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Clustering Surgical Procedures for Master Surgical Scheduling

Alexander Kressner · Katja Schimmelpfeng

Abstract The sound management of operating rooms is a very important task in each hospi-

tal. To use this crucial resource efficiently, cyclic master surgery schedules are often developed. 

To derive sensible schedules, high-quality input data are necessary. In this paper, we focus on 

the (elective) surgical procedures’ stochastic durations to determine reasonable, cyclically sched-

uled surgical clusters. Therefore, we adapt the approach of van Oostrum et al (2008), which 

was specifically designed for clustering surgical procedures for master surgical scheduling, and 

present a two-stage solution approach that consists of a new construction heuristic and an im-

provement heuristic. We conducted a numerical study based on real-world data from a German 

hospital. The results reveal clusters with considerably reduced variability compared to those of 

van Oostrum et al (2008).
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1 Introduction and Problem Description

Over recent decades, the demand for health care services in industrialized countries has been

constantly rising (OECD, 2011). Simultaneously, most countries limit public health spending.

Therefore, hospitals face the challenge of using scarce resources even more efficiently. One of

these resources is the operating theater, which generates the largest part of the cost and rev-

enues in a hospital (Cardoen et al, 2010). To manage its operations and processes successfully,

adequate planning and scheduling approaches are crucial. Generally, planning and scheduling

tasks in the context of the operating theater belong to a specific level of the decision hierarchy:

the strategic, tactical or operational level (Guerriero and Guido, 2011; Hans et al, 2012). At the

strategic level, a hospital determines the capacity dimensions, such as the number of operating

rooms (OR) or the technical equipment that each OR contains. Allocating available OR capac-

ities to specialties or surgery types belongs to the tactical level, whereas the operational level

addresses short-term scheduling and the rescheduling of patients.

Among others, van Oostrum et al (2008) proposed a so-called cyclic master surgery schedul-

ing approach for tactical planning tasks that can be used in hospitals with a stable volume of

elective surgical procedures during consecutive weeks. The idea is to aggregate surgical proce-

dures to some reasonable surgery types and to determine the number of slots allocated to each

type for any OR and day within one cycle. After a fixed cycle length of typically one or two weeks,

the schedule is repeated until a new (cyclic) schedule seems to be necessary. Figure 1 shows an

example of such a master surgery schedule for the working days of Monday to Friday, using three

operation rooms. Using a master surgery schedule (MSS)

– lowers the managerial burden of developing new schedules every week,

– makes is possible to coordinate technical and personnel resources early and

– guides patient scheduling such that hospitals use their ORs efficiently (van Oostrum et al, 
2010).

MSS objectives cover maximizing utilization, minimizing cost, controlling overtime or leveling

workloads in the ORs and subsequent departments, for example, the intensive care units (ICU)

or wards (Beliën and Demeulemeester, 2007; Fügener et al, 2014; van Oostrum et al, 2008).
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Fig. 1: Example of a master surgery schedule for three operation rooms operating from Monday
to Friday

Cyclically scheduled surgery types represent the building block of a MSS. Taking the Ger-

man situation as an example, a surgery type consists of the surgical procedures defined by the

so-called German “Operationen- und Prozedurenschlüssel” (OPS) – a modification of the Interna-

tional Classification of Procedures in Medicine (ICPM). The OPS defines surgeries at the lowest

level of aggregation. In its current version, it consists of 28,800 different codes (DMDI, 2014).

Grouping surgical procedures to construct logistically homogenous surgery types is a very chal-

lenging planning task. Logistical homogeneity is measurable based on attributes such as surgery

duration, length of stay, staff requirements and use of medical devices (van Oostrum et al, 2011).

For master surgery scheduling, constructing surgery types with little variability in the surgery du-

ration is very important: poorly grouped surgical procedures exhibit high variability, which will

make building master schedules with high OR utilization and little overtime on this basis almost

impossible. From this perspective, a very granular grouping with a large number of surgery types

appears to be beneficial. However, we must also account for the cyclic nature of a MSS and en-

sure that integer numbers of surgery slots are scheduled to obtain a valid solution, which calls

for a substantial degree of aggregation.
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Generally, when constructing a new schedule, forecasting the number of cases per surgery type

divided by the number of cycle repetitions yields the corresponding cyclic number of slots. In

most cases, the resulting number is not an integer. One intuitive method of addressing the prob-

lem may be rounding up to the next integer value. Certainly, doing so would heavily overestimate

the capacity demand for the operating theater, and it may even be impossible to find feasible

plans. However, rounding down to the next integer value may underestimate the resource re-

quirements. Somewhat infrequent surgery types that have a cyclic number of slots smaller than

one may not even occur in the schedule. Instead of relying on (arbitrary) rounding, a so-called

dummy surgery type can be introduced and used to pool all of the fractional parts of the surgery

types’ cyclic number of slots, as proposed by van Oostrum et al (2011). Finally, rounding up this

(pooled) number to the next integer results in an almost perfectly matched demand. Using this

specific concept, it is mandatory to consider the composition and the resulting variability in the

dummy type compared to the regular surgery types.

The task of grouping surgical procedures is basically a clustering problem that is not exclusively

relevant in master surgery scheduling. In the healthcare literature, several papers that address

operating theater planning consider aggregated surgical procedures (Adan and Vissers, 2002;

Santibáñez et al, 2007; Adan et al, 2009; Ma and Demeulemeester, 2013). Nevertheless, despite

its importance and the diversity of well-elaborated clustering algorithms (for an overview see,

Xu and Wunsch (2005)), tailored approaches to generating appropriate surgery types/clusters

for strategic and tactical operating theater planning in the literature are rare (Dilts et al, 1995).

Furthermore, except for the work by van Oostrum et al (2011), we are not aware of any ap-

proach to surgery type clustering in a cyclic planning environment.

In this paper, we show how operations research techniques can be applied to solve a specific

clustering problem for a cyclic planning problem, namely, master surgery scheduling. Similar

to the work by van Oostrum et al (2011) our approach is based on the concept of a dummy

surgery type and aims to minimize the variability in the clusters regarding surgery durations.

In addition, we make the following contributions: we present a two-stage clustering algorithm

with a new constructive heuristic compared to van Oostrum et al (2011) and a heuristic that im-

proves initial partitions. The specific feature of the latter is the use of a non-linear optimization

model integrated in an algorithmic framework. To solve the model with a commercial MIP-solver,
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we present a linear reformulation and introduce some intuitive simple inequalities to accelerate

computation times. In a numerical study with real-world data from a German hospital, we show

that our clustering algorithm is able to find partitions with considerably reduced variability.

The remainder of this paper is structured as follows: we dedicate Section 2 to a brief overview

of the relevant literature. In Section 3, we illustrate the clustering problem and a corresponding

mathematical optimization model. In Section 4, we present a two-stage solution approach that

aims at homogenous clusters. In Section 5, our algorithm is applied to real-world data from a

German hospital. Furthermore, the results of the numerical study are presented. Finally, Section 6

recapitulates the paper’s most important findings and outlines some ideas for future research.

2 Related Literature

Clustering as a main data mining task refers to descriptive modeling (Meisel and Mattfeld, 2010).

Its objective is to partition a given set of objects into subgroups such that the objects within a

subgroup are similar to each other and separable from objects in other groups according to some

similarity measure. Before defining such an adequate similarity measure, relevant object fea-

tures must be selected. Discovering these relevant features primarily depends on the underlying

decision problem. To ease the computational burden of any clustering algorithm and allow an in-

tuitive comprehension of the results, only the most relevant features should be used. After having

determined the relevant features, carefully defining an adequate similarity measure is crucial. In

most cases, it is possible to define (dis-)similarity based on well-known distance measures, for

example, Euclidian, city block or Mahalanobis distance (for a general overview, see Xu and Wun-

sch (2005); Jain et al (1999)). Finally, constructing a function to evaluate the partition’s quality

is necessary. In this sense, it seems natural to represent a clustering problem as a mathematical

optimization problem. Hansen and Jaumard (1997) illustrate various optimization criteria and

the formulation of clustering problems as mathematical programs. Recent review papers by Olaf-

sson et al (2008); Meisel and Mattfeld (2010); Corne et al (2012) highlight this relationship and

emphasize the synergies of the well-elaborated domains of operations research and data mining.

Sağlam et al (2006); Inniss (2006); Romanowski et al (2006); Kulkarni and Fathi (2007) present

examples that apply operations research techniques to clustering problems.
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To solve a clustering problem, two types of algorithms are available: hierarchical and partitional

algorithms (Jain et al, 1999). The latter start with an initial partition of objects, choosing the

number of clusters in advance. Subsequently, objects are assigned to clusters to optimize a given

objective function. Most likely, the best-known partitional clustering method is k-means (Mac-

Queen, 1967). It begins by randomly picking k cluster centers and then assigns each object to

the closest center. Then, the cluster centers are recomputed. The algorithm iterates until no more

changes in the cluster centers occur. Variants of the basic k-means algorithm attempt to find good

initial partitions to accelerate convergence or to allow a dynamic number of clusters by splitting

and merging procedures (Jain et al, 1999).

Hierarchical algorithms generate a series of partitions organized in a hierarchical manner. With

agglomerative and divisive methods, two variants of hierarchical algorithms exist. The former

starts with a partition where each object forms an individual cluster. Given some distance ma-

trix, the two clusters closest to each other are merged. This process is repeated until all objects

lie within one cluster. Divisive methods work in the opposite direction. Initially, all objects be-

long to a single cluster. In the next iterations, the algorithm successively divides partitions until

each object forms its own cluster. Due to the computational complexity of divisive hierarchical

algorithms, it is common to use agglomerative methods (Xu and Wunsch, 2005). One popular

approach in this domain is Ward’s method, which uses the sum of error squares to evaluate dif-

ferent partitions. In each step of the algorithm, cluster pairs that lead to the objective function’s

minimal increase are merged. Finally, the decision maker can appropriately choose out of the

derived partitions (Ward, 1963).

As described in Section 1, papers that address strategic and tactical planning in the operating

theater typically only assume that surgery types with a low variability of resource consumption

exist. However, reviewing the literature related to healthcare management, we only identified

the approach of van Oostrum et al (2011) that groups surgical procedures for a specific OR

planning task. As in our case, the authors perform clustering with the goal of allowing mas-

ter surgery scheduling. Typically, authors consider the features “surgery durations” and “lengths

of stay” when constructing surgery types. Conceptually, the employed clustering algorithm is a
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variant of Ward’s method that uses a modified distance matrix (van Oostrum et al, 2011). The

distance between a cluster pair is computed in three steps:

1. First, van Oostrum et al (2011) compute the sum of squared errors regarding the surgery

duration and the length of stay in each cluster.

2. Second, they determine the number of dummy surgeries associated with each cluster. By

using a scalarization function, squared error sums and dummy surgeries are aggregated per

cluster.

3. Finally, summing up over all clusters allows to evaluate the partition’s quality. The entries of

the distance matrix represent the change in the objective function for each possible merger

of two clusters in some iteration of the algorithm.

In their case study, van Oostrum et al (2011) show the influence of different parametrizations of

the scalarizing function on the partitioning of the data set.

3 Detailed Problem Description and Model Formulation for the Clustering Problem

3.1 Definition of an Appropriate Evaluation and Objective Function

The main goal in master surgery scheduling is to ensure a high utilization of ORs without hav-

ing excessive overtime. Because surgery durations exhibit a distinct natural variability, planning

approaches that anticipate this uncertainty are very well suited. However, defining surgery types

with little variability in surgery durations is a prerequisite to obtain good-quality planning re-

sults: the higher the surgery durations’ variability is, the more additional slack capacity in the

ORs is necessary to buffer against overtime. Consequently, this slack has a negative effect on the

OR utilization. Thus, given a historical record of surgical procedures with corresponding realiza-

tions of the random duration of individual surgeries, we strive to find a partition of procedures

that minimizes the overall sum of squared errors. Such a partition defines the surgery types (clus-

ters of procedures) used in MSS. Figure 2 shows the hierarchical relationship between individual

surgeries i, surgical procedures p and the surgery types c we are aiming for.

In our approach, we account for the cyclic nature of MSS and build on the concept of a

dummy surgery type adjacent to the regular surgery types. However, unlike van Oostrum et al

(2011), we precisely evaluate not only the total number of dummy surgeries but also the sum of
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high
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level of
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Surgical
Type

Individual
Surgery

Surgical
Procedure

Fig. 2: Hierarchical relationship between i, p and c

squared errors. Hence, we avoid using an arbitrarily chosen scalarization function to summarize

two distinct variables, i.e., the squared error sum of surgery durations and the number of dummy

surgeries.

To quantify the loss of information resulting from clustering surgical procedures to surgical

types, we need a function that evaluates the sum of squared errors over all clusters, includ-

ing the dummy cluster for any grouping of surgical procedures. In the following, we derive such

an evaluation function step by step, using the subsequent notation summarized in Table 1 in

alphabetical order.

Therefore, we denote the number of MSS cycle repetitions by r. Let us assume that we have

a sample Ip of individual (recorded) surgeries i ∈I each associated with a surgical procedure

p ∈P. In addition, let api be the recorded duration of an individual surgery i associated with

procedure p. The parameter np denotes the (forecasted) number of surgeries of procedure p

over the planning horizon of typically one year (for example, see van Oostrum et al (2008)). Zc

defines a cluster of surgical procedures p associated with surgery type c ∈ C .
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Sets and indices
c ∈ C set of surgery types c
i ∈I set of individual (recorded) incidents/surgeries i
p ∈P set of recorded surgical procedures p, defined according to the OPS
Ip sample of individual surgeries i ∈I each associated with a surgical procedure p ∈P
Zc set of surgical procedures p associated with surgery type c ∈ C

Parameters
âD average surgery duration in the dummy cluster
āc average surgery durations in the regular clusters
api recorded surgery duration of surgery i of procedure p
ESSc,D squared error for each cluster c regarding the average dummy surgery duration
ESSD squared error sum in dummy cluster D
ESSc expected squared error for each regular cluster c
ESST total squared errors over all clusters
np (forecasted) number of surgeries of procedure p over the planning horizon
r number of MSS cycle repetitions
Vc number of surgeries of type c ∈ C moved into the dummy cluster

Table 1: Notation in Section 3.1

– First, we calculate the squared error sum in the dummy cluster ESSD. Therefore, we deter-

mine the number of surgeries from each regular cluster Vc moving into the dummy cluster:

Vc = ∑
p∈Zc

np−

 ∑
p∈Zc

np

r

r, c ∈ C (1)

The first term represents the volume of cases in cluster c over the complete planning horizon,

whereas the second term yields the corresponding number of cases if

⌊
∑

p∈Zc
np

r

⌋
slots of surgery

type c are scheduled in each cycle. The remaining difference reveals the number of dummy

surgeries originating from surgery type c.

– To assess ESSD, it is necessary to calculate the average surgery duration in the dummy cluster

âD (which is also denoted as the cluster centroid). We use a weighted sum of the average

surgery durations from the regular clusters āc:

âD =

∑
c∈C

Vcāc

∑
c∈C

Vc
(2)
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– Next, we compute the sum of squared errors for each cluster regarding the average dummy

surgery duration ESSc,D:

ESSc,D = ∑
p∈Zc

∑
i∈Ip

(api− âD)
2 , c ∈ C (3)

– Naturally, only a certain fraction of that variability can be attributed to the dummy cluster.

Therefore, we scale ESSc,D according to the number of dummy surgeries and regular surgeries

in each cluster and compute ESSD:

ESSD = ∑
c∈C

ESSc,D ·
Vc

∑
p∈Zc

np

 (4)

– The computation of the squared error sum ESSc for each regular cluster c must consider that

Vc of the ∑p∈Zp np surgeries move in the dummy cluster. Consequently, the original variability

in each cluster can only be considered proportionally to the number of surgeries remaining

in the regular cluster:

ESSc = ∑
p∈Zc

∑
i∈Ip

(api− āc)
2

1− Vc

∑
p∈Zc

np

 , c ∈ C (5)

– Finally, we can aggregate the sum of squared errors over all clusters and obtain the total

squared error sum ESST :

ESST = ∑
c∈C

ESSc +ESSD, (6)

In the following sections, we present the assumptions of our model and a mathematical model

that groups surgical procedures to clusters minimize the evaluation function value ESST .

3.2 Assumptions

First, we cluster only within a specialty, mainly for organizational reasons, because sharing slots

for surgeries among specialties is very conflicting. Second, we assume the number of clusters and

average surgery durations in each cluster to be known a priori. In doing so, we face a reduced



Clustering Surgical Procedures for Master Surgical Scheduling 11

Indices and index sets:
p, p′ ∈P surgical procedures according to OPS
c ∈ C regular surgery types/ clusters
i ∈I individual surgeries
Ip subset of surgeries assigned to procedure p

Parameters:
api recorded duration of indvidual surgery i belonging to procedure p
np forecasted number of surgeries of procedure p
āc average surgery duration of surgery type/ cluster c
âD average surgery duration of the dummy-surgery type/ dummy-cluster
r number of MSS cycle repetitions

Decision variables:

Xpc =

{
1, if procedure p is assigned to surgery type/ cluster c
0, else

Vc ≥ 0 number of dummy surgeries originating from surgery type/ cluster c
X Int

c ∈ N0 integer number of slots of surgery type/ cluster c in one MSS-cycle

Table 2: Notation for the mathematical model

complexity of the optimization model, and its solution becomes tractable. However, this is a sim-

plification because we cannot compute the optimal number of clusters in advance. Additionally,

even if we could somehow identify the optimal cluster number, the average surgery durations

in each cluster would still depend on the grouping of surgical procedures. Thus, starting from

predefined cluster centroids, we cannot guarantee finding the optimal solution. We discuss how

to address these problems in Section 4, where we present our solution approach.

3.3 Notation and Mathematical Model

When constructing surgery types, it must be ensured that each surgical procedure is assigned

exclusively to one cluster. The objective is to minimize the sum of squared errors over the dummy

and all regular clusters. Hence, we obtain the following mixed integer non-linear optimization

program, using the notation given in Table 2.

Model NLCM

Min ESST = ∑
c∈C

∑
p∈P

∑
i∈Ip

[
(api− āc)

2 (1− Vc

∑p′ np′Xp′c
)Xpc

]
+

[
(api− âD)

2 VcXpc

∑p′ np′Xp′c

]
(7)
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∑
c∈C

Xpc = 1, p ∈P (8)

Vc = ∑
p∈P

npXpc− rX Int
c , c ∈ C (9)

X Int
c >

∑
p∈P

npXpc

r
−1, c ∈ C (10)

In the objective function (7), the first term considers the sum of squared errors over all clusters

except the dummy cluster. In case procedure p is assigned to cluster c, i.e., decision variable

Xpc equals one, the corresponding squared error sum is taken into account according to the

portion of surgeries (1− Vc
∑p′ np′Xp′c

) in that cluster. We consider the dummy cluster’s variability

in the second term. Again, we compute the sum of squared errors with respect to the cluster

centroid for each procedure. In case either Xpc or Vc is zero, i.e., procedure p is not assigned to

cluster c or there are no dummy surgeries from cluster c, there is no contribution to the overall

variability. In all remaining cases, the squared error sum associated with procedure p is scaled

proportionally to the dummy surgeries originating from cluster c. Constraints (8) ensure that

any procedure is assigned to exactly one of the pre-specified clusters. Constraints (9) and (10)

serve to compute the number of dummy surgeries from cluster c. Constraints (10) reveal the

maximum integer number of slots per surgery type scheduled in the MSS. Hence, they basically

model the supposed rounding procedure and, in combination with (9), derive the number of

dummy surgeries attributed to cluster c. We omit restrictions on the decision variables’ domains,

given that they are provided in Table 2. Finally, it is worth noting that the model allows a flexible

number of active clusters, i.e., not all of the |C| clusters must be used. However, generating

additional clusters is not possible.

4 Two-Stage Solution Approach

The model presented in the previous section is non-linear and assumes a predefined number of

clusters with corresponding centroids. To find good partitions of surgical procedures, we apply a

two-stage solution approach. The goal of the first stage is to construct promising initial clusters
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and to initialize the optimization model. For this purpose, we employ an adjusted version of

Ward’s method (Ward, 1963). In the second stage, we use an improvement heuristic based on our

optimization model to reassign surgical procedures to clusters to decrease the objective function

value of the initial partitions.

4.1 Stage 1: Constructing an Initial Solution

Promising initial solutions are generated by a constructive heuristic that is a modified version of

the agglomerative hierarchical clustering algorithm of Ward (1963) and closely related to van

Oostrum et al (2011). The main steps of the procedure are highlighted in algorithm 1.

Algorithm 1: Constructive Heuristic
main input : P, Ip, api, np,r

main output: partition of surgical procedures (Z j∗
c ) of iteration j∗ = min j{ESS j

T})

1 begin

2 j = |P|, C = P, Z j
c = {c} ∀c;

3 Calculate ESS j
T ;

4 j = j−1;

5 while j ≥ 1 do

6 Calculate ∆ESS j
T (c,c

′) ∀c,c′ > c;

7 (c∗,c
′∗) = min(c,c′){∆ESS j

T (c,c
′)};

8 Z j
c = Z j+1

c ∀c 6= c∗,c
′∗;

9 Z j
c∗ = Z j+1

c∗ ∪Z j+1
c′∗

;

10 ESS j
T = ESS j+1

T +∆ESS j
T (c
∗,c

′∗);

11 C = C \{c′∗};

12 j = j−1;

13 end

14 end

Please note that we employ the heuristic for each specialty. Running the algorithm results in a 

series of |P| different partitions, each indicated with index j. At the beginning of the algorithm, 

the number of clusters equals the number of surgical procedures, and each procedure constitutes 

its own cluster (line 2). An evaluation of this first partition is performed in line 3. The following
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while-loop returns a new partition by merging exactly two clusters in each iteration (lines 5-13).

To find two promising candidates for each two clusters c and c′ that can possibly be merged,

the overall change in the objective function denoted by ∆ESS j
T (c,c

′) is determined (line 6). In

computational terms, this part is the most expensive part of the algorithm: for each possible

merge, the centroids and the sum of squared errors in the newly built cluster and the dummy

cluster must be calculated. Finally, the pair with the minimal increase in the sum of squared

errors forms the new cluster (lines 7-9). After having evaluated this new partition (line 10),

the set of clusters is redefined (line 11). The main output of the algorithm is a partition of

surgical procedures from which relevant parameters, for example, the number of clusters or

cluster centroids used in the improvement heuristic, can be derived.

4.2 Stage 2: Improving the Initial Solution

The constructive heuristic presented in the previous section iteratively changes the number of

clusters and assigns surgical procedures to clusters. A major drawback of such a procedure is the

fact that assignments performed in earlier iterations are fixed and cannot be resolved later. Thus,

starting from an initial solution of algorithm 1, it is advisable to rearrange objects to further de-

crease the overall variability. In this sense, a popular approach is the classical k-means algorithm,

which allocates an object to the most appropriate cluster according to some similarity measure

(see, e.g., Dilts et al (1995)). This allocation is particularly easy when the assignment decision

for each object can be made independent of all others. In our case, due to the one dummy cluster

concept, this decision is not possible. Reassignments of surgical procedures alter the clusters’ size

and thus the number of dummy surgeries originating from the clusters. Consequently, the com-

position of the dummy cluster and its associated squared error sum changes. Hence, to optimally

rearrange surgical procedures, we apply a linear reformulation of the mathematical model of

Section 3.3 that also considers the effect of assignments on the variability in the dummy cluster.

The relevant model inputs are provided by the constructive heuristic. Furthermore, we embed the

optimization model in an algorithmic procedure closely related to k-means, which successively

improves the previous partitions.
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Indices and index sets:
H = {0,1, . . . ,r−1}, equal to the domain of Vc

Parameters:
K,M big number

Decision variables:
δc non-negative variables, reciprocal of the number of surgeries in cluster c
λch auxilliary binary variable
θpc reciprocal of the number of surgeries in the corresponding cluster

=

{
1, if surgical procedure p is assigned to the corresponding cluster
0, else

θ̂pch non-negative variables, share of dummy surgeries with respect to the total
number of surgeries in cluster c if procedure p is assigned to that cluster

Table 3: Additional notation for the mathematical model

4.2.1 Linearization of the Base Model

The objective function (7) of our original mathematical model is non-linear. To obtain a linear

MIP, the expression Vc
∑p′ np′Xp′c

Xpc must be linearized. Therefore, we perform the following four

steps, using the additional notation given in Table 3.

– First, we address the term Xpc
∑p npXpc

. According to an idea of Li (1994), we introduce non-

negative variables δc, which are defined as the reciprocal of the number of surgeries in cluster

c:

δc =
1

∑
p∈P

npXpc
(11)

Adding the constraints (12), we guarantee that the new variables take the appropriate values:

∑
p∈P

npXpcδc = 1, c ∈ C (12)

– Clearly, this procedure does not dissolve the non-linearity of the formulation, given that we

end up with products of the form Xpcδc. However, it is now possible to apply the approach by

Wu (1997) that makes it possible to linearize the product of two variables. Again, we define

new non-negative variables θpc = Xpcδc. To adequately model this equality, we introduce a set

of linear constraints:
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∑
p∈P

npθpc = 1, c ∈ C (13)

δc−θpc ≤ K(1−Xpc), p ∈P,c ∈ C (14)

θpc ≤ δc, p ∈P,c ∈ C (15)

θpc ≤ KXpc, p ∈P,c ∈ C (16)

θpc ≥ 0, p ∈P,c ∈ C (17)

δc ≥ 0, c ∈ C (18)

To ensure that θpc equals the reciprocal of the number of surgeries in the corresponding

cluster (denoted by δc) only if surgical procedure p is assigned to the corresponding cluster

and zero otherwise, we use a Big-M formulation. A valid upper bound for K is:

K =
1

minp{np}
(19)

This becomes clear by the following consideration: assume Xpc = 0 and δc > 0 for some p and

c, i.e., procedure p is not assigned to the active cluster c. Then, constraint (16) forces θpc = 0,

and constraint (14) becomes δc ≤ K. Because δc must not necessarily be restricted, it must be

ensured that the surgical procedure with the smallest record of surgeries can exclusively form

a surgery type that gives the maximum reciprocal of the number of surgeries in a cluster.

– Applying this reformulation, we still end up with a non-linear term of the form θpcVc, i.e.,

products of a rational and an integer variable. Therefore, we model Vc in a third step with

the help of binary variables λch and the constraints ∑h∈H hλch =Vc and ∑h∈H λch = 1 for each

c ∈ C . The variables λch equal one if the number of dummy variables in cluster c equals

h and zero otherwise. This relationship is ensured by the two constraints established for

each cluster and setting H = {0,1, . . . ,r− 1}, which represents the domain of Vc. Using this
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formulation, the variables λch are defined as variables belonging to an ordered set of type

1 (see Beale and Tomlin (1970)). Additionally, please note that the number of additional

binary variables remains relatively small because most instances consist of only a few clusters

and the maximum number of dummy surgeries attributed to a cluster equals r− 1, where r

typically represents the number of weeks for which a MSS is valid.

– Finally, we linearize the latest reformulation of the form θpchλc by defining non-negative vari-

ables θ̂pch = θpchλch, indicating the share of dummy surgeries with respect to the total number

of surgeries in cluster c in case procedure p is assigned to that cluster and the following set

of constraints:

∑
h∈H

hλch = ∑
p∈P

npXpc− rX Int
c , c ∈ C (20)

∑
h∈H

λch = 1, c ∈ C (21)

hθpc− θ̂pch ≤M(1−λch), p ∈P,c ∈ C ,h ∈H (22)

θ̂pch ≤ hθpc, p ∈P,c ∈ C ,h ∈H (23)

θ̂pch ≤ λch, p ∈P,c ∈ C ,h ∈H (24)

θ̂pch ≥ 0, p ∈P,c ∈ C ,h ∈H (25)

Constraints (20) and (21) store the number of dummy surgeries from each cluster in appro-

priate binary variables, as outlined above. (22), (23) and (24) enforce the equality θ̂pch = hθpc

if λch and Xpc equal one. In case λch is zero, the constraints (24) force θ̂pch to zero as well.

Ultimately, the necessary variable definitions are given. With reasoning analogous to that in

the first Big-M formulation, we set M = (r−1) 1
minp{np}

.

Putting it all together, the previous considerations result in the following MILP formulation of

the non-linear base model:
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Model LCM

Min ESST = ∑
c∈C

∑
p∈P

∑
i∈Ip

[
(api− āc)

2 (Xpc− ∑
h∈H

θ̂pch)+ ∑
h∈H

(api− âD)
2

θ̂pch

]
(26)

s.t.

∑
c∈C

Xpc = 1, p ∈P (27)

X Int
c >

∑
p∈P

npXpc

r
−1, c ∈ C (28)

and the constraints (13)-(18) and (20)-(25). Table 4 illustrates the number of variables used in

the non-linear and linearized models. Clearly, to linearize the model, we must accept a consider-

able number of additional continuous variables and only a few binary variables.

non-linear model linear model
# binary variables |P|× |C | |P|× |C | + |C |× |H |
# integer variables |C | |C |
# continuous variables |C | |C |+ |P|× |C |+ |P|× |C |× |H |

Table 4: Number of variables in the non-linear and linearized models

4.2.2 Simple Inequalities

Implementing and testing the linearized model reveal poor LP-Relaxations. Specifically, we ob-

serve that the objective function value became negative when relaxing integrality, which natu-

rally is not feasible in any solution of the MIP. Hence, we introduce simple valid inequalities of

the following type:

Xpc ≥ ∑
h∈H

θ̂pch, p ∈P,c ∈ C (29)

Furthermore, investigating LP-Relaxations shows that the relations between the decision vari-

ables and between the domains of the decision variables were violated on a constant basis. To
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avoid this problem, the following intuitive constraints are formulated:

θpc ≥
1

∑
p′∈P

np′
Xpc, p ∈P,c ∈ C (30)

∑
h∈H

θ̂pch ≥
1

∑
p′∈P

np′
(1−λc0), p ∈P,c ∈ C (31)

∑
h∈H

θ̂pch ≤ (r−1)θpc, p ∈P,c ∈ C (32)

Inequalities (30) ensure that, in case procedure p is assigned to cluster c, the reciprocal of the

number of surgeries in that cluster is greater than zero and equals at least the smallest possible

reciprocal (all surgeries in one cluster) for procedure p. Constraints (31) enforce the fraction of

dummy surgeries associated with a procedure and cluster to be greater than zero if λc0 equals

zero, i.e., the number of surgeries in a cluster is not a multiple of the number of MSS-cycle

repetitions. The last inequalities (32) prohibit domain violations with respect to the fraction of

dummy surgeries.

4.2.3 Improvement Heuristic

In the previous sections, we presented a mathematical model and corresponding exact and

heuristic solution approaches to find adequate clusters of surgical procedures. As outlined, the

optimization model relies on input parameters, namely, the number and centroids of clusters, as

calculated by algorithm 1. Solving the optimization model with these input parameters can alter

the assignment of surgical procedures to clusters and thus the cluster centroids. Given the new

cluster centers, it may be beneficial to reassign some procedures to further decrease the overall

sum of squared errors. For this purpose, the clustering problem is solved again. From the model

solution, new cluster centroids can be extracted and used in the next optimization run. This pro-

cedure can be repeated until there is no further improvement or only a marginal improvement in

the objective function. The basic idea of the solution approach is illustrated in algorithm 2. The

repeat loop in lines 3-8 represents the iterative nature of the improvement heuristic. In line 5, the

optimization model is solved. Additionally, please note that, for any calculation of the relative

improvement in line 8, the true overall sum of squared errors in the current iteration j (ESS j
T )

is considered, i.e., the assignment is evaluated with updated cluster centroids (lines 6-7). The
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algorithm terminates when the relative improvement drops below a predefined level defined by

the parameter gap and returns the best assignment found (X∗pc).

Algorithm 2: Improvement Heuristic

main input : solution by algorithm 1 (objective function value denoted by ESS0
T )

main output: partition of surgical procedures (X∗pc)
1 begin
2 j = 0;
3 repeat
4 j = j+1;
5 Solve clustering problem⇒ X j

pc;
6 Update āc and âD;
7 Calculate ESS j

T ;

8 until ESS j−1
T −ESS j

T

ESS j−1
T

≤ gap;

9 X∗pc = X j−1
pc ;

10 end

5 Numerical Study

To assess the benefit of our approach, we tested our two-stage clustering algorithm on real-

world data provided by a German hospital. The data set contains all elective surgeries from

January to November 2013. Different surgeries with respect to the same patient are documented

individually. Furthermore, for each surgery the data set includes the main surgical procedure

according to the OPS but not the whole set of procedures. Thus, multiple surgeries can exhibit

the same surgical procedure. The hospital has five different specialties: general surgery (GS),

orthopedic surgery (OS), vascular surgery (VS), neurosurgery (NS) and plastic surgery (PS). For

each surgery exists a record of the specialty in charge and the corresponding duration he/she

occupied the OR, i.e., the anesthesia time plus surgery duration. Table 5 summarizes the data

set. For the numerical study, we assume the planning horizon and cycle length of the MSS to be

eleven months and one week, respectively. Thus, the parameter r, which represents the number

of cycle repetitions, equals 46. Additionally, we set the number of forecasted surgeries equal

to the number of surgeries observed in the sample, given that the hospital could not provide a

forecast.
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Specialty # surgeries # surgical procedures
surgery duration (min)

mean std. dev. coef. of var.

GS 2159 144 142.5 86.5 0.607

OS 1618 104 131.7 67.6 0.513

VS 1317 62 146.5 78.5 0.536

NS 1190 63 223.5 105.4 0.472

PS 827 70 100.5 35.1 0.349

Table 5: Summarized hospital data for elective surgical inpatients from January to November
2013 provided by a German hospital; std. dev. = standard deviation, coef. of var. = coefficient
of variation

All numerical experiments were performed on an Intel(R) Xeon(R) CPU E5-1620v2 3.70 GHz

with 64 GB RAM. The optimization model was coded in the General Algebraic Modeling System

(GAMS) software version 24.2.3 and solved with ILOG CPLEX version 12.6. We implemented the

constructive heuristics in Scilab version 5.5. The presented results of our numerical experiments

base on

– the comparison between the constructive heuristic presented by van Oostrum et al (2011)

and our algorithm 1 (Section 5.1),

– the application of our exact solution approach to our proposed mathematical model together

with the evaluation of the solutions’ quality and computational times (Section 5.2), and

– our improvement heuristic (algorithm 2) (Section 5.3).

5.1 Constructive Heuristic’s Results

To compare our constructive heuristic to that presented in van Oostrum et al (2011), we must

parametrize the scalarizing function, aggregating distinct variables (the sum of squared errors

and dummy surgeries) to evaluate the quality of a partition. For this purpose, van Oostrum et al

(2011) introduce two scaling parameters. k1 scales the number of dummy surgeries and k2 the

variability in the regular clusters. In accordance with the original paper, we fix k2 to one and vary

the value of k1 to find distinct partitions. After some test runs, we find the following domain of

k1 to be most appropriate:
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Dk1 =



0−20, stepsize 2

30−200, stepsize 10

250−800, stepsize 50

900−2,000, stepsize 100

2,250−3,500, stepsize 250

4,000−8,000, stepsize 500

9,000−18,000, stepsize 1,000

The tests’ results for both heuristics shown in Tables 6 and 7 include:

– the number of clusters (#clusters),

– the sum of squared errors in total (ESST ) and in the regular clusters (ESSR) and the dummy

cluster (ESSD),

– the number of surgeries in the dummy cluster (#dummy surgeries), and

– the runtime in seconds (CPU (sec.)) for each specialty.

For the approach by van Oostrum et al (2011), we display the CPU time to run the heuristic for

all parameter combinations of k1 and k2 and the value of k1 for which the best solution is found

(k∗).

In both tables, we find moderate numbers of clusters generated by both algorithms. The only

exception is the OS specialty when applying the approach by van Oostrum et al (2011). The

variability of the partitions found reveals the superiority of the algorithm by van Oostrum et al

(2011). For each specialty, the overall sum of squared errors is smaller compared to our approach.

In general, our algorithm produces partitions with a considerably higher number of dummy

surgeries, which results in high variability in the dummy cluster. Again, the OS specialty is an

exception. The computation times compared to van Oostrum et al (2011) are relatively moderate,

given that only one solution is generated. Altogether, the results of our computational study

concerning the alternative constructive heuristics suggest that, in case long computation times

are not a matter of concern, it is sufficient to use an algorithm such as that presented by van

Oostrum et al (2011). Such an algorithm creates multiple solutions by biasing the number of

dummy surgeries over a wide set of bias factors instead of using a more elaborate procedure that

considers the dummy cluster’s variability but only provides one solution such as our approach.
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In the following section, we will investigate the extent to which the initial partitions can be

improved by reassigning surgical procedures to surgery types.

Spe- #clus- ESST ESSR ESSD #dummy k∗ CPU

cialty ters surgeries (sec.)

GS 5 6,482,958 6,255,642 227,316 43 17,000 17,155.8

OS 20 3,893,939 3,007,621 886,318 100 100 4,016.2

VS 6 2,934,448 2,627,135 307,313 29 3,500 523.2

NS 6 7,080,227 6,782,912 297,315 40 5,500 440.1

PS 6 613,929 550,418 63,511 45 450 531.2

Table 6: Results of the constructive heuristics by van Oostrum et al (2011)

Spe- #clusters ESST ESSR ESSD #dummy CPU

cialty surgeries (sec.)

GS 9 9,415,300 4,753,067 4,662,233 319 1,254.0

OS 4 5,092,175 4,382,600 709,575 100 221.2

VS 3 4,369,533 3,811,314 558,219 75 22.6

NS 5 8,963,437 6,535,974 2,427,463 132 19.3

PS 7 881,877 380,525 50,1352 229 91.8

Table 7: Results of our constructive heuristics

5.2 Results Obtained by Our Exact Solution Approach

To initialize our optimization model LCM presented in Section 4.2, we use the number of clusters

with the corresponding centroids from the constructive heuristics. First, we demonstrate the use-

fulness of the simple inequalities. Table 8 highlights the results that we obtain when solving the

linearized optimization model without these inequalities, whereas Table 9 contains the results

when considering inequalities (29), (31) and (32), which yield the best results. For all computa-

tions, we define a time limit of 3,600 seconds. Running CPLEX on the linearized model without

any simple inequalities reveals poor results. Except for the case where we solve the model for
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the VS specialty, given the initial solution as described in Section 5.1, the lower bounds are neg-

ative, resulting in huge gaps. For the OS specialty, we cannot even find a feasible integer solution

when initializing our model with the solution from the constructive heuristic of van Oostrum

et al (2011). A considerable improvement in solution quality and computation times is achieved

by adding simple inequalities (29), (31) and (32), as shown in Table 9. For problem instances

with a moderate number of clusters and surgical procedures, we find optimal or near-optimal

solutions within the time limit (GAP(%) = (UB−LB
LB ) · 100). However, for the OS specialty, which

has 20 different surgery types, the resulting solution gap is 24.4 %, and the best solution is even

worse than that found by the constructive heuristic. In the following, we will evaluate the ability

of the optimization model integrated in the algorithmic framework of the improvement heuristic

to further reduce the variability of the initial partitions.

Specialty

Initial solution

Our approach van Oostrum et al. (2011)

UB LB CPU (sec.) UB LB CPU (sec.)

GS 6,230,259 < 0 3,600.0 6,425,906 < 0 3,600.0

OS 3,954,792 < 0 3,600.0 n.s. < 0 3,600.0

VS 4,057,646 4,057,646 71.7 2,929,527 < 0 3,600.0

NS 7,461,922 3,367,180 3,600.0 7,132,961 < 0 3,600.0

PS 690,030 < 0 3,600.0 678,911 < 0 3,600.0

Table 8: Results of solving the linearized model without simple inequalities, given different
initial solutions

5.3 Improvement Heuristic’s Results

For the improvement heuristic presented in Section 4.2, we use different time limits per iteration

(3,600; 1,800; 900; and 450 seconds) and terminate the algorithm when the objective function

value’s improvement with respect to the previous iteration is less than 0.5 %. Tables 10 and 11

show the objective function value (ESST ) of the clusters found for different runtime settings and

initial solutions. In each table, for any specialty, the underlined value represents the best solution

found in the shortest time, and the additional bold numbers indicate the overall best partition.
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Spe-

Initial solution

Our approach van Oostrum et al. (2011)

cialty ESST GAP(%) CPU (sec.) ESST GAP(%) CPU (sec.)

GS 5,323,914 0.49 3,600.0 6,098,256 0.00 1,800.1

OS 3,948,699 0.00 480.5 4,533,797 24.4 3,600.0

VS 4,057,646 0.00 50.7 2,761,389 1.24 3,600.0

NS 7,444,881 0.00 307.6 7,001,679 0.00 448.9

PS 649,928 1.32 3,600.0 591,224 0.32 3,600.0

Table 9: Results of solving the linearized model with simple inequalities (29), (31) and (32),
given different initial solutions

Both tables reveal that the solution quality only slightly deteriorates with shrinking computation

times when the problem size is moderate. Interestingly, in the case of the GS, OS and PS spe-

cialties in Table 10 and the PS specialty in Table 11, the best clusters are identified when the

maximum time allowed per iteration is less than 3,600 seconds. Thus, we observe that it is not

mandatory to solve our optimization model to (near-)optimality at each iteration of the improve-

ment heuristic but instead to discover different solution paths by changing the computation time

limits (or solution gaps). However, in examining the largest problem instance, namely, the OS

specialty in Table 10, we observe a considerable increase in the overall variability as the available

time to solve the optimization model drops below 1,800 seconds and the solution gaps remain

high at each iteration (also, see Table 8). Based on the numerical tests, we further conclude

that a good starting point for our improvement heuristic is not necessarily a first partition with

a small overall sum of squared errors. For the GS and PS specialties, we find the best partition

initializing our model with the (poor) solutions created by our constructive algorithm. For the

other specialties, starting with the algorithm by van Oostrum et al (2011) yields the best results.

Hence, we observe that, to find high-quality solutions, starting the improvement heuristic with

distinct initial partitions seems to be important.

In the following, we compare the best initial partition with the best improved partition. Ta-

ble 12 illustrates the corresponding results. The second column displays for each specialty the

relative change in the objective function value of the best initial partition compared to the best
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improved partition (∆ESST (%)). In the case of the NS specialty, we find that ESST decreases only

by 1.3 %, i.e., the constructive algorithm by van Oostrum et al (2011) already yields good re-

sults. For the other surgical departments, the improvements are more considerable, whereas for

the GS specialty, the application of the improvement heuristic is most beneficial. Going into more

detail, we have a closer look at the effects of reassignments on the relative change in the sum

of squared errors in the regular clusters (∆ESSR(%)) and the dummy cluster (∆ESSD(%)). For the

latter, large improvements can be stated, at maximum 77.8 % for the OS specialty. Table 12

also indicates that, in some cases (OS and NS), it can be favorable to increase the variability

in the regular clusters to allow assignments that reduce the variability in the dummy cluster to

a large extent. Furthermore, we observe that for each specialty, the clusters used to initialize

the optimization model are active, i.e., at least one surgical procedure is assigned to a cluster.

Hence, we end up with 48 clusters (surgery types) in total. Investigating the number of surgeries

in the dummy cluster highlights the fact that good partitions are characterized by a small-sized

dummy cluster. To assess the variability in the clusters, for each specialty, we present the mean

and standard deviation of the coefficient of variation. As with the sum of squared errors, both

variables reveal evidence of the effectiveness of the presented clustering approach. Finally, we

make an overall assessment of our algorithm with respect to its ability to reduce the variability

of the initial partitions. Therefore, we refer to Table 13. In the second row, the sum of squared

errors summed up over all clusters and specialties is shown – for the best solution found by the

constructive heuristic and the improvement heuristic. We clearly observe that the application of

our algorithm is beneficial, given that the variability, as measured by the sum of squared errors,

decreases by 9.28 % in total.

Based on the results given in this section, we can conclude the following: regarding the

two constructive heuristics considered in this paper, the heuristic by van Oostrum et al (2011)

yields solutions with better objective function values compared to our algorithm. However, the

computation times are considerably longer, especially for large problem instances, given that

the algorithm must be run with different parameter combinations. In such cases, our approach

may be preferable. Another advantage of our approach concerns the fact that there is no need

to use a scalarization function and derive proper values for the weights. For the application of

the improvement heuristic, we demonstrated that the proposed simple inequalities accelerate

the solution times of the embedded optimization model. Only for the largest problem instances
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Specialty

Time limits per iteration

3,600 sec. 1,800 sec.

ESST CPU ESST CPU

GS 5,867,379 2,160.7 5,867,379 2,163.2

OS 3,613,236 10,800.0 3,549,686 5,400.0

VS 2,728,992 6,157.7 2,728,992 4,274.3

NS 6,988,316 1,079.1 6,988,316 1,079.1

PS 589,658 4,593.9 589,658 2,796.9

Specialty

Time limits per iteration

900 sec. 450 sec.

ESST CPU ESST CPU

GS 5,867,266 1,303.7 5,882,256 1,350.0

OS 6,094,830 1800.0 6,675,952 900.0

VS 2,728,992 2,474.1 2,728,992 1,350.0

NS 6,988,316 1,079.1 6,988,316 887.6

PS 589,658 1,800.0 583,325 883.1

Table 10: Results of the improvement heuristic with different runtime limits per iteration, given
the initial solution of van Oostrum et al (2011)

the remaining gap between the best lower and upper bound stayed substantial. Running the

optimization model in the developed algorithmic framework showed that the initial solutions can

be drastically improved. We further observed that the best initial partition will not always result

in the ultimate best partition for a specialty. In addition, our numerical experiments revealed

(with one exception) the robustness of the solution quality with respect to the computation time

limits. In some cases, the partition with the best objective function value was even found when

less computation time was allowed. Thus, it is important to initialize our optimization model with

different partitions and to allow different solution paths in the execution of the improvement

algorithm by controlling the computation times and optimality gaps, respectively.
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Specialty

Time limits per iteration

3,600 sec. 1,800 sec.

ESST CPU ESST CPU

GS 5,211,220 7,200.0 5,245,819 3,600.0

OS 3,811,406 580.5 3,811,406 580.5

VS 3,912,755 84.5 3,912,755 84.5

NS 7,196,539 394.5 7,196,539 394.5

PS 578,658 10,800.0 578,658 5,400.0

Specialty

Time limits per iteration

900 sec. 450 sec.

ESST CPU ESST CPU

GS 5,331,244 1,800.0 5,397,374 900.0

OS 3,811,406 580.5 3,811,406 554.0

VS 3,912,755 84.5 3,912,755 84.5

NS 7,196,539 394.5 7,196,539 394.5

PS 578,658 2,700.0 584,179 1,350.0

Table 11: Results of the improvement heuristic with different runtime limits per iteration, given
our initial solution

Spe-
∆(%)

#clus- #dummy
CV

cialty ESST ESSR ESSD ters surgeries mean std. dev.

GS - 19.62 - 18.58 - 48.03 9 43 0.32 0.05

OS - 8.84 + 11.48 - 77.80 20 100 0.32 0.05

VS - 7.00 - 0.92 - 59.00 6 29 0.29 0.03

NS - 1.30 + 0.01 - 31.21 6 40 0.32 0.03

PS - 5.75 - 2.63 - 32.70 7 45 0.25 0.02

Table 12: Best solution found by the improvement heuristic in comparison to the best solution
found by the constructive heuristics; std. dev. = standard deviation, CV = coefficient of variation

6 Conclusion

In this paper, we developed a non-linear model (NLCM) and a linearized model (LCM) to deter-

mine clusters with minimal ESST for the MSS. Furthermore, we presented a two-stage clustering
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∑ Specialty Constructive heuristic Improvement heuristic ∆(%)

ESST 21,005,500 19,065,327 - 9.28

ESSR 19,223,728 18,365,527 - 4.45

ESSD 1,781,772 699,801 - 61.38

Table 13: Comparison of the best constructive and improvement heuristics with respect to the
sum of squared errors over all specialties

algorithm specifically designed for an aggregate cyclic planning environment. We provided an

example of its application in master surgery scheduling by aggregating surgical procedures to

surgery types while minimizing the sum of squared errors regarding the surgery duration. In the

algorithm’s first stage, we employed two different constructive heuristics that create the initial

partitions of surgical procedures. These results were used to initialize the algorithm’s second

stage, which finds the assignments of surgical procedures to clusters with a better objective func-

tion value. In the numerical study, we illustrated that the improvement heuristic is able to find

partitions with considerably reduced variability, which is beneficial for master surgery schedul-

ing.

We envision different directions for further research: the fast construction of promising initial

partitions is very important for the results of the improvement heuristic. Especially for large

problem instances, the time effort of the constructive heuristics presented in this paper is pro-

hibitive, and new approaches are required. The same holds true for the optimization model.

For instances with a large number of clusters, tailored solution approaches are necessary to re-

duce computation times. These approaches would also allow to evaluate more partitions in the

improvement step and to identify better clusters. Further modeling extensions are possible. For

example, clustering attributes such as setup times, special surgical equipment or surgeon require-

ments may be included. In case the influence on other units such as recovery rooms, intensive

care units or wards is considered in master surgery scheduling, attributes that represent the flow

of patients must be considered when clustering surgical procedures.
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