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Chapter 1

Introduction

1.1 The Problem

One of the main tasks in statistics is to allocate an appropriate parametric
distribution function to a given set of data. Statistical methods to do it include
goodness-of-fit testing, selection procedures and model selection testing.

In all these methods a divergence measure has to be defined to describe
the goodness-of-fit of the model to the data. A great number of divergence
measures have been proposed in the literature such as f-divergences, Breg-
man divergences, a-divergences, Kullback-Leibler discrepancy, Kolmogorov-
Smirnov discrepancy, Anderson-Darling discrepancy, Cramér-von Mises dis-
crepancy and so on, see Basseville (2010) for a summary. Clearly, all of them
may be used to construct goodness-of-fit tests, selection procedures or model
selection tests.

In the context of goodness-of-fit test for the distribution function, the
Kolmogorov-Smirnov discrepancy is used, for instance, in Durbin (1973, 1975,
1985), Khmaladze (1981) and Wooldridge (1990). These tests were extended to
the case with right censored data by Sun (1997), Nikabadze and Stute (1997).
For the case with covariates in random design settings, Andrews (1997) used
the Kolmogorov-Smirnov distance, while Li and Tkacz (2011), Ducharme and
Ferrigno (2012), Rothe and Wied (2013) applied the Cramér-von Mises dis-
tance to construct tests. Tests for conditional density functions based on the
Kullback-Leibler information criterion and for conditional distributions have
been considered in J.X. Zheng (2000) and X. Zheng (2012).



In terms of model selection procedures for density functions, the “Akaike
information criterion” (Akaike (1973)) and “Bayesian information criterion”
(Schwartz (1978)) are used mostly, that are both based on the Kullback-Leibler
information criterion, see Claeskens and Hjort (2008) for a summary.

Generally, selection procedures are simple to apply, but it does not give the
degree of confidence in the choice, while the model selection testing can control
the extent of the certainty of the decision by adjusting the confidence level. In
terms of the model selection testing between two parametric density models,
the Kullback-Leibler information criterion is the most investigated divergence
measure in the literature. The resulting test is the so-called likelihood ratio
test, which was considered for instance by Nishii (1988), Vuong (1989), Sin
and White (1996), Inoue and Kilian (2006), Shi (2015a). These tests have
also been generalized to moment-based models by Kitamura (2001), Chen et
al. (2007) and Shi (2015b). As Chen et al. (2007) pointed out alternative
discrepancy measures that measure goodness-of-fit might be preferred in some
applications.

In practice, which criterion to choose should depend on the aim of the
estimation. In this thesis, we are interested in the estimation of the distri-
bution function of the data. Thus, it is reasonable to use some criterion like
Kolmogorov-Smirnov discrepancy, Anderson-Darling discrepancy, Cramér-von
Mises discrepancy between the distribution functions. However, model selec-
tion tests based on these discrepancies were seldom used in the literature with
some exceptions. For instance, Liebscher (2014) proposed a model selection
test based on the Anderson-Darling distance in the case of i.i.d. data. For the
case with covariates, Ng and Joe (2016) extend Vuong’s (1989) tests with a gen-
eralized measure of distance, however, lots of measures are not included among
others Kolmogorov-Smirnov discrepancy, Anderson-Darling discrepancy and
Crameér-von Mises discrepancy. Recently, Chen et al. (2015) proposed a test
based on the Cramér-von Mises distance.

In this thesis, we will extend the model selection tests in Chen et al. (2015)
to the case with multi-dimensional covariates and right random censoring in
a fixed design setting. Both censoring and fixed design in the context of the
model selection from two competing distribution function models were rarely

considered before, thus, this thesis can fill this gap.



Let z € R? represent the d dimensional vector of covariate with d € N
and X, € R the random variable at the covariate value z. Without loss of
generality, we assume 2z € [0,1]?. The distribution function of X, is denoted
as H(-|z). Let 2, ..., 2z, be the predetermined covariate values (fixed design).
In particular, we assume ny = nd with 7ip € N and the covariate values are

equidistant grid points on [0, 1]%, i.e.

11 g iq , . . .
{21,2’2, "‘7Zn0} = {(ﬁ—, ﬁ_’ ceey ﬁ_ 01 S 11500y 2g S N, 1, ...,%q € N;¢.
0 "0 0

Denote Xj,...,X,, as the corresponding independent random variables in-
stead of X,,..., X, . Further, for each j € {1,....,m — 1} with m € N, let

(Xjno+1s Zjmg+1)s -os (Xjmgtnos Zjmotng) b€ 1.i.d. copy of
(X1,21), 0y (Xngs Zng )
ie. foranyi€ {1,...np},
Zj = Zng+i = -+ = Z(m—1)ng+i

and X, Xpo1is -y X(m—1)mo+i are i.i.d. random variables. Let n := ng - m be

the sample size, then we have the data set:
(Xh 21)7 cey (Xna Zn)

with ng different covariate values and m observations at each covariate value,

ie.
(lezl)v (X2722)7 L) (Xnoazno)7
(Xn()+17 Zl)a (Xno+2a 22)7 ey (X2n07 Zno)a
(X(m—1)~n0+17 Zl)7 (X(m—l)-n0+27 22)7 SR} (Xm-nou Zno)-

The data structure in this thesis is inspired by a case study in which en-
durance tests on DC-motors under different load levels were conducted at the
Institute of Design and Production in Precision Engineering of the University
of Stuttgart, see Bobrowski et al. (2011, 2015) and the case study in Chapter 4
of this thesis. For each predetermined load level, the lifetimes of 16 DC-motors

have been observed.



We consider two potential parametric model classes of distributions denoted
by

F={F(-10,2):0 € © CR", z € [0,1]"},
G ={G(-]y,2):yeT Cc Rz € [0,1],

where © and I' are compact intervals and p,q € N. For instance, the two
distribution function model classes can be Weibull and log-normal distribution
classes. The aim of this thesis is to propose model selection tests to answer the
question which of the two model classes approximates the underlying family
of distributions H better in different settings based on the Cramér-von Mises
distance. The proposed tests in this thesis are consistent in the sense that with
increasing number of data the tests lead to the model with closer distance to
the underlying distribution function with probability approaching one.

In the remaining sections of Chapter 1 some basic concepts in statistics are
introduced like the maximum likelihood estimation theory, kernel estimator of
distribution function and right random censoring. These concepts will be used
and extended in the main part of this thesis.

In Chapter 2 the Cramér-von Mises distance between the underlying dis-
tribution H and the competing parametric model classes will be introduced
based on the maximum likelihood theory. Then the hypotheses are given for
the model selection test. Further the test statistics will be defined and their
asymptotic behavior will be derived for the cases with m — oo and ng fixed
or with m fixed ng — o0o. In the end the decision rules will be formulated.

The results in Chapter 2 will be extended to the case with right random
censoring in Chapter 3. Among other tools, the Kaplan-Meier estimator and
Beran estimator are used.

Chapter 4 contains a case study using the data form endurance tests on
DC-motors at the Institute of Design and Production in Precision Engineering
of the University of Stuttgart.

In Chapter 5 simulation studies are carried out to show the performance of
the test procedure with moderate sample size.

At the end of this thesis, the extension possibilities of the proposed tests
will be discussed in a conclusion in Chapter 6. Some auxiliary lemmas are

postponed to the Appendix A.



1.2 Notations

In this section, we introduce some notations which will be used through out
this thesis.
For a,b € R, z = (21, ....,za)T, y = (Y1, ...,ya)" € R? with d € N, denote

[a] :=max{k:k <a,k€Z}, aAb:=max(a,b),
a-Ni={a-k:keN}, |z|:=(x1|, .., |za])",
vy = (v +y, ...t t+ya), a-x:=(a-21,...a 147,
further we write z <y if x; < y; holds for all 7 € {1,...,d} and the indicator

1, <y,

I(x <vy) ::{

0, otherwise.

For real valued vectors and matrices || - || denotes the maximum norm. For

any i € {1,...,n}, define the indicator function §; : [0, 1]¢ — {0, 1} with

For any function ¢ : © — R, let

b= (/064 ..., 00/96,) "

be the column vector of the first partial derivatives of ¢ with respect to 6.
Further let ¢ denote the matrix of the second partial derivatives of ¢ with
respect to 6.

For a sequence of real valued random variables (X, ) ey defined on a prob-

ability space (Q2,F, P), we write
Xn i> N(:uv 02)7

if X, converges to some normally distributed random variable with expectation

p and variance o2 in distribution, as n — oo. Further, we write
a.s.
Xp — X,

if X, converges to the random variable X almost surely, as n — oo.
For the sequences of constants (a,)nen, nonzero constants (by,)nen and real

valued random variables (X,,),en, the notation a,, = o(b, ) means that a,, /b, —



0, the notation a,, = O(b,) means that the sequence (a,/b,)nen is bounded.
Further, X,, = 0,(b,) means that the sequence of values X, /b, converges to
zero in probability as n — oo. The notation X,, = O,(b,) means that the
sequence of values (X,,/b,)nen is stochastically bounded, i.e. for any ¢ > 0,

there exists a finite M > 0 such that for eventual all n € N
P(| X, /by > M) < e.
The right endpoint of a distribution function F' is defined as
7r = inf{z : F(z) =1} € (—o0, +o0].

To simplify the notation, we will use a generic constant C' > 0 in the proofs,
i.e., the value of C' might be different in each term containing C'. Further, we
assume that the notations defined in the proof of a lemma or theorem is only

valid within that particular proof.

1.3 Maximum Likelihood Theory

Let Xi,..., X, be real valued i.i.d. random variables with n € N, their dis-

tribution function H can be estimated by the empirical distribution function

H,(z) := %i[(Xi <x), (1.3.1)

for x € R. The properties of the function H, are well investigated, see for
example Van der Vaart (1998). We list here some of them. First, for each
reR

H,(r) == H(x).

A stronger result, called the Glivenko-Cantelli theorem, states that the con-

vergence holds uniformly over z, i.e.

sup |H,(z) — H(z)| == 0.

zeR

Further, the central limit theorem states the pointwise asymptotic normality:

V- (Hy(z) = H(z)) % N(0,H(z)(1 - H(x))),



for x € R. These convergence properties of H, can be extended to the so-called

empirical integrals:

[ vttt Zw

where 1 : R — R is a given function. Notlce that for any x € R,

H,(x) = /I(u < z)dH,(u).

Hence, the empirical integral is a generalization of the empirical distribution

function. If [ |¢(z)|dH (z) < oo, the strong law of large numbers yields

/¢ YdH,( /¢ VdH (z

While under [ ¢*(x)dH (x) < oo, the central limit theorem gives

/¢ YdH,( /¢ YdH (z —>N(o,a2),

a_/w )dH (z /1/) VdH (z

Another possibility to approximate the distribution function H is to use

where

some parametric distribution model classes. For instance, if the random vari-
ables X, ..., X,, represent some kind of lifetimes, the model class is often as-
sumed to be exponential, Weibull or log-normal.

Denote the distribution model class by
{F(-]9) : 0 € © CRP,p € N}

Suppose the function F'(-|f) has the density function f(:|¢) for all § € O,
an estimate for the parameter is the maximum likelihood estimator, which is
defined as

6, := argmax — log f(X;|0
s o)
For any function ¢ : R x © — R with (x,0) — ¢(z,0), we refer to it as
dominated by an H integrable function, if there exists a function M : R — R,

such that [¢(x,0)| < M(zx) for all (z,0) € R x © and

/ M(2)dH(z) < 0o

For the consistency and asymptotic normality of the maximum likelihood

estimator, we make the following assumptions.



A1l The density f(:|0) is strictly positive H-a.s. for all § € ©.

A2 The set © is compact and the function log f is twice continuously differ-

entiable on ©.

A3 The functions log f and |02 log f/06?|| are dominated by H integrable

functions.

A4 The function [ log f(z|-)dH (x) has a unique maximum on © at 6,, where

0, is an interior point of ©.

A5 The function ||@log f/d6||* is dominated by an H integrable function

and the Hessian matrix

/82 log f(x]60.)/00*dH (z)
is invertible.

It follows from White (1982) that if A1-A5 hold, then
0, “= 0,

and /n - (én — 0,) convergences to a multi-dimensional normal distribution.
The vector 6, is called pseudo-true value for the parametric model class. In
the case that there exists a 6, such that H(-) = F(-|6), it holds 6, = 6.

1.4 Censored Data

It is well-known that in practical studies the observation of the survival of a
patient is subject to right censoring. Classical example of this type of censoring
is that the patient died from other causes than those under study or the patient
is still alive by the time of the end of the study.

Let X, ..., X,, be positive real valued i.i.d. random variables with distribu-
tion function H representing the lifetime time of an individual. Let C4, ..., C),
be real valued i.i.d. random variables with distribution function J representing

the random censoring times. The observable random variables are

Y, :=min(X;,C;) and A;:=I1(X; <)),



for i € {1,...,n}. The 0 — 1 valued variable A; indicates whether Y; is a
censored time (A; = 0) or not (A; = 1). Denote the distribution function of
Y; by B. We assume that X,..., X,, and (1, ..., (), are independent, thus for
reR

B(z)=1—(1—H(xz))(1 - J(x)).

The distribution function H can be estimated by Kaplan-Meier product-limit
estimate (1958):

Ap) )
n—i+17

HEM () =1~ H (1-
Yz
where Y1y < ... < Y{, are the ordered Yi,...,Y,, and A(,..., A, are the
corresponding indicators to Y{yy, ..., ¥(,). Note that the Kaplan-Meier estimator
is a step function and has jumps only at the uncensored observations. Further,
in the case of no censoring, it reduces to the empirical distribution function.

The convergence properties of the Kaplan-Meier estimator have been inves-
tigated in many papers. Foldes and Rejto (1981) showed the strong uniform
consistency of the Kaplan-Meier estimator. Lo and Singh (1986) obtained an
asymptotic representation, which decomposes HXM(z) — H(x) in an average
of i.i.d. terms and a remainder term converging to zero in probability. Based
on that representation the asymptotic normality was derived.

In terms of the so-called Kaplan-Meier integrals: [ (z)dHEM () for a
given function ¢ : R — R, Gill (1983) proved its convergence in distribution
under the condition that ¢ is a non-negative, continuous and nonincreasing
function. Under the same conditions for 1, Schick et al.(1988) obtained a
representation of [ (z)dHXM(x) as a sum of i.i.d. random variables plus a
remainder. Both of their methods are based on integration by parts. Under
some regularity conditions on H, Yang (1994) and Akritas (2000) extended
the convergence of [(z)dHEM(x), to those functions ¢ satisfying

B 2y
/0 11/}_—5]()33)(111[ (x) < o0.
In a more general setting, Stute and Wang (1993) pointed out that we can

write

HiM(w) =) Wi - I(X; < ),
=1
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where

Aw T A
W= 20T (1- 20
n—z+1j:1 n—7+1

Based on this expression, they showed that under the condition [ [¢(z)|dH (z) <

oo, it holds
/ (x)dHEM (2 / Y(z)dH (x

The asymptotic normality was shown by Stute (1995): if

/0 v %dH(m) <co and /0 " (. 2)CV (2)dH (x) < oo,

where

1 I(u < x)

@ |, T | TEw )

dJ(u),

Vi ( [e@ani) - [ vwan) & A0

= [T W / Y(a)dH (a
/TB / W(u (f:gg>)2dJ(x).

Note that in the case without censoring (J(z) = 0, for all ), 02 reduces to o>

where

as defined in Section 1.3. These results will be applied and extended to the

case with covariates in this thesis.

1.5 Kernel Estimate for Conditional Distribu-

tion Function

Given the data (X1,21),...,(Xu,2,) € R x [0,1]¢ with n € N as defined in
Section 1.1. Suppose the distribution function H(-|z) does not change too fast
with respect to z, then the distribution of X; and X; should be close if z; and
z; are close. This motivates the construction of estimation of H(:|z) for a z

value with help of those X;, for which z; are close to z.
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For each i € {1,...,n}, denote the weight function w,; : R? x Rt — R* by

K(%=z
w7li(z7 h) = n ( hzz—z ’
> K(32)
where the function K : R? — R* is called kernel function and A > 0 band-
width. The Nadaraya-Watson kernel estimate (Nadaraya (1964), Watson (1964))

is defined by

H,(z|2) = Zwm(z,h) (X < ). (1.5.1)

The bandwidth A controls the smoothness of the estimate. Common choices
for K are, for instance, uniform and Epanechnikov kernel, which are defined
by

K(m)::% -I(|z] <1) and K(x)::z(l — 23 I(|z] < 1),

respectively.

Another possibility to choose weights is the so called Gasser-Miiller weights
(Gasser and Miiller (1984)). In our setting, if z is one dimensional (d = 1) and
m = 1, the weights of the Gasser-Miiller weights are defined by

1 ,z—u
Wyi(z, h) == /ZL1 EK( r )du,
with zg = 0.

The convergence properties of the kernel estimator for distribution function
were shown in for example Aerts et al.(1994), Gyorfi et al.(2002) and Li and
Racine (2007). The main conditions for the asymptotic properties are: first,
the distribution function H is differentiable with respect to z, so H(-|z) does
not change too fast in z and can be estimated with data at z; close to z.
Secondly, ngph — co and h — 0 as ng — 00, i.e. the number of data in any
fixed small interval tends to infinity.

In the case with censoring, for each i € {1,...,n} we denote the right cen-
soring random variable at z; as C; with distribution function J(-|z;). Further

denote
Y, :=min(X;,C;) and A;:=I1(X; < ).

Beran (1981) introduced a kernel estimator for the conditional distribution.

His estimator is a generalization of the Kaplan-Meier estimator and is some-
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times called conditional Kaplan-Meier estimator:

A = 1= T (1 B g0 ),
Yy <z 1= wn() (2, h)
Here Y(;y < ... < Y{;,) denote the ordered Yi,...,Y,, while Aq,..., A, and
Wn1)(2, ), ..., Wn(n) (2, h) represent the corresponding indicators and weights of
Y1), .-, Yin), respectively. Note that in the case without censoring HEM (2]2)
reduces to the kernel estimator H,,(z|z) defined in (1.5.1).

The uniform consistency and asymptotic normality of Beran’s estimator
was studied by Dabrowska (1987, 1989), Mckeague and Utikal (1990), Akritas
(1994) and Gonzalez and Cadarso (1994) in the random design case, where
the covariate z is also assumed to be a random variable. It was extend to the
case with discrete covariates by Du and Akritas (2002). The fixed design case
was investigated by Van Keilegom and Veraverbeke (1996, 1997a, 1997b) using

Gasser-Miiller weights.



Chapter 2

Model Selection Testing

In this chapter, we assume that the observations (X7, 21),..., (X, 2,) and the
distribution function H(-|z) are defined as in Section 1.1. Given two parametric

distribution model classes:
F ={F(|0,2):0 € © CRP 2 €0,1]%}

and
G:={G(|v,2) :ye CR% 2z €[0,1]%},

where © and I' are compact intervals and the constant d,p,q € N, we will
construct model selection tests to answer the question which of the two model
classes approximates the underlying family of distributions better. The dis-
tances of the model classes and the underlying distributions will be defined
based on the Cramér von-Mises distances, which is often used in the goodness-
of-fit test. The test statistics are defined as the difference of the estimated
distances. Asymptotic normality of the test statistics will be proven. Based
on this asymptotic behavior decision rules for the tests will be formulated.
This chapter is organized as follows: in Section 2.1, some notations and
the hypotheses of the model selection tests for this chapter will be introduced.
Section 2.2 deals with the case that ng is fixed and m — oo, i.e. the number
of covariates values is fixed and the number of observations at each covariates
values tends to infinity. The underlying distribution function H will be esti-
mated by the empirical distribution at each covariates value. In Section 2.3, it
is assumed that m is fixed and ny — oo. The empirical distribution function

is replaced by the kernel Nadaraya-Watson estimator as defined in Section 1.5.

13
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For simplicity of notation, we assume that the notations defined in Section 2.1
are valid through out this chapter and the notations defined in Section 2.2 and

Section 2.3 are only valid in that particular section.

2.1 Notations and Hypotheses

In this section, we will introduce a distance measure between the underlying
distribution and the given model classes based on the likelihood theory. First,
we define the joint distribution function by @ : R x [0,1]¢ — [0, 1] with

Quﬂy://}@gxyuvg@wﬂmmm

where the inner integration is with respect to the variable u. The empirical
distribution function at covariate z and the joint empirical distribution are
then given by H,,Q, : R x [0,1]¢ — [0,1] with

2(5 I(X; <),

where 6;(2) := I(z; = z) and

1 n
Qu(z, 2) ::ﬁ;I(X <z)-I(z < nOZH (z|zi) - I(z < 2).

For any function ¢: R x © x [0,1]¢ — R, we get then

/¢xedexz //¢x02dl-]m|)
/¢x9denxz Z@bxl,ez,_ Z/qﬂtzde(ﬂzl)

Denote the logarithmic likelihood function for the model class F as L fn O —
R with

f/f,n(ﬁ) = /logf(:vw, 2)dQy(z, 2),

where for each (0,2) € © x [0,1]%, the function f(-|0, z) denotes the density
function of F (-6, z). The maximum likelihood estimator 6,, for the model class

F is defined as a measurable selection:

0, := argmax L,,(6).
60
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By the compactness of the set ©, the estimator 6, exists, if for any (z,z) €
R x [0,1]¢ the function f(x|-,z) is continuous in §. Further, we define the

functions Ly, Lt : © — R and the vectors 0,0, € © by

1 <
Lion(®)i= - [ log flalf ) dbi(alz),
1=1

O, := argmax Ly, (6),
0cO

Lioo(8) := /logf(a:\@,z) dQ(z, 2),

0, = argmax Ly (0).
0€o

We will show in the next two sections that under some regularity conditions

the following relations hold:

m—r 00

Lin —— Lfn,

n0—>oo\( )/no—ﬂ)o
Lo

And we have then

A m—r00
0, —— O,

no —)OO\{ \/no—wo
0.

We define the distance dy(F) between the underlying family of distribution

functions H and the model class F as
1 & 2
— H(x|z) — F(x|0,,,2)) dH(x|z), 2.1.1
w2 [ ()~ P, ) anelz) 1)
for the case with ng fixed and m — oo and

/(H(g;yz) — F(x.,2)) dQ(x, 2) (2.1.2)

for the case with m fixed and ny — oo, respectively.
Let g, Yn, Yno, 7« and dy(G) denote the counterparts for the model class G.
We will propose model selection tests of the null hypothesis
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meaning that the two models are equally close to H, against
H" : dy(F) < dy(G)

meaning H is closer to F than to G or
HY: dy(F) > du(G)

meaning H is closer to G than to F.
We call a function ¢ : R x © x [0,1]¢ — R with (z,0,2) — ¥(x,0,2) as H
integrable or H square integrable, if for each (6,2) € © x [0, 1]¢,

/w(x,Q,z)dH(ﬂz) < oo or /wz(x, 6,z)dH (z|z) < 0o

holds.

We refer the function ¢ as dominated by an H integrable function, if there
exists an H integrable function M : R x [0, 1] — R, such that |¢(z, 6, 2)| <
M(z,z) for all (z,0,2) € R x © x [0, 1]4.

If there exists a function M : R — R such that for all (z,60,2) € R x © x
[0,1]%,

(.0, z)| < M(z) and /M(x)dx < 0.

we call ¢ dominated by a Lebesgue integrable function independent of z.
If there exists a function M : R — R such that for all (z,60,2) € R x © x
[0, 1)%,
|¥(x,0,2)| < M(z) and /M(:p)dH(x|z) < 00,

we refer ¢ as dominated by an H integrable function independent of z.
Further the domination by an H square integrable function (independent
of z) is defined analogously.
In Section 2.2, we assume all the convergences are taken by letting m — oo.
In Section 2.3, we assume all the convergences are taken by letting ng — oo.
Note that since n = m - ng, in Section 2.2, n € ng- N :={ng-a:a € N}, in

Section 2.3, n € m- N :={m-a:a € N}, in both cases n — oco.
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2.2 The Case with Number of Observations at
Each Covariate Tending to Infinity

In this section, the distance dy(F) defined in (2.1.1) is estimated by
dign(F) = / (Ho(z]2) — F(2|,,2))" dQu(x, 2).

For the class G, the estimator d an(9) is defined in an analogous way. As test

statistic we take the difference of the estimated distances

~

Ty = dyn(F) — dua(G).

The main results of this section is the asymptotic normality of v/n-T,, and
the determination of a consistent estimator for the asymptotic variance of
v/n - T,. Based on these results, decision rules for the model selection test
will be formulated. In this section we make the following assumptions. They
are stated in terms of the model class F, it is understood that corresponding

assumptions are also made for the model class G.

B1 For each (0,2) € © x [0,1]¢, the density function f(:|0,2) : R — R is
strictly positive H(-|z)-a.s.

B2 The function log f is three times continuously differentiable in 6 on ©.
B3 The function log f is dominated by an H integrable function.

B4 The function Ly,, has a unique maximum on © at 6,,, which is an

interior point of ©.

B5 The functions ||0log f/d6|| and ||0? log f/06?|| are dominated by H square
integrable functions. The Hessian matrix L s, (6, ) is invertible with in-

verse L;}m (Ony)-

B6 For any i, j, k € {1,2,...,p}, the function 8°log f/96;00;00 is domi-

nated by an H integrable function.

B7 The functions F' and F' exist and they are bounded.
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These assumptions are regular assumptions in the framework of the maxi-
mum likelihood theory. The asymptotic properties of én, which we will show
in this section, can be reached also under weaker conditions. However, the fo-
cus of this thesis is model selection test, therefore we use the more restrictive

conditions to avoid technical difficulties.

Lemma 2.2.1. Define the function ) : Rx[0,1]¢ — R. If+) is an H integrable

function, then
1 &
/ Y2, 2)dQn(r,2) — — > / W(x, z)dH (z|2) <2 0. (2.2.1)
[
If ¢ is an H square integrable function, then
/wa: 2)dQu(z, 2 ——Z/wx 2; dH(a:|zl)> 4 N(0,0%), (2.2.2)
where
L 2(
_noz /Q/J x, z;)dH (x|z;) — /wazzl dH(a:\zJ) )
Proof. We denote first for each i € {1,...,m},
1
U = n_o Zw(X(i—l)no-i—jvZ(i—1)~no+j)-
j=1
Note that Uy, ..., U,, are i.i.d. and we can write

/ O, 2)dO (, 2) — % > U

Further, the expectation

wzcdena:z = Y(x, z;)dH (x]2)
1 Y|

and by independence of X1, ..., X,, the variance
Var\/_ /wxdenxz = Z\/ar Xz,zz}zaz.

Therefore, the assertions follow from the strong law of large numbers and

central limit theorem for i.i.d data. O]
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Based on Lemma 2.2.1, we will show in the next two lemmas the consistency

of the maximum likelihood estimator 6, to 6,, and the asymptotic properties
of \/n- (0, — 6,,,), respectively.

Lemma 2.2.2. If B1-B5 hold, then |0, — 0,,|| — 0 a.s.

Proof. Under B1-B3 the functions L #n and Ly, are continuous on ©. Under
B4 the pseudo true value 6,,, is unique and is a well separated maximizer of

the function Ly ,,. If we can show

sup ‘j—/fn(e) — Lin(0)| = 0 as.,
6€0

then the assertion follows from an argmax theorem, see for example Theorem
2.12 in Kosorok (2008). Under B5, for each 2 € [0, 1], there exists a function
M(-,z) : R — R and a constant C' > 0, such that

sup |0 log f(210, 2)/06]| < M(x, =)
[<C)

and
1 <
—Z/M(x,zi)d}!(ﬂzi) <C
(U

By Lemma 2.2.1 with ¢(z, 2) = M(z, z),

M (z,z)dQ,( M (z, z;) dH (x|z;
/ (r,2)dQu(x,z) — nOZ/ (z, z;) dH (x|2;).

Hence, for eventually all n € ng - N

/Halogf (210, 2)

‘danz /szd@n(xz)<0 a.s. (2.2.3)

96@

Since O is compact, for any constant ¢ > 0 and the constant C' above, there

exist compact non-empty subsets S; 1, ...,.5;; € © with [ € N such that

I
@gUSl,k and sup || —0| < c

< (2.2.4)
k=1 0965[ k 30

By the compactness of the sets S there exist vectors 0,1, 0;1 € Sik, such
that

sup f/fm(g) = f/f,n(enl,k> and inf Lf no(e) = Lf,no(‘gl,k)-

0eS; i, 0eS,k
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For a fixed point 9.17;6 € Sik, by the triangle inequality, we get

| sup Ly, (0)— inf Ly (0)] < |Lyn(Onig) — Lyn(6r)]
0€S) 1 0€S;

+ [Lpan(Orn) = Lo Ou)| + | L s Orse) — Ling (01x)]- (2.2.5)

By a Taylor expansion with an intermediate point énl’k between 0, and 9.57;€7

the first term on the right-hand side in (2.2.5) can be written as

‘j}f,n(enl,k) — if,n(él,kﬂ _ ‘(/ dlog f(;g@nl,k, z) dQy(x, Z)>T (O — él,k)‘-

By (2.2.3) and (2.2.4), for eventually all n € ng - N, the right term of the last

equation is bounded almost surely by

/Halogf :L’|9nlk,

Hdanz)<p c o-=-%

p- sup [|6—0]- 3Cp 3

9,9€Sl’k

Analogously, for the third term on the right-hand side in (2.2.5), we have the
same result. For the second term on the right-hand side in (2.2.5) by Lemma

2.2.1 with ¢(z, z) = log f(x|f,x, z) under B3, for n large enough we have

L s (00) = Lo (011)| <

a.S.

Wl ™

Hence, there exists an N, such that for all n > N,

| sup Lin(0) — inf Lin,(0)] < as.
0€S) 0eS) i

Analogously, there exists an Nj, € N, such that for all n > Nj,,

menH—su Lo (0) <e as.
[ Lral®) = 500 Lynu(0)

Hence, for all n > max;<x<{Nix, V] .},

Sup | Ly (0) — Ly, (6)] < L (0) — Ling(0)]

9cO ko 0es;
< max{| sup Lyn(0) — inf Ly, (9)],] inf Ly,(8) — sup Lf,n0(6)|} <e as.
k eesl,k QES ESZ k GESZ,I@

O
Lemma 2.2.3. If B1-B6 hold, then

\/ﬁ' Hén - 9n0|| = Op(l)a
\/ﬁ' HQ Qno + Lfno(g ) '[A/fm(@no)H = 0p<1)-
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Proof. By a Taylor expansion, there exists a 0, lying between 6,,, and 6,, such
that

A

Lf,n(én) = f’f,n(eno) + Lf,n(én) ) (én - 9n0)~
By the definition of 6, it follows that
L (Ong) + Lyn(0n) - (B — 6n,)|| = 0. (2.2.6)

Under B5 and by Lemma 2.2.1 with ¢(z, 2) = dlog f(z|0,,, 2)/00;, for j €
{1,...,p}, we have

v </alogf(§29no, 2 40, (x. 2) __f:/@logfano,zz) AH (z |zz)>

converges in distribution to a normal distribution. Further by the definition
of 0,,, for each j € {1,...,p}, under B4 and B5,

1~ [ 0log f(x]0ny, %) N
- ;/ 56, dH (x|z) = 0. (2.2.7)
Hence,
o1 O, 2
n noH—,SUP \/_H/ ngx' >dQn:L’ZH—
J€ ..,

(2 2.8)
Under B3 and B5 we can switch the order of integration and differentiation in
the Hessian matrix of Ly, (6y,), i.€.

20 [ 9%log f(2]0ng, 2i)
Lfno no - o Z/ 902 dH(,CL’|ZZ)

By a Taylor expansion, there exists a 0, lying between 6, and 0., such that
| £6n @) = Epna00)|| < || L) = L) + | En(On) = o (00)

3 7] ~
<p-max] / P I002) 1 . 2)| 18— 0]

5,k 89 86 (99k
0 log f(x|0n,, 2) 1 <= [ 0%log f(2|0n,, %)
—i—max‘/ 26,06, dQn(x,z)—n—OiZI/ 20,06, dH (x|z;)].
(2.2.9)

Under B1-B6, by Lemma 2.2.2, the first term on the right side of (2.2.9)
tends to zero. Further, for each i, j € {1,...,p} by Lemma 2.2.1 with ¢(z, z) =
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0?1og f(x|0,,, z)/00;00; under B5 the second term tends to zero as well. There-

fore,
L (0n) = Lng(Bng)|l = 0 as.

Since the matrix Lj,,(6,,) is invertible under B5, by the continuity of the
determinant function the matrix L, (f,) is also invertible for eventually all

n € ng - N. Further, by the continuity of the inversion operator we obtain
IL72 () — L8 () = 0 as. (2.2.10)
as well. It follows then from (2.2.6), (2.2.8) and (2.2.10) that
VI = B+ L7 01 Lyn(8a0)|
=[Oy + LA B) - Ly (Bn) — (L7 (00) = L74 (0na)) - L6
<0 |L75(00) = L33 Guo) |- IV Lyn(O)]| = 1)
By the boundedness of l':/;;m(ﬁno) and (2.2.8) we get
Vi 100 = Ol <V 100 = Oy + L2, 0n) - L6
2 17 B V- I Lga(B0,)]| = (D)
[

In order to state the main theorems we introduce the functions Cr : © —

R?, Nz : R x © x [0,1]% = R and a constant ¢% with
no .
; Z/ (z]z:) — F(x)0,2)) - F(z0, z;) dH (z|2),
Tlo

Nz(z,0,z) :=(H(z|z) — F(:v|9,z)) + 2/00 (H(u|z) — F(ulb, 2)) dH (ul2)

. dlog f(x]0, z)
00 ’

2
.:—Z / N, 00, 2) dH (1)) — / N(@,0n0,0) () ).
g ©

Under B5 and B7, the functions Cr and Nz exist, the constant 0% < co. In

2% (80) - L2, (6n0)

the next theorem we show the asymptotic normality of the estimated distance.

Theorem 2.2.4. Let B1-B7 be satisfied, then

Vi (dun(F) = du(F)) % N(0,0%).
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Proof. Note that for (z, 2) € Rx |0, 1]¢, Hn(x]z)—F(a:\én, z) can be represented

as

(Hn(z|2) — H(z|2)) + (H(z|2) — F(2]0,,, 2)) — (F(a:\én, z) — F(x]0,,, 2)).

Hence, we can write
Vit dualF) =it~ [ (B ) dQu (. )
N / ~ H(x]2) - (H(]2) — F(lfy,. 2)) dQu(x. )
— 2y [ (Hal2) = Pl 2) - (Flalfn )~ Falfa,.) dQue.2)
+\/ﬁ-/ (€]2) = F(2]0ny, 2))*dQn(x, 2)
—Qﬁ-/(ﬂn(x|z> CH(2]2)) - (F (20, 2) — P20y, 2)) dQu(x, 2)
+\/ﬁ-/(F(x|én,z)—F(:ﬂ|€nO 2))? dQy(z, 2) ZT,m
For Ti,, we have
Ty =/ - / (H2(2]2) — 2H(x|2) Ho(a]2) + H2(2]2)) dQu(z, 2)
s n—ozl/ﬂg 2l )dH, (2] =) — 2/ - nioiol/H(x]zi)Hn(x\zi)dHn(ﬂzi)
sy [ Hal2)d@u (.2
- nionzl///f(u < )I(t < 2)dH, (u]2)dH, (t ) dH, (x]2)
o nioi://f(u < ) H (] 5)dH, (u] 2)dH, (2] %)
+\/ﬁ~/H2(x|z)dQn(x,z). (2.2.11)
By Lemma A.1.1 with k = 3, X;; = X, for i € {1,2,3}, j € {1,...,n} and
Y(u,t,z,2) = I(u < 2)I(t <),

since

E[@D (X Xi XZ37 )] E[I(Xll < Xi3)[(Xi2 < X23)] <1

129
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for any iy, 19,13 € {1, ...,n}, thus the first term on the right-hand side of (2.2.11)

can be written as

V- nio i///[(u < 2)I(t < x)dHy (ulz)dH (t|z)dH (z|z)

- nioi_;///[(u < 2)I(t < @)dH (u|z)dHy(t]z)dH (z]2)

+Vn- niof;///[(u < 2)I(t < x)dH (u|z)dH (t|z)dH,(x|2)

_ovm ni[);///](u < ) I(t < 2)dH (u]z)dH (t]2)dH (2] 5) + 0,(1)
—2/n - nioi_o;/H(x|zi)Hn(a:|zi)dH(x|zi)+\/ﬁ'nioi;/Hz(ﬂzi)dHn(xlzi)

v %Z/Hz(ﬂzi)dH(ﬂzi) 4 o,(1).

Analogously, by Lemma A.1.1 with £ = 2, X;; = X, for i € {1,2}, j €
{1,...,n} and

(u,x,2) = I(u < ) H(z|z),
since

E[¢2(Xi1in2’z)] = E[I(Xh < Xiz)HQ(Xi2|Z)] <1

for any 41,13 € {1,...,n}, hence the second term on the right-hand side of

(2.2.11) can be written as

—2n- niozl//f(u < x)H(x|2)dH,(u|z)dH (x| 2;)

o ni(); / / T(u < 2)H (]2)dH (ulz)dH, (z]2)
by nloz //I(u < 2)H (] 2)dH (u|2)dH (x]2) + 0,(1)
_ _oyn. nioZO:/H(x]zi)Hn(x]zi)dH(x]zi) N nio > / H2(x)2)dH, (x]2)

VIS / H2(2|20)dH (]2) + 0,(1).

n
0=
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Hence, we get

=2/ Z/H o) 2) Hy(|2;)dH (]2)
+\/ﬁ.H_O;/H%xyzi)dﬂn(ﬂzi)—z\/ﬁ%O:ZOI/HQ(x!zi)dH(xlzi)
—ovn- nioi/H(:c|zi)Hn(a:\zi)dH(:c|zi) —2v/n - nioi/HQ(x!zi)dHn(ﬁlw
+2\/ﬁ.niO§;/H2(x|zi)dH(x|zi)

+v/n - /Hz(a:\z)d@n(x, z) + 0,(1) = 0,(1). (2.2.12)

With the same arguments, it can be shown that
1, =2vi- | / (H(ul2) = F(ulfug, 2)) dH (ul2) dQy (x, 2)
Y- Z // H(ulz:) — F(ul00y, 22)) dH (ulz) dH(2]2) + oy(1).

By a Taylor expansion, there exists a 6,, between én and 6,,,, such that

A~

T?m = - 2\/E </ (H(Z‘|Z) - F(anoa Z)) ’ F(‘rwnoa Z) dQn(xa Z)>T : (6)” - Q'ﬂo)
N / (H(2]2) — F(|0ny, 2)) - F(2|0,,2) dQu(w,2) - (B, — Onp).

For the first term on the right-hand side of the last equation, under B7, each
component of the vector (H(xz|z) — F(z|0,2)) - F(x|0,,,2) is H integrable,
hence, by Lemma 2.2.1 we get

H/ F ([0, 2)) + F (|00, 2) dQu(x, 2) — CF(0ny) || = 0,(1).

For the second term note that under B7,

H/ (z[2) — F(2|0n,, )) F(x|‘§n,2) dQ,(z, 2)

is stochastically bounded. Hence, by Lemma 2.2.3 under B1-B6, the second
term on the right-hand side is equal to 0,(1) and

Ty = —2\/5-05(9”0)-(9”—9”0)—I—Op(l) = 2\/5'0;-'(9710)'Eﬁm(eno)'if,n(eno)“'op(l)-
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Analogously, we can show that

~

Ty — 2/ (/(Hn(x\z)—H(x|z)) (@ 2)AQu(r.2)) - (B~ 0) + 0,(L)
By Cauchy-Schwarz’s inequality, we get
H/ Ho(2]2) = H(2l2)) - F(el6h,, 2) dQu(a, 2)|
< [ Halel) = L) - (0l )] Q0.2
<([ ll) -l D iQue2)) " ([N ) P Q. 2))
< (1072 (1@l 2 dQu(2)) " = 000

where the last step follows from (2.2.12) and B7. Hence, it follows from Lemma
2.2.3 that Ty, = 0,(1).

By the same arguments, there exists a 6, between 9n and 0,,, such that

| Ton| < V- p* / 1 (2160, 2)[PdQu (i, 2) - 16 = bnoI* = 0p(1)-

Therefore, by the definition of the function N,
\/ﬁ : CZH,n<~F> - \/ﬁ ) /N]:(ZL’, enm Z) dQn(xv Z)
no
- Z // Ho(ulz) — F(ulbuy, z)) dH (ulz) dH (z]2) + 0,(1).

Note that by the definition of 6,,,, under B3 and B5,

alogf ZL‘@nO,Zi
Z/C]-‘ no ' fno(eno)' (89| )dH(.f‘ZZ)

_C]-'(eno> ’ L , <9n0) Lfno(eno) =0.

fmo

Thus, we can write

dp(F) :%Z/N;(I,Qno,zi) dH (x|z)

-2 —Z// H(ulz) — F(ulby, %)) dH (u|z;) dH (z|2).

Therefore, we have

Vi (A n(F) = d(F))
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_\/_ /N; T, Ony, 2) dQp (2, 2) Z/N; T, Ons 2i) dH(:B|ZZ)> + 0,(1).
(2.2.13)

Under B5 and B7, the function Nz is H square integrable. Hence, the assertion
follows from Lemma 2.2.1 with ¢ (z, z) = Nx(x,0,,, 2). O

For the estimation of the asymptotic variance o% we define the functions
Crn:© —=RP and Nz, : R x O x [0,1]? = R with

Crn(0) ::/ (Hn(a:]z) — F(z|0, z))F(x|9,z)dQn(x,z),

Nzn(z,0,2) :=(H,(z|z) — F(zl6, Z))2 +2 /OO (Hn(ulz) — F(ulf,2))dH,(u|2)

0log f(x|6,z)'

In the next lemma, we show that 0% can be estimated consistently by

/an z,0,,2)dQ, (x, z) — n_o /an ,0,, z)dH, (x]zz)>2
Lemma 2.2.5. If B1-B7 hold, then we have
6% =07+ 0y(1).
Proof. First, we show that for each 0 € O,
/N%n x,0,2)dQ,(x, z) — — /N2 x,0,z)dH (z|z) = 0y(1). (2.2.14)

Note that [ (H,(z|z) — F(x6, z))4dQn(3:, z) is a part of
/ N2 (2,0, 2)dQu(, 2)
and its counterpart in
1 )
o5

1S

_Z/ (2]2) = F(x]0, ) dH (a]2,).
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In the sequel, we show that
[ (ttalz) ~ Fielo. 2)) a2
:nio i:/ (H(z|2) — F(x18, %)) dH (2] ) + 0,(1). (2.2.15)
Note that _
/ (Ho(2]2) — F(2]6, 2)) dQu(z, 2)
:nio Zl / (H(2lz) — A3 (2)2) F (216, 2) + 6H2(z]2) F* (216, =)
} — 4H,(x)2)F* (2|0, 2;) + F* (2|0, z)) dH, (z]2). (2.2.16)

By Corollary A.1.2, with k£ =5 and X;; = X, for i € {1,...,5},7 € {1,...,n}

and
4

(T, ..y x5, 2) = H](mj < x5),
j=1
since
4
E[¢2(Xi17 7Xi5az)] = E[H](Xz] < XZ5) < 17
j=1
we get

%Z/Hﬁ(ﬂzi)dHn(ﬂi\Zi)
:%Z/"'/H[(% < ws)dH,y(21]2) - - - dHoy (05 2)
_%OZ/"'/HMJ < ws)dH (x1]21) - - dH (x5]2) + 0,(1)

:nio Z / H*(2|2;)dH (x]2;) + 0,(1).

With similar arguments, we can show that similar results hold for the other
terms on the right-hand side of (2.2.16). Therefore, (2.2.15) holds.

Analogously, it can be shown that

//OO (Hn(z]2) — F(m|6,z))2(Hn(u|z) — F(ulb, 2))dH,(u|2)dQy(z, z)
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Z// H(z|z) — F(216, %)) (H(ulz) — F(ulf, 2;))dH (u|z)dH (z]2) + 0,(1)
(2.2.17)

and
/(/OO( n(ulz) — F(ulf, z))dHn(u|z)>2dQn(q;,z)
i/ / H(ulz;) — (“|9’Zz‘))dH(UIZi)>2dH(x|zi)+0p(1),

(2.2.18)

For the rest terms of

/N;:’n(l',672>dQn<J] z) and _Z/N]: z, 0 ZZ dH(J]|Zl)
note that

1CF(8n) = CF(Bu) |l < 1ICF.1(8) = CF (B | + |CF 1 (6r) — CF(8o) .

Under B7, the derivative of C%,, is stochastically bounded on ©. Hence, by
Lemma 2.2.2 under B1-B5

1CF0(0n) = CF (0 )| = 0p(1).
Further, it follows from Corollary A.1.2 and Lemma 2.2.1 that under B7
ICF 11 (Ong) = CF(Ono) | = 0p(1).

Therefore,
1CF 1 (6n) = CF(0no) [l = 0p(1)-
Further, analogously to (2.2.10) under B6, it can be shown that

1L 70, (00) = L7, (0]l = 0p(1).
Thus, under B5 Corollary A.1.2 implies

[ (el = P, 2)? - 20 - 17200 S0 g, o2

~CL0n) Ep0) - [ (atele) - Plalo,2))7 ZEL D g 2
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0 . 9 a 6’ ’
=0 D CHOw) L5l [ (Bl — Fiolo, 20)* - B a1 + 01

(2.2.19)

With the same arguments, it follows further

/ / " (Ha(ul2) — F(ulf, 2))dH,(ulz) - L, (6) - 15 (6,) %Wd@n(x, 2)

:TL_OZC}— no ) fno(e )
</ / H(ul) — F(ulf, =))dH (ulz) - D8I gprary 4o, 1)

a0
(2.2.20)

A 5 A 0l 0 2
[t £700 - 2L 00,0 2)

O . )y 2
— 3 [ (CHOn) - 7200 PELEE N i) 4 0,00). (2220
; o 00
By (2.2.15)—(2.2.21), for any 6 € ©, (2.2.14) holds. Hence,
/an z,0,,2)dQ, (x,2) — — /NJT 2,00y, 2i)dH (x]2)
= /N;n(x,én,z)dQn(x,z) —/N%’n(x,ﬁno,z)d(o)n(x,z))
/N]_-n T, Ony, 2)dQn (2, 2) Z/N]_- Ty Ongs 2i) dH(x|zl)>

:/N;n(x,én,z)dQn(x,z) —/N%n(x,@no,z)dQn(x,z) + 0,(1).

By definition of the function Nr,, under B7 there exists a constant C' > 0

such that
0log f (x|, z) )(1 N ‘

00

d?log f(x]0, 2)
002

HN}-m(x,@, z) - me(x,@, Z)H < C’(l + H

).

Thus, under B5
/N]%,n(:v, 2)dQy(z, 2)

has a stochastically bounded derivative on ©. Therefore, by Lemma 2.2.2,

/ N2 (2,6, 2)dQu(z, 2) — / N2 (2, 6y, 2)dQu(z, 2) = 0y(1).
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Consequently,

/NH 2,00, 2)dQ0 (x, z)—— /Nf 2,0, 20)AH (2]20) = 0,(1). (2.2.22)

Analogously, we can show

1 & . 2
H—O; (/Nf,n(x,en,zi)dﬂn(m))
1 & . .
:—Z Nz (2,60, 2 ) Nz n(u, O, 2;)dH, (u|z;)dH, (z|2;)
o
1 &
Mo 7

:nio i (/N;(x, Oro s zi)dH(x|zi))2 +0,(1). (2.2.23)

The assertion follows then from (2.2.22) and (2.2.23). O

For the Model G, let Cg, Ng, aé and their estimates be defined accordingly.

Further we denote the constants o2 and 62 by
O'2 L= ii/(]\f;(x Qn Zz') — Ng(.T Tn ZZ>)2dH(SL’|Zl)
n ‘ 7 0 Y 07

- _Z (/ N]—' x enouzl> Ng(l’,’}/no,zi)) dH(‘T‘ZZ))Qu
No
62 = / (me(x,én,z) — Ng’n(x,&n,z))ngn(:v, z)
1 n0 R R 2
- Z </ (N}',n(xaem Zz) - NgVn(ZIZ,’)/n,ZZ))dHn(ZdZZ)) :
05

Next we show the asymptotic normality of test statistic 7, and the consistency

of 62 to 0.
Theorem 2.2.6. If B1-B7 hold then

NGE (Tn — (du(F) - dH(g))) L N(0,0%) and 62 — o,
Proof. Analogously to (2.2.13), we can show

Vi (T, = (@u(F) - dn(9)))
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:\/ﬁ/ (N]:(xagnoﬁz) o Ng(.f,’}/no,z)) dQn(.T,Z)
- \/ﬁ nioz/ (Nf(xvenov Zi) - Ng(x77n07 Zl)) dH(x"Zi) - 0p<1>'

Thus, the first part of the assertion follows from Lemma 2.2.1 with ¢(z, z) =
Nz(x,0,,,2) — Ng(x,7n,, z)- For the second part of the assertion, note that

62 :Ef%n + 65771 -2 / Nz n(z, én, 2) - Ng.n(x, Y, 2)dQn(x, 2)
2 & A
NESS / Ny (i, 22) A, (2] 2) - / No (A, 20)dH(z]22)
Mo =
and

2 &
02 :U_%: + Ué - n_OZ/NF(xagnmzi) : Ng(x77novzi)dH(x’Zi)
=1

2
+=> / Nz(x, 0y, z)dH (]2) - / Ng(2, ng, 2 )dH (2] 2;).
=1

ng £
1=

Analogously to (2.2.22), we can show
/N]:,n<x7 énv Z) : NQ,TL(x? fAyna Z)dQn(.QI, Z)

1 &
- Z/Nf(x,eno,zg N (@, mgs 24)dH (2] ) = 0,(1)
=1

and
1 & A
—Z/Nf,n(:c,ﬁmzi)dHn(:c!zi)-/Ng,n(w,%,zi)dHn(x\zi)
(LUt
1 & A
:_Z//N]:,n(waenazz) NQ,n(“/}naZ@)dHn(u|Zz)dHn(‘rlzl)
Un) —
1 &
=3 [ [ Nelo 02 No(a v 20 H (a2 H (012) + 0y (1)
Ut
1 &
:_Z/Nf(x70noazi)dH(x|zi> '/Ng('rafynoazi)dH(x‘zi)+Op<1)'
o 5=
Hence, the second part of the assertion follows from Lemma 2.2.5. n

Now we can formulate the asymptotic behavior of the test statistic under

the hypotheses as in the following theorem.
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Theorem 2.2.7. Let B1-B7 be satisfied.
(1) If H” holds, then \/n - T, tends to —oo in probability.
(2) If HY holds, then \/n - T, tends to +oo in probability.
(3) If H° holds, then /n- T\, % N(0,0?).
Proof. The assertions follow directly from Theorem 2.2.6. O]

By Theorem 2.2.6 and Theorem 2.2.7, if 02 > 0 and " hold true, then

Vn-Ty g N(0,1).

_>

~

On

The decision rules of our test are given as follows: for a given significance
level o we will decide for the hypothesis H°, if |\/n - T,,/6,| < z1_a/2, Where
2o denotes the a-quantile of a standard normal distribution. In the case of
V- T,/6, < —z1_a2 we reject H° in favor of HT. I T, /6, > Z1—a/2;
we reject H° in favour of HY. However, we propose to use the model with less
parameters, ever if H° is not rejected.

A non-degenerate test, which works in the case 02 = 0 as well, can also
be constructed based on our theorems by using similar arguments as in Shi
(2015b). However, it would go beyond the scope of this thesis.

2 > 0 for a concrete example. Without

In the following, we show that o
loss of generality, we assume d = 1. Let F be Weibull and G Log Normal

distribution class with parameters depending linearly on z, i.e.

F(z)0,z) =1 —exp [ — (%)b(zq7

G(z|y,2) = L B /OxleXp [ - 1(—lnt _ M(Z))Z}dt,

2ro
where
0 = (ag, a1, bo,b1) € R*, v = (co, c1,dp, dy) € RY,
a(z) = ap+ a12,b(z) = bo + b1z, 1(2) = co + c12,0(2) = dop + dy 2,
for (z,z) € RT x [0,1]. Further, we assume that the function H(:|z) has a

density function for each z € [0, 1]¢.

Note that by Jensen’s inequality, for each z € {21, ..., 2, }

[ (.01, 2) - Nolar 2, 2)) B a2
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([ (Vr.600:2) = No(a 300 ) dHl2))” 20,
thus, suppose o2 = 0, it muss hold that
[ Vet 00,2)=Not, 200, 2)) " a1
_ (/ (N£(z, 00y, 2) — Ng(2, Yng, 7)) dH(IL‘|Z)>2 =0.

Consequently, there exists a constant k& € R, such that for all (z,2) € RT x

{21y oy Zng }
Nx(z,0,,,2) — Ng(x, Vny, 2) = k. H-as. (2.2.24)
Denote the vectors v = (vy, vg, v, v4)7, 0" = (v}, v, vh, v))T € R* with
o= 207 ,(60) - L3 (6), " =208, (3n) - Ly (Gin)
and the function w : (z,2) € RT x [0,1] — R with
w(w, 2) = (H(2|2)=F ()00, 2))* — (H(z|2) = G|y, 2))°
" 2/;0 (G g 2) — F(ulfg, 2)) dH (ul2).
Then Equality (2.2.24) implies

dlog f([bny, 2) 0log f(]bn,, 2)

9ag (v v z)+ b, (3 4+ vy - 2)
_ dlog g(x| Y 2) / / . 0 log g(z| Yy 2) ’ / _
aC() (U1+U2 ) ado (U3+U4 ’Z) - W(.]}',Z)‘i‘k’
(2.2.25)
where
dlog f(z],2)  a(z) N a(z) ( x )a(Z)
dag Tb(2)  b(2) \b(2) ’
dlog f(z]0,2) 1 x ) x
Oby ~a(z2) +logx —log b(z) (b(z)) log <b(z)>’
Ologg(zly,z) _logx — p(z)
Jcg o(z)2 7’
Ologg(aly.z) _ 1 (logz — u(2))?

Ody o(z) o(z)3
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Note for any z € {z1, ..., 2p, }, as * — 00,

Olog f(x|0n,, 2)| |0log f(x]0n,, 2)| |0log g(|Vng,2)| |0logg(x|Vny, 2)
8&0 (%0 600 8d0

all tend to infinity, however, the converge rate are all different. Hence, if

Y ) Y

(014 vz 2)® + (v3 +va - 2)* + (v vy 2)* + (v + 0 - 2)° £ 0,

then as x — oo,

dlog f(x]0n,, 2) dlog f(x|0n,, 2)

dao (v s )+ b ~(v3 + g 2)
81 nos 81 no»
B 0g (x| Vg, 2) W ) — 08 9(|Vng 2) - (vh + v 2)| = 0.
aco (9d0

But by definition for all (z, z), |w(z, 2)| < 4, which is a contradiction to Equal-
ity (2.2.25). Hence, the assumption o2 = 0 does not hold and we get o2 > 0.
If
(v +va-2)2 + (v3+vg-2)2+ (V) +0h-2)2 + (v +v)-2)2 =0,
by (2.2.25), we have then for all (z,2) € RT X {21, ..., 2 }
w(z,z) =k H-as. (2.2.26)

By the definition of the two competing model classes, they are disjoint. Fur-
ther, the function H has a density function. Hence, for any z € {z1, ..., 2p, }
there exists an x, > 0 and § > 0 such that F(x,|0,,,2) # G(x.|Vn,, z) and the
density function of H(-|z) is bounded away from zero on (z, — d, 2z, + ).

Without loss of generality, we can assume that F(x,|0,,,2) > G(Z.|Vn,, 2)-
Define my, my € RU {oo} with

m,1 = sup{x : F(x|0,,,2) = G(x|Vn,, 2) and z < z,},
Mo = inf{x : F(x|0,,,2) = G(x|Vn,, 2) and x > x,},
where we let inf{()} = co. Since F' and G are continuous functions in z and
F(0|60,,,2) = G(0]vp,,2) =0
:}LIEOF(x|9nO,z) = Ih_)rgo G(2|Yng, 2) = 0,

thus, m,; and m, exist and F(-|0,,, 2) — G(+|Vny, 2) > 0 on (m,1,m,2). Con-

sequently,

mz2

w(m,1,2) — w(m,e, z) = 2/ (G(ulyny, 2) = F(ulfny, 2)) dH (u|z) < 0.

mz1
whereby w(m,a, 2) = lim, o w(z, 2) if M, = co. But it contradicts Equality
(2.2.26). Hence, it muss hold that o2 > 0.
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2.3 The Case with Number of Covariates Tend-
ing to Infinity

With m fixed, the underlying distribution function H (-|z) can not be estimated
by the empirical distribution at covariate value z consistently any more. In-

stead it will be estimated by the kernel Nadaraya-Watson estimator:
H,(z|z) = Zwm(z, h)-I(X; < x)
i=1

where the function w,; : [0,1]? x (0,00) — R* is given by
K(z=
wm(zvh) = n ( - zzfz
> o K(357)

with kernel function K : RY — Rt and bandwidth A > 0. Further we denote

the kernel estimator for the joint distribution function as
. 1 <& .
Qn(x,2) = — H,(x|z) - 1(z < 2).
(7:2) 1= o 3 Bnfola) (< 2
The distance dy(F) defined in (2.1.2) can then be estimated by
a(F) = [ (Halalz) = Flalf,2))* duo, 2).

For the class G, the estimator CZHM(Q) is defined in an analogous way. As test

statistic we take the difference of the estimated distances again
Ty = dpgn(F) — dua(G).

In this section, we will show similar results as in Section 2.2. For the asymptotic
properties of the kernel estimator, we assume the following conditions hold true

throughout this section.

(i) The function H has bounded derivative and Hessian matrix with respect
to z. The function ||0?H/020z|| is dominated by a Lebesgue integrable

function independent of z.
(i) As ng — oo, h — 0 and ngh?? — oco.

(iii) Let K be a bounded positive integrable function on [—1,1]¢, zero other-
wise. Further, for all x € RY, K(z) = K(|z).
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Here the symmetry assumption on the kernel is only for simplicity of proofs.

Again, the assumptions on the distribution model classes are formulated in

terms of F and it is understood that corresponding conditions are also made

onG.

C1

C2

C3

C4

Ch

C6

C7

C8

C9

The distribution F'(-|0, z) has a density function f(+|6, z), which is strictly
positive H(-|z)-a.s. for each (,2) € © x [0, 1]%.

The function log f is three times continuously differentiable in 6 on ©.

The function log f is dominated by an H square integrable function in-

dependent of z.

For each ny € N the function Ly, reaches maximum at 6,, on ©, which

are interior points of ©.

The functions [|0log f/00]|* and ||0*log f/06?||* are dominated by H

integrable functions independent of z.

For any 4, j, k € {1,2,...,p}, the function 8°log f/06;00;00 is domi-

nated by an H square integrable function independent of z.
The functions F and F exist and they are bounded.

The function Ly has a unique maximizer on © at 6,, which is an inte-
rior point of ©. The Hessian matrix L. (f.) is invertible with inverse
L7 (6.).

The function ||0F/0z| is dominated by an H integrable function inde-
pendent of z and the functions ||0F/0z| and ||0*log f/0200|| are domi-

nated by H square integrable functions independent of z.

Note that the grade of the integrability are doubled in C3, C5 and C6 in

comparison to the assumptions in Section 2.2 because the data can not be

seen as i.i.d. as ng — oo.

In the following lemmas we show first the relations among 6, 0, and Ong -

Lemma 2.3.1. If C1-C3, C5 and C8 hold, then ||, — 6.]| = o,(1).

Proof. The assertion can be shown analogously to Lemma 2.2.2 based on
Lemma A.2.7. O
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Lemma 2.3.2. If C1-C5 and C8 hold, then ||0,, — 0.|| = o(1).

Proof. For each 6 € ©, by the definition of Riemann integral, under C3

niOZ/lng(xwazi)dH(ﬂZi) - /10g f(z]0,2)dQ(x, z) = o(1).

Thus, under C1-C5 and C8, the assertion follows by the similar arguments
used in Lemma 2.2.2. O
Corollary 2.3.3. If C1-C5 and C8 hold, then |6, — 0, || = 0,(1).
Proof. The assertion follows directly from Lemma 2.3.1 and Lemma 2.3.2. [
Lemma 2.3.4. If C1-C6 and C8 hold, then
Vi [0, = Onll = O,(1),

VA0 = 0y L5200 - Lyan(6a0)]| = 0p(1).

Proof. For any a € {1,...,p}, by Lemma 2.3.2 and Lemma A.2.8 with

dlog f(x]0n,, 2)

hin(x,2) =0 and g, (z,2) = 50

for n € m-N and z € [0,1]%, under C5,

\/ﬁ./abgfa(glgno’z)dQn(x ) —/n- Z/alogf H00:2) 411 o

convergences to a normal distribution. Further, by the definition of 6,,,

1 & dlog f (|0, 2:) _
ﬁn_o;/ o, =

Thus, for any a € {1, ..., p},

- /Eﬂogf x|bny, 2 )dQn(JC,Z)
convergences to a normal distribution. Therefore,
o H )| = /- H/alogf x|bn,, 2 )dQn(x,z)

Under C1-C6 and C8, the rest of the proof can be stated similarly as in the
proof of Lemma 2.2.3. O]

—0,(1). (2.3.)
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The reason we still work with 6,,, in this section is that we do not have

V|6 = 0.+ £51(0.) - Lya62)

= 0,(1)

in general. Because \/n - Hzfn(e*)H = O,(1) does not hold.
In order to state the main theorems we introduce the functions C'r : © —
RP, and ]\7].-77“]\[]:,]\7]1:771,]\61r 'R x O x [0,1]¢ — R with

Cr(0) ::/ (H(z|z) — F(z]6, 2)) - F(x|0,2) dQ(z, 2),
Nzn(x,0,z) :(E[ﬁn(x|z)] — F(z|0, Z))2 +2 /OO (E[I:In(u\z)] — F(ulf,2)) dE]

Nz(z,0,z) :=(H(z|z) — F(x|9,z))2 + 2/0O (H(u|z) — F(ulb, 2)) dH (ul2),

N3 (2,6, 2) :=Ngu(2,0,2) + 2C5(0.) - L1 (6.) - %(fw)

. 0log f (x|, z)
00 '

Further for each n € m - N, let dy,,(F) € R be defined as

Ni(z,0,2) :=Ng(x,0,2) + 20%(0.) - L;;(Q*)

daaF)i= 2> [ (Bl (al2)) = Flalbny, )" dEI (ol

Under C7 the function C'z is bounded on ©. Thus, by the boundedness of F
and H, under C5 the function N} is H square integrable function. Therefore,

we can define the constant

2
ok ::/</(N}(x,0*7z))2dH(x|z)— (/N}(x,e*,z) dH (z]-)) )dz.
Theorem 2.3.5. Let C1-C9 be satisfied, then we have
Vi (ol F) = dia(F)) = N (0,03),

and

Proof. Note that H,(z|z) — F(z|0,,z) can be written as
(ﬁn(:c]z)—E[I:In(x]z)])—l—(E[ﬁn(x]z)]—F(ano, z))—(F(x]én,z)—F(ano,z)).
Hence,

Vit dia(F) =/ [ (Bafal2) = Bl (s]2)])” du. 2

~

Hy(ul2)],
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w2y [ (f(alz) = Bl(0l2) - (B (a]2)] = (el 2)) du(.2)
~ 2y [ (Bl 1) - Pl ) - (Falfn.2) = Flal,. 2) dQula.2)
s Vit [ (B (19)] = Falon, 2)"du. )

~ 2y [ (f(alz) = Bl(]2) - (F(alfn,2) = Flalfy: ) dQu(z.2)
+\/ﬁ-/(F($\én,z) — F(]0ny, 2))° dQu(, 2) ZT,m

As in the proof of Theorem 2.2.4, by Lemma A.2.9 it can be shown that

Th = 0,(1).
and
t =2y [ [ (2 F(tlfy, 2)) dEH, (u]2)] dQu(e, 2)
~2va- | / F(tl0, 2)) dEL (u]2)] dE[Qu (. 2)] + 0,(1).

By Lemma 2.3.4 under C7,

Ty, = =2 ([ (BU(wl)] = F(sl6, ) Falbny,2) d0ul2)) (B, = b,) + 0,(1).

In the following, we show that

H/ F(alfuy; 2)) - F (a0, 2) dQu(, 2) = CH(0.)| = 0,(1).
(2.3.2)
Note first
| [ s F(@l0hy,2)) - F (2160, 2) dQn(,2) = CF(6.)|
| [ (et F(al6y,2)) - F(tlfg, 2) d(Qu(, 2) ~ BQu(x, 2))|
i / F(2]0y, 2)) - F (2100, 2) dE[Qu(z, 2)]

/ (BlHa(2]2)) = F(al6., 2)) - F(al6.., 2) dE[Quz. )]
+H/ H(l2)) - F(l6., 2) dE[Qu(x, )]
+H/ (2]2) — F(z]6., 2)) - (x]Q*,z)dE[Qn(x,z)]—CJZ.(Q*)H. (2.3.3)
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For a € {1,...,p}, by Lemma A.2.11 with

OF (2|0, 2)

nli2) = (B[ (al2)] — Plalfn,,2)) - e,
under C7,

[ Bl - Pl 2) - 20 (@, 0,2) - BIQu(e, ) = 1),

Hence, the first term on the right-hand side of (2.3.3) equals 0,(1). Note that

under C7 the function

[ (Bltal2) - Fal2) - Plal ) dEIQu (.2

has a bounded derivative on ©. Thus, by Lemma 2.3.2, the second term equals
o(1) as well. By Lemma A.2.6, under C7 there exists a constant C' > 0 such
that the third term term on the right-hand side of (2.3.3) is bounded by

C-  max |E[H,(z]2)] — H(z|z)| = o(1).

(z,2)€ERx]0,1]¢
For each a € {1, ...,p}, by Lemma A.2.12 with
OF (z|0., 2)
20,

under C7, C9 and Assumption (i) the last term on the right-hand side of (2.3.3)
is equal to o(1) as well. Consequently, (2.3.2) follows. Thus, by Lemma 2.3.4,
under C1-C6 and C8,

W(x,2) = (H(:c|z) — F(ajw*,z)) .

Ty = ~23/-CE(0.)- (B —0rg) +0p(1) = 2V/10-CL(0.)- L7 (6.)- L (Bry) +0p(1).

As in the Theorem 2.2.4, by Lemma 2.3.4, it can be shown that T, and T,

converge to zero in probability. Therefore,
ﬁdH,n(f) = \/E : /N]:,n(xa 07107 Z) dQn(fE7 Z)
~2vi [ [ (Bl = F(ul6u, ) B (ul2)] dEIQu(z. 2]+ 0y(1)

00
Note that by the definition of 6,,,, under C3 and C5,

. dlog f(x]0,,, 2
CL0.) - Ej (o) [ FE

T+ 2vi - CR0.) - E7L(0.) / 0108 J(@lbng: 2) 13 (. (2.3.4)

dE[Qn(z, 2)]
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=CF(0.) - L2 (6.) - Ly (8y) = 0.

Hence, we can write

gz n(F :/N;n 2,0y, 2) dE[Qn(, 2)]

2 f [T F(ulf. 2)) dELHL, (u]2)] dEIQ(x. 2)]

_|_QC']T__(9*).iﬁ})o(g*),/alogféxewno,Z)dE[Qn(x’z)].
Consecuently,

\/ﬁ' (CZH,n(]:) - dH,n(]:))
_Jn- / N (2,0 2) d(Q (2, 2) — B[Qu(x, 2))

oy 010 - 50 - [ LR a(q, 1. 2) - BIQur,2)]) + 0,1

Note that for all (z,0,2) € R x © x [0,1]¢, by partial integration,
|Nzn(2,0,2) — Nr(z,0, 2)|
<| (Bl (a]2)] — H(xl2)) (ELA (ol)] + H(al2) - 2- Falo. )|
[ Bl ula)] - F(l0,2) ~ (H(ul2) = Ful. ) dE{, (u]2)]
[ () = Fulo,2) d(E )] - 1)
<4 max | E[H,(x]2)] — H(z|2)| +2 - max | E[H,(z]2)] — H(z]-)
+ 2| (Bl (+]2)] - H(alz >)( (¢]2) — F(xl6, )|
[ (Bl (ul2)) ~ (ul2)) a7 (ulz) — Falo.2)

<12- max|E n(]2)] — H(z]2)|. (2.3.5)

+2-

+2-

+2-

Thus, by (A.2.10) and Lemma A.2.6, we can show the variance

Var [\/ﬁ . / (Nzn(2, 00y, 2) — Nx(z, 0y, z))d@n(a:, z)] =o(1).

Further, the expectation

Blva- / (Np( 0. 2) = N (2,00, 2)) d(Qu(. ) — E[@u(z. 2)))| = 0.
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Hence, by Chebyshev’s inequality,
Vit [ Nea(e,b02)d(Qulz2) ~ ElQu(z, 2)
Vit [ Ne(a,,0:2)d(Qular2) = EQuw ) (). (236)
Therefore, we can write
Vi (dan(F) = din(F))
Vit [ Ne(a 0. 2) d(@u(o.2) - ElQu(z. )

oy 010 - 0 - [ FBELE R i, 4. 2) - BIQuw2)]) + 0,1

We define

= _Z (/ Nx(z Qno,zz)) dH (z|z) — /N]_- x Qno,zz)dH(ﬂzz))z).

In the sequel, we will show that the conditions of Lemma A.2.8 with

Y1 (z, 2) = Ne(x, 0, 2),

e 9108 1 (r10.

i- og f(x|0p,, 2

Yanle,2) = 2- CF(6.) - 7L.(0.) - ==

are fulfilled. Note first that under C5, for each n, ||¢1,(x, 2)||* and ||ty (2, 2)||*

are dominated by the same H integrable function. Further under C5 and C7,

the functions N+ and Nk are both dominated by H square integrable functions

independent of z. Therefore

—Z/ (N(z, - =) *dH (2]2)

has a bounded derivative on ©. By Lemma 2.3.2, we get then

—Z/ (Nx(z, 05, 2) ) dH (z|z) = Z/ (Nx(z, 6., 2)) dH(Q?‘Zz)"‘O( )
:/(N}(x,e*,z)) dQ(x, =) + o1).

With the same arguments, it can be shown that

%2": (/N}(w,@no,zi)dH(ﬂzi))Q =/(/N}(x,Q*,z)dH(x|z)>2dz+0(1),
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Hence, 0%, = 0%+ o0(1). Since H and F' are bounded, under C9 and Assump-

tion (i), there exists a constant C' > 0 such that

H(’J?N;(;Z, 0,z) H <. H(H(ﬂz) _ F(a]6,2)) <8H(x\z) B 6F(x\0,z)) H

0z 0z
. ‘ /:o (8H8(:|Z) _ 8F(gL972)) dH (ul2)
2 /m H(um—F(ure,z))-%duH

OF( x\@ z) ”

(2.3.7)

Thus, under C9 the function ||ON. JT/BZH2 is dominated by an H integrable
function independent of z. Therefore, the first part of the assertion follows
from Lemma A.2.8.

For the second part of the assertion, we write first
1 o - 2 2 -
_ n_oz/ (Bl (2]20)] — F(xl0y, ) — (H(z|z) — F(alf., =) dE[Ho(2]2)
i=1
1 o 2 -
+ -~ Z/ (H(z|z) — F(2]0.,2))" d(E[H,(z]2)] — H(x|zz))’ (2.3.8)
i=1
The first term on the right side of (2.3.8) is bounded by
1 0 . A
4. n_o Z / }E[Hn(x|z,)] — H(z|z) + F(x|0., z;) — F(x|0,,, zz)} dE[H,(x|z)]
i=1
)

By Lemma 2.3.2 and Lemma A.2.6, under C7 it can be shown to be o(1). By

no

<4. nioz_: <max}E n(z]z)] — H(x|2) | + max HF (0, zz)H :

z€R z€R,0€O

partial integration, the second term on the right side of (2.3.8) is bounded by

Z/ H,(z|2)] — H(z|z)) (H(x|2) — F(2]0., ) d(H(z]z) — F(z]b., zz))‘

1 &
<4.— % max ‘E n(@]2)] — H(x]2)).
No =1 z€R
Hence, with the same arguments, it equals o(1) as well. Therefore,

dgn(F) —du(F) = o(1).
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Let the functions Cz,, : © — R? and N}n :R x © x [0,1]7 = R be defined
with

Crn(6) ::/ (ﬁn(m]z) — F(x]0,z)) - F(z]6, 2) dQy(z, 2),

Nk, (2,0, 2) :=(H,(z|2) — F(x|6, 2)* +2 /Oo (H,,(ul2) — F(ul6,2)) dH,(u|2)

dlog f(x]6, z)
00 ’

In the next lemma we show that the variance o2 can be estimated consistently

+ 20 (6,) - L7 (6,) -

by the plug-in estimator:

Lol S : G 2
=Y </(N}m(x,Gn,zi))2dHn(x\zi)—(/N}’n(x,Hn,z,-)d[—[n(:c|zi)> )

Lemma 2.3.6. If C1-C9 hold, then we have

0% =07+ 0y(1).

Proof. First, we show that
1%/(]“ (2,00, 20))" dH (1]2)
- n\ Ly Un, 24 n\T|Z;
o= -

:niOZ/(N}(x,G*,zi))2dH(x\zi)-|—op(1)' (2.3.9)

Note that we have
ii/(fvl (€, 00, 2))° dH, (x| 2) —if:/(N1 (,0.,2))" dH (x|2)
no — F.n y Yy ~1 n () no — F y Uky <1 ()
no o
< niZ/(N},n(x,én,zi))Zd]:In(x|z,-) —%Z/(N}’n(x,0*,zi))2dE[]fIn(x|zi)]
no no R
Z/ Ny, (z 0*,,2,) dE[H,(2|2)] Z/ Nx(z,6., 2)) dE[Hn(x|zz~)]
no no
Z/ Nx(z,0., 2)) dE[ (x]2)] Z/ Nx(z,6., %)) dH(a:|zZ)

=.01p + Oop + O3p-

In the sequel, we show that o;, = 0,(1), for all ¢ € {1,2,3}.
Analogously to Lemma 2.2.5, under C1-C8, by Lemma 2.3.1, Corollary
A.2.10 and Lemma A.2.11, it can be shown that oy, = 0,(1).
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Further by Cauchy-Schwarz’s inequality, we get
1 & 2 A
[ ’

« / (N (.6, 20) + N:(z, 0., ) dE[H, (2] %))

Under C3, C5 and C7, the functions N Jlf,n are N1 are dominated by H square

integrable functions independent of z, hence, the function

/ (NL(2,0,,) + Nh(z, 6., ) *dEH, (x])]

is bounded on [0, 1]¢. Tt suffices to show that
RS 1 1 2 F
3 [ (NE 02— NE 82, 2)) B (0]2)] = of0),
i=1

which follows by (2.3.5) and Lemma A.2.6 because for any (x,0,2) € R x © x
[0, 1),
Nz (2,0,2) = Np(z,0,2) = Nr,o(z,0,2) — Nx(z, 0, 2).
Thus, og, = 0,(1) as well.
Note that there exists a constant C' > 0 such that

2
10(NF)"/0z|| < 2d - [ NE| - |ONF/0z]|

. 0%1
<20 [N} (I0NF/02]) + 2 056 - EL6.) - S8 )

dlog f 0?log f
gC-(lJrH o H>-<1+||(9F/8z||+|| — H)-

Thus, under C5 and C9, ||8(N })2 / 82” is dominated by an H integrable func-
tion independent of z. Therefore, with ¢ (x,z) = (N}(x, 0., z))Q, Lemma
A.2.12 implies o3, = 0,(1).

Consequently, Equality (2.3.9) holds. Analogously, we can show

1 <& A ; ;
n_og </N}7n(x,9n,zi) dHn(x]zi)>2
1 &
> ( [ Wre0 2 lz) + o,0),

Thus, the assertion follows from the convergence of the Riemann sum. ]
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For the Model G, let N§, N§,, and dp,(G) be defined accordingly. Further

denote the variance and its estimator as
o? = // (Nx(z, 0., 2) — Ngl(at,v*,z))2dH($|z)dz
2
— / (/N}(xﬁ*, z) — Ng(x, v, 2) dH(x]z)) dz

1 no/ . A . 9 -
&i::— Nlnaj,ﬁn,zi —Nlnx,An,zi dH, (z|z
o 2 | (Va2 = N (050, 20) (a2

1 & - X . ) . 2
- n_O Z </N]1—',n(x7‘9m zi) - Ngl,n(x77na zz’) dHn(x‘Zl)) .
=1

As in Section 2.2, based on Theorem 2.3.5 and Lemma 2.3.6, the asymptotic
behavior of the test statistics can be stated as in the following two theorems.

The proofs are omitted.
Theorem 2.3.7. Let C1-C9 be satisfied, then we have
Vit Ty = Vi (dio(F) = dia(G)) 5 N(0,0%),
A n(F) —dun(G) = dg(F) —du(G), 62— o
Theorem 2.3.8. Let C1-C9 be satisfied.
(1) If H” holds, then \/n - T, tends to —oo in probability.
(2) If HY holds, then \/n - T, tends to +oo in probability.
(3) If H° holds and /n - (dgn(F) — dun(G)) = o(1), then

VT, % N(0,02).

It remains the question, whether

Vi (dia(F) = dia(9)) = o(1)

holds under H° in general. Unfortunately, it does not hold except for the case
d = 1. In the following Lemma, we assume that d =1 (ng = ng), we will give

conditions, under which

V- dyg o (F) =v/n-dy(F)+o(1)

ie. /i (dyn(F) — dgn(G)) = o(1) holds under H°.



48

Lemma 2.3.9. Assume that d = 1, ngh* — 0 and the function

17252 7 e

is bounded on [0,1], then under C1-C6, C8 and C9 we have

V- dpn(F) = vn-dy(F) +o(1).

Proof. First we have

Vi |dgn(F) = du(F)|
<V Z/) (al2)] = F (el 2))” = (H(xlz:) — F(alfy, )" dE[Fu(e=)
+Vn- Z/] (w]z:) = F (2|0, )" — (H(]z) — F(x\e*,zi))Q‘ dE[H, ()]

H(x|z) — (x|9*,zi))2d(E[]:In(x|zi)] —H(x|zi))’

no

+/n- ‘_Z/ (2]z) = F(10., )" dH (]z) - dH(f)’
:Zdln + dzn + d3n + d4'n’

By Lemma A.2.6, there exists a C' > 0 such that,
i <AV —Z [ 1Bl (ol)] = Halz)| dEL ()]
=4y/n - = Z /|E 2(2)2:)] — H(z|2) |dE 2 (2]2)]

zeSh
b4V L S Bl )]~ Ha0] 48T, 1)
zlﬁSh
<CVi - Y ROV S
nziESh nzi¢sh

<O\ B+ O/ - % - (2[noh] +1) - mh = o(1),

where the last step follows from the assumption noh* — 0. Thus, di,, = o(1).
Under C7, there exists a constant C' > 0 such that

1 &
o, §4\/ﬁ-n—02/‘F(w|9*,zi) F (2|00, )| dE[H, (x]2)] < OV - [|0. — 0, ]].
=1
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In the following, we show that under C1-C6 and C8, /n - ||0. — 6,,,|| = o(1).
By a Taylor expansion, there exists a 6, € © such that

Lf,no (6*) = Lf,no (eno) + Lf,no (én) : (‘9* - eno)-

With the same arguments used in Lemma 2.2.3, by Lemma 2.3.2, for eventually
all n € m-N, Ly, (6,) is invertible. Further, by the definition of 6, and 6,,,,

Lfoo(0.) = Lyng(6ny) = 0.

Thus, we obtain

\/ﬁ' (9* - en()) :\/ﬁ ’ L;,?lzo (§n> ' (Lfﬂm(e*) - Lf,no (eno))

=v/n- Lyt (0) + (Lpne(62) = Lyoo(0.)). (2.3.10)

Note that for each ¢ € {1,...,p}, the derivative of the function
SN a (el
[ o

with respect to z is

d1og f(zh., ") dlog f(al6.,) O*H(al")
/ .00, M (@]) + / 0, " m0n 0T

which is bounded on [0, 1] under the assumptions of this lemma and C9. Thus,

for each i € {1, ..., p} the function

9log f(x0.. -)
[ o

is Lipschitz continuous on [0, 1]. Hence, with

o(2) :/8logf(x|9*,z)dH(x|Z)

00;
Lemma A.2.13 implies

Vi | Lgng (6) = Liyoo(6.)]| = o(1).
Further, analogously to (2.2.10), by Lemma 2.3.2 we can show
L5 (Ba) — L7L(8.)] = o(1).

Therefore, (2.3.10) implies \/n - |0, — 0,,,]| = o(1), thus, da, = o(1).
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Note further that by partial integration ds, can be written as
1 &
2v/n-—

By similar arguments for dy,,, we get ds, = o(1) as well.

/ (E[ﬁn(a:]z@)]—H(a:\zl)) (H(x|zl)—F(x|9*, zl)) d(H(:c|zZ)—F(1:\9*, z@)) )

For the term dy, note that for each # € ©, the derivative of the function

/(H—F)2dH

with respect to z is

OH OF , O°H

which is bounded under Assumption (i) and C9. Thus, the function

[ Gl = Pl ) an el

is Lipschitz continuous on [0, 1]. Hence, with

2
0() = [ (HGal2) - Plalp.. )’ dH(al)
Lemma A.2.13 implies dg, = o(1). Therefore, the assertion follows. O

The decision rules of the test for the case d = 1 can then be formulated as in
Section 2.2. For a given significance level «, we will decide for the hypothesis
HO, if |\/n - T, /60| < 21_as2, Where z, denotes the a-quantile of a standard
normal distribution. In the case of \/n-T, /0, < —21_4 /2 We reject H° in favor
of HF. If /n-T,/6, > 21_a/2, we reject HY in favour of HY.

For the case d > 1, the Equality v/n - ||6. — 0,,|| = o(1) does not hold in

general. A one-sided test can then be carried out with
HY: dy(F)—dy(G) <a
against
H; : dH(F) - dH(g) Z a,

where a is a constant. Given a significance level «, we reject the hypothesis
HY in favour of H., in the case of /n - (T, — a)/6, > 21_q, otherwise H? will

be accepted.



Chapter 3

The Case with Right Censoring

In this chapter, we will extend the results of Chapter 2 to the case with right
censoring, i.e. we assume that the random variable X, at covariate value
z € ]0,1]¢ is subject to right random censoring. The corresponding censoring
random variable is denoted by C,. The observable random vector at z is then
(Y., A,), where

Y, :=min(X,,C,) and A, :=I{X, <C,}.

Let H(-|z), J(:|z) and B(:|z) denote the distribution functions of X, C, and
Y,, respectively. Assume that X, and C, are independent, thus

B(:]z) =1— (1= H(-]2)) (1= J(-]2)).

Again, let zi,..., 2z, be the fixed covariate values defined in Section 1.1, at

which the random variables are observed. For each covariate value z;, we write

X, Ci, Y, A instead of X, C.,, Y., A,,. Therandom variables X;, ..., X,,, C1, ...

are assumed to be independent. For simplicity of notation let 75(.,) = 78 € R
for any z € [0, 1]%.

The two competing parametric model classes are still denoted as
F:={F(0,2):0 € © CRP, z € [0,1]%}

and
G :={G(|y,2):veT CR%z€[0,1]},

where © and I" are compact, p and ¢ € N.

51
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This chapter is organized similarly as Chapter 2. In Section 3.1 we will
introduce the basic notations and hypotheses. Amongst other things the dis-
crepancy (distance) between the model class and the underlying distribution
functions will be defined. The case with fixed ng and m tending to infinity will
be shown in Section 3.2. The difference to Section 2.2 lies in the estimation of
H by the Kaplan-Meier estimator. Section 3.3 deals with the case fixed m and
ng tending to infinity, where the conditional Kaplan-Meier estimation is used.
For simplicity of notation, we assume that the notations defined in Section 3.1
are valid through out this chapter and the notations defined in Section 3.2 and

Section 3.3 are only valid in that particular section.

3.1 Notations and Hypotheses

For each z € [0,1]¢, we denote the subdistribution functions B, B : R x
[0,1]% — [0, 1] with

BY(z]z) =P(Y, <z,A,=1) = /w (1= J(u|z))dH (ulz),

—00
T

B%(z]z) =P(Y, <2,A,=0) = / (1 — H(ul2))dJ (ulz).

—00

The corresponding empirical distribution functions are given by

ZA 6;(2) - I(Y; < ),

n

BY(z]z) == %2(1 —A) - 0i(2) - I(Y; < ).

i=1

Further, the empirical distribution for B is denoted by

2(5 I(Y; < z).

Note that we have the relations
B(z|z) = B'(x]2) + B%(z]2),
By(x]z) = By(x]z) + B)(x]2).

Denote again the joint distribution by @ : R x [0,1]¢ — [0, 1] with

Q(z,2) = //I(u <z)-I(v<z)dH(ulv)dv
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where the inner integration is with respect to the variable u. In addition we
denote for r € {0, 1} the joint distribution functions Q", Q" : Rx [0, 1]¢ — [0, 1]
with

Qsz:: ZBT w|z) - (2 < 2)
(x,2) = // (u<z) I(v<2)dB (uv)dv

where the inner integration is with respect to the variable . For any function
YR x[0,1]* = R and r € {0,1} we have as in Chapter 2 that

W(x,2)dQ" (x, 2) = Z (@, z)dBL(x)2).
/ o

/zﬂ(x,z)d@’”(a:,z) = //w(x,z)dB’”(x\z)dz

Denote further the functions v, C' : (—oo, 75| x [0,1]¢ — R with

) =eo ([ fgarsdn ).
o 1 ;
C(z|z) = /OO mdB (ulz).

Note that

71— H(ulz) o 1
= —dJ ): </ ——dJ )
el = e ([ =g iR ) = ([ sl
1
—exp (—log (1= J(w—]2))) = T———=.
exp( og (1= J(z—12)) = @)
Let 7 < 75 be a constant. In order to ignore the tail effect of the Kaplan-

Meier estimator later, we define the logarithmic likelihood function for the

model class F as function [A/fm : © — R with

n

f/f,n(@) 3:% Z (Az’ log f(Yi]0, 2;) + (1 — A;) log (1 - F(Yilﬁ,zi))) I(Y; < 7)

—/log F@l0,2) - I < 7)dQL(z, 2) + /log (1— F(al6,2)) - I(x < 7)dQ2(x, 2).

The maximum likelihood estimator of 0 is then defined as

0, = argmax L, (6).
=C)
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Further we define functions Ly .., L~ : © — R and the vectors 6,,,0, € ©
with

L (0) = nioi (/_T log f(2]0, 2;)dB*(z]2) +/

i=1 [ —00

T

log (1 — F(x]0, zi))dBo(:v|zi)>,

0, == argmax Ly, (),
60

Ly(6) = /log F(@]0,2) - Iz < 7)dQ\(, 2) + /log (1— Flalt,2) - I(@ < 7)dQ°(x, =),

0, := argmax L . (6).
60

Analogously to the case without censoring, the following asymptotic relations
hold:

m—00

Lfn —_— Lfno

TLO*)OO\ /n()*)oo
L.

Under some regularity conditions, we obtain

A m—r00
0, —— Op,

no —)OO\{ \/no—wo
0.

The distance dy(F) between the underlying family of distribution functions
H and the model class F is defined as

Z/ H(z|z) — F(2|fy, 2))* dH(z]2), (3.1.1)
for the case with ng fixed and m — oo and

/ (H(alz) — F(alf., )’ - I(x < 7) dQ(z. ) (3.1.2)

for the case with m fixed and ng — oo, respectively. Again, let 4, Vn,, 7« and
dp(G) denote the counterpart for the model class G. We will propose model
selection tests with the null hypothesis

HO: dy(F) =dy(G)
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meaning that the two models are equally close to H, against
H" : dy(F) < dy(G)

meaning H is closer to F than to G or
HY o dp(F) > du(G)

meaning H is closer to G than to F.

In this chapter, it is assumed that the integrability of a function defined
in Chapter 2 holds for x on (—oo,7]. For instance, for any function ¢ : R x
O x [0,1]* — R with (z,0,2) — 9(x,0, 2), we refer it as dominated by a B!
integrable function, if for each 2z € [0,1]%, there exists a function M(,2) :
R — R, such that |[¢(x,0,2)] < M(z,z) for all (x,0) € (—oo0,7] X © and
ST M(z,2)dB"(x]z) < oo.

It is assumed that all the convergences are taken by letting m — oo in
Section 3.2 and all the convergences are taken by letting ny — oo in Section

3.3. Note that since n = m - ng, in both cases n — oco.

3.2 The Case with Number of Observations at
Each Covariate Tending to Infinity

In this section, for each 2 € [0, 1]¢ the distribution function H(-|z) is estimated

by Kaplan-Meier estimator, which in our setting is defined by

KM o i (2) - Ap)
H Y (z]z) =1 H (1 : (z)>’

- 1—1
Yoy <w m— ijl @)

where Y1) < Y{o) < ... <Y, are the ordered observations and Ay and 6(;)(2)
are the corresponding indicators for Y(;). Let the joint empirical distribution

function be defined as
1
KMy 2) = — HEM (3)2) - I(% < 2).
R P AONICED
The distance dy (F) defined in (3.1.1) can then be estimated by

BunlF) = [ (HE 012~ Plali )7 1o < 7) Q. 2,
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For the class G, the estimator OZHn(Q) is defined in an analogous way. Again

the test statistic is defined as the difference of the estimated distances
Ty = dyn(F) — dua(G).

The assumptions are formulated as follows. They are extensions of the as-

sumptions in Section 2.2 to the setting in this section.

D1 For each (0,2) € © x [0,1]9, the distribution F(:§,2) has a density
function f(-0,2) : R — R. The functions f(-|6,z) and 1 — F(-|f, z) are
strictly positive B'(-|2)- and B°(-|z)-a.s. respectively.

D2 The functions log f and log(1 — F') are three times continuously differ-

entiable in 6 on ©.

D3 The function log f is dominated by a B! integrable function. The func-
tion log(1 — F) is dominated by a B integrable function.

D4 The function L¢,, has a unique maximum on © at 6,,, which is an

interior point of ©.

D5 The functions ||@log f/06] and ||0%log f/06?| are dominated by B!
square integrable functions. The functions ||0log(1—F) /90| and ||0* log(1—
F)/06?|| are dominated by B° square integrable functions. The Hessian

matrix L, (0, ) is invertible with inverse f/;’im(@no).

D6 For any i, j, k € {1,2,...,p}, the function 9®log f/06;00,00), is domi-
nated by a B! integrable function. The function 9% log(1— F)/06,;00,00y,

is dominated by a B° integrable function.
D7 The functions F' and F' exists and they are bounded.
Analogously to Lemma 2.2.1, we can show the following lemma.

Lemma 3.2.1. Forr € {0,1}, define the function 1, : R x [0,1]¢ — 0. If 1),
15 B" integrable, then

i /1/4de@sz ——Z/¢szde |zz)>

r=
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If 1, 1s B" square integrable, then

IZ ([ vrte @i, 2) - Z/mxzde(m))%N(oU)

where

no

le /w x,2;)dB’ (x]2;) — /wr z,2)dB" (m\zl)) ).

1
No
i=1 r=0

Proof. We denote first for each i € {1,...,m},

1
Up=—3 (A(i—1)~no+j'wl(Yu—l)moﬂ'a %)+ (1=A - 1yno+5) Yo (Yi-1)no-s- Zj))-

No
7j=1
Notice that Uy,..., U,, are i.i.d. and
1 n
1 1
Z/¢r(fl?>z)dQ2(l’az) = Z <Ai¢1(n,2i) + (1 - Ai)wo(yb Zz)) = Z Ui.
r=0 i=1 i=1

The expectation

E[;/wr(% 2)dQ;, (z, Z)} —% iE[Aiwl(Ym%) +(1- Az‘)%(yz‘?zz’)}
:_ZZ/% r, 2)dB" (2]2)

=1 r=0

ZZ/% x, z;)dB"(x|z).

i=1 r=0

Because (Y7, Aq), ..., (Y, A,) are independent, we get further

Var [\/ﬁ . i / by, 2)dQ (x, z)]
:% zj: Var [Aﬂ/h(Y;, zi) + (1= Ag) ¢ (Y5, Zz)] = o’

Thus, the assertions follow from the strong law of large numbers and central

limit theorem for i.i.d data.
O]

Based on Lemma 3.2.1, the following two lemmas on the convergence of 0,

can be shown as the case without censoring. The proofs are omitted.
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Lemma 3.2.2. If D1-D5 hold, we have |0, — 0,,,|| — 0 a.s.
Lemma 3.2.3. If D1-D6 holds, then
Vi = 6,1l = O(1),
VI |0n = Ong + Ly (6n) - Lin(no)|| = 05(1).

In order to state the main theorem we introduce the functions C'r : © — RP,
and Nz : (—oo,75] X © x [0,1]¢ — R with

— Z/ H(zlz) — F(alf, %)) - F(e]0, =) dH(x]=),
Nor(a,6,2) = (H(al2) = Flalo,2))? 1z < 7)
+2/; (H(ulz) — F(ul6, =) dH(u]2) - I(z < 7).
Further we denote N, N : (o0, 75] x O x [0, 1] = R with

Nx(x,0,2) :=Nx(x,0,2)y(x|2)
0log f (x|, z)
00

- /N;(u, 0,z)C(x A u|z)dH (ulz),

+20%,,) I;]z}m(gno) . A(x < T)

NO(z, 0, 2) = / Nr(u,0,2) - I(x < w)dH(ul2)

1 — B(x|z)
dlog (1 — F(z]6, 2)) ‘
00

- /N]:(u, 6, 2)C(x A ulz)dH (ul2)

+ 20;(0710) ’ I’;leo (eno) ’ ](I < T)

and the constant 0% € R,
.:n—oz /N1 T, 0py, %) dB"(x|2;) — /N1 T, Oy, 2:) dB* (1] 2;)) >
+— /NO T, 0py, 2)? dB%(x|2;) — /N0 T, 00, 2;) dB°(2]2;)) )

Theorem 3.2.4. Let D1-D7 be satisfied, then

Vi - (dgn(F) = du(F)) S N(0,02).
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Proof. Analogously to Theorem 2.2.4, under D1-D7, by Lemma 3.2.3, Lemma
A.3.2 and A.3.3, we can write

Vit dualF) =i+ [ Ne(o,00,,2) dQI (2,2)
—2v/n - o Z/ / H(ulz) — F(ulb, z)) dH (u|z) dH (z|z)

+2vn - C;( no) E;no(enﬂ) ) Lf,n(eno) + 0p(1).

By Lemma A.3.1, we get then

Vit duolF) =i+ [ Np (.00, 2103w 2) + [ N3 (2,00, 2)d03.2)
—2v/n - o Z/ / H(ulz) — F(ulb, z)) dH (u|z) dH (z|2;) 4 0p(1).

Notice that by the definition of 6,,,

1 & . dlog f(x|0n,, 2;
LY [ ) L3 0 P o <

1 o . dlog (1 — F(x|0n,, )
e [ CHO.) - Ll 00 - ) 1o < B (el
0 =1
:Cg(‘gno) ) I’;,?llo(eno) ) Lfmo (eno) =0.

Further for each z € [0,1]%,
//Nf(u,é’no,z)C’(:U Awu|z)dH (u]z)dB(x|z)

/ / /Nf u enm i TS)I U= 40 (1)) dH (u]2)dB(x]2)

/// Nr(u 9no» ET;)W = u)dB(a:|z)dBo(t|Z)dH(u|Z)

:// Nr u,eno, I(t < u)( — B(t\z)) AB°(t]2)dH (u]2)
1 _

B(1]2))’
/ N}‘ u ‘97107 1; < u) dBO(t|Z>dH<u|Z)
// Nx(u, 9no’ @] ()CB - u)dH(U|z)dBO($|Z) (3:2.1)

Hence,

1
n—oz </N}($,«9n0,2¢)d31(x|zi)+/Ng(x,9n0,zi)dBO(a:|zi)>
i=1
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:nio i </N;(m,Qno,zi)'y(x|zi)dBl(:B|Zi)
/ / N (u %ZZ ﬂif)x =9 4B (u)z)dB"(x]2)
_//N;(u,eno,zi)C(:z;/\u\zi)dH(u\Zi)dB(x‘Zi))
:ninz / Nop(, O, 2)dH (2]20)

iy _Z/ / H(ulz) — F(ulny, ) dH (ulz;) dH(2)) + du(F).

Consequently, we get
1 S 1 1 0 0
dy(F) _n—oz (/Nf(x,eno,zi)dB (x]zi)+/NF(x,6nO,zi)dB (2]2))

no
Then, we can write

Vi (dun(F) = du(F))
_n- / N2, 000, 2)d(QL (2, 2) — E[QL (2, 2)])

# Vit [ NR (w00, (@2 2) ~ EIQR,2)]) + o,(1).

Note that under D5 and D7 the functions Nx(-,6,,,) and N%(-,0,,,) are B
and B square integrable, receptively. Thus, the assertion follows from Lemma
3.2.1 with ¥y (z, 2) = Nx(z,0n,, 2) and o(x, 2) = N%(x,0,,, 2). O

Notice that in the case without censoring (J = B® = 0) the variance reduces
to the variance defined in Theorem 2.2.4.

For the estimation of the variance ajzr we denote for each n € ng - N the
functions v,,C, : (—oo, 7] x [0,1]¢ = R, Cr, : © — RP, Nr,, : R x O x
0,1] - R, N}, N%, : (—o0,75] x © x [0,1]* — R with

wiel=e ([ 75500)

o0

z— 1 .
Cu(x|2) = /Oo = Bn(u|z))2dBn(u|z),
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Crnl®) = [ ([ mulo)iBlulz) = F(al6,2)) Flal6.2)nlal2) - 1o < 1)@l ),

Nrn(z,0,2) ::(/ y(t]2)dBL (u]z) — F(x\e,z>)2 (< 1)

— 00

+%X£&mm&w%ﬂ%@ﬂ@ﬂ3w)@<ﬂ

dlog f(z|0, 2)

N}-—,n(:c707z) ::N]:,n(x767 Z)’)/n(l'|2) + QOg,n(én) ’ ijj,}z(éﬂ) ’ 89

Az <T)
~ [ Nralw 2)Cule Al (ul)dB ul2)
N3 (2,0, 2) ::m / Nz (u, 2) - Iz < u)y,(ul|2)dB) (u]2)

. x . Olog (1 — F(xl6,
YL, (6,) - 11 6,) - 8 o @l9:9) _ta <

—/N;,n(u, 2)Ch(z A u|2) v, (u|2)d B} (u)2).

In the next lemma, we show that 0% can be estimated consistently by
 n .:—Z /N]_-n ,0,, %)% dB) (x]2) — /an ,0,,2)dB (2]2:)) )
b /,/LO

+— /N]_-n ,0,, %)% dB (x| z) — /an z,0,, 2) dBy(z|z)) )
No 5
Lemma 3.2.5. If D1-D7 hold, then we have

&.27:,71 = 0-.%: + Op(]')'

Proof. Note that Nr ,(z, 0,0, z)vn(z|2:) is one of the summands in Nz, (x, 0,0, ).

Hence,
1 A
0~
=1
is one of the summands in &%n and its corresponding part in 0% is

1 &
Y [ N 2 0l 4B ).
=1

In the following we will show that

1 & .
%Z/mewwmmwm»
=1
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1 &
Ly / N2(@, Oy, 272 (]21) dB (] ) + 0,(1). (3.2.2)
Mo 3
First we write

1 ”“/ X
2 | Nalebus i) B olz)
1 &
o> [ MRy 2 al) dB el
=1
1 X
=\ N2nx70n7zi 21'% dBi:)jzz
CON EECARTERITED
1 &
o3 [ NE g nal) Bl el
=1

1 &
oo [N (082 (2el) — 27(0l) dBYal)
1

Ng <
1=

1] &
(=3 / N2 (2, Oy, 2272 (2] 25) dBL (2]2)
=1

o nioz / N;_—(ZE, 9”07 22)72<I|Zz) dBl(x|Zz)> (323)

Note that for any (z,z) € (—o0, 7] x [0, 1]¢

Tulalz) = exp ( / OO mwz(ma) < exp ( / OO #sz(m).

Since ny is fixed, by the Glivenko-Cantelli theorem, 1— B,,(7|-) is stochastically
bounded away from zero uniformly on [0, 1]%. Thus, the function 7, is bounded
in probability. Analogously, the function ~ is bounded as well. Under D7, we

have then the derivative of
1 2 2 1
n_OZ Nf,n(xvazz)’Yn(x|ZZ) dBn(x|zz)
i=1

is stochastically bounded on ©. Thus, under D1-D6, it follows from Lemma
3.2.2 that the first term on the right-hand side of (3.2.3) is equal to o0,(1).

In the sequel, we show that the second term on the right-hand side of (3.2.3)
is equal to 0,(1) as well. Note that by definition N%}n is bounded. Hence, it

suffices to show that

1 & [T
-3 / 2 (a]) — 72 (2]20)| dBL(a]z) = op(1).
j=1 Y —x
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By Cauchy-Schwarz’s inequality,
1 <~ [T
n_o Z/ |773($‘Zz) - 72($|Z¢)‘ dB}L(a:|zi)
i=1 Y —®

I%Z[ [a(alz:) = A(zlz)] - nlelz) + y(alz)| dBy(a]z)

T

gniOZ/_ (7"(5’42@')_Wx’zi))QdBi(ﬂ?\Zi)'/ (ynl]2) + y(]20)) dBL (2] z:).

—00

Since 7, and 7 are stochastically bounded on [—oo, 7] x [0, 1], thus
T 2
| Gutal) + 2l dBial)

is stochastically bounded on [0, 1]¢. Tt remains to bound

LS Gutela 5oty aniial=).

Note that by a Taylor expansion,

nlal2) =2tele) =36ela) ([ g Bl — [ g dB )

where 7,,(x|2) lies between v, (z|z) and y(z|z). Let Cy,(2) be defined as in the

proof of Lemma A.3.2, we can write then
1 Qo 7 .
n—OZ (vn(@|2:) = 7(x]2)) dBy (x]2)
i=1 Y~

no m
:nio ; ; (Y5208, () AL (Y; < 7)C2 (20). (3.2.4)
With similar arguments as in the proof of Lemma A.3.2; it can be shown that
the last term equals to 0,(1). Hence, the second term on the right-hand side
of (3.2.3) is equal to o,(1).
By Cauchy-Schwarz’s inequality and the boundedness of Nx,,, Nz, and 7,
there exists a constant C' > 0 such that the third term on the right-hand side
of (3.2.3) is stochastically bounded by

1 & 9
C-— / Nz, (z,0,,,2)— Ne(x,0,,, 2 dB,lezi.
nOiZI ( -7:,( 0 ) f( 0 )) ( | )
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Next we show that
1 & 9
n—z/ (N£n (@, 00, 2i) — N£(, 009, 2))” dBp(2]2;) = 0p(1).
0 %=1
Note that there exists a constant C' > 0 such that

1 &
n—Z/(N;ﬂ(x,Qno,zi) — Np(2, 00y, 2))° dBL(2]2)
0 =1

<cen S [ ([ tigamiutz) - elz)) dmiel

N

+C- —Z/ (/ / Va(t]2:)dB) (t|2:) — F(ul0, ;) v (ul2:)d B} (ulz;)
—/( (ulz) — (UIQ,zi))v(UIzi)dBl(ulziD2dB,£(x|zi). (3.2.5)

The first term on the right-hand side of (3.2.5) is bounded by

2. —Z | ([ twlgasilz) - [ sldsilz) dBal)

—0o0

420 _Z/ / y(ulz)dB. (u]z) — / ’Y<U|Zi)dBl(u|Zi)>2dB}L($‘Zi)

—0o0

<20 - —Z/ / Yo (u|2;) — (u\zi))QdB}L(u|zi)dB}L(J:|Z¢)
+ 20 - —Z/ / v(ulz;)d(B) (ulz) — Bl(u|zi)))2dB,11(x]z7;)
SQC.HLOZ/_ (fyn(u|zl) — ”y(u]zi))QdBi(U\Zi)

+2C- nOZ/ / v(ulz)d (B}L(u|zi)—Bl(u\zi))>2dB}L(a:]zi). (3.2.6)

By (3.2.4), the first term on the right-hand side of (3.2.6) equals 0,(1). Anal-
ogously to (2.2.12), by Corollary A.1.2, the second term on the right-hand
side of (3.2.6) can be shown to be 0,(1) as well. Hence, the first term on the
right-hand side of (3.2.5) is equal to o0,(1). With the same arguments, it can
be shown that the second term on the right-hand side of (3.2.5) is equal to
0p(1) as well. Therefore, the third term on the right-hand side of (3.2.3) equals
0p(1) and (3.2.2) holds.

With similar arguments, under D1-D7, we can show the same results for

other parts of &%n and o%. Consequently, the assertion follows. m



65

For the Model G, let Cg, Né, NS and their estimates be defined accordingly.

The variance and its estimator are defined as

1 no 1
7= Y [ (V500 ) = Ny ) B (0]2)
i=1 r=0
1

Analogously to the case without censoring, Theorem 3.2.4 and Lemma 3.2.5
imply the following two theorems on the asymptotic normality of test statistic

T,,. The proofs are omitted.
Theorem 3.2.6. If D1-D7 hold then
Vi (T = (du(F) = dn(9))) S N (0.0%) and 62— o

Theorem 3.2.7. Let D1-D7 be satisfied.

(1) If H” holds, then \/n - T, tends to —oo in probability.

(2) If HY holds, then \/n - T, tends to +oo in probability.

(3) If H° holds, then /n - T\ 5 N(0,02).

If 02 > 0 and H° hold true, then

M 4 N(0,1).
On
The decision rules of our test are given as follows: for a given significance
level o we will decide for the hypothesis H, if |\/n - T,,/6,| < z1_a/2, where
zo denotes the a-quantile of a standard normal distribution. In the case of
V- T,/0, < —z1_q/2 we reject HO in favor of HF. If /n-T,/6, > z1_a,
we reject HO in favour of HY. However, we propose to use the model with less

parameters, ever if H° is not rejected.
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3.3 The Case with Number of Covariates Tend-
ing to Infinity
In this section, the Kaplan-Meier estimator is replaced by Beran’s estimator.
Define the weight function w,; : R* x Rt — R* by
K5
Do K(22)

where K : R? — Rt is the kernel function and A > 0 the bandwidth. In our

setting, the Beran’s estimator is defined by

7 n(z) 7h A
Al =1 [T (1 et ),
Yiy<z 1—- Zj 1 wn (Z h’)

where Y{;y < ... < Y{,) are the ordered Yi,..,Y,, du) and wyi)(2, h) are the

corresponding indicator function and weight of Y{,). Further, we define the

Wpi(z, h) ==

kernel estimator for the joint distribution by

no

A 1 A
EM(g, 2) = — HEM (212) - 1(z < 2).
@ 2) = ; o (@]z) - Iz < 2)
The distance dy(F) defined in (3.1.2) can then be estimated by
Ay (F) = / (M (2]2) — F(aldn, 2))* - I(x < 7)dOF (x 2).

For the class G, the estimator d an(G9) is defined in an analogous way. As test

statistic we take the difference of the estimated distances
Tn = dH,n(.F) — CZH,n(g)

For z € [0, 1]¢, denote the kernel estimates of the sub-distributions by
Bl (z|2) Zwmzh) A; - 1(Y; < x),
BY(z]2) Zwmzh —A) - 1(Y; < x)

and the kernel estimate for B by

= Zwm-(z,h) (Y < x).



67

Note that we have

B.(z|z) = Bl(z|2) + B%(z|2).

For the consistency of the kernel estimator, let the following assumptions hold

true through out this section.

(i)

(i)
(iii)

The functions H and J have bounded derivative and Hessian matrix with
respect to z. The functions ||0? H/9z0z|| and ||0.J/020z|| are dominated

by Lebesgue integrable functions independent of z.
As ng — oo, h — 0, ng'h~%log(ng) — 0 and ngh?? — oo, .

Let K be a positive Lipschitz continuous function on [—1,1]¢, zero oth-
erwise. Further, for all z € R?, K(x) = K(|z]).

The assumptions on the competing models are stated as follows.

El

E2

E3

E4

E5

E6

For each (0,z) € © x [0,1]¢, the distribution F(:|0,2) has a density
function f(-0,2) : R — R. The functions f(-|0,z) and 1 — F(-|, z) are
strictly positive H(+|z)-a.s.

The functions log f and log(1 — F') are three times continuously differ-

entiable in 6 on O.

The function log f is dominated by a B! square integrable function in-
dependent of 2. The function log(1 — F') is dominated by a B° square

integrable function independent of z.

For each ny € N, the function Ly ,, reaches its maximum at 6,,,, which

are interior points of ©.

The functions ||0log f/00||* and ||0*log f/06?||* are dominated by B?-
integrable functions independent of z. The functions ||0log(1 — F) /90|
and [|0%log(1 — F)/90%||* are dominated by B-integrable functions in-
dependent of z.

For any i, j, k € {1,2,...,p}, the function 8°log f/06;00;00 is domi-
nated by a B! square integrable function independent of z. The function
9 log(1—F)/06;00;00y is dominated by a BY square integrable function

independent of z.



68

E7 The function F and F exist and they are bounded.

E8 The function L¢ ., has a unique maximizer on © at ,, which is an inte-

rior point of ©. The Hessian matrix L (6.) is invertible with inverse

L;;(e*).

E9 The function ||0F/dz| is dominated by a B' integrable function inde-
pendent of z. The functions ||0F/9z| and ||0*log f/0200|| are domi-
nated by B! square integrable functions independent of z. The function
10?2 log(1 — F)/0200]| is dominated by a B® square integrable functions

independent of z.

The following two lemmas can be shown analogously to Lemma A.2.7 and

Lemma A.2.8. The proofs are omitted.

Lemma 3.3.1. For each r € {0,1}, let the function ¢, : R x [0,1]¢ — R be

an B" square integrable function independent of z, then
1 1
Z/wr(x,z)dQ;(x,z) = Z/z/}r(a:,z)er(a:, 2) + op(1).
r=0 r=0

Lemma 3.3.2. For eachr € {0, 1}, let (¥rn)nemN, (&Tn)nem.N ‘Rx[0,1]4 =R
be two sequence of functions. Assume that there exists a constant 6 > 0, such
that for any r € {0,1} and n € m - N, |thp|2*0, [then|>* and ||0¢,,/0z||* are

dominated by the same B" integrable function independent of z. Define for

nem-N
Ui ::% ZZ/ <wrn(x7zi) + &rn(xv Zi))QdBr(x|Zi>
1 o - 2
n ZZ (/ (wrn(x’ zi) + wrn<x>zi))dBr<x’Zi)> '

If there erists a constant o such that 02 — o2, then
1
Vit 3 [l (@30, 2) — EIQ3 . 2))
r=0

- Z/@Z)m(:p, A(Q'(, 2) — E[QL(x,2)]) — N(0,0%).
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Analogously to the case without censoring, based on Lemma 3.3.1 and
Lemma 3.3.2, the asymptotic behavior of the maximum likelihood estimator

can be stated as follows. The proofs are omitted.
Lemma 3.3.3. If E1 E3, E5 and E8 hold, then |0, — 6,|| = 0,(1).
Lemma 3.3.4. If E1-E5 and E8 hold, then ||0,, — 6.]| = o(1).
Corollary 3.3.5. If E1-E5 and ES hold, then ||6,, — 6,,,|| = 0,(1).
Lemma 3.3.6. If E1-E6 and E8 hold, then
Vi ([0 = Oy | = Op(1),
VB = Oy + E720(0.) - Lyn(80)|| = 0p(1).

In order to state the main theorems we introduce the functions C'r : © —
RP, and Nr: R x © x [0,1]? — R with

Cx(0) ::/ (H(z|z) — F(x]6, 2)) - F(z]6, 2) - I(x < 7)dQ(x, 2),
Nr(z,0,2) :=(H(z|z) — F(z]0,2))" - I(x < 7)

+ Z/T (H(ulz) — F(ulf, 2))dH (u]z) - I(z < 7).

For each n € m - N we define v,,C, : (—o0o,75] X [0,1]¢ — R and Nz, :
R x © x [0,1]¢ — R with

T— 1 “o
Yn(z|2) := exp /OO - E[Bn(u|z)} dE[B)(u|z)],

xr— 1 AO
o) = | B )

Nrn(2,0,2) = (/

—0o0

+ 2/; (/Zo Yn(t]2)dE[B)(t]2)] — F(uye,z)>%(u1z) dE[B (u|2)] - I(z < 7).

n(ul2)AE (B (u]2)] ~ F(al6, ) Tz <)

Further we denote Nz, , N% ., Nz, N% : (oo, 75] x © x [0,1] = R with

Olog f(z0,2)

(<
50 I(x <T)

N}‘,n@;? 0, Z) ::N]:,n(xv 0, Z)Vn(xlz) + 20.7}:(0*) ’ L;,io(e*)



N, (2,0, 2) =

Nx(z,0,z2) =

N%(x,0,z2) =

Denote the two
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— /Nf,n(u,é, 2)C(z A ul2)yn(ul2)dE [3711(?42)}7
1
1-— E[én(x\z)]

/[(:c <) Nren(u,0,2)y,(u|z)dE [B}L(u|z)}

' dlog (1 — F(x]0, 2))
00

— / N (u, 0, 2)Cr(@ A u|2)yn(ul2)dE[ B (ulz)],

_ dlog f(x]0, 2)
00

+2C%5(0.) - Ly o (6:)

) .fl7m

Az <T)

Nz(z,0,2)y(z]2) +2C%(0,) - L;io(ﬁ*) I(x < 1)

—/N;(u,@,z)C(:z:/\u|z)dH(u|z),

1

T / I(z <) - Ne(u,0,2)dH(ulz)
. dlog (1 — F(z]6, z))
00

_ / Nor(u, 0, 2)C (2 A ul2)dH (u]2).

+20%(0.) - L;L.(6.)

A(x < 7)

constant dy,,(F) and 0% as

Py i= [ ([ el MEIB ]2~ F (al6n,,2)) ]2 1o < P)AEIQL 2]

o2 ;:/ (/N}(x,ﬁ*,z)QdBl(ﬂz) _ (/N}(x,e*,z) 4B (2]2))") d=

o/

/N}(m,ﬁ*,z)2dBO(x|z) - (/Ng(x,e*,z) dBO(x|z))2>dz.

Theorem 3.3.7. Let E1-E9 be satisfied, then we have

and

Vi (diga(F) = diga(F)) % N(0,0%),

Proof. Note that we can write

(al2) = Falfa,2) = (Fatel) = [ n(ul:)aBIB )

+

([ w2 BB wl2) — Pl 2)) = (Flalf2) — Flalfn,.2).
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Analogously to Theorem 3.2.4, under E1-E9, based on Lemma 3.3.3, Lemma
3.3.6, Lemma A.4.3, Lemma A.4.4 and Lemma A.4.7, we can show

Vi - dgn(F) =/ / N (200, 2) dOKM (2, 2) + 20%(0.) - £71(0.) - Ly(6r)
oS [ eaamtBia) - Fa.)
X (] 25) AE (B (u]2) 2] 22) dEB (2] 20)] + (1)

and
d1a(F) = [ N8y, 2)00]2) AEIQ} 2, 9) + 205(0.) - EA0.) LB
_g.ii/T / </ n(t])dE[BL(t)=)] — F(ulf, =)
ny < —o0
< (| ) BB () 20) i (2]2) AE[ B (]22)] + 0,(1).
Consequently, we can write

Vi (A (F) = dign(F))
Vit [ Nrale,00s2) A0S (2.2) = Vit [ N (0.0, 2)ol2) dEIQE 2,2)] + 0,(1)

oy L) - o) - [ LD S 1 < (@i e, 2) - BQLs: )

N 2\/_ CT( ) ;})0(9 ) /810% (1 —;;(l“enmz)) ,[(x < T)d(Q?l(:C,Z) . E[QQ(CC,Z)])

By Lemma A.4.2 with ¢, (x, 2) = Nz, (x,0,,,2) and similar arguments as in
(3.2.1), we have that

\/ﬁ-/an z,0,,,2) dQEM (z, z) —\/ﬁ-/Ngn(:v,Qno,z)%(ﬂz) dE[Q (z, 2)]
Vit [ Nl 210012 QL. 2) = LA, )
Vit [ [ Nralu, 8 2)Cn(o Al (B (B ul2)] (@4 v, 2) — EIQ) (. 2))

T <u) N;nueno, )%(u|z>dEl§1uz d(O°(x.2) — EIO° (x. 2
- // AEES (Bl (ul2)] d(Qh (=) — Q5w 2)])

Vit [ [ N80 2)C0(o Al (B (B u]2)] (@S, 2) ~ BIGS . 2)
(3.3.1)
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In the sequel, we show that

Vit [ Nealz, g 21(al2) (@4, 2) = EIQL,2)
Vit [ Ne(a, b, 2 (al2) (@ (2.2) - EIQHz.2) +0,(1). (3:32)
Note that we have
|N-7:,n(x78n07 Z)7n<x|z) - N}'(Z‘, 0”07Z>’7(x‘z)|
§|N]—',n(*x76no7 Z) (f)/n(xlz) - ”y(:lj‘|2)) =+ (NF,TL(:C?QTLWZ) - N]—'(xvenov Z))”)/(Z"ZM
§|N]-',n(x79noaz)| ' }7n(x|z) - ’7(93|Z)} + ‘N}',n(‘r?enovz) - N]:(ZL‘,QnO,Z)l ’ "Y(ZL‘|Z)‘

Analogously to (2.3.5), by Lemma A.4.6, there exists a constant C' > 0, such
that for all (z, 2) € (—oo, 7] x [0, 1]¢,

| N7 (%, 00, 2) — Ne(2,60, 2)| < Ch.

Therefore, by Lemma A.4.5 and the boundedness of N, and ~(z|z), there
exists a constant C' > 0, such that for all (z,2) € (—oo, 7] x [0, 1]¢,

|N.F,n(x79noa Z)’}/n(.l’|2) - N]:(ZL‘, 0n072)’7($|2)| < Ch. (333)

Hence, analogously to (2.3.6), Equality (3.3.2) holds. With the same argu-

ments, it can be shown that
Vit [ [ Nralu, 00 2)C(o Al (B (B ul2)] (@4 v, 2) — EIQA (. 2))

$<u N]—'n(u 9710’ )’Yn(u|z)dE Bluz d AO:L'Z - B AO:)SZ
V- // B [B)\(ul2)] d(Q0(, 2) — EQ)(x, 2)])

Vit [ [ Nralu, 60200 Al (B (Bl (@5, 2) — EIQSs, 2))
= i+ [ [ Notw 0y, 20l ul)dH (w2, 2) - E[QAw.2))

r < u) N]—"uenoa) 30 — B[Oz, 2
+n- // B dH (ulz) d(Qy(z, z) — BIQ)(x, 2)])

—n- //N;(u,@no,z)C(x A ulz)dH (ul2)d(Q0(x, 2) — E[Q4(x, 2)]) + 0p(1).

Consequently, we get

Vi (dgan(F) = dga(F))
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- / N (2, 0. 2)y(]2) d(QL(, 2) — B[O (z, 2)])
- //Nf 0,8, 2) O Al 2)dH (u2)d(O (z, 2) — B[O (x, 2)])
i / z < u) Nfu % Darr(ulz) (@, 2) ~ EIQS(x.2))
—\/ﬁ-//N; 0, By, 2)C a:/\u|z)dH(u|z)d(Qg($,Z)—E[Qg(xaz)])

oy 010 - o) - [ FEIEDe S 1 < (@i e, 2) - BQLE: )
N 2\/_ CT( - ]?(1)0(9 ). /(9105:’; (1 —;;(33‘(9%72)) (x < T)d(Q?l(:v,z) _ E[Q?L(x,z)])

+0,(1).
Next we show that the conditions of the Lemma 3.3.2 are fulfilled, with

Uin(x, 2) = Ne(x,0,, 2) /N; U, Oy, 2)C(x A ulz)dH (u|2),

1
(]2)
/N]—‘ U, Oy, 2)C(x A ulz)dH (u|2),

Yon(x, 2) = / I(z < ) - Ne(u, Oy, 2)dH (u]2)

dunle. ) = 2y - CR(6.) - L7k (0) - P8O 2) i < )

0log (1 — F(x|0y,, 2
ol 2) =2 CL(0.) - 71, (0, LB D) g )

By definition the functions 11, Yon, ¥1n and 1y, are all bounded on (—oo, T] %
[0, 1]¢.
Further note that

NP 2) (b afz) — P (ol 1) (2D 8”5')9 Z)) <)
YT
+ z/T (H(x]2) — F(a]6n,2))2 ig“f)du <o),
a2 L k)

_ - 3.3.4
0z (1 - J(x|z)) 0z (334)
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and the derivative of [ Nz(u,0,,,2)C(x A ulz)dH (u|z) with respect to z can

be written as

/WO(%A?H dH (u|z) /N; Uy Oy 2) 9C(z Nulz )dH(u]z)
z

0z
0% H (ulz)

0z0u du

+ [ Vo600, 200 A a2

where

0C(x Aulz) [ It <azAu) 0B(H2) , o s
o0t hul) /(1_3@’2))3 U apoe

[ It <z Au) OH(l|z) s
/(1_B(tyz))2 5, %)

I(t <z Au)(1— H(t|z)) 9% (t]2)
+/ (1- B(t|2))” 020t

Hence, under E9 and Assumption (i), there exists a constant C' > 0 such that

dt.

x<7’

[#5) S IR

<o (1 =5
Thus, under E9 the derivative of for any n € m-N, the functions ||¢y,(z, 2) /02|
are dominated by the same B! integrable function. With the same arguments,
we can show for any n € m - N, the function ||vg,(z, 2)/0z||* with n € m - N
are dominated by the same B integrable function.

Further, we note that for r € {0,1}

N;_—(.l’, Qnm Zz) = ¢Tn(x7 Z) + QET‘H('I’ 2)7

und
e Bl
1 0 1 0,
o () (o P
e -
co (14 [P ([P ey

Thus, under E5 and D7, the function

—Z /Nf 2, 2)2 dB (z]2) — /Nf T2 )dB(x|zz)))



75

n

a2 (36 a0 = [ 2300 et

has a bounded derivative with respect to 8 on ©. Hence, it follows from Lemma
3.3.4 that

—Z /N1 T, 0o, z1)* dBY (2]2;) — /N1 T, 0y, 2) dB* (] 2;)) >

+ — Z /ND T, 00y, 2)? dB°(2]2;) — /NO Ty Ongs 2i) dBO(x|zl))2> — 0%

Therefore, the first part of the assertion follows from Lemma 3.3.2
Based on Lemma A.4.6, the second part of the assertion can be shown

analogously as in Theorem 2.3.5. O]

For the estimation of the variance 0%, we define for each n € m-N, 4, C,:
(—00,75] X [0,1]4 = R, Crp: O — R” and Nx,, : R x © x [0,1]¢ = R with

Sul]2) = exp/_x_ %(umdBo(u\ 2,

R r= 1 0
Cu(zlz) = /OO (1 - Bn(u|z))2dBn(u|z),

T

Cra®) = [ ([ ntule)dBiale)=Falp,2)) Falf,2)3nlal2) (o < 7)), ),

— 00

xT

Nr(2.0.2) =( [ Alul)dBlulz) ~ F(al6.2)) I < 7)

+2/ (/ An(t]2)dBL(t|2) —F(u\ﬁ,z))%(u| )dB (u|z) - I(z < 7).
Further we denote N}vn, N%n : (—o0,75] x © x [0,1]¢ — R with

0log f(x|6, z)

N (2,0, 2) i=Rpn (0,0, 23 (w]2) + 205 ,(0,) - L74(0,) - 25022 M (@ < 7)
/N;n u,0,2)Cox A ul2)y,(ul2)dBL (u)z),

N (2,6, 2) := 1—(\) / Iz < w) - N (u, 0, )i (u]2)dB (u]2)
— B, (x|z

dlog (1 — F(z]6, 2))
. 50 Az <7)

— [ Nra(u,0,2)Co(x Au|2)in(ulz)dB, (ul2).
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In the next lemma, we show that 0% can be consistently estimated by

1 & - A A ~ A A
=Y (/N}T’n(:c,ﬁn,zi)de}l(ﬂzi) _ (/N},n(x,en,zg 4B} (]=))’)
=1
no

+nioz (/Ng,n(x,én,zl-)zdég(m) _ (/N%n(x,én,zi) 4B (]=))’).
=1

Lemma 3.3.8. If E1-E9 hold, then we have

63—‘,71 =% +0,(1).

Proof. As in the proof of the Lemma 3.2.5, we show that
I & [ - R R
D) RUNCUSSILARRBIACE
e ’
1 &
=— Z/N%(x,ﬁ*,zi) -2 (z|z:) dB (x|2) + 0,(1). (3.3.5)
0 =1
First we write
1 &
— NZ (2,0, 2 A2 (|2 dB,lLa:zi
n9 3 RO EREAER
1 &
- _Z/NJQE(%@*;Z@') -*(x]z) dB (x]2)
o5
1 &
=\ NZ (2,0, 2 A2 (2 dBe}Z:czi
(g 22 ] Mooz - 2e1) Bl ol)
1 & R
3 N0 2Rl BT )
i=1
1 & )
4 (5D [ N3 (000, 5) - 22(al0) BB l)
=1
1 & A
o> [ NRm6 ) 2 (el) dEBYa )
=1
1 & R
* (%2/ Nz (@, 00, 2) - 7 (2]2:) dE[B, (]24)]
=1

1 &
. —Z/N%(x,e*,zi) ~2(z]2) dBl(:c]zi)>
(Ut

=!01p + O2p + O3p-
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Analogously to Lemma 3.2.5, under E1-ES8, it can be shown under Lemma
3.3.3 and Corollary A.2.10 that oy, = 0,(1). By (3.3.3), we obtain o, = o(1).
Further, by (3.3.4), under E9 the derivative of the function N%-~+? with respect
to z is dominated by B! integrable function. Thus, with the same arguments
used in Lemma A.2.12, it can be shown that o3, = o(1). Hence, (3.3.5) holds.

By the convergence of Riemann sum we get under E3 and E5,
1 o= [ ¢ - -
3 [ 8000 2) 3Ralz) A el
o 527 7

://N/%(g;,e*,z)-72(x\z)dBl(x]z)dz+0p(1)

With the same arguments, similar results can be shown under E1-E9 for other

52 2
terms of 6%, and o%. O

For the Model G, let Cg, N, NJ and their estimates be defined accordingly.

The variance and its estimator are defined as

o= Z// (N3(z,0.,2) — Né(:c,fy*,z))QdB’"(:dz)dz

—i/ (/ (N5 (2,0, 2) = N§(2,7, 2)) dBr(x|z)>2dz,

6721, - = Z/ (N},n(xaéna Z) o Né’n($,”}n,z>)2d@;($,2)

r=0
1

! > (/(N}vn(x,én,zi) — Mg A ) By (a]2))

Analogously to the case without censoring, Theorem 3.3.7 and Lemma 3.3.8
imply the following two theorems on the asymptotic normality of test statistic

T,. The proofs are omitted.
Theorem 3.3.9. If E1-E9 hold then
NGE <Tn — (dpn(F) - dH,n(g))) L N(0,0%) and 62 — o
Theorem 3.3.10. Let E1-E9 be satisfied.
(1) If H” holds, then \/n - T, tends to —oo in probability.

(2) If HY holds, then \/n - T, tends to +oo in probability.
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(3) If H° holds and /n - (dpn(F) — dun(G)) = o(1), then

Vvn T, i>./\/'(0,<72).

For the case d = 1 the following lemma can be shown analogously to Lemma
2.3.9 by Lemma A.4.6 . The proof is omitted.

Lemma 3.3.11. Ifd = 1, noh* — 0 and the function

| [ gy S

+/c‘ﬂog(l —ag(xw*")) -(1—H(x|~>)~a;‘iax dr H

is bounded on [0,1], then under E1-E6, E8 and E9,

V- dygn(F) = v/ - dy (F) + o(1).

The decision rule of the test for the case d = 1 can then be formulated as
in the case with fixed nyg and m — oo in Section 2.3. For a given significance
level o, we will decide for the hypothesis H°, if |\/n - T,,/6,| < 21_q/2, Where
Z, denotes the a-quantile of a standard normal distribution. In the case of
VT, /6, < —21_a/2 we reject HO in favor of H7. If /n- T, /6, > 21-a/2, We
reject HO in favour of HY.

For the case d > 1, the Equality /n - ||6. — 0| = 0(1) does not hold in

general. A one-sided test can then be carried out with
HC: dp(F) —du(G) <a
against
H; . dH(F) — dH(g) Z a,

where a is a constant. Given a significance level «, we reject the hypothesis
HY in favour of H., in the case of /n - (T, — a)/6, > 21_q, otherwise H? will
be accepted.



Chapter 4

Case Study

In the framework of a collaboration with the Institute of Design and Production
in Precision Engineering at the University of Stuttgart endurance tests on DC
motors (12V-motor type) with brushes were run under the predetermined load
levels of 2.5,3.75,5,6.25, 7.5 mN'm, see Bobrowski et al.(2015) for details. For
each load level m = 16 lifetimes were observed. By transforming the load
levels linearly on to [0, 1], the values become 0.2,0.4,0.6,0.8 and 1.

In this chapter, we apply our test to this data set. The model class F is set
to be the family of Weibull distributions with constant shape parameter and

scale parameter as a linear function of z, i.e.

1—exp (— (x/(bg+ b12))™) if x>0
0 if x <0

F(l"ao, bOa b17 Z) =

and
F = {F(z|ao, bo, b1, 2) : ag, by, bo + by > 0, 2 € [0,1]}.

The class G consists of Weibull distributions with constant scale parameter

and shape parameter as a linear function of z, i.e.

1 —exp ( — (z/dy)cta2)) if 2 >0
Claleprendo, )= -~ OP LT (H0)TT) il
0 ifz <0

and
G = {G(z|co, c1,do, 2) : co,dy,co+c1 > 0,2 € [0,1]}.

The compactness of the parameter sets © and I' can be realized by assumptions

like €1 < ag < € and €1 < ag + a1 < € for suitable constants e1,e5 > 0.
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Figure 4.1: The red solid and the blue dashed curves are fitted Weilbull distri-
butions from class F and G, respectively. The green solid curves with points

represent the empirical distribution function.

However, this is not a real restriction for practical applications. Note that
with the above settings, all necessary conditions for the test are satisfied.

Since m = 16 and ny = 5, empirical distribution functions are used in the
test. The calculated p-value for the test statistic /n - T,, /6, is approximately
0.001. Therefore, the null hypothesis is rejected in favour of model F, i.e. it is
preferred to model the shape parameter as a constant and the scale parameter
as a linear function of the load level rather than the other way round.

In Figure 4.1 the empirical distributions and the fitted distribution functions
are shown for load levels 2.5 and 7.5 mNm. It can be seen that the empirical
distributions and the solid lines of the Weibull distributions fitted from class
F are close to each other, whereas the dotted lines of distributions fitted from

class G show bad coincidence.



Chapter 5
Simulation Studies

In this chapter we report some Monte Carlo simulation results to evaluate the
performance of the proposed model selection tests with moderate sample size.
In Section 5.1 the performance of the test is shown comparing the two Weibull
model classes as defined in the case study. Section 5.2 deals with an example
with two dimensional covariate.

The simulations are conducted as follows. For different combinations of m,
ng, 1000 samples are generated. If m is large we used the empirical function in
the test statistic 7, and the estimator for variance &, (as in the case m — oo,
no fixed). For the case with large ng, the kernel estimator with uniform kernel

function K (z) = 1 - I(Jz| < 1) for the first simulation and
1
K(z1,22) = 7 I(|lza] < 1) - I(J2a] < 1)

for the second simulation is plugged in (as in the case ny — oo, m fixed). For

the bandwidth, the minimizer of the function

with respect to h is used as proposed in Li et al.(2013), where H_;(-|z;) is the
leave-one-out kernel estimator of H(-|z;).

We also give the results for the case if one of the model classes has to be
chosen. In this case the sign of test statistic is indicative. If the sign is negative,
model F should be chosen, otherwise G. In this case, our test can be seen as

a model selection procedure.
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5.1 Comparing Two Weibull Classes

In this simulation, we assume that the covariate is one dimensional (d = 1).
The competing model classes are the ones defined in the case study (Chapter
4). The underlying distribution H is set to be Weibull distribution function
with shape parameter (1 —p)-2.26+p-(2—1.52) and scale parameter (1 —p)-
(3563 — 2284z) 4+ p - 2485 for 0 < p < 1. Note that for p = 0 the distribution
H lies in the class F, for p = 1 the distribution H lies in the class G and
for 0 < p < 1 the distribution H lies neither in F nor in G. The underlying
distribution H was chosen in the way that the simulated data set lies in the
similar region as the motor data from the case study.

Tests are conducted for p = 0,0.5,1 with a moderate data size (n = 200).
While test decisions are made using the asymptotic critical values as described
in Chapter 2. In Table 5.1 and Table 5.2 the percentages of rejection of H in
favour of model class F or G at significance levels a = 0.1,0.2 along with the
test decisions by the sign of test statistic are recorded. In Table 5.1 empirical
distribution functions are used, while the kernel estimators for distribution

functions are used in Table 5.2. The test performs very well for the case p = 0,

m—o00 | a=0.1 a=0.2 sign
p ng m | F g F F
0 20 10 | 100 0 100 100
10 20 | 100 0 100 100
05 20 10 {362 0 [592 0.2 973 2.7
10 20 1290 0.1 |53.0 0.2 969 3.1
1 20 10 0 839 0 923 | 0.2 99.8
10 20 0 935 0 959 O 100

Table 5.1: Performance of the test comparing two Weibull classes (d = 1) with

empirical distribution functions.

while for the case p = 1 the test is not as good as for the case p = 0. The
reason is that if p = 1, the scale parameter of the function H equals 2 — 1.5z,
which changes slowly with respect to z. Thus, it can also be estimated well
by a constant scale parameter. However, if p = 0, the shape parameter of the

function H equals 3563 —2284z, which can not be estimated well by a constant.
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ng — 00 a=0.1 a=0.2 sign
p no m| F G| F G| F G
0 200 1 1982 0 [994 0 [999 0.1
50 4 1988 0 999 0 100 0
20 101985 0 [990 0 1999 0.1
10 201992 0 [99.7 O 100 0
0.5 200 1 | 9.1 0 [23.6 0.1 |8.3 14.7
50 4 | 9.5 0 229 05 |8.8 13.2
20 10,108 0 |263 0.2 |89.0 11.0
10 20| 96 0.1 | 265 0.3 |8.8 134
1 200 0O 610} 0 729 2.2 978
50 4 0 66.1 0 7721 1.0 99.0
20 10 0 698 0 795 ] 1.2 9838
10 20 0 747 0 813 | 1.0 99.0

Table 5.2: Performance of the test comparing two Weibull classes (d = 1) with

kernel estimators for distribution functions.

The combination of m and ny seems to have little influence on the outcome.
However, if ng is large, the empirical distribution function should be preferred
in the test, since Table 5.1 shows a better performance of the test than Table
5.2 for the cases ng = 20 and m = 10 or ng = 10 and m = 20. In all cases the

sign of T,, is a very good indicator if one of the models has to be chosen.
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5.2 Comparing Two Weibull Classes with Two

Dimensional Covariate

In this simulation, we assume that the covariate z := (2%, z') € [0,1]? is two
dimensional. The class F is set to be a family of Weibull distributions with
shape parameter as linear function of the first covariate and scale parameter

as linear function of the second covariate, i.e.

t—exp (= (a/(bo+012H) ") w20
0 ifx <0

F(x|a07a17b07b1a Z) =

and
‘F = {F<$|a07a17b0a bl?'z) : a07607a0 + al,bo + bl > O,Z & [0, 1]2}

The class G consists of Weibull distributions with shape parameter as linear
function of the second covariate and scale parameter as linear function of the

first covariate, i.e.

1 — exp ( — (a/(do + czle))(CO*C””) ifz>0
0 ifx <0

G(I’|CO,C1,dO,d1,Z> =

and
g = {G<$|C0,C1,d0,d1,2) . COad07CO -+ C1, d() + dl > O,Z € [0, 1]2}

For the compactness of the parameter sets see the remark in the case study.
The underlying distribution H is assumed to be a Weibull distribution with
shape parameter 0.2+ (1—p)-z°+p-z! and scale parameter 0.2+ p-2%+(1—p)-2z!
for 0 < p < 1. Again for p = 0 the distribution H lies in the model F, for
p = 1 the distribution H lies in the model G and for 0 < p < 1 the distribution
H lies neither in F nor in G.

The simulations are conducted with n = 100 in the same way as in Section
5.1. However, since d = 2, one-sided tests are conducted. The results are
shown for the case p = 0,0.5, 1.

In Table 5.3 the empirical distribution functions are used, while in Table
5.4 the kernel estimators for the distribution functions are used with the band-

width h calculated by the cross-validation method proposed Li et al.(2013).
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m—o0 | a=0.1 a=0.2 sign
p ng m | F g F g F g
0 25 4 |336 01 {496 0.2 ]93.0 7.0
4 25 |457 0 652 0.2 ]96.7 3.3
0.5 25 4 1.6 20 | 43 5.7 |49.8 50.2
4 25| 1.0 20 | 45 53 |49.7 50.3
1 25 4 0.3 342| 04 495 | 83 91.7
4 25 0 461 0 65.1] 3.1 96.9

Table 5.3: Performance of the test comparing two Weibull classes (d = 2) with

empirical distribution functions.

For a = 0.1,0.2 the column F gives the percentage of rejection of the null
hypothesis H? : dx(H) — dg(H) > 0 in favour of the alternative hypothesis
H.:dr(H)—dg(H) < 0 1ie. the model class F offers a better goodness-of-fit.
While the column G gives the percentage of rejection of the null hypothesis
HY : dr(H) — dg(H) < 0 in favour of the alternative hypothesis H! : dz(H) —
dg(H) > 0. i.e. the model class G offers a better goodness-of-fit. The columns
“sign” present the percentage of decisions for each model class for the case that

one model has to be chosen.

ng—+oo | a=0.1 a=0.2 sign
p ng m| F g F g F g
0O 100 1 199 0 |299 0 |8.6 144
25 4 1204 0 |[304 O |828 17.2
05 100 1 |08 12| 33 26 [50.3 49.7
25 4 104 06|23 23 |49.1 509
1 100 1 0 211} 0 318|139 &6.1
25 4 0 7.2 | 0.1 12.7 | 445 555

Table 5.4: Performance of the test comparing two Weibull classes (d = 2)
with kernel estimators for distribution functions and h computed by cross-

validation.

Due to the small sample size (n = 100), we noticed in the simulations that
the bandwidth calculated by the cross-validation method is pretty bad for

estimation of the asymptotic variance of the test statistic. Thus, Table 5.4
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ng—oo | a=0.1 a=0.2 sign
p mng m| F g F g F g
0 100 1 542 0 [691 0.1 |985 1.5
25 4 1436 0 |623 0 |97.0 3.0
05 100 1 |13 1.2 | 50 34 |509 49.1
25 4 |11 1.1 | 37 32 |49.7 50.3
1 100 1 0O 533 0 693 23 97.7
25 4 0O 455 0 626 3.3 96.7

Table 5.5: Performance of the test comparing two Weibull classes (d = 2) with

kernel estimators for distribution functions and fixed h = 0.2.

shows a relatively poor performance of the tests. Lack of data is a common
problem in the practice especially for multidimensional data. In this case, we
propose to used a fixed bandwidth h depending on the data size. In Table 5.5
we give the results for the tests with fixed bandwidth A = 0.2. It can be seen
that the tests performed better than them in Table 5.4.



Chapter 6
Conclusion

In this thesis, we proposed model selection tests from two competing paramet-
ric distribution model classes in a fixed design setting. The measure for the
goodness-of-fit of a distribution model class to the underlying distribution is
defined based on the Cramér-von Mises distance and the maximum likelihood
theory. The model class with smaller distance is chosen to be the better fitted
model. Model selection test procedures are derived from the asymptotic nor-
mality of the test statistics, which is defined as the difference of the estimated
distances.

We handled two cases i.e. the case with a fixed number of covariate values
and the number of observations at each covariate value tending to infinity
and the case the other way round. The covariate is assumed to be multi-
dimensional.

In the first case, the distance between the underlying distributions and
the candidating model classes is estimated based on the empirical distribution
function at each covariate value. Under a number of regularity assumptions, we
showed that /n - T}, is asymptotically normally distributed under H°, while
under the alternative hypothesises it tends to infinity or minus infinity in
probability. Hence, our test is consistent. In addition the asymptotic variance
can be estimated consistently by a plug-in estimator. Based on these results,
the decision rules for the test are formulated.

In the case with the number of covariate values tending to infinity, the em-
pirical distribution function is replaced by the kernel estimator of the distribu-

tion function. Similar results were shown for the situation of a one dimensional
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covariate (d = 1). For the case d > 2, a one-sided-test was proposed.

Further the proposed tests were generalized to the case with right random
censoring, where the Kaplan-Meier estimator and Beran estimator were used in
place of the empirical distribution function and the kernel estimator. Similar
results as in the case without censoring were obtained.

The performance of the tests was reported for some examples in simulation
studies. In addition we applied our tests to observed lifetimes of motors in a
case study.

The tests proposed in this thesis can be modified or extended in various
aspects. First, if there are more than two competing model classes in consid-
eration, the model selection tests can be carried out pairwise.

Secondly, the case with m and ng both tending to infinity can be investi-
gated. For instance ng can be assumed to be a function of m such that as
m — oo, it holds ny — oo as well.

Thirdly, in the test statistic 7}, the empirical distribution function, kernel
estimator for distribution function, the Kaplan-Meier estimator and Beran
estimator can also be smoothed with respect to « (double kernel).

Fourthly, the Cramér-von Mises estimator

argmax < — / (Hn(z|2) — F(|0, Z))2 dQn(z, Z))7

0cO

which corresponds to the distance measure, and other distance measures like
those introduced in Section 1.1 can also be used to describe the goodness-of-
fit of a model class to the underlying distribution. By the standardization
of the difference of two distances we would expect also the asymptotic nor-
mality property of the appropriate test statistics. However, different distance
definitions can lead to different decisions as shown in the simulation studies.
Last but not the least, the proposed tests can also be extended to the model
selection between semi-parametric models such as Cox-model, which is often
applied in the survival analysis. The asymptotic theorems of the partial like-
lihood estimator for the parameter in Cox-Model was proven by Struthers
and Kalbfleisch (1986) and Lin and Wei (1989). Similarly, the asymptotic
behaviour can also be shown for the Breslow estimator. Therefore, the corre-
sponding theorems could be established analogously as for parametric model

classes proposed in this thesis.



Appendix A

In this Appendix we show some auxiliary lemmas, based on which the theorems
in this thesis are proven. Section Al- Section A4 are corresponding to Section

2.2, Section 2.3, Section 3.2 and Section 3.3, respectively.

A.1 Appendix of Section 2.2 (m — oo, ny Fixed)

In this section, let z1,...,2, € R? with n = ny - m be the covariate values as
defined in Section 1.1. For each i € {1,....k} and j € {1,...,n} with k € N, let
X;; be a real valued random variables with distribution function H;(-|z;). It
is assumed that for each i,a € {1,...,k} and j,b € {1,...,n}, if j # b, X;; and
X, are independent.

The empirical distribution function at z € [0, 1] is denoted by
1 n
Hy(z]2) == — > 6i(2) (X < w),
j=1

where §;(2) = 1 if z; = z, otherwise, §,;(z) = 0. Let ¢ : R* x [0,1]? — R be a

function. For simplicity of notation, we denote for each i € {1, ..., k},

Po(2) ::\/ﬁ/---/1/1(x1,...,xk,z)dHl(xﬂz)---dHi_l(xi_llz)

_ 1 &
Pin = Rn Zj)-
DRI
Similarly, we denote
P.(2) ::\/ﬁ/ e /w(asl, s Ty 2)dH 1 (11|2) -+ - dHgn (1] 2),
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Pou (2 \/_/ /w 1, o ap 2)AH (21]2) - - dH (] 2),
:n—OZPn(zJ), POn = n—OZPOn<Z])
Jj=1 j=1
Lemma A.1.1. Let C > 0 be a constant such that

E[wQ(Xlila sy ink7 Z)] S C

foralliy,....i; € {1,....,n} and z € {z,.
fixed,

vy Zng t- Then as m — oo and ng stays

k
ZP — 1) Py, + 0,(1).

Proof. First we show that

Var|P, — Z —1)Py,] = o(1).

In this proof, we denote the following sets

L= { (i, ooy Ty J1s oo J) 5 01y e by 1, s i € {1, oy} ]
= {(i1, oo ks 1y o i) € T2 (Ui {ia}) 0 (U2, (b)) = 0},
= {(i1, ooy by J1, s Jr) € INIL 2 | UF_ iy UR, ()] < 2k — 23,
= {1y ey ity J1, e J) € INIy 2 | U {i0} U, (G} = 2k — 1},
J o= {(i1, i) i1,y i € {1, ...,n} },
Jii={ (i, i) € J UL {ia} <k — 1},

where for a finite set S, |S| denotes the number of elements in the set S. Note
that I, I and I3 are disjoint and

I=LULUI.

For each a, b € {1, ..., k}, we denote further
Illb = {(ih "‘7ik7j17 ij) S I3 Dl :.]b}

jab = {(2'1, "’77:k7j17 ‘”7jk> € IQ : ia - ]b}
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Let z, Z be two arbitrary covariate values in {z1, ..., z,,}. For any set Icl,

denote

C (2, 2) :=ngm =21 Z 0iy (2) -+ 04, (2) 05, (2) - - 65, (2)

x Cov [¢(X1i17 ...,X]m‘k, Z),?/)(lel, ,Xk]k,gﬂ

By definition, we have

\/_m kz Z(Zl : )¢<X111,...,ink,2).

211 ’Lkl

Thus, we can write
Cov[P,(2), P, (2)] =Crn(2,2) = Cr, n(2,2) + Cryn(2,2) + Cryn(z,2). (A11)

If (41, ..., ik, J1,s -y Ji) € I1, by assumption (X, ..., Xpip, 2) and ¥(Xqj,, ..., Xijp, 2)

are independent, thus
Cov[W( Xy, oy Xnig, 2)s ( X1y, ooy Xigr 2)] = 0.
Therefore, the first term on the right-hand side of (A.1.1)
Crn(z,2)=0. (A.1.2)

For the second term, note that

ko k
= U U]_ab
a=1b=1
Thus,
kook
‘ClznZZ‘<ZZ|CIanZ (A.1.3)

a=1 b=1

In the sequel, we will show for a =b =1,
(2 2)| < C@E=1)(k = 1) -ngm™ =: ¢y, (A.1.4)

Note that by Cauchy-Schwarz’s inequality and the square integrability of ¥,
for all (i1, ..., %k, j1, .-, J) € 1,

‘COU [¢(X1i1a ceey Xk?ik’ Z), @/J(lel, ey ijk, 2)] ‘

91



1/2

< (Var [O( X1, oo Xnig, 2)] - Var (X, ., Xigo, g)])
1/2
g(E[W(XMI,...,XMk,z)} CE[V(Xy, ...,ijk,g)]) <O (ALl5)
Consequently,

|Cf11,n(zv 2)‘ < Cn@m_2k+1 Z 51'1 (Z) e 5% (Z)5] (2) o 5]1@(2) (A16)
jll
Further note that if (iy, ..., g, j1, ..., jx) € I11, then at least two numbers out of

U1y -y ks J2, ---, Jk are equal. Hence, there are at most

2k —1
( , ).m2k—2

5711'1 (Z) e 5nlk(z)5n]1 (2) T 5njk (2) 7é 0.

elements in I; with

Hence, by (A.1.6),

|Cf11,n(27 5)‘ SC"n'(ﬂﬁn/i%+1 Z (57;1(2) T 5% (2)6j (2) o '5]'1@ (2)

fll

2k —1
<Cngm =21 . ( k2 ) -m**? = ¢, (A.1.7)

With the same arguments, it can be shown that (A.1.4) holds true for any a,
be{l,2,...k}. By (A.1.3), we obtain then

k k

Crn(z2)] <D ) |Cr, a2, 2)] < Ken. (A.1.8)

a=1 b=1
For the third term on the right-hand side of (A.1.1), note that

k
b=

Cron(2,2) =YY Cryn(2,2). (A.1.9)

a=1 1

In the following we will show that for a = b = 1.
|Clab:n(z? 5) - COU[PCW(Z>7 an(é)” < ¢p.

With the same arguments, it can be shown that this inequality holds true for
any a,b € {1,...,k}. Denote the function ¥ : R x [0, 1] — R with

z/;(x,z) ::/~~/lp(x,xg,...,xk,z)de(:c2|z)~~~de(:ck\z).
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Note that if (il, ey ik,jl; ,jk) € I;; with

then it must be holds that

Zip = .=z, =2 and zj;, =..=2z;, =%

and X, ..., Xy, X1jg, .o Xgj, are independent. Therefore, by Fubini’s theo-

rem for any (iy, ..., 0k, J1, -, jr) € I11 with
5i1 (Z> T 5’%(2)5]1(5) T 5jk (2) 7& O’

we have

Cov [W( X1y, Xoigs ooos Xigs 2)s U (X1jy s Xojas oos Xijis 2)]
—Cov[t(X1iy, Xaiy, oo Xiir 2)s V(X1 X, oo Xijer )]
—E[(X1i1, Xaigs -+r Xiigs 2) - 0(X1iy, Xojos oorr X 5)]
— E[(X1iy, Xoig, oo Xkins 2)] - E[0( X1, Xajys oons Xijer 2)]
=B[{( X1, 2) - $(Xiy, 2)] = E[$(X1iy, 2)] - B[(X0a,,2)]
=Cov [&(Xlil,z),@;(Xul,é)] (A.1.10)

Therefore,

CIll7n(z7 2) = n0m72k+1 Z 61'1 <Z> T 6% (Z)5j1 (2) T 5jk (§>COU [QZJ(XUU 2)7 &(Xliu'g)}'

I

Further, by the independence of X;, and X;;, provided iy # 71,

Cov[P1y(2), Pin(Z)]
—nCou] [ 3le2itn(el), [ B D (012

=nm~*Cov| 25,1 (X1, 2) 2531 (X, 2)]

i1=1 J1=1
—nomil Z 5“ COU [&(Xul, Z), &(th y 5)}
i1=1
=nom 2k Z 511 o ’Lk )5j1(2)"'5jk(2)cov[¢(X1i17Z)aqu)(Xliw2)}
IVl
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where the last term follows from the definition of §;, (2), ..., §;, (%), 9;, (2), ..., 0, (Z).
Note further that by (A.1.5) and (A.1.10)

Cov[1h(X1s,, 2), ¥(X14,, )] < C. (A.1.11)
Hence,
vz 2) = Cov[Pua(2), Pua(2)]|

Snom_zk—H Z 51'1 (Z) T 52k (Z)6j1 (2) e 5jk (2)
I,
SC’nom_%H Z (2‘1 (Z) L 5% (Z)5j1 (2) tee 5jk (2) S Cp, <A112)
Iy

where the last step follows from (A.1.7). Therefore, by (A.1.9),

[&(Xliu Z)a &(Xliugﬂ ‘

k k
‘C’IB” (z,2) ZZOOU 2), Pyn(2)]
a=1 b=1
k k
<3 ]c, (2,2 Cov[Pan(z),an(i)]‘ < k2. (A.1.13)

a=1 b=1

By (A.1.1), (A.1.2), (A.1.8) and (A.1.13), we obtain

‘C’ov iiCOU Pun(2), Pon(Z)]

a=1 b=1
ko k
<[Crn(, D)+ [Cran(2,2)] + [Crun(z.2) = D2 S CovlPun(2), Pin(2)]| < 282
a=1 b=1
Hence, by definition,
kook
‘Var [P,] — Z Z Cov[Pyp, Py
a=1 b=1
ng no k k
ZZOOU 3 ZZC Pon(z), an(zj)]‘
i=1 j=1 [ j=1 a=1 b=1
1 ng no k k
SF ZZ Cov[P,(2), Pu(z)] — ZC’ Pon(2), Pon(2))]| < 2K%c,, = o(1),

0 =1 j=1 a=1 b=1
where the last step follows from ¢, — 0 as m — oo and nq stays fixed. Thus,

we get

Var|P,] = Z Z Cov[Pan, Pon] + o(1).



Analogously, we can show that

k k

Cov|P,, Z P = Z Z Cov[ Py, Pj] + o(1).

j=1 i=1 j=1

=1
k kook
=Var[P,] — 2Cov[P,, Z Pin] + Z Z Cov[Pin, P;y) = o(1). (A.1.14)
=1 i=1 j=1
Next, we show that
k —
E[Py = P+ (k—1)Py) = o(1)
i=1

For any set J C J, denote

Ej,(2) = vmm ™Y " 6;,(2) - 0, (2)E[(Xuiy, ooy Xy, 2)]
J
We can write then
E[Py(2)] = Ejn(2) = Egyn(2) + Epn(2). (A.1.15)
Note that if (i1, ...,ix) € J\J; with
8; (2) -+ 0; (2) #£0

it must hold that

Zil = ... = Zik =z
and Xy;,, ..., Xj;, are independent, thus
\/EE[w(XMN'“?inkaz)} = P0n<z>‘ (A116>

Hence, the second term on the right-hand side of (A.1.15)

Epgn(z) =m ™ 6, (2) - 6, (2) Pon(2).
N1
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Further, note that
Pon(2) =m™Y " 6;,(2) -+ 0, (2) Pon(2).
J
Therefore, we can write

|E[P,(2)] = Pon(2)|
<|Esn(2)| + [Ensn(2) — Poa(2))|
<m NG, (2) - 6¢k(z)-<‘\/ﬁE[w(X1il, o X, 2)] | + |P0n(z)|>. (A.1.17)

Note that by definition there are at most

()

Further, by Jensen’s inequality,

elements in J; with

1/2 < s

E[(Xui, oy Xpay, 2)] < (E[z/)g(Xh-l,...,ink,z)D
Analogously, by (A.1.16),
|Pon(2)] < CY2 /.
Hence, by (A.1.17), we obtain

|E[P.(2)] = Pon(2)] <202 /nm™ Y ~6;,(2) -+ 63, (2) < CV?k(k — 1)y/nm ™"
J1
Consequently, as m — oo,
BB = ol = 5 3 [BIF 0] = P
7 <CY?k(k —1)v/nm™ ' =0(1). (A.1.18)
In the sequel, we show that for i =1,
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With the same arguments, it can be shown that the equality holds true for any
i € {1,...,k}. By the definition of z and §;(2),

E[Pi(2)] =E \/ﬁ / gz?(x,z)demz)}
SN Zé (X1j,2)]

=V — Z5j(2) /W%Z)dﬂl(ﬂzj) = Pou(2).

Thus,
E[Pln:nOZEpln Z@ *nOZPOn Z’L POn-

Therefore, by (A.1.18)

Z — 1) Ry,] = o(1). (A.1.19)

The assertion follows then from Chebyshev’s inequality by (A.1.14) and (A.1.19).
[l

Lemma A.1.1 can also be proven as in Lemma 2.2 in Stute (1995), however,
we used Chebyshev’s inequality, so that it can be easily extended to the case

with kernel estimator (Lemma A.2.9) under weak conditions.

Corollary A.1.2. Under the assumptions of Lemma A.1.1, we have
n V2P, = n 2Py, + 0,(1).

Proof. Let ¢ : R x [0,1]* — R be defined as in the proof of Lemma A.1.1.

Analogously to Lemma 2.2.1, we have

1 & / -
~1/2 o
n= Py, =— x, z;)dHy, (]2
=y 2 | V2 elz)
1 <& [ -
e Z/Wa 2)dH; (z|2;) + 0,(1) = n~ 2 Py, + 0,(1).
0 =1
With the same arguments, it can be shown that for any i € {1, ..., k}
n2 By =02 Py, + 0p(1).
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Hence, by Lemma A.1.1, we obtain

k
n~Y2p, =n1/? Z Py — (k= 1)n"2 Py, + 0,(1) = n~ 2Py, 4 0,(1).
i=1

A.2 Appendix of Section 2.3 (ny — oo, m Fixed)

In this section, we denote for h < 1/2, the set S, := (h, 1 — h]¢. Define further

) ) . ‘ _ . ‘
[0 = {(alh,’ ceey adh) . —(T_Loh-‘ § 11500y 2q § (noh},zl, s lg € Z}
i1 iq : . _ : .
[(/) = {(@,,@) IOSZl,...,ZdS [ngh—|,21,...,Zd€Z}

Lemma A.2.1. If h < 1/2 then for any z; € Sy,

SOK(E) =m Y K(3)
k=1

Z;CEIO

Proof. Let

then by the definition of S},
noh < 1; < ng — noh,
for 1 < j < d, thus,
i; — [noh] > 1 and i; + [noh] < fg.

By Assumption (iii), K(x) = 0 if ||z|| > 1, thus

n o no . .
ZE — % ki — 1 kg — 14
K - K< )
D KEG ) =m )y Y K (e T
k=1 ki=1  ky=1
i1+ [noh] id+|—’r_loh-‘ kl . Z,l ]{jd . id

_ K( )

m Z Z T_loh T_loh

klzilf[ﬁoh“ deidf[T_Loh-‘

[foh] [noh]

K k! ,
=m Z Z K<n01h’m’ﬁdh>:mZK(zk)'

k"lzfl—ﬁoh] kzlzfl—ﬁoh] ZIICGIQ
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Lemma A.2.2. If h < 1/2, then for any j € {1,...,n},

Z wnj(zia h) < 2d-
=1

Proof. We show first for any i € {1,...,n}

m Yy K(z) < ZK ') <m Y K(z). (A.2.1)

2, €1} z; €lo

Let

n_o’...’ﬁ_o
with 4y, ...,74 € {1,...,79}. Since K(z) = 0 for ||z| > 1, we get

S DH PY I CEL NNy

ki=1 kqg=1
i1+[7ioh] ia+[noh] Lo — i Lo—i
< K ( L d)
= Z_ Z_ T_L()h Y T_loh
ki=i1—[noh]  kq=iq—[noh]
[Toh] [foh]

- Z (noh n]zdh> - Z K(z)-

’—noh] kd—f noh] ZIICGIQ

For the other inequality of (A.2.1), we denote that
L,:={j:i;<Taohl,je{l,..d}} and I¢={1,..,d}\L,.

By Assumption (iii), K(x) = K(|z|) for all x € R?, thus, for h < 1/2,

:mi i_}((kl_il kd—id>
klﬂmkdﬂ noh 7 moh
>mzw+(i)mz Z K(k’l—il ]{:d—id)
jeL, kj=i; €It ky=iy—[noh] mh T ok
ij+[noh] i1+ [noh] kl_il kd_id
ES S S S ICE )

jEIzi k‘j:’ij lelgi k=1

i1+[noh]  ig+[noh] b b
SRS SR Y (e S Tty
m > X K T
[foh]  [7ioh]

k1=i1 kq=iq
K
03 3 () < e

k=0 k=0 Zel
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Thus, Inequality (A.2.1) holds. Hence, for any j € {1,...,n},

iw (2, ) —Xn: KO 2en K&
T D K(EE) T m e K ()

< 24,

[]

Lemma A.2.3. Let ({,)nemn : [0, 1]¢ — R be a sequence of uniformly bounded
functions, i.e. there exists a constant C' > 0 such that |, (2)| < C for all
z€[0,1]% and n € m - N, then

_Zzwn] Zza ¢n Z] qubn Z] +0

=1 j=1
Proof. Since h — 0 and the assertion deals with a convergence property, we

assume h < 1/4 in this proof. We write first

LSS g ()

i=1 j=1
1 - 1
S ID ICICHNINCR S DD DRI CHOTACY
zi¢ S J=1 2z, €S}, 2; €Sy,

F2 ST S e b))

ZiESh Zj%Sgh
::an + Q2n + Qi’m-

By the uniform boundedness of the functions (1, ),em.n, there exists a constant

C > 0, such that

2 ¢Sy j=1 2 ¢Sh
Note that Sj, has at least m - (fg —2- [figh] — 1)? points of 21, ..., z, in it. Thus,
by Assumption (ii) that h — 0, we get
1 1
- 1 SE-(n—m-(ﬁo—Q- [igh] — 1)7)
z¢Sh
2- (ﬁoh—l 1 d
=1—-(1—————) =o(1). A2.2
(1= 2 - )T o) (A22)
Hence, @1, = o(1). Analogously, by Lemma A.2.2 and the uniform bounded-

ness of the functions v, there exists a constant C' > 0 such that

|Q3n|§0-% > zn:wnj(zi,h)gc-% > 2t =o(1)

Zj%Sgh =1 ng‘SQh
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consequently, (3, = o(1) as well. Note that

= - Z Z Zk . (zk;zl)wn(zj)a

ZJ €Sop 2z ESY

by Lemma A.2.1, we can write

Z]'—ZZ )

PP et e

ZJ ESQh Zlesh

Analogously to Lemma A.2.1, by Assumption (iii) K(|z|) = K(z), for all
z € [0,1]% if h < 1/4, we can show for each z; € Sy,

mZK

2, €8, z;€Sh zlely
Hence,
RIS O LI,
0 S e KE) T
= Z Un(z5) = Z@/}nz] - — Z wnz] = Z@/}nz] )+ o(1
z]eSQh 2’;¢52h

(A.2.3)

where the last step can be shown analogously to (A.2.2). Therefore, the asser-

tion follows. ]

Lemma A.2.4. Under the conditions of Lemma A.2.3, we get

_ZZZMW (i, h)wnj (zk, B)n(z5) Z¢n (z) + o(1

i=1 j=1 k=1

Proof. As in the proof of Lemma A.2.3, we assume h < 1/4. By the uniform

boundedness of functions (¢, )nem.n, there exists a C' > 0, such that

‘% Z Z Z Wy (20, W)W (28, h)Yn(25)

i=1 j=1 k=1

_% SN DT waizn h)weg (2 h)va (%)

2z, €Sp, zj €Son 2LESH

SC% Z Z Z Wy (23, h)wni (25, h)

¢Sy J=1 k=1
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+ C% Z Z Z wnj(zi7 h)wnj(zkv h)

1=1 j=1 2, ¢S)

I C%Z DY walzn hwas (2, h)

=1 Z]'¢Sgh kil
::an + QZn + QBn-

Analogously to (A.2.3), we have

%Z Z Z Wy (23, W)W (25, h)Yn(25)

2;€Sh z;€S2p, 2ESH

0 Z > ) N KR ~ Un(z))
Z]ESQh 2; €Sy zLESH Zz EIO (ZS) /’,’/LZ’Z{GI0 K(Zl)
1 Zz{.e[o K(%) Zz;cefo K(z) on(z)
- — . . n Z
n 2,€San, Zzgelo K(Zfs) Zzl’elo K(Zl/) ’
1 n
ZJGSQh 7=1
Further, by Lemma A.2.2,
Q =C - - Z anj Zza (anj 2k >
Zzgsh .] 1
<2dC—Zan]zl, —2dC’—Zl—o
2;¢Sh J= 1 2i¢Sh

where the last step follows from (A.2.2). With similar arguments, it can be
shown that @, and Qs, are both equal to o(1) as well. Hence, the assertion
follows. O

Lemma A.2.5. For any j € {1,...,n}, r € N and z € [0,1]9,
Wn; (2, h) - ||z — szT < wp;(z,h)- A"
Proof. Notice that for any j € {1,...,n}, wy;(z, h) is always non-negative,
hence if ||z — z;|| < A,
wnj(z,h) - |z = z|" < wni(z,h) - A"
If ||z — z;|| > h, by Assumption (iii) K(x) =0 for ||z|| > 1, we get

K(2%)

SiK(E)
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Therefore,
Wni(2z,h) - ||z — 2" =0 =wpi(z,h) - A"

]

Lemma A.2.6. There exists a constant C' > 0 such that for all (z,z) €
R x [0,1]* and eventual alln € m - N,

{E[]:In(aﬂz)] — H(z|z)| < Ch, (A.2.4)
and for all (x,z;) € R x S}, and eventual alln € m - N,
|E[H,(2|2)] — H(z|z)| < Ch? (A.2.5)

Proof. By a Taylor expansion, we get

E[H,(x]2)] - H(x|2) = Zwm’(% h)H (x|z;) — H(x|2)

=3 (e (PN s, -

+Y e W)z = )7

where Z; lies between z and z;. By the boundedness of the partial derivative
and the Hessian matrix of H with respect to z (Assumption (i)) and Lemma

A.2.5, there exists a constant C' > 0 independent of z, 2z and z;, such that
- O?H (z|z;)
D L e e |
: z
j=1
SCanj(z, h)||z — 2H2 < Ch*. anj(z, h) = Ch®.
j=1 j=1

Analogously, for all (z,2) € R x [0,1]¢ and eventual all n € m - N, there
exists a C' > 0 such that

lgwmz,h)(%f (- 2)]

<CY wai(z,h)|lz = 2| < Ch- Y wyy(z,h) = Ch.
j=1

j=1
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Hence, by Assumption (ii) h — 0, (A.2.4) holds.

If 2 = z; € Sp, analogously to Lemma A.2.1 we can show that

mZK

25 ' ely

By the definition of Iy and Assumption (iii) K(|z|) = K(z) for all z € R,
thus
m Z K(%) -z =m Z K(=2}) - (—=2;) = —m Z K(2}) - 2;
Z;-G]o —Z;-G]() Z;-EIO

Hence, for z; € Sy,

:mZK(z;) 2=

/
ZjGIo

Consequently, for z; € S,

Zwm o <3nglz,)> (25— =)

<0H x|z;) > Zwm (26, h) (25 — )

oGl S KRG - 2)
(55 e gmsy -

Hence, (A.2.5) holds. O

Lemma A.2.7. Let ¢ : R x [0,1]¢ — R be an H square integrable function
independent of z, then

/w(x, 2)dO.(x, 2) — /w(a:,z)dQ(x, 2) = o,(1). (A.2.6)

Proof. By definition

/¢xdenxz} ZE (Xi, )]
:_Z/¢xz,dH o]z) = Z/wa:zdeﬂzz)

Hence, by the convergence of the Riemann sum,
/wxdenxz /wa:de(a:z)

104



And the variance

n

Var[/w(:c,z)dQn(% Z)] :%ZVar[w(Xi,Zi)]

i=1

1
= Z/if(a:,zz)dH(ﬂzz) — 0.
Thus, the assertion follows from Chebyshev’s inequality. n

Lemma A.2.8. Let (Y1) nemn, (Yon)nemn @ R x [0,1]2 — R be two sequences
of functions. Assume that there exists a constant § > 0, such that for any
n € m- N, [th1,|>*°, [, > and ||0v1,/0z||* are dominated by the same H
integrable function independent of z. Define forn € m - N

‘7721 ::%Z/ (wm(x,zi) +¢2n($,zi))2dH(37’Zi)
i=1

IS e + e ) are0)

=1

If there exits a constant o such that o2 — o2, then
Vit [ 1,(z.2d(Qule,2) = E[Quz,2))
+ ﬁfwgn($, z)d(Qn(m,z) — E[Qn(x,z)]) — N(0,0%).

Proof. We denote for each i € {1,...,n},

Ya(Xi, ) = iwm-(zj, YY1 (Xi, 2) + Y2n(Xis 2)-
=
Note that ¢, (X1, 21), ..., n(X,, 2,) are independent,
Vo / il 2)dQu(, 2) + /1 / Yo (1, 2)dQu(z, 2)
=Vn- %z"; (Zn;wm‘(% h)1n(Xi, 25) + Yan (X, Zz‘)) =vn- %Zn;l/;n(Xia z)
and 7 7 7

Vit [ e AEQule, 4V [ (o EIQu(e,2)] = Vit Y Bl (X, )

105



In the sequel, we show first that

= ZEH V2 (Xiz) — B[ YV20,(X0, )] M] —o(1).  (A2.7)
By the Minkowski’s inequality,
2+5ZEH U2 (X 2) — E[n~Y240,(X, %) M]
O_;i/; ! ZE[ o(Xi, 20) — B[ (X5, 2)] H]
< 3 (B ) + (Bl Ot )
s 2 (B0 ) + | 2] )

Note that by Jensen’s inequality for any i € {1,...,n},

{ [¢n Xz,Zz H < EH¢TL (3] z)’2+6] By

Hence,

MZEH 120 (X, z) — [n—l%n(xi,zi)}‘m]
szmim > B[00

n- 2
2+ 02 n Z/Wm w,z) " dH (2]2). (A.2.8)

Further by the Minkowski’s inequality, for any i € {1,...,n},

(/ wn(x, zi){2+6dH(x|zi)> 7

:(/ | zn:wm(Zj,h)%n(x,zj) + o, Zz‘)|2+6dH(a:|zi)>2i5
§i</ g WY, 2) i 0120) 7+ / [l ) (a])) ™
:iw’”(%’m(/ e, )t 120) ™+ ([ o2l al)
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By the assumptions of this lemma, there exists a constant C' > 0, such that

the last term is bounded by

i=1 j=1
Therefore, Inequality (A.2.7) follows from (A.2.8).
Next we show that

Var [\/ﬁ/wm(aﬁ, 2)dQn(z, 2) + \/ﬁ/wgn(:c,z)dQn(:c, z)] =0 +o(1).

Note that

Cov [\/ﬁ/wln(a:,z)dé)n(x,z),\/ﬁ/wgn(x,z)dQn(x,z)}
:%Cov [ i i Wi (20 D)1 (X}, 2), i Yon( X 20)|

i=1 j=1

:% zn: Xn: Zn: Wy (2i, h)Cov |:'l/11n(Xj, %), Yon (X, Zk)]

i=1 j=1 k=1

:% > wnyzi, h)Cov [z/;ln(Xj, 2i), an (X, Zj)}

i=1 j=1

:% z”: Zn: Wy (23, h) < / V1n(@, 20)V2n (@, 25)dH (z|2))

=1 4= —/wm(x,zi)dH(x!zj)/%n(:c,zj)dH(m‘Zj))'

Note that by Cauchy-Schwarz’s inequality and Lemma A.2.5, there exist a

constant C' > 0 and z;; lying between z; and z; such that

’% > walzh) / (V1n (@, 2i) — Y1n(, 27))Von (@, 2;)dH (] 7))

i=1 j=1

<SS o) [ a2 ~ a2 W, 2l a1

<03 3> Y el = ol [ 25 o o el

o 23S ol 5l ([ 2205 Partarz) - [ onte, 2 Parel=)
i=1 j=1

<O LSS bl = 5l < O E3S wyh) =
=1 1 i=1 j=1
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Therefore, we get

—Zzwm zi h /wln x, 2 Yan(, 2j)dH (x| 2;)

11]1

:—ZZwm zi h /wln x, 2 )an (x, 2;)dH (x| 2;) 4+ o(1)

=1 j=1
=I5 [t ezt 1) o) (A29)
j=1
where the last step follows from Lemma A.2.3 with

2 = [ nn(o o, 2)aH al2)

With similar arguments, we can show further

—ZZwm Ziyh /@bln x, z;)dH (x|z;) /’(/Jgn x, zj)dH (x|2;)

=1 j5=1

:EZ/?ﬂm(x,zj)dH(x\zj)-/¢2n(x, z;)dH (z|z;) + o(1).

Thus,
Cov [\/ﬁ/wln(x,z)dQn(x,z),\/ﬁ/w%(:c,z)dQn(x,z)}
SIS ([ ot 2t e el
= [ )t Galz) - [ oozt ]) + ol)
Analogously,

Var n-/%n x,2) d@n(f Z)}

=Var \/ﬁ —Z/zbln x, %) dH x|z,]

n n

=— COU[ZZMW ziy B (X5, 2), Wi (2k, h)h1n lezk)}
i=1 j=1 k=1 I=1
_1 Z >N w2, h)wn (2, h)Cov {Q/Jm(Xja zi), Y1n (X, Zk)]
=1 j=1 k=1
:-ZZZU}M 2, h) w2k, b /wm T, 2i) 1 (2, 2)dH (] 25)
i=1 j=1 k=1
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- [bule ) (al) [ e 20db))

n n n

:%ZZ w”j(zi7h)wn]'(zk’h)(/wln(x>zj>wln(l’,Zj)dH(l"Zj)

i=1 j=1 k=1

- [ bute )t Galz) [ o) l)
SISt manatz) ~ ([ e zamelz)) 4o,

(A.2.10)

where the last step follows Lemma A.2.4 with

/wlnxdeﬂ /T/J1n$2dH($| )>

Further, by definition,

Var \/ﬁ/wgn(x,z)dQn(:c,z)}

n Z w2n Xi, z1)] = Elhan (X, Zi)]z)

= ; </¢§n(m, o) dH (2)) — (/w%(x, 2)dH(z]z) )
Therefore,
Var|Va / Yin(z, 2)d0n (2, 2) + v/ / Yon(2, 2)AQu (. 2)]
~Var|vn / Yin(2, 2)AQu(w,2)] + Var [V / Yon(2, 2)AQu(z, 2)]
+2C0v [\/ﬁ / Grnl(@, 2)dQn(, 2), v/ / Yom (i, 2)dQn(z, z)}
=02 +0(1) = 0 + o(1).
Therefore, the assertion follows from Lyapunov’s central limit theorem. [

Next we extend Lemma A.1.1 to the case with kernel estimator for distri-
bution function. Let (X;;,z;) for i € {1,....k},5 € {1,...,n} be defined as in
Section A.1. The distribution function of X;; is denoted by H;(-|z;). For each
i € {1,...,k}, the kernel estimator for distribution function at z € [0, 1]¢ is
defined as

Hin(z|2) anﬂ z,h)I(X;; < z).
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Further, for a sequence of functions (1, )nemn : R¥ x [0,1]7 — R we denote for
each i € {1,...,k},

Vit [ [l s, B[ |2)] - dE i)
X dﬁm(ﬂﬁi‘z)dE [ﬁ(i-i-l)n(xi—i-l'Z)} e dE [ﬁkn<xk|z)] )
1 X -

:n—ZPm(zj).
05

Similarly, we define
:\/ﬁ/---/wn(xl,...,xk,z)dﬁln(xﬂz)---df[kn(xk|z),
Poal2) ==v/ / [ o B[ 1|2 - dE 2]

:n_OZPn(Zj)7 Foy, :n_OZPOn(ZJ)

Jj=1 J=1
Lemma A.2.9. Let C be a positive number such that
E[wi<X1i17 EE) ink7 Z)] < C

for alliy,....i, € {1,....,n}, n € m-N and z € [0,1]¢. Then
— k — —
By =Y Py —(k—1)Py +0,(1).
Proof. As in the proof of Lemma A.1.1, first we show that
Var|P, ZPm+ — 1) Po] = o(1). (A.2.11)

Assume that z,Z are two arbitrary covariate values in {zi,...,2,,}. Let the
sets I, 11, Iy, I3, J, Jy I, and Iy for a,b € {1,...,k} be defined as in the proof
of Lemma A.1.1. For any set I C I, we denote

Cf,n(z? 2) ::nz wmd(Z» h) " Wniy, (27 h>wnj1 (57 h) Wy, (2? h)
I

x Cov [¢n(X1i17 B inka 2)7 wn(lela SAED) Xk]ka 2)} .

Note that by (A.2.1), for all i € {1,...,n},
KGE) K
Dot K(372) mszezO K(z,)
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Wpi(z,h) =




Since K is bounded and

1
N hd

> K(z) - K (x)dz,

0,1]4
Zell [0.1]

for n large enough, there exists a constant C' > 0 such that

C
Wpi(z,h) < e (A.2.12)
Define
- - d(2k—2),  2k—2 é 2k
cn = Cn(2k — 1)(k — 1) - (2[figh] + 1) m* 2 (—=)".
nohd

Note the by Assumption (ii) noh?® — co and figh — oo, thus,

2[ngh] 4+ 1

n = CC?(2k — 1) (k — )ym* - ( o )IEED g th 2 = o(1).

In the following, we show that for a = b = 1 and n large enough

|Cryn(2,2)] < . (A.2.13)
and
|Clopn(2,2) = Cov[Pan(2), Prn(2)]] < ca. (A.2.14)

Note that if (iy, ..., %, j1, ..., j&) € I11 with
Wiy (2, 1) =+ - Wiy (2, B)wpjy (2, R) -+ - wny, (2, R) # 0,
by Assumption (iii) K (z) = 0 if ||z|| > 1, it must hold that
lziy, — 2| < hy oy ||2i, — 2] < h.

1z = 2l < Ry 125, — 2 < e

and at least two numbers out of the 2k — 1 numbers iy, ..., ix, jo2, ..., jr are equal.

Hence, there are at most

2k—1
( k’2 ) (2[gh] 4 1)42E2) . p2k=2

elements in I;; with
Wiy (2, 0) <+ - Was, (2, K)wpj, (2, ) -+ - wa;, (2, h) # 0.
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Consequently, analogously to (A.1.7)

‘C’ju’n(z, 2)} <Cn Z Wiy (2, R) -+ - Wasy (2, h)wpjy (2, R) - - - way, (2, h)

I

<Cn (Qk; 1) - (2[noh] + 1>d(2k72) . m2k72(

C

)Qk —¢
nohd s

i.e. Inequality (A.2.13) holds.
For Inequality (A.2.14), denote the function ¢, : R x [0,1]* — R with

ZEn(‘ru’ZipziQ?“wzik) ::/"‘/wn(x,xQ,---,xk,Zh)dHQ(SUQ’Zh)"'de(SCk‘Zik>.

Note that if (i1, ...,, J1, ..., &) € I11, by Fubini’s theorem and independence
Of X1i17 ceey ink’ leQ, ceey Xk]k

Cov [Vn(X1iys Xoig, -or Xigs 2), Un(Xujy, Xojy, ooy Xij, 2)]
:COU[¢n(X1i1,X2z'27-~-,inkaz)a¢n(X1i1aX2j27"'vijwgﬂ
:E[wn(Xul,XziQ, ooy X 2) - Un (X1, Xojg s ooy X 2)]

— E[¢n(Xu1iy, Xoig, s Xki, 2)| + E [n( Xy, Xojy, ooy Xy 2)]
:Ewn(Xh-l, 2, Zigs s 25 ) - Un(X1a, , 2, Zjgs oes i) |

- Emn(Xul,Z, Zigy +ees sz)} ‘ Ewn(Xm, Z,y Zjyy +es ij)}
:COU[QZJTL(XMUZ, Zins ...,zik),zz)n(Xlil,é,sz,...,zjk)}.

Therefore,

Cfu,n(zv 2) =n Z Wniy (Z7 h) 0 Wny, (Z, h)wnj1 (27 h) o 'wnjk(g’ h)

Iy

x Cov [(&n(Xlzl y Ry Rigy +oes Zik), z[)n(Xlila 2, Zjgsy ey ijﬂ .
Further, by the independence of X;, and X;;, providing #; # ji,

Cov [Pln(z), pln(g)]

=n > Y Y i (2, 8) - wi (2, h)wng, (2, B) - wng, (2, B)

ie=1  d1=1ljp=1  ji=1

x Cov [&n(Xlila Zy Zigy wees Zik)azzn(leUZ?ZjQ? 7ij)}
=n Z wni1(27h)"'wnik(zvh)wnh(g?h)"'wnjk<’§7h>

I11UL1

X COU [’l/?n<X1i1, Zy Zigy ey ’Zik)7 'l;n(Xlip 2, iju ceny ij):| .
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Thus, analogously to (A.1.12)
vz 2) = Covl Pia(2), Pra(2)]|

:‘n Z Wiy (2, B) -+ Wei, (2, W)W, (2, ) - - wpj, (2, h)
Iy
x Cov Wn(le 2, Zigs ooes 20y ) Un (X, 2, Zjgs oo )] ’
<N Y Wiy (2, ) - - Wi, (2, h)wng, (2, h) - - wij, (2, h)
Iy
x |Cov Wn(Xlil, Zy Zigy ey Zig )y 1/~Jn(X1i175, Zigy ey zjk)} ‘
SC’nZwml(z, h) - Wi, (2, h)wyj, (2, R) - - wnj, (2, h) < ¢y,

[_11

i.e. Inequality (A.2.14) holds. Then with the same arguments used in the
proof of Lemma A.1.1, Equality (A.2.11) follows.

Next, we show that
ZPm + (k= 1)Po,] = o(1). (A.2.15)

For any set J C .J, denote

)= \/ﬁZwml(z, h) - Wi (2, A E [0 ( X1y ooy Xiig» 7).

We can write then
E[Py(2)] = Ezn(2) = Egn(2) + Epyn(2). (A.2.16)

Note that if (i1,...,4,) € J\Ji, by Fubini’s theorem and independence of
X1i17 RS inlﬂ

E[¢n(X1i17 ceey X]m‘k, Z)} = E[@Zn(Xlip Zy Zigy ey Zlk)} . <A217)
Hence, the second term on the right-hand side of (A.2.16)

EJ\JlTL \/_anll Z, h wnik<z7h‘)E|:’l/;n<X1iluzaZ’ig7"'7Zik)i|-
J\J1

Further, by definition,

Pon(2 \/_ann z,h) - wmk(z,h)Ewn(Xul,z,ziz,...,zik)}.

113



Therefore,
|E[Pa(2)] — Pon(2)]
<|Epn(2)| + | Engn(2) — Pon(2)]
J1
X <‘E[1/Jn<X1“, ceny ink’ Z)] | -+ }E[I;H(Xl’“? 2y Zigs -y sz>] ‘) . (A218)
Note that if (iq,...,9) € J; with
Wiy (2, h) -+ - W, (2, h) # 0,

it must hold that
20 = 2l < By N, — 21| < B

and at least two numbers out of the £ numbers iy, ..., 7; are equal. Hence, there

are at most "
(2) - (2[7gh] + 1)Uk k-t
elements in J; with
Wiy (2, h) -+ - Wy, (2, h) # 0.
Further, by Jensen’s inequality, for all i1, ..., 4 € {1,...,n},
2 1/2 1/2
E[wn(Xl’h;"'?inkuz)} S (E[¢n<X1117,szk,Z)]> S C 5

by (A.2.17), we get

‘E['l;n(Xlila 2y Zigy e sz)] ‘ S 01/2-

Thus,
|E[P,(2)] — Pon(2)] <2C"2*V/0>  wi, (2,h) -+ wyi, (2, 1)
J1
<k(k —1)CY2\/n - (2[Agh] + 1)1 . mkl(%)k
No

Consequently, by Assumption (ii) noh?® — oo, we get as ng — oo,

BB ~ Pun] <> (BB 0]~ Pon(z)
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§k<k - 1)01/2\/5 . (2 ’—,ﬁ/(]h'—| + 1)d(k—1) . mk_l(nc;bd)k
0

2[noh] +1

0

)d(k*l)n(;lmh_1 =o(1).

By definition, we have

E[Pia(2)] = V0 Y wni, (2, h) - wii, (2, 0 E [bn (X1, 2, 22y o0 23,)] = Pon(2).
J

Thus,
E[Py,] = Py,

With the same arguments, we can show that for any i € {1, ..., k},

Therefore, Equality (A.2.15) follows. The assertion follows then from Cheby-
shev’s inequality by (A.2.11) and (A.2.15). O

Corollary A.2.10. Under the assumptions of Lemma A.2.9, we have
n’l/QJSn = n’1/2]50n + 0,(1).

Proof. Analogously to Corollary A.1.2, the assertion can be shown by Lemma
A.2.9. O

Lemma A.2.11. Let (¢,)nemn : RXx[0,1]7 — R be a sequence of functions. If
the functions (Vn)nemn are dominated by the same H square integrable function

independent of z, then
[ nle2Qute,2) = [ e )AEQu(e, 2] + (1) = 0,(1).

Proof. Note that by (A.2.10) and the assumption of this lemma, there exists
a constant C' > 0 such that,

Var[/wn(x,z)d()n(x,z)}
S%iiiwm(zi,h)wm(%,h)‘/1/1n(x, 2)n (2, 2 )dH (x| 2;)

i=1 j=1 k=1

= [ a2l [ blo )dH o)
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n n n

1 1 n
<O Y220 D wila Wwn(ah) = C- = "1+ 0(1)
i=1 j=1 k=1 =
where the last step follows from Lemma A.2.4 with ¢, (z) = 1 for alln € m-N
and z € [0,1]%. Thus,

Var[/@/)n(x,z)dQn(x,z)} =o(1).

Hence, it follows from Chebyshev’s inequality that

/%@W@M@z/%@&ﬂ@@ﬁ+%ﬂ

Further, there exists a constant C' > 0 such that,

/wn:cszQna:z )< Zwmzl, /wnledH:dzj)

<C- - Zanj(zi,h)

Hence,
/wm@w@maw%mz@m.
L]

Lemma A.2.12. Let ¢ : R x [0,1]¢ — R be an H integrable function. If
oY /0z is dominated by H intergrable function independent of z, then

/wWJME@M%@%=/¢@%MQ@w%+dD

Proof. By a Taylor expansion, for each i,j € {1,...,n}, there exists z;; lying

between z; and z;, such that
/M%Mﬂ@@ﬁ

L3S ) [ vt zatal)

i=1 j=1

- Zzw’”(z’)/ (@Zz(x, 2;) + (%)T (2 — Zj)>dH($|Zj)

iljl

:—Zzwm Zi /w Z, ZJ dH x’ZJ)

i=1 j=1
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+% n iwm(zz‘)/ <W>T‘m(l’|%) (2= 7). (A.2.19)

i=1 j
By Lemma A.2.3, the first term on the right-hand side of (A.2.19) can be

written as
3 [ vt zdmtalz) +ot) = [ 0w 2)dQG ) +of0).

By the assumption of this lemma, there exists a C' > 0 such that the second
term on the right-hand side of (A.2.19) is bounded by

23 wng(zlle — 5l < Oh 2 323 wny() = O

i=1 j=1 i=1 j=1
where the inequality follows from Lemma A.2.5. Hence, the assertion follows.
]

Lemma A.2.13. Assume that d=1 and v is a Lipschitz continuous function
on [0, 1], then

Vit S i) = v [ (e = o)

Proof. By the mean value theorem for integration, there exist z; lying between

zi—1 and z; for each i € {1,...,ng}, such that

1 no zi 1 no )
RO > / =13 )

where zy = 0. By the Lipschitz continuity of the function v, there exists a
constant C' > 0, such that

\ﬁ-niofjwzi)—ﬁ-/glwz)dz

|V S e - i 3w

gﬁ-nioz [ (z) — ()]

1 & 1 -1
<Cyn-— 2z — 2| < Cyn - — — =Cyn-— =o(1).
<Cvn n0;| | <CvVn no;no vn (1)
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A.3 Appendix of Section 3.2 (m — oo, ny Fixed)

Lemma A.3.1. Let v : Rx[0,1] — R be a bounded function with ) (z, z) = 0,
if © > 7, then

N nioz/¢(x,zk)dHfM(mlzk)
k=1
=i o3 [ ot sl B

v nz [ [FS= ) an gz am etz

B(x|z)

—vn- - ; //¢(u, 2,)C(x A u|zg) dH (u| 2 )d By, (z]2) + 0p(1).

Proof. 1t follows directly from Theorem 1.1 of Stute (1995) that for each k €

{1, ...,no},
N3 / (i, 24) AHEM (3] )
:\/ﬁ./w(%zk)y(ﬂzk) dB (x| )
r < u u Zk) 0
v / / oy wl)dB e])

Zk

_Ja- //w(u, 20)C A ulzx) dH (ulz)dBo(2] ) + 0,(1).
Hence, the assertion follows since ngq is fixed. n

Lemma A.3.2. Let : R?x[0,1]¢ — R be a bounded function with ) (z,y, z) =

0, if max(z,y) > 7. Then we have
1 o
Vit oS0 [ [ wta ) [ @) a Y ) — AHEY ola)dH (]2
0 k=1
— dH (a|2,)dH, ™M (yl o) + dH (x]2)dH (y|21,) | = 0,(1).

Proof. Note that by definition HXM(.|2) is a step function with possible jumps
at Y1, ..., Y,. The mass attached to ith order statistic Y{; is equal to

Rt I G RS » OO 1Y)
L0 ) - (e =g )

om 2 k1 O (2
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T Sy (2)Ay i 5y () A
:jl_[l(l m= (Z): ()( )) j=1 (1 m— (Z):k 1 (lj)< )
(1-(- 5(1)( ) T 05 (2)Ag)

m— Z j:l m = Zk 15(k)(z)
QOICINUIE (1- 5(3')2(;)'1?(1)( ))
j=1 m =2 k=19k\%
3y (2) A L m = S 600 (2) = 60y (2) Ay
e

_1. 50 () A H (m — ko1 0 (2) — 5(j)(Z)A<j))
" j=1 m =3 i1 0)(2)

¥ ' 5y (2)(1 = Ay)
=— - 0(2) A ]Hl ( T Bn(%)IZ)))

1

)

Thus, for the function ¢ : R? x [0,1]? — R, we get

/ o,y 2)AHEM (z]2)

=—Zw A (2 >H (1 e (Z)f(;mff;)))

:—Zsz,y, VA (= J]jlﬂgdi( mé(”fz)( B )))

—— le(yi,y,z)Aiéi(z) eXpZI(Yj <Yj)ln (1 + = _(YA|A)))>

:_Z¢ (Vi y, 2)Aidi(z eXp;] (Y; <Yi)(1 = A;)d;(2) In (1 + m(l = ;n(iGIZ)))
:% ;zb(lé,y,z)Aiéi(z) exp (m /: In (1+ e ;n(xlz)))ng(xle .

Analogously to Stute (1995), for i € {1, ...,n}, define the functions A;,, B;,, Ci, :
[0,1]* — R with

Yis 1

Ain(2) = m/;_ In (1+m(1 - ;n<x,z>))d32(xlz)—/oo 1= B(z]7)

Bin(2) :== m/:o In <1+m(1 — ;n(x\z)) )dB?L(:c)—/_Z mng(:clz),
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dB°(z|z),




Yi— 1 0 Yi— 1 0
n(2) 1= —— dB — —— dB )
)= | e - [ )
Note that

Ain(2) = Bin(2) + Cin(2).

By a Taylor expansion, for a,b € R there exists a £ lying between a and b such
that

exp(a) = exp(b) + exp(b)(a — ) + 5 exp(€)(a — b)°

Thus, by setting

a= m/ o e 1n(x|z))>d32(x|2)

and

Yi— 1 0
b:/ mdl? (x]2),

—0o0

exp (m /O: In (1 + (1= ;n(ﬂz)) >ng(x|z))

1
=1(Yil2) + 1(¥il2) Ain(2) + 55 - A7 (2)

we get

2

—(Yi]2) (1 + Biu(2) + Con(2)) + %efi(z) (Bun(2) + Cinl2))

where &;(z) lies between and

m/ ln i 1n(x|z)))d32(x\2)

and

Yi— 1 0
/ )

—00

Therefore, we get

1, 2
— . S =esi@) (B, .
+— ;w(m, ¥, 2)8:0:(2) 5% (Bin(2) + Cin(2)) "
Consequently, for the function ¢ : R? x [0, 1]¢ — R, we get

Vi niZ/ [ o) A el B (o)
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(9 Y, 2y (il v (Vi ) Al 842003 ()

% (14 Bin() + Cin(2t) - (1+ Bju(1) + Ca(0) )

1 1 .
VY _<¢< 0 Y5 217 (Yil2k) A i (24) 0 (21, ) e )

nem 2

—
3
3
3
<)

+vn-

1 S| e
v 2.0 4 (‘D(Yi’ Yo 2 ) a0 (21) 8 () e ) S )
=13

X (Bin(21) + Cin(2))” - (Bjn(2) + ojn(zk))Q). (A.3.1)

In the first term of (A.3.1), by Lemma A.1.1 with k =2, X3; = Xy, = A; - Y]
for j € {1,...,n} and ¥(z,y, z) = Y(x,y, 2)y(z|2)y(y|2), we can write

n  no

V- 1”2 DD (Y Y ) (Yilze) (Y2 i 6 (21) 85 (21

n
015 =1 j=1 k=1

i oS [ [ vlea@lan BB vl

no_

vt o [ [ wlea el i) (4B ) 12
+ dB'(z|2,)dB, (y| ) — dB' (2|21,)dB" (y|zi)] + 0p(1).  (A.3.2)

In the sequel, we show that

n  no

Vi 1”2 DD 0D Y Y 2 (Yilze) (V120 Ai6:(24) 6 (2) Bin(26) = 0p(1).

n
015 %=1 j=1 k=1

(A.3.3)

Since for a > 0,

By setting




we get

_ <n(1+
om2(1— B,(Y;]2))" n(

Thus,
_ L [ _dBiel) g (2) < 0.
2m J oo (1 - Bu(z]2))° ~ -

Hence, we obtain for any k € {1,...,n0} and i € {1,...,n} with Y; < 7,

Bzl < 5 [ " dBy (v]2+) |
~2m J_ MiNge(1,. ne} (1 — Bn(7|zk))2

.....

(A.3.4)

Note that
i 1-B, > i 1-B i B -B,
min _( (Tlz1)) > ke{rlmn ( (T\zk))—l—ke{rlmn , (B(7]2k) (721))
Since 7 < 7g, thus there exists a constant o > 0 such that
min (1 — B(t|z)) > 6.

For k € {1,...,no}, by law of large numbers, |B(7|2;,) — B,(7|2)| <= 0. Since

ng is a constant number, we have
min  (B(7|z) — Ba(7]2k)) == 0.
Therefore, for n large enough, we have
i 1-B, >0 a.s. A35
ettty (1 Bulrl) 2.6 as (A.35)

Consequently, by (A.3.4), there exists a constant C' > 0 such that for any
ke{l,...,no}and i€ {1,...,n} with¥; <7,

|Bin(2)] < C-m™', in probability

Hence, by the assumption ¢ (z,y, z) = 0, if max(z,y) > 7, we get

1 n n ng
Vi s 30 D0 D (Y Y a) vVl (Y A8 () (2) Bon ()
i=1 j=1 k=1
1 n n no
<Cvn- o DX Y z) [y (Yilze) v (Y 2) i 6 (21) 85 (21
i=1 j=1 k=1
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=ony / / [,y 26) |12l (9] 26)ABL (2] 24)ABL (5] 25) = 0p(1)

where the last term follows from Corolary A.1.2 with k = 2, X, = Xy; = A;-Y]
for j € {1,...,n} and |¢(z,y, 2)| = ¥(x,y, z2)v(x|2)¥(y|z). Therefore, Equation

(A.3.3) holds.
Next we show that

1 n n  no
v - DD Y ay(Yilze) v (Ylze) Al i (2)8 (21) Cin(21)
i=1 j=1 k=1

- ni();//w(xy w) AHEM (2|2 dH (3] 20)
ad niz/ [ .20) 2tal) aB el ol + 1), (430

Note that we can write

P P Ly B (CE0) MR
o)== [ [ B lhBel)

2 o [T 1 0l
| aE e - [ g

YT (Bl ~ B@l)”
+ 5 dB, (z|z).
/—oo (1 - B(z|2)) (1 — By(z]2)) (@lz)

Denote the function ¢ : R? x [0,1]¢ — R with

Yl y,u,2) = Pla,y, 2) I (u < 2)y(e]2)y(yl2)/ (1 = Blul2)),

we get then

n  ng

Vi S S (Y Y (Vi) v ) A6 (24) O 2)

nom?2

i=1 j=1 k=1

Vi —— 2.0 /w(Yi,y, )7 (Y12 )d By (yl2x) - ¥ (Yil2) Aidi (21) Cin (21)

nem
01 %=1 k=1

o nl no @/;(x,y7u,zk)f(u<t) s 0(uls Lgls Ll
Vi oS [ ey BB a5, w1205, 0 )

1 & -
+2v/n - - ;///d}(x,y,u, 2k)dB) (u|z)d B, (x| 2 ) d B, (21,

R niz J[[ s m0aB waB a0
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e y,u 21) (Ba(ulzi) — Bulz))® |, . 1
+Vn- - Z // Blulz) (1 = Bo(ul2) dB, (u|z)dB, (x|z)dB; (y| k)

=:Cpn1 + Cn? + On3 + Cn4~

By Lemma A.1.1 with k£ = 4, le = Y}', ng = (1—AJ)Y3, ng = H4j = A]Y;
for j € {1,...,n} and

&(m,y,u,z)](u <t)
1 — B(ulz) ’

QZJ(I’ y? u’ t? Z) =

we can write

Cun =~ Z /1] By N0 [y (1) B0 B o] 0) 4B (o)

B(u|z)

+ dB(t|zk)ng(u|zk)dB (z|21)dB (y|21) + dB(t|2)d B (u| 2 )d Bl (2|2 ) dB* (y |21 )
+ dB(t|z1,)dB° (u|z,)dB* (x| 2)dB} (y| 21.)
— 3dB(t]zk)dBO(u|zk)dBl(:v|zk)dBl(y|zk)} + 0,(1)

- Vi i//// @y u z) <) g 15010 dB (2]20)dB (y]2)

B(u|z)

s> [[[ bt [d32<u|zk>dBl<x|zk>dBl<y|zk>

+ dB%(u|zp)dBL (| 21,)dB* (y|2) + dB®(u|z,)dB* (| 21,)d B} (y| 21
- 3dBO(u|zk)dBl(x]zk)dBl(y]zk)] +o,(1).

With similar arguments, it can be shown that

Cuo =2 LS [ 6.0, 0) [aB2al )8 w2008 012

+dB°(ul2)d B, (x]2)dB* (y|zx) + dB°(u|2y)dB' (]2, )dB* (y|2)
. 2dBO(u]zk)dBl(:U]zk)dBl(y]zk)] +o,(1).

and

Co— — /- nioi ///J;(x, ., 2) [dB (u]2)dB) (x]2) dB (] 1)

+ B°(u|z)dB* (2| 21)dBL (y|2) — B®(u|zi,)dB' (x|2:)dB* (y|z1) | + op(1).
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By (A.3.5), there exists a C' > 0 such that C),4 is bounded by

e y,u )| (B (u]2k) — B(u\zk))2 . X 1
o k=1 // B(ulzy)) (1 = Ba(7|2x)) AB, (ulz)dBy (] 2)dBy (y]21)

<O - Z/// W T, Yy, u, Zkl U By, (ulzi) — B(ulz)) B0 (u]5)dB (2] ) dB (3]0,

B(ulz)

which is equal to 0,(1) by using the same arguments for 73,, in Theorem 2.2.4.
Thus, Cy4 = 0,(1). Therefore, we get

/.

ZZZw Vs, Y, 207 (Yl 2k (Y 2) A A 63 (2) 65 (24) Cin (2)

ng m2
i=1 j=1 k=1
"0 O(x y u, 2p) I (u < 1)
=—/n- mz/// 7 B(u|z) d By (t|24)dB° (u|z)dB* (2|2 )d B (y] 21.)

+\/ﬁ'n_okz_;///i(m,y,u,Zk)ng(U|Zk)dBl($|Zk)d31(y|zk) + 0p(1)

:_\/ﬁ.nii//</¢(x,y,zk)dH(y|zk)> - C(u A ) 2) dH (2|24 )d By (u]22)

R z():// U<z fw x,y, 2 )dH (y|2) dH (z|2,)d B2 (u|z,) + 0,(1)

B(ulz)

:ﬁ'ai// Uy, 20) dH (y])dHE (2]2)

Vvn - / U(x,y, z1) dH (y|2i) - v(x|2)dB (2] 21) + 0,(1),

o
0 k=1

where the last step follows from Lemma A.3.1.

By symmetry arguments, we get further

n

ZZZ?ﬁ Vi, Yy, 2)7(Yil )y (Yil2) 8D 0i(24)05(26) Cim (2)

i=1 j=1 k=1

i LS [ ote w0 anelgan o

Vi ——
nom

Vi [ [ a) bl B 6lE) + 0 1). (A37)
k=1

Analogously to (A.3.3) and (A.3.6), it can be shown that

ZZZ( (Y2, Y5, 20) v (Yl 2i) v (Y |20) i A6 (21:) 05 (21)

n0m2
i=1 j=1 k=1
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X (Bjn(2k) + Bin(2k) Bjn(zk) + Bin(21) Cjn(2)
+ Cinl2) Bu(2) + Cu(3)Cin(0) ) = 0. (A38)

Therefore, it follows from (A.3.2), (A.3.3), (A.3.6), (A.3.7) and (A.3.8) that
the first term on the right-hand side of (A.3.1) equals

ZZZ( (Yi, Y, 2i) v (Yilzw) v (Y| 20) A 6 () 65 (2 )
X (1+ Cin(2) + Cinlz1)) ) + 0p(1)
1 no
=/n-— U(z,y, ) [dHEM (2| 2)dH (y|2)
UN) ;// Y [ Y

+ dH (x]z)dHy ™M (yl2) — dH (2 2)dH (y|2)] + 0,(1).

Vn -
n0m2

By similar arguments, we can show all the last three terms on the right-hand

side of (A.3.1) converge to zero in probability. Hence, the assertion holds. [

Lemma A.3.3. Let) : R3x[0, 1] — R be a bounded function with(xy, xe, 13, 2) =

0, if max(xy, x9,x3) > 7. Then we have

1
\/E.H_Z///w(xl,mg,x?,,zk) dHEM (21| 21)dHEM (2] 2 ) dHEM (23] 21.)
0 k=1
—dHEM (21| 2)dH (39| 21)dH (3] 21,) — dH (21 |20)dHEM (2] 20 ) d H (23] 21)
—dH (x| 2)dH (2] 2) dHEM (3] 21,) + 2dH(a:1\zk)dH(xQ\zk)dH(xﬂzk)} = 0,(1).

Proof. Tt can be shown similarly as Lemma A.3.2. O]

A.4 Appendix of Section 3.3 (ny — oo, m Fixed)

Lemma A.4.1. There exists a constant & > 0 such that for all z € [0,1]* and

eventually alln € m - N,
1 — E[B,(7|2)] > 6 and 1— B,(r|z) > & in probability

Proof. By Assumption (i) and the independence of X; and C;, the function B
has bounded derivative and Hessian matrix with respect to z. Hence, analo-
gously to Lemma A.2.6, we can show there exists a constant C' > 0, such that
for any 2 € [0, 1]¢,

|E[B,(7|2)] — B(r|z)| < Ch.
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By definition of 7, there exists a constant § > 0, such that for any 2 € [0, 1]¢
1 — B(7|z) > 0.
Hence, for any z € [0,1]? and n large enough, we have
1 — E[B,(7]2)] = 1 — B(7|2) + B(7|z) — E[B,(7]2)] > 4. (A.4.1)
For the second part of assertion we show first

max
z€[0,1]4

B (7]2) = E[Ba(7|2)]| = Op(ng >h=¥?(log ng)/?).

By the compactness of [0, 1], there exist [,,, subsets Sy, ..., Sty C 0, 1], such
that

Ing
max max lz = Z|| < ng 022 (1ogng)? and [0,1]¢ € USZ"
) €95
i=1
For i € {1,....1,,}, let Z; be a vector in S;, then we have
max Bn(7'|z) — E[Bn(ﬂz)]’
z€[0,1]¢
= max max B, (1|z) — E[Bn(7|z)]|
1 zE
< max max ‘B T|z) — Bn(7'|éz~)| + max }Bn(ﬂz) — E[En(r|§z)]|
7 z€S; 1
+ max max |E[B,(7|2)] — E[Bu(7]2)]]- (A.4.2)
7 ze

Note that if z € S,

Z K(ﬂ)l(Yj <7) YL KLY < T)‘

= YRR (A43)
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In the following, we show that there exists a constant o such that for all
2 €[0,1)7,

(A.4.4)

1 - 2k
ot 2 K
k=1
By (A.2.1),if 2 € {21, .20, },

nME: )2 s Y KD,

Zel)

where [{) is defined in Section A.2. Further, we have

nohd Z K(z,) — K(z)dz.

[0,1]¢

Hence, for n large enough there exists a constant 6 > 0 such that for all

2z €421, 2ng )

Z Z’“_z > 6. (A.4.5)

k=

For any z € [0,1]¢, by the definition of {z1, ...z, }, there exists a 2’ € {21, ...2,, }
with ||z — 2'|| < 1/ng and

R — —
i oK) WZK’“ 2
k=1

1 0 2 — 2
noht ; h

Zk—Z

< ; )

K( ) — K(

By Assumption (iii) K(z) = 0 if ||z| > 1, hence, maximal 2 - (2[ngh] + 1)¢
summands in the last term are nonzero. Thus, by the Lipschitz continuity of

the function K, there exists a constant C' > 0, such that

1 < 2k 1 <& 2, — 2
R K _ K ’
1 z—2
< 2lnoh] + 1) C M
1 B 1
o @Roh] + 1) C = = o(1), (A.4.6)

Thus, it follows from (A.4.5) that for any 2 € [0, 1]¢, (A.4.4) holds.
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The first term on the right-hand side of (A.4.3)

Y Ky, <7) Y K(EFA)IY; < T)’
> et K(37) ZZ | (352

_ - Zj — 2 Zk K (2572) = >0 K(25~ )
‘@K( 0 RIS Z)Zk K ()
’Zk | K(#575) — D he1 (Zk;:Zl>

i K Z’“ Z)Zk  K(257)

’Zk 1 (%5 Z) Zk 1 (Zk zl)

Do K3 Z’)
_ | 2k (Zkhz) i 2oe K (352
a7 Doy K (B2 &)

where the last term can be shown analogously to (A.4.6) by (A.4.4). The same

<

= O(ny *h=%*(log no)'/?)

results can be shown for the second term on the right-hand side of (A.4.3).

Therefore, we get

Bu(r|z) = Ba(7|2:)| = Op(ng 21~/ (logno)'/?) as.

max max
i Z€ES;

With the same arguments, it can be shown that

max Max |E W (T120)] — ‘ = 1/2 h=4%(log ng)'/?)
7 ze

as well.

In the following we show that

By (7|%) — E[Ba(7|7)] = Op(ng >h=%?(log ne)'/?). (A.A4.7)

Denote for each j € {1,...,n},
Uj = 'wnj(gia h) (I(Y} S T) — B(T|Zj>),

then we get Uy, ..., U, are independent,

By(712) = ElBa(r|2)] = Y wi(Z, B)(1(Y; < 7) = B(rl2)) = Y U,
=1 j=1
and E[U;] = 0 for j € {1,....,n}. Note further by (A.2.12) there exists a
constant C' > 0 such that for any j € {1,...,n},
C

Uj| < wnj(Zi,h) < i
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and

Z Var[U;] = Var|B,(1|%)] Zw zZi,h) - (B(7]%) — B*(1|2))
j=1

i C < i C
ﬁzwfw(zuh) S n(]hd an]<zlah> S nohd-
i=1 j=1

Thus, Corollary A.9 of Ferraty and Vieu (2006) implies that there exists a
constant C' > 0 such that for any € > 0,

P({Bn(7|§z) — E[Bn(7|éz)]‘ > €) < 2-exp(—Ce®ngh?).
Therefore,

P(max |B,.(1]2) — E[B,(1]2)]| > €)

<lp, - max P(‘Bn(ﬂél) — E[Bn(ﬂz)]‘ >€) <2y, -eXp(—CEQnohd).

By setting

e = C'ny *h™*(log no) '/
for a constant C’ > 0 with Zno N naoc’2 o(1), we get
P(max|B,(7|%) = E[Bu(r|Z)]| > C'ng*h™"*(log no)'/?) < 21y, - ng "

Hence, Equality (A.4.7) follows from an application of Borel-Cantelli Lemma.
By (A.4.2), we get then

Bu(7|2) — E[Ba(7]2)]| = Op(ng *h=%?(log np)'/?).

max
z€[0,1]¢

Therefore, by (A.4.1) and Assumption (ii) that n, . 2h- 92(logng) — 0, for
any z € [0,1]? and n large enough, there exists a § > 0, such that

~ A A~

1—B,(7|2) =1— E[B,(7]|2)] + E[Bn(ﬂz)] — B,(T]z) > 0.
in probability. O

Lemma A.4.2. Let ({,)nemn : R x [0, 1] be a sequence of uniformly bounded
functions, with V¥, (z,2) =0 if x > 7 and z € [0,1]%. Then we have

RS :
Vi e [ e ) aAE Y ol)
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:\/ﬁ.niog/;bn(gs,zj)'yn($|2j)dé7lz(x|zj)

—n- nio Z // U, 27)Co (0 A u|2;) Y0 (u|2;)AE[ B} (u] 2;)]d B (2 2;)

"0 r<u ¢n u, 2j) 1 (ulz)) "
Vi Z// 2 ) BB Bl + (1)

Proof. By definition of Beran’s estimate, for each z, it is a step function with

possible jumps at Y7,...,Y,. The mass attached to :th order statistic Y{;) is

equal to
1— li[ (1 (Z h)A(j) ) _ <1 _ ﬁ (1 wn(] (z, h)A(] )>
j=1 1= Zk 1 Wa(k) (2, ) j=1 1=> 11wn(/’c (2,h)
_ (Z NAG T L (Z h)Ag)
_j_Hl 1 - Zk 1 Wnk) (2, h)) ]:1 ( Zk 1 Wa(k) (2, )
ol A g (2 1)y
={1—(1-—
( ( 1_2k 1 Wn(k ( ) j:l 1_Ek 1 W) (2 h))
Wy, z)(z h)Ag) ,H L (Z h) - Ay
1_Zk 1 Wa(k) (2, h) ]1_[1( Zk 1 Wn(k (z,h))
_ wp(E A L S k)(z h) — wa) (2, ) AG)
1—22__111%1@)(2 h) ]1_[1( =370 1wnl'f)(/Z h) )

=Wn,(s)

>H< — > 1wn<k (2,h) — ')(Zah)A(j))

?c 1 Wn(k) (2, )

i—1
Wo (2, h) (1 — A
:wn(i)(zah)A(i)H<1+ () A)( (a)))'
1= B.(Yp) )

Thus, for 2 € [0,1]%, we have

[ nta 2 a2

S (Vi ) A () TT (14 e (210 = A)
-2 o e =g )

=1

—an Vi, 2) Aoz, ) [T 107 < v (1+

=1

wnj(z,h)(1 — Aj))
1- Bn<Y3|Z)

_ A M e SV < Y wai(2,h)(1 = A;)
_;qﬁn()ﬁ,z)Azwm(z, h)e p;I(YJ <Y;)In <1+ BV ]2) )
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n n wnj('Z; h)
= Z@UH(YZ-, 2)Ajwyi(z, h) epol(Yj <Y)(1-4;)In (1 + m>

i=1 j=1

For i € {1,...,n}, define the functions A;,, Bi,, Ci, : [0,1]7 — R with

n

B wWni(z, )
A=) =Y 1(Y; < Y)(1 = A))In (1+ m)

j=1

Yi— 1 .
- - dE[B°(z|2)],
/_oo 1 — E[B,(z|2)] [Bulalz)]

n

Bin(2) =Y 1(Y; < Y)(1 = &) In (1+ M)

i=1 1= B,(Yjl2)
Yi— 1 A0
Y;— 1 A0 Yi— 1 ~0
Cin(2) = /oo Tn(ﬂz)dBan) —/Oo 1 B[Bu(a]?)] dE B, (z]z)].

By a Taylor expansion, for a,b € R there exists a constant ¢ lying between a
and b such that

exp(a) = exp(b) + exp(b)(a — b) + %exp(f)(a —b)2.

Thus, by setting

n

- V(1 — A (14 =)
a=> I(Y;<Y)(1-A))l (1+1_§n(yj,2)>

=1

and

Yi— 1 “
— A dE[B°(x|z
/_oo 1 — E[B,(z|2)] [Ba(al2)]

we get

Y < VL A (14 Pz h)
exp ) 1(Y; <Y))(1-4;)] (”l_f;n(mz))

J=1

=3n(¥il2) + 3(¥i2) Ain(2) + 5 exp (6(2)) AL (2

:”Vn(yﬂz)(l + Bin(z) + Cm(z)) + %GXP (Sz(z)) (Bm(z) + Cin(z))Q

where §;(2) lies between

-~ Wi (2, h)
;[(Y; <Y)(1- Aj)ln (1 + m)
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and

Yi— 1 .
- dE[B(z|2)].
/—oo 1 — E[B,(z]2)] [Brlal2)]

Thus, we obtain

ﬁ.iz / U (z, 2)dEEM (2] ;)

=/n- Zzwn Vi, 2)) Aiwni (27, 1)1 (Yil2) (1 + Bin(25) + Cin(z5))
=1 j=1
+\/_ zn:i ¢n Y;yzj A wnz(zbh)egi(zj)(Bin(Zj) + Cm(Zj))Q. (A48)
=1 j=1

First we have

n  no

\/_ Zzwn Yi, 2)A; wm(zm )7n<Y|ZJ)

Vi Z [ it )0 als) aBlal). (A49)

In the sequel, we show that

n  no

Vn-— Zzwn Y3, 2) Aiwni (25, h)n (Yil2) Cin(25)

11]1

- \/ﬁ-— Z / / G, 23)Cn (& A ]2y (1] 2 BB (u] 23| d B (2] 25)

e Z// e ) Bl B o1) + (),

By (x]2;)]

(A.4.10)
Note that we can write

— " Iz <u) dB,,(u|2)dB° (z|z
/_w/(l_E[BMZ)DQ (u2)dBA )

Yi- 1

Yi— 92 . )
- dB;(z|z) — - dE[BY (x|
+/°° L= E[Ba(x]2)] ) /oo 1 — E[By(z|2)] (5ol
" (Balal) ~ BB s
+ ~ dB, (z|z).
/—oo (1—E[Bn(xyz)]) (1 — B,(z|2)) (z12)

For simplicity of notation we denote the functions (z@n)nem.N ‘R?2x[0,1]¢ - R
with

Un(w,u,2) = I(u < )@, 2)y(e]z)/ (L = B[Bu(ulz)]),
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then we get

v ZZW Yi, 2) Aiwi (2, h) v (Yil 2) Cin(25)
=1 j=1
_ - u<t xuzj) . \ 30 LBl |
=V Z / IE= Buls) et Bl aB (o)

rovi Ly ff m,u,zj>d32<u\zj>déi<xrzj>
_ nioz / / P, u, 2)dE[BO (u]z)| dBL (2] ;)

Y Ynla, u ZJ Ba(ulz) - E[Bn(“|zj)})2déﬂ ulz;)dB (x|
/i nZ// B = Boe) Cn kB rlz)

=:Cn1 + Cn2 + Cn3 + Cn4-

By Lemma A29, with k£ = 3, le = E/j, ng = (1 — AJ> : }/ja ng = Aj : Y; for
each j € {1,...,n} and

I(u < t)zzn(:c, u, 2)

Ynle,u,t,2) = 1— E[Bn(u|z)}

which is a bounded function, we get

Cor =~ V- noz/// “<W””Zﬂ)[d3 (t2))dE [ B (u])] 4B [ Bl (x])]

By (ulz;)]

—|—dE[ (t|z])}dBO(u|z])dE[Bl(:c]zj)} —|—dE[ (t\z])}dE[Bo(u\zj)}dB (z]z;)
— 2B [B,(t|2)] E [B°<u|zj>]dE[Bl(x|zj)]] +0,(1)

=i [ e B A B 0B )

U‘ZJ

v [ [duwuz) [déz<u|zj>dE[B;<x|zj>}
+ B [BY(ul )| dBL (s]2) — 24 [ B3(ulz) dE[ Bl (x]2:)] | + 0,(1).

With similar arguments, it can be shown that

A RS 7 R0 A1

Cra =20/ S Gl 2) [dBn(u\zj)dE [B(x]2)]
j=1
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+ B [BY(ul)|dBL (s]2) — dE [ B3(u]z)| dE[ B (xl2)] | + 0,(1).

By Lemma A.4.1 and the assumption ¥,(z,2) = 0 if z > 7 and 2 € [0,1]4,
there exists a C' > 0 such that C,, is bounded by

\/ﬁ- i - // wn('xau? Zj)(BTL(u’Zj) - E[Bn(u"z])}) ng(u|z])dB7ll($|z])

1 Gulr,u,2) (Bululz) = E[Bu(ulz)])’ o o
<ovi-=Y [ A 4B (ul2;)dB (]2

which is equal to 0,(1) by Lemma A.2.9 as in the proof of lemma A.3.2. Thus,

Cn4 = Op(l).
Consequently, the Equality (A.4.10) holds.
Next, we show that

n  ng

Vi nio DY n(Yi, ) Aiwni(zj, )y (Yilz) Bin(2;) = 0p(1).  (A4.11)

i=1 j=1

Since for a > 0,
2

—% <Iln(l+a)—a<0.
By setting
_ Wy, (x, h)
L= B,(Yjl2)
we get
_1 . w?zj(xv h) <In <1 + wnj(m7 h) ) o wnj(xa h) <0
- 5 < - - <0.
2 (1= Bu(Yj]2)) 1= B,(Yj[2)” 1= Bu(Yj]2)
Thus,
1 — w?.(z,h)
—= I(Y; <Y)(1—A)) - ! < Bin(2) <0.
szl (¥; <Y1 - 4y) (= B.,12) (2)

By (A.2.12), there exists a constant C' > 0, such that for n large enough, for
all z € [0,1] and i € {1,...,n} with ¥; <7
w72Lj (Za h)

(1 - Ba(Yj2)?

B9 <2 31 < Y)(1- A,)-

Jj=1
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wnj(z,h)
(1= Bu(¥j]2)"

1 [ 1 .
=C'- d/ - 2ng(x|z)
noh? J_o (1 — Bn(zl|2))

1 [ 1 -
<C- d/ - -dBY(z|z).
noh® J_s (1= B,(1]2))

By Lemma A.4.1 there exists a constant C' > 0, such that for n large enough,

1 n
<O ;m@- <Y)(1—-4,)-

|Bin(2)| < C'-

X in probability.
o

Therefore, we obtain

Vi S S 02 A BVl B

=1 j5=1
Vm -
< E E (Y; Y;
¢ \/_hd no e [ (Yi, 2) | Aiwni (25, )y (Yil 25)

~C- i [ ot 2)utal:)ah e 2) = o)

where the last step follow from the assumption ngh?? — oo and the bounded-
ness of the [¢,|v,. Hence, Equality (A.4.11) holds.

By similar arguments, we can show

NS Z Z U (Vi 2:) Ao (25, h)efi(zj) (Bm(zj)—|—C’m(zj))2:0p(1).

zl]l

(A.4.12)

Therefore, the assertion follows from Equalities (A.4.8)—(A.4.12). O

Lemma A.4.3. Let (¥n)nemn : R % [0,1]¢ be a sequence of uniformly bounded
functions with ¥, (x,y,z) = 0 for any n € m - N, if max(x,y) > 7. Then we

have

ﬂ%Z /! wn@:,y,zw[dﬁf%\zwdﬁfwyrzw

— Y (ylzn)dH, M (2 20) B (B, (y|21)] — vl dE [ By (] 20) |dH™ (y]24)
+%($|zk)%(y|zk)d B (x]21)]dE[B, (y]24)] | = 0p(1)-

Proof. This lemma can be shown analogously as Lemma A.4.2. O]
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Lemma A.4.4. Let (¥ )nemn : R X [0, 1]¢ be a sequence of uniformly bounded
functions with ¥, (x1, x2,x3,2) = 0 for any n € m - N, if max(xy, z9,x3) > T.

Then we have

1 & . . .
Vil ///z/;n(:cl,xg,xg,zk) AEM (1| ) LM (19 2) M () 2)
k=1

= (@2l 2) v (3] 20) AH, M (1] 20) BBy (w2 21.) | dE[ By, (3 2)]
= Yu(1]2) Y (23| 24) BBy, (21 [21)JdH™ (o] 21) dE By (3] )]
Y1 |20) 0 (2] 20) AB [ By (21| 21,) | dE[ By, (2|21 | dH M (05 21)
— (1 26 (3 2 s ) LB 1 2 JA B B o 1)l B (1)) | = (1),
Proof. This lemma can be shown analogously as Lemma A.4.2. O

Lemma A.4.5. There ezists a constant C' > 0, such that for all (x,z) €
(—o0, 7] x [0,1]¢ and eventually all n € m - N,

|y (z]2) = 7(]2)| < Ch
and for all (x, z;) € (—o0, 7] X Sy, and eventually alln € m - N,
|y (l2:) — y(]22)| < Ch2,

Proof. By a Taylor expansion, there exists a function 4 lying between ~,, and
~ such that

In(z|2) = v(z]2) = A (2]2) (Inn(2]2) — Iny(z]2)).

By Lemma A.4.1, it can be seen that the functions 7, and = are bounded on
(—oo, 7] % [0,1]¢. Thus, the function 7 is also bounded on (—oo, 7] x [0, 1]%.
Further, for any (z, z) € (—oo, 7] x [0,1]%,

| In 7y, (2]2) — ln’y(a:\z)|
<‘/OO I —E[Bu(u)] 1 _;(u\z)dE[Bg(“‘Z)H
| [ g el - Bl)]

B2~ Bl
< PRI B
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(E[BA(x]2)] = B°(z]2)) / (E[By(ul2)] — B"(ul2))
1 — B(z|2) o (1- B(u|z))2
/m !E[én<u|z)] — B(ul2)|
oo (L= E[B,(]2)]) (1 = B(r]2))
|E[BY(x]2)] — B°(z]2)| | (= |EBS(ul2)] = B*(u]2)] uls
1 — B(rl2) /_oo (1- B(r]2))? AB{u}z)

+| aB(ul-)

<

dE [ (ul2)]

+

Thus, by Lemma A 4.1 there exists a constant C' > 0 such that |In~,(z|z) —
In~(z|z)| is bounded by

C. /gg_ |E[Bo(ul2)] - B(ul2)|dE[B(u]2)]

+C- !E[Bg(ﬂz)] — BO<I|Z)‘ +C- /w |E[§2(u|z)] — Bo(u]z)|dB(u]z)
<3C- max |E[B))(x]2)] — B(z]2)]
Hence, the assertion follows by similar arguments as used in Lemma A.2.6. [
Lemma A.4.6. There exists a constant C > 0, such that for all (z,z) €
(—o0, 7] x [0,1]¢ and eventually alln € m - N,
[ ntulaE B wl2) - Hal2)| < O

and for all (x, z;) € (—o0, 7] X S), and eventually alln € m - N,

Proof. We write first

/ * o (ul2)dE (B (u]2)] — H(z2)

—0o0

| [ atwlEBiwl) - [ Al

<| [ (utada) 2@ BB+ | [ Awld(EBL )] - B (wl2)

—0o0

IN

/x (ulz) =y (ul2)|dE[B (ul2)] + | E[B,(x]2)] — B (z]2)] - v(x]2)

" | BB, (ul2)] — B (ul2)]
+ 2
/oo (1= J(ulz))

dJ(u|z).

By similar arguments as used in Lemma A.2.6, the assertion follows from
Lemma A.4.5. O]
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Lemma A.4.7. Let v : R x [0,1]? be a bounded functions, with 1(x,z) = 0 if
x> 7 and z € [0,1]4. If O /0z is dominated by a B' integrable function, then

1 & R
o2 [ otem)dialz) = [ 02tz + o).
Proof. By Lemma A.4.2 we get
J .
2 [ ) dhE el
1 & .
—- 3 [ vl zlalzp) dBlal)
j=1

=3 [ v ) Al BB B

1 I(z < w)(u, 2j)vn(ulz;) 3l M (212) 4 o
+n—ojzl// TR o BBl B 1) + (1)

Note that the functions
U(x, 2), /w(u, 2)Cp(z A u|z)7n(u|z)dE[§,1l(u|z)],

and

/ I < wlw, 2)mwlz) 4 g )
] n

are uniformly bounded for all n € m - N and (z,2) € R x [0,1]%. Thus,

analogously to Lemma A.2.11, it can be shown that
I .
— Uz, z; dHffM x|z
o 2 ] ) el
1 A
—o 3 [ vzl dE(B el
j=1

- nio Z // b(u, 2)Co(@ A ul2) v (ul 2))dE[ B (u|2)|dE [ By (2] 25)]

no I < w)ip(u, 2)n(ulzg) ,om, T
+ _321// 1— E[Bn(:dz])] dE[B,(u|z;)|dE[B,(z]z;)] + 0,(1)

—o > [ btz el BBz + oy(1)
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where the last term follows from similar arguments as in (3.2.1). Further

Lemma A.4.5 implies

Z /¢xzy7nxlzg)dE[ 2];)] = Z /¢ (2]2;) dE[BY (z]2;)]+o(1).

It follows from Assumption (i) that the function v has a bounded derivative

with respect to z. Thus, it can be shown analogously as Lemma A.2.12 that
1 .
=3 [ vz talz) dBBYal)
j=1
1
— 3 [ v (el dB al) + o)
j=1

:/¢(:p,z) dQ(x,2) + o(1).

Hence, the assertion follows. O
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