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Zusammenfassung 
Das Darmmikrobiom leistet einen wesentlichen Beitrag zur menschlichen Gesundheit, 

indem es z. B. die Reifung des Immunsystems und die Darmhomöostase fördert. Dennoch 

sind die Faktoren, die seine Zusammensetzung bestimmen, nur unzureichend erforscht. 

Bedingungen außerhalb und innerhalb des Körpers können das streng kontrollierte 

Zusammenspiel von Mikrobiom und Wirt stören und eine Dysbiose hervorrufen, die mit 

verschiedenen Erkrankungen wie Adipositas, atherosklerotischen Herz-Kreislauf-

Erkrankungen und chronisch entzündlichen Darmerkrankungen (CED) assoziiert ist. Daher 

spielen das Erforschen der Einflussfaktoren, die zu mikrobiellen Veränderungen im Darm 

führen, und die Vorhersage der damit verbundenen gesundheitlichen Folgen eine zentrale 

Rolle in der Verbesserung der Prävention und Behandlung dieser Erkrankungen. 

In der vorliegenden Arbeit wurde der Einfluss von diätetischen und genetischen Faktoren 

auf die Zusammensetzung der gastrointestinalen Mikrobiota untersucht, wobei die 

Ernährung in einer Humankohorte als extrinsischer, veränderbarer mikrobiom-relevanter 

Faktor und ein genetisches Knock-out Mausmodell für gastrointestinale Entzündungen als 

intrinsischer, nicht veränderbarer mikrobiom-relevanter Faktor jeweils exemplarisch diente. 

In beiden Studien wurden mikrobielle kompositionelle Zusammensetzungen, durch 16S 

rRNA-Genamplikon-Sequenzierung taxonomisch charakterisiert und im Zusammenhang 

mit metabolischen und entzündlichen Auswirkungen auf den Wirt analysiert. 

Die Behandlung von atherosklerotischen Herz-Kreislauf-Erkrankungen zielt in erster Linie 

auf die Senkung eines Cholesterinüberschusses im Blut, der ein Hauptrisikofaktor ist, ab. 

Diese wird entweder durch eine Verringerung der Cholesterinaufnahme aus exogenen, 

diätetischen Quellen oder der Hemmung der endogenen Cholesterinbiosynthese erreicht. 

Die Umwandlung von Cholesterin in das nicht-absorbierbare Coprostanol durch die 

intestinale Mikrobiota soll ebenfalls die Cholesterinverfügbarkeit im Darm und im Serum 

verringern. Jedoch sind die Abhängigkeiten der Cholesterinumwandlung von spezifischen 

Bakterien, ihr Zusammenhang mit den Serumlipidwerten und Ernährungsgewohnheiten, die 

die Umwandlung bedingen, noch weitestgehend unbekannt. Um den Einfluss der 

Mikrobiota auf den menschlichen Cholesterinstoffwechsel unter verschiedenen 

Bedingungen zu untersuchen, wurden fäkale Mikrobiom- und Lipidprofile sowie Lipid-

Biomarker im Serum in zwei unabhängigen Humankohorten bestimmt, darunter Personen 

mit (CARBFUNC-Studie) und ohne Adipositas (KETO-Studie), die sich drei bis sechs 

Monate bzw. sechs Wochen lang einer sehr kohlenhydratarmen, fettreichen 
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Ernährungsintervention (LCHF) unterzogen. Die Analyse von  Personen mit und ohne 

Fettleibigkeit aus zwei geografisch unabhängigen Kohorten, zeigte eine einheitliche 

Verteilung der Cholesterinumwandlung in high- und low-converter Typen. In beiden 

Kohorten war die Cholesterinumwandlung am stärksten mit der relativen Häufigkeit des 

cholesterinumwandelnden Bakteriums Eubacterium coprostanoligenes assoziiert, dessen 

Vorkommen durch die LCHF-Diät in den low-convertern erhöht wurde und sie somit in einen 

high-conversion-ähnlichen Zustand versetzte. Die high-converter ohne Adipositas, die 

bereits vor der LCHF-Diät durch ungünstige Serumlipidprofile gekennzeichnet waren, 

reagierten auf die Intervention mit einem Anstieg der LDL-C Konzentration im Serum 

unabhängig von deren Verzehr von Fett, Cholesterin und gesättigten Fettsäuren. Diese 

Ergebnisse zeigen, dass der Cholesterin high-converter Typ ein potenzieller prädiktiver 

Biomarker für eine erhöhte LDL-C-Antwort auf eine LCHF-Diät bei stoffwechselgesunden, 

schlanken Personen ist. 

Obwohl die Ätiologie von CED noch nicht vollständig geklärt ist, wird davon ausgegangen, 

dass ein Zusammenspiel zwischen der Darmmikrobiota, Umweltfaktoren und der 

genetischen Anfälligkeit eines Individuums besteht, welche chronische Entzündungen 

durch eine Dysregulation der Immunantwort im Darm auslöst. Um Colitis-assoziierte 

Mikrobiota-Veränderungen während der Entwicklung von CED zu identifizieren, wurden 

Mäuse mit einem genetischen Defekt des entzündungshemmenden Zytokines Interleukin-

10 (IL-10), die aus verschiedenen Würfen stammen, zusammen mit  Wildtyp-Mäusen in 

Käfige gesetzt und 20 Wochen lang beobachtet. Die Bewertung der Mäuse anhand ihres 

Phänotyps und ihrer Stuhlkonsistenz spiegelte den Zustand der Schleimhautentzündung 

wider, welche anhand histopathologischer Untersuchungen und Zytokinexpressionsprofile 

bestätigt wurde. Globale mikrobielle Veränderungen, welche die Entwicklung der Colitis 

kennzeichneten, sowie die Anfälligkeit für Colitis, hingen zudem von der Mikrobiom-

Zusammensetzung ab, welche die Mäuse schon früh im Leben erhalten hatten. Die erhöhte 

Colitis-Anfälligkeit in Abhängigkeit vom Wurf wurde außerdem mit der Präsenz der Gattung 

Akkermansia kurz vor dem Auftreten von Symptomen in Verbindung gebracht. Die Präsenz 

dieser Gattung war zudem ein guter Prädiktor für das frühe Colitis-bedingte Ausscheiden 

der Mäuse, was darauf hindeutet, dass Akkermansia als Marker für eine früh einsetzende, 

subklinische Kolitis dienen könnte. 

Zusammenfassend unterstreichen die Charakterisierungen des Mikrobiomes durch 

diätetische Modulation einer LCHF-Diät im Menschen und während der spontanen 

Entwicklung einer Darmentzündung in einem Colitis-Mausmodell das Potenzial von 
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mikrobiombasierten Patientenklassifizierungen. Diese könnten verwendet werden, um den 

klinischen Verlauf eines einzelnen Patienten vorherzusagen und personalisierte 

Behandlungsansätze zu verbessern. 
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Abstract 
Although the gut microbiota is known to contribute fundamentally to human health, e.g. by 

promoting the maturation of the immune system and intestinal homeostasis, the factors 

shaping its composition are only poorly understood. Extrinsic and intrinsic influences can 

disturb the tightly controlled equilibrium between the microbiome and the host and induce 

dysbiosis, which has been linked to diverse health conditions such as obesity, 

atherosclerotic cardiovascular disease (ACVD) and inflammatory bowel disease (IBD). 

Therefore, understanding events leading to microbial perturbations and the prediction of 

associated health outcomes could aid in the prevention and treatment of these conditions. 

In this work, the impact of dietary and genetic factors on gastrointestinal microbiota 

compositions were determined, with the diet serving as an exemplary extrinsic, modifiable 

microbiota-relevant factor and with a genetic deficiency in a mouse model for intestinal 

inflammation serving as an exemplary intrinsic, non-modifiable microbiota-relevant factor. 

In both studies, microbial communities obtained from either a human or a murine cohort, 

respectively, were taxonomically characterized by 16S rRNA gene amplicon sequencing 

and analyzed in the context of metabolic and inflammatory implications for the host. 

In ACVD, the reduction of excess blood cholesterol, which is a main risk factor, is tackled 

by clinical interventions aiming to reduce cholesterol uptake from exogenous, dietary 

sources or by inhibiting endogenous cholesterol biosynthesis. Cholesterol-to-coprostanol 

conversion by the intestinal microbiota has also been suggested to reduce intestinal and 

serum cholesterol availability, but the dependencies of cholesterol conversion on specific 

bacterial taxa and dietary habits, as well as its association with serum lipid levels remain 

largely unknown. To study microbiota contributions to human cholesterol metabolism under 

varying conditions, fecal microbiota and lipid profiles, as well as serum lipid biomarkers, 

were determined in two independent human cohorts, including individuals with 

(CARBFUNC study) and without obesity (KETO study) on very low-carbohydrate high-fat 

diets (LCHF) for three to six months and six weeks, respectively. Across these two 

geographically independent studies, conserved distributions of cholesterol high and low-

converter types were measured. Also, cholesterol conversion was most dominantly linked 

to the relative abundance of the cholesterol-converting bacterial species Eubacterium 

coprostanoligenes, which was further increased in low-converters by LCHF diets, shifting 

them towards a high-conversion state. Lean cholesterol high-converters, which were 

characterized by adverse serum lipid profiles even before the LCHF diet, responded to the 
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intervention with increased LDL-C, independently of fat, cholesterol and saturated fatty acid 

intake. These findings identify the cholesterol high-converter type as a potential predictive 

biomarker for an increased LDL-C response to LCHF diet in metabolically healthy lean 

individuals. 

Although the etiology of IBD has not been fully resolved, an interplay between the intestinal 

microbiota, environmental factors and an individual’s genetic susceptibility is thought to 

trigger chronic inflammation by a dysregulation of the immune response in the gut. To 

identify colitis-associated microbiota alterations throughout the development of 

spontaneous colitis, mice with a genetic deficiency of the anti-inflammatory cytokine 

Interleukin-10 (IL-10) from different litters were co-housed with wild-type mice and 

monitored for 20 weeks. The scoring of mice based on their phenotype and stool 

consistency mirrored the state of mucosal inflammation as assessed based on 

histopathological examinations and cytokine expression profiles. Also, the state of colitis 

was characterized by global microbiota alterations and susceptibility to colitis was 

dependent on litter-specific microbiome compositions that mice adopted early on in their 

lives. Colitis development was further associated with the presence of the bacterial genus 

Akkermansia in mature mice shortly before symptoms manifested. This genus was also a 

good predictor of colitis-related mice withdrawal, suggesting the potential of Akkermansia 

to serve as an early onset, subclinical colitis marker.  

In summary, fecal microbiota characterizations in response to LCHF diets in humans and 

throughout the development of intestinal inflammation in a colitis mouse model highlight the 

potential of personalized microbiome-based patient classifications to predict clinical 

outcomes and improve treatment approaches.  
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I. Introduction 
A. Gut microbiome-host interactions contribute to human health 

Mammalians are thought to have evolved in the presence of microorganisms such as 

bacteria, which results in a natural population of commensals on various parts of the human 

body e.g. the skin, nose, and gastrointestinal tract. Human and bacterial cells are even 

represented in equal numbers in and on the human body with the intestine being the most 

densely colonized compartment harboring ~1013 bacteria in the colon (Sender et al., 2016), 

which adds an estimated 2 million genes to the functional capacity of the host (Gilbert et al., 

2018). Under healthy conditions, the host and the gut commensals live in a symbiotic state 

with the host providing nutrients and niches for bacteria to grow, such as endogenous 

products like bile acids, cholesterol or intestinal mucus polysaccharides (Bull et al., 2002; 

Johansson et al., 2013; Midtvedt, 1974). The commensal bacteria in return prevent 

colonization and growth of pathogens, e.g. by competing for nutrients or altering the 

intestinal milieu via pH modifications or the production of antimicrobial components 

(Schoultz & Keita, 2020). 

The gastrointestinal tract and the residential gut microbiota are both essential for 

maintaining nutrient supply and immune homeostasis to the host. The digestive tract, being 

comprised of an upper (mouth, esophagus, stomach, duodenum, jejunum and ileum) and 

lower (colon, rectum and anus) compartment, plays a pivotal role in the digestion and 

absorption of ingested nutrients (Carabotti et al., 2015). Whereas the intestinal microbiota 

further extends nutrient availability to the host, e.g. by metabolizing indigestible food 

components into exploitable metabolites to the host or by synthesizing vitamins such as 

biotin (LeBlanc et al., 2013). 

In addition, the gastrointestinal tract harbors the largest number of endocrine and immune 

cells in the human body which highlights its importance in intestinal immune regulation 

(Latorre et al., 2016; Mason et al., 2008). The intestinal barrier, separating the 

gastrointestinal lumen and the host’s systemic circulation, is designed to discriminate 

between harmful and non-harmful agents, which enables the absorption of nutrients and 

self-antigens, while protecting against the transition of harmful or infectious agents, e.g. 

antigens, toxins and pathogens (Camilleri et al., 2012; Furness et al., 1999). The epithelial 

layer, composed of enterocytes and secretory cells such as Paneth and goblet cells, is held 

together by tight junction proteins and represents a physical barrier towards the intestinal 

luminal milieu (Schoultz et al., 2020). On its basolateral site, the lamina propria harbors a 

vast population of endocrine and immune cells, e.g. neutrophils, macrophages, T-regulatory 
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and mast cells, acting as a first line defense against foreign substances and regulating 

immune responses, e.g. to dietary or microbial antigens (Keita & Söderholm, 2010). The 

apical site of the colonic epithelium is covered by a thick, dynamic and complex mucus layer 

consisting largely (~80%) of mucin-2 glycoprotein (MUC2), which is produced and secreted 

by goblet cells. Additionally, the mucus is enriched in Immunoglobulin A (IgA) and 

antimicrobial host defense peptides (AMP), which are produced and secreted respectively 

by plasma and Paneth cells (Bevins & Salzman, 2011; Gutzeit et al., 2014; Johansson & 

Hansson, 2016). With these properties, the mucus serves as a physical and chemical 

barrier against harmful luminal content but also normal microbial residents of the intestine. 

The mucus layer can further be divided into an inner tighter section, which is free of bacteria 

under healthy conditions, and a looser outer layer, which is continuously hydrolyzed by 

bacterial and host enzymes and represents a nutrient-rich niche for gut commensals 

capable of utilizing O-linked glycans, such as Akkermansia municiphila (Johansson et al., 

2013; van Passel et al., 2011). 

At birth, humans are first colonized by microbial communities, which are influenced by the 

mode of delivery (Blaser & Dominguez-Bello, 2016; Dominguez-Bello et al., 2010). The 

importance of this initial colonization for the development of the immune system has been 

demonstrated in studies with germ-free animals, born and housed under sterile conditions, 

which exhibit impaired immune maturation in the absence of commensals, e.g. reduced 

levels of IgA antibodies and helper T cells 17 (Th17). Interestingly, these impairments have 

been shown to be restored after microbial colonization (Dominguez-Bello et al., 2019; 

Gensollen et al., 2016; Hapfelmeier et al., 2010). Subsequent to the initial colonization, 

within the first two to three years of life microbial communities gradually develop towards 

an adult-like microbiome (Cho & Blaser, 2012), which is characterized by microbial 

persistence within individuals under healthy conditions (Faith et al., 2013; Podlesny et al., 

2022; Schloissnig et al., 2012; Turnbaugh et al., 2007). The use of antibiotics in this early 

developmental window is linked to an increased risk of inflammatory and metabolic 

diseases in later stages of life (Mueller et al., 2014; Torow & Hornef, 2017), highlighting the 

pivotal role of microbiome-host interactions for human health. 

B. Dysregulations of microbiome-host interactions 

Imbalances of the microbial community equilibrium which prevent the recovery to the 

resilient state, are referred to as dysbiosis. This term does not describe a defined state of 

the microbial composition, but characterizes community alterations with reduced microbial 

diversity (referred to as species richness or a-diversity), a loss of beneficial bacteria and a 
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rise of pathobionts, bacteria that exhibit harmful effects under certain circumstances 

(Belizário & Faintuch, 2018; G. A. Weiss & Thierry Hennet, 2017). These alterations of gut 

microbiota profiles have been linked to numerous health conditions ranging from metabolic 

problems, such as obesity (Turnbaugh et al., 2006b), and intestinal immune disorders, 

including inflammatory bowel disease (IBD) (Halfvarson et al., 2017), to systemic 

inflammatory problems, such as allergy (Fujimura & Lynch, 2015), and even 

neurodevelopmental disorders like autism (Kang et al., 2019), and cancer (Ohigashi et al., 

2013). 

Mechanistically, the microbiota mediates changes affecting the host either by altering 

biochemical profiles or directly when physical barriers separating host and microbe 

environments are disrupted. For example, the production of neurotransmitters such as 

gamma amino butyric acid (GABA) and serotonin, have been attributed to Bacteroides, 

Parabacteroides and Escherichia, linking relative abundance alterations to neurological 

conditions like depression and anxiety (Bear et al., 2021; Strandwitz et al., 2018). On the 

other hand, disruption of the protective gut barrier increases intestinal permeability, which 

facilitates the translocation of bacteria, toxins and other luminal agents into the underlying 

tissue or the host’s systemic circulation (Bjarnason et al., 1983; Hollander et al., 1986). This 

breach, also known as leaky gut, and consequent transition of luminal components trigger 

immune responses by recognition of microbe-associated molecular patterns (MAMPs) or 

damage-associated molecular patterns (DAMPs) via pattern-recognition receptors (PRR), 

which are presented on immune and non-immune cells in the gut (Janeway & Medzhitov, 

2003; Matzinger, 2002). Transmembrane PRRs like Toll-like receptors (TLRs) and cytosolic 

PPRs, such as Nucleotide-binding and oligomerization domain (NOD)-like receptors 

(NLRs), can stimulate innate immune responses not only against bacterial AMPs but also 

against host-derived agents or dietary antigens leading to autoimmune diseases like celiac 

disease (Khaleghi et al., 2016), IBD (Fasano & Shea-Donohue, 2005), rheumatoid arthritis 

(C. J. Edwards, 2008) or type 1 diabetes (Tlaskalová-Hogenová et al., 2011). However, to 

what extent the gastrointestinal microbiota contributes to these diseases remains unclear, 

and the factors which provoke microbial community composition alterations have not been 

fully understood yet. 

C. Factors shaping the intestinal microbiota composition 

One of the major challenges in microbiome research is the high interindividual heterogeneity 

in and between human cohorts. These interindividual microbiota variations are determined 

by intrinsic factors such as genetics (Hall et al., 2017; Imhann et al., 2018; Lim et al., 2017; 
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Ussar et al., 2015) and even more so by environmental conditions, e.g. dietary habits, 

sharing a household or drug intake (Rothschild et al., 2018; Vujkovic-Cvijin et al., 2020; 

Zhernakova et al., 2016). 

1. Exogenous determinants of intestinal microbiota composition 

As the survival and growth of the intestinal microbiota relies on the exploitation of food 

residues, gut bacteria have acquired diverse capabilities to metabolize ingested food 

components. Therefore, dietary habits have been shown to shape the intestinal community 

favoring colonization of well attuned commensals, which are able to utilize foods consumed 

in high frequency (Ang et al., 2020; Bolyen et al., 2019; Smith et al., 2019; A. W. Walker, 

Ince, et al., 2011). The microbial community even rapidly responds to changes in dietary 

habits, as shown within five days of entirely animal or plant-based product dietary 

interventions to represent shifts in microbial activity either towards protein or carbohydrate 

fermentation depending on the diet (David et al., 2014). These dietary modifications of the 

microbiota have been linked to beneficial as well as adverse effects on health, e.g. as 

described for high/low-fiber diets. Short-chain fatty acids (SCFA), metabolites obtained by 

the microbial breakdown of undigestible fiber in the human intestine, strengthen the gut 

barrier by serving as energy source for colonocytes, increasing mucus production and 

secretion, and altering pH levels, which limits pathogen growth (Koh et al., 2016). Whereas 

a high consumption of undigestible fibers is revealed to promote host health, their 

deprivation reduces SCFA concentrations in the gut and facilitates successive degradation 

of the mucus barrier, which increases the risk of pathogen invasion and bacterial 

translocation (Desai et al., 2016; Schroeder et al., 2018; Sonnenburg & Sonnenburg, 2014). 

Lifestyle determinants, such as smoking (Fluhr et al., 2021; Lee et al., 2018; Lim et al., 

2016), drug intake (Falony et al., 2016; Imhann et al., 2018; M. A. Jackson et al., 2018), 

physical activity (Estaki et al., 2016; Scheiman et al., 2019; Zhao et al., 2018) and housing 

situations have also been identified to characterize the microbiota (Vujkovic-Cvijin et al., 

2020). Interestingly, the gut microbiomes of genetically unrelated individuals are more 

similar to each other when they share the same household compared to individuals, which 

they do not cohabitate with (Rothschild et al., 2018; Yatsunenko et al., 2012). Humans even 

share microbial community similarities with their pets (Caugant et al., 1984; Song et al., 

2013) stressing the importance of exposure to similar environments, e.g. by diet, being in 

contact with the same microbial sources and surfaces, or by direct contact between 

individuals. The bacterial transmission between unrelated individuals is even more 

important to consider in animal models, e.g. murine studies, as mice are coprophagic, which 
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facilitates the exchange of intestinal microbiomes when being cohoused (Ebino et al., 1987; 

Keubler et al., 2015). 

2. Endogenous traits modulating the gut microbiota 

Compared to environmental factors, intrinsic conditions such as genetics are being thought 

to play a minor role in determining the microbial community composition (Turnbaugh et al., 

2008; Yatsunenko et al., 2012). However, they should not be neglected, as food 

preferences, aspects of immunity or gut physiology, could be genetically determined 

(Blekhman et al., 2015; Bonder et al., 2016). Also, the heritability of certain gut microbiota 

members has been suggested by multiple independent studies (Goodrich et al., 2014, 2016; 

Podlesny & Fricke, 2021; Stewart et al., 2005; van de Merwe et al., 1983; Xie et al., 2016; 

Zoetendal et al., 2001). For example, profiling the taxonomic composition of gut 

microbiomes from 416 twin pairs of the UK Twin study, found microbial communities to be 

more similar between monozygotic twins, sharing an identical genetic profile and 

environment in utero, than between dizygotic twins, which carry different genetic profiles. 

Additionally, the authors were able to model estimates of heritability, “[…] which is the 

proportion of variance in the phenotype that can be attributed to genetic differences 

between hosts [...]” (Goodrich et al., 2016) identifying the family Christensenellaceae to be 

the most heritable among dominant members of the gut microbiota (Goodrich et al., 2014). 

The fecal transplantation of microbiomes from twins of this study into germ-free mice 

revealed that the addition of the species Christensenella minuta to a microbial consortium, 

which is restricted in Christensenellaceae abundance, even altered the mice’s phenotype 

as shown by a limited increase of adiposity (Goodrich et al., 2014). When the UK twin study 

dataset was expanded to 1,019 twin pairs, highly heritable taxa were additionally associated 

with a higher compositional stability within individuals over time (Goodrich et al., 2016). 

Deep metagenomic sequencing of a subgroup from the UK twin study further validated this 

heritable microbial stability, as measured by shared microbial single nucleotide 

polymorphisms (SNPs) between twins, to slowly but gradually deviate with increased time 

spent living apart (Xie et al., 2016), which highlights the interplay between host-related 

factors and environmental conditions to determine microbial compositions. 

The mapping of quantitative trait loci (QTL), chromosomal regions that determine variations 

of phenotypic traits, in mice further revealed associations between taxon abundances and 

genetic loci to be involved in the immune response (Benson et al., 2010; Leamy et al., 

2014). For example, genetic regions encoding TGFβ-3 (Transforming Growth Factor Beta 

3), an immune-suppressive cytokine contributing to intestinal homeostasis, have been 
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found to overlap a QTL on chromosome 12, which correlates with relative abundances of 

Prevotellaceae (McKnite et al., 2012). Taken together, this emphasizes the microbiota’s 

role to determine phenotypic traits relevant for host health. 

3. Current challenges in determining microbiota-modulating 

factors 

Whereas environmental conditions can be modified relatively easy, in multiple ways and 

investigated in various model organisms, e.g. by dietary or lifestyle interventions in human 

cohorts or animal studies, the investigation of intrinsic modulations of the microbiome are 

mostly limited to animal models. Both approaches imply unique advantages and 

restrictions, depending on the research hypothesis. Although findings of human studies are 

preferred over animal models in terms of direct translatability, they have a limited range of 

application due to the exclusion of vulnerable groups such as pregnant women and children. 

Additionally, not every environmental condition can be examined due to ethical restrictions, 

e.g. if it involves the exposure to harmful effects. In particular for microbiome studies, the 

consideration of biases due to uncontrolled environmental conditions is critical. To 

overcome these disadvantages, animal especially mouse studies are often used, which 

allow for controlled environments and reduced external influences. Their validity has been 

increased by the generation of humanized mice, mice that have been engrafted with human 

material, e.g. DNA, tissue, cells or the fecal microbiome (Fujiwara, 2018). Methods to 

genetically modify mice by gene knockout (KO) introducing a loss of function are also used 

to create models mirroring human diseases, e.g. immune-deficient conditions such as IBD 

or neurodegenerative diseases (Doyle et al., 2012). 

To improve the success of treatment and prevention strategies for microbiota-associated 

diseases, it is pivotal to understand which factors and to what extent they shape microbial 

communities, and despite their limitations, human and mouse models play a central role in 

their uncovering. Therefore, in the following two main factors were examined for their 

influence on the microbiota: (1) dietary modulations in human cohorts as an environmental 

microbiota-relevant factor, and (2) genetic susceptibility to intestinal inflammation in a 

mouse model as an intrinsic, microbiota-modulation factor. 

4. Dietary modulation of the intestinal microbiota 

Low-carbohydrate high-fat (LCHF) diets in which more than 75 energy percent (E %) are 

derived from fat and less than 10 E % from carbohydrates, introduce specific metabolic 

alterations due to a lack of glucose, the primary energy source in humans. Among LCHF 
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diets, ketogenic diets represent an extreme form with very-low carbohydrate intake of less 

than 50 g per day for an adult, which enhances shifts towards a catabolic state. Deprivation 

of carbohydrates forces the body to use alternative energy production pathways such as 

gluconeogenesis and ketogenesis (Garber et al., 1974). Gluconeogenesis, the exploitation 

of glucose from endogenous glycogen stores in the liver and muscles or from lactate, 

glycerol, glucogenic amino acids, and odd chain fatty acids, is an energy-demanding 

process that facilitates energy recovery only temporarily. During long-term fasting the 

energy supply is maintained primarily by ketogenesis, the breakdown of fatty acids into the 

three ketone bodies acetone, acetoacetate, and beta-hydroxybutyrate (BHB) in the liver. 

Ketogenic pathways are constantly active resulting in low ketone levels even when glucose 

is available and are heavily increasing in times of carbohydrate deprivation (Scheinberg, 

1965; X. Zhang et al., 2019). While acetoacetate and BHB are metabolized into acetyl 

coenzyme A (acetyl-CoA), a central molecule in energy production pathways, acetone is 

excreted via the urine or exhaled (Scharrer, 1999; Sengupta et al., 2010). 

LCHF diets have been associated with variable metabolic health consequences, especially 

in the context of atherosclerotic cardiovascular disease (ACVD), the leading cause of 

mortality worldwide (Barquera et al., 2015). In ACVD, cholesterol, an amphipathic sterol 

lipid, plays a central role. Cholesterol is an essential structural component of human and 

animal cell membranes and serves as a precursor for the biosynthesis of steroid hormones, 

bile acids and vitamin D. To exhibit its beneficial properties, cholesterol needs to be 

distributed in the periphery, which is maintained by cholesterol-carrying lipoproteins such 

as low- (LDL-C) and high-density lipoprotein cholesterol (HDL-C). Both vary in composition, 

with LDL-C molecules, the major cholesterol distributor from the liver to peripheral tissue, 

containing high proportions of cholesterol (~50%), whereas HDL-C particles carry only 

~20% of cholesterol and are responsible for the reverse cholesterol transport from the 

periphery back to the liver (Scanu & Wisdom, 1972). Dyslipidemia, an imbalance of these 

lipid serum levels which is determined by low plasma concentrations of HDL-C and high 

levels of triacylglycerides (TAG) and LDL-C, as well as hypercholesterolemia, an 

abnormally increased LDL-C concentration, are both clinical risk factors for ACVD 

(Barquera et al., 2015). 

LCHF diets improve blood glucose regulation in individuals with obesity (Kirkpatrick et al., 

2019; Westman et al., 2007), but can increase serum concentrations of LDL-C in others 

(Bueno et al., 2013; Burén et al., 2021; O’Neill & Raggi, 2020). In addition, LCHF diets have 

become popular among normal-weight individuals, who may also experience increased 



Introduction 

 23 

LDL-C responses (O’Neill et al., 2020). A recent study even suggested a LCHF diet-induced 

LDL-C “lean mass hyper-responder” phenotype in a subset of metabolically healthy 

individuals (Norwitz et al., 2022). Nonetheless, LCHF ketogenic diets appear to improve 

lipid cardiovascular disease risk markers (Paoli et al., 2013), even with increased saturated 

fat intake (Feldman et al., 2022), which is known to elevate serum LDL-C concentrations 

(Luukkonen et al., 2018). Notably, interindividual variations in the LDL-C response to 

saturated fats (Griffin et al., 2021) and cholesterol-reducing medications, including statins 

(Descamps et al., 2015; Qamar et al., 2019) have also been reported. But as current studies 

are lacking extensive metabolite analyses to identify the factors accountable for the 

contradictory health outcomes of LCHF diets, individual responses remain unpredictable, 

preventing the development of guidelines for personalized dietary recommendations. 

Large amounts of cholesterol enter the small intestine every day from exogenous dietary 

sources, including mostly animal products (~0.3–0.6 g/day), and from endogenous 

biosynthesis in the liver and secretion with bile acids (~0.7–0.9 g/day) (Juste & Gérard, 

2021). Consequently, clinical treatments to prevent hypercholesterolemia aim to limit 

dietary cholesterol intake, improve the composition of dietary fats, inhibit cholesterol 

biosynthesis, and/or block intestinal uptake. Statins, pharmacological inhibitors of the 3-

hydroxy-3-methyl-glutaryl-coenzyme A (HmG-CoA)-dependent cholesterol-generating 

mevalonate pathway in the liver, represent one of the most successful, widely used and 

best-selling drug classes worldwide (Redinbo, 2020). Lowering dietary cholesterol intake 

alone typically has shown limited and inconsistent effects (Gotto, 1991). Cholesterol 

production is tightly controlled via feedback mechanisms that adapt HmG-CoA activity to 

dietary cholesterol intake and cellular requirements (Luo et al., 2019) and involve insulin, 

which can increase or decrease HmG-CoA expression in response to higher or lower-

carbohydrate diets (Kirkpatrick et al., 2019). Moreover, the clinically successful combination 

of statin treatment with ezetimibe, a small molecule inhibitor of cholesterol uptake from the 

intestine (Bays et al., 2008), demonstrates the importance of intestinal cholesterol 

availability. The human gut microbiota can metabolize statins (Zimmermann et al., 2019) 

and may contribute to adverse side effects of the medication that are observed in some 

individuals (Tuteja & Ferguson, 2019). Recently, heterogeneous on-target effects and 

adverse responses to statin therapy were associated with taxonomic gut microbiota 

compositions (Wilmanski et al., 2022). Similarly, the gut microbiota has been suggested to 

influence intestinal cholesterol availability (Kriaa et al., 2019), which could explain 

inconsistent clinical success with dietary intervention due to interindividual variations in 



Introduction 

 24 

microbiota composition (Asnicar et al., 2021; Lloyd-Price et al., 2017). Further, the intestinal 

microbiota might be leveraged to define new diagnostic and therapeutic targets for patient 

stratification and optimization of pharmacological and non-pharmacological cholesterol 

reduction treatments. 

In the intestine, cholesterol is microbially reduced to coprostanol, which is non-absorbable, 

stable under anoxic conditions, excreted in feces (Bull et al., 2002), undetectable in human 

newborns (Midtvedt AC, 1993) and germ-free rats (Kellogg & Wostmann, 1969), and 

reduced in antibiotically treated animals and humans (Midtvedt et al., 1990; Wainfan et al., 

1952). The rate of cholesterol-to-coprostanol conversion varies between individuals, but 

shows a stable bimodal distribution in different human populations of cholesterol high and 

low-converters as classified based on the ratio of fecal coprostanol/cholesterol 

concentrations (Salyers et al., 1977; Veiga et al., 2005; Wilkins & Hackman, 1974). 

Cholesterol reduction has been attributed to a broad and diverse range of microbial taxa 

(Juste et al., 2021), based on in vitro experiments with bacterial isolates and metagenomic 

sequence analyses (Kenny et al., 2020). The influence of microbial cholesterol conversion 

on circulating cholesterol levels has been inconsistently described. An inverse relationship 

between serum concentrations of cholesterol and the fecal coprostanol/cholesterol ratio 

was reported in hospitalized patients (Sekimoto et al., 1983). Moreover, serum cholesterol 

levels were reduced in humans with a predicted lower capacity for microbial cholesterol 

reduction, based on fecal metagenomic sequence analysis (Kenny et al., 2020). Similarly, 

feeding rabbits with the cholesterol-reducing bacterium Eubacterium coprostanoligenes had 

a hypocholesterolemic effect (L. Li et al., 1995). However, the same bacterium did not affect 

plasma cholesterol levels in laying hens (L. Li et al., 1996) or germ-free mice (L. Li et al., 

1998), despite evidence for at least transient intestinal colonization and cholesterol-to-

coprostanol conversion. Thus, the specific details on the microbial origins of cholesterol 

conversion in humans, the stability and modifiability of the cholesterol converter status and 

its association with circulating cholesterol levels and other serum lipid markers involved in 

ACVD remain mostly uncharacterized. 

5. Genetic modulation of the intestinal microbiota 

Inflammatory bowel disease (IBD), a chronic inflammation of the gastrointestinal tract, 

which comprises the two forms ulcerative colitis (UC) and Crohn’s disease (CD), is a 

prevalent gastrointestinal condition linked to microbial dysbiosis in the gut (Xavier & 

Podolsky, 2007). Whereas mucosal inflammation of UC is limited to the colon, transmural 

inflammation of CD can emerge along the entire digestive tract (Baumgart & Sandborn, 
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2007). Both forms manifest primarily with diarrhea, abdominal pain and rectal bleeding but 

can also cause extraintestinal symptoms affecting the skin, joints or bones (Larsen et al., 

2010). Even though the etiology of IBD has not been fully resolved, an interplay between 

the intestinal microbiota, environmental factors and an individual’s genetic susceptibility is 

thought to trigger the dysregulation of the gastrointestinal immune response (Bach, 2002; 

Keubler et al., 2015; Xavier et al., 2007). Although, a large meta-analysis of genome-wide 

association studies (GWAS) identified 163 genetic loci to be involved in IBD susceptibility, 

they only explained little variation in disease risk. This rather points towards interactions 

between the mucosal immune system and the commensal microbiota to additionally 

contribute to IBD pathogenesis (Jostins et al., 2012). Particularly, the imbalance between 

protective and potentially harmful microbes is discussed to trigger gut inflammation (Sartor, 

2001, 2008). Unfortunately descriptions of IBD-associated microbial communities are 

inconsistent between human studies, which limits treatment approaches to target the 

immune system only, e.g. by immunosuppressants (Frank et al., 2007; Gophna et al., 2006; 

Hansen et al., 2012; Kellermayer et al., 2012). 

To study microbiota alterations in the context of severe intestinal inflammation, the 

interleukin-10 knockout (IL-10-/-) mouse model is widely used as it mimics histological and 

inflammatory aspects of human IBD (Keubler et al., 2015; Maharshak et al., 2013). IL-10 is 

broadly expressed by various cells of the adaptive immune system, such as T helper 1 

(TH1), TH17 and regulatory T cells (Treg), as well as the innate immune response, e.g. 

dendritic (DC) or natural killer cells (NC). It is released from these cells upon activation for 

example by bacterial membrane molecules like lipopolysaccharides (LPS) and lipoproteins 

(Verma et al., 2016). The expression of IL-10 is tightly regulated by positive and negative 

feedback loops of IL-10 itself and the pro-inflammatory cytokine interferon gamma (IFN-γ). 

As a key regulator of gut homeostasis its main function is to control and dampen 

inflammatory responses and limit host damage (Saraiva & O’Garra, 2010). Deficiency of IL-

10 in mice leads to the development of a mainly TH1/TH17-mediated spontaneous colitis 

after weaning due to a lack of its anti-inflammatory and immunosuppressive properties, 

which are mediated via the IL-10 receptor. Upon receptor binding, Janus kinase/signal 

transducer and activator of transcription (JAK/STAT) and phosphatidylinositol 3-

kinase/protein kinase B (PI3K/Akt) cascades are activated, which lead to inhibition of pro-

inflammatory cytokine production in macrophages, e.g. tumor necrosis factor α (TNFα), 

interleukin 12 (IL-12), and IFN-γ released by the same IL-10 producing cells (Feng et al., 

2011; Riley et al., 1999). 
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Nevertheless, IL-10 seems to exhibit its protective properties in dependence of intestinal 

colonization. Several commensal bacteria, such as Bacteroides fragilis and Clostridium 

species have been shown to induce IL-10 production and differentiation of progenitor into 

IL-10 producing cells, stimulating immune tolerance towards the intestinal microbiome 

(Atarashi et al., 2011; Round & Mazmanian, 2010). Furthermore, IL-10-/- germ-free mice 

have been shown to not develop colitis unless they were colonized with a specific-pathogen 

free (SPF) microbiota (Sellon et al., 1998) and antibiotic treatment of neonatal IL-10-/- pups 

prevented intestinal inflammation up to twelve weeks of age (Madsen et al., 2000), which 

stresses the importance of microbial colonization for the development and maintenance of 

intestinal homeostasis. However, whether microbiota changes play a causative role in IBD, 

e.g. by infections with specific pathogens or alterations favoring intestinal inflammation, or 

if the microbial community composition changes subsequent to IBD onset remains unclear 

today. 

D. Scope and aim of work 

The overall aim of this thesis is to determine the impact of dietary and genetic factors on 

gastrointestinal microbiota compositions, as well as their metabolic and inflammatory 

consequences. To accomplish this, microbial communities obtained from (1) a human 

dietary intervention study, with the diet serving as an exemplary extrinsic, modifiable 

microbiota-relevant factor and (2) a genetic mouse model for intestinal inflammation, with 

the genetic deficiency serving as an exemplary intrinsic, non-modifiable microbiota-relevant 

factor, are taxonomically characterized by 16S rRNA gene amplicon sequencing and 

analyzed in the context of their metabolic and inflammatory implications for the host. 

Low-carbohydrate high-fat diet as an extrinsic, modifiable microbiota-relevant factor, which 

alters microbial sterol conversion in humans 

In the first part the relationship between intestinal cholesterol-to-coprostanol conversion and 

the gut microbiota is examined, as well as its link to serum lipid profiles, in the context of 

LCHF diet intervention. Metabolic profiling of fecal and serum metabolites involved in lipid 

and cholesterol metabolism and taxonomic profiling of the fecal microbiota of two 

geographically separate human cohorts reveal conserved and distinct distributions of 

cholesterol high and low-converter types among people with and without obesity, which are 

mainly attributed to the relative abundance of the bacterial species Eubacterium 

coprostanoligenes. Microbial sterol conversion, as well as the abundance of E. 

coprostanoligenes are both induced by LCHF dietary intervention in low-converters 

independent of the metabolic background. A subset of lean cholesterol high-converters, 
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which was characterized by adverse serum lipid profiles even before the LCHF diet, 

responded to the intervention with increased LDL-C concentrations, identifying the 

cholesterol high-converter type as a potential predictive biomarker for an increased LDL-C 

response and increased ACVD risk to LCHF in metabolically healthy lean individuals.  

Genetic interleukin-10 deficiency as an intrinsic, non-modifiable microbiota-relevant factor, 

which promotes intestinal inflammation in a murine IBD model 

To identify colitis-associated microbial markers, which characterize the fecal microbiota 

before and during colitis onset and in remission, female four-week-old IL-10 knockout mice, 

alone or co-cohoused with matched wild type animals, were longitudinally investigated over 

a course of 20 weeks. Qualitative, taxonomic and quantitative microbiota profiles, as 

determined by sequencing and real-time polymerase chain reaction quantification of the 

16S rRNA gene amplicon, as well as alterations of histopathological scores and 

inflammatory markers, reveal colitis susceptibility and microbiota compositions to be 

dependent on the mouse litter. Microbiomes of mice developing spontaneous colitis are 

further characterized by the presence of the genus Akkermansia even shortly before 

intestinal inflammation manifests with symptoms, suggesting that Akkermansia is a 

potential subclinical early colitis marker, which could help to predict colitis onset and 

improve the management of IBD therapy. 

In summary, the analyses from this thesis focus on microbial community characterizations 

based on their metabolic and inflammatory consequences, which could be used for 

microbiome-dependent phenotyping and stratification of individuals to improve predicted 

health outcomes and personalized treatment approaches. 
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II. Methods 
A. Study designs 

1. Clinical trials for dietary interventions 

For the determination of external influences on the gut microbiota, e.g. dietary modulation, 

two clinical trials were collectively analyzed.  

The ketogenic diet (KETO) study is a single-arm before-and-after dietary intervention 

consisting of an isocaloric, ad libitum, ketosis-inducing diet with a total daily energy intake 

of at least 75 % fats, 12-20 % proteins and 5-10 % carbohydrates for 6 weeks, more 

specifically 42 days (Figure 1, page 30). Setting the focus on physical performance as 

primary outcome by Urbain et al. (Urbain et al., 2017), 28 healthy, lean adults (20 females, 

8 males) were included with a body mass index (BMI) between 19-30 kg/m2. Participants 

received counselling by a dietitian before intervention and were given a list of foods with 

very low carbohydrate content, which they should incorporate into their ketogenic diet 

according to personal preferences. Dietary compliance was assured by 7-day food 

questionnaires, which were collected before and during the last week of intervention, and 

daily self-tested measurements of urinary ketone bodies (Ketostix, Bayer Vital GmbH, 

Leverkusen, Germany). If necessary according to daily ketogenesis measurements, 

participants received dietary counselling by the dietitian via phone or in person to ensure 

continuous ketosis. Subjects were also advised to weigh all food items separately with a 

portable scale (KS 22, Beuer GmbH, Ulm, Germany) or if not possible, estimate amounts 

or to take photographs. Energy, macro- and micronutrient intakes were estimated based on 

the semi-quantitative 7-day dietary records with the Prodi 6.4 basis nutritional database 

software (Nutri-Science GmbH, Germany). The study was conducted at the University 

Medical Center Freiburg, Germany, approved by the Ethics Commission of the Albert-

Ludwig University of Freiburg (494/14) and registered at the German Clinical Trials 

(DRKS00009605).  

The CARBFUNC study is a 2-year randomized controlled trial involving 145 subjects (72 

females, 73 males) with obesity (BMI > 30 kg/m2 and/or waist circumference >102 cm for 

men and >88 cm for women, Figure 1, page 30). The study participants were assigned to 

three dietary interventions: a high-fat/low-carbohydrate diet (LCHF) including ³ 75 energy 

percent (E %) from fat (with 30 E % from saturated fats) and £ 10 E % from carbohydrates, 

and two low-fat/high-carbohydrate diets differing in carbohydrate quality, containing 45 E % 

from carbohydrates and 38 E% from fat respectively 
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(https://clinicaltrials.gov/ct2/show/NCT03401970) (Horn et al., 2022). Herein, focus is set 

on the high-fat/low-carbohydrate diet, as comparison to the KETO study. All diets were 

designed with a normocaloric total energy amount of 2,000 kcal/day for women and 2,500 

kcal/day for men and 17 % of total energy intake being derived from protein. CARBFUNC 

study participants were instructed to follow nutritional recommendations, to consume at 

least 500 grams of fruits and vegetables per day and generally rely on high-quality food 

sources. The subjects were considered healthy, as exclusion criteria were serious and/or 

cardiovascular disease, surgical or antibiotic treatment  during the last two months before 

the study, chronic inflammatory bowel disease, cholecystectomy, hypo-/hyperthyroidism, 

menopause, pregnancy or breast feeding, food allergies or intolerances that prevent dietary 

adherence, medication affecting metabolism, use of statins and/or diabetes medication, 

smoking and alcohol consumption of more than two units per day during the study. The 

study was conducted at the University of Bergen, in collaboration with the Haukeland 

University Hospital in Bergen, Norway. The study was approved by the Regional Committee 

for Medical and Health Research Ethics (REC West Norway (2017/621/REK vest) and 

registered at ClinicalTrials.gov (NCT03401970).  

All experiments adhered to the regulations of the KETO and CARBFUNC study review 

boards. All study procedures were performed in compliance with all relevant ethical 

regulations and each participant signed informed consent prior to participation. 
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Figure 1. Observation periods of KETO and CARBFUNC subjects.  
Lean KETO study participants followed an ad libitum ketosis-inducing high-fat (>75 E %) diet, 
whereas CARBFUNC study participants with obesity were randomly assigned to iso- and 
normocaloric high-fat (>=75 E %) or a low-fat (38 E %) diets. Fecal and serum samples were 
collected before intervention and after 6 weeks (KETO study) and three and six months (CARBFUNC 
study) and used for microbiota analysis and lipid profiling. 

2. Murine model for genetic modulation 

To study genetic impacts on the gut microbial community in the context of inflammation 

especially inflammatory bowel disease (IBD) progression, a murine Interleukin-10 (IL-10) 

knockout (-/-) model was used. 18 female, 4-week-old specific-pathogen-free (SPF) BALB/c 

IL-10 deficient mice, from three distinct litters were co-housed with 4 female SPF swiss wild-

type (WT) mice of the same age. The mice were allocated to six cages, with four cages co-

housing WT and knockout mice and two cages with only the IL-10 deficient animals (Table 

1, page 31). Within the first week after cage allocation, fecal samples were collected four 

times and considered as “baseline” samples to track litter and allocation effects, as well as 

normal short-term temporary changes within the microbial community. Mice were fed a 

standard chow diet (C 1000, Altromin, Lage, Germany) and no treatment besides regular 

fecal sampling and animal handling was performed. After the first week, fecal samples of 

each mouse were collected weekly and the health status, as defined by ethical requirements 

of the German Tierschutz-Versuchstierverordnung, daily until signs of potential colitis were 

noticed. These included behavior, appearance, weight, stool consistency and absolute 

termination criteria like rectal prolapse, bleeding from mouth or anus, paralysis, convulsions 

and persistent diarrhea. These parameters were scored (Table S1) and mice euthanized 

by gas if a score of three in one parameter or the sum of all scores greater than six was 

reached. 

KETO

CARBFUNC

0 1 2 months stool + blood 
samples

0 1 32 4 5 6 months

Figure S7. Study dietary intervention protocols of KETO and CARBFUNC subjects
Lean KETO study participants followed a 6-week ad libitum ketosis-inducing high-fat (>75 E%) diet, 
whereas obese CARBFUNC study participants were randomly assigned to iso- and normocaloric
(males: 2,500 kcal, females: 2,000 kcal) high-fat (>=75 E%) or a low-fat (38 E%) diets. Low-fat diets 
were further divided depending on carbohydrate quality, i.e. including predominantly acellular, more 
processed, or predominantly cellular, or less processed, carbohydrate sources. Fecal and serum 
samples were collected after 6 weeks (KETO study) and 3 and 6 months (CARBFUNC study) and 
used for microbiota analysis and lipid profiling.

n = 28

n = 145
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Genotype Sampling and condition colouring

Swiss Wild Type Regular sampling during 1st week (baseline) Co-housing samples of symptomatic mice Samples collected but not selected for analysis subset

Balb/c IL-10 -/- Regular sampling Symptomatic mice (weight or consistency score >2) Samples not available/collected

Euthanized mice

Weeks of 
observation 0 1 4 7 10 11 12 13 14 15 16 17 18 19 20

Days of 
observation 0 4 6 7 25 48 67 74 75 76 80 83 87 90 95 98 99 100 101 104 108 111 112 113 115 116 117 118 119 120 122 123 124 125 126 127 129 130 131 132 133 134 136 137

Weeks of age 4 4.5 5 5 7.5 11 13.5 14.5 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21 21.5 22 22.5 23 23.5
Mouse 

No.
Litter 
No.

Cage 
No. Baseline

Healthy 
phase Symptomatic phase

56 1

1

X X X X X X X X X X X X X X X X X X X X X X X X X X X X
81 2 X X X X X X X X X X X X
87 2 X X X X X X X X X X X X X X X X X X X X X X X X X X X X

103 4 X X X X X X X X X X X X X X X X X X X
57 1

2

X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
82 2 X X X X X X X X X
98 4 X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

104 4 X X X X X X X X X X X X X X X X X X X X X
58 1

3

X X X X X X X X X X X X X X X X X X X X X X X
83 2 X X X X X X X X X X X X X X X X X X X X X X X
90 3 X X X X X X X X X X X X X X X X X X X X X X X
99 4 X X X X X X X X X X X X X X X X X X X X X X X
59 1

4

X X X X X X X X X X X X X X X X X X X X X X X X X
84 2 X X X X X X X X X X X X X X
91 3 X X X X X X X X X X X X X X X X X X X X X X X X X

100 4 X X X X X X X X X X X X X X X X X X X X
85 2

5
X X X X X X X X X X X X X X X X X X X X X X X X X

92 3 X X X X X X X X X X X X X X X X X X X X X X X X X
101 4 X X X X X X X X X X X X X X X X X
86 2

6
X X X X X X X X X X X X X X X X X X X

93 3 X X X X X X X X X X X X X X X X X X X X X X X
102 4 X X X X X X X X X X X X X X X X X X X X X X X

Table 1. Allocation and sampling overview of the in vivo murine experiment. 
18 IL-10 deficient and 4 swiss wild-type mice were cohoused and sample subsets chosen for quantitative (X, n=542) and qualitative (X, n=120) 

microbiome analysis based on the symptomatic phenotype (according to stool consistency, weight progression and health scores), as shown for 

days and weeks of observation. The first mouse with colitis-related symptoms was observed after 10 weeks, initiating the symptomatic phase 

with more frequent sampling until final termination of the experiment after 20 weeks. 
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To track the progression of colitis development and potentially spot the onset of 

inflammation, as soon as changes in stool consistency or other phenotypic symptoms were 

noticed, fecal samples were collected on two to three consecutive days for all cage mates 

of the conspicuous mouse. Stool consistency was defined according to a modified and 

simplified Bristol stool scale (Table 2, page 33) and samples grouped as “healthy”, 

“symptomatic” and “post colitis” accordingly. Post colitis was characterized as healthy fecal 

samples derived from a previously symptomatic mouse. The first signs of colitis were 

observed after ~10 weeks, thereafter regular sampling took place twice a week unless no 

phenotypic symptoms were observed (Table 1, page 31). In addition to the three visual 

sample categories, a fourth group was defined as “preC”, with referring to all healthy fecal 

samples of a mouse which were collected within four days prior to the first symptomatic 

observations. With this category, potential changes in the gut microbiome community that 

might be related to colitis symptoms and development should be captured. For analyses, a 

subset of samples representing disease progression was chosen resulting in 542 samples 

(Table 1, page 31). 

The in vivo murine trial was carried out in cooperation with the group Molecular Allergology 

of the Department of Nutritional Medicine and Prevention of the University of Hohenheim, 

Germany. All animal related tasks, such as breeding, housing, monitoring and euthanizing 

were performed at the University of Hohenheim’s Central Facility for Biological and Medical 

Research with Animal Husbandry. 
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Table 2. Modified Bristol Stool Scale for stool consistency classification of murine 
fecal samples. 
Stool consistency scores were grouped by condition as “healthy”, “pre/post symptoms” or 
“symptomatic”. Example graphs modified based on Adobe Stock #434183203 (standard license) 

Score Example Description Condition 

1  
Smooth, normal consistency, soft 

enough to be divided by plastic spatula 

Healthy/pre and 

post symptoms 

2  Soft blobs with clear-cut edges Symptomatic 

3  
Fluffy pieces with ragged edges, a 

mushy stool 
Symptomatic 

4  Watery, no solid pieces, entirely liquid Symptomatic 

B. Sample collection 

For the KETO study, fecal samples were self-collected by the participants in RNAlater 

(Thermo Fisher Scientific, Waltham, USA) on two days before (PRE: days -2 and 0) and at 

the end of the dietary intervention (POST: days 40 and 42), stored in a fridge until drop-off 

and frozen at -80°C at the study facility. Venous blood was drawn at visits on days 0 and 

42 after overnight fasting and immediately sent to the Institute for Clinical Chemistry and 

Laboratory Medicine of the University Medical Center Freiburg, Germany for analyses. 

(Urbain et al., 2017) 

For the CARBFUNC study, fecal samples were self-collected before and at three and six 

months of the dietary intervention, stored in the freezer and dropped off at the study facility 

for further storage at -80°C. Blood samples were drawn at the same study visits after 

overnight fasting. 

Fecal samples of both clinical trials were shipped on dry ice to the Microbiome and Applied 

Bioinformatics facility at the University of Hohenheim, Germany and stored at -80°C until 

processing. 

For the in vivo mice study, mice were either placed alone in a separate cage until defecation 

or held in the gloved hand and the belly rubbed until defecation. Each sample was stored 

in a sterile tube respectively. At trial termination (~20 Weeks after the beginning) all 

remaining mice were euthanized and gastrointestinal tissue samples derived. Ileum, the 

proximal and distal colon were separated and flushed with sterile phosphate-buffered saline 

(PBS) to collect fecal content. Fecal samples throughout the observation, as well as at the 
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termination days, were collected, stored on ice and immediately brought to the Microbiome 

and Applied Bioinformatics facility at the University of Hohenheim, Germany, where they 

were frozen at -80°C until further processing. Tissue samples were shock frozen in liquid 

nitrogen and brought to the group Molecular Allergology of the Department of Nutritional 

Medicine and Prevention of the University of Hohenheim, Germany, for histopathological 

examinations and determination of relative cytokine gene expression levels. 

C. Metabolite analyses of human blood and fecal samples 

Serum concentrations of total cholesterol, triacylglycerides (TAG), low-density lipoprotein 

cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were determined at 

the Institute for Clinical Chemistry and Laboratory Medicine of the University Medical Center 

Freiburg, Germany (KETO study) and at the Department of Medical Biochemistry and 

Pharmacology, Haukeland University Hospital, Bergen, Norway (CARBFUNC) according to 

standardized procedures. To track ketosis in CARBFUNC study participants, β-

Hydroxybutyric acid (βHB) was measured in fasting plasma samples by gas-

chromatography tandem mass spectrometry (GC-MS) (Horn et al., 2022). Fecal fatty acid, 

short-chain fatty acid (KETO study only) and fecal sterol/stanol concentrations (KETO and 

CARBFUNC study) were determined at the Department of Clinical Chemistry and 

Laboratory Medicine of the University Hospital Regensburg, Germany. Fecal samples were 

prepared as previously described by Schött el al. (Schött et al., 2018). In brief, up to 2 g of 

raw feces were homogenized with 2 x 2.5 mL 70%-isopropanol, using a gentleMACS™ 

Dissociator (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) and the dry weight (DW) 

determined for a 1 mL aliquot by overnight drying. Fecal homogenates were diluted to 2.0 

mg DW/mL and stored at −80 °C. Short-chain fatty acids were determined by Liquid 

chromatography-mass spectrometry (LC-MS/MS) upon derivatization to 3-

nitrophenylhydrazones (3NPH) (Liebisch et al., 2019) and other fecal fatty acids by GC-MS 

(Ecker et al., 2012). Fecal sterols and stanols were measured by LC-high resolution MS 

(LC-MS/HRMS) (Schött et al., 2018) for the KETO cohort and by triple quadrupole Gas 

Chromatography (GC)-MS/MS (Kunz & Matysik, 2019) for the CARBFUNC cohort. Both 

methods were validated and run with the same calibration solution resulting in comparable 

outcomes. For the CARBFUNC cohort, 17 samples did not meet the required concentration 

of 2.0 mg DW/mL, so they were excluded from the following analyses. 
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D. Histopathological examination and cytokine expression of murine 
colonic tissue 

Histopathological examination and determination of cytokine expression was performed by 

the group of Molecular Allergology of the Department of Nutritional Medicine and Prevention 

of the University of Hohenheim, Germany. Gastrointestinal biopsies were taken of all mice 

after euthanizing and immediately shock-frozen in liquid nitrogen for RNA isolation or fixed 

in formaldehyde for embedding.  

Intestinal inflammation was determined by Real-Time reverse transcription polymerase 

chain reaction (RT-PCR) as described by Bilotta et al. (Bilotta et al., 2021), to determine the 

expression of chemokine C ligand (CCL) 2 and CCL3, tumor necrosis factor (TNF), growth-

regulated protein beta (Gro-beta, CXCL2), and transforming growth factor beta (TGFβ). The 

total RNA of proximal and distal colon biopsies was extracted and prepared with peqGOLD 

TriFast™ (VWR International GmbH, Erlangen, Germany) according to Hagenlocher et al. 

(Hagenlocher et al., 2016). The Real-Time RT reactions contained 1µL of template cDNA, 

0.125µL each of sense and anti-sense primer (20 pmol stock solution, Table 3, page 36), 

4µL H2O, and 5µL SsoFastTM EVAGreen Supermix (Bio-Rad Laboratories, Feldkirchen, 

Germany). Cytokine expression was measured using the CFX Connect Real-Time PCR 

System (CFX 2.1 software, Bio-Rad Laboratories, Feldkirchen, Germany) and expression 

profiles determined relative (2−∆∆Ct) to the housekeeping gene glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). 
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Table 3. Primer sequences and length used for relative cytokine expression.  
Primer sequences are displayed in 5’ to 3’ direction. 

Primer Sense Anti-sense Length [bp] 

CCL2 CTT CTG TGC CTG CTG 

CTC AT 

CGG AGT TTG GGT TTG 

CTT GTC 
273 

CCL3 CTC TGC ATC ACT TGC 

TGC TGA CAC 

CAC TCA GCT CCA GGT 

CGC TGA C 
212 

TNF CAG ATA GAT GGG CTC 

ATA CCA GGG 

GCC CTC TGG CCC AGG 

CAG TCA G 
377 

Gro-beta AGT GAA CTG CGC TGT 

CAA TG 

CTT CAG GGT CAA GGC 

AAA CT 
154 

TGFβ GAG CTC TTC CAG ATA 

CTT CG 

GTT GGA CTC TCT CCT 

CAA CA 
150 

GAPDH 

TGG TCT CCT CTG ACT 

TCA AC 

CCT GTT GCT GTA GCC 

AAA TT 
128 

For the histopathological examination, proximal and distal colonic tissues were fixed in 4% 

PBS-buffered formalin solution, embedded in paraffin and 5 µm sections each stained with 

hematoxylin&eosin according to Hagenlocher et al. (Hagenlocher et al., 2016) to determine 

tissue damage and the degree of cellular infiltration, with both scores increasing to elevated 

tissue alterations (Table 4, page 37). For each sample multiple cuts (proximal: 3 - 17, distal: 

4 - 23) were prepared and examined at 100x or 200x magnification, resulting in an average 

score across all sections per biopsy. 
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Table 4. Scoring of histopathological examination for tissue damage and cell 
infiltration of colonic tissue samples. 

Score Tissue damage Cell infiltration 

0 undamaged mucosa 
low number of inflammatory cells in 

the lamina propria 

1 single lymphoepithelial damages 
increased number of inflammatory 

cells in the lamina propria 

2 surface damages of mucosa 
accumulation of inflammatory cells 

and infiltration in submucosa 

3 

extensive mucosal damage and 

damage of deeper structures of the 

intestinal wall 

transmural dispersion of infiltration of 

inflammatory cells 

E. Metagenomic DNA extraction from fecal samples 

Fecal samples of the KETO study were processed using a previously described 

combination of enzymatic digestion and mechanical disruption by bead beating (Von 

Rosenvinge et al., 2013). Briefly, 300 µL of the fecal slurry were centrifuged and the pellet 

dissolved in 800 µL enzyme mix A (5 µL of Lysozyme 10 mg/mL, 13 µL Mutanolysin 11.7 

U/µL, 3.2 µL Lysostaphin 1 mg/mL, 778.8 µL 1x PBS) and transferred to a MP lysing matrix 

B tube (0.1 mm silica spheres, MP Biomedicals, Santa Ana, USA). The enzymatic digestion 

was initiated by incubation at 37°C for 30 minutes. A second enzymatic step was performed 

by adding 62 µL of enzyme mix B (10 µL Proteinkinase K 20 mg/mL, 50 µL SDS 10%, 2 µL 

RNase A 10 mg/mL) and incubation at 55°C for 45 minutes. Mechanical lysis was performed 

by bead beating at 6m s -f for 40 seconds (FastPrep-24, MP Biomedicals, Santa Ana, USA).  

For the CARBFUNC study, 100-150 mg of the fecal samples were mechanically lysed for 

40 seconds at 6m/s in MP lysing matrix B tube (0.1 mm silica spheres, MP Biomedicals, 

Santa Ana, USA, and FastPrep-24 5G, MP Biomedicals, Eschwege, Germany) containing 

700 µL lysis buffer (Zymo Research, Irvine, USA). Metagenomic DNA was isolated from 

lysates using the ZR Fecal DNA Miniprep Kit (Zymo Research, Irvine, USA) according to 

the manufacturer’s recommendation. The DNA was eluted in 100 µL RNase-free water and 

stored at -20°C. 

For fecal murine samples, the same protocol for mechanical DNA isolation as for the 

CARBFUNC samples was used with slight modifications. The weight of fecal samples was 

determined via precision scale (ABJ120-4NM, Kern, Balingen, Germany) and the entire 
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fecal material per sample used for extraction. The fecal pellets were added to MP lysing 

matrix B tubes (0.1 mm silica spheres, MP Biomedicals, Santa Ana, USA) containing 700 

µL lysis buffer (Zymo Research, Irvine, USA) and mechanically lysed 6 times for 45 seconds 

at 6m/s, with a 3-minute incubation on ice each (FastPrep-24 5G, MP Biomedicals, 

Eschwege, Germany). Thereafter, the ZR Fecal DNA Miniprep Kit (Zymo Research, Irvine, 

USA) according to the manufacturer’s recommendation was used to extract the 

metagenomic DNA, which was eluted twice in 50 µL DNA Elution Buffer (Zymo Research, 

Irvine, USA) and stored at -20°C. 

F. 16S rRNA gene amplification and sequencing 

For the KETO cohort, the hypervariable V4 region of the 16S rRNA gene was amplified via 

polymerase chain reaction (PCR) using Golay-barcoded primers 515F and 806R (Caporaso 

et al., 2011), which were modified by adding 0-7 bp-long internal spacers as previously 

described (Fadrosh et al., 2014). For lists of primers, barcodes and spacer sequences used 

see Table S2. The PCR reaction was comprised of 10 µl 2x Phusion Master Mix (Thermo 

Fisher Scientific, Waltham, USA), 2.5 µL of each primer (final concentration 0.4 µM), 0.6 µL 

dimethyl sulfoxide (DMSO), and 4.4 µL template DNA and was carried out at 98°C for 2 

min, with 30 cycles at 98°C for 10 s, 52°C for 15 s, and 72°C for 10 s and final extension at 

72°C for 5 min. Equimolar amounts of all PCR products were extracted with the SequalPrep 

normalization plate kit 96 (Thermo Fisher Scientific, Waltham, USA), pooled and 

concentrated with the DNA Clean and Concentrator 5 kit (Zymo Research, Irvine, USA). 

Sequencing libraries were prepared using the TruSeq Nano DNA LT Library Prep kit 

(Illumina, San Diego, USA) according to the manufacturer's recommendations. 

For the CARBFUNC cohort, as well as for the IL-10-/- mice study, 16S rRNA gene fragment 

amplification and barcoding were performed with the Quick 16S NGS Library Prep Kit (Zymo 

Research, Irvine, USA). Samples were diluted to an average DNA concentration of 20 ng/µL 

for amplification of the V3-V4 region of the 16S rRNA gene. After barcode addition samples 

were normalized to 30 ng per sample and pooled. As for both studies, samples numbers 

exceeded the maximum barcode limit, samples were sequenced on two consecutive 

sequencing runs, and therefore technical replicates and internal microbial standard 

communities were added. The final sequencing libraries were prepared according to the 

MiSeq System Denature and Dilute Libraries Guide (Illumina, San Diego, USA). 
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All libraries of the three studies were sequenced on the Illumina MiSeq instrument (MiSeq 

Reagent Kit v3, 600 cycles, Illumina, San Diego, USA) at the University of Hohenheim, 

Stuttgart, Germany. 

G. Sequence processing 

For the KETO study, raw sequence reads were trimmed with cutadapt v1.10 (Kechin et al., 

2017) and barcodes extracted, paired-end reads merged and demultiplexed with QIIME 

v1.9.1 (Caporaso et al., 2010). Subsequent preprocessing steps were performed with 

QIIME2 v2019.7 (Bolyen et al., 2019), including open-reference operational taxonomic unit 

(OTU) picking based on 97% sequence similarity and classification of representative 

sequences with the q2-feature-classifier (Bokulich et al., 2018) against the SILVA database 

v132 (Quast et al., 2013). After chimera checking, 59% of sequences were retained. 

Singletons and sequencing artifacts were filtered if they contained less than 0.005% of total 

counts. 

For the CARBFUNC study, raw sequences were processed with QIIME2 v2019.7 (Bolyen 

et al., 2019), including the DADA2 plugin (Callahan et al., 2016) for denoising, adapter 

trimming and chimera checking. A total of 93.8% (1st run) and 93.7% (2nd run) of all reads 

were retained after chimera checking, which were combined for subsequent analyses. 

Features of both runs were clustered based on 99% similarity with open-reference picking 

and representative sequences classified with the q2-feature-classifier (Bokulich et al., 2018) 

and mapped against the SILVA database v132 (Quast et al., 2013). Sequencing artifacts 

and singletons were filtered if they contained less than 0.0005% of total counts.  

For the combined analysis of sequence data from both cohorts, all samples were rarefied 

to 1,650 sequences. Summaries of the resulting sequence data provided in Table S3. For 

the human cohorts additionally, taxonomic classifications, as well as a detailed list of all 

QIIME options, UNIX and R scripts used for sequence processing and data analysis is listed 

in Table S4. 

As the IL-10-/- mice samples, were prepared similarly to the CARBFUNC cohort, 

preprocessing of raw sequence reads was also executed with QIIME2 v2019.7 (Bolyen et 

al., 2019) and the DADA2 plugin (Callahan et al., 2016), resulting in 77.09% reads being 

retained for the 1st and 74.36% for the 2nd library. After quality trimming of each sequencing 

run separately, both data sets were merged and processed simultaneously. Amplicon 

sequence variants (ASVs) were mapped against the SILVA database v132 (Quast et al., 

2013) and sequencing artifacts filtered with less than 50 sequence counts (~ 0.0003% of 
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total counts). For diversity analyses, the sequence depth was rarefied to 10,000 sequences 

per sample. 

H. Quantitative 16S rRNA gene expression analysis 

For the in vivo study, the total bacterial load based on 16S rRNA gene copy numbers was 

determined for a subset of 120 fecal, murine samples (Table 1, page 31) via quantitative 

PCR (qPCR) using the commercial Femto Bacterial DNA Quantification Kit (Zymo 

Research, Irvine, USA) according to the manufacturer's recommendations. Samples were 

diluted 1:100 to obtain concentrations of 1-5 ng/µL as quantified by UV/Vis 

spectrophotometric determination (Nanodrop, Thermo Fisher Scientific, Waltham, USA) 

and both, samples and standards of known Escherichia coli strain JM109 genomic DNA 

concentrations, carried out in duplicates. Based on a standard curve, efficiencies between 

87% to 92% were determined per amplification and mean DNA concentrations per sample 

duplicates calculated as equivalent of the E. coli genomic DNA. The number of 16S rRNA 

gene copies was quantified in reference to known genome length (5.5 Mbp) and number of 

16S rRNA copies (7) per E. coli strain JM109 genome. 
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The 16S rRNA gene copy number (GCN) was normalized to one milligram of stool, as 

calculated based on the total weight of fecal matter used for mechanical lysis and the 

percentage of sample-lysis buffer solution subsequently used for DNA isolation. 
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I. Data Analyses 

Data visualization and statistics were executed using R (v3.6.1) and the packages vegan, 

biomformat, phyloseq, moments, nortest, lmerTest, emmeans, sjPlot, caret, logistf, pROC, 

randomForest and ComplexHeatmap.  

3. Microbial community assessment 

a) Abundance 

Relative abundances per taxon within a sample were calculated based on the sum of all 

taxon counts divided by the count of each taxon within each sample. 
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Absolute abundances per taxon within a sample were calculated based on the total 16S 

rRNA gene copy number determined for each sample multiplied by the relative abundance 

per taxon within each sample. 

b) Diversity 

The richness and variety of microbial communities is determined by alpha and beta 

diversity, with alpha diversity representing the diversity within a sample and beta diversity 

between samples. For both, various indices focusing on different characteristics of microbial 

communities can be used, e.g. presence/absence, or taking phylogeny and abundances 

into account. 

Measurements of alpha diversity describe how many different microbial members are 

inherited in one community by considering only richness (e.g. the number of observed OTUs 

or ASVs) or incorporating their abundance, also referred to as evenness (e.g. Shannon- 

and Simpson-Index), all indicating the higher the number the greater the microbial diversity. 

(Kim et al., 2017; Wagner et al., 2018; Willis, 2019) 

Beta Diversity determines dissimilarities between microbial communities, either based on 

presence/absence (e.g. Jaccard index) or abundance (e.g. Bray-Curtis Dissimilarity, 

Euclidean and Manhattan distance) or combining both respectively with phylogeny (e.g. 

weighted and unweighted UNIFRAC distances). (Knight et al., 2018; C. Lozupone & Knight, 

2005; Magurran, 2021; Su, 2021) These comparisons are made for each sample pair within 

the dataset and result in multidimensional matrices, which can be simplified and visualized 

in Principal Coordinates Analysis (PCoA) plots, representing the dimensions explaining 

variances within the microbial community composition the best, and dissimilarities between 

the communities of samples pairs statistically being assessed by Analysis of similarities 

(ANOSIM) (Somerfield et al., 2021). 

4. Comparisons of repeated measurements, technical replicates 
and sequence batches 

Fecal samples of the KETO cohort were collected on two consecutive days, both before 

and after the intervention, to assess short-term intra-individual microbiota changes. Bray-

Curtis dissimilarities within individuals were significantly lower between consecutive days 

than between time points (p2 days vs PRE|POST= 0.00028, p2 days vs POST|FOLLOW-UP= 0.02, p2 days vs 

PRE|FOLLOW-UP= 0.01, Wilcoxon rank-sum test [WRST] FDR, Figure S1). Therefore, to minimize 

the influence of short-term fluctuations, measurements from consecutive days were merged 

by using mean read counts. 
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Samples from the CARBFUNC study were sequenced in two separate sequencing runs. To 

control for batch effects, technical replicates were visually inspected based on PCoA plots 

of different β-diversity metrics, including weighted/unweighted UniFrac distances, Jaccard 

index, Euclidean and Manhattan distance (Figure S1). Bray-Curtis dissimilarities were 

significantly lower between technical replicates from different sequencing runs than 

between samples collected from the same individual at different time points (p£ 2e-16, 

WRST), and overall microbiota composition was not different between sequencing runs 

(R=0.009, p=0.29, ANOSIM), as opposed to between individuals (R= 0.98, p= 0.001, 

ANOSIM, Figure S1). For all subsequent analyses, the means of the technical replicates 

were used. 

For fecal and serum lipid profiles from the CARBFUNC study, mean values were calculated 

from samples collected at three and six months of the dietary interventions. 

Fecal samples of the murine IL-10 knockout trial were also sequenced on two sequencing 

runs being controlled for by technical replicates, including different mice and mice of 

different time points. The overall microbial composition, as assessed based on the Bray-

Curtis dissimilarity, was significantly and totally explained by the individual (R= 1, p= 0.001, 

ANOSIM) and not by sequencing batch (R= -0.061, p= 0.798, ANOSIM, Figure S1). 

Therefore, the means of technical replicates were calculated and used for subsequent 

analyses. 

5. Statistical Analysis 

Normal distribution was evaluated using Anderson-Darling and Shapiro-Wilks tests. Non-

normally distributed parameters were analyzed by non-parametric tests, such as pairwise 

Wilcoxon rank-sum test (WRST) for group comparisons, Spearman’s rank correlation 

(SRC) test for correlation analyses, and the chi-squared test for categorical comparisons. 

Corrections for false discovery rates (FDR) were performed with the Benjamini-Hochberg 

(BH) procedure. Unless indicated otherwise, boxplots show medians and corresponding 

95% confidence intervals (CI) and significance thresholds with p/q > 0.05 ns, p/q £ 0.05 *, 

p/q £ 0.01 **, p/q £ 0.001 ***. N values for all statistical tests and significance thresholds are 

listed in figure legends or are referred to in Supplemental Tables.  

For differential abundance analyses and abundance correlations, pseudocounts were 

added to relative (0.0001 relative abundance) and absolute abundances (taxon count of 1) 

for each taxon if not indicated otherwise. This addition is a common method in microbiome 

studies which enables to include samples without reads assigned during sequencing as 
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classifications of sequences, simply not being present in a sample or if only too few reads 

to validly detect them were contained, cannot be made (Costea et al., 2014; S. Weiss et al., 

2017). 

a) Generalized Linear Mixed Effect Models 

Generalized Linear Mixed Models (GLMMs) are extended linear models that, in addition to 

fixed effects, also contain random effects for linear prediction (Dean et al., 2007). The 

addition of random effects helps to control predictions when the response variable is 

clustered, e.g. longitudinal data with repeated measurements of the same individuals, or 

potential confounding factors such as litter or cage assignments in in vivo studies. Variations 

within the response variable, which are explained by the random effects, are quantified and 

predictions for the explanatory variables, also referred to as fixed effects in GLMMs, 

calculated accordingly (Bolker et al., 2009). Further, various data types like categorical, 

binary, continuous or count data, as well as nonnormally distributed data can be included 

by the use of link functions and exponential family distributions, e.g. normal, Poisson or 

binomial distribution, which is most commonly the case for microbiome data.  

For all GLMMs, fits were assessed using diagnostic plots, and for model and EMMs 

comparisons, significance was determined after BH-based false discovery rate correction 

with the following thresholds for q-values: q>0.1 ns, q£ 0.1 *, q£ 0.05 **, q£ 0.01 *** and q£ 

0.001 **** as not indicated otherwise. Odds ratios (OR) with 95% CI, as well as marginal 

and conditional R2 were calculated for all significant linear models (Table S5 for human 

cohorts and Table S6 and S7 for the murine cohort). 

(1) Human cohorts 

For the clinical trials, associations between lipid and microbiota compositions before and 

after intervention were determined with GLMMs. First, taxon associations with fecal sterol 

conversion and blood lipids were assessed across both cohorts before dietary intervention. 

Only taxa with a relative abundance of >0.1% of all reads from either all high-converter 

samples combined or all low-converter samples combined, were considered, a 

pseudocount of 1 added for zero values, and the resulting relative abundances centered-

log transformed. To control for cohort-specific biases, the KETO or CARBFUNC cohort 

grouping was included as a random effect in the GLMMs and also evaluated as a fixed 

effect in multiple linear fixed effects models (Tables S5). Additionally, sex was included as 

fixed effect to control for gender biases and only results considered, which were not 

associated with these confounders.  
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To further determine non-linear associations between the sterol converter type and the 

taxonomic microbiota composition, a random forest (RF) classifier was trained to predict 

the class of cholesterol-to-coprostanol converter type (high/low) using clr-transformed 

relative taxa abundances. The model performance was evaluated based on different 

numbers of trees (250, 500, 1000 and 2000), as well as different numbers of variables tried 

at each split (mtry) with values ranging from 1 to 20. The final RF classifier was run with 

501 trees, 12 variables tried at each split, and a default node-size. Leave-one-out cross-

validation (LOOCV) was used to evaluate the model accuracy based on recall and precision 

and to identify the most important features based on the mean decrease in accuracy. 

Alterations in the relative abundance of microbial taxa due to the LCHF diets across both 

cohorts were determined in another GLMM, which was controlled for cohort and sex-specific 

effects and intra-individual variation as a random effect to control for repeated 

measurements. Relative abundances of taxa were centered-log transformed after 

pseudocount addition similar as described above. Microbial taxa with a relative abundance 

above 0.5% and which are detected in at least 4 samples, with a fold change < -0.25 or > 

0.25 as determined based on estimated marginal means (EMMs) before and after the 

intervention, and significance of q£ 0.1 based on FDR corrected Tukey test, for which no 

cohort or gender-bias was detected, were considered (Table S5).  

Changes in the relative abundance of sterol conversion associated microbial taxa, as well 

as in fecal sterols and serum lipids, in response to both, the dietary intervention and the 

sterol conversion type, were evaluated in GLMMs with dietary intervention and the pre-

existing sterol conversion type as interactive fixed effects. Similar to previous models, 

cohort and sex-associations were controlled for as fixed effects as well as repeated 

measurements as random effects per individuum. Relative abundances of taxa were 

centered-log transformed after pseudocount addition similar as described above (Table S5). 

For serum lipids and fecal sterols, different models (Gaussian and Gamma distribution) and 

link functions (identity, log, inverse) were compared based on Akaike information criterion 

(AIC) and diagnostic plots, and the best fit was determined for a log-transformed Gaussian 

distribution. To achieve normal distribution and improve skewness and kurtosis, 

pseudocounts of 0.1 instead of zero values were added for serum and fecal metabolites 

and concentrations log-transformed (Table S5). Differences between subgroups were 

further assessed by calculation of EMMs and post hoc comparisons by Tukey test. As 

serum lipid levels were associated with cohorts in these models, the same interaction 



Methods 

 45 

GLMM was also applied for each cohort separately with the exclusion of cohort as fixed 

effect (Table S5). 

(2) Murine cohort 

To identify relative and absolute abundance alterations due to colitis, shortly (up to four 

days prior) before and after symptomatic observations, a GLMM with the health state 

(healthy, pre/post colitis and colitis), litter and cage numbers as fixed effects, as well as 

repeated measurements per subject as random effect was carried out. Only samples after 

the first week of cage allocation were used to minimize allocation effects and only taxa with 

a relative abundance > 0.5% in one sample and that were contained in at least 3 samples 

were included. As described above, for relative abundances sequence counts per genus 

were centered-log transformed after pseudocount addition (Table S6). For absolute 

abundances, due to the high order of magnitude for count data and the high number of zero 

counts, binomial and Poisson models resulted in bad model fits. To increase the model fit, 

also absolute abundances were centered-log transformed after a pseudocount addition 

resulting in continuous data, which was then applied to the same GLMM as for the relative 

abundance (Table S7). 

The extent to which associated factors influenced if mice had to be withdrawn from the 

observation due to colitis-related symptoms before 20 weeks was assessed by Firth logistic 

regression, which is based on the penalized likelihood estimation method (Firth, 1993). 

Compared to standard maximum likelihood logistic regression, a penalty term is added to 

the model which converges towards zero as the sample size increases to infinite 

observations. Thereby it accounts for issues of small sample sizes, separation and bias of 

prediction estimators (Firth, 1993), which applied for the murine data set with a sample size 

of 22 mice and quasi-complete separation of the data due to mice only being early 

withdrawn in litter 2 and 4. First, all previously associated factors that affect colitis 

development were modelled separately as single estimators and compared to the baseline 

line model, which is solely based on the intercept, via Likelihood ratio test. Single estimators 

included: litter, genotype, co-housing, differences in microbial diversity (Shannon Index and 

Number of observed ASVs) within and between communities, and the presence of 

Akkermansia at the day of cage allocation as well as in the first sample associated with 

colitis-related symptoms and up to four days prior to their observation. The 

presence/absence of Akkermansia was determined based on a relative abundance >0 

(present) or equal to 0 (absent) in the respective sample revealing that the observations up 

to four days prior to symptoms and on the first day of symptoms resulted in identical 
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categorization and were thereby included only once thereafter being representative for both. 

Dissimilarities between communities were calculated as the mean Bray-Curtis dissimilarity 

between each IL-10 deficient and every wild type mouse at the day of cage allocation. The 

only variables that were significantly associated in the single estimator models were litter, 

the mean Bray-Curtis dissimilarity to wild type mice and the presence of Akkermansia 

shortly before/at the first day of symptomatic observation (Table S8). Building the final 

model with the three significantly associated variables resulted in a large number of 

probabilities being close to zero and one whenever the mean Bray-Curtis dissimilarity was 

added indicating a very high, almost perfect prediction, which could either indicate a 

statistical issue or a true biological result, both caused by interdependencies between 

predictors. To account for both possibilities, two final models were built, the first including 

litter and Akkermansia presence in the first sample with symptomatic observations only, 

and the second with all three associated predictors (Table S9). The degree of in-sample 

prediction of the logistic regression was assess by plotting the true positive rate (sensitivity) 

against the false positive rate (specificity) in a receiver operating characteristic (ROC) curve 

and calculating the area under the curve (AUC). To further validate the predictive out-of-

sample power, meaning to forecast observations that were not part of the trained model, a 

stratified 10-fold cross validation splitting the dataset in a training (80%) and testing (20%) 

set in the same proportion as samples appeared in the population was performed. The final 

cross validated model was picked based on the highest accuracy measured by AIC (Tables 

S10). 
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III. Results 
A. Characterization of the microbiota and sterol conversion in response to 

low-carbohydrate high-fat dietary intervention in two human cohorts  

Interindividual variations in serum lipid responses to low-carbohydrate high-fat (LCHF) diets 

have been increasingly reported and the microbiota is being considered as a potential cause  

(Burén et al., 2021; Descamps et al., 2015; Griffin et al., 2021; Norwitz et al., 2022; O’Neill 

et al., 2020; Qamar et al., 2019). Cholesterol, a major key metabolite in host lipid 

metabolism and cardiovascular risk factor when increased in blood, is converted by the 

intestinal microbiota into non-absorbable coprostanol. To investigate the relationship 

between intestinal cholesterol-to-coprostanol conversion and the gut microbiota, as well as 

their link to serum lipid profiles in the context of LCHF diets, fecal and blood samples of two 

geographically separate human cohorts with different metabolic backgrounds were 

examined after six weeks or three and six months of intervention, respectively. The results 

of these analyses are currently under revision at Cell Press Community. 

1. Equal distributions of cholesterol high and low-converter types 
among humans with and without obesity 

Fecal sterol and stanol concentrations were determined by liquid chromatography-high 

resolution mass spectrometry (LC-MS/HRMS) in samples from 28 healthy, normal-weight 

participants of a German ketogenic (KETO) diet study (Urbain et al., 2017). Before dietary 

intervention, the microbial conversion products coprostanol (18.71 ± 13.44 nmol/mg dry 

weight [DW], data are shown as mean ± standard deviation [sd]) and stigmastanol (5β-

sitostanol) (10.39 ± 6.71 nmol/mg DW) were the most abundant fecal stanols, followed by 

their animal and plant-derived sterol precursors, fecal cholesterol (15.76 ± 17.53 nmol/mg 

DW), β-sitosterol (4.62 ± 3.99 nmol/mg DW) and campesterol (1.43 ± 1.51 nmol/mg DW) 

(Figure 2a, page 49). All sterol and stanol concentrations exhibited substantial inter-

individual variation and, as would be expected from a direct metabolic dependency, 

coprostanol and cholesterol levels were negatively correlated (Figure 2b, page 49, R = -

0.52, q = 0.005, Spearman’s rank correlation [SRC] corrected for false discovery rate [FDR] 

with the Benjamini-Hochberg procedure [SRCFDR]), similarly to stigmastanol and β-sitosterol 

levels (Figure 2c, page 49, R = -0.71, q < 1e-5), as well as 5β-campestanol and campesterol 

levels (Figure 2d, page 49, R = -0.37, q = 0.073). The KETO study participants showed a 

bimodal distribution into high and low cholesterol-to-coprostanol converter types, as 

previously described for healthy individuals (Veiga et al., 2005; Wilkins et al., 1974), i.e., a 

greater fraction of high (coprostanol/cholesterol > 2, 61 % of the KETO study participants) 
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compared to low (coprostanol/cholesterol < 0.5, 14 % of the KETO study participants) 

cholesterol converters (Figure 2b, page 49).  

To determine cholesterol high and low-converter types among individuals with different 

metabolic health backgrounds, fecal sterol and stanol concentrations were also 

characterized in 145 individuals with obesity from the CARBFUNC study, a Norwegian 2-

year randomized controlled dietary intervention trial (Horn et al., 2022). The main 

characteristics of both study cohorts (Table S11) revealed the Norwegian cohort to be 

slightly older (37 ± 11.73 vs 43 ± 8.32 years). Individuals with obesity from the CARBFUNC 

study exhibited increased concentrations of fecal coprostanol (Table S11, p < 1e-3, 

Wilcoxon rank-sum test [WRST]), but otherwise similar sterol or stanol levels (p > 0.05) and 

compositional profiles (Figure 2e, page 49), including a negative correlation of coprostanol 

to cholesterol (R = -0.47, q < 1e-9) and a bimodal distribution of high (61 % of CARBFUNC 

study participants) and low (21 % of CARBFUNC study participants) cholesterol converter 

types based on coprostanol/cholesterol ratios (Figure 2f, page 49). Stratification of 

individuals into a larger cholesterol high-converter type fraction and a smaller low-converter 

type fraction based on the fecal coprostanol/cholesterol ratio therefore appears to be a 

conserved feature of the human fecal microbiome in individuals with and without obesity. 
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Figure 2. Equal distributions of cholesterol high and low-converter types among 
humans with and without obesity.  
(a) Sterol and stanol concentrations as determined by LC-MS/HRMS in 28 fecal samples from the 
KETO study participants before dietary intervention.  
(b) Negative correlation (Spearman’s rank) between fecal coprostanol and cholesterol 
concentrations and bimodal distribution of cholesterol high (n = 17), intermediate (n = 4) and low-
converter (n = 7) types, as classified based on the fecal coprostanol/cholesterol ratio. 
(c) and (d) Comparable negative correlations (Spearman’s rank) between the fecal concentrations 
of the phytosterols sitosterol and campesterol and the corresponding stanol conversion products 
stigmastanol (n = 26), and 5β-campestanol (n = 23). 
(e) Similar fecal sterol and stanol concentration profiles in individuals with obesity from the 
CARBFUNC study before dietary intervention (n = 145 samples), compared to lean KETO study 
participants (n = 89/26/30 for cholesterol high/intermediate/low-converters). 
(f) Negative correlation (Spearman’s rank) of fecal coprostanol and cholesterol concentrations in 
CARBFUNC study participants and bimodal distribution into high and low-converter types.   
Spearman’s rank correlation, Benjamini-Hochberg (BH) corrected: q > 0.05 ns, q £ 0.01 **, q £ 0.001 
*** 
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2. Distinct microbiota associations with fecal cholesterol and 
coprostanol 

To better understand the intra-intestinal relationship of cholesterol-to-coprostanol 

conversion with the gut microbiota, fecal taxonomic microbiota and metabolite profiles were 

compared between cholesterol high and low-converters from the KETO and CARBFUNC 

studies. 16S rRNA sequencing resulted in 10,578,956 (KETO) and 14,910,136 

(CARBFUNC) raw single reads respectively for the two cohorts. After processing and quality 

evaluation a total 5,518,846 (KETO) and 9,395,506 (CARBFUNC) single reads assigned to 

384 (KETO) and 518 (CARBFUNC) amplicon sequence variants (ASVs) were obtained 

(Table S3). No difference in fecal microbiota a-diversity (Figure 3a, page 52, Shannon 

index, p = 0.17, WRST) or b-diversity (Figure 3b, page 52, Bray-Curtis dissimilarity, R = 

0.084, p = 0.15, ANOSIM) was detected between lean cholesterol high and low-converters 

from the KETO study. However, low-converters with obesity from the CARBFUNC study 

had a reduced fecal microbiota ɑ-diversity (Figure 3a, page 52, Shannon index, p < 1e-9, 

WRST) and distinct  b-diversity (Figure 3b, page 52, Bray-Curtis dissimilarity, R = 0.24, p = 

0.001, ANOSIM) relative to high-converters, suggesting that the microbiota relationship to 

cholesterol conversion was affected by obesity or other CARBFUNC cohort-specific factors. 

Next, a generalized linear mixed effect model (GLMM) was used to identify shared linear 

associations between specific members of the fecal microbiota and fecal cholesterol and 

coprostanol concentrations across both the KETO and CARBFUNC studies combined 

(Table S5). Whereas intestinal coprostanol should be entirely produced from microbial 

cholesterol reduction, fecal cholesterol should originate from both endogenous and 

exogenous sources and therefore be more intricately regulated (Juste et al., 2021). Fecal 

coprostanol and cholesterol concentrations were therefore queried both independently and 

in combination for associations with the centered log-ratio (clr)-transformed relative 

abundance of specific bacterial taxa, while controlling in the corresponding GLMM for cohort 

and gender-specific effects (Figure 3c, page 52, Figure S2, Tables S5). Significant 

associations from the GLMMs (q £ 0.1) were independently assessed by Spearman’s rank 

correlation analysis (Figure 3d, e, page 52, Figure S2, SCRFDR). Only two bacterial taxa, i.e. 

Eubacterium coprostanoligenes group and Ruminococcaceae UCG 014, showed 

consistent associations with cholesterol-to-coprostanol conversion across all comparisons 

and analyses, i.e. positive and negative correlations to fecal coprostanol and cholesterol 

levels, respectively (Figure 3c, d, page 54), and a positive association with the 

coprostanol/cholesterol ratio (Figure S2). In addition, Lachnoclostridium was positively and 
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Clostridiales XIII AD3011 negatively correlated to fecal cholesterol concentrations (Figure 

3c, e, page 52, SCRFDR). Detection of Clostridiales XIII AD3011 was limited to the 

CARBFUNC cohort (Figure 3e, page 52), indicating an obesity or geography-specific 

association of this genus with fecal cholesterol levels. 

To also test for non-linear microbiota associations with the cholesterol high and low-

converter types, a random forest classifier was trained on clr-transformed microbiota 

compositions. This classifier performed well at identifying cholesterol high-converters 

(84.82% precision, 94.06% recall), but lacked sensitivity for the detection of low-converters 

(76.92% precision, 54.05% recall). Leave-one-out cross-validation (LOOCV) identified E. 

coprostanoligenes group as the most important microbiota feature for this classification, but 

also several taxa, such as Christensenellaceae.R.7 group, which the GLMM associated 

with fecal cholesterol and flagged with singularity fit warnings, indicating a potential overfit 

of the linear model (Fig. 3f, g, page 52). In summary, linear and non-linear models 

consistently linked E. coprostanoligenes to intestinal cholesterol-to-coprostanol conversion 

across both cohorts, but other bacterial taxa that mostly showed associations with fecal 

cholesterol levels may also be involved in the process. 
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Figure 3. Distinct microbiota associations with fecal cholesterol and coprostanol.  
(a) and (b) Reduced diversity (Wilcoxon rank-sum) and altered composition (ANOSIM) of taxonomic 
microbiota profiles of cholesterol high (n = 89) compared to low-converters (n = 30) with obesity from 
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the CARBFUNC study, but no difference between lean cholesterol high (n = 7) and low-converters 
(n = 12) from the KETO study. p > 0.05 ns, p < 0.001 ***  
(c) Positive and negative associations of bacterial taxa with fecal coprostanol and cholesterol 
concentrations, as identified by a generalized linear mixed effect model (GLMM) for the combined 
dataset of KETO (n = 23) and CARBFUNC (n = 145) study participants. For the GLMM input, zero 
values were replaced with a pseudocount and cohort and gender added as random and fixed effects 
(see Methods for details).  
(d) and (e) Across both cohorts combined, Eubacterium coprostanoligenes group (n = 158) was 
positively correlated with fecal coprostanol and negatively correlated with fecal cholesterol 
concentrations, whereas Lachnoclostridium (n = 125), was positively correlated with fecal cholesterol 
concentrations. 
(f) E. coprostanoligenes group relative abundance was the most informative microbiota feature for 
predicting the cholesterol converter type with a random forest model, based on leave-on-out cross-
validation 
(g) Increased relative abundance of E. coprostanoligenes group and Christensenellaceae.R.7 group 
in cholesterol high-converters. Dashed lines indicate pseudocount values (0.0001 % relative 
abundance) of samples with zero taxon counts. Benjamini-Hochberg (BH) corrected: q > 0.1 ns, q £ 
0.1 *, q £ 0.05 **, q £ 0.01 ***, q £ 0.001 **** 

Next, fecal cholesterol and coprostanol levels were compared to short-chain fatty acid 

(SCFAs) concentrations in stool samples. Straight-chain SCFAs are mainly produced by 

microbial fermentation of non-digestible dietary fiber in the colon, whereas branched-chain 

SCFAs predominantly result from microbial protein fermentation (Wolter et al., 2021). Fecal 

cholesterol but not coprostanol was positively correlated across both studies to the straight-

chain SCFAs acetate (R = 0.38, q < 1e-4), propionate (R = 0.52, q < 1e-9) and butyrate (R 

= 0.33, q < 1e-3, Figure 4a, page 54, SRCFDR). In contrast, fecal coprostanol but not 

cholesterol, showed a positive correlation to the branched-chain SCFA isobutyrate (Figure 

4b, page 54, R = 0.25, q = 0.005, SRCFDR). An association of the cholesterol converter type 

with fecal SCFA levels was only identified in study participants with obesity (CARBFUNC), 

including decreased fecal propionate (p < 1e-4, WRST) and increased isobutyrate (p = 

0.023, WRST) concentrations in high-converters. Thus, our findings are in agreement with 

previous reports of increased straight-chain SCFA secretion in cholesterol low-converters 

(Matysik et al., 2021). They indicate distinct intra-intestinal associations of cholesterol and 

coprostanol with specific microbial taxa and metabolites, which may be influenced by 

obesity or other cohort-specific parameters. 
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Figure 4. Distinct associations of fecal cholesterol and coprostanol concentrations 
with straight and branched SCFAs. 
(a, b) Positive correlation of fecal cholesterol with the concentrations of the straight-chain SCFAs 
acetate, propionate and butyrate (a) and of fecal coprostanol with the branched-chain SCFA 
isobutyrate (b) in fecal samples from lean KETO study participants (n=28) and in individuals with 
obesity from the CARBFUNC study (n=145) before the dietary intervention. Spearman’s rank 
correlation, BH-corrected: q > 0.05 ns, q £ 0.05 *, q £ 0.01 **, q £ 0.001 *** 
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3. Circulating blood lipids in cholesterol high and low-converters 

To determine if intestinal cholesterol-to-coprostanol conversion had a discernible impact on 

circulating cholesterol levels, fecal cholesterol and coprostanol concentrations with the 

serum levels of total cholesterol and other lipids were compared. Lean (KETO cohort) 

cholesterol high and low-converters showed comparable total cholesterol and low-density 

lipoprotein cholesterol (LDL-C) concentrations before the intervention (p > 0.05), but the 

lean cholesterol high-converters had increased triacylglycerides (TAG, p = 0.04) and 

decreased high-density lipoprotein cholesterol (HDL-C, p = 0.04) levels (Figure 5a, page 

56, WRST). No difference between cholesterol high and low-converters with obesity 

(CARBFUNC cohort) was detected in serum total cholesterol, TAG, HDL-C and LDL-C 

levels (Figure 5b, page 56, p > 0.05, WRST). However, CARBFUNC study participants had 

increased serum TAG (p < 1e-7), LDL-C (p = 0.03) and reduced serum HDL-C (p < 1e-13) 

levels compared to KETO study participants and showed an increased TAG/HDL-C ratio (p 

< 1e-11), a marker for insulin resistance (Kim-Dorner et al., 2010), consistent with generally 

adverse health profiles (Table S11, WRST). In line with this, blood glucose and insulin levels 

were increased in CARBFUNC study participants (Table S11), but showed neither 

significant differences between cholesterol high and low-converters from either study 

(KETO: blood glucose p = 0.092, insulin p = 0.77; CARBFUNC: blood glucose p = 0.66, 

insulin p = 0.14, WRST), nor correlations with fecal coprostanol or cholesterol (q > 0.05, 

SCRFDR, Figure S2). However, compared to cholesterol low-converters, high-converters 

from the CARBFUNC study had elevated serum β-hydroxybutyric acid (BHB) levels (low: 

39.2 ± 33.8 vs high: 61.6 ± 59.2, p = 0.013, mean ± sd, WRST), indicative of increased 

ketosis in the cholesterol high-converters with obesity. 

Neither fecal coprostanol nor cholesterol levels were significantly correlated with serum total 

cholesterol, TAG, LDL-C, or HDL-C in either the CARBFUNC or KETO cohorts, or 

individuals from both studies combined (Figure S3, q > 0.05, SRCFDR). Similarly, no 

significant associations between fecal microbial taxa and serum lipid levels were identified 

by the GLMM after false discovery rate correction (Table S5, q > 0.1). The findings therefore 

provide no indication for a reducing effect of intestinal cholesterol-to-coprostanol conversion 

on circulating total cholesterol levels. 
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Figure 5. Circulating blood lipids in cholesterol high and low-converters. 
(a) Comparable total cholesterol and low-density lipoprotein cholesterol (LDL-C), but increased 
serum triacylglycerides (TAG) and decreased high-density lipoprotein cholesterol (HDL-C) levels in 
lean cholesterol low (n = 7) compared to high-converters (n = 17) from the KETO study. (b) No 
significant difference in blood lipid levels between cholesterol high (n = 89) and low-converters (n = 
30) with obesity from the CARBFUNC study. Wilcoxon rank-sum test,  p > 0.05 ns, p £ 0.05 * 
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4. Diet impact on cholesterol-to-coprostanol conversion 

To identify associations between dietary habits and cholesterol-to-coprostanol conversion, 

lean KETO study participants were compared based on available food questionnaire data. 

Caloric intake from fats, fiber, carbohydrates, protein or cholesterol was comparable in lean 

cholesterol high and low-converters (Table 5, page 58, p > 0.05, WRST) and both converter 

types exhibited similar fecal fatty acid profiles, in terms of chain length and saturation level 

(Figure S4, p > 0.05, WRST). The ratio of animal to plant-derived fat intake was estimated 

for both cohorts, based on the ratio of fecal coprostanol to stigmastanol, which originate 

from microbial conversion of cholesterol and the phytosterol β-sitosterol, respectively (Juste 

et al., 2021). While no difference was detected between lean high and low-converters 

(Figure 6a, page 61, KETO cohort, p > 0.05, WRST), the fecal coprostanol/stigmastanol 

ratio was increased in cholesterol high-converters with obesity (Figure 6a, page 61, 

CARBFUNC cohort: p < 1e-5, WRST), indicating that, compared to low-converters, high-

converters with obesity obtained a larger fraction of their fat intake from animal sources. 
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Table 5. Semi-quantitative food questionnaire-based dietary habits of lean KETO study participants.  
Data were collected over seven consecutive days one to two weeks before (PRE) and during the last week of dietary intervention (LCHF) and used to calculate 
average daily intakes (mean ± standard deviations [sd]) and determine significant differences between before and on LCHF time points (paired Wilcoxon signed-
rank test) and between high/low-converter types (unpaired Wilcoxon rank-sum test); n(low)=6, n(high)=17, Abbreviations: SFA = saturated fats, MUFA = mono-
unsaturated fats, PUFA = poly-unsaturated fats, LCHF = low-carbohydrate high-fat 

Dietary intake 

PRE LCHF PRE vs LCHF 

Low- 
converter 

High- 
converter 

Low vs 
High Low-converter High-converter Low vs High Low- 

converter 
High- 

converter 

mean ± sd mean ± sd pPRE mean ± sd mean ± sd pLCHF pPREvs 

LCHF 
pPREvs 

LCHF 

Total kcal 2380.32 ± 394.11 2223.66 ± 454.11 0.43 2586.78 ± 835.78 2066.96 ± 425.61 0.14 0.43 0.24 

%E         

Protein 13.56 ± 1.08 14.59 ± 2.21 0.35 19.83 ± 3.70 18.96 ± 3.55 0.81 0.03 <1e-3 

Carbohydrate 42.16 ± 7.22 41.47 ± 6.15 0.92 5.81 ± 1.82 8.54 ± 3.09 0.06 0.03 <1e-4 

Fat 40.13 ± 8.04 37.95 ± 5.30 0.66 72.15 ± 5.28 69.75 ± 5.85 0.56 0.03 <1e-4 

SFA 17.17 ± 4.23 15.69 ± 2.40 0.52 26.71 ± 3.69 26.90 ± 3.96 0.92 0.03 <1e-4 

MUFA 12.86 ± 3.54 12.74 ± 2.40 0.92 25.73 ± 3.35 26.20 ± 5.19 1.0 0.03 <1e-4 

PUFA 5.09 ± .57 5.51 ± 1.62 0.61 9.54 ± 1.45 9.74 ± 2.99 0.81 0.03 <1e-4 

Cholesterol [mg/d] 325.4 ± 165.9 304.5 ± 108.9 0.92 569.1 ± 141.5 429.8 ± 100.5 0.02 0.03 0.001 

Fiber [g/d] 24.6 ± 6.2 27.5 ± 14.1 0.97 26.5 ± 11.6 20.8 ± 7.1 0.29 0.84 0.02 
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Both the KETO and CARBFUNC studies involved interventions with low-carbohydrate high-fat 

(LCHF) diets, based on ≥ 75 energy percent [E%] fat and ≤ 10 E% carbohydrate intake. Lean 

KETO study participants followed a 6-week ad libitum LCHF diet, which resulted in increased 

urinary and blood ketone bodies, as well as other hormonal and metabolic changes indicative 

of ketosis, as previously described in detail (Urbain et al., 2017; Urbain & Bertz, 2016). 

CARBFUNC study participants with obesity were restricted to a normocaloric LCHF diet 

(males: 2,500 kcal, females: 2,000 kcal, Horn et al., 2022), which was accompanied by at least 

transient ketosis at three months of the intervention based on increased serum BHB levels 

(PRE: 62.68 µM ± 68.67 vs. 3 months: 264.01 µM ± 251.74, p = 0.00031; PRE vs. 6 months: 

163.26 ± 274.60, p = 0.26; mean ± sd, paired Wilcoxon signed-rank test). Fecal and serum 

samples were collected after six weeks (KETO study) and three and six months (CARBFUNC 

study) and used for microbiota analysis and lipid profiling. As both studies included individuals 

with different metabolic health backgrounds and involved variable time spans, first, if 

comparable taxonomic compositional microbiota alterations could be detected in both cohorts 

after LCHF diet intervention was tested. A strong and consistent shift in microbiota 

compositions was detected across both cohorts (Figure 6b, page 61, Table S5, GLMM), 

including changes in the relative abundance of bacterial genera, such as Bifidobacterium 

(mean reduction: -4.23 % ± 2.48), previously reported to be altered by ketogenic diet (Ang et 

al., 2020). The microbiota analysis therefore demonstrates reproducible, temporally stable 

LCHF diet-induced compositional microbiota changes in individuals with and without obesity.  

To test whether intestinal cholesterol-to-coprostanol conversion could be dietarily modulated, 

we compared fecal cholesterol and coprostanol levels in KETO and CARBFUNC study 

participants in response to the LCHF diets (Figure 6c, page 61). The GLMMs identified cohort-

specific effects for both fecal cholesterol and coprostanol concentrations but not their ratios 

(Figure 6d, page 61, Table S5). In cholesterol low-converters from both cohorts, LCHF diet 

increased cholesterol-to-coprostanol conversion, as illustrated by decreased fecal cholesterol 

(q < 1e-7) and increased fecal coprostanol (q < 1e-3) levels, as well as increased 

coprostanol/cholesterol ratios (Figure 6d, page 61, Table S5, q < 1e-9, Tukey’s TestFDR 

comparisons of GLMM based estimated marginal means [EMM]). The increased cholesterol 

conversion in low-converters on the LCHF diets was accompanied by a higher fecal relative 

abundance of E. coprostanoligenes (Figure 6e, page 61, Table S5, q = 0.003, Tukey’s TestFDR). 

Cholesterol high-converters responded to the LCHF diets with reduced cholesterol conversion, 

at least based on increased fecal cholesterol (q = 0.08) concentrations and a decreased 

coprostanol/cholesterol ratio (q = 0.03), although fecal coprostanol levels were not altered (q 
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> 0.1) (Figure 6f, page 61, Table S5, Tukey’s TestFDR). Neither differences in serum BHB were 

detected between cholesterol high and low-converters from both studies (p = 0.067, paired 

Wilcoxon signed-rank test), nor a positive association between increased ketosis and 

cholesterol-to-coprostanol conversion (Δ BHB vs. Δ coprostanol, R = 0.17, p = 0.39, SRC). 

Thus, LCHF diets consistently increased cholesterol-to-coprostanol conversion in low-

converters from the KETO and CARBFUNC cohorts, despite different metabolic health 

backgrounds and underlying fecal cholesterol and coprostanol concentrations. 
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Figure 6. Diet impact on cholesterol-to-coprostanol conversion. 
(a) Cholesterol high-converters with obesity (CARBFUNC study, n = 89) but not without obesity (KETO 
study, n = 17) exhibited an increased fecal coprostanol/stigmastanol ratio compared to low-converters 
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(nCARBFUNC = 26, nKETO = 5), suggesting a higher proportion of animal vs. plant-derived dietary fat intake 
(p < 0.001 ***, WRST). Zero values were replaced with a pseudocount (1 nmol / mg dry weight [DW]).  
(b) LCHF diets induced consistent taxonomic microbiota alterations in the KETO and CARBFUNC 
cohorts, based on a combined GLMM analysis (nPRE = 173, nLCHF = 62). Bacterial taxa with significant 
changes in relative abundance (q < 0.1, BH-corrected Tukey’s test, see horizontal blue line) and a 
positive or negative fold-change of > 0.25 in estimated marginal means (EMM) are marked with red dots 
and labels, unless they were detected by the GLMM as cohort and/or sex-associated (black dots). 
(c) Distribution of cholesterol high and low-converters among all KETO and CARBFUNC study 
participants before (n = 143) and after (n = 54) LCHF dietary intervention (gray lines connecting pre and 
post-intervention samples). 
(d) Increased cholesterol-to-coprostanol conversion in low-converters from both cohorts on the LCHF 
diets (nPRE = 37, nLCHF = 11), as evidenced by reduced fecal cholesterol and increased fecal 
coprostanol levels and increased coprostanol/cholesterol ratios. 
(e) The increased cholesterol-to-coprostanol conversion in low-converters on LCHF diets was 
accompanied by an increased fecal relative abundance of E. coprostanoligenes group (nPRE/Low = 37, 
nLCHF/Low= 11), resulting in similar relative abundances in high and low-converters on the LCHF diets 
(nPRE/High= 106, nLCHF/High = 43). 
(f) Decreased cholesterol-to-coprostanol conversion in high-converters from both cohorts after LCHF 
diet intervention (nPRE = 106, nLCHF = 43), at least based on increased fecal cholesterol levels and an 
increased coprostanol/cholesterol ratio. Individuals were classified as cholesterol high/low-converters 
based on pre-intervention time points, with symbol colors indicating the classification during the LCHF 
diet. Significance determined by GLMM and post-hoc Tukey’s test (Benjamini-Hochberg-corrected): q > 
0.1 ns, q £ 0.1 *, q £ 0.05 **, q £ 0.01 ***, q £ 0.001 **** 

5. Cholesterol converter type-specific dietary impact on serum lipids 

To determine if the cholesterol converter type affected serum lipid responses to LCHF diets, 

total cholesterol, TAG, HDL-C and LDL-C concentrations were compared in high and low-

converters with and without obesity. The LCHF diet-induced increase in cholesterol conversion 

in low-converters from both cohorts was not accompanied by altered blood lipid concentrations 

(Figure 7a, page 63, q > 0.1, Tukey’s TestFDR). However, both cholesterol high and low-

converters responded to the LCHF diets with a reduction in serum TAG levels (Figure 7b, page 

63, qlow = 0.081, qhigh < 1e-3). This converter type-independent effect was apparent even when 

controlling for cohort-specific differences in serum lipids (q £ 0.1, Table S5). 

Cholesterol high-converters from the lean KETO cohort responded to the LCHF diet with 

increased serum LDL-C levels (Figure 7c, page 63, Table S5, q = 0.015, Tukey’s TestFDR). 

This effect was not explained by different intakes (E%) of total fat or saturated, mono-

unsaturated, or poly-unsaturated fatty acids between lean cholesterol high and low-converters 

(Table 5, page 58, p > 0.05, WRST). Lean cholesterol high-converters from the KETO study 

even consumed less cholesterol during the LCHF diet than low-converters (Table 5, page 58, 

p = 0.016, WRST). Neither cholesterol high nor low-converters with obesity from the 

CARBFUNC study exhibited increased serum LDL-C concentrations on the LCHF diet (Table 

S5, q > 0.05), despite increased saturated fatty acid consumption (30 %E) during the 
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intervention (Horn et al., 2022), which has previously been suggested to increase LDL-C levels 

(Siri-Tarino et al., 2010). 

In summary, the LCHF diet-induced increase in intestinal cholesterol conversion had no 

discernible effect on circulating serum lipids but, in lean individuals, the cholesterol high-

converter type may be prognostic for increased LDL-C levels in response to LCHF diets. 

 
Figure 7. Cholesterol converter type-specific dietary impact on serum lipids. 
(a) and (b) Decreased serum TAG levels in both cholesterol low-converters (a, nPRE = 37, nLCHF = 11) 
and high-converters (b, nPRE = 106, nLCHF = 43), based on estimated marginal means (EMMs), as 
determined by the GLMM for the combined KETO and CARBFUNC cohorts.  
(c) Increased serum LDL-C levels in lean cholesterol high-converters from the KETO study on the LCHF 
diet (nPRE = 17, nLCHF = 18). Individuals were classified as cholesterol high/low-converters based on pre-
intervention time points, with symbol colors indicating the classification during the LCHF diet. 
Significance determined by GLMM and post-hoc Tukey’s test (Benjamini-Hochberg-corrected): q > 0.1 
ns, q £ 0.1 *, q £ 0.05 **, q £ 0.01 ***, q £ 0.001 **** 
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B. Characterization of the microbial community during intestinal inflammation 
in IL-10 deficient mice co-housed with wild type animals 

To investigate how intrinsic, non-modifiable factors shape the gut microbiota and how these 

interactions are linked to disease, more specifically colitis, a genetic knockout (KO) mouse 

model of mice deficient for the production of IL-10 (IL-10-/- mice) was used. IL-10-/- mice 

develop spontaneous colitis, which appears to be dependent on the gut microbiota (Sellon et 

al., 1998). BALB/c IL-10-/- mice from different litters were mixed and co-housed, including sex- 

and age matched Swiss wild-type (WT) mice, for twenty weeks and fecal samples were 

collected to examine microbiota alterations throughout the development of spontaneous colitis.  

1. Phenotypic characterization of the IL-10-/- mouse model 

In the IL-10 knockout model, the well-being of mice determined by phenotypic observations is 

the only indicator of colitis development throughout an experiment. Intestinal inflammation 

though can only be verified by histopathological examination of colonic tissue after mice are 

sacrificed, which leads to their withdrawal from the observation. Therefore, if phenotypic 

observations reliably mirror inflammatory processes indicating colitis was evaluated first. 

Throughout the observation, 50% of IL-10 deficient mice (9 of 18) developed colitis-related 

symptoms based on phenotypic observations and had to be withdrawn from the experiment 

early. These observations were based on a scoring system which includes the general status 

of mice, such as behavior, appearance, weight, and absolute indications of colitis, e.g. rectal 

prolapse and convulsions (Table S1). Although some wild type mice were classified as 

symptomatic throughout the observation, none of them showed severe signs of colitis leading 

to withdrawal (Table 1, page 31). Weight reductions between 10% to 20% and slightly 

increased stool consistency (score 2) were the only scores attributed to wild type mice, which 

were recovered again within a few days.  

The first mouse with colitis-related symptoms was observed after eleven weeks of observation, 

which equaled 14 weeks of age. Up until then, the body weight increased for all mice 

irrespective of the genotype (mean weight gain of 10.7 g ± 1.48 g for knockout and 11.30 g ± 

3.29 g for wild-type mice compared to the day of cage allocation, mean ± standard deviation 

[sd]). Thereafter, the body weight reached a plateau with on average variations of 0.43 g ± 

0.41 g for knockout and 0.68 g ± 0.76 g for wild-type mice compared to the preceded 

measurement (Figure 8a, page 65). With an age of twelve weeks mice are usually considered 

mature adult animals (S. J. Jackson et al., 2017), which is in line with the observed stable body 

weight at around 14 weeks.  
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Wild-type Swiss mice were in general heavier than IL-10 knockout BALB/c mice with an adult 

average weight of 33.04 g ± 3.04 g compared to 24.63 g ± 1.48 g for KO mice (Figure 8a, b, 

Table S12, WT litter 1 vs each KO litter: q£ 1e-4, Wilcoxon rank-sum test with false discovery 

rate [FDR] corrected p-value according to the Benjamnini-Hochberg procedure [WRSTFDR]). 

One WT mouse (# 57) deviated from the others, with a higher body weight after 14 weeks of 

age. This mouse was on average 5.87 g heavier than the other WT mice (Figure S5, 36.92 g 

± 1.36 g body weight of mouse #57 vs 31.05 g ± 1.01 g of all other WT mice, mean ± sd). 

Besides genotype differences, also body weight variations between the IL-10-/- litters were 

observed. Litter three mice, which was the only KO litter in which no mice had to be sacrificed 

due to severe colitis-related symptoms, had the highest body weight compared to the other 

KO litters even when considering only healthy mice (Figure 8b, Table S12, Litter 3 vs 2: 23.38 

g ± 3.56 g vs 21.46 g ± 3.76 g, q£ 1e-4; Litter 3 vs 4: 23.38 g ± 3.56 g vs 22.07 g ± 4.04 g, q= 

0.0013 , mean ± sd, WRSTFDR). 

 
Figure 8. Body weight progression of healthy samples collected throughout twenty 
weeks of observation.  
Absolute body weight of only healthy (scores <2) mice (a) colored and grouped by litter number using 
locally weighted regression and (b) per genotype for each litter. At the beginning of the observation, 
mice were four weeks old.  
(a) The vertical dashed line indicates the first observation of colitis-related symptoms.  
(b) Pairwise Wilcoxon rank-sum test with FDR corrected q-values only shown if q£ 0.05, with q£ 0.05 *, 
q£ 0.01 **, q£ 0.001 ***, q£ 0.0001 ****; exact p-values for all comparisons are listed in Table S12; 
n(wild-type)= 97, n(knockout)= 341. Abbreviations: WRST = Wilcoxon rank-sum test, FDR = false 
discovery rate 
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To estimate the significance of observational phenotypes as indicators for colitis-related 

inflammation, they were correlated with histopathological assessments and cytokine 

expression, which were determined for every mouse after euthanasia or the end of the 

experiment. The sum of all phenotypic scores was significantly correlated with increased tissue 

damage (proximal: ρ = 0.75, q = 0.00015; distal: ρ = 0.83, q£ 1e-4) and cell infiltration 

(proximal: ρ = 0.67, q = 0.0013; distal: ρ = 0.84, q £ 1e-4, Spearman’s rank correlation 

[SRC]FDR) in the proximal and distal colon (Figure 9, page 67). The same accounted for an 

increased expression of inflammatory cytokines Tumor necrosis factor (TNF) (proximal: ρ =  

0.44, q = 0.043; distal: ρ = 0.77, q = 0.00015), Growth-regulated protein beta (Gro-beta) 

(proximal: ρ = 0.75, q = 0.00015; distal: ρ = 0.85, q £ 1e-4), Chemokine C ligand (CCL) 2 

(proximal: ρ= 0.59 q= 0.0054) and CCL3 (proximal: ρ = 0.62, q = 0.0034; distal: ρ = 0.77, q = 

0.00015), as well as decreased expression of anti-inflammatory Transforming growth factor 

beta (TGF) (Figure 9, page 67, proximal: ρ =  -0.50, q = 0.022; distal: ρ = -0.76, q = 0.00015, 

SRCFDR). This validated the possibility of tracking inflammatory processes during colitis by 

phenotypic characterization based on regular scoring of the mice’s well-being.  
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Figure 9. Intestinal inflammation was correlated with phenotypic characterizations 
based on scored well-being parameters in proximal and colonic tissue. 
The well-being of mice was determined based on scores evaluating behavior, weight, appearance and 
absolute criteria. The sum of these phenotypic scores was correlated with histopathological examination 
and relative cytokine expression to GAPDH of proximal and distal colonic tissue and colored based on 
if the mice showed colitis-related symptoms (symptomatic) or not (asymptomatic) throughout the 
observation. Spearman’s rank correlation with FDR corrected q-values, q£ 0.05 *, q£ 0.01 **, q£ 0.001 
***, q£ 0.0001 ****; n(wild-type)= 4, n(knockout)= 18. Abbreviations: CCL = Chemokine C ligand, 
GAPDH  = Glyceraldehyde-3-phosphate dehydrogenase, Gro-beta = Growth-regulated protein beta, 
TNF = Tumor necrosis factor, TGF = Transforming growth factor beta 

To assess the consistency of fecal samples, which has been shown to correlate with taxonomic 

microbiota compositions in humans (Vandeputte et al., 2016) and as diarrhea is an absolute 

indicator of colitis in the scoring system, a stool consistency score was introduced based on 
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the human Bristol Stool scale (Table 2, page 33). Additionally, to better characterize microbial 

alterations in the early stage of intestinal inflammation, fecal sample were collected on two to 

three consecutive days of an entire cage if a mouse showed unusual phenotypic symptoms as 

determined by any score being ³ 2. Stool consistency was positively correlated with tissue 

damage (proximal: ρ = 0.67, q = 0.0089; distal: ρ = 0.65 q = 0.0089) and cellular infiltration 

(proximal: ρ = 0.53, q = 0.030; distal: ρ = 0.62, q = 0.013, SRCFDR) in both colon biopsies 

(Figure 10, page 69). Alterations in cytokine expression profiles were not significantly 

correlated with stool consistency except for inflammatory Gro-beta (proximal: ρ= 0.55, q= 

0.030; distal: ρ= 0.52 q= 0.030) and anti-inflammatory TGF (Figure 10, page 69, proximal: ρ =  

-0.46, q = 0.049; distal: ρ = -0.51, q = 0.030, SRCFDR). For distal colonic tissue only, TNF was 

positively correlated with stool consistency (Figure 10, page 69, proximal: ρ =  0.27, q = 0.24; 

distal: ρ = 0.53, q = 0.012, SRCFDR). However, in many mice regular, normal stool consistency 

(score: 1) was associated with tissue alterations and cytokine expression levels indicative of 

inflammation, indicating that stool consistency may not be as sensitive as a marker for 

inflammatory alterations as other phenotypic observations scoring the well-being of mice. 
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Figure 10. Stool consistency was only correlated with tissue inflammation and few 
cytokine levels like Gro-beta and TGF irrespective of colonic location. 
Stool consistency was modified based on the human Bristol Stool scale and correlated with 
histopathological scores and relative cytokine expression to GAPDH of proximal and distal colonic tissue 
and colored based on if the mice showed colitis-related symptoms (symptomatic) or not (asymptomatic) 
throughout the observation. Spearman’s rank correlation with FDR corrected q-values, q> 0.05 ns/not 
significant, q£ 0.05 *, q£ 0.01 **, q£ 0.001 ***, q£ 0.0001 ****; n(wild-type)= 4, n(knockout)= 18. 
Abbreviations: CCL = Chemokine C ligand, GAPDH  = Glyceraldehyde-3-phosphate dehydrogenase, 
Gro-beta = Growth-regulated protein beta, TNF = Tumor necrosis factor, TGF = Transforming growth 
factor beta 
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2. Gut microbial characterization of the IL-10-/- mouse model 

In the still largely unknow etiology of IBD, the microbiota is thought to be a key factor, either 

changing subsequent to inflammatory alterations in the intestinal environment or as trigger for 

abnormal immune responses (Keubler et al., 2015). Therefore, to characterize the role of the 

microbial composition and search for associations with intestinal inflammation during colitis, 

16S rRNA gene amplicons were sequenced in a subset of over 500 fecal samples collected 

throughout the observation, resulting in 11,681,184 and 10,420,814 raw single reads 

respectively for two consecutive sequencing batches. After processing, quality evaluation and 

merging of the two batches, a total 16,731,777 single reads resulting in 900 amplicon 

sequence variants (ASVs) were obtained (Table S3). 

a) Development and litter influences of a healthy murine gut microbial 
community 

Since the reported descriptions of colitis-associated microbial communities vary (Dey et al., 

2013; Franzosa et al., 2019; Gevers et al., 2014; Knoch et al., 2010; Schaubeck et al., 2015; 

Schwab et al., 2014), the determination of the healthy, normal state of the microbiota in each 

experimental set up is advantageous. Therefore, possible influences resulting from the 

experimental design, e.g. co-housing or litter number, on the microbiota of only healthy 

samples (with any score well-being and/or consistency < 2) were examined. 

In line with the body weight progression, the dissimilarity between microbial communities 

based on the Bray-Curtis dissimilarity increased up to 14 weeks of age compared to the day 

of cage allocation for each individual, irrespective of the litter (Figure 11a, page 71). After that, 

again similar to the body weight, microbial changes reached a plateau at around the same 

time the first colitis-related symptoms were observed. Plotting the differences between mice 

by multidimensional scaling revealed differences between genotypes and within KO litters. The 

knockout litter 2 and 4 had the highest compositional dissimilarities compared to the remaining 

knockout litter 3 and the wild type mice (Figure 11b, c page 71; b: Genotype: R = 0.14, p = 

0.001, ANOSIM; PCoA1: q £ 1e-4, PCoA2: q £ 1e-4, WRSTFDR; c: Litter: R = 0.25, p = 0.001, 

ANOSIM; Litter 2: PCoA1: q£ 1e-4, PCoA2: q£ 1e-4; Litter 4: PCoA1: q= 0.0004, PCoA2: q= 

0.002, WRSTFDR, for exact p-values and all comparisons see Table S12). This is in line with 

the observed lower intra-individual dissimilarities for WT and litter 3 knockout mice compared 

to their microbial compositions on the day of cage allocation, as for litter 2 and 4 IL-10 deficient 

animals (Figure 11a, page 71). These were also the only KO litters that developed severe 

signs of colitis during the observation period leading to early withdrawal, which raises the 
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question if litter differences between IL-10 deficient mice were already present on the day of 

cage allocation, or if they developed with time. 

 

Figure 11. Dissimilarities in microbial community compositions between and within 
healthy mice were dependent on the litter rather than the genotype. 
(a) Dissimilarities of microbial compositions within individual mice compared to the day of cage allocation 
are increasing until twelve to 14 weeks of age.  
(b, c) Dissimilarities between mice were stronger clustered based on the litter than the genotype in 
general. Significances above boxplots in (c) refer to comparisons against litter 1 for each group. 
Clustering of healthy (scores <2) microbial community dissimilarities were based on the Bray-Curtis 
Dissimilarity and globally tested via ANOSIM and along each PCoA axis via pairwise Wilcoxon rank-
sum test with FDR corrected q-values only shown if p/q£ 0.05, p/q > 0.05 not significant, p/q£ 0.01 **, 
p/q£ 0.0001 ****; exact p-values for all comparisons are listed in Table S12; n(litter 1 / 2 / 3 / 4)= 79 / 84 
/ 66 / 101 
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To characterize the development of microbial diversity within the first week of cage allocation, 

measurements of alpha diversity considering microbial richness (e.g. the number of observed 

ASVs) and additionally including evenness (e.g. Shannon Index) within a sample were 

compared between genotypes and litters (Figure 12a, b, page 73, Figure S7). Wild-type mice 

had a significantly higher alpha diversity then IL-10 deficient mice irrespective of the 

measurement (Number of observed ASVs: p = 0.0002; Shannon Index: p = 0.0004, WRST). 

Further they were characterized by a trend of a lower bacterial density as determined by the 

number of 16S rRNA gene copies per mg stool (Figure S6, p = 0.12, WRST), which 

significance is likely limited by the lower sample number subset used for the quantitative 

examination. Discriminating litters of IL-10 deficient mice, revealed a significantly lower 

microbial diversity of litter 2 mice compared to all other litters (Figure 12a, b, page 73, Number 

of observed ASVs: qlitter 2 vs 1 £ 1e-4, qlitter 2 vs 3 £ 1e-4, qlitter 2 vs 4 = 0.0004; Shannon Index: qlitter 2 

vs 1 £ 1e-4, qlitter 2 vs 3 = 0.0032, qlitter 2 vs 4 = 0.0014, WRSTFDR). IL-10-/- mice of the second knockout 

litter with early withdrawal (litter 4) also had a lower number of observed ASVs per sample 

compared to WT mice and the healthy KO litter 3 (q4 vs 1 = 0.0044; q4 vs 3 = 0.056, WRSTFDR), 

and a trend of the highest 16S rRNA gene copy number per mg feces (Figure 12a – c, page 

73, q4 vs 1 = 0.17, q4 vs 2 = 0.17; q4 vs 3 = 0.93, WRSTFDR). Contrarily, mice of the healthy KO litter 

3 had a similar alpha-diversity as wild-type mice, despite their different genetic backgrounds 

and origins (Figure 12a, b, page 73, all measurements for litter 3 vs 1 q > 0.05, WRSTFDR, for 

exact p-values see Table S12). All in all, within the first week of cage allocation the bacterial 

diversities and densities varied substantially between mouse litters, even within genetically 

identical mice, suggesting that the microbiota had already been fundamentally shaped before 

cage allocation. 
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Figure 12. The microbial diversity and overall bacterial density depended on the litter 
and genotype in the first week of cage allocation (a-c) and under healthy conditions 
thereafter (d-f). 
The number of observed ASVs, the Shannon Index and the total 16S rRNA gene copy number 
normalized to 1 mg of feces were compared between litters within the first week of cage allocation (a – 
c) and only under healthy (scores < 2) conditions thereafter (d – f). c and f y-axes are log10-scaled. 
Pairwise Wilcoxon rank-sum test with FDR corrected q-values only shown if q£ 0.05, q > 0.05 not 
significant, q£ 0.05 *, q£ 0.01 **, q£ 0.001 ***, q£ 0.0001 ****; exact p-values for all comparisons are 
listed in Supplementary Table S12; a, b: n(litter 1 / 2 / 3 / 4)= 16 / 27 / 16 / 28; c: n(litter 1 / 2 / 3 / 4)= 4 
/ 7 / 4 / 7; d, e: n(litter 1 / 2 / 3 / 4)= 79 / 84 / 66 / 101; f: n(litter 1 / 2 / 3 / 4)= 23 / 24 / 16 / 25 

To determine if these litter differences persisted throughout the observation or if they were 

compensated for by co-housing, the microbial diversity was compared between all healthy 

samples (scores < 2) after the first week of cage allocation until the end of the observation. 

Even after several weeks of co-habitation litter-dependent differences in community richness 

and evenness were observed. WT mice were still characterized by higher alpha diversity 

irrespective of the measurement (Figure S6, Number of observed ASVs: p £ 1e-4; Shannon 

Index: p = 0.0004, WRST) and a significantly lower bacterial density (Figure S6, p =0.005, 

WRST) compared to IL-10 deficient mice in general. Within IL-10-/- litters, the number of ASVs 
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and the Shannon Index continued to be significantly reduced for litter 2 mice compared to the 

others (Figure 12d, e, page 73, Number of observed ASVs: qlitter 2 vs 1 £ 1e-4, qlitter 2 vs 3 £ 1e-4,  

litter 2 vs 4 £ 1e-4; Shannon Index: qlitter 2 vs 1 £ 1e-4, qlitter 2 vs 3 = 0.0006, qlitter 2 vs 4=  0.0004, 

WRSTFDR). Although mice from all litters increased the number of observed ASVs throughout 

the observation, the increase in litter 2 and litter 4 mice was disproportionally higher, 

differentiating healthy litters from the ones that developed colitis again (Δ mean observed 

ASVs numberafter first week - within first week: litter 1= 28.01, litter 2= 81.52, litter 3= 12.84, litter 4= 

71.73). The higher bacterial density in knockout mice from litter 3 and 4 compared to the wild-

type litter persisted throughout the entire co-habitation (qlitter 1 vs 3 = 0.042, qlitter 1 vs 4 = 0.042, 

WRSTFDR), which was only indicated by a trend for litter 2 (Figure 12f, page 73, qlitter 1 vs 2 = 

0.12, WRSTFDR). Taken together, the microbial diversity, as well as the overall community 

composition of healthy mice were characterized by the mouse litter before co-housing and 

even throughout it. Exact p-values as well as descriptive statistics of all comparisons are listed 

in Table S12. 

To determine if co-housing led mice to lose or acquire bacteria, the mean relative abundance 

of genera per litter at each timepoint was calculated and only taxa considered being present 

with a mean litter abundance > 0.01 %. The taxa were then grouped by the number of litters 

in which they were considered being present on the day of cage allocation (day 0), e.g. taxa 

that were abundant in only one, two, three or all four litters before co-housing. Based on this, 

nine taxa were considered being present in only one litter, 14 in two and 25 in three litters at 

the beginning of the experiment (Table 6, page 75). 
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Table 6. List of the mean relative abundance as classified on the day of cage allocation 
and transferability of taxa between litters throughout the observation. 
The mean relative abundance per litter of 110 taxa in total was calculated at each observation and 
grouped depending on the number of litters in which they were abundant at the day of cage allocation. 
Only taxa with a litter mean abundance > 0.01% were considered being present. Severe colitis = one 
score ³ 3 or the sum of all scores ³ 6 leading to early withdrawal of mice 

Abundant on the day of cage allocation In one litter 
only In two litters In three 

litters 
Total number of taxa 9 14 25 

Genotypes 

Only in wild-type litter (# 1) 5 - - 
Only in knockout litters  
(# 2, 3, 4) 4 5 2 

No specific pattern based on 
genotype - 9 23 

Phenotypic 
characterization 

Only in litter 2 1 - - 
In litters except litter 2 8 14 18 
Only in litters that did not 
develop severe colitis  
(# 1, 3) 

7 6 - 

Only in litters that developed 
severe colitis (# 2, 4) 2 - - 

No specific pattern based on 
phenotype - 8 25 

Wild-type mice from litter 1 had the most unique taxa at the day of cage allocation. Five taxa, 

the genera Parabacteroides and Candidatus Soleaferrea and three genera belonging to the 

families Christensenellaceae, Defluviitaleaceae and Ruminococcaceae, were only present in 

mice of litter 1 before co-housing. All of them were thereafter transferred to the knockout litters 

(Figure 13, page 76). Four taxa were found to be present only in one knockout litter: the genus 

Mucispirillum in litter 2, Acetatifactor and Bifidobacterium in litter 3 and Anaerovorax in litter 4 

(Figure 14b, page 77, Figure S7). All of them, except Bifidobacterium, were again transferred 

to the remaining litters. Bifidobacterium on the other hand did not seem to colonize the 

gastrointestinal tract of wild-type at all throughout the observation (Figure S7).  
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Figure 13. Five taxa were substantially more abundant in wild-type mice at the day of 
cage allocation. 
The mean relative abundance per litter was calculated at each observation and taxa considered present 
with a mean relative abundance > 0.01 %. Values were log10-transformed after addition of a 
pseudocount of 0.0001 mean relative abundance. Only healthy samples (scores < 2) colored by litter 
throughout the observation are depicted. Vertical dashed line indicates the first observation of colitis-
related symptoms and horizontal dashed line the pseudocount limit. Locally weighted regression was 
used to smooth abundance and y-axes were log10-scaled. n(litter 1 / 2 / 3 / 4) = 41 / 35 / 30 / 40 

Mice from litter 2 acquired the largest number of new taxa by co-housing. At the day of cage 

allocation, litter 2 mice did not contain 18 taxa that were abundant in all other litters, irrespective 

of the genetic background (Figure 14a, page 77). These taxa were diverse belonging to 

families like Ruminococcaceae (seven genera), Eggerthellaceae (one genus), 

Peptococcaceae (one genus), Lachnospiraceae (five genera), Erysipelotrichaceae (one 

genus), Saccharimonadaceae (one genus), Clostridiales Family XIII (one genus) and the order 

Mollicutes RF39 (one genus).  
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Figure 14. 18 taxa were substantially less abundant in litter 2 compared to all other litters 
at the day of cage allocation. 
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The mean relative abundance per litter was calculated at each observation and taxa considered present 
with a mean relative abundance > 0.01 %. Values were log10-transformed after addition of a 
pseudocount of 0.0001 mean relative abundance. Only healthy samples (scores < 2) colored by litter 
throughout the observation are depicted. Vertical dashed line indicates the first observation of colitis-
related symptoms and horizontal dashed line the pseudocount limit. Locally weighted regression was 
used to smooth abundance and y-axes were log10-scaled. n(litter 1 / 2 / 3 / 4) = 41 / 35 / 30 / 40 

Six taxa were only present in litter 1 and 3, the two litters in which no mice had be withdrawn 

due to colitis. These taxa belonged to the families Ruminococcaceae (two genera), 

Lachnospiraceae (one genera), Erysipelotrichaceae (one genus), and Clostridiales Family XIII 

(two genera) (Figure 15). Again, by co-housing all taxa were transferred to litter 2 and 4 mice 

and increased in relative abundance thereafter. 

 
Figure 15. At the day of cage allocation, six taxa were more abundant in the two litters  
that did not develop severe colitis (#1 and 3). 
The mean relative abundance per litter was calculated at each observation and taxa considered present 
with a mean relative abundance > 0.01 %. Values were log10-transformed after addition of a 
pseudocount of 0.0001 mean relative abundance. Only healthy samples (scores < 2) colored by litter 
throughout the observation are depicted. Vertical dashed line indicates the first observation of colitis-
related symptoms and horizontal dashed line the pseudocount limit. Locally weighted regression was 
used to smooth abundance and y-axes were log10-scaled. n(litter 1 / 2 / 3 / 4) = 41/ 35 / 30 / 40 
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The co-housing of wild-type and knockout mice did not lead to gastrointestinal inflammation in 

wild-type mice, as revealed by histopathology scores as well as cytokine expression profiles 

at the end of the observation (Figure 9, page 67). Furthermore, they even transferred the most 

taxa to other litters than vice versa. Within knockout mice, the microbial community was 

differentially affected by co-housing dependent on the litter. Mice from the only KO litter that 

did not show signs of severe colitis (litter 3, based on one score ³ 3 or the sum of all scores ³ 

6), were more similar based on microbial diversity and community composition to the wild-type 

than to other knockout mice (Figure 11, page 71, Figure 12, page 73, Table S12). The IL-10 

deficient litter that was affected the heaviest by co-housing was litter 2, which was 

characterized by a microbial community changing the most throughout the observation and 

lower alpha-diversity in general. Taken together, under healthy conditions the microbial 

community development and its dynamics were affected by genotype but even stronger by 

litter. Although co-housing was revealed to facilitate microbial exchange, it did not completely 

abolish litter-dependent microbiota compositions. 

b) Microbial alterations during early colitis development and progression 

The development of colitis in the IL-10-/- mouse model is accompanied by intestinal 

inflammation (Kühn et al., 1993), which might further be intertwined with alterations of the gut 

microbiome. Whether the microbiota changes as a consequence of colitis-related intestinal 

inflammation, or if colitis is preceded by altered microbial communities, remains elusive. 

Comparing the bacterial density based on the absolute number of 16S rRNA genes per mg 

stool, revealed a decreased gene copy number in symptomatic mice (scores ³ 2, referring to 

as “colitis” samples), which was not observed in preC samples, i.e. samples of phenotypically 

healthy mice collected up to four days before the first observation of colitis symptoms (Figure 

16a, b, page 80). Any healthy samples collected of a mouse thereafter were classified as “post 

colitis”, which applied to three mice throughout the trial only (# 57, # 58, # 98, Table 1, page 

31). The decrease in fecal bacterial density during colitis was not accompanied by alterations 

in microbial diversity irrespective of the observational time point (Figure S8, Shannon Index 

and Number of observed ASVs, p/q > 0.05). Therefore, the decrease in bacterial density could 

have resulted from increased fecal water contents, as the number of 16S rRNA gene copies 

per mg stool was negatively correlated with stool consistency (Figure 16c, page 80, ρ = -0.47, 

q = 4.03e-08, SRCFDR). 
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Figure 16. During colitis, the excreted fecal water content was increased and 
accompanied by decreased bacterial density. 
(a, b) The bacterial density was based on the total number of 16S rRNA gene copies per mg stool and 
compared between symptomatic “colitis” (scores ³ 2) and asymptomatic “healthy” (scores £ 1) mouse 
samples.  
In (b), the healthy samples were further categorized based on the time of collection, with “preC” referring 
to healthy samples collected up to 4 days prior to the first observation of symptoms and “post colitis” to 
every sample collected after disappearance of colitis symptoms; pairwise WRST with FDR corrected q-
values only shown if q£ 0.05, exact p-values for all comparisons are listed in Supplementary Table S12; 
(c) Stool consistency, colored based on if mice showed colitis-related symptoms (symptomatic) or not 
(healthy), was modified based on the human Bristol Stool scale and correlated with the bacterial density; 
Y-axes are log10-scaled; Spearman’s rank correlation with FDR corrected q-values; q£ 0.05 *, q£ 0.01 
**, q£ 0.001 ***, q£ 0.0001 ****; n(healthy / preC / colitis / post colitis /)= 78 / 4 / 32 / 7 
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While the microbial alpha-diversity was not affected by colitis, differences in community 

compositions between healthy and symptomatic mice were increased based on the Bray-

Curtis dissimilarity (Figure 17, Table S12, R = 0.41, p = 0.001, ANOSIM; PCoA1 axis: p = 3.9e-

9, WRST).  

 
Figure 17. Altered microbiota compositions in mice with colitis. 
Dissimilarities between microbial communities of mice increased in the state of colitis (n= 33) compared 
to asymptomatic mice (n=330), predominately along PCoA axis 1. Microbial community dissimilarities 
were based on the Bray-Curtis Dissimilarity and globally tested via ANOSIM and along each PCoA axis 
via pairwise WRST with p-values only shown if p £ 0.05, p > 0.05 not significant, p £ 0.001 ***, p £ 
0.0001 ****  

To identify which taxon abundances were altered during colitis, a generalized linear mixed 

effect model (GLMM) was used, which allows to incorporate and analyse multiple variables 

likely to affect microbial abundances at the same time, alongside controlling for repeated 

measurements within individuals. In order to examine taxon abundance alterations, the state 

of colitis (scores ³ 2) and the time of sample collection, i.e. the classification of the healthy 

samples into preC and post-colitis were included as independent variables into the model.  

Four taxa were associated with the state of colitis based on both relative and absolute 

abundance: the two families Erysipelotrichaceae and Muribaculaceae, as well as one 

uncultured Bacteroidales genus, which also belongs to the family Muribaculaceae, and the 

genus Lactobacillus. All taxa were characterized by a decrease in abundance during 
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inflammation (Muribaculaceae: qrelative £ 1e-4, qabsolute = 0.027; uncultured Bacteroidales: qrelative 

£ 1e-4, qabsolute = 0.0003; Lactobacillus: qrelative £ 1e-4, qabsolute = 0.041, GLMMFDR), except for 

Erysipelotrichaceae, which increased (qrelative £ 1e-4, qabsolute = 0.0082, GLMMFDR, for log odds 

ratios and statistics of the GLMM see Tables S6 and S7) (Figure 18a, b, page 83, Figures S9, 

S10). For the relative abundance only, the same alterations for the decreasing taxa were also 

observed in healthy samples of mice collected after they recovered from colitis-related 

symptoms, referred to as post colitis (Figure 18a, page 83, Figure S9, Muribaculaceae: q = 

0.0044, uncultured Bacteroidales: q = 0.016, Lactobacillus: q = 0.0051, GLMMFDR). 

Interestingly, a significant alteration for the relative abundances of the uncultured 

Bacteroidales genus (q =  0.035, GLMMFDR) and the family Erysipelotrichaceae (Figure 18a, 

page 83, Figure S9, q£ 1e-4, GLMMFDR), as well as a trend of the same altered absolute 

abundances, was found in preC samples (Figure 18b, page 83, Figure S10). 
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Figure 18. Colitis-specific microbiota signatures based on relative and absolute taxon 
abundances. 
A GLMM was used to model alterations of relative (a, c) and absolute (b, d) taxon abundances of 
microbial community members on genus level based on the phenotype (healthy: well-being and 
consistency score < 2, colitis: scores ³ 2), the time of sample collection (preC: healthy samples up to 4 
days collected prior to symptoms, post colitis: healthy samples thereafter), as well as the litter and cage 
number for all samples collected after the first week of cage allocation. Abundances were centered and 
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scaled after pseudocount addition (a: 0.0001 relative abundance, b: 1 taxon count) and colored by litter. 
Repeated measurements within individuals were controlled for as random effects. BH-adjusted p-values 
only shown if q £ 0.05 with q£ 0.05 *, q£ 0.01 **, q£ 0.001 ***, q£ 0.0001 ****. Significances reported 
refer to comparisons against the healthy state only. The horizontal dashed line indicates the threshold 
of pseudocount addition if no taxon counts were contained in a sample for each taxon respectively. Y-
axes are log10-scaled. (a, c) n(healthy/ preC / colitis / post colitis) = 351 / 16 / 38 / 12, (b, d) n(healthy/ 
preC / colitis / post colitis) = 55 / 4 / 32 / 6 

Additionally, the relative abundance of six genera was significantly associated with colitis, 

including increases of Alloprevotella (qrelative £ 1e-4), Prevotellaceae UCG 001 (qrelative £ 1e-4), 

Bacteroides (qrelative = 0.0002), Erysipelatoclostridium (qrelative £ 1e-4), and Azospirillum sp. 

47_25 (qrelative £ 1e-4) and a decrease of Enterorhabdus  (qrelative = 0.031, all qabsolute > 0.05, 

GLMMFDR) (Figure 18c, d, page 83, Figures S9, S10). For three of these genera, trends of 

absolute abundance alterations were observed, based on FDR uncorrected p £ 0.05 and large 

log of the odds ratios (logOR): increased Azospirillum sp. 47_25 (p = 0.0395, logOR = 7.11, 

1.03 – 13.19 95% Wald confidence interval [CI]), Erysipelatoclostridium (p = 0.059, logOR = 

3.72, -0.09 – 7.53 95% CI) and decreased Enterorhabdus (p = 0.042, logOR = -0.66, -1.29 –  

-0.04 95% CI) (for all taxa qabsolute > 0.05, GLMMFDR, Table S7, Figure S10). The same changes 

were observed as non-significant trends in preC samples of both datasets, indicating that 

microbial alterations might precede colitis onset (Figure 18c, d, page 83, Figures S9, S10). 

Detailed statistics of the GLMM outputs and ORs are listed in Tables S6 and S7. 
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c) Cage and litter additionally attribute to microbiome alterations in the 

context of colitis 

As litter and the co-housing have been shown to determine microbial variations among 

asymptomatic mice (Figure 12, page 73 and Table 6, page 79), litter as well as cage were 

included into the GLMM as independent variables, too.  

The genus Parabacteroides was the only taxon significantly associated with the two cages 

without co-housing of wild type mice (cage 5 and 6) and colitis development (Figure 19a, b, 

page 86, colitisrelative abundance: logOR = -1.0021, -1.0015 – 1.0018 95% CI, q£ 1e-4; cage 5absolute 

abundance: logOR = -15.30, -18.73 – -11.87 95% CI, q £ 1e-4; cage 6 absolute abundance: logOR = -

16.42, -19.82 – -13.03 95% CI, q£ 1e-4, GLMMFDR). Parabacteroides increased in relative but 

not absolute abundance during colitis, and based on the absolute abundance was only 

detected in cages with Swiss WT mice (Figure 19c - f, page 86, Tables S6 and S7). In fact, 

Parabacteroides has been identified before as being only present in the WT litter at the day of 

cage allocation (Figure 13, page 76), suggesting a cohousing-induced transmission to IL-10-/- 

mice. In summary, the example of Parabacteroides illustrates cohousing as an important 

confounding factor in murine studies that in practice can make it difficult to distinguish between 

microbiota associations with co-housing and colitis when only relative abundance data is 

considered. 
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Figure 19. Association of altered Parabacteroides abundances with co-housing and 
colitis. 
Variations of relative (a, c, e) and absolute (b, d, f) abundances of the genus Parabacteroides were 
modelled by GLMM based on the phenotype (healthy: well-being and consistency score £ 2, colitis: 
scores ³ 2), the time of sample collection (preC: healthy samples up to 4 days collected prior to 
symptoms, post colitis: healthy samples thereafter), as well as the litter and cage number for all samples 
collected after the first week of cage allocation. Abundances were centered and scaled after 
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pseudocount addition (0.0001 relative abundance, 1 taxon count) and colored by the cage (c - f). 
Repeated measurements within individuals were controlled for as random effects. BH-adjusted p-values 
only shown if q£ 0.05 with q£ 0.05 *, q£ 0.01 **, q£ 0.001 ***, q£ 0.0001 ****. Significances reported 
refer to comparisons against the healthy state (a - d), litter 1 (a, b) and cage 1 (a, b, e, f) only. The 
horizontal dashed line indicates the threshold of pseudocount addition if no taxon counts were contained 
in a sample for each taxon respectively and y-axes of (c - f) are log10-scaled. (a, c, e) n(healthy / preC 
/ colitis / post colitis) = 351 / 16 / 38 / 12, (b, d, f) n(healthy/ preC / colitis / post colitis) = 55 / 4 / 32 / 6 
 
Litter was linked to compositional microbiota variations in 14 genera based on the absolute 

abundance. Six of the 14 associated genera were additionally linked to colitis and most 

interestingly, all of them were associated with litter 2: uncultured Bacteroidales (qlitter 1 vs 2 = 

0.0024), Muribaculaceae (qlitter 1 vs 2 = 0.00017), Bacteroides (qlitter 1 vs 2 £ 1e-4 ), Enterorhabdus 

(qlitter 1 vs 2 = 0.034),  Prevotellaceae UCG 001 (qlitter 1 vs 2 = 0.0091) and Akkermansia (qlitter 1 vs 2 

= 0.0091, GLMMFDR) (Figure S10, Table S7).  

Of these taxa, the genus Akkermansia was the only taxon which was simultaneously 

associated with colitis (logOR with 95% CI: 5.36, 1.87 – 8.85, q= 0.047) and the two litters with 

severe intestinal inflammation: litter 2 (logOR with 95% CI: 15.33, 9.3 – 21.37, q= 0.009) and 

4 (logOR with 95% CI: 11.47, 5.72 – 17.21, q= 0.048) (Figure 20a, b, page 88, GLMMFDR). The 

link between colitis development, litter and Akkermansia became even more apparent when 

plotting relative and absolute abundances dependent on the mice’s colitis status (Figure 20c, 

d, page 88) and over time (Figure 20e, f, page 88). A high relative and absolute abundance of 

Akkermansia, was only detected in mice from litter 2 and 4, whereas it was mostly absent from 

the healthy knockout litter 3 and wild type mice despite co-habitation (Figure 20e, f, page 88). 

Furthermore, Akkermansia was the only taxon of the colitis and litter-associated bacteria, that 

was not present in preC samples of all 22 mice, suggesting that the presence (relative 

abundance > 0) rather than the abundance of Akkermansia could be a predictor of subclinical 

early colitis (Figure 20e, f, page 88).  
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Figure 20. The genus Akkermansia was associated with an increase during colitis 
relatively and absolutely and was additionally linked to specific IL-10 deficient litter. 
Variations of relative (a, c, e) and absolute (b, d, f) abundances of the genus Akkermansia were 
modelled by GLMM based on the phenotype (healthy: well-being and consistency score £ 2, colitis: 
scores ³ 2), the time of sample collection (preC: healthy samples up to four days collected prior to 
symptoms, post colitis: healthy samples thereafter), as well as the litter and cage number for all samples 
collected after the first week of cage allocation. Abundances were centered and scaled after 
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pseudocount addition (0.0001 relative abundance, 1 taxon count) and colored by cage (c - f). Repeated 
measurements within individuals were controlled for as random effects. BH-adjusted p-values only 
shown if q£ 0.05 with q£ 0.05 *, q£ 0.01 **, q£ 0.001 ***, q£ 0.0001 ****. Significances reported refer to 
comparisons against the healthy state (a - d), litter 1 (a, b) and cage 1 (a, b, e, f) only. The horizontal 
dashed line indicates the threshold of pseudocount addition if no taxon counts were contained in a 
sample for each taxon respectively and y-axes of (c - f) are log10-scaled.  (a, c) n(healthy / preC / colitis 
/ post colitis) = 351 / 16 / 38 / 12, (b, d) n(healthy/ preC / colitis / post colitis) = 55 / 4 / 32 / 6, (e) n(litter 
1 / 2 / 3 / 4)= 105 / 128 / 92 / 150, (f) n(litter 1 / 2 / 3 / 4)= 29 / 30 / 17 / 44 

d) The presence of Akkermansia is a good predictor for early subclinical 
colitis in IL-10 deficient mice 

To further study the potential of predicting which mice would develop colitis and identify the 

factors attributing to it, firth penalized logistic regression (pLR) was used to model if mice had 

to be withdrawn early from the observation due to severe colitis. In these models, the outcome 

is a binary variable (early withdrawal: yes/no), which in the first step is modelled for each 

predictor separately and its prediction is then compared to the baseline model. When this 

single-predictor model significantly improves the prediction of the baseline model, the predictor 

is considered relevant and included into the final multi-predictor model. As predictors, all 

variables associated in this thesis either with colitis far before clinical manifestation (“very early 

colitis susceptibility”, e.g. determined by litter, genotype, the presence of Akkermansia at the 

day of cage allocation and differences in a- and b-diversity of healthy microbial communities), 

immediately before clinical manifestation (“subclinical colitis onset”, e.g. the presence of 

Akkermansia in preC samples), or the experimental set up (e.g. co-housing) were used.  

The only variables that significantly improved the prediction compared to the baseline model 

were the presence of Akkermansia in preC samples (p= 0.00069), litter (p= 0.046) and the 

mean Bray-Curtis dissimilarity between the IL-10-/- and WT mice at the day of cage allocation 

(Table S8, p= 0.047, Likelihood ratio test). Combining them into a single pLR model revealed 

two findings: (1) the potential of the mean Bray-Curtis dissimilarity as very early colitis 

susceptibility marker is masked by interdependencies between the predictors and (2) the 

presence of Akkermansia in preC samples is the only significant predictor for early mice 

withdrawal. 

Although the mean Bray-Curtis dissimilarity improved the prediction, interdependencies 

between predictor and the binary outcome were detected, as indicated by large regression 

coefficients and CIs, which are indicators of almost perfect prediction (Figure S11, Table S9, 

mean Bray-Curtis dissimilarity: p = 0.099, logOR = 51.63, -180.37 – 3.50 95% CI, pLR). This 

almost perfect prediction is determined when one or more predictors separate the binary 

outcome almost perfectly, also known as quasi-complete separation (D. A. Walker & Smith, 

2020). In the present data, the early mice withdrawal is largely explained by the mean Bray-
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Curtis dissimilarity between IL-10-/- and WT mice at the day of cage allocation. Additionally, 

both can be stratified by litter, resulting in early withdrawal of the mice from litter 2 and 4, which 

are also largely characterized by a high mean Bray-Curtis dissimilarity compared to litter 1 and 

3 mice. This indicates the possibility of microbial markers that could determine colitis 

susceptibility very early on, e.g. dependent on the litter, even prior to subclinical mucosal 

inflammations, but which cannot be clearly identified with the present data.  

Nevertheless, including the mean Bray-Curtis dissimilarity into the final pLR model (model 2) 

or not (model 1) resulted in the same finding, which revealed the presence of Akkermansia in 

preC samples to be the only predictor of early mice withdrawal (Figure 21a, page 91, model 1: 

p = 0.023, logOR = 2.47, 0.32 – 5.21 95% CI; Figure S11, model 2: p = 0.018, logOR = 5.91, 

0.498 – 18.06 95% CI, pLR, Table S9). This result was further supported by assessing the 

performance of the models based on samples which were used for modelling (in-sample 

prediction) and based on samples the model was not trained on (out-of-sample prediction). In-

sample prediction was determined by receiver operating characteristics (ROC) curves and an 

area under the curve (AUC) of 0.944 for model 1 (model 2: AUC = 1) (Figure 21b, page 91, 

Figure S11). Out-of-sample prediction was evaluated by a stratified 10-fold cross validation 

(pLRCV) with the data split iteratively into training (80%) and test (20%) sets, which contained 

samples in the original proportion. The best model was determined based on the Akaike 

information criterion (AIC) with an 85% accuracy and a lambda of 0.127 for model 1 (model 2: 

accuracy = 95%, lambda= 0.1004), resulting in similar significant model predictions for the 

presence of Akkermansia in preC samples (model 1: p = 0.017, logOR = 0.986, 0.176 – 1.796 

95% CI; model 2: p = 0.018, logOR = 2.312, 0.393 – 4.230) and a trend for litter 4 (model 1: p 

= 0.06, logOR = 0.723, -0.031 – 1.478 95% CI; model 2: p = 0.078, logOR = 0.947, -0.106 – 

1.999 95% CI pLRCV, Table S10). This suggests that the presence or absence of Akkermansia 

shortly prior to colitis manifestation rather than its abundance predicts severe colitis 

development, pointing towards Akkermansia being a potential subclinical biomarker of early 

colitis onset in IL-10-/- mice. 
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Figure 21. The presence of Akkermansia shortly before the first clinical manifestation 
of colitis is a good predictor for severe colitis development.  
(a) Predictors of early mice withdrawal due to severe colitis were estimated based on Firth penalized 
logistic regression for litter number and the presence of Akkermansia up to four days prior to the first 
clinical manifestation (preC).  
(b) The predictive power of the model was evaluated by receiver operating characteristics (ROC) curve 
indicating a good in-sample prediction with a high area under the curve (AUC). p> 0.05 not significant, 
p£ 0.05 *, q£ 0.01 **, q£ 0.001 ***, q£ 0.0001 ****; n= 22
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IV. Discussion 
Intestinal microbiome perturbations have been linked to multiple and diverse health 

conditions, including metabolic, gastrointestinal, cardiovascular and inflammatory diseases 

(Belizário et al., 2018; Fujimura et al., 2015; Halfvarson et al., 2017; Ohigashi et al., 2013; 

Turnbaugh et al., 2006a). Although there is consensus about which factors can modulate 

the microbiota, developing general guidelines and treatments targeting the microbial 

community is challenging due to huge interindividual (Falony et al., 2016; Schnorr et al., 

2014) and even intraindividual variations over time (Johnson et al., 2019; C. A. Lozupone 

et al., 2012; Poyet et al., 2019). Therefore, the microbiotas potential as target for 

personalized instead of general treatment approaches is of interest. This however requires 

detailed characterizations of microbiota modulations and microbiome-based patient 

stratification, which is investigated in the context of two different microbiome-modulation 

factors and diseases in this thesis: (1) metabolic consequences of dietary microbiome-

modulation by low-carbohydrate high-fat diet (LCHF) with relevance for atherosclerotic 

cardiovascular disease (ACVD), and genetic predisposition to inflammatory bowel diseases 

(IBD) in an IL-10 knockout mouse model. 

A. The microbiota determines cholesterol conversion and is predictive for the 

converter type-dependent LDL-C response to low-carbohydrate high-fat 

diets 

The excess in blood cholesterol is a major risk factor for ACVD (Barquera et al., 2015). 

Besides pharmacological and dietary therapies, limitations of intestinal cholesterol 

absorption by regulating the microbial conversion of both endogenous and exogenous 

cholesterol to non-absorbable coprostanol in the intestine is conceptually appealing as a 

potential alternative (Kriaa et al., 2019). However, the experimental evidence from previous 

studies for the feasibility of this approach is limited. Several studies suggest a causal 

involvement of the microbiota in blood cholesterol regulation, albeit without directly 

implicating microbial cholesterol-to-coprostanol conversion: Germ-free rats (Danielsson, H., 

Gustafsson, 1959) and antibiotically treated ApoE−/− mice, which spontaneously develop 

hypercholesterolemia and are a widely used model to study atherosclerosis (Lo Sasso et 

al., 2016), exhibited elevated serum cholesterol levels (Le Roy et al., 2019), and fecal 

transplantation from humans with excess serum cholesterol to microbiota-depleted ApoE−/− 

mice could replicate these phenotypes (Le Roy et al., 2019). Kenny et al. recently identified 

the bacterial cholesterol dehydrogenase gene ismA, classified humans as encoders and 
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non-encoders based on the presence of ismA-carrying bacterial species in their fecal 

metagenomes, and found decreased serum total cholesterol levels in ismA-encoders 

(Kenny et al., 2020). These findings are consistent with the described reducing potential of 

the intestinal microbiota on cholesterol availability in the gut, although fecal cholesterol and 

coprostanol levels were not determined.  

In the two geographically separated and metabolically distinct human cohorts, i.e. with and 

without obesity, in response to LCHF interventions analyzed herein, no significant 

association between fecal cholesterol or coprostanol concentrations and circulating 

cholesterol levels in the blood was observed, suggesting independent regulatory 

mechanisms for human cholesterol metabolism and microbial cholesterol conversion. 

Conceptually, this could indicate that microbial cholesterol conversion is spatially separated 

from and takes place after human cholesterol secretion and absorption. Microbial 

cholesterol conversion activities have not been mapped within the gastrointestinal tract, but 

may be restricted to the large intestine, where slower transit times, a lack of simple carbon 

sources and lower antimicrobial concentrations favor the growth of fermentative 

polysaccharide-degrading anaerobes, such as members of the taxonomic class Clostridia 

(Donaldson et al., 2015), which includes E. coprostanoligenes, a known cholesterol-to-

coprostanol converter (Freier et al., 1994). In this scenario, rather than affecting cholesterol 

availability in the small intestine, microbial cholesterol-to-coprostanol activity could be 

dependent on cholesterol concentrations in the large intestine. It may thereby reflect 

cholesterol remainders after small intestinal passage and serve as a potential indicator of 

the net outcome of cholesterol intake and absorption. 

The rate of cholesterol-to-coprostanol conversion varies between individuals, following a 

bimodal distribution of high and low-converters based on the ratio of fecal 

coprostanol/cholesterol concentrations (Salyers et al., 1977; Veiga et al., 2005; Wilkins et 

al., 1974). Previous studies reported similar fractions of high and low cholesterol-to-

coprostanol converters in human populations from different European countries (Benno et 

al., 2009; Norin, 2008), the converter type being stable in individuals over at least several 

days (Kunz et al., 2019), and a decrease in the proportion of low-converters among male 

elder individuals (Benno et al., 2009; Norin, 2008). However, the longer-term stability of 

intestinal cholesterol conversion, its dependence on diet, and its relevance for human 

circulating cholesterol levels and metabolic health have not been conclusively determined 

yet (Juste et al., 2021). Herein, conserved fractions of cholesterol high and low-converter 

types were found in two independent, German and Norwegian, cohorts of individuals with 
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(CARBFUNC) and without (KETO) obesity, despite adverse metabolic health parameters 

in individuals with obesity (increased triacylglycerides [TAG] and low-density lipoprotein 

cholesterol [LDL-C] and decreased high-density lipoprotein cholesterol [HDL-C] levels). 

Moreover, LCHF diets led to consistent increases in cholesterol-to-coprostanol conversion 

in low-converters from both cohorts, despite differences in the ketogenic potential of the 

LCHF diets. The findings therefore suggest that cholesterol converter types represent an 

obesity-independent organizational feature of the human fecal microbiome that is 

conserved across different European regions and is amenable to modulation by LCHF 

dietary intervention. 

Among lean study participants only, the high cholesterol-to-coprostanol converter type was 

associated with increased serum TAG and decreased HDL-C levels compared to the low-

converter type. Furthermore, lean cholesterol high-converters responded to the ketogenic 

LCHF diet with a greater increase in LDL-C. In support of these distinctive LDL-C responses 

in lean individuals, a recent study also reported that lean people with low TAG and high 

HDL-C experienced a marked increase in LDL-C when adopting a LCHF diet, unlike people 

with obesity who showed a blunted increase (Norwitz et al., 2022). The data herein suggest 

that cholesterol high-conversion may contribute to diet-induced serum lipid responses or at 

least serve as a prognostic biomarker to predict such inter-individually variable, 

personalized responses. Whether the increase in LDL-C translates into an elevated 

cardiovascular disease risk or possibly reflects a homeostatic adaptation to redistribute 

cholesterol molecules between specific cells and tissues in response to increased dietary 

fatty acid intake, as proposed in the homeoviscous adaptation to dietary lipids model 

(Zinöcker et al., 2021), remains to be determined. 

Cholesterol conversion has previously been demonstrated in vitro for a taxonomically 

diverse set of bacterial isolates, including from the genera Bacteroides (Gérard et al., 2007), 

Bifidobacterium (Zanotti et al., 2015), Eubacterium (Freier et al., 1994), and Lactobacillus 

(Lye et al., 2010). Kenny et al. metagenomically mapped homologs of the bacterial 

cholesterol dehydrogenase gene ismA to E. coprostanoligenes and different species within 

the phylogenetic Clostridium cluster IV, but found no evidence for their presence in available 

genome sequences from the bacterial genera listed above (Kenny et al., 2020). The findings 

herein do not suggest a broadly distributed microbial capacity for cholesterol-to-coprostanol 

conversion, as only E. coprostanoligenes, the well-described cholesterol-converting 

bacterial species originally isolated from a hog sewage lagoon (Dewei et al., 1996; Freier 

et al., 1994; L. Li et al., 1998), and to a lesser extent Ruminococcaceae UCG 014, showed 
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consistent positive correlations to fecal coprostanol levels, both in individuals with and 

without obesity. Moreover, the data argue against the previously suggested, ismA 

detection-based, categorical classification of individuals as either cholesterol converters or 

non-converters (Kenny et al., 2020), as E. coprostanoligenes was detected in the vast 

majority of fecal samples (96%) and individuals (97.6%) from both cohorts. The cholesterol 

converter phenotype therefore appears to be dependent on the relative abundance rather 

than the presence or absence of E. coprostanoligenes or other species with similar genetic 

potential for cholesterol-to-coprostanol conversion.  

In contrast to coprostanol, which is only generated by microbial cholesterol conversion, the 

fecal concentration of cholesterol is dependent on a complex interplay of dietary intake, 

endogenous production, secretion, absorption, and microbial conversion (Juste et al., 

2021). Accordingly, a positive correlation of the genus Lachnoclostridium with fecal 

cholesterol concentrations was identified, but no association with coprostanol. This genus 

has previously been linked to adverse phenotypes and clinical conditions, including visceral 

fat (Nogal et al., 2021), increased serum total cholesterol and LDL-C (Y. Wang et al., 2020), 

trimethylamine-N-oxide (TMAO) biosynthesis (Jameson et al., 2016), colorectal cancer (T. 

Li et al., 2020), and in mice, azoxymethane/dextran sulfate sodium (AOM/DSS)-induced 

colitis (C.-S.-E. Wang et al., 2018), and high-fat diet (Jo et al., 2021). Nevertheless, 

functional studies will be needed to determine if the genus Lachnoclostridium has a direct 

detrimental effect on human health and if E. coprostanoligenes and Lachnoclostridium 

could serve as biomarkers for distinct but complementary components of the human and 

microbial cholesterol metabolism. 

The human dietary intervention study has several limitations: Despite the inclusion of two 

distinct cohorts, the overall patient numbers and especially the fraction of cholesterol low-

converters, which represents only a minor proportion of both cohorts, are very small, 

providing limited statistical support for comparative analyses. Different metabolic health 

backgrounds and responses of the study participants with and without obesity to the distinct 

dietary interventions, i.e. a ketosis-inducing LCHF diet of six weeks (KETO study) or a LCHF 

diet with limited ketosis induction for six months (CARBFUNC study), introduce additional 

confounding factors. However, the combination of these two heterogeneous cohorts was 

also instrumental in the identification of what appear to be conserved structural microbiome 

features, i.e. the stratification of microbiomes into a larger cholesterol high-converter 

fraction and a smaller low-converter fraction that can be increased with LCHF dietary 

modulation. Moreover, no significant differences in fecal sterol and stanol concentrations 
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and serum lipid levels were detected between the three and six months’ time points after 

LCHF diet intervention in the CARBFUNC study (p > 0.05, Wilcoxon ranked-sum test), 

attesting to the temporal robustness of the reported findings. Finally, a shotgun 

metagenomics approach for fecal microbiota analysis could potentially identify associations 

between specific orthologous gene groups or metabolic pathways and microbial cholesterol 

conversion. However, since the mechanistic and genetic basis of cholesterol-to-coprostanol 

conversion, which based on the correlation analysis appears to be mostly restricted to 

Eubacterium coprostanoligenes, remains largely unknown, the added value of a 

metagenomic sequence analysis may still be limited at this point. 

In summary, the findings are in agreement with a model that explains individual intestinal 

cholesterol-to-coprostanol converter types as a result of long-term dietary or other habits. 

They do not indicate a hypocholesterolemic effect of intestinal microbial cholesterol 

conversion but point to an adverse response of increased LDL-C levels to ketogenic diet in 

lean cholesterol high-converters. Finally, the data suggest potential relevance of the 

cholesterol converter type as a personalized microbiome marker for metabolic health and 

response to dietary intervention. 

  



Discussion 

 97 

B. The presence of Akkermansia is a subclinical marker for early colitis in IL-

10 deficient mice and colitis susceptibility is associated with litter-specific 

microbiota compositions 

The knockout of the anti-inflammatory cytokine IL-10 in mice leads to spontaneous colitis 

development and resembles histopathological alterations similar to IBD in humans, 

particularly of Crohn's disease (CD), which are characterized by inflammatory cell infiltration 

into the lamina propria and submucosa, and transmural, discontinuous inflammatory lesions 

(Bleich et al., 2004; Kühn et al., 1993). Furthermore, they are accompanied by altered 

expression profiles of increased proinflammatory cytokines like Tumor necrosis factor alpha 

(TNF), Chemokine C ligand (CCL) 2 and CCL3, and a decrease of anti-inflammatory 

Transforming growth factor (TGF) (Berg et al., 1996; Hagenlocher et al., 2016). As these 

pathological changes can only be evaluated after withdrawing mice from an observation, 

characterizations of colitis based on the phenotypic scoring of the mice’s well-being have 

been proposed: disproportional weight loss (> 10%), changes in behavior and appearance, 

and absolute criteria indicating a severe state of disease like rectal prolapse or bleeding 

(Hagenlocher et al., 2016). Herein, the phenotypic scoring parameters mirrored the state of 

inflammation during colitis well based on histopathological examinations and cytokine 

expression, which validates the classification of mice into asymptomatic/healthy (any score 

based on the mice’s well-being < 2) and symptomatic (any score based on the mice’s well-

being ³ 2) mice throughout the observation.  

IBD diagnosis and differentiation of IBD subtypes in humans is also limited to 

gastrointestinal endoscopy and histopathological evaluation of mucosal tissue (Maaser et 

al., 2019), which are conducted commonly only after symptomatic manifestations. But 

recent studies report inflammatory processes in the mucosa to precede symptoms 

(Rodríguez-Lago et al., 2020; Torres et al., 2021), which imposes the question of how colitis 

should be defined and measured to include pre-clinical periods. As routinely gastrointestinal 

endoscopies are cost-intensive and inconvenient for the patient, the identification of non-

invasive, subclinical biomarkers is of main interest.  

Stool consistency, as measured by the Bristol Stool Scale (Lewis & Heaton, 1997), is 

proposed to be one of these potential biomarkers since pathological alterations of IBD are 

often accompanied by changes in stool consistency, mostly diarrhea (Mowat et al., 2011). 

It is also associated with microbiome markers like species richness and the growth of 

specific bacterial community members, most likely due to altered gastrointestinal transit 

times (Vandeputte et al., 2016). Although a positive correlation of increasing stool 
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consistency and histopathological scores was observed in the presented work, associations 

with the cytokine expression profile were inconsistent. Stool consistency was further 

negatively correlated with the fecal bacterial density as estimated based on the 16S rRNA 

gene copy number per mg stool, which was significantly reduced in symptomatic mice. This 

suggests stool consistency as an important but independent parameter of microbial 

ecology, which is not as sensitive as indicator of colitis in mice as the established scores. It 

rather changes in later stages of inflammation, subsequent to early events, as it is 

associated with signs of severe inflammation that lasted over a longer period, e.g. tissue 

alterations, rather than cytokine expressions, which are released from cells in short-terms 

upon activation (J.-M. Zhang & An, 2007).   

Colonization of germ-free IL-10 deficient mice with conventional and specific pathogen free 

(SPF) microbiota was shown to lead to intestinal inflammation within one week after 

treatment (Sellon et al., 1998). One perception in the multihit model etiology of IBD is that 

an abnormal immune response against commensals of the intestinal microbiota triggers 

colitis in genetically susceptible individuals rather than the presence of particular pathogens 

(Keubler et al., 2015). But whether alterations of the commensal community provoke the 

immune response or if the microbiota changes subsequently to it, is still an open question. 

Despite inconsistent descriptions of IBD-associated bacterial communities in humans, they 

appear to generally be characterized by reduced microbial diversity (a-diversity) (Franzosa 

et al., 2019; Sellon et al., 1998). In the present study, no reduction in neither microbial 

richness nor eveness due to intestinal inflammation was found. Nevertheless, colitis-related 

communities were associated with higher dissimilarity of the microbiota composition (b-

diversity) compared to healthy animals, as well as decreased overall bacterial microbiota 

density as estimated based on the 16S rRNA gene copy number per mg stool. This 

suggests compositional and quantitative microbiota alterations to happen during colitis, 

without a concomitant loss of a-diversity in IL-10-/- mice. One study previously reported 

reduced fecal microbial cell densities in patients with CD compared to a healthy cohort 

based on the enumeration of microbial cells via flow cytometry (Vandeputte et al., 2017), 

which is in line with the herein reported lower bacterial density of 16S rRNA gene copies 

per mg stool in symptomatic mice measured by quantitative polymerase chain reaction 

(qPCR). In the present work, the bacterial density was also negatively correlated with stool 

consistency which could result from shorter transit time during intestinal inflammation and 

therefore higher water and mucus content and lower numbers of bacteria excreted per mg 

feces (Lewis et al., 1997; Vandeputte et al., 2016).  
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Although the knockout of the IL-10 gene sufficiently induces spontaneous colitis in mice, 

colitis susceptibility varies between IL-10-/- murine strains depending on their genetic 

background. Inbreed IL-10 deficient C57BL/6J mice are relatively resistant to spontaneous 

intestinal inflammation, whereas others are highly susceptible and show first signs of 

inflammation shortly after weaning, e.g. 129/SvEv mice (Berg et al., 1996; Bristol et al., 

2000; Mähler & Leiter, 2002), which has been attributed to multiple variations in quantitative 

trait loci (Beckwith et al., 2005; Farmer et al., 2001). The IL-10 deficient mice used in the 

present study have a BALB/c genetic background and are characterized by intermediate 

colitis susceptibility when comparing the percentage of sick mice and colonic disease 

scores to IL-10 deficient C57BL/6J and 129/SvEv mice (Berg et al., 1996). Berg et al. found 

100% of BALB/c IL-10 knockout mice to be affected by colitis after twelve weeks, similar to 

the 129/SvEv strain, but with lower severity scores and intestinal inflammation (Berg et al., 

1996). Compared to this study, mice herein were less susceptible to colitis, with only one of 

18 mice (5.5 %) being withdrawn from the observation at three months of age. By the end 

of the experiment, after 20 weeks, 50% (9 of 18) of IL-10 deficient mice showed severe 

signs of intestinal inflammation. These variations relative to the literature could be 

attributable to environmental factors such as the animal facility. Even mice with the same 

genetic background, as well as their subsequent F1 generations have been reported to 

show consistently reduced histopathology scores in one facility over another, arguing for 

influences of the mice’s surrounding and habitation setting (Mähler et al., 2002). Also, the 

experimental set up could explain the delayed spontaneous intestinal inflammation, as IL-

10 deficient mice were co-housed with wild type mice, leading to transmission of fecal 

bacteria between cohabitated mice due to their coprophagic trait, which could potentially 

affect colitis susceptibility.  

For various measurements independent and dependent on the microbiota, a stratification 

based on the IL-10-/- litter was observed. Although all IL-10 deficient mice reached a stable 

body weight at 14 weeks of age, the average mature weight differed between litters, 

revealing litter 3 to be the heaviest and therefore more similar to the wild type mice. This 

litter was also the only knockout litter that did not develop severe intestinal inflammation, 

which classifies litter 2 and 4 as colitis-sensitive litters and litter 3 as resistant litter. 

Multiple conditions of microbial ecology were linked to the same classification. Differences 

in microbial composition based on the Bray-Curtis dissimilarity between IL-10-/- and WT 

mice on the day of cage allocation clustered litters with and without severe colitis 

development and improved the prediction of early mice withdrawal. This points towards 
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potential microbial colitis susceptibility markers very early on associated with litter, but which 

cannot be identified further with the present data. The same cluster into colitis-resistant and 

colitis-sensitive litters was obtained when including only healthy samples collected after the 

first week of cage allocation, arguing for litter-dependent microbial signatures that cannot 

be completely abolished by co-housing. This is in line with recent findings of Singh et al., 

who associated the microbial variation in a co-housing set up between wild-type and colitis-

prone-mdr1a deficient mice significantly with 98% accuracy to maternal trait over 80% by 

cage via random forest modelling. Also, the genotype was not significantly associated at all 

in the model (Singh et al., 2021). Consistent differences in microbial richness and evenness 

within the first week after cage allocation and thereafter identified higher bacterial diversity 

in the colitis-resistant relative to the colitogenic litters, which is in line with other studies that 

distinguished more and less IBD-sensitive microbial communities based on a-diversity 

measurements (Knoch et al., 2010; Maharshak et al., 2013; Wohlgemuth et al., 2011).  

The influence of the microbiota on colitis susceptibility was further supported by the fact, 

that litter 2, the litter that was most prone to early intestinal inflammation, was generally 

characterized by low a-diversity and distinct microbial compositions before cohousing 

compared to the others litters. At the day of cage allocation, 18 taxa were abundant in all 

litters except for litter 2, revealing it to be the most influenced by co-housing, as it acquired 

all of these taxa later on. Contrarily, the IL-10-/- litter 3 which did not develop severe colitis, 

was the most similar to the wild type mice based on the microbiota composition.  

Differences between IL-10 deficient litters could not be explained by familial relationships 

as all litters contained different parental animals. Furthermore, none of the mothers were 

directly related, which has been reported to influence microbial communities even over 

more than one generation (Hufeldt et al., 2010; Ley et al., 2005; Singh et al., 2021; 

Stappenbeck & Virgin, 2016). Litter 2 and 4 mice were only indirectly related as they shared 

the same grandfather on the father’s site. Bodden et al. recently reported the phenotype but 

only minorly the microbiota to be altered in mice when their fathers were fed a Western style 

diet (Bodden et al., 2022). Although paternal inheritance has been shown to influence the 

next generation, e.g. by epigenetic modification of the germ cells (A. M. Edwards & 

Cameron, 2014), to my knowledge no reports of microbial alterations spanning two 

generations and specifically in IL-10 deficient mice have been published yet. Therefore, and 

as no further information about the paternal grandparents is available, the potential 

influence of the father’s epigenetic modification on colitis susceptibility cannot be completely 

ruled. 
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Taken together, these findings revealed colitis susceptibilities to differ between genetically 

similar mice and to potentially dependent on the microbiota composition they adapted early 

on in life within their litter. These litter-specific traits could contribute to heterogeneous 

descriptions of microbial communities between studies and identify litter as an important 

confounding factor in vivo studies. This is concerning and should be critically considered 

regarding mouse studies that typically aim to control for such effects with a short co-housing 

adaptation phase. 

Differences in the early developmental window in the life of mice might also attribute to litter-

specific colitis susceptibilities. The body weight, as well as dissimilarities between microbial 

communities increased continuously and simultaneously within the first twelve to 14 weeks 

of age and reached a stable state thereafter irrespective of the mice’s’ genotype. 

Interestingly, spontaneous colitis development was also first observed after 14 weeks of 

age. The definition of mature, adult mice differs between studies, ranging from six to 20 

weeks of age. Most often sexual maturation around six weeks of age is used as a hallmark 

(Drickamer, 1981), which does not necessarily represent fully developed animals as many 

systems take longer to mature, e.g. the maturation of T-cell responses can take up to eight 

weeks of age (Holladay & Smialowicz, 2000) and T- and B-lymphocyte production has been 

shown to increase up to 26 weeks after birth (Kincade, 1981). Similarly in humans, the 

development of a resilient microbial community takes place especially in early stages of life 

within the first two to three years, reaching an equilibrium under healthy conditions in adults 

(J. E. König et al., 2011; Yatsunenko et al., 2012). In the present work, a direct impact on 

the microbiome of dietary transition from nursing to solid food can be neglected as all mice 

had access to solid food before weaning, which usually happens at three weeks of age, and 

mice commonly start to nibble on solid food two weeks after birth (B. König, 1994; B. König 

& Markl, 1987; Krackow & Hoeck, 1989). Taken together, this suggesting a co-dependency 

between the adulthood of mice and the maturation of the immune system as well as the 

microbiota for colitis development, being in line with the multihit model etiology hypothesis 

for IBD (Keubler et al., 2015). 

When general community changes due to colitis were assessed using generalized linear 

mixed effect models (GLMM), ten bacterial taxa, which are all commensals of the murine 

gut (Gordon & Dubos, 1970; Yang et al., 2019), were significantly associated with the state 

of colitis based on their relative abundance: the genera Lactobacillus, Alloprevotella, 

Bacteroides, Erysipelatoclostridium, Enterorhabdus and Azospirillum sp 47_45, as well as 
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a genus of the families Prevotellaceae and Erysipelotrichaceae each, and two genera of 

the family Muribaculaceae.  

Associations between colitis and six of these taxa (Alloprevotella, Bacteroides, 

Erysipelatoclostridium, Enterorhabdus, Prevotellaceae UCG 001 and Azospirillum sp 

47_45) could not be validated by absolute abundances determined by qPCR of the 

universal 16S rRNA gene. Only trends similar to the changes in the compositional data were 

observed. This could either mean that (1) these taxon alterations are not characteristic for 

colitis-specific microbiota compositions at all, or that (2) quantitative measurements are 

limited in statistical support. The first reason could be explained by characteristics of 

compositional data. As they are based on the fractions of each samples’ composition, they 

often overestimate relative abundance alterations. Changes in abundance of one taxon 

alter the relative abundances of all other community members as well although their actual 

numbers might not have changed (Gloor et al., 2016). The second reason could be 

attributed to differences in sample sizes. For the compositional approach over 500 samples 

were analyzed whereas only a subset of 120 samples was used for quantifications of the 

16S rRNA gene, suggesting also lower sample sizes to diminish statistical significances. 

Although all of these six taxa have been described in the context of intestinal inflammation 

before and more or less consistent between studies, their potential involvement in colitis 

development in IL-10-/- mice cannot be clarified based on the present data.  

Contrarily, evidence for colitis-specific abundance alterations of the remaining four bacteria 

was supported by the quantitative measurements, associating a decrease of Lactobacillus 

and two genera belonging to the family Muribaculaceae, as well as an increase of the family 

Erysipelotrichaceae with colitis. 

Members of the Lactobacillus genus have been immensely studied and used as probiotic 

for treatment of IBD and gastrointestinal infections (Macfarlane GT, 2002; Madsen, 2001) 

due to reported immune modulating properties, e.g. regulating cytokine production in 

dendritic and intestinal mucosa cells (Christensen et al., 2002; Peña et al., 2004; Perdigó 

et al., 2002). Furthermore, supplementation with a strain of L. reuteri attenuated 

inflammation in neonatal IL-10 deficient 129 Sv/Ev mice. These mice are characterized by 

high colitis susceptibility and are simultaneously reported to contain decreased relative 

abundances of Lactobacillus two weeks after birth, which the authors interpreted as a 

potential microbiota indicator of increased colitis susceptibility. (Madsen et al., 1999) 

Members of the family Muribaculaceae have been reported as potential mucus degraders 

due to their capability to hydrolyze mucus-derived carbohydrates (Lagkouvardos et al., 

2019). They also have been suggested as ecological gatekeepers for healthy microbial gut 
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communities with resilience to Clostridioides difficile infection by limiting nutrient availability 

and preventing colonization (Pereira et al., 2020). Furthermore, culture-independent studies 

linked the abundance of Muribaculaceae genera to short-chain fatty acid (SCFA) production 

in mice promoting gut barrier functions by increasing availability of energy substrates for 

intestinal epithelial cells (Ormerod et al., 2016; Smith et al., 2019). Therefore, decreased 

levels of these beneficial commensals in the state of colitis could reduce maintenance of 

gut homeostasis in the host leading to a loss of stability and function favoring inflammation. 

The family Erysipelotrichaceae, which was increased during colitis in IL-10 deficient mice, 

has been found to be enriched during acute inflammation in DSS-treated wild type C57BL/6 

mice (Schwab et al., 2014). Immunogenic properties of this family have been linked to 

Human Immunodeficiency Virus (HIV) and IBD, as one Erysipelotrichaceae species is 

identified to be highly coated with intestinal immunoglobulin A (IgA) relative to other gut 

microbes (Palm et al., 2014). The transfer of highly IgA coated bacterial consortia containing 

Erysipelotrichaceae spp. to germ-free mice further triggered more severe DSS-induced 

colitis compared to IgA-negative bacterial communities as shown by the authors. 

Schaubeck et al. reported Erysipelotrichaceae enrichment in mice with TNF-driven CD-like 

transmural inflammation (Schaubeck et al., 2015), supporting the findings of a positive 

correlation between Erysipelotrichi relative abundance and TNF levels in chronic HIV 

patients receiving suppressive antiretroviral therapy compared to healthy controls (Dinh et 

al., 2015). Nevertheless, results of human and murine studies have also been contrary 

especially in the IBD context, as a decrease in Erysipelotrichaceae was found in patients 

with recurring CD (Dey et al., 2013) and new-onset CD (Gevers et al., 2014), arguing for 

inter-host variation potentially resulting from differences in microbial gut communities 

between mice and humans and/or sensing of bacterial ligands in innate immune responses 

(Nguyen et al., 2015; Zschaler, J., Schlorke, D., and Arnhold, 2014). Furthermore, the 

current lack of well-characterized members of the Erysipelotrichaceae family limits 

transferability from in vivo studies to humans, as differences between species and even 

strains within a taxonomic family could results in varying metabolic or immunogenic 

properties (Kaakoush, 2015; Lloyd-Price et al., 2017; Podlesny et al., 2022; Schirmer et al., 

2019).  

As colitis-specific microbiota alterations, such as of Erysipelotrichaceae and one genus of 

Muribaculaceae, were also observed before the onset of colitis phenotypes, microbiota 

alterations specific to colitis in IL-10 deficient mice could be indicative of hidden 

inflammations even before clinical manifestation of colitis.  
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Litter and co-housing were additionally identified by the GLMM to explain variation within 

the taxonomic composition. Numbers of 16S rRNA gene copies per mg stool attributed to 

Parabacteroides revealed its absence in cages without wild-type mice. Also, comparisons 

on the day of cage allocation identified only wild-type mice to contain Parabacteroides, 

suggesting that alterations of Parabacteroides abundance might rather be related to 

transmission between genotypes via co-habitation than to colitis development. This is 

further supported by comparisons between knockout mice that developed colitis and those 

that did not, showing that also healthy mice acquired Parabacteroides throughout the 

observation and that IL-10 knockout mice absent of this genus still developed intestinal 

inflammation. Parabacteroides, a gut commensal found in healthy wild-type mice (J. Wang 

et al., 2019) and humans (Falony et al., 2016), has been identified in the context of intra-

abdominal infections first, but specific species such as P. goldsteinii have also been 

associated with the improvement of insulin resistance, obesity and chronic obstructive 

pulmonary disease (Chang et al., 2015; Wu et al., 2019). The P. goldsteinii strain MTS01 

has also been recently proposed as a probiotic to mitigate Helicobacter pylori-induced 

infections (Lai et al., 2022). Further, Cuffaro et al. isolated P. distasonis from human 

neonatal and adult intestines, which showed the potential to restore gut barrier functions, 

reinstate the epithelial barrier, exert anti-inflammatory potential in vitro, and to protect mice 

from chemically induced colitis by Trinitrobenzene sulfonic acid (Cuffaro et al., 2020). They 

determined the anti-inflammatory potential to be mediated by IL-10 induction, which could 

be a reason why no beneficial effect on the IL-10 deficient mice was observed in the present 

study. Taken together, positive associations of Parabacteroides relative abundance and 

colitis are more likely to be compositional artifacts than to contribute actively to colitis 

development. This genus is not a commensal in the present IL-10 knockout mouse model 

and was only acquired by them via the co-housing with wild-type mice, which did not further 

seem to affect the colitis development in IL-10-/- mice after acquisition. 

Mice that showed colitis-related symptoms were characterized by either very high (>1% 

relative abundance, >107 attributed gene copies per mg stool) or no abundance of the genus 

Akkermansia. This clustering was also litter-specific revealing high abundances in mice with 

severe inflammation, which belonged only to litter 2 and 4, and absence of Akkermansia in 

mice of the two litters with only mild and temporary colitis-related symptoms (litter 1 and 3). 

Assessing Akkermansia abundance over time and including asymptomatic samples, further 

revealed only samples from litter 2 and 4 mice to contain high relative and absolute 

abundances despite their co-housing with the colitis-resistant IL-10-/- litter 3. Additionally, 

only the presence of Akkermansia shortly before (up to four days) the first symptomatic 
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observation, was determined to be a good predictor of early mice withdrawal due to severe 

colitis. These observations point towards Akkermansia being a potential subclinical marker 

of early colitis rather than triggering its development actively.  

Akkermansia, a gut commensal represented by only one known species up to date A. 

municiphila, is controversially discussed in the literature (Cirstea et al., 2018; de Vos, 2017; 

Derrien et al., 2017). Due to its ability to degrade mucin, it has been characterized as 

resident of the mucus layer, where it is thought to exhibit beneficial effects, e.g. via the 

production of propionate and acetate (Derrien et al., 2010). Animal and human studies have 

associated reduced relative abundance of Akkermansia with metabolic conditions like 

obesity (H. Zhang et al., 2009), dyslipidemia (Brahe et al., 2015) and type 2 diabetes (X. 

Zhang et al., 2013). But high A. municiphila fecal relative abundances have also been 

reported in neurological diseases including Parkinson’s disease (Heintz-Buschart et al., 

2018; Hill-Burns et al., 2017), multiple sclerosis (Berer et al., 2017; Cekanaviciute et al., 

2017) and Alzheimer’s disease (Vogt et al., 2017). Not only between but also within 

conditions the same controversial role is discussed, e.g. in IBD. Most studies report reduced 

levels of A. municiphila during colitis (Lopez-Siles et al., 2018; Papa et al., 2012; Png et al., 

2010; T. Zhang et al., 2021) contradicting findings of others (Danilova et al., 2019; Ganesh 

et al., 2013). These contrary findings are likely to be attributed to strain variability, the 

pathogenic context and in vivo models used as explained in the following.  

For example, reported anti-inflammatory properties of A. municiphila are identified to only 

be exhibited by certain strains, such as human but not murine isolates (Guo et al., 2017; 

Zhai et al., 2019). Contrarily, administration of Akkermansia to SPF IL-10 deficient mice was 

enough to induce spontaneous colitis development (Seregin et al., 2017). The authors 

demonstrated this induction to be mediated by lipopolysaccharide (LPS), a component of 

the outer cell wall of gram-negative bacteria such as Akkermansia, which is sensed by Toll-

like receptor (TLR) 4 and MyD88 signaling during spontaneous colitis. 

Furthermore, Akkermansia might only exhibit detrimental effects depending on the 

pathogenic context as shown in co-occurrence with the pathogen Salmonella typhimurium 

in mice colonized with a human mimicking microbiota (Ganesh et al., 2013). Under this 

condition, Akkermansia is thought to exhibit harmful effects passively, e.g. by reducing the 

mucus barrier and elevating accessibility of pathogens to the intestinal mucosa, which 

facilitates their translocation (Desai et al., 2016; Seregin et al., 2017; A. W. Walker, 

Sanderson, et al., 2011; T. Zhang et al., 2021). Also, only mild colitis was found in A. 

municiphila monocolonized germ-free IL-10 deficient mice compared to severe 

inflammation in SPF mice gavaged with A. municiphila (Seregin et al., 2017), which 
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supports the context-dependent colitogenicity and potentially synergistic effect of 

Akkermansia and the microbial community.  

As Akkermansia is a resident of the mucosal layer, a high fecal abundance might indicate 

a higher excretion of mucus, which is characteristic for IBD patients and a sign of intestinal 

inflammation (Hendrickson et al., 2002), stressing the role of high A. municiphila relative 

abundance in feces as an early indicator of colitis development. Taking everything into 

consideration, the importance of Akkermansia entering the microbial community in 

susceptible hosts and its subsequent growth and high excretion is highlighted to be a good 

indicator of subclinical early colitis in the IL-10 knockout mouse model. 

In summary, the microbial community characterization of IL-10 deficient mice throughout 

their maturation and the development of spontaneous colitis revealed that (1) intestinal 

inflammation is characterized by global microbial alterations, (2) susceptibility to 

spontaneous colitis is influenced by the mouse litter and (3) not attenuated by co-housing 

with wild-type mice. The increased litter-dependent susceptibility was further associated 

with the presence of Akkermansia in mature mice, which was revealed to be a good 

predictor for severe colitis development shortly before symptoms manifest. 
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C. Individual microbial traits are important to consider for clinical outcomes 

The herein examined taxonomic microbiota characterizations during LCHF dietary 

interventions, as example of an extrinsic, modifiable microbiota-relevant factor and genetic 

deficiency of IL-10 in mice exemplary of an intrinsic, non-modifiable microbiota-relevant 

factor both identified individual traits as being important for intervention outcomes. 

Personalized medicine approaches, in which treatments and medical decisions are tailored 

based on an individual’s genetic profile or other biomarkers, are emerging in the last two 

decades since the human genome sequence has been steadily decoded (Yamamoto et al., 

2022). In cancer and rare diseases therapy, precision medicine approaches are most 

advanced and hold the promise to improve treatment outcomes, reduce adverse events 

and decrease healthcare costs (Kashyap et al., 2017). With improving resolution and lower 

costs of sequencing techniques, the microbiota has become of increasing interest for 

personalized medicine approaches. As it not only contributes to inter-individual variability in 

health as well as in disease, it is also a promising modifiable target for therapies, e.g. by 

dietary modulation. For example, glycemic responses to different bread types can be 

predicted solely based on the microbiome (Korem et al., 2017; Zeevi et al., 2015), which 

highlights the ability of microbiome-based stratification to improve host physiology in 

personalized dietary interventions. Similarly, the LCHF-diet induced increased serum LDL-

C concentration reported herein, with potentially associated elevated cardiovascular risks, 

was limited only to the subgroup of lean cholesterol high-converters. Phenotyping and 

stratification of individuals before any treatment, e.g. into sterol conversion types, could 

potentially predict treatment responses and prevent adverse side effects. For example, by 

excluding lean high-converters from LCHF diet recommendations due to an elevation of 

serum LDL-C levels.  

Whereas personalized approaches are gaining importance in human studies, they have 

been less often considered in in vivo studies due to the identical genetic background of 

animals. But even among genetically identical mice, microbial variations depending on the 

mouse litter were found in the IL-10 deficient mouse model. Furthermore, these litter-

depending microbiota communities improved the prediction of high and low colitis 

susceptibility, which could potentially affect the outcome of studies and conclusions drawn 

when not considered. The alleged advantage of genetic similarity could in fact turn out to 

be a pitfall when litters with low and high susceptibility are not evenly distributed among 

cages or intervention arms in a trial.  

Taking litter effects into account revealed Akkermansia to be a potential biomarker for 

impending severe intestinal inflammation. Solely the presence (relative abundance > 0) of 
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Akkermansia up to four days before colitis manifested predicted the disease in mice, 

pointing towards Akkermansia as a promising microbial biomarker to detect subclinical early 

colitis. Identifying this state of early inflammation before symptoms manifest is of main 

concern in IBD diagnosis and management, and could be used as an indicator of treatment 

success (Dragoni et al., 2021). Although patients are already treated for IBD 

pharmacologically, e.g. by anti-inflammatory and immunosuppressing drugs, subclinical 

mucosal inflammations can persist, which destroy the intestinal epithelium and increase the 

risk of colorectal cancer (Choi et al., 2017). Up to date, these mucosal inflammations can 

only be diagnosed by gastrointestinal endoscopy, which is cost-intensive, very unpleasant 

and inconvenient for IBD patients, and decreases their compliance to regular re-

assessment (Dragoni et al., 2021). The identification of this state of early inflammation by 

cost and time-effective, non-invasive, Akkermansia-specific PCR from fecal samples could 

improve the quality of life of patients and the clinical management of IBD.  

Limitations of the studies are in line with common pitfalls in microbiome research, e.g. the 

use of compositional data and the detection problem of sparse microbiota members, which 

inflate sequence count data with large numbers of zeros.  

In the human intervention, results are based on compositional data only as too little of the 

samples were left for additional quantitative measurements. This limits drawing conclusions 

about the totality of the microbial composition and taxon-specific alterations independent of 

overall community changes (Gloor et al., 2016), as discussed earlier.  

Large numbers of zeros in sequence counts are an important and common feature of 

microbiome data (Kaul et al., 2017). They either result from not all taxa being present in all 

samples or from taxa being present below the detection limit of current sequencing 

techniques. Statistically and conceptually this is difficult to handle, as many analyses 

depend on logarithmic transformation, which results in undefined values for zero counts and 

therefore exclusion from the data set. Conceptually, it can be of biological relevance if 

certain bacteria are completely absent from a sample or only less abundant. To overcome 

these issues, pseudocounts, small numbers usually ≤ 1, are added to count data (Kaul et 

al., 2017). As the addition can influence analysis, e.g. by skewing the distribution of data, 

they need to be applied with caution and interpreted in the context of the data (Costea et 

al., 2014). For example, the cage effect and transmission by co-housing from wild type to 

IL-10 knockout mice of Parabacteroides could not have been detected if samples with zero 

counts, indicating absence, were excluded in the GLMM without the addition of 

pseudocounts. On the other hand, pseudocount addition did not influence correlations 

between fecal sterols and relative taxon abundances in the human cohorts, which were 
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based on alterations of the abundance, stressing context-dependent interpretation of 

pseudocount added data and their relevance to detect community alterations based on 

presence/absence.  

The herein reported results characterize taxonomic microbial alterations, but not functional 

properties, and are limited in resolution to the genus or species level as they are based on 

16S rRNA gene sequencing (Fricker et al., 2019). To gain further insights into functional 

profiles of the microbiome and strain variability of taxa of interest, such as E. 

coprostanoligenes and A. muciniphila, metagenomic whole-genome shotgun sequencing 

could be applied. This would further enable tracking bacterial transmission between 

individuals, e.g. in co-housed mice, or of changes within individuals over time, e.g. before 

and during dietary intervention, and identification of metabolic differences between strains 

of the same species (Vicedomini et al., 2021; Yan et al., 2020). The latter could be of special 

interest to further uncover Akkermansia’s role in colitis development, especially as strain-

specific functional properties of its strains have been described before (Guo et al., 2017; 

Zhai et al., 2019). It still remains inconclusive if all litter 2 and 4 mice contained the same 

Akkermansia strain at the beginning or if different strains persisted within different litters 

over time. Additionally, it could help to elucidate if the Akkermansia strain increasing in 

feces during colitis, possessed inflammatory properties itself or if its enrichment is rather a 

marker for higher mucus excretion due to intestinal inflammation.  

To further improve causation between the presence of certain bacteria and the observed 

phenotype, individual bacterial strains could be isolated and cultured. Their cultures could 

then be used for in vitro and in vivo studies to induce or prevent the associated clinical 

response, e.g. colitis, changes in sterol conversion ratio or altered blood lipid levels. These 

experiments could be used to evaluate intervention strategies with the goal to manipulate 

the microbiota in the future. 

Taken together, fecal microbial community characterization in response to LCHF-diets in 

humans and throughout the development of intestinal inflammation in a colitis mouse model, 

highlight the necessity for personalized, more individual-dependent research even in in vivo 

models to account for interindividual differences and improve treatment responses. 
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V.  Conclusion 
In the presented work, the taxonomic characterizations of gut microbiomes under the impact 

of two major community shaping factors, i.e. dietary modulation and genetic deficiency, 

revealed classifications of individuals based on their microbiota composition as an important 

trait to predict clinical outcomes. In two independent studies, comprising human as well as 

mouse cohorts, alterations of the gut microbiota were linked to specific metabolic and 

inflammatory consequences, which are associated with phenotypes of increased health 

risk.  

First, in the context of dietary interventions as an exemplary extrinsic, modifiable microbiota-

relevant factor, microbial and metabolic profiling of two human cohorts with and without 

obesity stratified individuals independently of their metabolic background into high or low-

cholesterol conversion types, which was largely dependent on the relative abundance of 

the bacterial species Eubacterium coprostanoligenes. Importantly, lean high-converters 

responded to low-carbohydrate high-fat dietary (LCHF) intervention with increased low-

density lipoprotein cholesterol (LDL-C) serum concentrations, revealing the cholesterol 

high-converter type as a potential predictive biomarker for an increased atherosclerotic 

cardiovascular disease risk in lean adults in response to LCHF diets. This suggested 

identification of a potential high risk subpopulation for which LCHF diets could be harmful, 

is of relevance as LCHF diets are popular even among metabolically healthy, lean 

individuals.  

The analysis of a genetic deficiency serving as an exemplary intrinsic, non-modifiable 

microbiota-relevant factor in an Interleukin-10 knockout mouse model for inflammatory 

bowel disease (IBD), identified potential microbial markers for very early colitis susceptibility 

and subclinical colitis onset. Whereas colitis susceptibility was dependent on global 

microbiome characteristics acquired early on in life by each mouse litter, colitis onset shortly 

before clinical symptoms manifested was strongly predicted by the presence of 

Akkermansia, which suggests it to be a subclinical colitis marker. Together with other global 

microbiome characteristics which were linked to IBD such as changes in stool consistency, 

Akkermansia presence could help to identify subclinical colitis onset and improve IBD 

management, which is a current burden in IBD therapy. 

In summary, these analyses reveal microbiome-dependent phenotyping and classification 

of individuals as an important trait to improve the prediction of clinical outcomes and guide 

personalized treatment approaches.
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Appendix 
Supplementary Data 

Supplementary tables and figures are deposited on Zenodo, an open-access repository 

developed under the European OpenAIRE program and operated by CERN or are currently 

under revision at Cell Press Community (Bubeck et al., Microbial cholesterol conversion 

and converter type-dependent LDL-C response to low-carbohydrate high-fat diet). The 

supplementary data can be accessed under doi:10.5281/zenodo.7513747 (Bubeck, 2023).  

Table 7. List of digital supplementary tables deposited on Zenodo. 

Label Table description 

Table S1. Scoring parameter to assess the well-being of mice. 

Table S2. Fecal microbiota genus-level taxa counts of the two LCHF human 
cohort. 

Table S3. Summary of sequencing runs for all three cohorts. 

Table S4. QIIME options, R and UNIX scripts and commands used for sequence 
processing and data analysis of the two LCHF human cohort. 

Table S5. 
Associations between taxonomic microbiota compositions, serum lipids  
and cholesterol-to-coprostanol conversion as determined by 
generalized linear mixed effects models. 

Table S6. Statistics of the generalized linear mixed effect model estimating relative 
taxon abundances of the IL-10 knockout mouse cohort. 

Table S7. Statistics of the generalized linear mixed effect model estimating 
absolute taxon abundances of the IL-10 knockout mouse cohort. 

Table S8. Statistics of single predictor models during model building of the IL-10 
knockout mouse model. 

Table S9. Statistics of the final logistic regression models for the prediction of early 
mouse withdrawal. 

Table S10. Cross validation of final logistic regression models for the prediction of 
early mouse withdrawal. 

Continued on the next page 
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Table 7 continued 

Table S11. Overview of KETO and CARBFUNC study cohort parameters. 

Table S12. Statistics for main figure group comparisons of the IL-10 knockout mice 
trial. 

Table S13. Statistics for supplementary figure group comparisons. 
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Table 8. List of digital supplementary figures deposited on Zenodo. 

Label Figure description 

Figure S1. 

Evaluation of intra-individual short-term microbial alterations of the 
human KETO cohort (a) and batch effect evaluation of the human 
CARBFUNC (b - e) and the murine IL-10 knockout/wild-type co-housing 
cohort (f, g) 

Figure S2. Associations of fecal taxonomic microbiota composition with the fecal 
coprostanol/cholesterol ratio.   

Figure S3. No associations between fecal cholesterol and coprostanol 
concentrations and serum lipid levels in both cohorts. 

Figure S4. Similar fecal fatty acid profiles in cholesterol high and low-converters 
from the KETO cohort before the LCHF diet intervention. 

Figure S5. Mouse 57 had a higher body weight than other wild type mice after 
maturation. 

Figure S6. 
The microbial diversity and overall bacterial density depended on 
genotype in the first week of cage allocation and under healthy 
conditions thereafter. 

Figure S7. Three taxa were abundant in only litter 3 or 4 mice at the day of cage 
allocation. 

Figure S8. Colitis did not affect alpha diversity within samples. 

Figure S9. Relative abundance alterations of various bacteria were associated with 
the phenotype rather than litter and cage. 

Figure S10. Absolute abundance alterations of various bacteria were associated 
with the phenotype rather than litter and cage. 

Figure S11. The mean Bray-Curtis Dissimilarity between each IL-10 deficient and all 
wild type mice is an almost perfect predictor of early mice withdrawal.  
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Additional publications 

In addition to the work presented in this thesis, the following research articles have been 

published with me as an author. These publications are independent of the work presented 

in this thesis. 

Appendix 1: Bacterial microbiota diversity and composition in red and white wines 
correlate with plant-derived DNA contributions and botrytis infection 

Alena M. Bubeck, Lena Preiss, Anna Jung, Elisabeth Dörner, Daniel Podlesny, Marija 

Kulis, Cynthia Maddox, Cesar Arze, Christian Zörb, Nikolaus Merkt & W. Florian Fricke 

(2020). Bacterial microbiota diversity and composition in red and white wines correlate with 

plant-derived DNA contributions and botrytis infection. Scientific Reports 10, 13828 (2020). 

https://doi.org/10.1038/s41598-020-70535-8 

Personal contribution: 

I re-processed the existing sequencing data and applied new bioinformatical methods. 

Additionally, I performed quantification of the 16S rRNA gene amplicon via qPCR and 

conducted all subsequent statistical analyses and graphical visualizations leading to this 

first author publication. I also wrote and revised the manuscript. 

Credit author contributions: Study Design: C.Z., N.M., W.F.F.; Data acquisition: A.M.B., 

A.J., C.M., E.D., L.P., M.K.; Data analysis: A.M.B., C.A., D.P.; Writing of manuscript: A.M.B., 
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Bacterial microbiota diversity 
and composition in red and white 
wines correlate with plant-derived 
DnA contributions and botrytis 
infection
Alena M. Bubeck1, Lena preiss1, Anna Jung1, elisabeth Dörner1, Daniel podlesny1, 
Marija Kulis1, cynthia Maddox1,3,4, cesar Arze1,3,5, christian Zörb2, nikolaus Merkt2 & 
W. florian fricke1,3*

Wine is a globally produced, marketed and consumed alcoholic beverage, which is valued for its 
aromatic and qualitative complexity and variation. these properties are partially attributable to 
the bacterial involvement in the fermentation process. However, the organizational principles 
and dynamic changes of the bacterial wine microbiota remain poorly understood, especially in the 
context of red and white wine variations and environmental stress factors. Here, we determined 
relative and absolute bacterial microbiota compositions from six distinct cultivars during the first 
week of fermentation by quantitative and qualitative 16S rRNA gene amplification and amplicon 
sequencing. All wines harboured complex and variable bacterial communities, with Tatumella as 
the most abundant genus across all batches, but red wines were characterized by higher bacterial 
diversity and increased relative and absolute abundance of lactic and acetic acid bacteria (LAB/AAB) 
and bacterial taxa of predicted environmental origin. Microbial diversity was positively correlated 
with plant-derived DnA concentrations in the wine and Botrytis cinerea infection before harvest. our 
findings suggest that exogenous factors, such as procedural differences between red and white wine 
production and environmental stress on grape integrity, can increase bacterial diversity and specific 
bacterial taxa in wine, with potential consequences for wine quality and aroma.

Wine is a popular alcoholic beverage, which is cherished for its versatile aroma and complexity worldwide. 
Although it is globally produced and marketed, regional wine varieties include prominent, o!en historic and 
legally protected, geographic pedigrees and appellations. While speci"c wine “terroirs” or phenotypic charac-
teristics have been associated with quanti"able molecular markers, such as chemical and metabolite  pro"les1,2 
and sensory  attributes3–5, many of the underlying mechanisms for the development of colour, aroma and #avour 
variations remain poorly understood. $e most important intrinsic and extrinsic factors that have been identi"ed 
include grape-speci"c di%erences in secondary microbial metabolite diversity and composition; soil, weather, and 
climate; geological conditions and environmental stress factors; viticulture and the winemaking process  itself6–8.

As wine colour, aroma and #avour are substantially a%ected by microbial fermentation of the grape must, 
the taxonomic composition and functional repertoire of the wine microbiota, as well as its dependence on 
environmental in#uences, are of great  interest9. Besides eukaryotic yeasts as the drivers of alcoholic fermenta-
tion, bacteria are known to contribute to malolactic acid fermentation and other metabolic  processes10,11. $e 
diversity, composition and biogeography of the fungal and bacterial microbiota of wine has been illustrated by 

open
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several recent cultivation-independent, high-throughput amplicon sequencing  studies11–17. Di!erences in wine 
microbiota pro"les have been associated with the grapevine, including distinct  cultivars14,15,18, plant  organs17,19, 
and  vintages14. Environmental sources of microbes in wine have been identi"ed as plant leaves and  roots17,19, 
 soil15,17,20, and the winery  setting21. Not surprisingly, the wine microbiota is a!ected by the fermentation type, i.e. 
spontaneous or natural fermentation as opposed to inoculated fermentation with yeast starter  cultures22,23, and 
fungal infections, including sour rot and Botrytis bunch  rot23,24. Interestingly, bacterial microbiota di!erences 
between red and white wines have received limited recognition, despite distinct production processes and well-
characterized metabolic and aromatic pro"le di!erences. For white wine production, red or white grapes are 
crushed and pressed and only the clari"ed juice is used for fermentation, whereas a mixture of juice with skin 
and seeds from crushed red grapes is used for red wine  fermentation25. As a result, red wines are characterized by 
increased concentrations of secondary plant metabolites, such as #avonoids, including anthocyanins, #avonols 
and #avanols; non-#avonoids, including hydroxybenzoic and hydroxycinnamic acids and stilbenes; and other 
phenolic compounds, many of which have been associated with health-promoting  bene"ts26,27.

In order to improve our understanding of the composition, organization and temporal dynamics of the red 
and white wine bacterial microbiota, we determined relative and absolute microbiota compositions from six 
distinct cultivars during the "rst week of fermentation by 16S rRNA gene ampli"cation and amplicon sequencing. 
All wines were found to harbour complex bacterial communities with substantial variations between red and 
white wines, distinct cultivars and even separate fermentations from the same cultivar. Increases or decreases in 
the relative abundance of speci"c bacterial taxa during the fermentation were associated with changes in total 
bacterial concentrations and the observed di!erences between time points, wine types and cultivars were most 
strongly correlated with microbial diversity. Variations in diversity could be attributed to plant-derived DNA 
contributions and the in#uence of environmental stress factors, such as Botrytis cinerea fungal burdens of grapes 
before harvest. Our "ndings point to exogenous factors contributing to bacterial microbiota diversity in wine 
with both potentially desirable and undesirable consequences for wine quality and aroma.

Results
Wine  sampling  and  microbiota  analysis  overview.  Metagenomic DNA was isolated from seven 
batches of fermenting wines, including two red wines (Regent/REG, Schwarzriesling/SCH) and four white wines 
(Helios/HEL, Merzling/MER, Seyval/SEY, Bacchus/BAC) (Table 1). Two independent BAC fermenting batches 
were included, BAC1 from regular grapevines as opposed to BAC2, which had been treated with a commer-
cial combination of insect attractant and insecticide (Combi-protec, Belchim; BAC2). All grapes were grown 
on the same vineyard, harvested within three weeks, processed and fermented in close proximity at the same 
winery at the viticulture unit of the University of Hohenheim, Stuttgart, Germany. Available metadata for all 
wines included metabolic di!erences between batches at the beginning and/or end of the fermentation period 
of 14 days (pH, total acid, alcohol and sugar content), changes during fermentation (°Brix/must weight) and 
rates of infection of grapes with the fungal plant pathogen Botrytis cinerea at the time of harvest (Supplementary 
Table S1). Longitudinal samples were collected 3–4 times daily for the "rst three days and once per day for each 
remaining day during the "rst week of fermentation. (Table 1). %e "rst sample was collected within two hours 
a&er grape pressing and before inoculation with commercial yeast starter cultures (Supplementary Table S1). 
Bacterial taxonomic microbiota compositions were determined by 16S rRNA gene amplicon sequencing, result-
ing in 5.38 million taxonomically assigned sequences from a total of 84 samples. Of these, ~ 58% were classi"ed 
as plant-derived reads, i.e. chloroplast and mitochondrial sequences, which showed grape vine (Vitis vinifera) 
and rootstock (Vitis riparia) as the closest matches in public databases (Supplementary Table  S2). For most 
analyses, unless indicated otherwise, plant-derived reads were removed, resulting in a dataset of 2.21 million 
sequences. A&er rarefaction to 3,500 reads per sample, 520 distinct bacterial species equivalent or operational 
taxonomic units (OTUs) were identi"ed. Quantitative 16S rRNA gene ampli"cations were carried out at three 

Table 1.  Sample and metadata overview. %e "rst sample of each wine was collected immediately before 
inoculation with the yeast starter culture. BAC2 grapes were treated with combi-protec with insecticide 
SpinTor (Belchim Crop Protection). a Infectious burden as percentage of a!ected grapes. b Samples selected for 
qPCR.

Sampling schedule (Days/hours) B. cinerea (%)a
Total acid 
(g/L)

Day 0 1 2 3 4 5 6 7 0 0 7
Hour 0b 2 8 15 23 31 39 50b 73 97 121 145b 0 0 145
Red wines
Regent/REG x x x x x x x x x x x x 5 7.5 7.3
Schwarzriesling/SCH x x x x x x x x x x x x 30 8.8 7.6
White wines
Merzling/MER x x x x x x x x x x x x 5 7.7 6.7
Seyval/SEY x x x x x x x x x x x x 30 7.3 6.5
Helios/HEL x x x x x x x x x x x x 40 9.6 8.1
Bacchus 1/BAC1 x x x x x x x x x x x x 15 6.7 6.1
Bacchus 2/BAC2 x x x x x x x x x x x x 15 6.4 5.9
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time points, on days 0, 3 and 7, and used to determine absolute bacterial abundances or bacterial loads, i.e. 16S 
rRNA gene copies per millilitre of wine. Summary statistics of sequencing output, taxonomic compositions and 
quantitative analyses are shown in Supplementary Tables S3 and S4.

Differences in bacterial microbiota concentration, diversity and composition between red and 
white wines.  Compared to white wines, red wines harboured increased bacterial loads of larger taxonomic 
diversity, as determined based on higher concentrations of bacterial 16S rRNA genes (Fig. 1a), increased alpha-
diversity (Fig. 1b) and more observed OTUs (Fig. 1c). Taxonomic bacterial microbiota compositions showed 
minor but signi"cant di#erences between red and white wines (Fig. 1d), as well as between separate red and 
white wine batches (Fig. 1e).

$e genus Tatumella from the phylum Proteobacteria was the most abundant bacterial taxon across all sam-
ples, both in terms of relative (26 ± 3%) and absolute abundance  (106 ±  5*105 16S rRNA gene copies/mL). $e 
latter was calculated as the taxon-speci"c fraction of the total bacterial 16S rRNA gene copy number per sample. 
While the relative abundance of Tatumella was higher in white compared to red wines (Fig. 2a), there was no 
di#erence in absolute abundance between both wine types (Fig. 2b), suggesting higher loads of additional other 
bacteria in red wines as the source of reduced relative abundances of Tatumella, which demonstrates the utility 

Figure 1.  Red and white wine bacterial microbiota comparison. Red and white wine samples across all 
time points were compared based on 16S rRNA gene copy numbers per mL (a), and bacterial microbiota 
diversity, based on Shannon Index (b) and observed OTUs (c), as well as taxonomic composition, based on 
Bray–Curtis dissimilarity (d). Taxonomic distances were also compared for all red and white wines separately 
(e). Signi"cance was calculated based on Wilcoxon rank-sum test, corrected with the Benjamini–Hochberg 
procedure (a–c) and ANOSIM with 999 permutations (d, e) with *p < 0.05, **p < 0.01, ***p < 0.001. Sample 
numbers:  nred wine = 23,  nwhite wine = 56,  nBAC1 = 12,  nBAC2 = 12,  nHEL = 9,  nMER = 12,  nSEY = 11,  nSCH = 11 and  nREG = 11.
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Figure 2.  Bacterial groups with di!erential relative (a) and absolute (b) abundance in red and white wines and 
association with total acid content in wine (c). "e relative abundances, based on 16S rRNA gene amplicon 
sequencing (a) and absolute abundances, based on 16S rRNA gene copy number concentrations (b) in red 
and white wines were compared for the proteobacterial genus Tatumella, lactic acid bacteria (LAB), acetic 
acid bacteria (AAB) and the proteobacterial family Comamonadaceae and genera Sphingomonas and Massilia. 
Relative and absolute abundance of Tatumella and total acid content (g/L) were negatively correlated, based 
on available metadata (c). Signi#cance was calculated based on ALDEx analysis with 128 DMCs (a, b) and 
Spearman’s rank correlation test (c), all corrected with the Benjamini–Hochberg procedure, with ns = not 
signi#cant, *p/q < 0.05, **p/q < 0.01, ***p/q < 0.001. E!ect sizes for ALDEx analyses in (a): Tatumella = 0.87, 
LAB = − 0.47, AAB = − 0.14, Comamonadaceae = 0.21 Sphingomonas = 0.21, Massilia = − 0.11.
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of comparing both metrics for microbiota analysis. Tatumella relative and absolute abundance were negatively 
correlated with total acid content (Fig. 2c), which was the only signi"cant association between individual bacte-
rial taxa and the available metabolic metadata a#er correcting for multiple testing.

$e groups of acetic acid bacteria (AAB) and lactic acid bacteria (LAB) are o#en used to refer to bacteria 
that can negatively and positively a%ect the wine fermentation process, aroma and  quality10,11. For our analysis, 
we combined all OTUs from those genera typically assigned to AAB (i.e. Acetobacter, Gluconacetobacter, and 
Gluconobacter) and LAB (Lactobacillus, Oenococcus, and Lactococcus) and found LAB to be overrepresented in 
red compared to white wines, both in terms of relative (Fig. 2a) and absolute abundance (Fig. 2b). Increased 
bacterial loads in red wine were also found for AAB and the family Comamonadaceae, the genera Sphingomonas 
and Massilia (abbreviated from here on as CSM, Fig. 2b).

changes of the bacterial wine microbiota during fermentation.  While fermentation was gener-
ally associated with alterations in relative and absolute bacterial microbiota compositions in both red and white 
wines, changes varied between individual wine batches (Fig. 3a,b). Di%erences in taxonomic microbiota com-
positions were smaller between longitudinally collected samples from the same wine batch than between sam-
ples from distinct wine types or batches (Fig. 4a; Wilcoxon rank-sum test on Bray–Curtis dissimilarity). $ere 
was a trend towards a positive correlation of bacterial loads in white wines with the duration of the fermenta-
tion (Fig. 4b; p < 0.05, q = ns) and while both the relative and absolute abundance of Tatumella increased in all 
white wines during fermentation, di%erences were not signi"cant (Supplementary Fig. S1a). Increased absolute 
abundances of the family Bacillaceae and the genus Oenococcus by the end of the fermentation period were the 
only signi"cant changes observed across all red and white wines (Supplementary Fig. S1a), suggesting that pre-
fermentation factors have a stronger impact on the bacterial wine microbiota than fermentation itself.

Association of differences in microbial diversity with plant‑derived read fractions and environ-
mental stress factors.  Bacterial microbiota diversity di%ered between red and white wines (Fig. 1b) and 
considerably varied among white wines (Shannon diversity: 0.8–3.9), indicating that diversity was in&uenced by 

Figure 3.  Relative (a) and absolute (b) bacterial microbiota composition changes during fermentation. For the 
visualization an abundance threshold was set of either ≥ 1% in all samples or ≥ 5% in at least one sample. $e 
eleven most abundant assigned taxa on the genus level are shown in the "gure. Locally weighted regression was 
used to smooth relative abundances over time.
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additional factors, independently of the wine type. Indeed, across all wine samples, alpha diversity was negatively 
correlated with the genus Tatumella and positively correlated with AAB, LAB, and CSM, including relative and 
absolute abundances (Fig. 5a,b).

We hypothesized that di"erences between red and white wines that were involved in the processing of grapes, 
i.e. an additional mechanical destemming step for red but not white wine grapes, and in the fermentation process, 
i.e. a prolonged exposure of red wines to grape skins during fermentation, could increase microbial contribu-
tions from skin-attached environmental bacteria and result in higher bacterial microbiota diversity. We therefore 
compared plant-derived 16S rRNA amplicon read fractions from mitochondria and chloroplasts across all wine 
batches and time points (Supplementary Fig. S1b), as a potential marker for contact with grape skins and other 
plant tissues. As expected, we found higher relative and absolute contributions of plant-derived DNA in red 
compared to white wines (Fig. 6a). While there was no correlation between plant-derived read fractions and 
fermentation time (p = ns), the relative abundance of plant-derived reads varied substantially among white wines 
(Fig. 6a) and showed a positive association with bacterial microbiota diversity across red and white wine samples 
combined (Supplementary Fig. S2a). In addition, plant-derived read fractions were negatively correlated with 
the relative but not absolute abundance of Tatumella and positively correlated with the relative but not absolute 
abundances of AAB, LAB, and CSM (Fig. 6b and Supplementary Fig. S2c). #e fact that both microbial diversity 
and plant-derived read fractions showed comparable associations with the same bacterial taxa could suggest that 
the mechanism that led to increased plant-derived reads was also responsible for increased microbial diversity. 
However, as correlations were stronger for microbial diversity, additional factors besides those that increased 
plant-derived reads would need to have contributed to microbial diversity in our wine.

To account for putative environmental in$uences on the bacterial wine microbiota, we compared wines 
based on infectious burdens of B. cinerea (Table 1). #e rate of B. cinerea infection was positively correlated with 
microbial diversity in white wines but there was no signi%cant correlation in red wines (Supplemental Fig. S2b). 
Again, as with plant-derived read fractions, the relative abundance of Tatumella was negatively and with CSM 
positively correlated with botrytis infection in white wines (Supplemental Fig. S3). Despite similar associations, 
botrytis infection rates and plant-derived read fractions were not signi%cantly correlated with each other (data 
not shown), suggesting that they re$ect independent mechanisms for increased bacterial microbiota diversity, 
reduced relative abundance of Tatumella and increased relative abundance of CSM in wine.

Of note, BAC2 grapevines, which had been experimentally treated with a combination of insect attractant 
and insecticide, showed a higher infestation with the insect fruit pest Drosophila suzukii than untreated BAC1 
grapevines. We therefore compared wines from treated BAC2 and untreated BAC1 grapevines and found BAC2 
samples to be characterized by increased plant-derived read fractions, as well as similar bacterial microbiota 
alterations as had been associated with botrytis infection, i.e. reduced relative abundance of Tatumella and 
increased relative abundances of Sphingomonas and Massilia (Supplemental Fig. S4).

Figure 4.  Bacterial microbiota changes during fermentation. Taxonomic microbiota compositions were 
compared between samples, based on Bray–Curtis dissimilarity, showing that samples from the same wine were 
more similar to each other and that red wine samples were more heterogeneous than white wine samples (a). 
Bacterial abundances of red and white wines showed opposing trends during fermentation, based on 16S rRNA 
gene copy numbers (b). Signi%cance was calculated based on Wilcoxon rank-sum test (a) and Spearman’s rank 
correlation test (b), all corrected with the Benjamini–Hochberg procedure, with ns = not signi%cant, *p/q < 0.05, 
***p/q < 0.001.
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Discussion
Our study supports previous 16S rRNA gene amplicon sequencing-based reports of a complex and shi!ing 
bacterial microbiota in  wine11–15,17, which we have expanded with complementary quantitative 16S rRNA gene 
abundance analysis. We show that red wine harbours a more diverse bacterial microbiota with a higher density 
of bacterial 16S rRNA genes per millilitre than white wine. "e chromosomal copy number of the 16S rRNA 
gene is known to vary substantially between  taxa28, but assuming on average four 16S rRNA genes per bacterial 
genome, we would expect red wines from our sample set to contain ~ 107 bacterial genomes per mL or about 

Figure 5.  Relative and absolute abundances of Tatumella, acetic acid (AAB) and lactic acid bacteria (LAB) 
and other taxa were correlated with microbial diversity. Signi#cance was calculated based on Spearman’s rank 
correlation test (a, b) corrected with the Benjamini–Hochberg procedure, with ns = not signi#cant, *p/q < 0.05, 
***p/q < 0.001.
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tenfold more genomes than white wines. While not signi!cant a"er correcting for multiple tests (q > 0.05), there 
was a clear trend towards increasing 16S rRNA gene copy numbers during white wine fermentation (p < 0.05), 
which resulted in comparable densities in red and white wines by the end of the one-week observation period. 
However, in our longitudinal analysis, fermentation time was associated with only moderate bacterial micro-
biota changes, as few bacterial taxa increased or decreased during fermentation and compositional di#erences 
between time points were small compared to those seen between wine types and batches. Calculating the fraction 
of taxon-speci!c 16S rRNA genes based on relative abundance values from the amplicon sequence analysis, we 
show that increases in overall 16S rRNA gene copy number density are mostly due to increased abundance of 
Tatumella, suggestive of active proliferation of this bacterial genus. Species from the genus Tatumella have been 
associated with fruits, including pineapple and mandarin orange, but also soil samples and even human patient 

Figure 6.  Plant-derived read fractions were correlated with the relative abundance of Tatumella, AAB, LAB 
and other taxa in wine. Signi!cance was calculated based on Wilcoxon rank-sum test (a) and Spearman’s 
rank correlation test (b), all corrected with the Benjamini–Hochberg procedure, with ns = not signi!cant, 
***p/q < 0.001.
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 specimens28,29. Whereas relative microbiota pro!ling alone would suggest reduced contributions of Tatumella to 
the red wine microbiota, the combination with quantitative microbiota pro!ling demonstrated comparable 16S 
rRNA gene densities for this genus, suggesting instead higher overall bacterial densities and additional contri-
butions of other bacteria to the red wine microbiota. We identi!ed three bacterial groups with higher absolute 
abundance in red compared to white wines, which are likely main contributors to the increased bacterial loads 
of red wines: acetic acid bacteria (AAB, from the genera Acetobacter, Gluconacetobacter, and Gluconobacter), 
lactic acid bacteria (from the genera Lactobacillus, Oenococcus, and Lactococcus) and a third group bacteria 
(CSM, including the family Comamonadaceae and the genera Sphingomonas and Massilia). "e Gram-positive 
AAB are frequently found in wine but undesirable for wine production due their ability to e#ciently convert 
ethanol to acetate, which is associated with spoilage, alters the wine aroma, and reduces its commercial  value30. 
Grape skins have been suggested as a major source for AAB in wine, consistent with !ndings of reduced AAB 
abundance on berries washed by  rain31. "e LAB are physiologically more diverse and include Oenococcus oeni, 
which is typically responsible for the favourable malolactic  fermentation32, but also Lactobacillus and Pediococcus 
species that can cause additional spontaneous fermentations with undesirable aromatic  consequences10,33. "e 
generally lower concentrations of LAB in wine, consistent in our samples, have been attributed to the mostly 
anaerobic lifestyles, suggesting competitive advantages for yeasts and AABs under the aerobic conditions of the 
 grape10. Sphingomonas and Massilia species have been identi!ed in rhizosphere and soil  microbiomes34,35 and 
correspondingly, are frequently isolated from soil and water  samples36,37. "us, at least for AAB and bacteria from 
the CSM group an exogenous origin in wine is likely, e.g. through direct intake of grape skin-attached bacteria or 
through indirect environmental sampling of soil or water-associated bacteria that come into contact with grape 
skins. Martins et al. described the presence of a culturable, epiphytic bacterial microbiota on external grape berry 
and leaf surfaces, which overlapped with the CSM group from our  study38, which could explain the increased 
relative and absolute contributions of these bacteria to the red wine microbiota.

As bacterial diversity and abundance of AAB, LAB and CSM in wine di%ered not only between red and white 
wines, but also among di%erent grapevine cultivars and wine batches, we searched for additional factors and 
mechanisms that could explain variable exogenous contributions to the bacterial microbiota in wine. While we 
initially removed plant-derived 16S rRNA gene amplicon read fractions from chloroplasts and mitochondria 
as contaminants from our analysis, we later hypothesized that plant-derived read fractions could also represent 
biomarkers for wine exposure to plant-associated bacteria, particularly from grape skins. In line with this assump-
tion, we found increased plant-derived read fractions in red wines and robust positive correlations with microbial 
diversity and the abundance of bacteria from putative exogenous sources, i.e. AAB, LAB and CSM, across all red 
and white wine samples. As the microbial ecology of grapes, including microbial burdens and species diversity 
is largely a%ected by the grape health  status10, we also searched for factors associated with di%erences in plant-
derived DNA contributions among white wines. We assumed that, by increasing interactions of grape juice with 
exogenous, skin-attached bacteria, interference with berry integrity before harvest could induce similar e%ects 
in white wines as extended grape skin contact during fermentation in red wines. Our collection of wines was 
exposed to two environmental stress factors with potential disruptive e%ects on grape skin integrity before har-
vest: (I) grapevines were di%erentially a%ected by infections with the fungal pathogen Botrytis cinerea and (II) as a 
consequence of the experimental application of an insect attractant/insecticide combination, Bacchus grapevines 
on adjacent sections of the vineyard were di%erentially exposed to infestations with the spotted fruit &y, Dros-
ophila suzukii. B. cinerea, the causative agent of botrytis bunch rot in viticulture colonizes di%erent plant organs 
and can penetrate the protective cuticle covering the grape  epidermis39–41. Fermentations of botrytis-infected 
grapes have been shown to be enriched for bacteria and fungi and to contain increased microbial diversity and 
acetic acid bacteria  concentrations23, in line with the higher bacterial microbiota diversity and abundance of 
AABs in those white wines from our collection that had a higher rate of botrytis infection. Similarly, Bokulich 
et al. showed that botrytized wine, i.e. fermentations from B. cinerea-infected but then dried, partially raisined 
grapes a%ected by “noble rot”, were characterized by high bacterial  diversity13. D. suzukii could induce comparable 
bacterial microbiota e%ects, as these insects puncture the grape skin for  oviposition42 and D. suzukii exposure 
has previously been associated with increased bacterial loads, most importantly of  AABs43, in accordance with 
our !ndings from the direct comparison of the two Bacchus batches.

Our detailed qualitative and quantitative wine microbiota analysis supports the presence of a diverse bacterial 
microbiota in wine, which appears to be shaped by both endogenous and exogenous factors. On the one hand, 
comparable absolute abundance of the genus Tatumella in red and white wines, with a trend towards increasing 
density in white wines during fermentation, suggests a putative endogenous, grape juice-derived source of these 
bacteria in all wines, largely una%ected by external factors such as wine processing procedures and pathogen 
burdens before grape harvest. Robust positive associations of AAB, LAB and CSM with markers of plant tis-
sue contributions and pre-harvest pathogen burdens, on the other hand, suggest a putative exogenous, grape 
skin-derived source of these bacteria in all wines, resulting in increased loads in red wines and wines a%ected 
by B. cinerae or D. suzukii. Additional studies will be needed to further our understanding of endogenous and 
exogenous contributions to the wine microbiota, including larger sample sets that span a wider variety of wine 
types, cultivars, and environmental conditions.

"e speci!c metabolic contributions of those bacteria classi!ed here as of putative exogenous origin to the 
extended secondary plant metabolite spectrum in red wines remain largely unknown. However, it is conceivable 
that exogenous factors, ascribed to plant tissue contributions, botrytis and fruit &y infestation in our analysis, 
could be leveraged to deliberately increase, modify, or expand the aromatic quality of wine. In fact, botrytized 
white wines would represent an example, as well as the production of “orange”, or skin-contact, white wines that 
are characterized by increased phenolic concentrations of antioxidant  potential44–47.
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Methods
Grapes, metadata and sample collection.  All grapevines, including the two red wine cultivars Regent 
(REG) and Schwarzriesling (SCH) and the four white wine cultivars Merzling (MER), Seyval (SEY), Helios 
(HEL), and Bacchus (BAC) were grown on the vineyards of the University of Hohenheim, Stuttgart, Germany 
in 2015. Bacchus grapevines were divided into two separate groups: plants from the !rst group did not receive 
special treatment (BAC1), whereas plants from the second (BAC2) underwent treatment with a combination of 
insect attractant and insecticide (Combi-protec with insecticide SpinTor, Belchim Crop Protection, Belgium), 
which was associated with higher infestation of spotted wing drosophila, Drosophila suzukii, in the BAC2 grape-
vine. All grapes were harvested within three weeks (September/October 2015). Within two hours a"er collec-
tion grapes were processed for red and white wine production, with grapes intended for red wine production 
undergoing a mechanical destemming before crushing. #e !rst samples were collected before and a"er the 
grape must was inoculated with a commercial Saccharomyces cerevisiae yeast starter culture (NT2000/NT50/
NT112, Oenobrands SAS, France). Additional samples were collected three times per day for the !rst three days 
and daily for the remaining days during the !rst week of fermentation. All samples were immediately stored at 
− 80 °C until further processing.

oenological parameters.  Oenological parameters were measured as previously  described48. Total soluble 
solids (°Brix) of wine were determined using a refractometer (Opton, Zeiss, Germany) and total acid and pH 
by titration (TiroLine easy, Schott, Germany). High performance liquid chromatography (Merck-Hitachi, Ger-
many) was carried out to determine wine alcohol contents (&ow rate: 0.5 mL/min; detection at 210 nm), using 
a Rezex ROA-Organic Acid H + (8%), LC Column 300 × 7.8 mm, Ea (Phenomenex, Germany) in combination 
with a SecurityGuard Cartridge, Carbo-H 4 × 3.0 mm pre-column (Phenomenex, Germany).

DnA extraction.  Metagenomic DNA of all samples was isolated using a previously described  method49 
from our group, which combines both enzymatic digestion and mechanical disruption by bead beating. In brief, 
aliquots of 500 µL per sample were thawed on ice and centrifuged for 15 min at 4,000×g. #e pellet was washed 
in 1 mL PBS, centrifuged for 5 min at 8,000×g, resuspended in 700 µL PBS and transferred to a Lysis B Matrix 
tube (MP Biochemicals, France) for bead beating. Enzymatic cell lysis (lysozyme, mutanolysin, lysostaphin, 
proteinase K and RNase) was initiated as described in the method above. #e resulting cell lysate was processed 
with the ZR Fecal DNA mini-prep kit (Zymo Research, USA) according to the manufacturer’s recommenda-
tion and eluted in ultra-pure water. As controls, blank DNA extractions and extractions from the yeast starter 
cultures were included and further processed along with the wine samples. #e DNA was stored at -20 °C until 
further processing.

16S rRNA gene amplification and sequencing. Hypervariable region V4 of the 16S rRNA gene was 
ampli!ed from metagenomic DNA via PCR using Phusion High-Fidelity PCR Master Mix (#ermo Fisher Sci-
enti!c, USA) and Golay-barcoded primers 515F and 806R adapted from Caporaso et al.50 and additionally mod-
i!ed by adding internal spacers of 0 to 7 bp, adapted from Fadrosh et al.51. Primer, barcode and spacer sequences 
are listed in Supplementary Table S5. #e PCR reaction contained 10 µL of 2 × Phusion Master Mix (#ermo 
Fisher Scienti!c, USA), 0.8 µL of each primer (!nal concentration 0.4 µM), 0.6 µL dimethyl sulfoxide (DMSO), 
and 7.8µL template DNA. PCR ampli!cations were carried out as described  previously52, with an initialization 
step at 98 °C for 2 min, followed by 30 cycles of 98 °C for 10 s, 52 °C for 15 s and 72 °C for 15 s, and a !nal exten-
sion at 72 °C for 5 min. #e SequalPrep normalization plate kit 96 (#ermo Fisher Scienti!c, USA) was used to 
select equimolar PCR product amounts, which were subsequently pooled and concentrated with the DNA Clean 
and Concentrator 5 kit (Zymo Research, USA). Sequencing libraries were generated with the TruSeq Nano DNA 
LT Library Prep kit (Illumina, USA) for sequencing on the Illumina MiSeq platform (MiSeq Reagent Kit v3, 600 
cycles, Illumina, USA) at the University of Hohenheim, following the manufacturer’s recommendations.

Quantitative 16S rRNA gene amplification. Metagenomic DNA was diluted to a concentration of 
approximately 1 ng/µL, of which 2 µL were used as template for quantitative PCR ampli!cation of the universal 
bacterial 16S rRNA gene with the Femto bacterial DNA quanti!cation kit (Zymo Research, USA) according 
to the manufacturer’s recommendations. All reactions were carried out in duplicates. Genomic DNA from E. 
coli strain JM109 (Zymo Research, USA) was used as an internal standard to estimate bacterial 16S rRNA gene 
copy numbers. #e PCR was run on a CFX96 Touch real-time detection system (Bio-Rad, USA). Samples were 
considered non-ampli!ed if the quanti!cation cycle (Cq) value was greater than 39. Samples with quanti!cation 
cycle (Cq) values greater than 39 were discarded; average Cq values of duplicates were calculated for each sample 
and used to determine 16S rRNA gene copy numbers. Bacterial 16S rRNA gene copy numbers were calculated 
for each sample as concentrations per 1 mL of wine. Taxon-speci!c absolute abundances were determined by 
multiplying relative abundance values from the 16S rRNA gene amplicon sequence analysis with total 16S rRNA 
gene copy numbers (see Supplementary Table S3).

Microbiota  analysis  and  statistical methods.  Pre-processing of raw sequence data was performed 
with QIIME v1.9.153,54, cutadapt v1.1055 and custom Python scripts, including trimming of spacer and primer 
sequences, merging of raw paired end reads using bbmerge v9.0256, barcode extraction and demultiplexing of 
samples. #e processed sequences were imported into QIIME2 v2018.2. OTUs were generated using open-ref-
erence OTU picking with a similarity threshold of 97% and classi!ed with the q2-feature-classi!er57 against the 
Greengenes database v13_8 (greengenes.lbl.gov). Chimera checking was performed with  vsearch58, as part of 
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the QIIME2 pipeline. OTU’s taxonomically assigned to chloroplast and mitochondria were searched against 
the NCBI nucleotide database by  BLAST59, which identi!ed grapevine, Vitis vinifera, and its gra"ed rootstock, 
Vitis riparia, as closest matching sequences. #ese sequence reads accounted for 58% of the sequences and were 
removed from the analysis, unless noted otherwise. For diversity analyses, all samples were rare!ed to 3,500 reads 
per sample. Detailed information about sequenced OTU’s and taxonomic assignment per sample is listed in Sup-
plementary Tables S6–S13. Unless indicated di%erently, the !nal dataset consisted of n = 56 white and n = 23 
red wine samples for sequenced data. For qPCR data, the !nal set consisted of n = 14 white and n = 6 red wine 
samples. Statistical testing and data visualization were carried out in R (www.R-proje ct.org/), using the packages 
vegan, biomformat, nortest and ALDEx260. All parameters were tested for normal distribution with Anderson–
Darling and Shapiro–Wilk tests. Features were !ltered to only include OTUs with a relative abundance of ≥ 1% in 
all samples or of ≥ 5% in at least one sample. Not normally distributed data were analysed using non-parametric 
tests. For group comparisons, pairwise Wilcoxon rank sum test was used, for correlation analyses Spearman’s 
rank correlation tests and for di%erential abundance analyses ANOVA-Like Di%erential Expression (ALDEx) 
 Analysis60 with 128 Dirichlet Monte-Carlo Instances (DMC). All tests were corrected with the Benjamini–Hoch-
berg procedure, based on the number of features (n = 79). Comparisons of dissimilarities between communities 
were done by analysis of similarities (ANOSIM)61, with the number of permutations set to 999, of the Bray–Cur-
tis dissimilarity. Signi!cance levels were determined as p > 0.05 (ns), p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***). 
Unless indicated, mean values are presented with standard error of means (SEM). Detailed information about all 
bioinformatic scripts and commands used for the analysis is provided in Supplementary Table S13.

Data availability
Pre-processed, trimmed and merged paired-end read contigs have been deposited in the European Nucleotide 
Archive under primary accession number PRJEB37054 (secondary accession number ERP120343).
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! Sample storage and nucleic acid
isolation influence microbiota
compositions.

! Error-corrected amplicon sequence
variants (ASVs) improve 16S rRNA
analysis.

! Contamination and host cells
confound and complicate microbiota
analysis.

! Quantitative and active microbiota
analyses can complement existing
methods.

! Open data and protocol sharing
increases transparency and
reproducibility.
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a b s t r a c t

Microbiome research has transformed the scientific landscape, as reflected by the exponential increase in
microbiome-related publications from many different disciplines. Host-associated microbial communi-
ties play a role for almost all aspects of human, animal and plant biology and health. Consequently, there
are tremendous expectations for the development of new clinical, agricultural and biotechnological
applications of microbiome research. However, the field continues to be largely shaped by descriptive
studies, the mechanistic understanding of microbiome functions for their hosts remains fragmentary,
and direct applications of microbiome research are lacking. The aim of this review is therefore to provide
a general introduction to the technical opportunities and challenges of microbiome research, as well as to
make experimental and bioinformatic recommendations, i.e. (i) to avoid, reduce and assess the confound-
ing effects of sample storage, nucleic acid isolation and microbial contamination; (ii) to minimize
non-microbial contributions in host-associated microbiome samples; (iii) to sharpen the focus on
physiologically relevant microbiome features by distinguishing signals from metabolically active and
inactive or dead microbes and by adopting quantitative methods; and (iv) to enforce open data and
protocol policies in order increase the transparency, reproducibility and credibility of the field.
! 2019 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Most microbiome projects today apply large-scale parallel
sequencing to taxonomically and functionally characterize
previously described and not-yet-cultivated, uncharacterized
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microorganisms. The widespread application of high-throughput
genomic approaches has been afforded by next-generation
sequencing platforms that are easy to install and maintain. In addi-
tion, widely established experimental and bioinformatic protocols
exist for sample processing, nucleic acid isolation, sequence target
amplification, library preparation, sequence data processing and sta-
tistical analysis. Other high-throughput methods for system-wide
microbiome analyses, such as metaproteomics or metabolomics/
metabonomics [1], are less well established and widely used but
are often successfully combined with genomics for systems-level
approaches to simultaneously study different aspects of the
microbiome. Cultivation-based isolation and characterization of
individual microorganisms from microbiome samples can further
complement nucleic acid sequencing-based and other ’omic
approaches [2]. In the following, the microbiota will be referred
to as the ’assemblage of microorganisms present in a defined envi-
ronment’ and the microbiome as the ’entire habitat, including the

microorganisms . . . , their genomes . . . , and the surrounding envi-
ronmental conditions’ [1]. As sequencing-based microbiome anal-
ysis continues to be the most popular technique across the field,
this review focuses on the discussion of experimental and bioinfor-
matic aspects of this approach to highlight current problems and
pitfalls as well as future chances and possibilities (Fig. 1).

Genomics and bioinformatics techniques of microbiome
analysis

Sequencing-based characterizations of entire microbial com-
munities, as well as their individual components and functions in
unprecedented detail, is largely afforded by two main techniques:
amplicon sequencing and metagenomics. The first method gener-
ates taxonomic compositional microbiota profiles at relatively
moderate costs that allow even small research groups to run

Fig. 1. Overview of recommendations for improved sequence-based microbiome analysis. Important technical components of typical laboratory and bioinformatic
microbiome analysis projects (black boxes) and the bioinformatic resources that are generated in these projects (green columns) are shown, together with specific
recommendations to expand and improve existing protocols (in red). Abbreviations: qPCR, quantitative real-time PCR; OTUs, operational taxonomic units; ASVs, amplicon
sequence variants. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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large-scale bacterial microbiota analysis projects. The latter
method generally affords a more comprehensive, but also more
costly, taxonomic and functional analysis of the entire viral, bacte-
rial and eukaryotic microbiota [3]. Both approaches have been
scaled up to include thousands of samples in a single study. Best
practice recommendations for microbiome analysis, including lab-
oratory and bioinformatic procedures are available, for example,
from the U.S. Microbiome Quality Control [4] project.

Taxonomic microbiome profiling by amplicon sequencing

Amplicon sequencing methods rely on the selective binding of
universal primer pairs to highly conserved regions within the gen-
omes of specific microbiome members of interest and the sequenc-
ing of the resulting PCR products, which encompass taxon-specific
hypervariable regions [5]. The most commonly used target ampli-
con for microbiome analysis is the bacterial 16S rRNA gene, but
universal primer pairs have also been described for archaeal and
eukaryotic small subunit ribosomal RNA genes, internal tran-
scribed spacers (ITS) of the fungal and other ribosomal RNA oper-
ons and other conserved genomic loci [6]. Within the bacterial 16S
rRNA gene numerous primer combinations have been proposed to
amplify different hypervariable regions and to generate PCR prod-
ucts of variable lengths suitable for different sequencing platforms
(e.g., Pacific Biosciences vs. Illumina) [5]. However, even ‘‘univer-
sal” primers can preferentially bind specific bacterial taxa, leading
to compositional study biases that vary between microbiome types
(e.g. gut vs. vaginal microbiome) and should be considered in the
project planning phase [7,8].

Sequence variations in 16S and 18S rRNA genes, ITS regions and
other metagenomic loci contain phylogenetic information that can
be used to infer the taxonomic relationships of their microbial
hosts. However, natural genetic variations are not easily distin-
guishable from sequencing errors, which even on the relatively
accurate Illumina sequencing platform affects !0.1% of all
sequenced nucleotides [9]. Given the scale of current microbiome
studies, bioinformatic protocols therefore have to account for mil-
lions of wrong base calls per project.

For amplicon sequencing-based microbiota analysis, sequences
are traditionally clustered into operational taxonomic units (OTUs)
based on arbitrarily defined thresholds of sequence similarity.
For example, 16S rRNA gene fragments of >97% sequence identity
are clustered into separate OTUs that reflect the phylogenetic
boundaries of distinct bacterial species. Sequence clustering can
be guided by bacterial reference genomes, yet common methods
often also include de novo clustering to identify previously
unknown species [10]. OTU picking assigns similar, but slightly dif-
ferent sequences to the same taxon, assuming a shared biological
origin. Clustering therefore diminishes the impact of technical
variation on the analysis results, but at the expense of reduced sen-
sitivity in detecting biological variation. Fungal microbiota analysis
by ITS amplicon sequencing follows similar principles as bacterial
16S rRNA analysis but sequence clustering and classification are
complicated by inconsistent amplicon lengths and varying
sequence similarities between fungal species [11]. The UNITE pro-
ject represents an effort to generate a resource to represent the
growing, known diversity of ITS sequence data [12], similar to
the well-established SILVA database for pro- and eukaryotic small
and large subunit rRNA genes [13].

To differentiate between biological and technical sequence vari-
ations, reference-free statistical denoising methods such as Deblur
or Dada2 [14,15] have recently been implemented in QIIME2, a
popular open-source software package for 16S rRNA analysis
[16]. These tools generate error profiles of amplicon sequence
datasets, which are then used to resolve sequencing errors and

achieve single-nucleotide resolution for each amplicon sequence.
Compared to OTU-based approaches, analysis of the resulting
amplicon sequence variants (ASVs) provides improved sensitivity
and specificity and reduces the problem of inflated microbiota
datasets due to falsely identified distinct OTUs originating from
mis-clustered sequences [17]. In addition, OTU clustering results
are bound by the specific sequence data from which they were
inferred and are therefore non-reproducible with modified or
expanded datasets. The latest denoising algorithms overcome this
limitation by recovering independent biological sequences as ASVs,
fostering the reproducibility and comparability of amplicon-based
microbiome analysis [18].

Taxonomic and functional profiling of the entire microbiome by
metagenomics

Metagenomics uses the whole-genome shotgun approach to
fragment and sequence the entire DNA of a microbiome sample
instead of 16S rRNA gene fragments or other target amplicons
alone. Correspondingly, the generated reads can originate from
phages, viruses, bacteria, archaea, fungi and other eukaryotes and
include plasmids and other extra-chromosomal elements as well
as host, chloroplast and mitochondrial DNA. Compared to 16S
rRNA analysis, this method needs significantly more data to obtain
the sequencing depth that is required to identify and characterize
rare microbiota members, often reaching several terabases per
study and increasing costs and bioinformatic demands. However,
as metagenomics potentially allows for functional microbiota char-
acterization and, in theory, affords taxonomic resolution down to
the level of individual microbial strains, it has become increasingly
popular in microbiome research [19].

Quality control measures for metagenomic shotgun sequencing
with new tools, such as KneadData, combine quality-based
metagenomic read trimming and filtering with the bioinformatic
detection and removal of human, plant and other eukaryotic host
DNA (http://huttenhower.sph.harvard.edu/kneaddata). Metage-
nomic sequence data are typically analysed either by de novo
assembly or by comparing reads individually to reference data-
bases in a mapping-based process [20]. The de novo assembly of
microbial genomes can help identify and comprehensively charac-
terize previously unknown members of the microbiota [21]. How-
ever, because assembly requires substantial sequencing depth,
assembly-based methods are typically restricted to the genomic
reconstruction of highly abundant microbiome members. Marker
gene-based sequence mapping with tools such as MetaPhlAn2
can be used for taxonomic profiling of entire microbial communi-
ties, including rare microbiome members [22].

Microbiome sample handling and processing

Maintaining microbiome integrity during sample collection and
storage

Among many other factors, the accuracy of sequencing-based
microbiota analysis depends on how well the original structure
of the microbial community can be preserved between the time
of sample collection and processing. Distinct members of the
human, plant and environmental microbiota respond differently
to extended periods of sample storage by dying or by suspending,
retaining or increasing metabolic activity. Problematic artefacts for
taxonomic or functional microbiota analysis can also arise from
unintended disruption of the sample environment due to
freeze–thaw cycles; exposure to oxygen, UV light, or osmotic
stress; storage buffer components, etc. As a consequence, storage
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conditions can affect microbiome analysis and lead to biased
results [23].

Snap freezing of microbiome samples in liquid nitrogen and
their long-term storage at !80 !C are generally considered as the
gold standard for sample preservation [24]. However, commercial
nucleic acid-preserving reagents and sampling kits that are used
to maintain sample integrity in studies involving the collection of
environmental samples or self-collected human specimens outside
of the laboratory environment have generally been reviewed
favourably [23]. Studies have suggested that temperature shifts
alone have minor effects on taxonomic compositions and inter-
individual differences in human gut microbiota analyses [24]. Chu
et al. (2017) found the living bacterial microbiota of faecal samples
to be most strongly affected by oxygen exposure, rather than by
other factors, even repeated freeze–thaw cycles [25]. The same
accounts for fungal microbiome samples, which are commonly
stored with nucleic acid-preserving agents [26]. As mycorrhizal soil
fungi colonize plant root tissues, the disruption of root connections
after sampling can reduce mycorrhizal mycelial abundance and
subsequently, induce the growth of mycelium-dependent other
fungal opportunists, highlighting a specific protential problem for
plant-associated fungal microbiota analysis [27].

Avoiding selective enrichment and depletion of microbes during
nucleic acid isolation

Obtaining personalized gut microbiome analysis results from
consumer microbiome testing services, journalist Tina Saey was
surprised to receive substantially different results, particularly
with respect to the relative abundance of the two dominant bacte-
rial gut phyla Firmicutes and Bacteroidetes [28]. While numerous
confounding factors might account for these observed variations,
differences between nucleic acid isolation protocols have been
known to introduce biases in taxonomic microbiota analysis. Even
widely used commercial kits for DNA and RNA isolation differ in
their efficiency in lysing specific microbes, including
Gram-positive and Gram-negative bacteria, such as Firmicutes
and Bacteroidetes, respectively [29,30]. Host-associated and envi-
ronmental microbiome samples typically contain heterogeneous
mixtures of viral, archaeal and eukaryotic microorganisms, includ-
ing live and dead, active and inactive, vegetative and sporulated
cells; cellular debris; free nucleic acids and other macromolecules.
Microbial lysis protocols differ in their capacity to break open these
different types of microbial components for nucleic acid isolation.
Humic acids, melanin, polysaccharides, polyphenols and other
sample components can interfere with DNA and RNA isolation
and downstream applications, such as nucleic acid amplification
or concentration determination [31].

Most microbiome analysis protocols include combinations of
physical and enzymatic disruptions of microbial cells for nucleic
acid isolation [4], which can be amended based on project-
specific requirements, e.g., by adding specific polysaccharide-
degrading enzymes such as lyticase for fungal microbiome analysis
projects [32]. However, protocol variations lead to study-specific
biases, which is one reason for the scarcity of meta-analyses of
microbiome data [33–35]; these meta-analyses have had trouble
with, for example, the identification of universal, disease-specific
biomarkers across separate humanmicrobiome studies. Depending
on the microbiome sample type and specific microbial taxa of
interest, testing and evaluating different nucleic acid extraction
protocols on mock communities of diverse, defined microbial com-
position should be part of the early project planning phase. But
project-specific technical biases are difficult to completely avoid,
and consistency of the applied methods within specific micro-
biome studies might be most useful and practical.

Reducing, assessing and characterizing microbiome contamination

The interpretation of microbiome data can be complicated by
contamination from sources other than the original sample [36].
The high sensitivity of sequencing-based microbiome analysis, par-
ticularly 16S rRNA gene amplicon sequencing, in detecting previ-
ously unknown, rare, and often non-cultivable microbiome
members can also be problematic when contamination leads to
false positive results. Laboratory consumables, reagents and even
DNA extraction kits contain trace amounts of microbial DNA, and
to some extent, sample collection, handling and processing always
lead to low-level contamination [37,38]. Salter et al. (2014) ran
microbiome analyses on serial dilutions of the same clonal culture
of Salmonella bongori and identified a diverse microbiome that
included both environmental and host-associated bacteria from
the human skin and gut [37]. Importantly, the relative abundance
of bacterial signals from contamination was positively correlated
with the dilution factor of the original culture, demonstrating that
the microbiome signal from contamination becomes more signifi-
cant with decreasing amounts of sample starting material. Thus,
contamination is less relevant for the analysis of faecal or soil sam-
ples of high microbial density than for host-associated human or
plant microbiome studies of low microbial biomass, such as skin
and vaginal swabs, tissue biopsies, urine, and the phyllosphere
[39,40].

A prominent example of a controversially discussed micro-
biome finding concerns the placenta [41]. While several prominent
publications reported on the presence of a unique placental micro-
biome in clinically asymptomatic women [42,43], these reports
have been challenged as contradicting the paradigm of a tightly
immune-controlled sterile womb and the practice of surgically
removing sterile mouse pups from pregnant mice to generate
germ-free mice [41]. Lauder et al. (2016) compared human pla-
centa samples with vaginal swabs and experimental controls,
including sterile and ’air swabs’, and found the bacterial density
and taxonomic composition of the healthy placental samples to
be indistinguishable from those of microbiome-negative controls
[44].

A three-tiered approach has been proposed to address the con-
tamination problem [36]: First, good laboratory practice measures
can reduce the chance of contamination when handling and
preparing microbiome samples. This includes using purified,
DNA-free reagents and kits, whenever possible, as well as spatially
separating sample processing and DNA isolation, PCR setup and
subsequent steps in the lab. Besides bacterial cells and genomic
DNA from environmental sources, amplified PCR products can pose
an important laboratory source of contamination for 16S rRNA
analysis [37]. Second, the extent of contamination should be
assessed by including technical replicates and internal controls in
every step of the sample preparation protocol. Negative,
microbiome-free, extraction controls and positive controls of
microbial mock communities in defined concentrations can be
used to determine the upper and lower limits of detection. Third,
contamination controls should be sequenced and analysed
together with the biological samples to characterize the influence
of contamination on analysis results. For example, similarities
between microbiome profiles of biological samples and negative
controls can be quantified to compare the effect sizes of biological
findings against contamination signals. However, the general
exclusion of putative contamination signals from the analysis, by
removing taxa from negative controls, can also distort microbiome
analysis results and should be avoided. As contamination often
originates from the laboratory environment, it can be directly
influenced by related projects and include microbial signals that
are similar to those from the original samples [37].
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Reducing the impact of host DNA

Non-microbial DNA from human, animal or plant hosts is
another major concern for sequencing-based microbiome analysis.
Inadequate removal of host DNA can significantly increase the cost
of host-associated microbiome projects or even make them practi-
cally impossible if the sequencing effort to obtain sufficient cover-
age of the microbial metagenome becomes prohibitively large.
Healthy human faeces typically contain <10% human DNA, but
up to 90% of sequence reads from low-microbial biomass samples
such as saliva, nasopharyngeal, skin and vaginal swabs can be
assigned to the human host [40]. While bacterial concentrations
in urine increase during bladder infection, the concomitant
increase in host DNA from epithelial cell damage can complicate
microbiome analyses [Fricke, unpublished data]. As chloroplast
and mitochondrial genomes from eukaryotic cells also carry 16S
rRNA genes, host DNA can be problematic for 16S rRNA analysis,
especially for food or plant microbiome projects [45]. Finally, host
sequence removal may be mandatory before newly generated
sequence data can be released in public databases to secure the
privacy and confidentiality of human study participants, as
required by most journals and funding agencies prior to publica-
tion, or to protect proprietary information from genetically modi-
fied or patented crops.

The relative level of host DNA can be reduced experimentally,
either by removing host cells before DNA extraction or by selec-
tively enriching microbial DNA after DNA extraction, or host DNA
can be deleted bioinformatically by identifying and removing host
reads from resulting sequence data, as described above. To remove
host cells before DNA extraction, differential lysis can be used to
selectively release and degrade host DNA before microbial (bacte-
rial and fungal) DNA is isolated since mammalian cells are less
robust than most microbial cells [46]. Density gradient centrifuga-
tion has also been used to separate host tissue from bacterial cells
in plant samples [47]. However, microbiome samples, such as
human faeces, also contain free microbial DNA from dead bacteria
or cells that were disrupted during sample collection or storage,
and certain microbes may be more susceptible to eukaryotic lysis
regimens than others. Therefore, differential lysis protocols can
reduce total yields of isolate nucleic acids [48] and bias subsequent
compositional microbiota analyses towards specific taxa such as
hard-to-lyse gram-positive bacteria [49]. Commercial solutions
have become available to detect and remove vertebrate DNA by
binding methylated CpG sequence motifs, which are abundant in
eukaryotic but rare in microbial genomic DNA [50]. The latter
method has been used to enrich bacterial and protist DNA for sub-
sequent analysis of human and fish samples [50]. As an alternative
approach to reduce the number of host-derived, non-bacterial PCR
products, Lundberg et al. (2013) developed synthetic oligomers
that bind as peptide nucleic acid (PNA) PCR clamps specifically to
plant chloroplast and mitochondrial 16S rRNA gene sequences
and block them from amplification [45]. In a similar approach,
Agler et al. (2016) used specific nested primers, or ‘‘blocking
oligos”, inside the 16S rRNA gene of unwanted plant organelle
DNA, to avoid amplification of the full-length PCR product for sub-
sequent analyses [51].

New perspectives: Quantitative analysis and identification of
active microbes

Adopting methods for quantitative microbiome profiling

Without accounting for potential differences in absolute micro-
bial abundance between samples, the vast majority of microbiome
projects today aim to characterize microbial communities based on

compositional data [52]. These studies typically determine
fractions of an unknown total number of microbial species, 16S
rRNA gene copies, and other taxon-specific genes or functional
gene categories. Unfortunately, compositional data tend to be
misinterpreted as suggesting absolute shifts, reductions or
increases in specific microbial taxa, gene functions or other micro-
biome parameters. Changes in absolute abundance of microbiome
features can be biologically and clinically relevant, e.g. in small
intestinal bacterial overgrowth (SIBO) [53], but tend to be ignored
in standard microbiota projects. Vandeputte et al. (2017) found the
bacterial load of human faeces to vary between healthy people and
in individuals over time and bacterial density correlated with
faecal enterotype [54]. Moreover, the authors demonstrated that
quantitative microbiota profiling can change clinical perspectives.
In this case, compared to previous reports based on relative faecal
microbiota profiling, different bacterial taxa could be identified as
specific biomarkers for inflammatory bowel diseases [54].

Different experimental approaches have been proposed to
gather quantitative microbiome information, including cell count-
ing by flow cytometry [54], quantitative or real-time PCR of the
universal bacterial 16S rRNA gene [55] and normalization of bacte-
rial relative abundances based on defined cell numbers that are
spiked into the samples before nucleic acid isolation [56]. While
the first approach is technically more demanding, commercial kits
have become available to easily integrate quantitative analyses
into microbiome project workflows. Importantly, sequencing
depth, i.e., the number of reads assigned to each sample after
16S rRNA gene amplicon sequencing, should not be used to infer
quantitative information, as inconsistent read counts between
samples are typically technical artefacts that do not reflect quanti-
tative differences [54]. However, the sequencing depth per sample
does affect the alpha- and beta-diversity parameters of the micro-
biota and should be controlled, e.g., by bioinformatically rarefying
read counts to equal numbers prior to statistical analysis [57].

Differentiating between total and active microbes

Sequencing-based microbiome studies typically rely on DNA as
sole evidence for the existence of a microbiota in a sample. How-
ever, DNA from dying cells or spores or cell-free DNA in a sample
may be evidence for microbial contact, but it does not necessarily
indicate microbial life and an active microbiota in the sample. For
example, the existence of a blood microbiome remains controver-
sial, despite PCR-based evidence for bacterial 16S rRNA genes in
blood DNA extracts from non-septic individuals, as attempts to
culture bacteria from the same samples have mostly been unsuc-
cessful [58]. While bacterial adaptation to the harsh conditions of
the stomach has been demonstrated, metabolically active microbes
in the stomach are difficult to distinguish from ingested, inactive
microbes from other, adjacent body sites or food using DNA-
based microbiota surveys alone [59]. To address this problem, a
number of experimental and bioinformatic approaches have
recently been proposed to identify metabolically active microbes
reflective of a thriving microbiota.

Propidium monoazide (PMA) intercalates into double-stranded
DNA, preventing it from being amplified by PCR and has been used
by Chu et al. (2017) to remove free DNA from dead microbes prior
to 16S rRNA gene amplicon sequencing [25]. Several groups have
shown that 16S rRNA-based taxonomic microbiota compositions
differ between RNA and DNA fractions isolated from the same sam-
ple [59]. This has been used to differentiate between transcription-
ally active bacteria, which are identified on the basis of RNA
evidence, and all other bacteria, which are identified on the basis
of DNA evidence. Moreover, if DNA- and RNA-based analyses are
combined with quantitative microbiota profiling, the ratio of
16S rRNA transcript-to-gene copies can be used to quantify
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transcriptional activity and stratify bacterial taxa [59]. However,
recent studies on soil bacteria also found 16S rRNA transcripts to
remain stable for extended periods of time [60] and 16S rRNA gene
and transcript compositions to be indistinguishable [61], suggest-
ing that RNA-based methods to measure metabolic activity do
not work equally well for all microbiome types. Importantly,
experimental protocols need to support the simultaneous isolation
of DNA and RNA from the same sample and extracted RNA should
be carefully controlled for contamination with trace amounts of
DNA, in order to avoid selectively enriching specific microbial taxa
with separate lysis protocols or erroneously interpreting DNA-
based signals as indicators of transcriptional activity, respectively
[59].

An interesting approach to bioinformatically infer microbial
growth rates from metagenome sequence data has been proposed
by Korem et al. (2015) [62]. The authors demonstrated a positive
correlation between bacterial growth and replication activity
in vitro that is reflected by relatively increased concentrations of
DNA from genomic regions around the origin compared to that
from the terminus of replication. By mapping metagenomic
sequence reads to bacterial reference genomes, a ’peak-to-trough’
coverage ratio was calculated by comparing the origin and termi-
nus DNA concentrations for each individual genome. This ratio
was then used to stratify gut bacteria according to replicational
activity and to statistically associate specific active bacteria with
diseases such as inflammatory bowel disease and type II diabetes
[62].

Release of published microbiome data and protocols

Microbiome research benefits from the availability of research
data and protocols, and efforts should be made to establish and
maintain open data and protocol policies across the entire field
of microbiome research [63]. Progress in human microbiome
research is increasingly driven by large, multi-centre studies based
on the processing, sequencing and analysis of thousands of sam-
ples, often using custom laboratory and bioinformatic protocols
to generate a statistical basis to detect subtle microbiome pheno-
types. As a consequence, newly generated raw data and metadata,
tools and protocols represent a substantial scientific resource to
the broader research community that allows others to reproduce
and expand published findings, recombine datasets for meta-
analyses and develop new analytical approaches. For this reason,
raw sequence and other omics data, associated sample metadata,
and experimental and bioinformatic protocols for sample process-
ing and analysis from published studies need to be made fully,
freely and easily accessible. Accurate, detailed and complete bioin-
formatics analysis protocols should all scripts and precise com-
mands that are needed to allow for full reproduction of raw data
processing, data analysis and the generation of published figures.
Although most funding agencies and journals in theory have set
formal policies for data availability, access can be complicated in
practice due to incomplete or inconsistent datasets, missing meta-
data information, and simple technical difficulties. Authors can be
reluctant to comply with formal requirements that journals and
funding agencies are struggling to enforce. Universal mandatory
data and protocol release before manuscript submission would
facilitate and improve peer review and allow journals to check
for data availability as part of the submission process.

Conclusions and future perspectives

Microbiome research continues to excite both the scientific
community and the public at large. However, the field has also
been blamed for overselling findings and not producing reliable,

applicable results [64]. While the mechanistic understanding of
microbiota functions may yet remain too fragmentary to allow
for the immediate development of diagnostic and therapeutic
applications, there is little doubt about the general importance of
human, animal and plant microbiomes for their hosts. To foster
successful microbiome research in the future, it will be important
for researchers, authors, reviewers, journals and funding agencies
to (i) push the field towards the more widespread application of
carefully controlled protocols for sample storage, nucleic acid iso-
lation, contamination, amplification, sequencing and bioinformatic
analysis; (ii) develop, optimize and standardize appropriate,
improved analysis protocols; (iii) adopt and combine new experi-
mental techniques, such as DNA- and RNA-based, relative and
quantitative microbiota profiling; and (iv) increase the trans-
parency and outreach of microbiome research by releasing data,
metadata and protocols from published studies (Fig. 1).
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Appendix 3: High intake of orange juice and cola differently affects metabolic risk in 
healthy subjects 

Franziska Büsing, Franziska A. Haegele, Alessa Nas, Laura-Verena Doebert, Alena 
Fricker, Elisabeth Doerner, Daniel Podlesny, Julian Aschoff, Tobias Poehnl, Ralf 

Schweiggert, W. Florian Fricke, Reinhold Carle, Anja Bosy-Westphal (2018). High intake of 

orange juice and cola differently affects metabolic risk in healthy subjects. Clinical Nutrition, 

Vol 38, https://doi.org/10.1016/j.clnu.2018.02.028 

Abstract: 
Background: Higher consumption of sugar-containing beverages has been associated with 

an elevated risk of type 2 diabetes and gout. Whether this equally applies to cola with an 

unhealthy image and orange juice (OJ) having a healthy image remains unknown. 

Methods: In order to investigate whether OJ and cola differently affect metabolic risk 26 

healthy adults (24.7 ± 3.2 y; BMI 23.2 ± 3.3 kg/m2) participated in a 2x2-wk intervention and 

consumed either OJ or caffeine-free cola (20% Ereq as sugar from beverages) in-between 

3 meals/d at ad libitum energy intake. Glycemic control, uric acid metabolism and gut 

microbiota were assessed as outcome parameters. Results: Fecal microbiota, body weight, 

basal and OGTT-derived insulin sensitivity remained unchanged in both intervention 

periods. Levels of uric acid were normal at baseline and did not change with 2-wk cola 

consumption (-0.03 ± 0.67 mg/dL; p > 0.05), whereas they decreased with OJ intervention 

(-0.43 ± 0.56 mg/dL; p < 0.01) due to increased uric acid excretion (þ130.2 ± 130.0 mg/d; p 

< 0.001). Compared to OJ, consumption of cola led to a higher daylong glycemia (DiAUC: 

36.9 ± 83.2; p < 0.05), an increase in glucose variability (DMAGE-Index: 0.29 ± 0.44; p < 

0.05), and a lower 24 h-insulin secretion (DC-peptide excretion: -31.76 ± 38.61 mg/d; p < 

0.001), which may be explained by a decrease in serum potassium levels (-0.11 ± 0.24 

mmol/L; p < 0.05). 

Conclusion: Despite its sugar content, regular consumption of large amounts of OJ do not 

increase the risk of gout but may even contribute to lower uric acid levels. The etiology of 

impaired insulin secretion with cola consumption needs to be further investigated. 
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