Ca, which prevented a quantitative determination using TRXF (Stosnach, 2005). In the 

particular case of Hg quantification, the procedure used (sample evaporation by drying) was 

unsuitable due to the high vapor pressure and low boiling point of this element that produced 
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evaporation and loss of Hg from the surface of the reflector during the drying process. 

Additionally, Si was not detected due to the use of quartz glass sample carriers that give blank 

results for this element.  

 

Figure 2.3a: Actual concentrations (in mg kg-1) measured using conventional total acid 
dissolution ICP-MS versus concentrations estimated using TXRF for 15 soil samples after 
recalibration for the elements determined with high accuracy. Missing R2 values were due to 
missing data either reference or estimated results. 
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Figure 2.3a cont.: Actual concentrations (in mg kg-1) measured using conventional total acid 

dissolution ICP-MS versus concentrations estimated using TXRF for 15 soil samples after 

recalibration for the elements determined with high accuracy. Missing R2 values were due to 

missing data either reference or estimated results. 
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Figure 2.3b: Actual concentrations (in mg kg-1) measured using conventional total acid 

dissolution ICP-MS versus concentrations estimated using TXRF for 15 soil samples after 

recalibration for the elements determined with acceptable accuracy. Missing R2 values were due 

to missing data either reference or estimated results. 
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Figure 2.3c: Actual concentrations (in mg kg-1) measured using conventional total acid 

dissolution ICP-MS versus concentrations estimated using TXRF for 15 soil samples after 

recalibration for the elements determined with poor accuracy. Missing R2 values were due to 

missing data either reference or estimated results.  
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Figure 2.3c cont.: Actual concentrations (in mg kg-1) measured using conventional total acid 

dissolution ICP-MS versus concentrations estimated using TXRF for 15 soil samples after 

recalibration for the elements determined with poor accuracy. Missing R2 values were due to 

missing data either reference or estimated results.  
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Table 2.2: TXRF mean elemental concentrations (mg kg-1), lower detection limits (LLD) (mg kg-

1) and coefficient of variability (CV %) for the calibration and validation sets.  Elements are 

ordered according to increasing atomic number. 

 Calibration set (n=15)  Validation set (n=20) 
Element Mean Conc Mean LLD Mean CV  Mean Conc Mean LLD Mean CV 

Na 5500 2400 21  16000 4200 18 
Mg 1100 450 9  17700 5000 18 
Al 78000 300 12  40200 300 10 
Si n.d. n.d.   n.d. n.d.  
P 700 35 23  700 50 19 
S 200 30 11  1600 45 37 
Cl 70 20 57  400 35 23 
K 15000 10 6  16300 15 10 
Ca 6000 4 5  69600 7 10 
Sc 30 3 6  20 4 48 
Ti 6000 2 5  4900 2 10 
V 100 2 13  30 2 34 
Cr 60 2 10  100 2 17 
Mn 1400 1 6  1000 1 12 
Fe 45900 1 6  37200 2 10 
Co n.d. n.d.   75 1 24 
Ni 20 0 6  50 1 12 
Cu 30 0 6  20 0 11 
Zn 80 0 6  50 0 10 
Ga 20 0 7  12 0 11 
As 5 0   2 0 34 
Se 883 0 0  883 0 0 
Br 5 0 6  20 0 11 
Rb 50 0 8  70 0 11 
Sr 110 0 7  200 0 10 
Y 30 0 10  30 0 15 
Zr 4800 317 14  170 25 19 
Mo n.d. n.d.   900 160 51 
Ba 60 2 31  4700 22 27 
La 110 2 7  1000 12 18 
Ce 130 2 14  40 2 44 
Pr 20 2 16  1 1 28 
Nd 20 2 42  15 2 49 
Sm 5 1 8  30 1 17 
Yb n.d. n.d.   n.d. n.d.  
Hf 1 0 26  2 0 23 
Ta 7 0   3 0 37 
W 1 0   1 0 31 
Hg 0 0 33  15 0 17 
Tl 3 0   n.d. n.d.  
Pb 15 0 9  40 0 29 
Bi 5 0 27  5 0 38 
Th n.d. n.d.   40 0 17 
Key: Conc – concentration, n.d – not detected. 
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Since the intercept for some elements were not at zero, and based on the good linear 

relationship found in the regression lines of the measured (ICP-MS) vs estimated (TXRF) plots 

of the different elements (Figure 2.3a-c), we tested the possibility for alternative adjustments of 

the TXRF results using the regression equation of the ICP-MS Na2O2 fusion-based results. Here, 

the linear regression based equation of the ICP-MS Na2O2 fusion results (y=A+Bx), where A is 

the intercept and B is the slope, was thus used to perform a linear fit on our TXRF data. 

Recalculated TXRF results clearly showed that such recalculation has a large upward bias 

(overestimations) for all the elements with the exception of V, Ni and Rb (Table 2.3). It is also 

striking that this approach did not work for Bi (the recalculated Bi concentrations gave only 

negative values compared to the true measured (ICP-MS) value after recalibration) (Table 2.3). 

Thus this approach, has limitations, for instance the models may be over-adjusting the residuals 

seen in some of the individual element plots. Therefore, such correction will necessitate further 

investigation. 
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Table 2.3: Recalculated TXRF results (mg kg-1) corrected to ICP-MS Na2O2 values using the 

regression equation for 15 soil samples (calibration set), and their comparison to mean nominal 

and estimated element concentrations.  Elements are ordered according to increasing atomic 

number.  

 Recalculated TXRF 
results (corrected to 
ICP-MS Na2O2) 

 Estimated (TXRF) 
after recalibration 
procedure 

 Measured ICP-MS 
Na2O2 fusion value  

Element Mean concentration  Mean concentration  Mean concentration 
Al 91500  78400  78400 
P 2000  700  900 
K 26600  14900  16000 
Ca 13300  6100  9600 
Ti 9000  6200  8000 
V 100  100  100 
Mn 1600  1400  1400 
Fe 67300  46000  57000 
Ni 30  20  40 
Cu 60  30  30 
Zn 120  100  100 
Ga 15     
Rb 100  55  100 
Sr 210  110  180 
Y 40  30  30 
Ba 2000  60  700 
Ce 2200  120  150 
Pr 30  20  20 
Ta 25  10  10 
Bi -1  5  0 
 

 2.4.2 Evaluation of TXRF method precision  

The mean CV values for the three replications of all the soil samples, in general, 

indicated that the analytical precision was good (Table 2.2). An influence of ± 10% is normally 

acceptable but the value of the CV (in %) depends on the element (especially for the light main 

elements of interest (Na, P, S, and Al), there was a systematic underestimation due to adsorption 

effects, as samples prepared out of suspensions have no ideal thickness). The CV was <10% for 

many of the elements detected, with the exception of Na, Al, P, S, Cl, V, Zr, Ba, Ce, Pr, Nd, Hf, 

Au, Hg, and Bi in the calibration set, and Na, Mg, P, S, Cl, Sc, V, Cr, Mn, Co, Ni, As, Y, Zr, Mo, 

Ba, LA, Ce, Pr, Nd, Sm, Hf, Ta, W, Au, Pb and Bi in the validation set (Table 2.2). The low 

reproducibility values for some elements were connected to the low counting statistics caused by 

the low sensitivity of the TXRF instrument for light elements (Na, Al, and P), disturbances by 
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overlaps between elements with high and comparatively low concentrations (V), elements 

present in concentrations close to their LLD, and also variations due to sample drying on the 

sample holder. Light elements are reported to be analysed inaccurately due to the absorption of 

their X-ray fluorescence signals in the air atmosphere of the instrument (Stosnach, 2005). The 

assumption that the absorption in air is more important compared to the absorption within that 

sample is true for conventional XRF systems with high distances between tube, sample and 

detector, however, in TXRF the distance between sample surface and detector is very short (1.5 – 

2 mm) and the sample fluorescence is detected with high efficiency leading to a high absolute 

efficiency of the method (Bruker, 2007a). Thus, the adsorption in the air is negligible. The 

introduction of contaminants e.g. Na, P, Ca, Mg, Al, in the form of dust, during sample 

processing for TRXF analysis may not have had a serious consequence in our elemental analysis 

results due to working under a laminar flow hood, but their possible impact cannot be ruled out. 

But then any contaminations would have showed up in the standards. Our results showed good 

results with the slurry method used (Table 2.2), however, we hypothesize that the 

representativity of small amounts of inhomogenous sample slurry might have also had an effect. 

In addition, for quantitative TXRF analysis of particles, a size of <20 µm is recommended for 

best accuracy (Bruker, 2009), but will increase preparation costs and time (García-Heras et al., 

1997), while in our case particles were below 50 µm. 

 

 2.4.3 Evaluation of TXRF method accuracy  

TXRF recalibration resulted in accurate results for most elements of relevance to crop-

livestock-human nutrition and they were estimated well in the independent validation set with 

the exception of a few (Table 2.2). Similar to what we found after recalibration of the instrument, 

the TXRF spectrometer still produced non-systematic underestimations for elements such as Al, 

S, V, Zr, Ce, Pr, Nd and Hf and overestimations for elements Mg, P, Co, Ni, Rb, Mo, Ba, La, 

Sm, W, Pb, Bi and Th compared to ICP-MS for the set of 20 independent soil samples (data not 

shown). Accuracy of the data was also determined by analysis of two multi-element standards, 

Merck and Bernd Kraft using the TXRF method. The Merck and Bernd Kraft multi-element 

standards had certified concentrations of 100 mg l-1 and 10 mg l-1 in nitric acid 0.1 mol l-1 

respectively. The nitric acid matrix is preferred because the elements are stable/soluble and also 
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because of its oxidizing ability and the freedom from chemical and spectral interferences. Upon 

spectral data evaluation for the two multi-element standards, there were deviations of less than 

10% for all elements when the nominal values were compared with the measured values, except 

for higher deviation in the case of Sr (-18%) and Tl (23%) (Table 2.4). However, these are not 

soil standards and hence their value is limited. One of the limitations with the TXRF technique is 

the determination of L-line elements due to line interferences with the strong K-lines. Therefore, 

Tl could be determined by their low intensity L-lines only, yet these lines were overlapped by the 

strong K-lines of the matrix elements K and Ca, which prevented accurate quantitative 

determination of the element using TRXF (Stosnach, 2005), hence the high % deviation of the 

measured value from the nominal value. Similarly, Sr was determined by its K-line but there 

could be other line overlaps that influence the accuracy of the peak deconvolution.  

 

Table 2.4: Evaluation of accuracy: summary of comparison between TXRF measured and 

reference values (mg l-1) for the Merck and Bernd Kraft multi-element standards after TXRF 

instrument recalibration. 

Merck data (n=48) 

Element Ca Ti V Cr Mn Fe Co Ni Cu Zn As Se Sr Sb Tl Pb 

Measured 96 101 100 98 95 105 97 97 100 97 100 100 95 102 77 91 

Reference 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

CV %  4 -1 0 2 5 -5 3 3 0 3 0 1 5 -2 23 9 

Benrd Kraft data (n=10) 

Element Ca Ti V Cr Mn Fe Co Ni Cu Zn As Se Sr    

Measured 11 10 11 11 11 11 11 10 10 11 10 10 12    

Reference 10 10 10 10 10 10 10 10 10 10 10 10 10    

CV %  -10 -3 -5 -5 -7 -9 -8 -5 0 -5 4 -3 -18    

 

Based on the performance of TXRF with the independent validation set (Table 2.2), we 

tested the combination of the calibration (n = 15) and independent validation (n=20) sets to 

obtained a wider range of soils and hence more reliable calibrations (Figure 2.4). Because of the 

slight improvements found in the model efficacy of these new calibrations, the results confirm 

our suspicion that using a larger set of calibration samples would further improve the instrument 

accuracy. However, the range of concentrations did not increase strongly using the added 
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validation set suggesting (i) a good pre-selection of the original calibration set, and (ii) the need 

to widen the range with additional purposely selected samples. The current TXRF calibration and 

results will be considered for use in screening for, or selecting, any elements we bring forward 

during future direct quantification of total element concentrations in soils using TXRF. 

 

 

Figure 2.4: Actual concentrations (in mg kg-1) measured using conventional total acid dissolution 

ICP-MS versus concentrations estimated using TXRF for 35 soil samples after recalibration for 

analyses performed on combined calibration (n = 15) and independent validation (n = 20) soil 

sample sets. Missing R2 values were due to missing data either reference or estimated results. 
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Figure 2.4 cont.: Actual concentrations (in mg kg-1) measured using conventional total acid 

dissolution ICP-MS versus concentrations estimated using TXRF for 35 soil samples after 

recalibration for analyses performed on combined calibration (n = 15) and independent 

validation (n = 20) soil sample sets. Missing R2 values were due to missing data either reference 

or estimated results. 
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Figure 2.4 cont.: Actual concentrations (in mg kg-1) measured using conventional total acid 

dissolution ICP-MS versus concentrations estimated using TXRF for 35 soil samples after 

recalibration for analyses performed on combined calibration (n = 15) and independent 

validation (n = 20) soil sample sets. Missing R2 values were due to missing data either reference 

or estimated results. 
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Figure 2.4 cont.: Actual concentrations (in mg kg-1) measured using conventional total acid 

dissolution ICP-MS versus concentrations estimated using TXRF for 35 soil samples after 

recalibration for analyses performed on combined calibration (n = 15) and independent 

validation (n = 20) soil sample sets. Missing R2 values were due to missing data either reference 

or estimated results. 
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Figure 2.4 cont.: Actual concentrations (in mg kg-1) measured using conventional total acid 

dissolution ICP-MS versus concentrations estimated using TXRF for 35 soil samples after 

recalibration for analyses performed on combined calibration (n = 15) and independent 

validation (n = 20) soil sample sets. Missing R2 values were due to missing data either reference 

or estimated results. 
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2.5 Conclusions 

The S2 PICOFOXTM spectrometer (Bruker AXS Microanalysis GmbH, Germany) has 

been reported as the world’s first and only mobile bench-top system for a fast quantitative and 

semi-quantitative multi-element microanalysis of various types of samples applying the 

principles of TXRF (Stosnach, 2005). With detection limits in the ppb to ppm range, the S2 

PICOFOXTM is also reported to be ideally applicable for trace element analysis and because of 

the instrument’s total independence from cooling media, it is not just applicable in the laboratory 

but mobile on-site analysis (Bruker, 2007b). The suitability of this system for the mobile on-site 

analysis of heavy contaminated soils and sediments has been reported (Stosnach, 2005). This 

study has reported the possibilities and restrictions of TXRF for soil analysis application with 

regard to some elements (light and L-line elements). Our results show that TXRF is a promising 

technique for rapid and simultaneous determination of the concentrations of many elements in 

soil samples including low atomic number elements such as Al, P, K and Ca, if properly 

recalibrated. We developed and tested a procedure (single-element recalibration) to improve the 

sensitivity curve that provided accurate results <10% for most of the nominal or reference values 

for a set (n=20) of validation samples as well as two multi-element standards. Further, the TXRF 

method compared well with total acid dissolution ICP-MS analysis for a range of elements.  

Errors introduced by line interferences depend on the concentration of the interfering 

element and, thus, are not systematic and cannot be corrected by the setup calibration. In general, 

the only factors that can be corrected by adjusting the calibration curve are systematic errors 

introduced by sample preparation. The most common factor with the correction for systematic 

errors is fluorescence radiation adsorption for the light elements (Na – Ca), which are usually not 

analysed accurately due to the absorption of their X-rays fluorescence signals in the air 

atmosphere of the instrument (Stosnach, 2005), however,  because in TXRF the distance between 

sample surface and detector is very short (1.5 – 2 mm), the sample fluorescence is detected with 

high efficiency leading to a high absolute efficiency of the method (Bruker, 2007a) and thus, the 

adsorption in the air is negligible. We also tried the Bruker automatic pile-up correction 

procedure using the SPECTRA software, however, there were only very minor improvements in 

the results for some elements. However, we have realized that the pile up peaks are important 

error sources and the current corrections, both manual and automatic, are ineffective for some of 

the elements, requiring further research. Our results of analysis of an independent validation set 
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as well as multi-element standards confirmed the extent of the improvement in the TXRF 

instrument sensitivity curve after recalibration.  Despite some non-systematic underestimation 

for some elements even after recalibration, the TXRF method would be useful for estimation or 

measurements of total element concentrations of Al, P, Ca, K, Zn, etc. to reduce the current data 

uncertainty in Africa soils as confirmed by our analytical results.  

The total concentration of different elements in the soil – its geochemistry – has 

implications for both human and animal health, for example, it influences the availability of a 

range of essential and potentially toxic elements which has implications for their uptake by both 

animals and crops (Rawlins et al., 2012). Understanding the natural concentrations of elements in 

the soil can help to determine whether, and the extent to which, soil may have been contaminated 

by anthropogenic activities (Rawlins et al., 2012). Environmental quality guidelines (EQGs) 

have been developed for soil element concentration values in attempts to determine and predict 

concentrations above which effects occur and below which effects do not occur (Chapman et al., 

2003), but these values vary by jurisdiction, land use and by proponent as outlined for some 

elements in Table 2.5. However, presently EQGs are not available for tropical Africa soils. 

Certainly in Africa, data availability and quality are far from optimal and thus are important 

constraints on the potential to carry out environmental health mapping. Thus the role of EQGs in 

environmental quality assessments should, at present, be restricted to assisting in determining 

whether element concentrations pose relatively low or very high potential for significant toxicity 

to resident organisms (Chapman et al., 2003). Much of the variation in the concentration of 

major and trace elements in the soil is accounted for by the parent material from which the soil 

formed (Rawlins et al., 2012). Elements, other than those metals after uranium on the periodic 

table, are naturally occurring and can result from non-anthropogenic sources, including 

weathering, volcanic, and hydrothermal activities (Chapman et al., 2003). Thus, the assessment 

of soil quality for naturally occurring elements in Africa must take into consideration regional 

variations in background concentrations which strongly depend on geological and biological 

characteristics as well as recent management in natural environment.  

As noted by Chapman et al. (2003) natural background concentrations of element in 

sediments or soils can vary greatly between sites and areas and as such determinations must be 

made in a geological context, accommodating both mineralogy and provenance (origin of soil 
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parent materials) (Chapman et al., 2003). It should be noted that relatively high concentrations of 

elements can occur naturally in Africa soils thus making the distinction between pollution versus 

naturally occurring geological assessment difficult. This is because soils do reflect the natural 

composition of parent material and thus in some mining areas, naturally occurring elements in 

soils or rocks could be characterized as “contaminated”. Thus no single guideline on 

concentrations as outlined in Table 2.5 can adequately represent the variance in the background 

concentrations across Africa. Whilst there may be areas that are yet able to establish 

comprehensive systems of environmental health mapping, opportunity to develop at least 

prototype systems does exist in many areas (Briggs, 2000). In addition, a growing recognition of 

the need for reliable environmental and health data is emerging in many countries, while the 

development of remote sensing technologies is greatly increasing the potential for environmental 

survey and monitoring (Briggs, 2000). Because problems of inconsistencies and uncertainties in 

diagnosis could occur, considerable effort may be needed in capturing suitably geo-referenced 

element concentration data (Briggs, 2000). Considerable scope does exist to obtain relevant data, 

at least in some parts of Africa, and the possibility of developing routine systems for data 

collection is undoubtedly improving. We thus propose that the TXRF technique be used as a 

rapid screening tool for assessment of total element concentrations and chemical fingerprints in 

soils. Element fingerprints using TXRF could be further tested for inferring soil chemical and 

physical functional properties which is of interest in the Africa soils context. 

 



 
 

60 
 

Table 2.5: Soil quality guidelines (SQG) values (mg kg-1) for the protection of environmental and human health: summary of the 

compiled environmental guidelines and standards for Canada, Australia, Dutch and UK.  

 Canadian Land use1  Australian1  Dutch1  United 
Kingdom1 

 Australian (air-dry cultural soils)2 

 Industrial Commercial Residential 
Park 

Agricultural  SQG 
Low 

SQG 
High 

        

Element Name Level Level Level Level  Level Level  Level  Level  Range Maximum Tolerable 
Arsenic, As 12 12 12 12  20 70  76  32  0 - 20 < 8000 20 

Cadmium, Cd 22 22 10 1  2 10  13  10  0 - 1 < 200 3 

Chromium, Cr 87 87 64 64  80 370  78    2 - 50 < 20000 100 

Copper, Cu 91 91 63 63  65 270  190    1 - 20 < 22000 100 

Lead, Pb 600 260 140 70  50 220  530    0 - 20 < 10000 100 

Mercury, Hg 50 24 7 7  0 1  36    0 - 1  2 

Nickel, Ni 50 50 50 50  21 52  100  130  2 - 50 < 200 50 

Selenium, Se 3 3 1 1         0 - 5  10 

Thallium, Tl 1 1 1 1            

Vanadium, V 130 130 130 130            

Zinc, Zn 360 360 200 200  200 410  720    3 - 50 < 1000 300 

Antimony, Sb 40 40 20 20  2 25  22       

Cobalt, Co 300 300 50 40     190    1 - 10 < 800 50 

Molybdenum, 
Mo 

40 40 10 5     190    0 - 5 < 500 5 

Silver, Ag 40 40 20 20  1 4         

Tin, Sn 300 300 50 5            

Barium, Ba 2000 2000 500 750            

Sulphur, S    500            
1 SQG values calculated from ESDAT Environmental Data Management Software, available online under http://www.esdat.com.au/Environmental_Standards.aspx.  
 2 Adapted from Hock and Elstner (1995). 
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Annex 2.1: Actual mean concentration values (mg kg-1) and the quantitative concentration ranges for 15 soils samples used in this 

study. Elements are ordered according to increasing atomic number.  

 Mean Concentration  Quantitative concentration ranges 

    Element ICP-MS 
Na2O2 
Fusion 

ICP-MS 
HF acid 
digest 

 TXRF after 
instrument 
recalibration 

TXRF before 
recalibration 

ICP-MS Na2O2 
Fusion 

ICP-MS HF acid  TXRF after 
instrument 
recalibration 

TXRF before 
instrument  
recalibration 

Na  7960 5474 11562   296 - 19688 2714 - 7835 8853 - 15093 
Mg  6741 8059 1078 3532  950  - 34689 998 - 43636 306 - 3090 3532 – 3532 
Al 78375 94596 78438 23469  43781 -152303 55710 - 161728 37662 - 143855 13222 – 39076 
P 903 1042 669 407  109 - 2014 65 - 2149 141 - 1394 67 – 944 
K 16033 19852 14899 6102  2074 - 35457 1740 - 42594 2024 - 28676 765 – 13831 
Ca 10106 10073 6118 4443  3081 - 19065 1326 - 21135 549 - 12978 359 – 9720 
Ti 8138 8811 6175 4317  1762 - 20016 1764 - 23894 1404 - 16784 1262 – 10309 
V 117 133 108 30  29 - 313 33 - 387 31 - 298 2 – 94 
Cr 79 80 67 40  15 - 234 15 - 247 4 - 230 2– 119 
Mn 1442 1653 1356 835  337 - 4132 400 - 5069 348 - 3682 216 – 1865 
Fe 57770 64293 45935 33730  12911 - 122158 14909 - 145849 14161 - 99224 10474 – 61893 
Co 21 22  40  4- 65 4 - 72  40 - 40 
Ni 36 37 23 15  10 - 114 7 - 119 4- 90 2– 67 
Cu 33 35 30 21  4 - 82 6 - 88 7 - 67 55 – 53 
Zn 109 114 83 65  20 - 234 21 - 233 19 - 180 16 – 107 
Ga 21 25 16 12  9 - 42 11 - 45 7 - 36 7– 22 
As 2 3 4   0- 6 0 - 7 1 - 7  
Br   4 4    0 - 18 0 – 17 
Rb 95 104 55 67  16 - 287 16 - 287 4 - 145 22 – 212 
Sr 181 191 110 114  78 - 319 81 - 352 29 - 176 38 – 187 
Y 37 39 27 26  10 - 72 9- 82 7 - 57 6 – 44 
Zr 528 458 4803 5618  214 - 1357 97 - 1258 591 -11378 976 – 13296 
Mo 2 2    0 - 7 1 - 8   
Ba 727 760 62 518  137 - 1105 137 - 1187 6 - 123 7– 1902 
La 85 97 12 283  16 - 174 19 - 206 2 - 39 42 – 634 
Ce 174 216 128 161  36 - 374 44 - 483 31 - 197 9 – 308 
Pr 16 18 21 9  3 - 33 4 - 38 4- 44 2 - 15 
Nd 58 64 24 35  12 - 121 14 - 138 7 - 71 4 - 59 
Sm 10 12 4 33  2 - 20 3 - 26 1 -12 10 - 74 
Yb 4 4    1 - 8 1 - 8   
Hf 13 13 1 4  6 - 31 3- 34 0 - 2 1 - 13 
Ta 8 8 7   1- 21 2 - 22 2 - 16  
W  2 1    1 - 4 0 - 2  
Tl 1 1 3   0 - 1 0 - 2 0 - 5  
Pb 22 23 13 15  9 - 48 9- 48 1- 31 6 - 40 
Bi 0 0 6 2  0- 1 0 - 1 0 - 29 1 - 9 
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3.1 Abstract 

Conventional measurement methods for determination of total element concentrations in 

soils are time consuming and resource intensive and consequently are not widely used in routine 

soil analysis. In contrast, total X-ray fluorescence spectroscopy (TXRF) allows for rapid and 

simultaneous determination of the concentrations of many elements in multiple sample matrices 

and hence allows characterization of large areas. We examined the variability and patterns in 

total element composition by TXRF of soils from 34 randomly-located 100-km2 sentinel sites 

distributed across Africa: Ghana (3 sites), Tanzania (8), Ethiopia (4), Mali (3), Burkina Faso (1), 

Mozambique (4), Nigeria (3), Zambia (1), Kenya (3), Guinea (2), and Malawi (2). The land 

degradation surveillance framework (LDSF), which is a hierarchical spatially stratified random 

sampling scheme with ten 100 m2 plots nested within sixteen 1 km2 clusters, nested within 100 

km2 sites was employed. Paired topsoil (0-20 cm) and subsoil (20-50 cm) samples were 

randomly selected from one plot from each of 16 clusters for each site and analysed for total 

element concentrations for 17 elements; Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Sr, Y, 

Ta, and Pb. The within and between site patterns of variation in total element composition as 

well as reproducibility and accuracy of TXRF relative to conventional methods (inductively 

coupled plasma - mass spectroscopy (ICP-MS)) of total element analysis were explored. Total 

element concentration values were within the range reported globally for soil Cr, Mn, Zn, Ni, V, 

Sr, and Y and in the high range for Al, Cu, Ta, Pb, and Ga. There were significant variations (P < 

0.05) in total element composition within and between the sites for all the 17 elements analysed. 

                                                             
2 A version of this chapter has been submitted to the Geoderma Journal in June 2013. 
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Three elements had a large error of variance (Al, Ti and Ga). The greatest proportion of total 

variance and number of significant variance components occurred at the site (55-88%) followed 

by the cluster nested within site levels (10-40%). Our results also indicated that the strong 

observed within site as well as between site variations in many elements can serve to diagnose 

soil fertility potential. Our explorations of the relationships between element composition data 

and other site factors using “randomForest” statictics demonstrated that all soil soil-forming 

factors (e.g., parent material, climate, topography, management (landuse)) have important 

influence on total elemental concentrations in the soil. The most important variables explaining 

the main patterns of variation in total element concentrations were cluster, topography, landuse, 

precipitation and temperature, however the importance of cluster can be explained by spatial 

correlation at distances of <1 km. TXRF can provide efficient chemical fingerprinting which 

could be further tested for inferring soil chemical and physical functional properties which is of 

interest in the African soil contexts for agricultural and environmental management at large 

scale. 

 

3.2 Introduction 

Fingerprinting of soil elemental composition may form a useful basis for classifying soils 

in a way that relates to soil-forming factors and inherent soil functional properties (Kabata-

Pendias and Mukherjee, 2007; Rawlins et al., 2012). Variation in the concentration of soil 

chemical elements is derived from differences in the composition of the parent material and from 

fluxes of matter and energy into or from soils over geologic time (Helmke, 2000; Rawlins et al., 

2012) or recent management. In addition, soil-forming factors (e.g. parent material, climate, 

vegetation) are important drivers of total elemental concentrations in the soil. The nature of the 

key variables explaining ecological diversity of soils can be related to the mineralogy of parent 

rock and although these relationships have been inferred, mineralogy of parent rock is a principal 

factor determining spatial patterns of land resources (Voortman, 2011). For example, Rawlins et 

al. (2009) demonstrated use of element composition for the prediction of particle size distribution 

and their errors. Primary associations of elements reflect mineralogy and some elements can thus 

be used as proxies for mineralogy including heavy minerals, carbonates and clays (Grunsky et 

al., 2009). While total elemental concentrations in soil reflect parent material concentrations are 
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also impacted by weathering rates and over the longer term by land use and climate. Soil 

mineralogy is a key determinant of many soil functions, for example nutrient quantities and 

intensities, pH and buffering, anion and cation exchange capacity, aggregate stability, soil carbon 

protection, dispersion, and resistance to erosion. The presence of different vegetation types is a 

reliable indicator of differences in soil chemical properties and various properties of the 

exchange complex and micronutrient levels; and together with interactions among plant 

nutrients, these significantly explain differences in vegetation and also the distribution of 

vegetation types (Voortman, 2011). Understanding the natural or geogenic concentrations of 

elements in the soil can help to determine whether, and the extent to which, soil may have been 

contaminated by anthropogenic activities (Rawlins et al., 2003) and thereby contribute to the 

protection of environmental health. Thus, the total concentration of different elements in the soil 

– its geochemistry – has implications for human, plant and animal health.  

Recent advances in analytical chemistry and increasing environmental applications have 

added substantially to our knowledge of the biogeochemistry of trace elements (Kabata-Pendias 

and Mukherjee, 2007). Different chemical preparations of samples (e.g. total digestion) as well 

as different instrumental methods used for the determination of elements have an influence on 

final results but the use of reference certified materials have decreased uncertainties of analytical 

data (Kabata-Pendias and Mukherjee, 2007). Commonly used instrumental methods for soil 

analyses including inductively coupled plasma - mass spectroscopy (ICP-MS), inductively 

coupled plasma - optical emission spectrometry (ICP-OES), inductively coupled plasma - atomic 

emission spectrometry (ICP-AES), atomic absorption spectrometry (AAS), and electroanalytical 

techniques require total digestion and are often expensive and time-consuming and hence have 

been rarely applied in routine soil analysis.  

XRF spectroscopy has been used over the last three decades as a non-consumptive 

technique for multi-element determinations, applicable to a wide range of matrix types, however, 

the major disadvantage of conventional XRF has been the poor elemental sensitivity, which is 

mainly a consequence of high background noise levels, resulting from instrumental geometries 

and sample matrix effects (Mukhtar and Haswell, 1991). In addition, with XRF spectrometry 

there is need to make pressed pellets, hence sample preparation is time-consuming. Total X-ray 

fluorescence spectroscopy (TXRF) is an upcoming but established commercially available 
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technology which can provide rapid and simultaneous determination of the concentrations of 

many elements from Na to U in the periodic table with minimal sample preparation time 

(Stosnach, 2005; Towett et al., 2013).  

The main principle of the TXRF technique is that atoms, when irradiated with X-rays, 

emit secondary X-rays – the fluorescence radiation. This basis facilitates TXRF analysis because 

the wavelength and energy of the fluorescence radiation is specific for each element and the 

concentration of each element can be calculated using the intensity of fluorescence radiation 

(Bruker, 2007a). A monochromatic X-ray beam is directed onto the sample at a very small angle 

(<0.1º), less than the critical angle of external total reflection for X-rays, causing total reflection 

of the beam photons after touching the sample, and consequently much higher sensitivities and a 

significant reduction of matrix effects (Bruker, 2007a; Stosnach, 2005; Stosnach, 2007). TXRF 

analysis only requires addition of an element that is not present in the sample as the internal 

standard for quantification purposes. Time from sample preparation to analysis for TXRF 

analysis is shorter than with conventional XRF using fused beads or pressed pellets or using acid 

digestion and ICP-MS or ICP-OES (Bruker, 2009), and hence TXRF provides rapid 

determination of the concentrations as opposed to the conventional methods.  

To date, TXRF has not been widely used as an analytical technique for the total element 

composition of soils. However, a number of studies have used conventional XRF. For example, 

Marques et al. (2004), in an inventory of the trace element geochemistry of the Brazilian Cerrado 

soils, quantified the total elemental contents by wavelength-dispersive X-ray fluorescence 

spectroscopy (WD-XRF) and identified elements that accumulated versus those that were 

depleted over long periods of pedological weathering. The total element concentration 

fingerprints of TXRF, or spectra, may also be used to capture key mineralogical differences in 

soils and as an input to pedotransfer functions (Shepherd, 2010).  

TXRF has also been tested as a versatile technique to investigate heavy metal pollution in 

soils as well as for basic research, particularly for locating trace elements in soils (Schulthess, 

2011; Stosnach, 2005). Towett et al. (2013) developed and tested a method for the use of TXRF 

for direct quantification of total element concentrations in soils and demonstrated that TXRF 

could be used as a rapid screening tool for total element concentrations in soils assuming 

sufficient calibration measures are followed. Successful use of the TXRF technique would open 
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up the possibilities for using total element composition to improve global predictions of soil 

properties, such as cation exchange capacity and extractable nutrients. Despite the importance of 

soil mineralogy in determining soil properties (Jenny, 1941), there have been few attempts to 

quantitatively link functional capacity to mineralogy or total element composition. Hence, we 

will evaluate how far TXRF total element derived patterns in soils relate to ‘available’ element 

results from Mehlich-3 soil tests (acid-extractable nutrients) and hence to soil nutrient supply 

capacity. Especially in Africa where variations in soil mineralogy and nutrient balance critically 

determine vegetation composition and agricultural potential (Voortman, 2011) TXRF could 

provide a particularly useful tool for prediction of soil properties in data sparse regions. 

This work thus set out to test TXRF as an analytical technique for the total element 

composition of soils in the context of the Africa Soil Information Service (AfSIS) project, which 

was established to address the need for accurate up-to-date and spatially referenced soil 

information to support agriculture in Africa (AfSIS, 2013). The objectives were to; (i) quantify 

the variability in total element composition of soils from a diverse set of soils across Sub-

Saharan Africa, (ii) explore the patterns in total element composition of soils analysed, (iii)  

assess the relationships between total element concentrations and nutrient supply capacity by 

relating Mehlich-3 soil tests (acid-extractable nutrients) to total element analysis patterns in soil, 

and (iv) examine relationships between element fingerprints and site characteristics including 

mineralogy, climate, landform, vegetation type, plant material and management (cultivation). 

 

3.3 Materials and methods 

3.3.1 Study area and sampling 

Georeferenced samples associated with the Africa Soil Information Service (AfSIS) 

Project (www.africasoils.net) were taken from a set of sentinel sites already sampled during  

Phase 1 of the project in 2011-2012, which were randomized over Sub-Saharan Africa within the 

major Köppen-Geiger climatic zones (Kottek et al., 2006) (Figure 3.1). Field sampling was made 

based on the Land Degradation Surveillance Framework (LDSF) protocol (Vågen et al., 2013). 

The protocol is built around the use of “Sentinel Sites” or “Blocks” of 10 x 10 km in size. Hence, 

the current study was based on samples from thirty four 100-km2 random sites across Sub-

Saharan Africa-: Ghana (3 sites), Tanzania (8 sites), Ethiopia (4 sites), Mali (3 sites), Burkina 
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Faso (1 site), Mozambique (4 sites), Nigeria (3 sites), Zambia (1 site), Kenya (3 sites), Guinea (2 

sites), and Malawi (2 site) (Figure 3.1). The sampling scheme was nested: within sites, sixteen 1 

km2 clusters were located and within each cluster ten 1,000 m2 “Plots” (about 35 m diameter) 

were sampled. The plots within clusters, and clusters within sentinel sites, were randomly placed 

so that unbiased estimates of problem prevalence were obtained. Soil samples were collected 

from four 100 m2 “Sub-plots” located within the ten 1000 m2 plots at two depths, 0-20, and 20-

50 cm and only one composite of the four subplots was taken for each soil depth making a total 

of 360 soil samples. For this study, we selected 10% of the 360 soil samples of each sentinel site 

for reference and spectral analyses and thus we only chose Plot 1 of the randomized plots within 

each cluster on condition that both top- and subsoil were available and if either depth was 

missing, Plot 2 was taken for analysis. Thus, a total of 1074 samples (16 samples per cluster x 2 

soil depths x 34 sentinel sites) were used for exploring spectral (TXRF) patterns, after excluding 

14 samples that we either unavailable (11) or considered as spectral outliers (3). A summarized 

description of the 34 sentinel sites from which the soil samples used for this study were 

collected, including the location, average elevation, annual total precipitation, temperature 

ranges, major soil classes (based on the IUSS Working Group WRB (2007) and the 

FAO/EC/ISRIC (2003) world soil resources map (Scale 1:30 000 000 approx)), major landforms, 

topography, percentage of cultivated area and vegetation structure is given in Table 3.1. 
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Figure 3.1: Graphics illustrate the centroid locations of 34 AfSIS sentinel sites sampled and 

available for this study. The basic sampling unit (sentinel site) is a 10 x 10 km block of land 

(black squares), within which there is a spatial hierarchy of 16 randomized LDSF clusters down 

to 1000 m2 plots. The layout of each sentinel site sampled for this study consisted of 16 clusters 

(white circles). 



Table 3.1: Site description: location, average elevation, annual total precipitation, monthly temperatures ranges, major soil classes, topography 

(toposequence), percentage of cultivated area and landuse of the 34 sentinel sites from which the soil samples used for this study were collected. 

Site Country Lat Long 
Elev 
(m) 

Precip_ 
(mm) 

Temp range 
(°C) Soil class* PosToposeq 

Cultivated 
area (%) Landuse 

Ajumako Ghana 5.408 -0.745 63.1 1217.8 23.6-31.7 acrisols, alisols, plinthisols midslope 75 - 
Bondigui Burkina Faso 10.913 -3.546 329.3 1002.3 24.4-37.4 lixisols mid-footslope 44 wooded grassland 
Boumeoul Guinea 11.935 -13.144 100.5 1692.9 24.1-38.7 plinthosols upland footslope 31 woodland 
Bukwaya Tanzania -3.024 33.050 1197.2 876.4 18.6-30.8 vertisols upland-bottomland 59 cropland/shrubland 
Chica_b Mozambique -14.714 39.873 275.6 1025 20.2-32.2 arenosols midslope 27 thicket/bushland 
Chiculecule Mozambique -22.836 35.302 70.3 911.7 20.5-31.8 arenosols upland 52 cropland/woodland 
Chinyanghuku Tanzania -6.895 36.129 902.8 600.3 18.6-31.2 lixisols midslope-bottomland 20 cropland/bushland 
Dambidolo Ethiopia 8.613 35.015 1348.8 1349.3 16.1-31.6 nitisols, andosols upland-bottomland 66 cropland/woodland 
Finnkolo Mali 11.313 -5.502 409.1 1083 23.8-37 lixisols footslope 63 - 
Fisenge Zambia -13.094 28.477 1249.6 1239.3 16.7-31.6 ferralsols, acrisols, nitisols upland-midslope 63 cropland/wooded grassland 
Fria Guinea 10.507 -13.393 193.2 2619.2 23.5-37.8 leptosols midslope-footslope 63 cropland/wooded shrubland 
Ibi Nigeria 8.138 9.894 133.5 1113.2 24.1-37.1 fluvisols, gleysols, cambisols midslope-bottomland 47 shrubland/cropland 
Ihassunge Mozambique -18.013 36.832 7.9 1316.3 23.3-32.7 calcisol, cambisol, luvisol bottomland 81 cropland 
Imorun Nigeria 6.753 4.658 113.4 1723.3 23.6-33.1 acrisols, alisols, plinthosols upland - midslope 63 forest 
Itende Tanzania -6.891 34.208 1216.5 630.6 17.6-30.3 acrisols, alisols, plinthosols upland - midslope 0 woodland 
Katsina Ala Nigeria 7.014 9.342 175.5 1643.1 23.3-35 lixisols upland-bottomland 87 - 
Kiberashi Tanzania -5.346 37.482 1109.9 758.1 16-28.8 lixisols midslope 25 forest/woodland 
Kidatu Tanzania -8.036 37.303 319.4 1368.1 23.4-30.5 lixisols upland 0 woodland 
Kisongo Tanzania -3.355 36.541 1328.8 875.5 16.1-28.4 nitosols, andosols midslope-footslope 44 - 
Koloko Mali 12.483 -6.296 292.1 899.3 25.3-38.3 lixisols upland -bottomland 81 cropland 
Kontela Mali 14.809 -10.999 67.1 603.7 27-41 lixisols footslope/bottomland 25 shrubland/grassland 
Kubeasi Ghana 6.723 -1.277 229.3 1473.6 22.2-33.3 acrisols, alisols, plinthosols upland -footslope 56 - 
Kutaber Ethiopia 11.296 39.607 2515.7 1091.4 10.3-25.5 nitosols, andosols midslope-footslope 63 cropland/shrubland 
Lambussie Ghana 10.896 -2.649 308.1 961.5 24.5-37.3 lixisols  midslope 87 cropland/shrubland 
Macassangila Mozambique -13.407 35.495 1109.4 1228.1 17.8-29.3 ferralsols midslope 45 woodland/grassland/cropland 
Marafa Kenya -2.634 39.546 165.5 687.2 22.6-32.9 calcisols, cambisols, luvisols bottomland 0 shrubland 
Mbalambala Kenya -0.126 39.027 217.4 321.1 22.1-36.3 calcisols, cambisols, luvisols upland 0 shrubland 
Mbinga Tanzania -11.091 35.161 983.4 1328.1 19.1-29.5 lixisols midslope 31 woodland 
Mega Ethiopia 4.182 38.296 1540.1 592.1 12.6-27.8 vertisols bottomland 0 bushland/shrubland/grassland 
Merar Ethiopia 9.602 42.701 1897.6 789.1 14.2-26.3 calcisols, cambisols, luvisols upland 58 cropland/shrubland/grassland 
Morijo Kenya -1.719 35.811 2213.2 869.5 11.1-23.9 calcisols, cambisols, luvisols midslope-footslope 6 shrubland/grassland 
Nkhata Bay Malawi -11.626 34.239 551.1 1672.8 21-30.4 ferralsols, acrisols, nitosols midslope-bottomland 69 cropland/wooland/grassland 
Pandambili Tanzania -6.084 36.474 1086.8 727.3 16.7-31.4 lixisols bottomland 6 grassland 
Thuchila Malawi -15.940 35.329 708.9 1517 19.3-30.7 lixisols upland 94 cropland 

Lat – latitude; Long – longitude; °C – degrees centigrade; Elev-m – Elevation in meters; Precip-mm – Average total precipitation in mm; Temp range – monthly temperature 

ranges; PosTopoSeq – Position in the topography. *Soil classification according to IUSS Working Group WRB. 2007. Elevation, precipitation and temperature data were 

calculated using the WorldClim sets of climate layers (climate grids) for Africa with a spatial resolution of about 1 km2 (Hijmans et al., 2005). The soil classifications are based on 

the IUSS Working Group WRB (2007) and the FAO/EC/ISRIC (2003) world soil resources map (Scale 1:30 000 000 approx), while the other site description data were extracted 

from the Land Degradation Surveillance Framework (LDSF) database used in AfSIS. 



3.3.2 Sample preparation and analyses 

Soil samples were air-dried and passed through a 2-mm sieve before sub sampling to 10 g 

by coning and quartering. The 10 g subsamples were oven-dried at 40 ºC and then 5 g were 

ground to a fine powder (<200 µm) using a Retsch RM 200 mill (Retsch, Düsseldorf, Germany). 

Approximately 3 g of each soil sample was then further milled to <50 µm using a McCrone 

micronising mill (McCrone, Westmont, U.S.A). Spectral TXRF analyses were done at the World 

Agroforestry Center (ICRAF) Soil-Plant Spectral Diagnostics Laboratory in Nairobi, Kenya, 

using a Bruker S2 PICOFOX TXRF instrument (Bruker AXS GmbH, Germany). The instrument 

has an air-cooled low power (50 kV, 1 mA, Mo target) X-ray metal-ceramic tube with a Peltier 

cooled high resolution XFlash® Silicon Drift Detector (SDD), with a 10 mm2 drifts chamber, and 

an energy resolution <160 eV at 100 kcps (Mn Kα line, 5.9 keV) (Bruker, 2007b). The TXRF 

method for analysis of soils was previously optimized and recalibrated against a set of 

international reference soil standards, and 15 purposely selected representative soil samples with 

a wide range of properties and elemental concentrations collected from various locations across 

Africa (Towett et al., 2013).  

Sample preparation was according to the optimized procedure described by Towett et al. 

(2013). Briefly, an amount of  ~ 50 mg of the finely ground soil sample was mixed with 2.5 ml 

of Triton X100 (Fischer Scientific, UK) solution (0.1 vol. %) to form a soil suspension and then 

spiked with 40 µl of 1000 mg l-1 Selenium (Fluka Analytical, Germany) as the internal standard. 

The solution was sonicated for 15 minutes and then mixed well using a digital shaker and 10 µl 

of the turbid soil solution was immediately dispensed on to a clean siliconized quartz glass 

sample carrier (30 mm diameter) containing a drop of silicon solution that helped homogenise 

the soil suspension for TXRF analysis. Each soil sample prepared on the quartz disk was then 

dried for 10-15 minutes at 52 ºC on a hot plate (Staurt® SD300) placed in a clean laminar flow 

hood. Samples were analysed in triplicate. A mono-element standard Gallium (Ga) sample 

recommended by the instrument manufacturer was used for background and escape peak 

correction (Bruker, 2009). In addition, a drift in the spectroscopic amplification was 

compensated or reset by means of a gain correction (Bruker, 2007b). The data acquisition time 

was 1000 s per sample. The evaluation of spectra and element quantification were performed 

using the software program SPECTRA 6.3 (Bruker AXS GmbH, Germany).  
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Conventional pH measurements (utilizing a soil: water ratio of 1:2 weight to volume 

basis) as well as Mehlich-3 soil tests (acid-extractable nutrients) for the elements Al, Mg, P, K, 

Ca, Mn, Fe, Cu, and Zn using ICP mass spectroscopy were done in an external certified (ISO 

17025 Accredited) laboratory (Crop Nutrition Laboratory Services Ltd, Nairobi, Kenya). Mineral 

profiling was done using X-ray diffraction spectroscopy (XRD) where finely ground (<50 µm) 

sampls were loaded into steel sample holders and analysed using a Bruker D2 Phaser XRD 

spectrometer instrument that was equipped with a LYNXEYE compound silicon strip, 1-

dimensional detector with Theta/Theta geometry. The instrument was intergrated with the 

DIFFRACplus TOPAS graphics based, non-linear least squares profile analysis programe. 

 

3.3.3 Detection limits of the elements 

An important statistical consideration in TXRF analysis is the capability of the instrument 

to detect whether an element is present or not in a specimen and to be able to show with some 

defined statistical certainty that a given element is present if its concentration is greater than a 

certain limit (Rousseau, 2001). The lower limit of detection (LLD), which in this study is 

assumed to be the concentration equivalent to three standard counting errors of a set of 

measurements of the background intensity (Bruker, 2007b), was calculated using the following 

formula (Klockenkämper, 1997): 

NBG3.Ci .

Ni

LLDi=
 ,       (1)  

where LLDi = LLD of the element i; Ci = concentration of the element i; Ni = area of 

fluorescence under peak in counts; and NBG = background area subjacent the fluorescence peak. 

 

In TXRF analysis, the concentration of an element is calculated from the net peak 

intensity which is equal to the difference between the measured peak intensity and the 

background intensity and the decision "detected" or "not detected" is thus established by 

comparison to a limit of detection, which is the combination of the mean background intensity 

and the background noise (Rousseau, 2001). Since knowing that an element concentration is 
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below a given minimum detectable value is useful, we developed a procedure for assigning 

values to the LLD. In order to develop the analysis, we first of all made scatter plots of the total 

element concentration values against the LLD values calculated according to equation (1). We 

took the 25th percentile of the LLD values as the LLD limit (Annex Table A3.1). Taking the 

median value would have overestimated the LLD in many cases, and taking the 2.5th percentile 

would be sensitive to outliers and to changes as new samples were added. We developed a script 

in R statistical software (R Development Core Team 2013) that substituted the missing values 

with the 25th percentiles of average LLD values of the respective elements. Our approach was 

similar to that used by Reeves and Smith (2009) in their examination of mid- and near-infrared 

diffuse reflectance spectroscopy as possible tools for the determination of major and trace 

elements in soils where they replaced any value below the method detection limit with one-half 

the detection limit prior to statistical calculations. 

 

 3.3.4. Data analysis 

We excluded from our dataset elements that were not accurately estimated using the 

TXRF technique as outlined by Towett et al. (2013), leaving us with the following 17 elements 

(Al, P, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Sr, Y, Ta and Pb) out of 38 elements analysed 

by the technique. Concentrations of these elements detected in the soils were in a broad range 

and the data showed positive skewness in frequency distributions for most of the elements. 

Therefore, the appropriate transformation to achieve close to statistical normality of each 

variable was done before proceeding with analysis. We then established total concentrations of 

elements for soils occurring within particular sites sampled in our study, and documented 

systematic variation in their concentration and explored the possibility of finger-printing 

complete element profiles.  

We used a principal component analysis (PCA) based on a correlation matrix using the R 

package “FactoMineR” (Lê et al., 2008) to explore the variation and view the interrelationships 

between different element concentrations and to detect sample patterns and variable relationships 

within and between the sites. The PCA transformed the measured TXRF element concentration 

variables into new, uncorrelated principal components (PCs) with each principal component 

being a linear combination of all the original measurement variables. To explore the proportion 
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of variance for each element between sites, between clusters within site, depth, site and depth 

interaction and residual variance, we performed a mixed model analysis of variance using the 

following PROC MIXED statement:   

model log(element)= /ddfm=kr residual outp=resid; random site; random depth; random 

site*depth; random site*cluster.       (2) 

where log = natural log; ddfm = specifies the method for computing denominator degrees of 

freedom; kr = Kenward-Roger; outp = output; resid =  residuals. 

 

The correlations among the five covariance parameters (sites, between clusters within 

site, depth, site and depth interaction and residual variance) were modeled using compound 

symmetry covariance matrix. The model was fitted by the Restricted Maximum Likelihood 

(REML) method in the SAS MIXED procedure (SAS Institute, 2011). A summary of some of 

the important options invoked in the SAS PROC MIXED statement by function and the class 

level information for three classes (site, cluster and depth), are summarized in Annex Table 

A3.2. We also explored the relationships between total element concentrations and nutrient 

supply capacity by correlating Mehlich-3 soil tests (acid-extractable nutrients) to total element 

analysis patterns in soil using a Spearman’s rank correlation analysis in SAS (SAS Institute, 

2011). In order to examine relationships between element fingerprints (principal components 

(PCs)) and site characteristics including elevation, climate, major landform, landform 

designation, vegetation type, management (cultivation) and mineralogy, we used the R package 

“randomForest” (based on Breiman, 2001) with an ‘out-of-bag’ (OOB) test sample being held 

out and used to estimate model error and for the calculation of variable importance. Thus we 

accessed whether any of the site and soil-forming factors could explain the variation in the 

element composition, while clarifying the questions:  

(i) are element concentrations’ main patterns of variation related to the site factors and if so, 

which are dominant?  

(ii) do element concentration patterns relate to mineralogy?  

For the first question, we performed a Random Forests regression (R-version 2.15.3; R 

Development Core Team 2013) of the first 5 PCs of the TXRF element concentration data 

against site factors while for the second question, we explored the Random Forests regression of 
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elements PCs against mineral composition. We included and excluded different variables to test 

their effects on the overall model and variable importance. 

 

3.4 Results and discussion 

 3.4.1 TXRF Method repeatability  

The coefficient of variability (CoV in %) values for sample replicates calculated for those 

samples that had no missing values (before substituting the missing values with the 25th 

percentile value of the LLD) in the data after log transformation were within 10% for most of the 

elements except for P (20%), V (21%), Cr (11%), Y (15%), Ta (18%) and Pb (15%) (Figure 3.2). 

The mean CoV values calculated by site are given in Annex Table A3.3. We expected that the 

normalization by log transformation before calculation of the CoVs would be a better measure of 

the variation of the replicates than the actual values since most elements had left-skewed 

distributions, but this was not the case for some elements e.g. V, Y and Ta. Some of the elements 

being close to LLD caused high CoVs e.g. Ta (Tables A3.1, A3.3 and A3.4). One source of error 

with TXRF that must be minimized is variation due to sample preparation (Rousseau, 2001) and 

thus we attempted to minimize the variations caused by sampling the slurry (Sánchez-Moreno et 

al. 2010), ensuring that all samples and reference materials were prepared and presented to the 

instrument in an identical and reproducible manner (Towett et al., 2013). In addition, due to the 

assumptions that materials with low density were prone to float or agglomerate while other 

materials present a hydrophobic behavior, a dispersing agent, Triton X-100 was used in the 

slurry media and the shaking of the mixture in an ultrasonic bath for 15 minutes to obtain a 

homogenous suspension.  Since an internal standard was added to the solution, any effects due to 

variation in deposition patterns of the sample on the sample holder would be expected to be 

small. 
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Figure 3.2: Bar charts of coefficient of average variation (CoV in %) of total element 

concentration calculated from the 3 laboratory replicates and the number of samples used to 

calculate the CoV values (in brackets) based on the samples that had no missing values (before 

substituting the missing values with the 25th percentile value of the LLD) in the data after log 

transformation. 

3.4.2 Total element concentration in soil samples 

As expected, there was wide variation within and between total element concentrations 

(Table 3.2). For example, the total concentration of P varied from 25-2360 (mean 140) mg kg-1 

across the 34 sentinel sites, while K and Ca values ranged between 290-77900 and 80-426460 

mg kg-1, respectively. This high variation was presumably attributable to differences in parent 

materials between sites and to local pedologic and hydrological factors within sites or due to 

differences in management (Table 3.1). A comparison between the results of analysis of soils in 

the different sentinel sites selected across SSA showed that they were within the reported ranges 

of worldwide soils (Table 3.2). However, our mean values obtained for soils of SSA exceeded 

the mean worldwide concentrations by 52 (12%), 15 (60%), and 18 (42%) mg kg-1 for Mn, Pb, 

and Cr respectively, while the mean values for V, Zn and Sr were below the mean worldwide 

contents (Kabata-Pendias and Murkhejee; 2007) by 20 (33%), 32 (51%) and 27 (18%) mg kg-1 

respectively. Some of the elements of interest with regards to soil fertility are discussed below in 

order of decreasing abundance. 
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The concentration of Fe observed in SSA soils analysed in this study varied within the 

worldwide reported range (Table 3.2). In contrast, the total Al contents (90-89070 mg kg-1) 

ranged wider than the worldwide range (10000 - 40000 mg kg-1) reported by Kabata-Pendias and 

Murkhejee (2007). Aluminium is not completely extracted from the soil matrix during aqua regia 

digestion (Rawlins et al., 2012), hence the values reported here (using the TXRF technique) are 

higher than those reported for the worldwide soils in reported in Kabata-Pendias and Murkhejee 

(2007). However, Al may be abundant in soils, but most of this is not biologically available 

being present in the matrix of clays and other silicate minerals (Rawlins et al., 2012) and thus 

total Al has no direct agronomic implications. There are no reported compiled ranges for total Ca 

contents worldwide except for low contents of 200 mg kg-1 reported for Brazilian Cerrado soils 

(Marques et al., 2004). However, the overall Ca content of soils analysed in this study had a 

much wider range and lower values than these reported for Brazilian Cerrado soils.  

The concentration of Cr in surface soils is reported to vary widely but the amounts of Cr 

in the soil studied were within the reported range with a median value of 45 mg kg-1 close to the 

worldwide averages of 54 mg kg-1 (Haluschak et al., 1998) and 42 mg kg-1 (Kabata-Pendias and 

Mekherjee, 2007) (Table 3.2). The median Pb content of soils in our study was similar to those 

reported for Africa complied from Ghana and South Africa soils (Herselman, 2007; Kabata-

Pendias and Mekherjee, 2007). Nickel concentrations in the soils sampled for this study ranged 

within the worldwide range for soils reported (Haluschak et al., 1998; Hooda, 2010; Kabata-

Pendias and Mekherjee, 2007; and US.EPA, 2006). The highest concentration of Cu measured in 

our sample set was 110 mg kg-1 (Table 3.2) and this was within the reported range from 1 to 250 

mg kg-1 in surface soils. Although spectral interferences between peaks for Cu and Zn may affect 

the detection limits and accuracy of the TXRF analysis (US.EPA, 2006; Hooda, 2010), the 

detection limits for these elements obtained using the TXRF instrument in this study were 0.22 

and 0.20 mg kg-1 respectively (Annex Table A3.1) and these were lower than the typical 

detection limits reported for field-portable XRF instruments ranging from 10 to 50 mg kg-1 

(US.EPA, 2006; Hooda, 2010). 

 

 



Table 3.2: Summary statistics of the median, mean, minimum, percentiles and maximum values of the total element concentrations (mg kg-1) of 1074 

soil samples collected from 34 sentinel sites and the reported concentration mean ranges of background contents of elements in the world soils. 

 Values compiled from this study (mg kg-1)  Reported mean and ranges of background contents of elements in crust and 
worldwide soils (mg kg-1) 

Element Median Mean Min 
2.5th 

%ntile 
25th 

%ntile 
75th 

%ntile 
97.5th 

%ntile 
Max  

Crustal 
Average1 

A B C D E  F 
Reported 

worldwide 
ranges2 

Al 34190 33930 90 250 21370 45720 68240 89070  - - - - - - - 10000-40000 
P 40 140 25 40 40 45 1170 2360  - - - - - - - - 
K 7900 10890 290 650 2750 16800 34370 77900  - - - - - - - - 
Ca 1910 9780 80 170 680 8580 68640 426430  - - - - - - - - 
Ti 3190 4260 3 30 1920 5530 13070 25610  4400 - 3700 - 15480 2900 - 200-24000 
V 20 40 0.7 1.1 7 40 160 390  135 60 69 180 320 80 - 5.0-500 
Cr 45 60 0.7 1.4 20 80 250 600  100 42 22 58 86 54 72 1-1500 
Mn 280 470 2 13 140 640 1600 6575  900 418 411 - 535 550 - <7->9000 
Fe 20790 27950 20 230 9570 39070 91010 181690  - - - - - - - 1000-550000 
Ni 10 20 0.3 0.9 5 25 70 360  20 18 13 26 25 19 39 0.2-500 
Cu 10 20 0.3 1 6 20 60 110  55 14 17 48 109 25 17-29 1.0-250 
Zn 20 30 0.3 1 10 40 90 140  70 62 65 89 73 60 45-47 10-602 
Ga 8 8 0.2 0.2 4 10 20 30  15 1.2 8.9 20 31 17 - 0.4-70 
Sr 50 120 1 3 20 130 810 1985  375 147 163 190 - 240 - 32->1000 
Y 9 10 0.2 0.5 5 18 40 110  33 12 27 89 73 60 - 16-33 
Ta 3 3 0.1 0.1 1.1 5 9 15  2.0 1.1 1.1 1.7 2.3 - - 0.8-5.3 
Pb 20 40 0.3 0.4 8 40 190 640  14 25 18 24 22 19 18-22 2.0-16338 
1 Values compiled by Kabata-Pendias and Murkhejee (2007); 2 Values compiled from Kabata-Pendias and Murkhejee (2007); Hooda, 2002; U.S. EPA Verification report, 2006; and Haluschak et al., 

(1998). Given are mean values for various soils: A - worldwide mean contents after Kabata-Pendias and Murkhejee (2007); B - Sweden soils after Eriksson (2001) (cited by Kabata-Pendias and 

Murkhejee (2007)); C - Japan agricultural soils, after Takeda (2004) cited by Kabata-Pendias and Murkhejee (2007); D -Median for soils in Brazil, after Licht (2005) (cited by Kabata-Pendias and 

Murkhejee (2007)); E - data for U.S. and Canada soils, after Burt et al., 2003 (cited by Kabata-Pendias and Murkhejee (2007)) and Haluschak et al., (1998); F - Reported median values for Africa 

compiled from Ghana soils, after Antwi-Agyei et al., (2009) and South African soils, after Herselman – 2007). 
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3.4.3 Principal component analysis of total element concentrations 

The PCA of element concentrations revealed that patterns in total element concentrations 

between sites appeared to relate to differences in mineralogical ‘functional groups’ (Figures 

3.3a-b). The pattern of clustering of the individual minerals and sorting of heavy minerals (V, 

Pb, Ni, Cr, Cu Ti, and Fe) along the positive Dim1 axis is apparent (Figure 3.3a). The first two 

PCA axes together accounted for 46.6% (Dim1 - 32.5%, and Dim2 - 14.1%) of the total variance 

within the data set (Figure 3.3a). The elements K, Ca, Ti, Fe and Sr were predominantly 

associated with Dim 1 while Dim 2 was dominated by elements Al, Ni and Ga. Elements Cr, Mn 

and Zn were predominant in the Dim 3 (Figure 3.3b, Annex Figure A3.1), while only V was 

predominant in Dim 4 and the elements P, Cu, Y, Ta and Pb were predominant in Dim 5 (Annex 

Figure A3.1). 
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Figure 3.3: (a-b) Biplots (arrow sizes are proportional to the “initial” variability in the elements 
present) based on the principal component Dim 1 vs Dim 2 and Dim 1 and Dim 3, on the log 
transformed data of the soil total element concentration from all sites analysed. 
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Figure 3.3 cont: (c-d) Scatter plots, based on the principal component Dim 1 vs Dim 2 and Dim 1 
and Dim 3, on the log transformed data of the soil total element concentration from all sites 
analysed. 
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Clay minerals in the PCA plot are represented by some elements, e.g. Al, Cr, V, Cu, Fe, 

and Ti, most of which fell along the positive Dim1 axis (Figure 3.3a), similar to results reported 

by Cannon and Horton (2009) and Grunsky et al. (2009), i.e. that the clay factor commonly 

includes, although not exclusively, the elements Al, Cr, Cu, Ni, V, and Fe, all elements that are 

common in trace amounts in clay minerals or adsorbed to them. Qian et al. (1996) reported that 

although the heavy metals Ni, Cu and Pb were found to be enriched in the clay fraction, the 

extractable behaviour of Pb differed from that of Ni and Cu by being more susceptible to 

extraction. In our results, Ni and Cu had similar co-occurrence near the elements typical of clays 

and this was in agreement with reports by Cannon and Horton (2009) and Grunsky et al. (2009). 

Elements typical of feldspars and carbonates minerals (Ca, K and Sr) (Figure 3.3a) indicate the 

strong association of Ca and Sr and these are reported to be highly correlated (r = 0.98, p = 

0.0001) (Marzecová et al., 2011). Having similar chemical properties, Sr readily substitutes for 

Ca in the structure of carbonate minerals. In our study, the sites with a strong Ca-Sr relationship 

included Ajumako, Dambidolo, Finnkolo, Fisenge, Ihasunge, Imorun, Itende, Kiberashi, 

Kisongo, Koloko, Kutaber, Lambussie, Macassangila, Mbalambala, Mega, Merar, Morijo, 

Nkhata Bay and Pandambili (Figure 3.4). The soils in these sites are classified as: Calcisols, 

Cambisols, Luvisols (Mbalambala, Merar and Morijo); Lixisols (Finnkolo, Kiberashi, Koloko, 

Lambussie, and Pandambili); Acrisols, Alisols (Ajumako, Ihansunge); Nitisols, Andosols 

(Dambidolo, Kisongo, and Kutaber); Ferralsols, Acrisols, Nitisols (Fisenge, and Nkhata Bay) 

and Vertisols (Mega) (Table 3.1). Hence, the distribution of Sr in minerals is largely controlled 

by Ca and is also strongly controlled by parent rocks and climate but is reported to likely 

concentrate in mafic igneous rocks and in carbonate sediments (Kabata-Pendias and Mekherjee, 

2007; Marzecová et al., 2011). In addition, clay minerals have a large capacity to adsorb Sr, and 

most argillaceous sediments are enriched in this element (Kabata-Pendias and Mekherjee, 2007). 

Calcium, Sr and K co-occurred together and these could be associated with weathering of silicate 

bearing minerals (Figure 3.3a).  

Similar to what was reported by Acosta et al. (2011), since K occurred in opposite 

direction to elements like Cu and Fe in our PCA results, an increase in the concentration of K is 

often followed by a decrease in the contents of Fe and Cu in soils. At the opposite extreme, K is 
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also readily leached in highly weathered soil for example those with high Al and Fe 

concentrations. The positive relationship between Pb and Zn in our study can also be explained 

because Pb was found to coexist with Zn in the internal growth of a crystal lattice (Acosta et al., 

2011). The cluster co-association of occurrence between Cu, Zn and Pb may also be the result of 

weathering of sulphide minerals similar to the results reported by Adebiyi et al. (2005). Lead and 

Zn are reported to be associated with Al- and/or Mn-bearing minerals such as albite, anorthite 

and biotite while MnO minerals are the main adsorbent for Pb in carbonate rocks under 

weathering (Acosta et al., 2011).  

The TXRF technique has the potential to detect heavy metal pollution in soils, but our 

data did not contain levels considered as polluted. The cluster co-occurrence of heavy minerals 

(Ni, Cu, Zn, V, Pb, Cr, Fe, Ti, and Fe) along the positive Dim1 axis is apparent (Figure 3.3a). 

Similar to what is observed in the heavy metal clustering in this study, the accumulation of heavy 

metals with the clay fraction could be attributed to the high surface area and the presence of clay 

minerals, organic matter, and Fe-Mn oxides (Qian et al., 1996). Rodríguez et al. (2008) made an 

association of heavy metals with the factors in a PCA to indicate the hypothetical sources of 

these elements (lithogenic, anthropogenic, or mixed). We thus also infer that the concentrations 

of Cu, Zn, Cr, Pb, and Ni in our study (Figures 3.3a-b) could serve as proxies relating to 

differences arising from lithogenic or anthropogenic origin (Table 3.1). According to Hooda 

(2010), a high level of Cu is typical in soils of various parent materials for example loams 

developed on basalt rock (Cambisols) or some tropical soils (e.g. Ferralsols), however in our 

study the highest level of Cu was found in a soil classified as a Lixisol from Bondigui site (Table 

3.1, A3.7). Further evidence for this inference was tested using the Random Forests algorithm 

where we explored the relationship between the total element concentrations with mineralogy 

and other site characteristics, discussed below. 

 

3.4.4 Elemental variation between and within site 

There were substantial variations in total element composition both within and between 

sites (Figures 3.3c-d and Figure 3.4). Elements clustered out differently in the different sample 

sets, indicating a wide variation in associations, but some elements are poorly represented (short 

arrows in the PCA) (Figure 3.4). The first two principal components explained between 49-84% 
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of the total variability for the different sentinel sites (Figure 3.4). As an example of the site 

differences, Figures 3.3b, 3.4ac and 3.4ad present the scatter and biplots of the Mega and Merar 

sentinel sites, both in Ethiopia, showing different elements clustering out separately indicating 

their different functional properties. The two sites also have similar precipitation amounts and 

temperature ranges but different parent materials (Table 3.1). The PCA of total element 

concentration confirms the fact that there are known specific differences e.g. between the Mega 

site, which is a gently undulating bottomland lying in a level plain with a mix of bushland, 

shrubland and grassland used for extensive grazing located on flat surfaces in central 

mountainous range around 1540 meters above sea level. On the other hand, the Merar site has a 

major landform that is also designated as level plain but located in an upland topography lying at 

an average altitude of 1898 meters above sea level used for a mix of cropland, shrubland and 

grassland (Table 3.1). The results provide further evidence to the apparent relation in the PCA to 

differences in mineralogical “functional groups” and to the fact that both soils have different 

parent materials (i.e. Vertisols and Calcisols/Cambisols for Mega and Merar respectively), 

however, the clearly distinct patterns and differences could also be explained by management 

and vegetation at the different sites (Table 3.1). For example, the Mega site which lies on an 

extensive rangeland area representing major management constraints brought about by the 

physical properties and the soil moisture regime of Vertisols and since they are used only for 

extensive grazing, they are consequently poor in nutrients because of no external inputs. Thus, 

the total element concentration analysis of the soils from the Mega site revealed very low 

concentrations of all elements with the exception of Ca (Tables A3.4-A3.7). Figures 3.3c-d 

acknowledges the fact that soil-forming factors are important drivers of element concentrations 

in soils since it shows sentinel sites with similar characteristics clustering together. The PCA 

patterns in total element concentrations within and between the sites, (Figures 3.3-3.4), could 

thus be used as proxies for natural nutrient status and the processes that might control the 

variation and differences in mineralogical “functional groupings”, and increase the wealth of 

knowledge of concentrations and spatial distribution of naturally occurring minerals in the soils 

of SSA.  
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Figure 3.4: Biplots based on PCA of element concentration for each of the 34 sentinel site 

sample sets. Sentinel sites arranged according to alphabetical order.
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Figure 3.4 cont: Biplots based on PCA of element concentration for each of the 34 sentinel site 

sample sets. Sentinel sites arranged according to alphabetical order. 
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Figure 3.4 cont: Biplots based on PCA of element concentration for each of the 34 sentinel site 

sample sets. Sentinel sites arranged according to alphabetical order. 
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Figure 3.4 cont: Biplots based on PCA of element concentration for each of the 34 sentinel site 

sample sets. Sentinel sites arranged according to alphabetical order. 
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3.4.5 Restricted maximum likelihood analysis of the proportion of variance. 

There were significant (P < 0.05) variance proportions for site, cluster nested within site, 

as well as depth nested within cluster and site and the interactions between site and depth (Table 

3.3). The greatest proportion of total variance and number of significant variance components 

occurred at the site (55-88%) followed by the cluster nested within site levels (10-40%). This 

was not surprising given that we would expect lower variation within depths at a given sampling 

location. However, for the element P, a large proportion of the samples (75%) were at or below 

the 25th percentile LLD concentration of the analytical measurements.  Consequently, our results 

concerning variation of P between and within sentinel sites should be interpreted with caution. 

Nevertheless, this may have implications for natural production systems and agriculture, as it 

may indicate also low potential P supply from minerals because TXRF is capable of detecting 

minerals rich in P. There were also 3 elements with a large error of variance (Al, Ti and Ga). 

Overall site contributed to more than 55% of the total variance of all the 17 elements analysed 

(Table 3.3). Our results differed with those reported by Laiho et al. (2004) who examined the 

proportion of variance of the elements K, Zn and Mn in soils from 11 peatland forest sites in 

Central Finland and reported strong variation among the sites, but even for these elements, the 

within-site variation contributed the biggest proportion of the total variance for the depth 0–30 

cm.  However, the cluster nested within site and site interaction contributed to at least 10% of the 

total variance of all the 17 elements analysed (Table 3.3). The observed strong within site as well 

as between site variations in the elements in our study were expected to be highly diagnostic of 

soil fertility potential because site and the interaction of cluster nested within site contributed 

more than half of the total variance for all elements (Table 3.3).  
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Table 3.3: Covariance parameter estimates and their percentage contribution to the total variance for site, cluster nested within site and depth nested 

within cluster and site and their interactions.   

   Site  Site*Cluster  Site*Depth  Depth  Residual 
                 

Element %LLD# n Estimate %Tot var  Estimate %Tot var  Estimate %Tot var  Estimate %Tot var  Estimate %Tot var 

Al 2 1068 0.966 88  0.112 10  0.004 0.4  0.005 0.45  0.016 1.4 
P  75 1059 0.718 76  0.198 21  0.002 0.2  1.4*10-21 <0.01  0.025 2.6 
K 0 1065 0.913 71  0.354 28  0.003 0.2  6.8*10-21 <0.01  0.010 0.8 
Ca 0 1068 2.186 79  0.480 17  0.034 1.2  0.017 0.60  0.051 1.8 
Ti 0 1067 1.398 87  0.199 12  0.001 0.1  0.001 0.04  0.014 0.9 
V 7 1067 1.463 77  0.379 20  0.009 0.5  0.008 0.39  0.053 2.8 
Cr 2 1068 0.808 65  0.384 31  0.005 0.4  0.006 0.46  0.039 3.2 
Mn 0 1067 1.007 68  0.393 27  0.023 1.6  0.008 0.51  0.040 2.7 
Fe 0 1066 1.459 80  0.335 18  0.005 0.3  0.009 0.47  0.026 1.4 
Cu 0 1066 0.705 69  0.285 28  0.002 0.2  0.003 0.27  0.027 2.6 
Ni 0 1067 0.745 55  0.540 40  0.014 1.1  0.008 0.56  0.049 3.6 
Zn 0 1067 0.924 79  0.217 19  0.001 0.1  0.001 0.12  0.026 2.2 
Ga 3 1067 0.677 77  0.164 19  0.006 0.7  0.009 1.01  0.024 2.7 
Sr 0 1069 1.554 83  0.299 16  0.004 0.2  0.000 0.01  0.017 0.9 
Y 1 1066 0.721 66  0.309 28  0.004 0.3  0.000 0.00  0.061 5.6 
Ta 6 1069 1.015 73  0.313 23  0.005 0.4  0.004 0.28  0.050 3.6 
Pb 2 1069 1.103 57  0.689 36  0.011 0.6  0.009 0.45  0.117 6.0 
%LLD# = percentage of the total number of samples (n=1074) with values at or below the LLD concentration; n= number of observations used after removing extreme studentized 
residuals; Estimate = log value estimated by the model; % Totvar = percentage contribution of the parameter estimate to the total variance. Model fitted with the SAS Sytem Mixed 
Procedure with the following parameters: covariance structure = variance components; estimation method = REML; residual variance method= profile; fixed effects SE method = 
Kenward-Roger. 
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3.4.6 Relationship with Mehlich-3 soil tests 

The results of the exploratory analysis using PCA of the relationships between Mehlich-3 

soil tests (acid-extractable nutrients) and total element analysis patterns in soil (Figure 3.5) were 

expected to relate to nutrient supply capacity. For example, the “inverse” relationship between 

pH (along the positive Dim 2) and elements total and extractable Ca and extractable Mg (co-

occuring along the negative Dim 2) shown in Figure 3.5, could relate to nutrient supply capacity 

and could also be explained because calcitic lime (containing Ca) and dolomitic lime (containing 

Ca and Mg) can be used to raise the pH of very acid soils (Voortman, 2011). Extractable Cu, Al, 

and Ca tended to show a similar trend in the cluster co-occurrence to total Cu, Al, and Ca (Figure 

3.5). In addition, these trends were confirmed by a Spearman’s rank correlation analysis results 

which showed that the extractable elements Mn, Cu, Ca, and Al were highly correlated to their 

total element concentration counterparts (Table 3.4) with more than 69% of the variation 

accounted for. This result was also in agreement with a study by Franklin et al. (2007) in which 

the correlations of Mehlich and total concentrations were found to be significant for Cu and Mn 

with more than 50 % of the variation accounted for. In our study, total Mn was closely associated 

with Fe implying that higher Mn levels are often found in soils rich in Fe. Mehlich-3 Mn also 

revealed a cluster co-occurrence of association with total Ca and Sr as well as Mehlich-3 Mg, Ca, 

and K (Figure 3.5). This was in agreement with the reported binding capability of Mn to bivalent 

cations such as Ca, Mg and Sr by Kabata-Pendias and Murkejee (2007). Kabata-Pendias and 

Murkejee (2007) also reported that the geochemistry of Ga is similar to that of Al and that Ga 

distribution in soils reflects the positive correlation with clay fraction and Fe hydroxides. In this 

study, there was a cluster co-occurrence of association between Ga, total Al and Mehlich-3 Al 

(Figure 3.5), and the clay factor commonly includes the total Al (Figure 3.3) as reported by 

Cannon and Horton (2009) and Grunsky et al. (2009). The results of spearman’s rank correlation 

outlined in Table 3.4 showed that there were strong correlations between Ga and total Al and 

Mehlich-3 extractable Al (r = 0.88 and 0.77 respectively). Our exploratory analysis using PCA 

presented here with a view to look for associations within multiple variables and to narrow down 

the predictor variables was only used in a quantitative way to show how far TXRF total element 

derived patterns in soils relate to ‘available’ element results from Mehlich-3 soil tests (acid-

extractable nutrients) and hence to soil nutrient supply capacity. The associations presented in 

Figure 3.5 and Table 3.4 look promising and future studies should go ahead to develop predictive 
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models as to what extent and for which elements total element concentrations relate to nutrient 

supply/availability. 
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Figure 3.5: Biplot based on the principal component Dim 1 vs Dim 2, on the log transformed 

data of the soil total element concentration and Mehlich-3 extractable micronutrients data from 

all sites analysed. 
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Table 3.4: Correlation matrix of pH, TXRF water-extractable element concentrations and Mehlich 3 acid-extractable (coupled with ICP-MS) element 

concentrations. 

 

 Al P K Ca Ti V Cr Mn Fe Ni Cu Zn Ga Sr Y Ta Pb pH m3.Ca m3.K m3.Mg m3.P m3.Al m3.Cu m3.Fe m3.Mn m3.Zn 

Al 1 0.48 -0.15 0.11 0.74 0.71 0.50 0.61 0.78 0.70 0.72 0.81 0.88 0.03 0.30 0.69 0.72 -0.25 0.21 0.30 0.31 -0.32 0.78 0.53 0.01 0.12 0.18 

P  1 -0.22 0.06 0.60 0.51 0.18 0.58 0.55 0.37 0.49 0.62 0.40 0.06 0.26 0.41 0.49 -0.03 0.17 0.32 0.14 0.09 0.45 0.47 0.11 0.27 0.31 

K   1 0.51 -0.49 -0.44 -0.51 -0.25 -0.46 -0.42 -0.53 -0.25 -0.03 0.70 0.14 -0.25 -0.32 0.31 0.13 0.30 0.19 0.27 -0.29 -0.26 -0.01 -0.08 -0.03 

Ca    1 -0.07 0.03 -0.14 0.25 0.02 -0.03 -0.04 0.21 0.16 0.82 0.18 0.04 -0.04 0.55 0.73 0.51 0.71 0.19 -0.14 0.21 0.11 0.21 0.21 

Ti     1 0.84 0.63 0.73 0.89 0.71 0.87 0.80 0.57 -0.18 0.35 0.81 0.78 -0.14 0.26 0.20 0.28 -0.29 0.68 0.68 0.14 0.27 0.24 

V      1 0.67 0.70 0.92 0.73 0.88 0.76 0.53 -0.13 0.24 0.81 0.78 -0.13 0.26 0.15 0.29 -0.39 0.66 0.65 0.11 0.20 0.20 

Cr       1 0.41 0.70 0.80 0.77 0.51 0.36 -0.26 -0.05 0.55 0.53 -0.26 0.12 0.05 0.19 -0.42 0.50 0.55 0.07 0.11 0.20 

Mn        1 0.82 0.55 0.77 0.80 0.45 0.06 0.31 0.64 0.69 0.12 0.39 0.30 0.36 -0.14 0.49 0.69 0.04 0.69 0.28 

Fe         1 0.74 0.94 0.85 0.56 -0.14 0.21 0.85 0.85 -0.15 0.24 0.20 0.29 -0.36 0.69 0.70 0.09 0.33 0.26 

Ni          1 0.83 0.68 0.59 -0.14 0.20 0.54 0.61 -0.27 0.19 0.25 0.32 -0.35 0.75 0.63 0.03 0.21 0.21 

Cu           1 0.80 0.51 -0.22 0.22 0.74 0.79 -0.16 0.26 0.17 0.29 -0.36 0.67 0.77 0.09 0.35 0.24 

Zn            1 0.73 0.05 0.28 0.73 0.69 -0.11 0.33 0.38 0.40 -0.18 0.69 0.71 0.16 0.33 0.33 

Ga             1 0.11 0.33 0.49 0.47 -0.30 0.13 0.35 0.26 -0.24 0.77 0.42 -0.03 0.02 0.14 

Sr              1 0.12 -0.06 -0.15 0.44 0.46 0.46 0.51 0.28 -0.19 0.03 0.09 0.08 0.14 

Y               1 0.20 0.24 0.19 0.27 0.17 0.28 -0.06 0.30 0.23 -0.03 0.16 -0.05 

Ta                1 0.72 -0.05 0.28 0.23 0.35 -0.36 0.57 0.59 0.15 0.20 0.19 

Pb                 1 -0.17 0.18 0.12 0.20 -0.33 0.60 0.59 0.06 0.29 0.24 

pH                  1 0.65 0.27 0.49 0.13 -0.48 0.08 -0.15 0.38 0.03 

m3.Ca                   1 0.49 0.85 0.03 -0.02 0.51 0.14 0.41 0.23 

m3.K                    1 0.61 0.25 0.26 0.37 0.01 0.28 0.38 

m3.Mg                     1 -0.06 0.11 0.48 0.16 0.31 0.21 

m3.P                      1 -0.22 -0.18 0.23 0.04 0.32 

m3.Al                       1 0.47 0.05 0.05 0.17 

m3.Cu                        1 0.25 0.50 0.36 

m3.Fe                         1 -0.07 0.28 

m3.Mn                          1 0.24 

m3.Zn                           1 
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3.4.7 Relationship with mineralogy and other site characteristics 

In order to confirm whether site or soil-forming factors (e.g. mineralogy, climate, 

topography and vegetation) are important drivers of total elemental concentrations in the soil, we 

performed a Random Forests (RF) regression of the factors against the first 5 principal 

components of the TXRF element concentration. The RF multiple regression forests allowed us 

to view the importance of the predictor variables and below we discuss only the top four 

variables in decreasing order of importance for the first 3 principal components or dimensions 

which explained as much as 57% of the variability of the total element concentrations. 

 

3.4.7.1 Element concentration fingerprints versus site factors 

First, a regression of 6 predictor variables namely soil class, climate zones, cluster, plot 

flooding, depth and position in the topography showed that the OOB-models had an overall 

accuracy (R2) of 0.59, 0.44 and 0.43 for dimensions 1, 2 and 3 respectively (Figure 3.6a). The 

most important predictor variables explaining the variation observed in the first principal 

component or dimension 1 of the total element concentration data, were soilclass (based on the 

IUSS Working Group WRB (2007) and the FAO/EC/ISRIC (2003) world soil resources map 

(Scale 1:30 000 000 approx)), climate zone (Köppen-Geiger climatic zones), position in the 

topography (e.g. bottomland, footslope, midslope, upland) followed by whether the plot is 

flooded or not (Figure 3.6a). For the dimension 2, the most important variables were soilclass, 

climate zone, position in the toposequence, and plot flooding, while for dimension 3 the four 

most important variables were similar to those in the second dimension (Figure 3.6a). When we 

excluded the climate zone predictor variable in the regression model and in place of this included 

total annual precipitation and average montly temperature, the regression results showed an 

overall improved fit (R2) of the models’ overall accuracy of 0.87, 0.74 and 0.70 for dimensions 

1, 2 and 3 c (Figure 3.6b). In addition, the order of the most important predictor variables 

explaining the variation observed were also changed when climate zone was removed from the 

model such that for dimension 1 they were soil class, precipitation, average temperature, 

followed by position in the topography (Figure 3.6b). Topography is the most commonly 

considered soil-forming factor and expresses the variation of total element concentration pattern 
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due to modification of the water relationships in soils and it influences soil erosion to a 

considerable extent (Jenny, 1941). 

Since the soil class and climate zone ranked the top most important variables explaining 

the varaiation of the total element concentrations’ main pattern of variation in Dim 1, these were 

both excluded in the RF model and the predictor variables precipitation, average temperature 

retained and consequently the model accuracies were slightly decreased to a R2 of 0.79, 0.69, and 

0.64 for dimension 1, 2 and 3 respectively (Figure 3.6c). For the dimensions 1, 2 and 3, the two 

most important variables were then precipitation and temperature followed by position in the 

topography and cluster (Figure 3.6c). When the new variable ‘landuse’ was introduced in 

addition to the soil classification according to the FAO/EC/ISRIC (2003) and IUSS Working 

Group WRB (2007), the overall model accuracies were further marginally improved to R2 values 

of 0.87, 0.77 and 0.70 for dimensions 1, 2 and 3 respectively (Figure 3.6d).  Excluding the soil 

class from the model used in Figure 6d the fit of the models in dimensions 1-3 were 0.81, 0.70 

and 0.64 R2 respectively (Figure 3.6e). The top most important variable for all the dimensions 

was temperature followed by precipitation, topography and landuse in dimensions 1 and 2 while 

in dimensions 3, after temperature, the most important variables were precipitation, landuse 

followed by topography (Figure 3.6e). Our results that landuse was one of the important 

variables, e.g. ranking fourth, fourth, and third in dimensions 1, 2 and 3 respectively (Figure 

3.6e), supported results by Voortman (2011) that the presence of different vegetation types is a 

reliable and precise indicator of differences in soil chemical properties and that interactions 

among nutrients significantly explain differences in vegetation and also the distribution of 

vegetation types. These results are interesting in that they imply that >70% of variation in soil 

elemental composition patterns can be predicted using information in existing databases or 

readily observable features. The predictor ‘soil depth’ was of least importance for total element 

concentration pattern of variation prediction, suggesting that neither top- nor subsoils influence 

much the variation of element concentration probably due to expected correlations of element 

concentrations between the two depths. 
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Figure 3.6: Variable importance plots for the first 3 dimensions of the Random Forests regression of TXRF element concentrations against mineralogy and 

site/soil-forming factors showing the model accuracies and mean decrease in accuracy (%IncMSE) for site or soil-forming predictor variables (a) excluding 

precipitation and temperature (b) excluding climate zone but including precipitation and temperature (c) excluding climate zones and soil class but including 

precipitation and temperature (d) including soil classification and landuse (e) excluding climate zones and soil class but including precipitation, temperature and 

landuse (see Table 3.1 for predictor parameter description). 
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3.4.7.2 Element concentration versus mineralogy composition 

Mineralogy data from XRD analysis were extracted for each site and for our analysis we 

used both raw semi-quantitative mineralogy data and the dominant mineralogy grouping. In 

general RF model performances were acceptable with prediction accuracies for dimensions 1-3 

ranging from 0.71-0.46 and 0.81-0.56 for raw mineralogy data and dominant mineralogy 

groupings respectively (Figure 3.7a-b). These results suggest that patterns of variation in total 

element concentrations are largely due to high variability in mineralogy. The most important 

predictor variables explaining the variation in the dominant mineralogy grouping for dimension 1 

were K-Feldspars followed by kaolinite/1:1 clays, then quartz and plagioclase (Figure 3.7a). 

Thus, since K, Ca, Ti, Fe and Sr were predominantly associated with Dim 1, the contents of these 

elements are presumed to be originating primarily from parent material as reported by Kabata-

Pendias and Murkhejee (2007) and US.EPA (2006). Lower concentrations of certain elements, 

e.g. Ca and K in some soils in our study, could also be explained by a reported breakdown of 

primary minerals, particularly K-feldspars and plagioclase (Acosta et al., 2011) or depletion in 

well-drained soils over long periods of pedogenic weathering since they are either divalent or 

monovalent (Marques et al., 2004). For dimension 2 the most important variables were quartz, 

kaolinite/1:1 clays, K-feldspars, and oxides (Figure 3.7a).  Because Al, Ni and Ga were dominant 

in Dim 2 (Figure 3a, Annex Figure A3.1), our results are in agreement with those reported by 

Acosta et al. (2011) that Al in soils has been attributed to the formation of clay minerals. Total 

Al in soil reflects the type of soil and the underlying geology being present in the matrix of clays 

and other silicate minerals and highly weathered soils are often high in Al concentrations 

(Rawlins et al., 2012). However, at the opposite extreme, low Al is a marker of organic-rich 

soils, which contain a smaller proportion of aluminosilicate minerals (Rawlins et al., 2012). For 

dimension 3 the most important variables were oxides followed by K-feldspars, plagioclase and 

kaolinite/1:1 clays (Figure 3.7a). While our results showed that Cr, Mn and Zn were predominant 

in the Dim 3 (Figure 3.3b, Annex Figure A3.1), Zn is reported to be generally associated with 

Al- and Fe-containing minerals such as feldspars, micas, pyroxenes and amphiboles (Acosta et 

al., 2011).  

The most important predictor variables explaining the variation in the raw mineralogy for 

dimension 1 were microcline, followed by hematite, kaolinite and albite; for dimension 2 were 

microcline, calcite, hematite and hornblende; while for dimension 3 were hematite, tridymite, 
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albite and nacrite (Figure 3.7b). Our findings were also in agreement with a report by Voortman 

(2011) that the nature of the key variables explaining the variability of soils are related to the 

mineralogy of parent rock and thus we also infer that the mineralogy of parent rock is a principal 

factor determining spatial patterns of soil total element concentrations.   

 

Figure 3.7: Variable importance plots for the first 3 dimensions of the Random Forests 

regression of TXRF element concentrations against mineralogy and site/soil-forming factors 

showing the model accuracies and mean decrease in accuracy (%IncMSE) for (a) dominant 

mineralogy groupings, (b) raw semi-quant mineralogy data. 
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3.4.8 Element concentration versus mineralogy composition plus site and soil-forming 

factors 

Since some site factors and mineralogy investigated in this study separately had a high 

explanatory power of the patterns of variations of the total elementsl concentrations we tested 

how much variation could be explained when they were combined. In general RF model 

performances were improved compared to separate models with prediction accuracies of 0.92, 

0.84, and 0.79 for dimensions 1, 2 and 3 (Figure 3.8a). The most important variables explaining 

the main patterns of variation in total element concentrations were cluster, landuse, topography, 

temperature and precipitation (Figure 3.8a). Thus all soil-forming factors (e.g., parent material, 

climate, topography, management (landuse)) were demonstrated to have an important influence 

on total elemental concentrations in the soil. The importance of cluster can be explained by 

spatial correlation at distances of less than 1 km. Since cluster was the only non-readily 

observable variable, we tested how predictive performance was reduced or not by leaving out 

cluster. In general, the model performances were slightly reduced with prediction accuracies of 

0.90, 0.80 and 0.75 for dimensions 1, 2 and 3 respectively (Figure 3.8b). Thus, our exploratory 

analyses using RF regression of the factors against the first 5 principal components of the TXRF 

element concentration confirmed that site or soil-forming factors (e.g., mineralogy, climate, 

topography, vegetation and landuse) are important drivers of total elemental concentrations in 

the soil.  
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Figure 3.8: Variable importance plots for the first 3 dimensions of the Random Forests 

regression of TXRF element concentrations against mineralogy and site/soil-forming factors 

showing the model accuracies and mean decrease in accuracy (%IncMSE) for combination of 

mineralogy and site factors (a) including cluster and (b) excluding cluster.  
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3.5 Conclusions 

Knowledge of the concentration and spatial distribution of naturally occurring elements 

in the soils of Sub-Saharan Africa (SSA) is limited and there is a need for a better understanding 

of the factors that might regulate this variation. This study helped to establish the concentrations 

of 17 elements for soils occurring within 34 sentinel sites across SSA and document patterns in 

total element concentrations within and between sites, which appeared to relate to differences in 

mineralogical ‘functional groups’. We observed strong within site and between site variations in 

many elements and which were expected to be highly diagnostic of soil fertility potential. TXRF 

can provide chemical fingerprinting which could be further tested for inferring soil chemical and 

physical functional properties, which is of interest in the African soil contexts for agricultural 

and environmental management. Our exploratory analysis using PCA with a view to test for 

associations within multiple variables and to narrow down the predictor variables was only used 

in a quantitative way to show how far TXRF total element derived patterns in soils relate to 

‘available’ element results from Mehlich-3 soil tests (acid-extractable nutrients) and hence to soil 

nutrient supply capacity. The associations presented in the present study look promising and 

future studies should go ahead to develop predictive models as to what extent and for which 

elements total element concentrations relate to nutrient supply/availability.  

Our exploratory analyses of the relationships between element composition data and 

other site factors using Random Forests have demonstrated that all site or soil-forming factors 

(e.g., mineralogy, climate, topography, vegetation and landuse) have an important influence on 

total elemental concentrations in the soil. The fact that the soil-forming factors are related to the 

concentration of the naturally coccuring elements in the soil gives rise to the notion that they 

might be predicted from the soils’ element composition. Our results also implied that >70% of 

variation in soil element composition patterns can be predicted using information in existing 

databases or readily observable features. Thus, future studies should investigate the feasibility of 

quantitatively predicting soil functional properties from concentrations of elements and soil-

forming factors e.g. for digital soil mapping. 

This work shows the utility of TXRF to provide improved capabilities for analytical 

services on soil total element concentrations, due to the high-throughput rates of analyses with 

regards to costs, time and the number of samples that can be analyzed per day. Successful use of 
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the TXRF technique would open up the possibilities for using total element composition to 

improve global predictions of soil properties, such as cation exchange capacity and extractable 

nutrients as demonstrated here with some acceptable relations with Mehlich-3. Therefore, it is 

worth exploring the possibility of using the TXRF method to measure element concentrations in 

other media such as soil water extracts and testing whether extractable data could be used as a 

complementary input to pedotransfer functions (PTFs) for low cost, rapid prediction of soil 

fertility properties. In particular, after careful testing TXRF could be a powerful complement to 

other rapid analytical techniques such as infrared spectroscopy for science-based diagnostic 

surveillance in agricultural and environmental management.  
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Figure A3.1: Biplots (arrow sizes are proportional to the “initial” variability in the elements 

present) based on the principal component for (a) Dim 1 vs Dim 3 (b) Dim 2 and Dim 3 (c) Dim 

3 and Dim 4 (d) Dim 4 and Dim 5, on the log transformed data of the soil total element 

concentration  from all sites analysed. 
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Table A3.1: Lower limit of detection (LLD) values (mg kg-1) calculated for each element detected using 

the TXRF technique. 

Element Al P K Ca Ti V Cr Mn Fe Ni Cu Zn Ga Sr Y Ta Pb 

LLD 208 42 8. 
56 

4.14 1.62 1.13 1.10 0.88 0.87 0.31 0.22 0.20 0.22 0.18 0.18 0.12 0.35 

 

Table A3.2. Summary of some of the important options invoked in the SAS PROC MIXED statement by 

function and the class level information for the three classes (site, cluster and depth) in the model of the 

data used in this study. 

Model Information  

Data Set TXRF 
Dependent Variable  log (element) 
Covariance Structure  Variance Components 
Estimation Method REML 
Residual Variance Method  Profile 
Fixed Effects SE Method  Kenward-Roger 
Degrees of Freedom Method Kenward-Roger 

 

Class Level Information 

Class  Levels  Values 
Site  34  Chinyanghuku, Dambidolo, Finnkolo, Fisenge, Fria, Ibi, Ihassunge, 
  Imorun, Itende, Katsina Ala, Kiberashi, Kidatu, Kisongo, Koloko, Kontela, 
  Kubeasi, Kutaber, Lambussie, Macassangila, Marafa, Mbalambala, 
  Mbinga, Mega, Merar, Morijo, Nkhata Bay, Pandambili, Thuchila. 
Cluster  16 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16. 
Depth  2  Subsoil, Topsoil. 
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Table A3.3: The coefficient of variability (CoV in %) values for sample replicates calculated for each site 

using samples that had no missing values (before substituting the missing values with the 25th percentile 

value of the LLD) in the data after log transformation. 

Site Country Al P K Ca Ti V Cr Mn Fe Ni Cu Zn Ga Sr Y Ta Pb 
Ajumako Ghana 5  4 4 5 27 9 5 4 6 7 6 7 4    
Bondigui Guinea 8  7 6 11 12 11 9 10 10 11 10  11  16 18 
Boumeoul Tanzania 6  4 5 5 19 5 6 4 8 4 6 4 4 12 24 10 
Chica - b Mozambique 6  6 6 6  19 6 7  8 10 8 8 17   
Chiculecule Mozambique 7  5 6 5 33 11 5 5 6 7 7 5 10 34   
Chinyanghuku Tanzania 7  6 7 6 11 8 7 5 6 6 6 6 7 11 11 23 
Dambidolo Ethiopia 7  6 7 7 14 16 8 8 7 8 8 7 9 10 16 22 
Finkolo Mali 5  3 4 5 9 4 4 3 5 7 5 4 3 16 11 11 
Fisenge Zambia                  
Fria Guinea 8  4 7 8 7 8 10 6 6 6 5 5 5  15 12 
Ibi Nigeria 7  4 4 5 9 7 4 4 8 5 8 5 5 17 13 8 
Ihassunge Mozambique 8  5 7 7 36 16 8 5 9 11 7 6 7 16 17 11 
Imorum Nigeria 12  5 4 5 24 6 5 4 6 7 5 4 4 21 13 7 
Itende Tanzania 7  6 6 6 30 8 5 5 8 8 8 6 6 13   
Katsina ala Nigeria 7  4 5 5  13 5 4 8 5 5 7 6 16   
Kiberashi Tanzania 9  6 5 4 22 8 5 4 5 6 4 5 5 15 16 18 
Kidatu Tanzania 9  6 5 6 29 12 6 5 14 8 10 6 6 16   
Kisongo Tanzania 8 25 5 5 6 28  7 5 10 6 5 7 5 9 16 13 
Koloko Mali 9  7 5 12 16 9 11 12 11 11 12 10 13 19 23 22 
Kontela Mali 9  5 6 7 9 9 8 8 8 7 8 9 7 14 10 13 
Kubeasi Ghana 7  4 4 5 17 8 4 4 5 5 5 5 4 19 15  
Kutaber Ethiopia 5  3 3 4 12 9 5 4 4 4 4 5 5 12 17 20 
Lambussie Ghana 8  6 5 8 12 8 6 6 8 6 8 10 7 23  15 
Macassangila Mozambique 5  4 5 7 37  5 5  5 7 5 6 10 15 16 
Marafa Kenya 8  7 6 9 40 14 8 8 7 8 8 10 10 12 28 21 
Mbalambala Kenya 13  12 11 12   10 12 13 12 13 11 11 13 32 33 
Mbinga Tanzania 6  5 5 12 36 12 9 6 8 5 8 5 6 8  16 
Mega Ethiopia   11 5 93   43 75 50 52 58  6    
Merar Ethiopia 7 17 5 5 7 15 10 7 5 6 6 6 6 6 13   
Morijo Kenya 5  4 3 5 66 20 4 4 6 6 4 7 3 6 20 8 
Nkhata bay Malawi 6  5 7 6   7 6 8 7 7 7 7 13 15  
Pandambili Tanzania 6  6 5 6 19 6 5 6 7 6 5 6 7 11 17 19 
Thuchila Malawi 8  5 5 8  12 7 7  6 9 8 6 12 12 15 



 

 Table A3.4: 2.5th percentiles of the total element concentration values (mg kg-1) of 1074 soil samples across 34 sentinel sites sampled for this 

study. 

Site Country Al P K Ca Ti V Cr Mn Fe Ni Cu Zn Ga Sr Y Ta Pb 

Ajumako Ghana 12756 42 1197 405 1985 8.1 22 97 8077 2.5 4.6 7.9 2.1 13 0.9 0.8 7.1 
Bondigui Burkina Faso 9872 42 1597 377 1786 13 23 97 6461 2.9 4.5 5.7 0.2 10 0.2 1.2 7.9 
Boumeoul Guinea 14576 42 1056 144 1900 10 34 37 6654 6.5 6.3 4.3 3.1 5.9 3.9 0.9 4.9 
Bukwaya Tanzania 9793 42 5634 317 468 5.2 3.6 39 2104 0.9 1.7 3.7 1.4 17 1.3 0.3 4.0 
Chica - b Mozambique 11229 42 4682 922 269 1.0 1.4 56 874 0.3 1.1 3.6 2.0 24 2.4 0.1 0.3 
Chiculecule Mozambique 4002 42 311 101 1062 2.7 42 43 1355 2.6 1.8 2.9 0.7 1.2 0.8 0.1 1.5 
Chinyanghuku Tanzania 32851 42 11158 11875 1448 20 21 196 13844 4.8 5.4 17 11 246 3.5 0.9 3.1 
Dambidolo Ethiopia 36695 42 4467 4016 1359 8.4 13 295 13887 4.7 6.5 16 9.1 51 7.4 1.7 8.3 
Finnkolo Mali 9404 42 625 102 799 5.9 13 34 5879 2.8 3.2 3.3 1.8 7.1 2.8 0.8 0.7 
Fisenge Zambia 17156 42 1622 178 2590 4.2 28 89 5074 7.4 19 10 0.7 2.7 1.2 0.4 0.7 
Fria Guinea 47489 42 1364 375 5976 60 116 155 34722 11 14 15 9.5 13 2.6 3.6 30 
Ibi Nigeria 7602 42 1766 273 1606 6.4 12 26 3576 1.8 3.2 2.9 1.7 10 7.9 0.5 3.6 
Ihassunge Mozambique 16149 42 11287 3014 1543 8.8 22 93 7092 3.8 2.8 6.7 2.4 90 4.3 1.3 9.4 
Imorun Nigeria 19641 42 868 295 1573 3.1 4.6 98 8558 2.5 3.1 12 4.9 9.2 3.2 1.7 8.8 
Itende Tanzania 9702 42 3671 335 409 1.2 9.2 32 2459 1.6 1.9 4.2 2.1 12 2.1 0.1 3.9 
Katsina ala Nigeria 7098 36 1904 332 1107 1.1 7.2 70 3456 0.8 2.1 4.2 1.6 10 3.8 0.2 0.3 
Kiberashi Tanzania 18738 42 6830 1983 843 4.2 2.8 34 3550 1.1 2.0 10 4.0 76 1.1 0.7 9.8 
Kidatu Tanzania 4503 41 1510 234 286 1.9 5.9 12 1329 0.5 1.7 1.3 0.9 10 1.0 0.1 0.3 
Kisongo Tanzania 48373 634 12990 17055 8553 41 1.1 956 42128 1.8 14 71 11 674 17 6.3 37 
Koloko Mali 21841 42 2153 302 4409 26 44 84 9307 12 9.3 12 5.0 17 10 1.7 11 
Kontela Mali 26010 42 7479 1020 3305 25 44 130 16086 12 11 12 4.5 37 12 3.2 14 
Kubeasi Ghana 7588 42 1039 211 1268 2.7 11 21 1654 2.3 2.1 9.3 1.9 5.7 0.7 0.2 1.4 
Kutaber Ethiopia 36364 42 1989 9671 5316 31 30 604 31946 15 15 57 11 132 10 1.7 8.2 
Lambussie Ghana 10541 42 1366 349 1624 3.7 23 86 5317 2.0 5.3 5.7 1.6 8.6 1.7 0.5 0.8 
Macassangila Mozambique 12987 41 1508 331 1579 1.6 3.6 152 7183 0.5 2.6 11 2.6 15 3.5 1.5 2.4 
Marafa Kenya 19079 42 6270 2657 1686 5.3 20 239 9958 8.4 5.9 12 3.6 64 3.5 0.6 3.7 
Mbalambala Kenya 32027 42 14509 10858 2317 1.1 18 626 10691 2.7 6.9 17 6.3 185 10 0.5 2.7 
Mbinga Tanzania 38802 80 441 123 3225 45 18 793 36799 23 27 36 8.8 7.8 12 1.7 33 
Mega Ethiopia 102 27 787 6460 4 0.8 0.7 1.8 25 0.6 0.3 0.3 0.2 32 0.2 0.1 0.3 
Merar Ethiopia 8677 305 2884 64727 670 6.8 28 124 6475 37 3.2 8.2 2.1 80 9.3 0.1 0.5 
Morijo Kenya 17008 42 5314 1743 1418 2.2 10 66 12355 4.4 4.6 22 4.4 33 13 2.7 7.6 
Nkhata Bay Malawi 31888 42 2270 188 2096 14 11 147 15740 6.8 7.7 21 7.8 4.0 6.0 2.7 18 
Pandambili Tanzania 23221 42 7412 748 908 10 42 53 6920 10 4.3 11 5.1 40 2.1 1.1 3.4 
Thuchila Malawi 18037 42 6821 1060 5459 9.1 17 211 12370 1.0 4.4 17 2.2 65 5.6 3.1 12 
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Table A3.5: 25th percentiles of the total element concentration values (mg kg-1) of 1074 soil samples across 34 sentinel sites sampled for this study. 

Site Country Al P K Ca Ti V Cr Mn Fe Ni Cu Zn Ga Sr Y Ta Pb 
Ajumako Ghana 32251 42 2146 754 3253 22 70 354 27554 12 17 25 7.7 15 3.6 2.5 23 
Bondigui Burkina Faso 29671 42 2186 694 2976 56 56 192 31388 7.8 18 13 2.4 15 1.0 3.5 32 
Boumeoul Guinea 20444 42 1633 256 2940 19 51 55 14376 8.3 10 7.2 4.4 9.0 8.3 1.9 12 
Bukwaya Tanzania 16361 42 6934 856 622 8.5 7.6 88 4295 2.3 3.4 7.8 2.9 31 3.8 1.0 8.6 
Chica - b Mozambique 22293 42 11989 2598 613 1.4 5.3 146 3338 1.4 2.1 6.7 5.1 74 6.0 0.3 4.5 
Chiculecule Mozambique 7083 42 419 169 1323 3.6 52 113 2860 4.2 2.6 3.8 1.4 1.5 1.4 0.3 3.6 
Chinyanghuku Tanzania 37621 42 15767 15415 1895 29 30 304 19548 6.7 9.0 24 13 289 5.4 2.4 7.5 
Dambidolo Ethiopia 45458 141 5865 5319 3553 18 45 753 37160 10 20 33 11 80 15 2.6 30 
Finnkolo Mali 14818 42 899 187 1378 10 20 59 8300 5.2 4.6 5.3 3.4 9.0 6.3 1.3 5.9 
Fisenge Zambia 26026 42 2155 208 3201 8.9 39 114 11082 18 22 13 3.0 3.8 3.1 2.3 2.5 
Fria Guinea 60130 42 1961 675 7594 93 182 229 55794 18 19 19 17 22 7.3 4.5 78 
Ibi Nigeria 9009 42 2572 435 1861 11 21 70 4696 2.8 3.7 3.7 2.2 14 9.1 0.7 5.5 
Ihassunge Mozambique 18132 42 17058 6812 2500 12 34 127 8800 4.8 4.2 11 4.3 102 6.8 1.7 14 
Imorun Nigeria 26700 42 1099 528 2427 4.5 23 126 14942 4.8 7.1 15 7.7 12 5.2 2.8 13 
Itende Tanzania 17874 42 16982 889 735 2.4 14 88 2881 2.6 2.6 5.4 3.7 35 4.3 0.2 8.4 
Katsina ala Nigeria 12690 42 5159 617 2197 1.1 19 145 4600 2.0 4.6 6.6 2.6 17 5.7 0.4 1.1 
Kiberashi Tanzania 30739 42 11117 3659 1320 11 14 138 7025 6.6 5.1 14 7.2 102 3.7 1.4 17 
Kidatu Tanzania 7626 42 5377 566 484 2.3 8.5 25 2080 1.0 2.3 2.3 1.2 38 2.2 0.2 0.7 
Kisongo Tanzania 52441 825 14881 25980 9542 73 15 1167 48325 2.9 17 77 12 789 19 7.8 54 
Koloko Mali 35968 42 3479 791 5356 42 66 142 14857 20 14 16 8.2 24 19 2.2 18 
Kontela Mali 30674 42 9915 1481 3632 30 47 220 19577 16 13 15 5.7 46 14 4.1 19 
Kubeasi Ghana 27059 42 2241 698 2543 12 42 119 12924 6.8 9.3 17 5.0 14 2.5 2.2 11 
Kutaber Ethiopia 40879 137 5094 16355 8618 71 44 750 53821 32 24 66 13 174 16 3.7 21 
Lambussie Ghana 16781 42 2599 607 2406 14 54 194 14191 5.6 9.2 9.3 2.5 16 6.2 2.0 5.3 
Macassangila Mozambique 31874 42 2713 614 3651 14 30 293 16980 5.3 8.9 23 7.7 29 5.0 2.4 8.5 
Marafa Kenya 23007 42 8973 4804 1999 10 22 368 12155 11 8.7 15 4.5 116 5.0 1.2 5.9 
Mbalambala Kenya 40541 42 21780 24005 3451 1.1 35 770 26785 10 12 36 12 308 19 1.0 10 
Mbinga Tanzania 43437 247 560 220 7646 75 35 1141 50499 31 31 42 11 12 22 2.9 69 
Mega Ethiopia 146 39 1027 7627 6.5 0.9 0.9 3.7 47 1.0 0.5 0.6 0.2 41 0.3 0.1 0.4 
Merar Ethiopia 27798 458 13012 83054 2728 28 92 439 21438 60 18 40 7.3 105 16 0.1 18 
Morijo Kenya 26562 42 8750 2559 2132 5.7 16 682 21080 11 7.5 54 8.5 47 29 3.9 11 
Nkhata Bay Malawi 46226 42 10076 633 2754 26 24 301 23092 11 13 38 11 13 10 3.7 30 
Pandambili Tanzania 28249 42 9924 1157 1490 13 56 107 11579 18 11 17 7.7 54 3.4 1.5 5.7 
Thuchila Malawi 25563 42 13466 2249 6741 16 41 402 17175 4.9 11 24 4.9 140 10 4.3 19 
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Table A3.6: 75th percentile of the total element concentration values (mg kg-1) of 1074 soil samples across 34 sentinel sites sampled for this study. 

Site Country Al P K Ca Ti V Cr Mn Fe Ni Cu Zn Ga Sr Y Ta Pb 

Ajumako Ghana 46637 42 4185 2344 5377 54 215 790 50362 24 33 58 12 44 9.4 4.9 70 
Bondigui Burkina Faso 39864 42 3699 4267 7720 228 162 1216 113587 32 57 38 6.2 38 12 8.1 291 

Boumeoul Guinea 41828 42 4799 783 5942 63 90 244 45439 18 22 21 10 17 16 4.6 52 
Bukwaya Tanzania 32885 42 17600 4503 2101 21 30 338 21629 16 22 26 5.8 84 7.9 2.6 20 

Chica - b Mozambique 40132 42 33425 9585 1671 8.1 13 315 9891 4.0 5.6 15 12 182 29 1.1 26 
Chiculecule Mozambique 9658 42 830 391 1727 5.1 69 189 4068 6.7 3.3 4.7 1.9 3.1 2.6 0.4 5.5 

Chinyanghuku Tanzania 41332 55 22444 22904 2241 37 53 416 26154 15 14 34 14 412 8.5 3.3 12 
Dambidolo Ethiopia 57284 559 21708 18969 11803 54 110 1614 71084 47 31 62 15 268 49 4.2 144 

Finnkolo Mali 35834 42 2256 442 3302 24 57 126 21047 16 10 11 8.9 18 16 2.9 17 
Fisenge Zambia 35489 42 3296 408 4283 15 62 178 15810 37 35 26 5.4 5.0 6.0 10 6.9 

Fria Guinea 74560 42 4168 1354 9193 129 302 385 83044 29 30 28 21 27 12 5.5 139 
Ibi Nigeria 14947 42 8231 758 2629 16 58 152 8189 4.2 5.2 5.7 3.7 29 13 1.3 11 

Ihassunge Mozambique 33606 42 23314 9729 4115 24 84 231 27928 13 15 39 8.3 144 23 3.7 32 
Imorun Nigeria 39211 42 5216 1173 3246 16 59 249 28476 10 12 21 11 22 12 4.4 22 

Itende Tanzania 27405 42 26974 1707 1080 5.7 32 143 5137 7.8 4.3 7.5 5.8 79 7.2 0.8 19 
Katsina ala Nigeria 22930 46 18652 1058 5230 1.1 39 541 18179 3.5 9.0 14 5.6 55 11 2.4 18 

Kiberashi Tanzania 55042 42 19364 7341 2965 30 49 263 26749 25 12 27 13 163 8.1 3.5 24 
Kidatu Tanzania 24351 42 23253 1053 1536 7.5 21 201 6344 3.0 5.4 5.3 4.5 98 5.7 1.1 11 

Kisongo Tanzania 58856 1384 18568 38360 12033 124 58 1398 56393 33 26 88 15 881 22 8.9 73 
Koloko Mali 57526 42 5303 1756 6380 71 123 243 28924 46 25 28 18 37 31 4.0 35 

Kontela Mali 43279 42 12482 2712 4174 42 70 305 27039 23 19 20 8.3 59 17 5.5 28 
Kubeasi Ghana 39958 42 4967 1449 3808 22 97 282 27795 13 17 25 9.5 23 4.9 3.7 33 

Kutaber Ethiopia 47599 500 14715 26169 10841 104 101 1078 62212 47 47 95 16 379 27 6.6 38 
Lambussie Ghana 37801 42 4272 4441 6047 162 136 810 86583 22 45 38 6.7 61 9.0 5.3 174 

Macassangila Mozambique 54714 247 8221 1375 11320 38 76 791 47528 34 30 51 13 62 14 4.3 47 
Marafa Kenya 29820 42 18245 15437 2628 14 30 530 15337 16 12 20 6.0 172 8.4 2.5 10 

Mbalambala Kenya 50165 359 26918 39407 4339 3.8 65 1000 34668 23 19 68 16 435 30 3.2 20 
Mbinga Tanzania 48979 404 2754 736 11732 119 68 1529 62161 48 48 57 12 19 32 3.7 104 

Mega Ethiopia 227 60 1956 9609 25 1.1 1.3 8.7 173 1.7 0.8 1.1 0.2 55 0.7 0.1 0.7 
Merar Ethiopia 37002 1076 16731 153354 3453 35 126 656 31975 71 24 54 10 126 19 0.4 35 

Morijo Kenya 42018 42 12442 10852 4059 11 30 1119 35300 14 14 83 13 92 44 7.6 38 
Nkhata Bay Malawi 54961 42 21305 5631 3917 41 45 555 39209 19 18 65 16 44 24 4.7 52 

Pandambili Tanzania 36031 42 15362 6735 2069 20 88 250 17171 29 15 23 10 161 5.1 2.3 10 
Thuchila Malawi 42100 57 30420 5740 10634 46 57 653 38435 16 28 43 9.5 426 16 6.3 44 
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Table A3.7: 97.5th percentiles of the total element concentration values (mg kg-1) of 1074 soil samples across 34 sentinel sites sampled for this 

study. 

Site Country Al P K Ca Ti V Cr Mn Fe Ni Cu Zn Ga Sr Y Ta Pb 
Ajumako Ghana 62822 43 12510 16782 6298 93 311 1155 86693 78 67 111 15 156 18 6.5 210 
Bondigui Burkina Faso 48586 57 6514 28659 10479 384 363 3351 180612 50 91 68 13 85 25 11 617 
Boumeoul Guinea 62062 91 12158 5152 6426 111 197 1738 71641 70 33 47 16 37 23 6.9 154 

Bukwaya Tanzania 49111 42 36328 15290 5898 111 104 1934 79553 58 68 40 11 201 14 6.2 180 
Chica -b Mozambique 46971 49 49068 23892 2229 25 106 465 23061 37 18 40 15 410 107 2.0 38 

Chiculecule Mozambique 12095 42 1507 1600 1994 6.2 84 317 5482 10 4.4 6.0 2.3 4.8 4.5 0.7 9.3 
Chinyanghuku Tanzania 46258 226 24767 33348 2744 58 535 733 37362 99 24 49 15 512 13 3.8 16 

Dambidolo Ethiopia 65575 1363 29443 30539 19139 101 157 2105 96911 72 57 86 19 362 94 6.7 233 
Finnkolo Mali 57298 42 4209 741 7537 41 86 221 37088 36 17 18 20 30 30 4.6 40 

Fisenge Zambia 42599 42 5256 652 6582 66 117 552 41598 51 54 63 8.8 7.1 10 15 14 
Fria Guinea 85209 64 11104 2297 11186 153 466 527 95746 44 44 32 25 42 18 6.9 182 

Ibi Nigeria 21735 58 23890 2112 3431 74 142 197 73299 10 21 16 5.5 68 18 9.7 119 
Ihassunge Mozambique 52094 42 25897 15298 17286 47 206 612 46513 41 29 60 13 166 44 5.3 64 

Imorun Nigeria 46900 42 27410 2324 3941 31 100 763 39978 17 21 34 14 52 21 5.0 36 
Itende Tanzania 41536 42 51989 4509 1644 15 81 223 11010 16 9.2 11 7.9 148 37 1.3 34 

Katsina ala Nigeria 74252 170 33326 2794 14413 9.0 53 1013 46007 10 19 28 20 247 15 5.1 59 
Kiberashi Tanzania 65933 68 35346 10180 4071 42 63 428 32566 39 17 35 18 244 10 4.4 37 

Kidatu Tanzania 31494 45 54018 1829 2452 14 30 268 13342 10 8.1 9.0 6.5 390 12 2.0 18 
Kisongo Tanzania 66185 1861 20678 47122 13812 144 271 1542 65357 98 45 94 16 1056 24 10 98 

Koloko Mali 75125 43 6210 2238 7742 167 267 321 74820 73 30 39 25 44 41 7.5 152 
Kontela Mali 51744 42 17968 5318 4741 60 98 811 47394 32 26 40 11 97 22 8.7 85 

Kubeasi Ghana 47870 42 6966 2932 4853 43 120 435 39385 19 21 64 11 34 7.1 4.4 56 
Kutaber Ethiopia 53393 769 26800 30240 14421 123 177 1477 66358 75 62 120 23 1134 41 7.4 55 

Lambussie Ghana 63485 1049 5582 22200 7522 250 331 6018 127683 224 74 63 12 214 13 8.0 364 
Macassangila Mozambique 65043 1261 34886 5498 25182 107 122 1443 93618 51 68 123 18 178 31 7.6 166 

Marafa Kenya 34163 42 22208 26559 3122 21 41 1026 20373 19 17 26 7.9 217 12 3.2 12 
Mbalambala Kenya 62660 641 33942 55628 5854 31 97 1539 48560 30 35 102 20 574 49 4.4 40 

Mbinga Tanzania 61972 597 6096 2664 13377 157 122 1797 76194 114 62 70 13 29 47 5.1 132 
Mega Ethiopia 403 107 3356 10894 39 1.7 4.3 72 313 31 2.7 2.8 0.3 62 1.1 0.1 1.0 

Merar Ethiopia 39948 2271 18227 396478 3733 53 137 747 34317 198 26 62 10 149 21 0.7 42 
Morijo Kenya 52733 476 19631 23109 5241 19 143 1913 49509 23 21 95 17 124 52 9.6 58 

Nkhata Bay Malawi 71264 155 26651 11926 5661 53 64 1374 45951 27 22 87 21 86 29 6.0 75 
Pandambili Tanzania 43015 46 26953 9080 2752 32 116 435 25350 47 22 40 13 246 8.2 3.0 20 

Thuchila Malawi 50777 470 73356 18356 17524 78 80 945 57330 21 39 61 13 1290 22 8.9 73 
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Chapter 4 

 

The potential of combining mid infrared (MIR) and total X-ray fluorescence (TXRF) 

spectroscopy for the prediction of soil properties 
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4.1 Abstract 

Mid-infrared diffuse reflectance spectroscopy (MIR) is increasingly being used to predict 

a number of soil properties but some properties, notably extractable nutrients, are often predicted 

poorly. This paper evaluated the potential of total X-ray fluorescence spectroscopy (TXRF) to 

predict MIR calibration residuals. A total of 700 soil samples from 44 stratified randomly-

located 100-km2 sentinel sites distributed across sub-Saharan Africa (SSA), were analysed for 

physico-chemical composition using conventional reference methods as well as by both MIR and 

TXRF. The reference methods were calibrated to MIR and TXRF data using Random Forests 

(RF) regression models. MIR spectra resulted in good prediction models using RF out-of-bag 

validation (R2 > 0.80) for organic and total C and N, Mehlich-3 Ca and Al, and pH. Also 

predicted well (R2 > 0.60) were Ca/Mg ratio, exchangeable Mg, phosphorus sorption index, and 

particle size distribution. Calibration models were less satisfactory (R2 < 0.60) for Mehlich-3 

extractable K, Mn, Fe, Cu, B, Zn, P, S, and Na, exchangeable acidity, electrical conductivity 

(Ecd), exchangeable sodium percentage, and air-dispersed particle sizes. Including total element 

concentration data from TXRF analysis in the RF models significantly reduced root mean square 

error of prediction by 63% for Ecd, 54% for Mehlich-3 S, and 53% for Mehlich-3 Na. The 

prediction improvement from including TXRF was due to detection of a few outliers that did not 

appear as MIR spectral outliers. MIR showed remarkable ability to capture total elemental 

composition effects on physico-chemical soil properties but TXRF may have potential for outlier 

detection in large studies. 

 

                                                             
3 A version of this chapter has been submitted to the Soil Science Society of America Journal in Dec 2013. 
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4.2 Introduction 

The need for new, rapid methods to quantify soil chemical properties is particularly acute 

in developing countries of Sub-Saharan Africa (SSA) where reliable data on soil properties is 

sparse and dated. Given the multi-component nature of soil systems, the variability of properties, 

as well as their spatial distribution provides a challenge for the choice of appropriate methods to 

characterize soil properties (Kibblewhite et al., 2008). The Africa Soil Information Service 

(AfSIS) project (www.africasoil.net) to which this present study contributes, employs an 

approach known as land health surveillance, defined as the ongoing, systematic collection, 

analysis, and interpretation of data essential to the planning, implementation, and evaluation of 

land management policy and practice, and application of these data to promote, protect, and 

restore land and ecosystem health (UNEP, 2012). Innovations in land health surveillance include 

the use of infrared spectroscopy for low cost, rapid soil characterization, which has enabled large 

area soil assessment (Shepherd and Walsh, 2007), and linkage of spectrally derived soil fertility 

indicators to conventional soil assessment (chemical) data through statistical models. 

Spectroscopic techniques have shown promise as rapid and accurate methods for 

characterizing soil properties. Infrared Spectroscopy (IR) in the visible to near-infrared (0.35 to 

2.5 µm) and mid-infrared (2.5 to 25 µm) wavelength regions have been investigated for non-

consumptive analysis of soils and simultaneous estimations of several soil physical, chemical 

and biological properties such as total C, total N, cation exchangeable change capacity (CEC), 

exchangeable Ca, exchangeable Mg, clay content, sand content, K, P, S and soil pH (e.g. Awiti et 

al., 2007; Brown et al., 2006; Du and Zhou, 2009; Minasny and McBratney, 2008; Shepherd and 

Walsh, 2002; 2007; and Terhoeven-Urselmans et al., 2010).  

IR has limitations in predicting weakly extractable nutrients (Janik et al., 1998) such as 

extractable P and K, which are main limiting nutrients in soils of SSA (Ludwig et al., 2002). 

However, results by Kleinebecker et al. (2013) demonstrated that near infrared reflectance 

spectroscopy (NIRS) does have the potential to reliably measure total concentrations, NaCl- and 

oxalate-extractable element fractions of Al, Ca, Fe, K, Mg, N, Na, P, S, Si and Zn across a wide 

range of aquatic sediments. Similarly, Soriano-Disla et al. (2013) obtained good results for Ca, 

Mg, Al, Fe, Ga, Si and Na in their development of partial least squares (PLS) regression models 

using diffuse reflectance Fourier transform mid-infrared (MIR) spectroscopy for the prediction 

of the concentration of elements in soil determined by X-ray fluorescence (XRF). Another 

challenge with IR is in its sensitivity to interferences, requiring extensive calibration for different 
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environments. Prediction of particle size distribution with IR is variable and in addition, 

calibrations have to be adjusted for different soil types (Kamau-Rewe et al., 2011; Shepherd, 

2010). A current challenge is to build calibration libraries that are large enough to sufficiently 

capture the large variation in global soils (Brown et al., 2006).  

The concept of using light to analyse soils can be extended to the X-ray region using new 

instrumentation developments that may complement IR in prediction of some soil properties. 

Total X-ray fluorescence spectroscopy (TXRF) is a relatively new commercially available 

technique that can provide for rapid and simultaneous determination of the total concentrations 

of many elements in the periodic table of elements. Advantages of the technique compared to 

conventional methods include minimal sample preparation and low matrix interference 

(Stosnach, 2005). The total element concentration spectra can be used to capture key 

mineralogical differences in soils (Acosta et al., 2011; Towett et al., Submitted) and there are 

possibilities to correlate extractable nutrient analysis with total element analysis. This is due to 

the fact that all soils contain some of all the naturally occurring chemical elements and the 

variations in the concentration of elements is derived from differences in the composition of the 

parent material and from fluxes of mater and energy into or from soil over geologic time 

(Helmke, 2000; Kabata-Pendias and Mukherjee, 2007) or recent management. Thus TXRF 

provides chemical fingerprinting and “functional mineral groupings” that could relate to 

potential nutrient supply capacity (Towett et al., Submitted). The objectives of this study were 

thus to evaluate whether TXRF can complement MIR for predicting soil test values, especially 

for tests that are poorly predicted by MIR (e.g. extractable P and K; and some micronutrients). 

 

 

4.3 Material and Methods 

4.3.1 Study area, soil sampling and processing 

Georeferenced soil samples associated with the Africa Soil Information Service (AfSIS) 

(www.africasoils.net) were taken from a set of sentinel sites randomized over Sub-Saharan 

Africa (SSA) (AfSIS, 2013). A total of 700 soil samples from 44 random 100-km2 sentinel sites, 

stratified according to Köppen-Geiger climatic zones (Kottek et al., 2006), distributed across 

SSA: Burkina Faso (1 site, 16 samples), Cameroon (1 site, 16 samples), Ethiopia (4 sites, 64 

samples), Ghana (3 sites, 48 samples), Guinea (2 sites, 32 samples), Kenya (3 sites, 48 samples), 
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Malawi (2 sites, 32 samples), Mali (3 sites, 48 samples), Mozambique (6 sites, 96 samples), 

Nigeria (3 sites, 47 samples), South Africa (3 sites, 47 samples), Tanzania (8 sites, 127 samples), 

Uganda (2 sites, 32 samples) and Zambia (3 sites, 47 samples) were used in exploring spectral 

patterns in this study. A summary of the average co-ordinates of the sites from which the 

samples came from is given in Annex Table A1. Field sampling was made based on the Land 

Degradation Surveillance Framework (LDSF) protocol (Vågen et al., 2013). The protocol is built 

around the use of “Sentinel sites” or “Blocks” of 10 x 10 km in size. The basic sampling unit 

used in the LDSF is called a Cluster. Each Sentinel site was stratified into sixteen 1-km2 clusters 

containing 10 randomized plots of 1000 m2 each. Soil samples were collected from four 100 m2 

“sub-plots” located within the ten 1000 m2 plots at 0-20 cm depth and combined into one 

composite sample per plot, giving a total of 160 soil samples collected per “Sentinel Site”. We 

selected 10% of soil samples from each sentinel site for reference and spectral analyses based on 

one plot taken at random from each cluster, giving 16 samples per sentinel site, and a total of 700 

samples. Soil samples were initially air-dried and passed through a 2-mm sieve before sub 

sampling to 10 g by coning and quartering. The 10 g subsamples were oven-dried at 40 ºC and 

then ground to pass a 75 µm sieve using a Retsch RM 200 mill (Retsch, Duesseldorf, Germany) 

for MIR analysis and further ground using a McCrone micronising mill (McCrone, Westmont, 

U.S.A) to <50 µm for TXRF analysis. 

 

4.3.2 Spectral analyses method 

Samples were analysed at the World Agroforestry Centre (ICRAF)’s Soil-Plant Spectral 

Diagnostics Laboratory in Nairobi, Kenya, using a high-throughput Bruker Tensor 27 Fourier-

Transform MIR spectrometer (Bruker Optik GmbH, Germany) attached to a High-Throughput 

Screening (HTS-XT) accessory. Fine ground soil samples (approx. 20 to 30 mg) were loaded 

onto micro-titre plates in four replicates (Shepherd and Walsh, 2007). Infrared absorbance 

spectra were recorded after co-adding 32 scans at 4 cm-1 intervals in the range of 400 to 4000 cm-

1. The average of the spectra for the four replicates was taken.  

The TXRF methodology was used to analyse total elemental concentrations in each soil 

sample using a S2 PICOFOXTM TXRF spectrometer (Bruker AXS Microanalysis GmbH, 

Germany). Based on a recently developed and tested method (Towett et al., 2013), 50 mg of the 

finely ground (20-50 µm) sample was mixed with 2.5 ml of Triton X100 (Fischer Scientific, UK) 

solution (0.1 vol.%) to form a soil suspension and spiked with 40 µl of 1000 mg l-1 Selenium 
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(Fluka Analytical, Germany) as the internal standard. The suspension was placed into an 

ultrasonic water bath at room temperature and sonicated in a continuous mode for 15 min; mixed 

well using a digital shaker and 10 µl of the turbid soil solution immediately dispensed on to a 

clean siliconized quartz glass sample carrier and dried for 10-15 min at 52 ºC on a hot plate 

(Staurt® SD300) in a clean laminar flow hood.  

 

4.3.3 Reference soil analysis 

Total and organic C and N analyses were determined based on the flash dynamic 

combustion method (Skjemstad and Baldock, 2008) using the Flash EA 1112 Elemental 

Analyzer (Thermo Scientific, Milan, Italy) at the ICRAF Soil-Plant Spectral Diagnostic 

Laboratory. Additionally, conventional Mehlich-3 soil tests (Mehlich, 1984) were analyzed for 

extractable P, K, Ca, Mg, Na, Mn, Fe, Cu, Zn, B, Mo, S, and Al using inductively-coupled 

plasma spectroscopy (ICP). Conventional pH measurements were done using a standard method 

utilizing a soil: water ratio of 1:2 weight to volume basis. Exchangeable acidity was determined 

on 1N KCl extracts of soils using a 1:10 soil to extractant volume ratio, and titration with a 

standardized base (sodium hydroxide; Anderson and Ingram, 1993). Phosphorus sorption index 

(PSI) was determined, based closely on the method by Bache and Williams (1971), by weighing 

1.5 g soil into a 50 mL extraction bottle, adding 30 mL of diluted phosphate solution (75 mg P L-

1 in 0.03M KCl), then two drops of toluene was added to prevent microbial growth.  The solution 

was shaken briefly with a vortex mixer to disperse the soil then the bottles were put on a shaker 

in a room maintained at 25° C for 20 hours (overnight) and later centrifuged for 10 minutes at 

rcf=1500g to make a clear supernatant. The supernatant was filtered though medium-fast paper 

(Whatman No.1) and if the filtered supernatant was cloudy then it was re-filtered with a slow 

paper (e.g. Whatman No.2) and P was measured in the filtered supernatant. All chemical 

analyses were done by Crop Nutrition Laboratory Services in Nairobi (ISO 17025 accredited). 

Samples were analysed for their particle sizes using a detectable size range of 0.01-3000 

µm utilizing a Horiba (Model: LA-950V2) (Horiba Ltd., Kyoto, Japan) Laser Diffraction Particle 

Size Analyser (LDPSA) at the ICRAF Laboratory. The LDPSA instrument allowed continuous 

flow of a soil sample suspended in (i) a dry air stream or (ii) a water stream, to which different 

sonification cycles were applied using an in-built ultrasonic probe. The protocol began with 

measurement of particle size distribution of dry soil suspended in the air stream to provide a 

measure of micro-aggregation without wetting and particle size distribution was then measured 
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in water, followed by a second reading one minute later, and finally after full dispersion using 

Calgon and sonification (130 W, 20 kHz). 

 

4.3.4 Chemometric analyses 

Quantitative analyses based on MIR spectra required the development of calibrations that 

related the first derivative of the spectral information to the reference analysis data using the 

entire spectra. TXRF element concentration data was included as predictor along with the first 

derivative of MIR spectral data using the Random Forests (Breiman, 2001) algorithm. The RF 

multivariate algorithm is reported to be resistant to over-fitting and usually performs well in 

problems with a low sample-to-features ratio, such as spectrometric data (Wei et al., 2012; 

Ghasemi and Tavakoli, 2013). RF also handles complex data types well and obviates the need 

for transformation of predictors to approximate normal distributions, which were advantages for 

this study. The ‘randomForest’ library in R (Breiman, 2001) was used.  

Prior to calibration, it was necessary to perform spectra pre-treatment to eliminate the 

physical effect of light scattering, which can be due to particles of different sizes and shapes 

(Minasny and McBratney, 2008). Thus, a first-order derivative of the spectral range 601.7-

4001.6 cm-1 was calculated using the Savitsky-Golay algorithm using the soil.spec package in R 

(R-version 2.15.3; R Development Core Team 2013) available under the Packages link at 

www.cran.r-project.org/ (Accessed 13 September 2013). The Savitsky-Golay smoothing degree 

depended on two parameters: the frame size and the order of the polynomial used for smoothing; 

the frame size of the Savitzky Golay filter was set to 21 data points and the polynomial order was 

set to 3. RF calibration models with an out-of-bag validation (RF-OOB) were then developed 

using the entire data set of 700 samples. Additionally, we compared the performance of the RF 

algorithm against the partial least squares (PLS) as a standard algorithm on the same data set but 

using a hold-out validation on the simultaneous determination of soil properties using MIRS. 

Selection of calibration (70%) and validation (30%) samples for the PLS was done following a 

procedure adapted from Kennard and Stone (1969) applied to the score values of the first eight 

principal components of the first derivative MIR spectra. For our analysis, comparing the 

independent hold-out validation and the “out-of-bag” validation and using each validation 

method to estimate model errors (root mean square errors) for all variables, the RF out-

performed the PLS algorithm on simultaneous prediction of soil properties on the same sample 

set. Thus, RF models were also built to predict the reference properties from the TXRF total 
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element composition using the raw total element concentration data as ‘spectra’. Finally, we used 

the raw TXRF spectra in conjunction with first derivative MIR spectra to predict the reference 

soil properties. We also tested an approach whereby we used the TXRF data to test whether it 

can improve MIR predictions of soil test values, especially for those variables for which MIRs 

tends to give poor predictions (e.g. extractable P, K, and some micronutrients). Thus, we used 

RF to calibrate the residuals of the predictions from the MIR spectral data for individual 

reference properties to the raw TXRF total element data, as mixing different data types in the 

predictor variables might affect the variable importance weights in the fitted models. 

   

 

4.4 Results and discussion 

4.4.1 Statistical description of data 

A wide variation was found in individual soil physico-chemical properties in the soil 

sample sets using conventional chemistry methods and particle size analysis using laser 

diffraction (Table 4.1). Soil pH in H2O ranged from 4 to 10, with a mean pH 6. Exchangeable 

acidity (unbuffered KCl extraction) values in soils varied from 0.01 to 4 cmolc kg-1. Similarly, 

exchangeable bases varied considerably from 1 to 180 cmolc kg-1. Soils had total organic C and 

total N contents ranging from 0.1 to 10% and from 0.003 to 1%, respectively. Average clay 

contents ranged from 0% (air-dispersed particles measured using laser diffraction) to 100% 

(calgon dispersed particles after 4 min of ultrasonification), average sand contents ranged from 

0.1% (calgon dispersed particles after 4 min of ultrasonification) to 100% (air-dispersed 

particles) while the average silt fraction varied between 0% (air-dispersed particles) and 60% 

(water dispersed particles after 4 min of ultrasonification). 

There was a wide variation in MIR spectral data used in this study, ranging from 0.5 – 2.5 

in maximum absorbance in each of the four spectral ranges (1) fingerprint (for example, O–Si– O 

stretching and bending), (2) double-bond (for example, C=O, C=C, C=N), (3) triple bond (for 

example, C≡C, C≡N) and (4) X–H stretching (for example, O–H stretching) (Figure 4.1). 

There was also a wide variation in the total element concentrations measured using 

TXRF in the samples used in this study (Table 4.2). For example, the total concentration of Na 

varied from 7,260-43,820 (mean 20,080) mg kg-1 across the sentinel sites sampled, while total P, 

K, Ca, Mg and Al values ranged between 25-2,240, 355-77,900, 150-386,490, 945-49,350 and 



 

 126 

130-77,130 mg kg-1 respectively. This high variation was attributable to differences in parent 

materials between sites and to local pedologic and hydrological factors within sites or recent 

management as discussed in Towett et al. (Submitted).  

 

 

Figure 4.1: Diffuse reflectance spectra of two Africa soils sampled for this study showing 

absorbance features in the mid-IR wavelength ranges. Mid-IR spectroscopy regions: (1) 

fingerprint (for example, O–Si– O stretching and bending), (2) double-bond (for example, C=O, 

C=C, C=N), (3) triple bond (for example, C≡C, C≡N) and (4) X–H stretching (for example, O–H 

stretching).  
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Table 4.1: Statistical description of the reference soil data analysed using conventional 

laboratory (reference) analyses.  

Property†, units n Mean Std Dev Min Max  2.5th 
per 

25th 
per 

50th 
per 

75th 
per 

97.5th 
per 

pH, units 700 6 1 4 10  5 6 6 7 9 
ExAc, cmolc kg-1  700 0.4 1 0.01 4  0.0 0.1 0.2 1 2 
ECd, dS/m 700 0.1 0.3 0.01 5  0.0 0.0 0.1 0.1 1 
ExCa, cmolc kg-1 700 10 18 3 170  1 2 5 10 70 
ExK, cmolc kg-1 700 1 1 0.01 10  0.1 0.2 0.3 1 3 
ExMg, cmolc kg-1 700 3 4 0.14 40  0.3 1 2 4 12 
ExNa, cmolc kg-1 700 1 7 0.00 140  0.0 0.1 0.1 0.2 3 
ExBas, cmolc kg-1 700 15 20 1 180  1 4 7 17 80 
CaMg, ratio 700 4 6 0.2 120  1 2 3 4 14 
ESP, % equivalent 700 4 6 0.02 80  0.3 1 2 4 15 
ESR, cmolc kg-1 700 0.1 0.2 0.001 4  0.0 0.0 0.0 0.0 0.2 
m3.P, mg kg-1 700 20 30 0.3 340  1 5 8 20 120 
m3.Al, mg kg-1 700 820 460 6 2630  170 480 740 1050 1940 
m3.B, mg kg-1 700 1 1 0.001 10  0.0 0.1 0.2 1 3 
m3.Cu, mg kg-1 700 2 2 0.001 20  0.0 1 1 3 7 
m3.Fe, mg kg-1 700 130 90 8 780  30 70 101 150 400 
m3.Mn, mg kg-1 700 120 110 1 670  5 42 100 175 380 
m3.Zn, mg kg-1 700 2 2 0.001 40  0.3 1 1 2 6 
m3.S, mg kg-1 699 25 180 2 3940  3 6 10 15 50 
PSI, units 684 70 80 -30 450  -6 20 50 100 330 
psa_asand, % 699 90 10 0 100  50 80 90 90 100 
psa_asilt, % 699 8 7 0 40  1 4 7 10 30 
psa_aclay, % 699 5 7 0 50  0.2 1 3 7 25 
psa_c4clay, % 699 40 20 1 100  4 20 38 58 90 
psa_c4silt, % 699 20 10 1 60  3 10 18 30 40 
psa_c4sand, % 699 40 25 0.1 100  4 20 40 60 90 
psa_w4clay, % 699 40 20 2 95  6 20 40 50 80 
psa_w4silt, % 699 20 10 1 60  3 15 20 30 45 
psa_w4sand, % 699 40 20 2 100  4 20 35 60 90 
Total N, % 651 0.1 0.1 0.01 1  0.0 0.0 0.1 0.1 0.4 
Total C, % 651 2 2 0.1 10  0.3 1 1 2 6 
Acidified N, % 651 0.1 0.1 0.003 1  0.0 0.0 0.1 0.1 0.4 
Acidified C, % 651 2 1 0.1 10  0.3 1 1 2 6 
†pH = Soil reaction (1:2 volume water extract); ExAc = Exchangeable acidity (unbuffered KCl extraction); Ecd = Electrical conductivity (1:2 
volume water extract); ExCa = Exchangeable Ca; ExK = Exchangeable K; ExMg = Exchangeable Mg; ExNa = Exchangeable Na; ExBas 
=Exchangeable bases (sum of Mehlich exch Ca, Mg, K, Na); CaMg =  Ca/Mg ratio; ESP = Exchangeable sodium percentage 
(100.ExNa/(ExCa+ExMg+ExNa); ESR = Exchangeable sodium ratio; m3.P = Mehlich 3 extractable P; m3.Al = Mehlich 3 extractable Al; m3.B 
= Mehlich 3 extractable B; m3.cu = Mehlich 3 extractable Cu; m3.Fe = Mehlich 3 extractable Fe; m3.Mn = Mehlich 3 extractable Mn; m3.Zn = 
Mehlich 3 extractable Zn; m3.S = Mehlich 3 extractable S; PSI = Phosphorus sorption index; psa_asand = sand content (>50 microns) for air-
dispersed particles by laser diffraction; psa_asilt = silt content (8 - 50 microns) for air-dispersed particles by laser diffraction; psa_aclay = clay 
content (< 8 microns) for air-dispersed particles by laser diffraction; psa_c4clay = clay content  (<8 microns) for calgon dispersed particles after 4 
min of ultrasonification; psa_c4silt = silt content  (8 - 50 microns) for calgon dispersed particles after 4 min of ultrasonification; psa_c4sand = 
sand content (> 50 microns) for calgon dispersed particles after 4 min of ultrasonication; psa_w4clay = clay content  (<8 microns) for water 
dispersed particles after 4 min of ultrasonification; psa_w4silt = silt content  (8 - 50 microns) for water dispersed particles after 4 min of 
ultrasonification; psa_w4sand = sand content (> 50 microns) for water dispersed particles after 4 min of ultrasonication; n = number of samples; 
Std Dev = standard deviation; Min = Minimum; max = maximum; per = percentile. 
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Table 4.2: Statistical description of the total element concentration measured using TXRF. The 
number of samples that had complete data was 555. 

Property Mean Std Dev Min Max  2.5th per 25th per 50th per 75th per 97.5th per 

Na 20080 4550 7260 43820  7850 17610 20800 23370 26780 
Mg 5400 4050 945 49350  1240 4265 4265 4265 17830 
Al 31960 16100 130 77130  150 20104 31045 43000 64900 
P 140 280 25 2240  30 42 42 42 1169 
S 75 440 15 8460  15 40 40 40 139 
Cl 380 3650 20 74380  20 74 111 170 400 
K 10920 9780 355 77900  390 2930 8440 16730 33480 
Ca 9780 25120 150 386490  160 830 2240 8980 68610 
Sc 7 15 2 170  3 3.9 3.9 4 35 
Ti 4230 3645 3 25610  5 1903 3186 5380 13070 
V 40 45 1 358  1 7.2 18 40 150 
Cr 60 60 1 530  1 23 45 80 240 
Mn 470 500 4 5800  4 150 298 630 1570 
Fe 26420 24245 20 181690  40 8760 19880 35450 87270 
Co 6 20 0.4 110  1 1 1 1 70 
Ni 20 20 0.3 190  0.3 5 10 20 70 
Cu 15 10 0.4 90  1 6 10 20 50 
Zn 30 25 0.4 140  1 11 20 40 90 
Ga 8 5 0.2 30  0.2 4 7 10 20 
As 0.3 1 0.1 10  0.2 0.2 0.2 0.2 1 
Br 4 10 0.2 250  0.2 0.2 1 3 30 
Rb 50 35 1 260  1 20 40 70 135 
Sr 115 180 1 1380  1 20 50 120 810 
Y 10 10 0.2 105  0.2 5 9 20 40 
Zr 80 120 18 950  18 20 20 80 390 
Ba 2175 3050 3 48160  5 270 1470 3015 8365 
La 1030 940 8 4840  8 330 690 1470 3440 
Ce 60 60 1 380  1 15 40 80 250 
Pr 1 2 0.4 30  0.4 1 1 0.9 7 
Nd 10 10 1 50  1 2 6 10 40 
Sm 10 12 1 80  1 2 7 15 40 
Hf 4 5 0.2 40  0.2 1 2 5 18 
Ta 3 2 0.1 15  0.1 1 3 4 9 
W 0.4 1 0.1 6  0.2 0.2 0.2 0.2 2 
Pb 33 55 0.3 640  0.3 7 20 35 190 
Bi 2 4 0.1 30  0.1 0.1 0.1 1 11 
Th 35 64 0.2 745  0.3 3 10 30 210 
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4.4.2 Prediction of soil properties by MIRS and TXRF 

The details of predictive results of the RF models of the different spectra and 

combinations are shown in Table 4.3. For example, MIR spectra on their own resulted in good 

prediction models using RF out-of-bag validation (R2 > 0.80) for organic and total C and N, 

Mehlich-3 Ca and Al, and pH. Also predicted well (R2 >= 0.60) were Ca/Mg ratio, exchangeable 

bases, exchangeable Mg, phosphorus sorption index (PSI), and some particle size distribution 

variables (Table 4.3). Calibration models were less satisfactory (R2<0.60) for Mehlich-3 

extractable K, Mn, Fe, Cu, B, Zn, P, S, and Na, exchangeable acidity, electrical conductivity 

(Ecd), exchangeable sodium percentage (ESP), exchangeable sodium ratio (ESR), and air-

dispersed particle sizes (Table 4.3). Our poor results for MIR prediction of extractable P (R2 = 

0.10) and K (R2 = 0.51) were in agreement with the findings of other researchers e.g. Janik et al. 

(1998), Shepherd and Walsh (2002), Ludwig et al. (2002). The ability to predict levels of 

extractable cations is reported to vary with the extraction method (Cheng et al., 2001), and 

because soil supply of nutrients to plants depends on many interrelated soil factors, further work 

should investigate whether plant response to N, P, and K can be better predicted from soil IR 

than from soil extractions (Shepherd and Walsh, 2002). Also air-dispersed particle sizes were not 

satisfactory (R2 < 0.60) predicted by MIR alone (Table 4.3). The latter results were in agreement 

with reports that prediction of particle size distribution with IR is variable due to different soil 

types (Kamau-Rewe et al., 2011 and Shepherd, 2010).  

The TXRF raw data matrix was also able to partly predict the wet chemistry reference 

data, although the predictions were not better than those obtained using MIR first derivative 

spectra with the exception of exchangeable Mg and Na, Mehlich-3 Mn, B, Cu, Zn and S, ESP, 

Ecd and ESR (Table 4.3). As expected TXRF was poorer (R2 < 0.72) in predicting organic C, 

total C, and organic N compared to MIR (R2 < 0.85) as these elements are not directly 

determined with TXRF, however the variance explained is still quite high and may be 

attributable to TXRF signatures relating to soil fertility potential and mineralogy-related carbon 

protection mechanisms. 
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Table 4.3: Results of Random Forests model accuracy obtained for reference analysis data 

regression to first derivative MIR spectra, TXRF raw spectra on its own, raw TXRF spectra 

combined with first derivative MIR spectra. Results are for out-of-bag validation. 

Property†  n MIR 1st 
derivative 

 n TXRF raw on 
its own  

 n MIR 1st derivative
+ TXRF raw 

  R2 RMSE   R2 RMSE   R2 RMSE 
Organic carbon 700 0.90 0.2  555 0.70 0.6  555 0.92 0.2 
Total carbon 651 0.90 0.2  555 0.72 0.6  555 0.93 0.2 
M3.Al 700 0.86 29701  555 0.81 42689  555 0.86 31023 
Total nitrogen 651 0.86 0.001  555 0.63 0.003  555 0.86 0.001 
Organic nitrogen 651 0.85 0.001  555 0.65 0.003  555 0.86 0.001 
ExCa 700 0.84 52  555 0.79 73  555 0.86 48 
pH 700 0.82 0.2  555 0.72 0.3  555 0.81 0.2 
ExBas 700 0.79 104  555 0.44 111  555 0.81 105 
PSI 684 0.77 1465  555 0.73 1959  555 0.76 1731 
psa.c4sand 699 0.75 168  555 0.71 201  555 0.73 186 
psa.c4clay 699 0.74 142  555 0.68 180  555 0.70 166 
psa.w4sand 699 0.74 150  555 0.71 177  555 0.74 162 
ExMg 700 0.73 3.4  555 0.77 2.6  555 0.76 2.8 
psa.w4clay 699 0.73 109  555 0.64 155  555 0.72 121 
CaMg 700 0.60 15  555 0.41 22  555 0.48 19 
psa.w4silt 699 0.60 46  555 0.43 64  555 0.56 49 
psa.c4silt 699 0.59 46  555 0.43 62  555 0.55 49 
ExAc 700 0.58 0.1  555 0.44 0.1  555 0.56 0.1 
M3.Mn 700 0.56 4887  555 0.60 3838  555 0.63 3617 
ExK 700 0.51 0.4  555 0.51 0.5  555 0.48 0.5 
M3.B 700 0.51 0.4  555 0.66 0.3  555 0.69 0.3 
psa.aclay 699 0.51 20  555 0.41 16  555 0.39 16 
psa.asilt 699 0.49 23  555 0.45 25  555 0.51 22 
M3.Cu 700 0.43 2.7  555 0.61 1.9  555 0.53 2.3 
M3.Fe 700 0.41 5211  555 0.30 5423  555 0.40 4664 
psa.asand 699 0.33 517  555 0.32 605  555 0.36 568 
ESP 700 0.20 30  555 0.72 11  555 0.61 15 
ECd 700 0.18 0.1  555 0.72 0.03  555 0.68 0.03 
ESR 700 0.17 0.04  555 0.76 0.01  555 0.63 0.02 
M3.P 700 0.10 966  555 0.11 1050  555 0.02 1155 
ExNa 700 0.07 45  555 0.68 19  555 0.65 21 
M3.Zn 700 0.04 4.5  555 0.13 4.5  555 0.10 4.2 
M3.S 699 0.13 38251  555 0.61 16691  555 0.58 17767 
†
 pH = Soil reaction (1:2 volume water extract); ExAc = Exchangeable acidity (unbuffered KCl extraction); ECd = Electrical conductivity (1:2 

volume water extract); ExCa = Exchangeable Ca; ExK = Exchangeable K; ExMg = Exchangeable Mg; ExNa = Exchangeable Na; ExBas 
=Exchangeable bases (sum of Mehlich exch Ca, Mg, K, Na); CaMg =  Ca/Mg ratio; ESP = Exchangeable sodium percentage 
(100.ExNa/(ExCa+ExMg+ExNa); ESR = Exchangeable sodium ratio; m3.P = Mehlich 3 extractable P; m3.Al = Mehlich 3 extractable Al; m3.B 
= Mehlich 3 extractable B; m3.cu = Mehlich 3 extractable Cu; m3.Fe = Mehlich 3 extractable Fe; m3.Mn = Mehlich 3 extractable Mn; m3.Zn = 
Mehlich 3 extractable Zn; m3.S = Mehlich 3 extractable S; PSI = Phosphorus sorption index; psa_asand = sand content (>50 microns) for air-
dispersed particles by laser diffraction; psa_asilt = silt content (8 - 50 microns) for air-dispersed particles by laser diffraction; psa_aclay = clay 
content (< 8 microns) for air-dispersed particles by laser diffraction; psa_c4clay = clay content  (<8 microns) for calgon dispersed particles after 4 
min of ultrasonification; psa_c4silt = silt content  (8 - 50 microns) for calgon dispersed particles after 4 min of ultrasonification; psa_c4sand = 
sand content (> 50 microns) for calgon dispersed particles after 4 min of ultrasonication; psa_w4clay = clay content  (<8 microns) for water 
dispersed particles after 4 min of ultrasonification; psa_w4silt = silt content  (8 - 50 microns) for water dispersed particles after 4 min of 
ultrasonification; psa_w4sand = sand content (> 50 microns) for water dispersed particles after 4 min of ultrasonication; n = number of samples; 
RMSE = root mean square error. 
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4.4.3 Prediction of soil properties combining MIRS and TXRF 

As hypothesised, including total element concentration data from TXRF analysis in the 

RF models significantly reduced the root mean square errors of prediction by 63% for Ecd, 54% 

for Mehlich-3 S, 53% for exchangeable Na, 50% for ESP, 50% for ESR, 29% for total C, 28% 

for Mehlich-3 B, 26% for Mehlich-3 Mn, 17% for exchangeable Mg, 15% for Mehlich-3 Cu, 

11% for Mehlich-3 Fe, 10% for organic C, 6% for Mehlich-3 Zn, and 4% for air-dispersed 

particle sizes for silt content (8-50 microns) by laser diffraction (Table 4.3). However, the 

prediction improvement from including TXRF was due to detection of a few outlier samples that 

did not appear as MIR spectral outliers (Figure 4.2). In addition, there was good ability of TXRF 

to predict the residuals in e.g. ExNa and the derived ESP test and when 3 outliers were omitted 

the advantage of adding TRXF data was lost. The outliers had exceptionally high total Cl 

concentrations (>21,500 mg kg-1) and were all from the same sentinel site, Ihassunge in 

Mozambique. It is likely that these were sodic or saline sites with pH values ranging from 3.6-

5.3 (mean 4.6) and electrical conductivity (ECd) values in the range of 3.1-4.8dS/m (mean 3.9 

dS/m) for these 3 samples. However, MIR models for most soil fertility properties with the 

exception of ESP, ESR, exchangeable bases, exchangeable acidity, exchangeable Mg and Na, as 

well as Mehlich-3 B and S, did not improve when these 3 outliers were also omitted from the 

MIR spectral data indicating that these were not MIR spectral outliers. Thus, we could 

hypothesise that TXRF may have potential for outlier detection in large data sets or even 

potential use as a site stratification tool.  

Our hypothesis that supplementing MIR data with TXRF fingerprints would improve 

overall prediction of reference data did not hold. The lack of relation of extractable P and K to 

either IR spectra or total element patterns leads us to question the efficacy of the reference tests 

themselves. We propose future studies should examine direct relationships between crop 

response in pot and field studies and MIR or TXRF patterns, as especially in African soils that 

have not received large fertilizer additions we would expect crop response to P and K fertilizers 

to relate to mineralogy and organic characteristics detected by these methods. IR detects factors 

that control P availability (mineralogy) and P sorption (carbonates, Fe and Al oxides). In addition 

as P occurs as inorganic phosphate composed of a PO4
-3 anion and a metallic cation and because 

of the charges on these ions, the dipole moments of these bonds are large and consequently the 

MIR bands are characteristically strong (Smith, 1998). The important MIR vibrations of the 
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phosphate group are phosphorus-oxygen stretching and bending vibrations, with the stretch being 

very intense and broad and appearing between 1100 and 1000 cm-1 but unfortunately, sulfates 

and silicates also have strong broad bands in this region (Smith, 1998). Thus, one must make use 

of secondary bands, such as bending vibrations to be able to distinguish these molecules, such as 

the important secondary band for phosphates which is a bending vibration found on the edge of 

the MIR spectral range between 600 and 500 cm-1 (Smith, 1998). A somewhat similar approach 

has been suggested by Cobo et al. (2010) showing that MIRS data could be directly integrated, 

after principal component analyses, in geostatistic assessments without the necessity of extensive 

calibration/validation steps. 

 

(a)

 

Figure 4.2a: Scatterplots of prediction models developed from MIR residuals combined with 

TXRF spectra for some soil properties that TXRF was able to pick out differences in samples 

during the calibration of residuals of prediction of MIR first derivative reflectance spectra to 

TXRF spectra using Random Forests with an out-of-bag validation.  
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(b)

 

Figure 4.2b: Scatterplots of prediction models developed from MIR residuals combined with 

TXRF spectra for some soil properties that TXRF was able to pick out differences in samples 

during the calibration of residuals of prediction of MIR first derivative reflectance spectra to 

TXRF spectra using Random Forests with an out-of-bag validation for the entire sample set but 

excluding three outlier samples.  

 

4.4.4 Comparison of results of RF with those of PLS on same data set 

Comparing the results of the RF algorithm with an out-of-bag validation (RF-OOB) with 

results of PLS on the same data set but using a hold-out validation suggested that RF out-

performed the PLS regression for the simultaneous determination of soil fertility properties 

(Table 4.4). These results were in agreement with the report by Ghasemi and Tavakoli (2013) 

that RF models have a better performance than PLS regression models. RF regression results 

were also computationally much faster and did not rely on data transformations or any 

assumptions about the data distributions compared to PLS. In addition, RF was relatively robust 

to outliers and noise in a data set as well as having a more interpretable algorithm than PLS and 

is hence an alternative approach in multivariate calibration. Since R2 is reported to be sensitive to 
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asymmetric distribution of the data and density of the spread of points in the plots of predicted 

versus experimental data, Ghesemi and Tavakoli (2013) recommended the root-mean-square 

errors (RMSE) as a better measure for comparison of the quality of the models. In addition, R2 is 

not robust to outliers and thus the RMSE values were used in the current study for comparison of 

the models. The R2 results of a 70% holdout validation were similar to those of the RF-OOB 

validation, however the RMSE for the same soil fertility properties predicted using MIRS spectra 

were lower in RF-OOB that their PLS holdout counterparts indicating that RF procedure was not 

overfitting (Table 4.4).  This result was in agreement with the report of Wei et al. (2012) that the 

RF multivariate algorithm does not over-fit and usually performs well in situations with a low 

sample-to-features ratio, such as spectrometric data. However, Ghesemi and Tavakoli (2013) 

suggested that in general, the selection of a suitable method for multivariate calibration should 

consider Wolpert’s No Free Lunch theorem that says that there is no single best algorithm that 

works for all problems. Thus, we take the output of RF analysis as the smarter algorithm because 

it has been proven to be helpful in leading to a deeper understanding of the spectrometric data 

problems (such as low sample-to-features ratio) (Wei et al., 2012). We recommend to use the 

PLS method for small data stes, and RF for large data sets because we have found these to be 

optimal on average over many data sets. The emphasis must always be on what approach 

provides the best predictive ability on independent samples taken from a target area one is 

developing calibrations for. 
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Table 4.4: Model summary results comparing calibration of soil properties to MIRS first 

derivative reflectance spectra using Random Forests with an out-of-bag (RF OOB) validation for 

the entire sample set, and PLS 70% holdout calibration and prediction using 30% independent 

training set. 

Property†  RF OOB models 
using all data 

 PLS 70% Holdout 
models 

 PLS 30% testing 
set predictions  

 

n 

R2 RMSE  

n 

R2 RMSE  

n 

R2 RMSE 
Acidified carbon 651 0.90 0.20  448 0.87 0.26  203 0.81 0.6 
Total carbon 651 0.90 0.22  448 0.87 0.27  203 0.81 0.7 
M3.Al 700 0.86 29701  490 0.83 30838  210 0.86 201 
Total nitrogen 651 0.86 0.001  448 0.86 0.001  203 0.81 0.04 
Acidified nitrogen 651 0.85 0.001  448 0.86 0.001  203 0.81 0.04 
ExCa 700 0.84 52  490 0.76 51  210 0.83 10 
pH 700 0.82 0.19  490 0.80 0.20  210 0.79 0.5 
ExBas 700 0.79 104  490 0.73 85  210 0.74 15 
PSI 684 0.77 1465  483 0.71 1775  201 0.71  
Psa.c4sand 699 0.75 168  489 0.75 166  210 0.67 47 
Psa.c4clay 699 0.74 142  489 0.69 161  210 0.69 15 
Psa.w4sand 699 0.74 150  489 0.73 152  210 0.72 13 
ExMg 700 0.73 3.4  490 0.60 3.0  210 0.50 13 
Psa.w4clay 699 0.73 109  489 0.69 119  210 0.67 3. 6 
CaMg 700 0.60 15  490 0.41 22  210 0.68 12 
Psa.w4silt 699 0.60 46  489 0.56 48  210 0.51 3.6 
Psa.c4silt 699 0.59 46  489 0.52 50  210 0.57 7.8 
ExAc 700 0.58 0.10  490 0.55 0.11  210 0.53 7.4 
M3.Mn 700 0.56 4887  490 0.54 5504  210 0.47 0.4 
ExK 700 0.51 0.4  490 0.67 0.2  210 0.30 70.6 
M3.B 700 0.51 0.4  490 0.48 0.39  210 0.25 1.0 
Psa.aclay 699 0.51 20  489 0.54 20  210 0.27 0. 8 
Psa.asilt 699 0.49 23  489 0.43 23  210 0.26 5.2 
M3.Cu 700 0.43 2.7  490 0.47 2.05  210 0.48 6.3 
M3.Fe 700 0.41 5211  490 0.39 6064  210 0.24 1.9 
Psa.asand 699 0.33 517  489 0.36 542  210 0.23 70 
ESP 700 0.20 30  490 0.16 28  210 0.03 22 
ECd 700 0.18 0.08  490 -0.02 0.07  210 0.18 6.9 
ESR 700 0.17 0.04  490 -0.04 0.04  210 0.09 0.4 
M3.P 700 0.10 966  490 0.11 832  210 0.08 0.3 
ExNa 700 0.07 45  490 -0.12 33  210 0.13 36 
M3.Zn 700 0.04 4.48  490 0.17 4.42  210 0.02 8.9 
M3.S 699 -0.13 38251  489 -0.08 40217  210 0.10 1.8 
†pH = Soil reaction (1:2 volume water extract); ExAc = Exchangeable acidity (unbuffered KCl extraction); Ecd = Electrical conductivity 
(1:2 volume water extract); ExCa = Exchangeable Ca; ExK = Exchangeable K; ExMg = Exchangeable Mg; ExNa = Exchangeable Na; 
ExBas =Exchangeable bases (sum of Mehlich exch Ca, Mg, K, Na); CaMg =  Ca/Mg ratio; ESP = Exchangeable sodium percentage 
(100.ExNa/(ExCa+ExMg+ExNa); ESR = Exchangeable- sodium ratio; m3.P = Mehlich 3 extractable P; m3.Al = Mehlich 3 extractable 
Al; m3.B = Mehlich 3 extractable B; m3.cu = Mehlich 3 extractable Cu; m3.Fe = Mehlich 3 extractable Fe; m3.Mn = Mehlich 3 
extractable Mn; m3.Zn = Mehlich 3 extractable Zn; m3.S = Mehlich 3 extractable S; PSI = Phosphorus sorption index; psa_asand = sand 
content (>50 microns) for air-dispersed particles by laser diffraction; psa_asilt = silt content (8 - 50 microns) for air-dispersed particles 
by laser diffraction; psa_aclay = clay content (< 8 microns) for air-dispersed particles by laser diffraction; psa_c4clay = clay content  (<8 
microns) for calgon dispersed particles after 4 min of ultrasonification; psa_c4silt = silt content  (8 - 50 microns) for calgon dispersed 
particles after 4 min of ultrasonification; psa_c4sand = sand content (> 50 microns) for calgon dispersed particles after 4 min of 
ultrasonication; psa_w4clay = clay content  (<8 microns) for water dispersed particles after 4 min of ultrasonification; psa_w4silt = silt 
content  (8 - 50 microns) for water dispersed particles after 4 min of ultrasonification; psa_w4sand = sand content (> 50 microns) for 
water dispersed particles after 4 min of ultrasonication; n = number of samples; RMSE = root mean square error. 
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4.5 Conclusion 

This paper validated that low cost high-throughput IR and TXRF spectroscopy can 

predict a number of soil properties in diverse African soils and could be used both as a front line 

screening technique for sample selection for more expensive tests and for development of 

calibrations for direct prediction of soil properties. Globally applicable calibrations to predict 

standard soil properties based on infrared spectra may increase the use of this low cost technique 

especially in developing countries of Sub-Saharan Africa (SSA) where reliable data on soil 

chemical and physical information needed to give advice on land management is sparse and 

dated. RF was a computationally fast and robust to analyse complex spectra of multi-component 

analytical methods (TXRF and MIR). MIR showed remarkable ability to capture total element 

composition effects on physic-chemical soil properties. However, TXRF data used as a predictor 

did not add value to MIR beyond identifying outlying samples, but these outliers did not appear 

as MIR spectral outliers, hence, TXRF may have potential for outlier detection and as a site 

stratification tool. TXRF may be a useful tool for simultaneous determination of elemental 

composition and a predictor of conventionally measured soil properties to a medium level of 

accuracy. This may be an advantage in environmental monitoring where absolute element 

concentration levels are of interest as well as their relations to other soil properties. The lack of 

any relation of extractable P and K with IR and TXRF data in contrast with their strong 

relationships with soil mineral and organic composition calls into question the value of the weak 

extraction soil tests for advising on soil fertility management. We thus recommend further 

studies to relate crop response to fertility management to IR and TXRF signatures as they 

provide and integrated measure of soil functional properties. 
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Annex Table A4.1. Location of AfSIS sites and their average coordinates from which soil 

samples (top soil, 0-20 cm) were collected from and the number of samples from each site 

collected (n = 700) for this study. 

Country Sentinel Site Latitude Longitude # of samples 
Burkina Faso Bondigui 10.91340417 -3.546170833 16 
Cameroon Bana 5.268653853 10.25876531 16 
Ethiopia Dambidolo 8.613306761 35.01514411 16 
 Kutaber 11.29683918 39.60666704 16 
 Mega 4.18128863 38.29669666 16 
 Merar 9.602970243 42.7006824 16 
Ghana Ajumako 5.407900313 -0.745416042 16 
 Kubeasi 6.722705209 -1.276720625 16 
 Lambussie 10.89595744 -2.649256444 16 
Guinea Boumeoul 11.93431708 -13.14245333 16 
 Fria 10.50737167 -13.39262708 16 
Kenya Marafa -2.634250729 39.54624796 16 
 Mbalambala -0.125638376 39.02689099 16 
 Morijo -1.719174498 35.81122851 16 
Malawi Nkhata Bay -11.62575948 34.23945417 16 
 Thuchila -15.94035406 35.32925635 16 
Mali Finnkolo 11.3128025 -5.501523229 16 
 Koloko 12.48264011 -6.295524688 16 
 Kontela 14.8088874 -10.99925917 16 
Mozambique Chica_b -14.71417489 39.87284344 16 
 Chiculecule -22.83744229 35.30298042 16 
 Ihassunge -18.01346133 36.83151658 16 
 Macassangila -13.40821094 35.49424813 16 
 Martinho -16.14472333 38.97313823 16 
 Massuque -24.20596906 34.36484344 16 
Nigeria Ibi 8.138450555 9.894032444 15 
 Imorun 6.753241041 4.658440209 16 
 Katsina ala 7.01415698 9.34168625 16 
South Africa Hopetown -29.6167 24.0833 16 
 Madadeni -27.57691875 30.0537875 16 
 Prieska -29.94247333 22.74732667 15 
Tanzania Bukwaya -3.023720875 33.05021692 16 
 Chinyanghuku -6.895035052 36.12872167 15 
 Itende -6.891425669 34.20797873 16 
 Kiberashi -5.346139641 37.48160624 16 
 Kidatu -8.035865843 37.30332637 16 
 Kisongo -3.355084375 36.54144375 16 
 Mbinga -11.09117067 35.16088915 16 
 Pandambili -6.084341229 36.47446958 16 
Uganda Hoima 1.4167 31.0833 16 
 Namasuba 0.524841943 32.29991484 16 
Zambia Chilende -9.172582021 29.66256313 16 
 Fisenge -13.09518131 28.47630013 15 
 Monga -16.07885156 28.29504042 16 
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Chapter 5 

 

Prediction of soil functional properties from infrared and X-ray soil spectral properties: 

synthesis and outlook 
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5.0 Prediction of soil properties from infrared and X-ray soil spectral properties: synthesis 

and outlook 

 

5.1 Review of the answers provided to the research’s primary objectives 

The current research study has analyzed soil samples gathered at the various randomized 

sentinel sites and proven that MIR DRIFT spectroscopy, XRD, TXRF technology methods are 

useful for rapid, non-destructive characterization of the composition of materials based on the 

interaction of electromagnetic energy with matter. The analytical methods (MIR, XRD and 

TXRF) have results that partially overlap and confirm each other and hence give a promising 

result to our examination and thus, all the techniques in combination can achieve reliable, 

definite, and accurate results, and provide additional information about the mineralogical, 

chemical, and physical properties of soils. The findings, therefore, present opportunity to 

improve soil assessments using the high-throughput spectral methods using information revealed 

by the various spectral methods. For instance, XRD information on soil mineralogy can be 

combined with information from infrared and total X-ray fluorescence spectroscopy, which 

characterize soil physico-chemical properties, to provide powerful diagnostic capabilities, and be 

used as complementary inputs to pedo-transfer functions for low-cost and rapid prediction of soil 

functional properties for agricultural and environmental applications, particularly in the case of 

SSA where reliable data is inadequate.  

All the soil samples used in the current study were analysed for total element 

concentrations using TXRF. The study also compared the results of analysis with literature 

values and the results showed that total element concentration values were within the range 

reported globally for soil Cr, Mn, Zn, Ni, V, Sr, and Y and in the high range for Al, Cu, Ta, Pb, 

and Ga. We also established total concentrations of elements for soils occurring within particular 

sites sampled in our study, and documented systematic variation in their concentration and 

explored the possibility of finger-printing complete element profiles. This study has 

demonstrated that there are significant variations (P < 0.05) in total element composition within 

and between the sites for all the elements analysed, with the greatest proportion of total variance 

and number of significant variance components occurring at the site (55-88%) followed by the 

cluster nested within site levels (10-40%). We have concluded that the substantive variations 

between and within the sites analysed can inform on the soil fertility potential. The soils 
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exhibited a wide range of relationships between the physico-chemical and mineralogical 

properties, in a principal component analysis done using ‘FactoMineR’ package in R and in 

addition, the cluster co-occurrence of individual element concentrations and the soil fertility 

variables identified across the different sentinel sites is expected to relate to differences in 

mineralogical and site or soil-forming factors. This was confirmed by our explorations of the 

relationships between element profiles and mineral data as well as other site and soil-forming 

factors which emphasized the control exerted by weathering of parent materials and all soil 

forming factors on the variation of the total element concentrations. In addition, this thesis has 

explored the relationships between the total element concentrations in the soils analysed and 

other site and soil-forming factors using ‘randomForest’ package in R and revealed that all soil 

soil-forming factors (e.g., parent material, climate, topography, management (landuse)) have an 

important influence on total elemental concentrations in the soil. 

 

5.2 Present implications of the outcomes of this study for food security in Sub-Saharan 

Africa 

Successful use of the spectroscopic techniques tested in this study such as the TXRF 

technique would open up the possibilities for using total element composition to improve global 

MIRS predictions of soil properties, such as cation exchange capacity and extractable nutrients. 

Especially in Africa where variations in soil mineralogy and nutrient balance critically determine 

vegetation composition and agricultural potential (Voortman, 2011) TXRF could provide a 

particularly useful tool for prediction of soil properties in data sparse regions. Despite the 

importance of soil mineralogy in determining soil properties (Jenny, 1941), there have been few 

attempts to quantitatively link functional capacity to mineralogy or total element composition. 

Hence, this study has evaluated how far TXRF total element derived patterns in soils relate to 

‘available’ element results from Mehlich-3 soil tests (acid-extractable nutrients) and  hence to 

soil nutrient supply capacity. 

In addition, this study has shown that an important soil capital, in particular phosphorous, 

is inherently low in all soils analysed and this basic problem needs to be addressed in Africa. 

Going forward, the trend in African soils fast becoming nutrient deficient and thus spelling a 

bleak future for many due to low crop yields also needs to be considered in further studies, as 

this was beyond the scope of the current study. However, not all is lost because the outcomes of 

this study will contribute to ICRAF’s projects aimed at replenishing the diminishing African soil 



 

 145 

capital for better yields and improved livelihoods, especially through the AfSIS Project, thus 

enabling stakeholders to get better information on problems and opportunities relating to soil 

management in Africa. The AfSIS project is also conducting crop testing trials to see how the 

soils respond to fertilizers, and the outcomes of the tests together with those from this study will 

help to give advice to different stakeholders on appropriate soil management interventions for 

different types of soils and locations. Use of the state-of-the-art spectral diagnostic methods 

described here for large-area soil health measurement and monitoring will accelerate economic 

development in developing SSA countries with regards to climate change, increasing water 

scarcity and impacts on local and global food security as well as sustainable agricultural 

production and ecosystem resilience in the tropics. 

 

5.3 Implication of spectral approaches for soil diagnosis 

Because soil is heterogeneous and highly variable due to the complex interaction of soil-

forming factors such as parent material, climate organisms, topography and human impact that 

are interacting through space and time, the characterization of soil properties’ variability 

normally represent a serious challenge when an accurate data is needed (Knadel et al., 2013). 

Spectroscopic approaches for soil diagnosis e.g. MIRS are proven technology for rapid, non-

destructive characterization of the composition of materials based on the interaction of 

electromagnetic energy with matter can be applied to predict a number of important soil 

properties as outlined in the fourth chapter of this thesis. Infrared spectroscopy has been a key 

technology in enabling the development of soil health surveillance systems by providing a rapid 

and reliable tool for soil health screening (Shepherd & Walsh, 2007). Nevertheless, because soil 

spectra such as MIRS spectra can contain information on the fundamental composition of soils, 

they can be used alone to describe the soil type and how it varies across SSA landscapes. By 

testing other new spectroscopic techniques, this study has demonstrated an increased speed with 

which accurate and detailed soil information can be made accessible, especially by the AfSIS 

Project. AfSIS is building spectral diagnostic libraries of all reference soil samples taken from 

the sentinel sites as well as from the soil management (diagnostic trial) experiments (AfSIS, 

2013). In addition to the central ICRAF facility located in Nairobi, other new regional 

laboratories e.g. in Mali at the Institut d’Economie Rural (IER) in Bamako, in Tanzania at the 

Agricultural Research Institute (ARI) in Mlingano, near Arusha, and in Malawi at the 
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Department of Agricultural Research and Services in Chitedze, near Lilongwe, and many others 

have now been equipped to carry out spectral analyses. Capacity building support to the national 

research institutions in Africa and projects e.g. the EthioSIS Project, in addition to advisory 

services, such as on multivariate calibration model development and instrumentation 

troubleshooting, is provided on a continuous basis by ICRAF. In addition, the AfSIS field offices 

are also being equipped with portable field spectrometers to ensure that soils can be rapidly 

analyzed in situations where exporting physical samples to a centralized laboratory would be 

difficult, to select optimal subsets of samples for shipping for more expensive analyses, to 

develop field-based, spectrometric diagnostic tests, and to radiometrically calibrate remote 

sensing images (AfSIS, 2013). Spectral and reference analyses are being done at ICRAF’s 

Spectral Diagnostics Laboratory to ensure consistency in methods, and quality control is 

conducted to ensure spectral quality across the spectral diagnostic laboratory network (AfSIS, 

2013). The spectral diagnostics instruments will also provide the capacity to analyze a wide 

range of agricultural inputs (organic resources) and can be an important additional contribution 

to validation of integrated soil fertility management practices (e.g. monitoring improvements in 

manure/compost nutrient status).  

In chapter 3, this thesis has also attempted to provide the missing information on the total 

elemental compositions of African soils and to link element concentration fingerprints of soil 

mineralogy to soil function with the recognition of key soil forming factors. In order to 

summarize the content in the spectra and to help with their interpretation, we performed a PCA 

e.g. of the TXRF data and then by implementing the PCA, relationships among the samples and 

the individual spectra were explained, giving a general overview of the main variability and 

pattern in total element concentrations of SSA soils using the TXRF technique. In addition, the 

resulting principal component scores were then combined with MIRS spectral data for the 

prediction of different soil properties. In chapter 3 it has been shown that the X-ray diffraction 

instrument, with capability for high throughput, allows quantitative soil mineralogy profiling and 

coupled with TXRF data as described in the present study could provide the missing link for 

evaluation of soil fertility and functional capacity and the mineral and element profile 

complements with infrared spectral analysis as a diagnostic screening tool. In Chapter 4 of this 

thesis the AfSIS Project’s 32 soil samples per sentinel site for a sample set of 44 sentinel sites 

sites randomized over Sub-Saharan Africa have been analyzed using standard laboratory 

methods through the ICRAF Soil-Plant Spectral Diagnostics Laboratory for e.g. pH, electrical 
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conductivity, exchangeable acidity, Mehlich extractable elements (Al, P, K, Ca, Mg, Na, S, Fe, 

Mn, Cu, B, Zn), total C and N, organic C, and P sorption index and soil texture properties 

(analysed using laser diffraction particle size anlyzer (LDPSA)) and prediction models 

developed using both MIRS and TXRF spectral techniques.  

In chapter 4, this thesis has described how low cost high-throughput spectroscopy 

methods can be used both as a front line screening technique for development of calibration 

models and for the direct development of indicators of soil properties. Globally applicable 

calibrations to predict standard soil properties based on infrared spectra may increase the use of 

this low cost technique especially in developing countries of Sub-Saharan Africa (SSA) where 

reliable data on soil chemical and physical information needed to give advice on land 

management is sparse and dated. In the current study, a major step forward in the quantitative 

analysis based on mid-IR spectra was the use of RF statistics requiring the development of 

calibrations that related the first derivative of the spectral information to the reference data using 

the entire spectra as opposed to only a few wavelengths. Results also indicated that besides its 

better accuracy, RF was computationally fast and robust to analyse complex spectra of multi-

component analytical methods (TXRF and MIRS). In addition, our results demonstrated the 

applicability of TXRF as a useful supplement to improve prediction of properties that were not 

well predicted by MIR, such as extractable nutrients Mehlich-3 S and exchangeable Na, 

exchangeable acidity (unbuffered KCl extraction), exchangeable sodium percentage, and 

exchangeable sodium ratio. We have proven that TXRF data can predict reference data directly 

and provide more predictive power when combined with the first derivative MIRS spectra. These 

techniques (TXRF and MIR) thus open up possibilities for using element profiling to improve 

global predictions of soil properties. Hence, the results of this study showed that spectral 

diagnostic approaches can be a valuable tool for qualitative and quantitative assessment of soils 

and a more reliable alternative to the conventional soil characterization methods. Spectroscopic 

techniques have a high potential and have shown promise in the present study as rapid and 

accurate methods of characterizing soil properties. 

 

5.4 Implications for soil mapping in Africa and other parts of the world  

In chapter 3, it has been concluded that topsoil chemical properties have the same 

diagnostic value as the subsoil but in combination with subsoil values they may provide 
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extremely valuable insight in soil functional properties for both agricultural and environmental 

applications especially in the SSA context where there is deficiency in data. Therefore, the 

collection of subsoil samples, and the inclusion of their chemical composition in the analysis, is 

essential for in-depth soil chemical properties research, but care need to be taken to avoid spatial 

auto-correlation. Digital soil mapping is the creation of spatial soil information systems using 

field and laboratory methods coupled with spatial and non-spatial soil inference systems and it 

uses statistical models to predict soil functional properties and degradation prevalence at 

unobserved locations in the landscape (AfSIS, 2013). AfSIS is currently producing digital soil 

maps using legacy data e.g. from the existing databases, new legacy data collection as well as the 

first round of these maps, using the Africa Soil Profiles Database, now available (Leenaars, 

2013). Thus production of new digital soil maps using the sentinel site soil data analysed in the 

current study and characterization of additional sentinel sites would further reduce the statistical 

uncertainties in the spatial models that will be developed under digital soil mapping activity for 

the AfSIS project. The new data available from the current study would help the digital soil map 

provide for example (i) information on a soil’s properties; (ii) a geographical representation of 

soil constraints (such as element toxicity, carbon deficits) with known confidence, (iii) spatial 

targeting of management recommendations, and (iv) a baseline for change detection and impact 

assessment as outlined by AfSIS (AfSIS, 2013). Results from the current study could be mapped 

to visualize different soil characteristics derived from the spectral data and to generate digital soil 

maps that clearly reflect the general patterns of variability in SSA, including making 

extrapolations some areas that that are yet to be sampled. 

 

5.5 Innovative aspects of the findings and recommendations for future research in soil 

science, environmental and agricultural applications using spectroscopy.  

This section relates the innovative research approach of this thesis to general 

methodological considerations for soil analyses and it formulates recommendations for data to be 

considered and methods to be used, and provides an outlook on the future research needs that 

follow from it. This thesis has shown the added value of using MIR, XRD and TXRF and recent 

advances in multivariate computational statistics, and proved that these techniques have a great 

potential for improving the way in which soils are evaluated, while significantly reducing the 

costs to do so. These techniques have also shown promising results that present new 
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opportunities to revolutionize the way in which agronomy and soil science is done, and thus 

there is now real possibility to further harness such methods to enable science-based prediction 

of soil properties for agricultural and environmental management from soil spectral data 

especially for SSA.  

This thesis emphasizes and has built on the premise that science-based approaches to 

agricultural and environmental management such as the use of a land degradation diagnostic 

surveillance framework could accelerate economic development in developing countries 

(Shepherd and Walsh, 2007). The current study has supported ICRAF’s methods development 

for the Africa Soils Information Service (AfSIS) Project (www.africasoils.net), which will over 

the next years develop a practical, timely, cost-effective, soil health surveillance service to map 

soil conditions, set a baseline for monitoring changes and provide options for improved soil 

management in SSA. Results for soil analysis using the all techniques in this study could form a 

consistent baseline for soil analysis in AfSIS project against which changes in the soil element 

composition can be monitored and evaluated over time as opposed to previously existing data on 

soils in the form of maps and soil profile data. In addition, there is every reason to believe that 

the current fundamental information on the element composition of SSA soils will immediately 

stimulate practical phases of soil management. In this study sentinel sites are 10 x 10 km blocks, 

within sampling strata were used for characterization of the soils, and were designed to provide 

accurate baseline data and monitoring of land health and factors affecting it. The future of Africa 

Soil Information Service is that, even though the sentinel site data reported here, which consists 

of a set of 100-km2 samples of land within which soil were measured using a spatially stratified 

randomized sampling scheme, can be extended or extrapolated to provide information on soil 

constrains at continental, national or local scales in SSA.  
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6.0 Summary 

Prediction of soil properties for agricultural and environmental applications from infrared 

and X-ray soil spectral properties 

Many of today’s most pressing problems facing developing countries, such as food 

security, climate change, and environmental protection, require large area data on soil functional 

capacity. Conventional assessments (methods and measurements) of soil capacity to perform 

specific agricultural and environmental functions are time consuming and expensive. In addition, 

repeatability, reproducibility and accuracy of conventional soil analytical data are major 

challenges. New, rapid methods to quantify soil properties are needed, especially in developing 

countries where reliable data on soil properties is sparse, and to take advantage of new 

opportunities for digital soil mapping. Mid infrared diffuse reflectance spectroscopy (MIR) has 

already shown promise as a rapid analytical tool and there are new opportunities to include other 

high-throughput techniques, such as total X-ray fluorescence (TXRF), and X-ray diffraction 

(XRD) spectroscopy. In this study TXRF and XRD were tested in conjunction with IR to provide 

powerful diagnostic capabilities for the direct prediction of key soil properties for agricultural 

and environmental applications especially for Sub-Saharan Africa (SSA) soils. Optimal 

combinations of spectral methods for use in pedotransfer functions for low cost, rapid prediction 

of chemical and physical properties of African soils as well as prediction models for soil organic 

carbon and soil fertility properties (soil extractable nutrients, pH and exchangeable acidity) were 

tested in this study. These state-of-the-art methods for large-area soil health measurement and 

monitoring will aid in accelerating economic development in developing sub-Saharan Africa 

countries with regards to climate change, increasing water scarcity and impacts on local and 

global food security as well as sustainable agricultural production and ecosystem resilience in the 

tropics.  

This study has developed and tested a method for the use of TXRF for direct 

quantification of total element concentrations in soils using a TXRF (S2 PICOFOXTM) 

spectrometer and demonstrated that TXRF could be used as a rapid screening tool for total 

element concentrations in soils assuming sufficient calibration measures are followed. The 

results of the current study have shown that TXRF can provide efficient chemical fingerprinting 

which could be further tested for inferring soil chemical and physical functional properties which 

is of interest in the African soil context for agricultural and environmental management at large 
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scale. Further, this thesis has helped to improve understanding of the variation and patterns of 

element concentration data for 1034 soil samples from 34 stratified randomly-located 100-km2 

“sentinel” sites across SSA and explored the link between variability of soil properties and 

climate, parent material, vegetation types and land use patterns with the help of Random Forests 

statistics. Our results of total element concentration were within the range reported globally for 

soil Cr, Mn, Zn, Ni, V, Sr, and Y and in the high range for Al, Cu, Ta, Pb, and Ga. There were 

significant variations (P < 0.05) in total element composition within and between the sites for all 

the elements analysed. In addition, the greatest proportion of total variance and number of 

significant variance components occurred at the site (55-88%) followed by the cluster nested 

within site levels (10-40%). Our results also indicated that the strong observed within site as well 

as between site variations in many elements can serve to diagnose their soil fertility potential. 

Explorations of the relationships between element composition data and other site factors using 

“randomForest’ statistics have demonstrated that all site and soil-forming factors have important 

influence on total elemental concentrations in the soil with the most important variables 

explaining the main patterns of variation in total element concentrations being cluster, 

topography, landuse, precipitation and temperature. However, the importance of cluster can be 

explained by spatial correlation at distances of <1 km.  

This study has also analysed the potential of combining analyses undertaken using MIR 

spectroscopy and TXRF on 700 soil samples from 44 “sentinel” sites distributed across SSA. 

MIR prediction models for soil organic carbon, and other soil fertility properties (such as soil 

extractable nutrients, pH, exchangeable acidity and soil texture) were developed using Random 

Forests (RF) regression and the current study has added total element concentration data to the 

residuals of the MIRS predictions to test how they can improve the MIR prediction accuracies. 

The RF approach out-perfomed the conventional partial least squares regression (PLSR) on 

simultaneous determination of soil properties; and in addition, RF results were also easily 

interpretable, computationally much faster and did not rely on data transformations or any other 

assumptions about data distributions compared to PLSR. With respect to the potential of 

combining TXRF and MIR spectra, including total element concentration data from TXRF 

analysis in the RF models significantly reduced root mean square error of prediction by 63% for 

Ecd, 54% for Mehlich-3 S, and 53% for Mehlich-3 Na. Thus, TXRF spectra were a useful 

supplement to improve prediction of soil properties not well predicted by MIRS. The prediction 

improvement from including TXRF was due to detection of a few outliers that did not appear as 
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MIR spectral outliers. MIR showed remarkable ability to capture total elemental composition 

effects on physico-chemical soil properties but TXRF may have potential for outlier detection in 

large studies. This study has also helped to develop high-throughput spectral analytical methods 

and provided recommendations on optimal spectral analytical methods for the Globally 

Integrated Africa Soil Information Service (AfSIS) Project. Successfully developed methods in 

this study will become part of the standard AfSIS procedures.  
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7.0 Zusammenfassung 

Vorhersage physikalischer und chemischer Bodeneigenschaften für landwirtschaftliche 

und umwelttechnische Anwendungen mittels Infrarot und Röntgen-Spektral Methoden 

Viele der heutigen dringendsten Problemfelder der Entwicklungsländer wie 

Gewährleistung der Ernährungssicherheit, Anpassung an Klimawandel und verbesserter 

Umweltschutz erfordern umfangreiche, flächendeckende Daten über die funktionelle Kapazität 

von Böden. Herkömmliche Verfahren (Methoden und Messungen) zur Bestimmung von 

spezifischen landwirtschaftlichen und ökologischen Bodenfunktionen sind zeitaufwendig und 

teuer. Neben den Kosten sind die Wiederholbarkeit, Reproduzierbarkeit und Genauigkeit von 

herkömmlichen analytischen Methoden große Herausforderungen. Neue, schnelle Methoden zur 

Quantifizierung von Bodeneigenschaften sind notwendig, vor allem in Entwicklungsländern, wo 

zuverlässige Daten über Bodenqualität schwer zu beschaffen sind, und um die Vorteile der neuen 

Möglichkeiten einer digitalen Bodenkartierung auszunutzen. Infrarot-Spektroskopie mit diffuser 

Reflexion (IR) hat bereits gute Ergebnisse als ein schnelles Analyse-Instrument gezeigt und es 

gibt neue Möglichkeiten, um andere Hochdurchsatz-Techniken wie die Total-

Röntgenfluoreszenz (TXRF) und Röntgenbeugungs-Spektroskopie (XRD) einzusetzen. In dieser 

Studie wurden TXRF und XRD in Verbindung mit IR getestet, um leistungsstarke 

Diagnosefunktionen für die direkte Vorhersage der wichtigsten funktionellen Eigenschaften von 

Böden für Landwirtschaft und Umwelt-Anwendungen besonders für die Böden Afrikas südlich 

der Sahara zur Verfügung zu stellen. In dieser Studie wurden optimale Kombinationen von 

spektralen Methoden getestet, die für den Einsatz in Pedotransferfunktionen mit niedrigen 

Kosten, einer schnellen Vorhersage der chemischen und physikalen Eigenschaften der 

afrikanischen Böden, sowie in Prognosemodellen für organischen Kohlenstoff im Boden und die 

Bestimmung von Bodenfruchtbarkeitsparametern (extrahierbare Nährstoffe, pH-Wert und 

austauschbare Säuren) geeignet sind. Diese aktuellen Methoden zur großflächigen Messung und 

Überwachung der Bodengesundheit können dazu beitragen, die wirtschaftliche Entwicklung in 

den Ländern Afrikas südlich der Sahara positiv zu fördern, besonders in Bezug auf den 

Klimawandel, die lokale und globale Ernährungssicherheit sowie die Nachhaltigkeit der 

landwirtschaftlichen Produktion und der Stabilität der Ökosysteme.  

In diese Studie wurde zunächst ein Verfahren zur Verwendung von TXRF zur direkten 

Quantifizierung der gesamten Elementkonzentration in 15 Bodenproben unter Verwendung eines 
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TXRF (S2 PICOFOXTM) Spektrometers entwickelt und mit 20 weiteren Bodenproben getestet. 

Die Ergebnisse zeigten, dass bei ausreichender Kalibrierung TXRF als ein schnelles Screening-

Werkzeug für die meisten Elemente verwendet werden kann. Die Ergebnisse der aktuellen 

Studie haben ausserdem gezeigt, dass TXRF effiziente chemische Fingerabdrücke liefern kann, 

die zum Ableiten von chemischen und physikalischen Bodeneigenschaften dienen können.  

Diese Arbeit hat weiter dazu beigetragen, den Zusammenhang zwischen Variabilität der 

Bodeneigenschaften und Klima, Bodenausgangsmaterial, Vegetationstypen und Landnutzung 

mit Hilfe von TXRF, XRD und IR-spektralen Methoden zu verstehen. Dafür wurden 1034 

Bodenproben analysiert, die im Rahmen des ‘Africa Soil Information Service‘ (AfSIS) Projektes 

von 34 randomisiert ausgewählten stratifizierten Standorten von jeweils 100 km2 in zahlreichen 

Länders Afrikas südlich der Sahara entnommen wurden. Die Ergebnisse der Gesamt-

Elementkonzentrationen dieser Bodenproben lagen im Bereich der dokumentierten 

Konzentrationen für die Elemente Cr, Mn, Zn, Ni, V, Sr und Y, lagen aber höher als gewöhnlich 

für die Elemente Al, Cu, Ta, Pb, and Ga. Signifikante Unterschiede (P < 0,05) der Gesamt-

Elementkonzentrationen wurden sowohl innerhalb als auch zwischen den beprobten 34 

Standorten gefunden. Die Variabilität war deutlich grösser zwischen den 34 Standorten (55-88 % 

Varianz) als innerhalb der Standorte (10-40 % Varianz). Mit Hilfe von ‘Random Forests‘-

Regressionen konnte gezeigt werden, dass die Gesamt- Elementkonzentrationen der untersuchten 

Bodenproben von umweltbezogenen Standortvariablen wie Topographie und Landnutzungstyp 

als auch Klimafaktoren wie Temperatur und Niederschlag wesentlich beeinflusst werden.  

In einem weiteren Schritt wurde die Aussagekraft einer Kombination von MIR und 

TXRF-Methoden und der ‘Random Forests‘-Regression anhand von 700 Bodenproben von 44 

Standorten in Afrika südlich der Sahara getestet. Dazu wurden zunächst MIR-

Vorhersagemodelle für organischen Bodenkohlenstoff und andere Bodenfruchtbarkeitsparameter 

(extrahierbare Nährstoffe, pH-Wert und austauschbare Säuren) mit Hilfe von ‘Random Forests‘ 

(RF)-Regressionen entwickelt. Durch Einbringen der Gesamtelement-Daten zu den Residuen der 

IR-Vorhersagen konnten die MIR-Regressionsmodelle signifikant verbessert werden. Im 

Vergleich zu der gewöhnlich benutzten ‘partial least square‘-Regression (PLSR) zeigte die 

entwickelte RF-Regression deutlich bessere Ergebnisse, war schneller anzuwenden und einfacher 

zu interpretieren und war nicht auf zeitaufwändige und fehleranfällige Datentransformationen 

wie die PLSR angewiesen. Durch die Kombination von TXRF- und MIR-Spektren konnte 
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ausserdem die Vorhersage-Genauigkeit der Bodenparameter deutlich verbessert werden, z.B. für 

Ecd um 63%, Mehlich-3 S um 54%, Mehlich-3 Na um 53% verglichen zur alleinigen Nutzung 

der MIRS-Spektren.  

Zusammenfassend hat die vorliegende Studie dazu beigetragen, neue spektrale 

Bodenanalysemethoden mit hohem Durchsatz zu entwickeln und Empfehlungen für die 

optimierte Anwendung dieser Methoden zu erarbeiten, die bereits erfolgreich von dem oben 

erwähnten AfSIS-Projekt übernommen und in die Standard-AfSIS Verfahren integriert worden 

sind. 
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Synopsis 

Conventional soil assessments are expensive and dense sampling is often required to 

adequately characterize spatial variability in an area [1]. New, rapid methods to quantify soil 

properties are needed to support soil health surveillance systems. Infrared Spectroscopy (IR) has 

shown promise as a simple and non-destructive analytical method that is now routinely used to 

predict several soil properties simultaneously, including soil organic carbon, nutrient retention 

capacity, and water holding capacity [2, 3]. The ability to rapidly characterize large numbers of 

samples with IR opens up new possibilities for soil evaluations that consider uncertainty in 

predictions and interpretations of soil properties. However, IR has some limitations in that it 

cannot predict extractable P and K well, which in addition to N are often the main limiting 

nutrients in African soils. Prediction of particle size distribution with IR is variable and in 

addition, calibrations have to be adjusted for different soil types. A new spectral technique using 

Total X-ray Fluorescence (TXRF) could be a valuable tool to supplement IR and stabilize 

calibrations. TXRF provides for rapid and simultaneous determination of the concentrations of 

most elements from sodium to Uranium with minimal sample preparation time [4]. Advantages 

of the technique compared to conventional methods include minimal sample preparation, and 

low matrix interference, removing the need for external calibration. The total element 
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concentration spectra can be used to capture key mineralogical differences in soils and there are 

possibilities to correlate extractable nutrient analysis with total element analysis and also to 

measure element concentrations in soil extracts. Thus TXRF could provide a powerful 

complement to IR, especially for predicting nutrient supply capacity, which is most important 

when considering soils as the substrates for plant growth. The technique opens up possibilities 

for using total element profiling to improve global predictions of soil functional properties, such 

as soil organic carbon, cation exchange capacity, extractable nutrients, P sorption, water holding 

capacity, and soil stability. 

Optimal combinations of IR and TXRF techniques for prediction of soil functional 

properties have yet to be evaluated. The objectives of this study were to quantify the variability 

and patterns in soil mineralogy, total element composition with TXRF and mid infrared (MIR) 

spectra of soils from a random sample set of Sub-Saharan Africa soils. Georeferenced samples 

associated with the Africa Soil Information Service (AfSIS) (www.africasoils.net), taken from a 

set of sentinel sites randomized over Sub-Saharan Africa were used for characterization. A total 

of 348 soil samples from eleven 100-km2 sentinel sites across Sub-Saharan Africa: Tanzania (6 

sites), Congo (2 sites), Mali (2 sites), Burkina Faso (1 site) were used in exploring spectral 

patterns. Paired topsoil and subsoil samples taken from 32 randomized sample points at each site 

were analysed. Soils were air-dried and passed through a 2-mm sieve for IR analysis, but were 

further ball-milled to less than 75 µm for TXRF and MIR analyses. MIR (2.5-25 µm) wavelength 

regions respond to a number of important soil properties including mineral composition, iron 

oxides, water (hydration, hygroscopic, free), carbonates, soluble salts, and particle size 

distribution [3]. Fine ground samples were analysed with MIR (Bruker, Tensor 27 MIR 

spectrometer) using a robotic high-throughput system employing micro-titre plate. Spectral 

TXRF analyses were done using a Bruker S2 PICOFOX TXRF instrument (Bruker AXS, 

Germany). Standardisation was internal and only required addition of an element that was not 

present in the sample (Se) for quantification purposes. Samples were suspended in detergent 

(Triton X-100), spiked with a known quantity of Se as an internal standard, pipetted onto 

carriers, and dried. We explored the within and between site patterns of variation in total element 

composition using scatter plots and principal component analysis in R statistical software. 

Quantitative analysis based on mid-IR spectra required the development of calibrations that 

related the spectral information to total element concentration using the entire spectra as opposed 
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to only a few wavelengths, utilizing partial least squares (PLS) and principal component analysis 

(PCA). This was a precursor to exploring relationships with directly measured soil properties. 

MIR spectral data related well to those of TXRF, and most of the elements detected using TXRF 

could be predicted well from MIR using principal component scores extracted from the TXRF 

data. Total elements Na, Al, Cr, S, Sc, and Zn gave good calibration models (R2 > 0.5, RMSE < 

0.6) in less than 8 principal components while total elements Mg, P, K, Ca, Ti, V, Mn, Fe, Ni and 

Ga had relatively good calibration models (R2 > 0.5, RMSE < 0.5)  but with more than eight 

principal components whereas Cl and Co gave poor calibration models (Fig. 1). PCA of TXRF 

data (Fig. 2) revealed that patterns in total element concentrations between sites appeared to 

relate to differences in mineralogical ‘functional groups’. The pattern of clustering of the 

individual minerals and sorting of heavy minerals along the positive Dim1 axis was apparent 

(Fig. 2). Al, K, Ga, Li, Sc and V have been reported to have especially strong correlations in 

soils caused by their mutual occurrence in clay minerals [5]. The clay factor commonly includes 

the elements As, Cu, Ni and Cr, all elements that are common in trace amounts in clay minerals 

or adsorbed to them [5]. Here, the clay minerals in the scatter plot are represented by Al and Cr 

and they lied along the positive Dim1 axis (Fig. 2). However, As, Cu and Fe were not included in 

the clay mineral cluster. Elements typical of feldspars and carbonates minerals (Ca, K, Sr and 

Ba) lied in the negative Dim1 and negative Dim2 axes. TXRF thus provides chemical 

fingerprinting and ‘functional’ mineral groupings that relate to potential soil nutrient supply 

capacity and other properties. Patterns in total element concentrations within and between sites 

appeared to relate to differences in mineralogical ‘functional groups’. It is thus worth testing 

whether TXRF in conjunction with MIR can be used as a complementary input to pedotransfer 

functions for low cost, rapid prediction of soil functional properties. The next step of this 

research will test combined use of MIR and TXRF for prediction of soil functional properties, 

and whether MIR spectra can predict clustering of samples in relation to total element profiles. 
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Fig. 1. Scatter plots of the PLS regression models developed for elements Al 

and Cl using MIR (predicted and TXRF (measured) spectral data.  

Fig. 2. Biplot of principal components 1 and 2 

for the soil total element concentration values 

with complete data matrix after computation of 

the 25th percentile of lower limit of detection 

(LLD) values for each element to replace the 

“non-detectable” values in the data set.
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Abstract 

 
Measuring total element concentration of soils using conventional methods is time-

consuming. Total X-ray Fluorescence Spectroscopy (TXRF) provides for rapid and simultaneous 

determination of the concentrations of most elements from sodium to Uranium with minimal 

sample preparation time. The technique opens up the possibilities for using total element 

profiling to improve global predictions of soil functional properties, such as soil organic carbon, 

cation exchange capacity, extractable nutrients, P sorption, water holding capacity, and soil 

stability. In this paper we present our investigations of the quantification of the variability and 

patterns in total element composition of soils from eight 100-km2 sites across Sub-Saharan 

Africa: Tanzania (3 sites), Congo (2 sites), Mali (2 sites), Burkina Faso (1 site). Paired topsoil 

and subsoil samples taken from 32 randomised sample points at each site were analysed. We 

explored the within and between site patterns of variation in total element composition and their 

relationships with directly measured soil functional properties and TXRF soil spectral properties 

using scatter plots, principal component analysis, and classification and regression trees in R 

statistical software. The results indicate that TXRF provides chemical fingerprinting that relates 

to potential soil nutrient supply capacity. There were also relative variations in total element 

composition within and between the sites analysed. Thus TXRF can be used as a complementary 

input to pedotransfer functions for low cost, rapid prediction of soil functional properties. TXRF 

could also provide improved capabilities, for improving advisory services on soil constraints to 

plant growth with subsequent benefit to food security and human health. 
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