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Standard and Shuffled Halton Sequences
in a Mixed Logit Model

Alexander Staus

Abstract

Modeling consumer choice in different areas has lead to an increase use
of discrete choice models. Probit or Multinomial Logit Models are often
the base of further empirical research of consumer choice. In some of these
models the equations to solve have no closed-form expression. They in-
clude multi-dimensional integrals which can not be solved analytically.
Simulation methods have been developed to approximate a solution for
these integrals. This paper describes the Standard Halton sequence and
a modification of it, the Shuffled Halton sequence. Both are simulation
methods which can reduce computational effort compared to a random
sequence. We compare the simulation methods in their coverage of the
multi-dimensional area and in their estimation results using data of con-

sumer choice on grocery store formats.
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1 Introduction

In the last decade the use of discrete choice models has increased in modeling con-
sumer choice in many areas like e.g. the choice of mode of transportation, the choice
of energy supplier, the choice between organic or conventional food or brand-choice.
Many of these discrete choice models are based on Probit or some type of Multino-
mial Logit Models (MNL). Some of these models have equations with no closed-form
expression and include multi-dimensional integrals which can not be solved analyti-
cally. Therefore methods trying to approximate a solution for the multi-dimensional
integral became more and more important. One approach is doing that by simula-
tion. While researchers knew the theory of simulation methods, they were seldom
used in practice. One reason for that was the need of high computational effort. With
increasing computer speed this problem is now a minor one, but still calculations of
hours or even days are not uncommon.

The probably most famous simulation method in econometrics is the Monte Carlo
simulation, which was first based on pseudo-random numbers (pseudo-Monte Carlo).
It can be called “pseudo”, because every programmed random number generator
generates the numbers not really randomly but rather by a code. As a consequence
the numbers we get from this programmed routine are called “pseudo-random”.
Alternative simulation methods are the so-called quasi-random number sequences,
which can provide a better coverage of the area of integration (quasi-Monte Carlo).
These quasi-random numbers are even not programmed to appear randomly, but fol-
low a specific predetermined method. One aim of using quasi-random numbers is to
save computational time by using less draws. Train|(2003)) describes some methods of
taking draws. First he introduces pseudo-random draws for e.g. a standard normal, a
uniform or a truncated density and then he describes some variance reduction draws
(quasi-random draws) like antihetics, systematic sampling and Halton sequences.
The focus in this paper is on Halton sequences which were first introduced by |Hal-
ton, (1960). [Train (2000) and Bhat (2001) show that Halton sequences provide better
accuracy with fewer draws and less computational time than pseudo-random draws

do. They both demonstrate that 100 Halton draws provide better accuracy than using



1000 pseudo-random draws. The use of Halton draws for higher dimensional inte-
grals can lead to problems because of the correlation between the generated draws.
Hess & Polak (2003b) showed some modification of the Halton sequence to remove
the correlation between the draws, the so-called “shuffled” Halton sequence. The ob-
ject of this paper is to give a short introduction into the shuffled method of a Halton
sequence and to use and compare the different simulation methods (random, Halton
and shuffled Halton), using a Mixed Multinomial Logit model.

The models are used with panel data on consumer choice of different grocery store
formats (discounters, conventional supermarkets, small and large hypermarkets and
specialized dealer shops). We estimate the choice of the grocery store format with
random coefficients for the intercept and with random coefficients for the variables

age, gender and net income.

The paper is organized as follows. Section 2 gives a small introduction how simu-
lation methods work generally. Section 3 and 4 describe the Standard Halton and
the Shuffled Halton sequence respectively. Section 5 explains the data, the model
used for simulation, compares the different simulation methods and interprets the

influence of the variables on the chosen grocery store formats. Section 6 concludes.

2 Simulation
In general a function of the following form has to be calculated:

P= / S(8)(8)d5 1)

f(B) is a density function and S(3) is the actual function of interest. S(3) can be e.g.
a Mixed Multinomial Logit (MMNL) probability term where the random coefficients
in the model follow the density f(/).! In this case, the function P has no closed-form

and cannot be calculated analytically, but it can be approximated by simulation.

!For these random coefficients e.g. the mean and the variance can be calculated.



Simulation is based on drawing from a density f(/) and replacing a continuous av-
erage by a discrete average (Bhat, 2003). We can get this discrete average by taking

randomly points. The standard routine for simulation is (compare [Train, 2003)

1. Draw a value of 5" from its density function f(3) where r specifies the rth draw
with r = 1 as the first draw and » = R as the last draw. A standard uniform
draw in the 0-1 interval which is the basis of these draws can be transformed

into the assumed density function f(5).
2. Calculate the function of interest S(5").

3. Repeat this process for R (= number of draws) times and average the results,

accordingly we get an estimate for equation (T).

With that procedure the function P in equation (1)) is approximated by
IR
P=2> S0 2)
r=1

This is just the discrete average of & randomly taken points.
In case of the MMNL model for panel data with random coefficients over individuals,
S() is the likelihood function for one individual

T

Si(B:) = [ [ Lisian(B) 3)

t=1
This function is the Multinomial Logit (MNL) probability. Taking the integral over
the density of random terms, if any, we get the MMNL with:

AN exp(BiTiji)
Liji(6:) = ST exp(Fran) (4)

The [K x 1] vector z;;, includes the K explanatory variables from individual 7 for
alternative j at choice situation t. (3; is the coefficient vector to be estimated, includ-
ing fixed or random coefficients. The distribution of the random coefficient vector
can be normal, lognormal, uniform, triangular or of any other form. In case of the
normal density function the mean and variance can be estimated. j(i,t) in equa-

tion denotes the alternative which individual ¢ choose in time period ¢, so S;(5;)



is the conditional probability of individual i’s observed sequence of choices and
P = £ S S(3r) is the simulated unconditional probability of person i’s sequence
of choices. For independently draws from density f, the simulated probability is un-
biased and consistent for the true probability (Sandor & Train, 2004). The variance
decreases as R increases.

The simulated log-likelihood function over all individuals is:

N
SLL =) In(P) (5)

This log transformation of equation (2)) is non-linear, therefore the estimator based on
maximizing SLL in equation (5) is biased. The bias decreases if the number of draws
(R) rises faster than the square root of the number of observations, so the estimator is

consistent and equivalent to the maximum likelihood estimator.

3 Standard Halton Sequence

Halton sequences are one of the most popular quasi-random types (Hess et al., 2003)
and were first introduced by Halton (1960). A Halton sequence is one way to take
draws from a density. To understand how the sequence is generated, we go through

an example (compare Irain, 2003):

1. Take a prime number, e.g. 3.

2. Divide the unit interval, which is between 0 and 1, into 3 (=number of the

prime) equal parts. We get ; and 2. These are the first two draws.

3. Divide each of the three parts again into three equal shares and add the first
part of the share to the breakpoints from the first draws. g, § and § are the next
three draws. Then add the second part of the share to the same breakpoints (we

get 2,3 and 3).

4. Divide each of the nine parts into thirds and follow routine in point 3. We get

: .1 2147258 11019 4 13 22 7 16 25
the following sequence: 3, 5,5, 5: 6,55+ 9+ 37> 272 37 377 257 377 277 377 97



In general to get a Halton sequence we can follow Braaten & Weller (1979). For prime

p we can write any integer g (¢ = 1, ..., G) in terms of the base p:
g=e;p) +---+ep+ep’, where 0<e¢ <p-—1. (6)

So g can be represented in digitized form by the integer string e; - - - e;eo. We take
now the radical inverse of g to the base p by reflecting through the radical point

(= 0.egeq - - - €;) and get the Halton sequence for prime p:

@P(g) = 60p—1 + €1p_2 4+ .4 €jpj+1 (7)

As an illustration we take the prime number 3 and the integer 7. We can express the
integer 7 in base 3 as: 7 = 2 x 3! + 1 x 3% The important parts of g are e; = 2 and

ep = 1, so the digitized form is 21, the radical inverse of it is 0.12 and the seventh

5

draw of the Halton sequence can be written as p3(7) =1 x 37! +2 x 372 =

©

Halton sequences are structured that way, that in one sequence they fill in the gaps
of the previous sequence. This property leads to negatively correlated draws and
therefore it reduces the variance in the simulated log-likelihood function. Further-
more this characteristic of the Halton sequence ensures a better coverage of the multi-
dimensional area of integration compared to random draws. With the better cover-
age less draws need to be taken than with pseudo-random numbers and this reduces
computational time. For discrete choice models Train/ (2000) and Bhat| (2001) show
that Halton sequences provide better accuracy with 100 Halton draws than with 1000
pseudo-random draws.

While for lower-dimensional integration the Halton sequence covers the 0-1 multi-
dimensional space quite good, for higher-dimensional integrals the Halton sequences
can be highly correlated. The consequence is an unequal coverage of the multi-
dimensional area of integration and poor estimation results. Figure(I{shows a scatter-
plot matrix for different two-dimensional Halton sequences for the first 8 primes.

It can be seen that the correlation increases while moving to the south-east, to higher
dimensional Halton sequences. In figure [2| the correlation for dimensions 9 to 16
becomes very obvious.

Table [6| at the end of the paper shows a correlation matrix of the Standard Halton

sequence of 100 draws with primes 5 to 71. The correlations of primes higher than



Figure 1: Scatter-plot matrix of two-dimensional Halton sequences with 100 points

from dimension 1 (prime 2) to dimension 8 (prime 19)
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37 with its next prime is for all listed primes higher than 0.30 in absolute value, the
correlation of prime 67 and prime 71 is about 0.756. This is a quite high relationship
and simulation using Halton sequences with these primes should be carried out with
caution.

The correlation between the prime numbers of higher dimensions is caused by the
identical generating behaviour of the different sequences. For a ratio of two primes
close to an integer value (especially 1) the correlation between these primes increases.
The length of cycles used are then very similar (Hess & Polak, 2003a). This is actu-
ally the reason why primes have to be taken for the sequence. For nonprimes the

sequence can be an exact multiply of each other.

4 Shuffled Halton Sequence

Since high correlation between the prime numbers leads to an unequal coverage of

the multi-dimensional area of integration and therefore to poor estimation results,



Figure 2: Scatter-plot matrix of two-dimensional Halton sequences with 100 points

from dimension 9 (prime 23) to dimension 16 (prime 53)
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especially for higher primes, the Standard Halton sequence is not recommended to
use for an integral with more than six or seven dimensions. There have been different

variations of the Standard Halton sequence to avoid this problem like e.g. Random-

ized Halton draws or Scrambled Halton draws.? (2003) shows that Scrambled

Halton sequences perform better than Standard Halton sequences. Hess & Polak|

(2003b) say that even if the correlation between different primes is lower in general
for the scrambled sequence, it still exhibits a very high correlation for some primes
and in this cases even a pseudo-random number sequence can perform better. Be-
sides this problem the scrambled sequence is hard to calculate and only for the first
sixteen primes the code to generate a Scrambled Halton sequence can be found and
downloaded (from Bhat).

For that reason Hess & Polak (2003b)) present another variation, the Shuffled Halton

sequence. The idea is to use randomly shuffled sequences of the one-dimensional

2For an introduction to these Halton variations see Train/ (2003).




Standard Halton sequence. Using a pseudo-random generator to shuffle the one-
dimensional Standard Halton sequence will not influence the good coverage of the
original one-dimensional sequence, since the order of draws is not important to the
coverage. With different permutations of the one-dimensional sequences we get dif-
ferent multi-dimensional draws. The order of the Standard Halton sequence gets
randomized and with a sequence of length R there are R! different possible permu-
tations. This is even high with a low length of R and therefore the probability of
using the same random permutation to two different sequences is very close to zero.
With this process new multi-dimensional sequences will always differ because of the
use of a pseudo-random generator. Figure 3| shows a scatter-plot matrix for differ-
ent two-dimensional Halton sequences for dimensions 9 to 16. As one can see for
this generated Shuffled Halton sequence the correlation is far less compared to the
correlation of the Standard Halton sequence (see figure [2).

Table[7]at the end of the paper shows a correlation matrix of one Shuffled Halton se-
quence of 100 draws with primes 5 to 71. This is just one generated shuffled sequence
out of 9.33 101" possible sequences per dimension, so the correlation is not fixed on
the values in Table[Z]

Nearly no correlation in the shuffled sequence is higher than 0.3 in absolute value
except of two (prime 17 - prime 37 and prime 13 - prime 59). Hess & Polak| (2003b)
computed the correlation for primes 43 and 47 over 500 runs with 100 draws. The
mean absolute correlation is 0.0876 (variance of 0.0045) compared to a mean absolute
correlation of 0.1075 (variance of 0.0236) for the Standard Halton sequence. This is
very similar to the correlation of pseudo-random number sequences. Figure #shows
a scatter-plot of four runs with primes 67 and 71 and Table 4| the according corre-
lations. We can conclude that the correlation can be significantly reduced by using
a shuffled version of the Halton sequence. This leads to a better coverage of the
multi-dimensional area of integration and to better estimation results even with high

dimensions.



Figure 3: Scatter-plot matrix of two-dimensional Shuffled Halton sequences with 100

points from dimension 9 (prime 23) to dimension 16 (prime 53)
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Table 1: Correlation between Shuffled Halton sequences of 100 draws of four runs
with primes 67 and 71
prime 67
1st run 2nd run  3rd run 4th run
Ist run -0.0553 -0.0584 0.0804 0.0841
2nd run | -0.0721 0.0636 -0.0236 0.1675
3rd run -0.0833 -0.1038 0.1531 -0.1326
4th run -0.0995 -0.0833 -0.0765 0.0210

prime 71




Figure 4: Correlations of four runs of two-dimensional Shuffled Halton sequences

with 100 points with primes 67 and 71
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5 Empirical application

5.1 Data

The different simulation methods are used on a household panel data set which was
provided by the GfK Group. The original data set contains a representative sample
of 23,466 households who reported their purchases on various consumer goods be-
tween 1st January 2002 and 30th June 2006 in Germany. Because of the amount of
data and computational speed limits a random subset of 140 households with pur-
chases on fruits and vegetables between the 1st January 2006 and the 30th June 2006
is used. The variables included in the simulation process are the chosen grocery store
format (like discounters, conventional supermarkets, small and large hypermarkets
and a specialized dealer shop), age, gender and net income. The total number of
observations in the data set is 4,288. In the six months of observation every house-
hold visited a grocery store 30.63 times. The summary statistics for the variables are

presented in Table

Table 2: Summary statistics of the used variables

Variable Description Mean St.dev.

gender gender of the 072 0.45
purchasing person
Male = 0, Female =1

age age of the 755 298
purchasing person

11 categories
7.55 =~ 52 years
net income net income of the 693 270
purchasing person
6.93 ~ 1115 Euro

Table 3|shows the grocery store format shares of the households in the sample.

11



Table 3: grocery store format choices

Discount stores 49.63 %

Conventional supermarkets 15.88 %

Small hypermarkets 12.29 %
Large hypermarkets 14.95 %
Specialized shop 7.25%

5.2 Model

A Mixed Multinomial Logit model (MMNL) is used to analyze the data. Contrary
to a Multinomial Logit model (MNL), the MMNL allows for random taste variation
across decision-makers. This implies that individuals with the same observed char-
acteristics do not need to have the same “tastes”. Our model allows correlation in
unobserved factors over time which takes the nature of the panel data into account.
The strong assumption of “independence from irrelevant alternatives” (IIA) in the
MNL model does not apply in the MMNL model (Revelt & Train, 1998). The MMNL
is highly flexible and can approximate any random utility model (McFadden & Train,
2000).

In this paper the model described in equations (2)-(5) is used with the three explana-
tory variables (age, gender and net income) assumed to be random in model M1.
Dummy variables for every choice possibility were generated to include an alter-
native specific random intercept. Besides the model described in section 2| we as-
sume that all coefficients can differ between all choice possibilities, that means that
Bij # Bik ¥V j # k, where j, k can be discount stores, conventional supermarkets,
small hypermarkets, large hypermarkets or specialized shops. Furthermore we al-
low for correlation between the coefficients according to the particular variable or
the intercept.

It can be assumed that the coefficients for all variables can differ between the individ-
uals and don’t need to be restricted to have the same sign for the whole population.
Since they can be either positive or negative, a Normal distribution is used for all

coefficients. To identify the model we use the discount store as the base category, so

12



all coefficients for that choice are normalized to zero. This leads all coefficients to
interpret relative to the discount store.

With one choice normalized to zero, three variables, a constant and five choice pos-
sibilities we have at all 16 different coefficients. Among with Hess et al. (2006) this
is likely the highest simulated multi-dimensional integral compared with different
types of Halton sequences in a MMNL.

We estimate the model using the three different simulation methods: Random se-
quence, Standard Halton sequence and Shuffled Halton sequence. Since the first
draws of the Halton sequence are highly correlated, we follow [Train (2000) and drop
the first 50 draws. For the Halton and the shuffled Halton sequence we use the first 16
prime numbers. To compare the estimation results we use draws of 50, 100, 200 and
500 for every simulation method (M1). Using the routine of Hole| (2007) within Stata
for the Standard Halton sequence and modifications of it for the random sequence
and the Shuffled Halton sequence, we can estimate the Model with the different sim-
ulation methods.

For an additional comparison we add further models. We let the random coefficients
vary from one to four (models M2-M5) with simulation draws of 50, 100, 200, 500
and 1000. While using the random sequence as a basis, we compare the results of
the Halton and the shuffled Halton sequence in their performance. For the Halton
and the shuffled Halton sequence we use first the initial and then higher primes. Our
aim is to show that the Halton sequence with higher primes performs worse than the
shuffled Halton sequence with higher primes due to a worse coverage of the multi-

dimensional area.

5.3 Performance

Tables show the estimation results of our first model M1. “Sup” to “Special” are
the shortcuts for the alternative specific coefficients for the grocery store formats. The
other variables are the respectively grocery store specific differences of gender, age
and net income in relation to the discount store. Table [8|illustrates the results using

a random sequence. Compared to the other two tables (Halton and shuffled Halton)

13



it can be seen that the log likelihood varies less and becomes quite stable after 200
draws. This is not the case for the other two simulation methods contrary to our
expectations. For nearly all coefficients, except e.g. “Age Large hyp”, the coefficients
get not robustly estimated. The differences between the used draws inside of one
simulation method are mostly higher than 0.1. The differences between the models
are even higher. Therefore we can’t conclude that one model is superior to another
one. The differences of the coefficients between the random sequence and the Halton
sequence are much higher than the differences between these two models compared
to the shuffled Halton sequence.

To find an explanation we analyze the other 4 models (M2-M5) with 1 to 4 random
coefficients and varied prime numbers.

Model M2 (see Table includes only one random coefficient for the alternative
specific variable “Supermarket”. For the standard and shuffled Halton sequences we
use for each two different primes, 2 and 11, for a better comparison. The random
model gets fairly stable with 500 draws for the log likelihood and the coefficient,
while the Halton sequence with the prime number 2 is already quite stable with 50
draws. Using the Halton sequence with the prime 11, we get good results with 100
draws. With the shuffled sequence models with prime 2 and and also with prime 11
we get stable results with 200 draws for the log likelihood and with 500 draws for the
coefficient. The deviation for the coefficient for less draws is quite high. This result is
very unexpected.

What happens if we use two random coefficients (model M3), one alternative specific
variable for the “Supermarket” and one for “Small hypermarkets” (see Table[12). We
get similar results as for model M2 with one random coefficient. Most sequences lead
to fair results with 200 draws, the performance of the random model is a bit worse
than in M2 and the shuffled sequences lead again to bad coefficient results up to 200
draws.

For the higher dimension models M4 and M5 with three respectively four random
coefficcients the results do not change very much. The estimation results for the
Halton sequence with higher primes (11, 13 and 17 for model M4 and 11, 13, 17 and

19 for model M5) is worse compared with the models using the first primes.

14



Table[lists the highest correlation between the draws for the different sequences. For
the Halton sequence with high dimension primes the highest correlation is always
between the last two used primes, 17 and 19, which are used in M5. So the poor
performance of model M5 is not surprising. The differences in the shuffled Halton
sequences are at least stable at around 500 draws and have the highest deviation of
the estimated coefficients of all models. This is rather strange, since we expected to
get a better performance with the shuffled sequence compared to the standard Halton
sequence. A deeper view onto the sequences and onto the correlations between the
different draws exhibits some interesting relationships. Even if the mean absolute
correlation is less for some shuffled sequences compared to some standard Halton
sequences, it’s not guaranteed that the model performs better. It's more likely that
e.g. if just one single correlation between two sequences is higher in the shuffled
model than in the standard Halton model, even if the mean absolute correlation is
smaller, the model with the single higher correlation will perform worse. That’s the
case for some values of the shuffled and standard Halton sequences and it even holds
for some random sequences. For proving that statement further analysis has to be

carry out. Table 5shows the mean absolute correlation of the different sequences.

Table 4: Highest correlation between draws for the diffferent sequences

Random | Halton Shuffle | Halton  Shuffle
primes = 2,3,5,7 primes =11,13,17,19
(primes) (primes) | (primes) (primes)
50 -30.58 -5.29 -9.58 -51.96 18.98
(5-7) (2-3) (17-19) (11-13)
100 27.14 2.57 11.91 -23.54 -17,92
(3-5) (2-5) (17-19) (13-17)
200 -15.42 1.27 12.62 -10.60 -8.51
(5-7) (2-7) (17-19) (11-17)
500 -6.68 -0.49 9.40 -2.26 -6.09
(2-3) (2-7) (11-17) (11-17)
1000 4.45 0.28 -3.59 -1.86 3.45
(3-7) (2-3) (17-19) (17-19)

The standard Halton sequences do very well for small primes and also for high

15



Table 5: Mean absolute correlation between draws for the diffferent sequences

Halton Shuffle | Halton  Shuffle

primes = 2,3,5,7 | primes =11,13,17,19
50 1.86 5.39 16.22 13.83
100 0.92 5.09 10.43 10.20
200 0.70 6.00 2.21 5.54
500 0.23 3.14 1.06 2.50
1000 | 0.12 2.10 0.86 1.42

primes with more than 200 draws. In our case the shuffled sequences outperform
only in two cases the standard Halton sequences (high primes with 50 and 100 draws),
but in these two cases the shuffled models perform worse. In general for our models
we need at least 200 or better 500 draws for the different kinds of the Halton se-
quences (shuffled and standard). And with this amount of draws these models do

not outperform the random sequence models.

5.4 Importance of the coefficients

With the discount store as the base category all the estimated coefficients have to be
interpreted with respect to the discount store. Since in all our models the direction of
the estimators are the same, we take a look at Table[J]for interpretation. The intercepts
have all a negative sign, so most people prefer the discount store for fruits and veg-
etables, followed by the large hypermarket, the supermarket, the small hypermarket
and the specialized dealer shop. The gender variable uncovers that women prefer
small hypermarkets most, followed by the specialized dealer shop, the supermarket
and the large hypermarket. According to the results, women don’t fancy discount
stores very much. The age variable shows that younger people prefer the discount
store and older peoples preference is the specialized shop and the supermarket. The
influence of net income to the chosen store format is quite consistent with our expec-
tations. People with higher income prefer the specialized dealer shop most, followed
by a small hypermarket, but they prefer a discount store compared to a large hyper-

market.

16



6 Conclusion

The increasing use of discrete choice models with multi-dimensional integrals which
can not be solved analytically requires simulation methods to approximate a solu-
tion for these integrals. Simulation with generated pseudo-random numbers are very
common, but there are other simulation procedures to get better simulation results
in a shorter time. We introduced the Halton sequence and a extended version, the
shuffled Halton sequence. We compared these simulation methods (random, Halton,
shuffled Halton), using a Mixed Multinomial Logit Model with 1 up to 16 random co-
efficients. The model uses panel data about purchases on fruits and vegetables of 140
households between the 1st January 2006 and 30th June 2006 in Germany with a total
of 4,288 observations. The estimation results are contrary to our expectations that
the Halton sequence needs less draws to get stable results compared to the random
sequence. And already with using primes of 11 or 13 the results are not satisfactory.
The results are even more confusing since the shuffled sequence leads to quite large
differences in the estimation of the coefficients for less than 200 draws. A detailed
view on the generated sequences, especially on the correlations between the different
sequences within a simulation method, shows a possible reason for that behaviour.
Not the mean absolute correlation is the driving force to get better estimation results,
but just one single correlation between two sequences within a simulation method.
This is not unreasonable since that can lead to an unequal coverage of the multi-
dimensional area of integration and therefore to poor estimation results. By using
simulation methods for at least two-dimensional integrals, we propose to inspect the
correlation of all generated sequences. Further research is required to verify that con-

clusion.

17



References

Bhat, C. R. (2001). Quasi-random maximum simulated likelihood estimation of the
mixed multinomial logit model. Transportation Research Part B, 35, 677-693.

Bhat, C. R. (2003). Simulation estimation of mixed discrete choice models using ran-
domized and scrambled halton sequences. Transportation Research Part B, 37, 837-
855.

Braaten, E. & Weller, G. (1979). An improved low-discrepancy sequence for multidi-
mensional quasi-monte carlo integration. Journal of Computational Physics, 33(2),
249-258.

Halton, J. H. (1960). On the efficiency of certain quasi-random sequences of points in
evaluating multi-dimensional integrals. Numerische Mathematik, 2, 84-90.

Hess, S. & Polak, J. (2003a). An alternative method to the scrambled halton se-
quence for removing correlation between standard halton sequences in high di-
mensions. ERSA conference papers ersa03p406, European Regional Science Asso-
ciation. available at http:/ /ideas.repec.org/p/wiw/wiwrsa/ersa03p406.html.

Hess, S. & Polak, J. (2003b). The shuffled halton sequence. CTS Working paper, Centre
for Transport Studies, Imperial College London.

Hess, S., Polak, J]. W,, & Daly, A. (2003). On the performance of the shuffled halton
sequence in the estimation of discrete choice models. European Transport Confer-
ence 2003.

Hess, S., Train, K. E., & Polak, ]J. W. (2006). On the use of a modified latin hypercube
sampling (mlhs) method in the estimation of a mixed logit model for vehicle choice.
Transportation Research Part B, 40, 147-163.

Hole, A. R. (2007). Fitting mixed logit models by using maximum simulated likeli-
hood. Stata Journal, 7(3), 388—401.

McFadden, D. & Train, K. (2000). Mixed mnl models for discrete response. Journal of
Applied Econometrics, 15, 447-470.

Revelt, D. & Train, K. (1998). Mixed logit with repeated choices: Households’ choices
of appliance efficiency level. The Review of Economics and Statistics, 80(4), 647—
657.

Sandor, Z. & Train, K. (2004). Quasi-random simulation of discrete choice models.
Transportation Research Part B, 38, 313-327.

Train, K. (2000). Halton sequences for mixed logit. Economics Working Papers E00-
278, University of California at Berkeley.

Train, K. E. (2003). Discrete Choice Methods with Simulation. Cambridge University
Press.

18



9540  LIF0  FIE0  9%00  680°0- 6I00-  TZ00  0S8€0 0200 9¥00-  F6I'0 €200 4400  SCO0-  T200-  SIO0 000 12d
9190  46V0 0810  £90°0-  980°0- /Z£00- €610  €ST0 €000 1610  8¥00-  88T'0 €00 €600 0€00-  910°0- L9d
0980  LFO 9500 860°0- IIT'0-  £000  T9€0  §ITO SE00-  8F00  $000 9000 9100- 1100 8000 19d
6660  TCI'0 9400~ 60T°0- ZZ00-  0STO  £Z€O0  £90°0-  9¢T'0 #0000 €200  0000-  SO00 9100 66 d
¥€0  T900  TCO0-  T€O0-  FIO0 6600 FT00- €500 6810  9ET0 €00  8¥00  THOO ggd
9¢v'0  4TC0  €S00-  SOTO 8000  T6EO  FITO <400~ T100-  9900- 6900 €000 vd
6990  9€T0  9%00- 60C0  OCI'0 €900  ¥400 6V00-  ¥600  ZFO0  TFO0- evd
€v€0  0T10-  TI00 FFO0-  9€00 2000  ¥EO0  8¥00- €200  ¥EO0- wd
060°0- ZET'0-  890°0- 0420  1S00  Z€00  0€00-  090°0-  120°0 Led
QO¥0  1CI0 €500  0600-  II00  8S00-  I100-  TZ0°0- 1ed
9800- €000 9000 0/00- 9100  0€00-  850°0- 6z d
8900- 8100- 0100  S200  ZI00  STI00- gzd
IET0-  S000-  0€00- 0€00-  ZI00 61d
€¥0°0-  4100-  0€00-  0I00 1d
6000  TO00- 10070 erd
0100  8£0°0- rrd
£v0°0- Ld
29d 19d 65 d ¢gd v d erd wd Led 1ed 6cd ez d 61d d crd rrd Ld qd

£ 03 G sowtid yjim smerp (0T JO seduanbas uojfe] prepueig usamiaq UOTIR[OIIO)) 19 d[qe],

19



£T00-  TOO0-  ¥90'0 0900 0SO0-  TZ00  880°0- T0T0- OFO0- <00  €ST0  9IT'0- €200-  6¥00  €¥00- 8600  LI00- 12d
YET'0  0£00- IFL0- 4610  650°0- 1900 8900 8600  ZZZ0O  TIO0- 8800  S0ZO-  I€00  9100-  €€T0-  FEO0- L9d
€910  £900- T900-  921'0- £IU'0- TST'O-  CIT0  ZPO'0- #80°0-  0ZI'0-  SFPI'0  TI200 ¢SO0  8E00-  ZETO- 19d
1€00- IST0- 0400  8¥00 THO0- €10  6FI0-  6€00- 1€00-  9¥T0  €0€0  ¢Z00  I€00  $FO0 66 d
€00-  SS00  6¥00  FSO0  €ST0-  €eI0-  €I€0  FLI0  0200-  $SO0 0800 900  €20°0- ggd
960°0- 8900  TIO0  €6000-  S00  TIO0 8600  SII'0-  6000-  $STO  $F00-  ¥80°0- vd
760  ¥IT0-  T2l'0 9000  $900 FFOO-  0SO0  Z000- 8400  6/00-  T90°0- evd
€00 /810- ¥600-  ¥8T0 6¥00- S8T0- 900  ¥600 9600- 9100 wd
€60°0-  8CI'0-  ZIT0- 0800  6I€0- T0T'0- OFO0-  €£0°0- ¥000- Led
1100  29T°0- I100- 9200 SFO'0- ¢SO0  SFI0- 6200 1ed
0700- 8070 8500  ISO0  S600-  SIT0-  620°0- 6z d
¥50'0- 400 00  FHO0  9400-  6€T0- gzd
SI00  TI00- €00  SLTO-  880°0- 61d
8100  €0T0 0F00-  ¥SO'0- 1d
$90°0- 4600  600°0- erd
80T0-  S60°0- rrd
8Y1°0 Ld
29d 19d 65 d ¢gd v d erd wd Led 1ed 6cd ez d 61d d crd rrd Ld qd

IZ 03 G sowtad ypim smerp (0T JO saduanbas uojfe[] papnysg usamjiaq UOTIe[d1I0)) 1/ d[qeL.

20



01¥'SSTH- SET LSTH- 609°L91%- P EIIP- pooyrEI 807
TIT0  IET0 | €800 SOT'0-| 00T'0 SIEO0-| SOT'0  £9€0- [eadg awoout 39N
900  T600- | TG00 1900-| 6F00 1ST0-| 0%00  1€T0- | dAy aSreT swodur 3oN
6800  99¢0 | S600 06T0 | 6V00 I¥CO | 9%00 0810 | dAY [rewg swodur 3oN
8600  L¥00 | 6V00 0900 | 9¥00  FIO0 | €900 €000 dng swoour JoN
T6I'0 IS0 | €0TO0 4860 | 010  9€60 | STI'0 10670 [eradg 28y
IS00 6810 | €500  ¥TI0 | T¥O0 8010 | ¥€00 2600 dAy s3xe7 83y
8600  STT0 | 9900 IS0 | S900  66€0 | 900  SECO dAy [rews a8y
8F0'0 190 | €500  ¥SH0 | I¥00 9610 | CTHOO  SITO- dng a8y
610  ¥260 | 0ZF0 99T | 8640  €T€T | 9860  16TT [eradg 1opus)
6920  6€40 | €970 8560 | T6CO0  T1ZTO | 19T0 €TI0 d4Ay a8re ropusn
98%°0  TLLT | 69F0  996T | ¥6S0  084T | 8050  88€T d4y [rewg 1opusn
87S0 €160 | S8IF0 2990 | ¥9C0  84T0 | 1£T0  ISTO dng repusn
VT FC901- | L9%1 9046~ | WCUL  LLLL-| 6IUT 0LTL- [eradg
LEV0  8€9°1- | 68V0  S96'T-| €S0 L0 | SIFO  1TH0 d4Ay a8re]
SFI'T  08C'8- | ZPOT  L0S6-| 0TI  6646-| SSOT  96T8- d4y [rewg
8PS0 TELS- | THI90  FI6'9-| 950  IFTH- | 06V0  6007F- dng

WIHPIS  JR0D | WIF PIS  JR0D | WP PIS  J0D | MY PIS  §R0D S[qeLIiep
00S 00T 00T 0S SMeIp JO I9quINN]

TN [PPOW - POYIdW UOTIe[NWIS , WOPURL,, 3} YIIM S}[NSaI uonewnsy :g S[qe[,

21



1LT 6STH- L8S"LETY- 80°C0TH- LVE €80T~ pooyrEI 807
YIT0 6560 | 7800  ZTHF0 | 4600  S990 | 0600  CTLO [eadg awoout 39N
IS00  960°0- | S¥00  THILO- | OPO0  T900- | SHO0  SE00 | dAyoSxe swodureN
¥80°0  S4T0 | T900  T8E0 | 8500  S810 | ZP00  S€T0 | dAY [rewg swoour N
TL00  T00 | 6900  9ST0 | £S00 €100 | TZ00 2000 dng swoour JoN
7600  TGLO0 | £800  9¥90 | 6500  OPE0 | 90I'0  SSS0 [eradg 28y
00 99T°0 | 8€00  SZTO | ££00  90TO | €900 88070 dAy s3xe7 83y
1800  6I€0 | ¥00  89€0 | 9900 920 | 0800  €F1°0 dAy [rews a8y
8F0'0  1/4€0 | €F00  69T0 | ¥E00 9400 | 0F00 €600 dng a8y
LTV0 SOT'T | 68F0  IZ8T | 9460  6V0T | 6FS0 0890 [eradg 1opusn)
680 7840 | €¥T0O0  I8S0 | SSTO  8F0 | S9T0  TLEO dAy a8re ropusn
VCF0  9461 | TSEO 8991 | 64860  6IFT | CIFVO0  9€TT d4y [rewg 1opusn
600  TLT | 19T0 780 | SPCO0  T9T0- | ¥LTO  1SL0- dng 1opusn
9¢T'T  CICTI-| 94TT  €I190I-| 60T  0€9T1I-| £ZIT'T  OFL'6 [eradg
8660 9ILT- | TEF0  60T'EC- | 6VF0  S6LE- | 1480 9€TE- dAy a8re]
¥6L0 1088 | T80 9T€8- | 9680  6V0°6- | 040  980°8- d4y [rewg
150 6406 | 8IS0 9TFF- | I8F0  II€E- | S9F0  €STT- dng

WHPIS  JP0D | WP PIS  JR0D | MY PIS  JR0D | MY PIS §R0D S[qerLiep
00S 00T 00T 0S SMeIp JO IdqunN

TN [PPOW - POYIdW UOTIe[NWIS , UOI[EH,, 9} YIIM S}NSaI UOTIewnsy 6 d[qelL.

22



$59'891¥- 66L'8ETH- €02°601¥H- 876°S80%- pooyrEI 807
QET'0  9TC0 | SL00  8ITO0 | ZITO  ¥%00 | 6400  800°0- [eadg awoout 39N
1900 1800-| <CSO0  9200- | 4400  STI'O- | 1900  0S0°0- | dAyoSxe swoduroN
8900  68€0 | 9900  9FS0 | S00  ¥LS0 | 9500  T6¥0 | dAy [rewgswodur N
$900  6V00 | THO0  6€C0 | 0S00 8910 | TIFOO  €90°0- dng swoour JoN
60  80€0 | SIT0  ¥640 | £9T0 8880 | 9II'0 9040 [eradg 28y
9600 ¢Z00 | ¥00 1610 | SS00  92C0 | 0S0°0  TSTO dAy s3xe7 83y
9810  €F00 | 9%00  THOO0 | 9F00  THOO- | 6V00  €50°0- dAy [rews a8y
0800  €0€0 | 8F00  SZ£0 | €00  0S€0 | TPOO  ZLTO dng a8y
60T  €IF0 | 9990  08TT | SZ90  1S8F | TL90  TEFV [eradg 1opusn)
6550  60S0-| €970  £489°0- | ¥.T0  ¥CTO- | ¥ILO-  HILO- dAy a8re ropusn
8190  ¥SF0 | 6650  €4T0 | SSF0  ¥680 | T8E0 1660 dAy [rews 1opusn
1990 6140 | SPE0 8001 | ZITO 9201 | 12C0  9¢6'1 dng repusn
6V8'1T 8694~ | THFT  T90°€I-| T8LT  ITHFI-| 66ST  OF6TI- [eradg
1860 1S6'1-| €SP0 /88T | SPF0O  8Tee- | 0850  LT8€- dAy a8re]
6£CC  890°9- | 6£40  S949- | ¥CS0  8FF9- | 8090  C0SS- d4y [rewg
9460  FS€'S-| 2090  THOL- | OSFO  S009- | 660  €CSF- dng

WH PIS  JR0D | MY PIS JR0D | WP PIS  JR0D | WP PIS  FO0D d[qerLriep
00S 00T 00T 0S SMeIp JO IdqunN

TN [9POW - POYIaW UOHR[NWIS ,UO}BH] PIHNYS,, dU3} YILm S}nsax uopewnsy 01 o[qeL

23



Table 11: Estimation results of model M2 - one random coefficient

Random  Halton Halton Shuffle Shuffle
p=2 p=11 p=2 p=11

Number of draws 50
Log likelihood -6195.348 -6191.359 -6197.747 -6191.334 -6192.880
Sup -1.963 -2.042 -1.773 -1.455 -1.695
Number of draws 100
Log likelihood -6193.808 -6191.963 -6190.724 -6189.469 -6197.682
Sup -2.391 -2.068 -2.168 -1.768 -1.831
Number of draws 200
Log likelihood -6193.490 -6191.858 -6190.685 -6191.659 -6191.319
Sup -2.221 -2.114 -2.178 -1.669 -1.787
Number of draws 500
Log likelihood -6191.073 -6191.662 -6190.939 -6191.965 -6192.428
Sup -2.161 -2.111 -2.136 -2.116 -2.136
Number of draws 1000
Log likelihood -6191.967 -6191.759 -6191.262 -6191.693 -6191.561
Sup -2.141 -2.107 -2.119 -2.158 -2.108
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Table 12: Estimation results of model M3 - two random coefficients

Random  Halton Halton Shuffle Shuffle
p=23 p=11,13 p=23  p=1113

Number of draws 50
Log likelihood -5748.563 -5751.844 -5755.472 -5762.386 -5753.277
Sup -2.745 -2.147 -2.283 -1.534 -1.771
Small hyp -2.945 -1.866 -2.414 -2.609 -2.725
Number of draws 100
Log likelihood -5739.551 -5739.811 -5742.100 -5739.607 -5753.977
Sup -2.841 -2.302 -2.283 -1.670 -1.688
Small hyp -2.519 -2.574 -2.295 -2.764 -2.268
Number of draws 200
Log likelihood -5739.407 -5742.028 -5737.943 -5743.663 -5740.123
Sup -2.495 -2.455 -2.429 -2.171 -1.498
Small hyp -2.538 -2.441 -2.333 -2.608 -2.559
Number of draws 500
Log likelihood -5740.982 -5742.163 -5740.999 -5741.960 -5739.112
Sup -2.409 -2.238 -2.345 -2.302 -2.272
Small hyp -2.283 -2.446 -2.319 -2.519 -2.524
Number of draws 1000
Log likelihood -5741.747 -5742.671 -5742.459 -5741.341 -5741.787
Sup -2.178 -2.212 -2.226 -2.377 -2.365
Small hyp -2.421 -2.419 -2.449 -2.381 -2.348
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Table 13: Estimation results of model M4 - three random coefficients

Random  Halton Halton Shuffle Shuffle
p=2,3,5 p=11,1317 p=235 p=11,1317

Number of draws 50
Log likelihood -5266.491 -5281.751 -5286.768 -5309.940 -5271.793
Sup -0.988 -2.637 -3.440 -1.547 -1.472
Small hyp -4.058 -1.551 -1.599 -2.098 -2.553
Large hyp -0.814 -0.783 -1.219 -1.307 -1.025
Number of draws 100
Log likelihood -5253.562 -5259.680 -5255.974 -5304.329 -5256.807
Sup -2.127 -2.744 -3.007 -2.630 -1.668
Small hyp -2.831 -2.202 -2.012 -1.267 -2.508
Large hyp 1555 -1.365 1122 -1.523 -1.261
Number of draws 200
Log likelihood -5247.030 -5246.615 -5255.175 -5270.926 -5246.925
Sup -2.629 -2.303 -2.941 -2.163 -1.708
Small hyp -2.617 -2.428 -1.809 -1.640 -2.380
Large hyp -1.497 -1.266 -1.208 -1.314 -0.878
Number of draws 500
Log likelihood -5247.267 -5245.633  -5247.222 -5245.646 -5241.692
Sup -2.440 -2.370 -2.210 -2.585 -2.439
Small hyp -2.178 -2.525 -2.578 -2.475 -2.765
Large hyp -1.404 -1.312 -1.291 -1.466 -1.356
Number of draws 1000
Log likelihood -5245.511 -5248.607 -5248.350 -5254.662 -5244.442
Sup -2.250 -2.176 -2.396 -2.149 -2.234
Small hyp -2.582 -2.479 -2.356 -2.674 -2.684
Large hyp -1.412 -1.383 -1.140 -1.361 -1.344
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Table 14: Estimation results of model M5 - four random coefficients

Random

Halton

Halton

Shuffle

Shuffle

p=2,3,57 p=11,13,17,19 p=2,3,57 p=11,13,17,19

Number of draws 50

Log likelihood -4329.232  -4297.051 -4316.397 -4335.803 -4330.395
Sup -1.943 -2.977 -2.701 -1.574 -2.243
Small hyp -2.490 -2.584 -2.159 -2.756 -1.763
Large hyp -1.662 -1.828 -1.901 -2.011 -1.420
Special -2.776 -2.989 -3.270 -3.586 -1.859
Number of draws 100

Log likelihood -4284.558 -4291.312 -4242 447 -4307.689 -4264.594
Sup -2.213 -1.974 -2.508 -1.994 -2.365
Small hyp -3.210 -2.242 -2.746 -2.492 -2.400
Large hyp -2.168 -1.222 -1.696 -2.105 -1.359
Special -2.776 -1.819 -3.319 -2.554 -2.312
Number of draws 200

Log likelihood -4266.697 -4264.125 -4248.160 -4269.429 -4256.240
Sup -2.998 -2.176 -2.347 -1.888 -2.420
Small hyp -1.959 -2.290 -2.734 -1.857 -2.040
Large hyp -1.854 -2.171 -1.517 -2.366 -1.301
Special -3.524 -3.315 -2.948 -2.746 -3.257
Number of draws 500

Log likelihood -4242 530 -4234.116 -4238.551 -4241.001 -4237.217
Sup -2.826 -3.162 -2.218 -2.753 -3.539
Small hyp -2.609 -2.414 -2.890 -2.862 -2.478
Large hyp -1.992 -2.118 -2.095 -2.115 -1.803
Special -3.419 -3.100 -3.222 -3.627 -3.045
Number of draws 1000

Log likelihood -4225.988 -4228.463 -4230.798 -4224.732 -4240.638
Sup -2.672 -3.184 -2.948 -2.825 -2.448
Small hyp -3.098 -3.144 -2.925 -3.226 -2.655
Large hyp -1.746 -1.927 -1.912 -1.993 -1.964
Special -3.639 -3.978 -3.310 -3.535 -3.286
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