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1 SUMMARY 

1 Summary 

Soil microorganisms play a pivotal role in decomposition processes and therefore influence 

nutrient cycling and ecosystem function. Availability and quality of resources determines 

activity, growth and identity of substrate users. In agricultural systems, availability of 

resources is dependent on, for example, crop type, management, season, and depth. At depth 

substrate availability and microbial biomass decrease. However, there remain gaps in our 

understanding of C turnover in subsoil and how processes in the topsoil may influence 

abundance, activity, and function of microorganisms in deeper soil layers. With respect to 

substrate quality it is thought that bacteria are the dominant users of high quality substrates 

and more labile components whereas fungi are more important for the degradation of low 

quality and more recalcitrant substrates (i.e. cellulose, lignin). Therefore, this thesis was 

designed to increase our understanding of C turnover and the influence of both availability 

and quality of substrates on microorganisms in an agricultural soil. 

In the first and second studies, a recently established C3-C4 plant exchange field experiment 

was used to investigate the C flow from belowground (root) and aboveground (shoot litter) 

resources into the belowground food web. Maize plants were cultivated to introduce a C4 

signal into the soil both by plant growth (belowground / root channel) and also by applying 

shoot litter (aboveground litter channel). To separate C flow from the shoot litter versus the 

root channel, maize litter was applied on wheat cultivated plots, while on half of the maize 

planted plots no maize litter was returned. Wheat cultivated plots without additional maize 

litter application served as a reference for the calculation of incorporated maize-C into 

different soil pools. Soil samplings took place in two consecutive years in summer, autumn 

and winter. Three depths were considered (0-10 cm: topsoil, 40-50 cm: rooted zone beneath 

the plough layer, 60-70 cm: unrooted zone). In the third study a microcosm experiment with 

substrates of different recalcitrance and complexity was carried out to identify primary 

decomposers of different plant litter materials (leaves and roots) during early stages of 

decomposition (duration of 32 days) and to follow the C flow into the next higher trophic 

level (protozoa). 

The first study showed that the time of sampling strongly influenced the abundances of 

bacterial and fungal phospholipid fatty acids (PLFAs) as well as of enzyme activities at every 

depth. High bacterial and fungal PLFA abundances and enzyme activities in the profiles in 

winter indicated enhanced substrate availability and transient flow conditions after an increase 



1 SUMMARY 

in soil water content and freeze/ thaw cycles. Increased substrate availability in the wheat 

plots due to higher wheat than maize root biomass (and therefore higher rhizodeposition) 

resulted in higher extractable organic C (EOC), and greater abundances of bacterial and 

fungal PLFAs, mainly in topsoil but also in the rooted zone beneath the plough layer (40-50 

cm). Enzyme activities were less influenced by crop type in the topsoil but more frequently at 

40-50 cm. Litter amendment increased bacterial and fungal PLFA abundances and most 

enzyme activities in the topsoil only. These effects of enhanced substrate availability were 

still evident about almost one year after litter amendment. In the 60-70 cm soil depth, effects 

could be observed only on rare occasions. Reduced substrate availability in deeper soil layers 

decreased bacterial and fungal PLFA abundances and hydrolytic enzyme activities. But these 

patterns were not observed for oxidative enzymes. Since oxidative enzymes are preferably 

bound on mineral surfaces, their stabilization is likely enhanced in deeper soil layers. 

Increased pH at depth, which was closer to the optimum of these enzymes, could also have 

been a reason for the differences in patterns of oxidative enzymes. The higher specific 

enzyme activities (enzyme activity per total microbial biomass) of both, hydrolytic and 

oxidative enzymes, in deeper soil layers than in topsoil indicated that the particular conditions 

in subsoil (lower substrate availability and therefore greater spatial separation of enzymes and 

substrate) may have changed the productivity and efficiency of microorganisms or the 

microbial community itself. Further, a general enhanced stabilization of enzymes at depth 

could have also contributed to these findings. 

The second study showed that the recently introduced C from the two resources (root vs. 

shoot litter) was detectable after only a few months in the different pools and that it 

accumulated over time. Surprisingly, irrespective of the resource, there were no differences in 

the absolute or relative amounts of the incorporated C between the two resources (above- and 

belowground) in spite of the fact that the input of root derived C was calculated as 5 times 

lower than aboveground litter derived C. This indicates that root derived C was assimilated by 

microorganisms to a considerable degree and was incorporated in different soil pools to a 

relatively greater extent than was aboveground litter. The additive effect of both resources 

(root and shoot litter) indicates that presence or availability of both of these resources did not 

result in any preference or synergistic effect. The highest incorporation of recent C was found 

in the fungal biomarker ergosterol, indicating high and rapid assimilation of rhizodeposits as 

well as aboveground litter-derived C by fungi. 
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1 SUMMARY 

The third study showed that substrate quality influenced decomposition rates as well as 

substrate users and that all investigated groups (bacteria, fungi, protists) were involved in the 

degradation of the substrates. As the most labile substrate, glucose was mineralized most 

rapidly and assimilated in greater relative amounts than the other substrates. Cellulose 

mineralization and assimilation was slightly delayed, possibly because microbes had to 

produce enzymes in order to decompose it. At the end of the incubation (after 32 days) the 

mineralized amounts of glucose and cellulose were similar, whereas leaves and roots were 

mineralized in less amounts. The mineralization and assimilation of roots was lowest, 

confirming its low resource quality. Key glucose users were Actinobacteria (Arthrobacter 

spp., Humicoccus spp.) and Proteobacteria (Oxalobacteraceae, Pseudomonas spp.), the yeast 

Cryptococcus spp., and the plant pathogen Phytium spp.. The glucose users were distinct from 

the cellulose, leaf, and root users with the exception of Flavobacterium and Phytium spp.. 

Key cellulose users belonged to the bacterial phyla Proteobacteria (Cellvibrio spp.), 

Bacteroidetes (Flavobacterium spp.) and Actinobacteria (Streptomycetaceae, Kitasatospora 

spp.). Key fungal cellulose users were Chaetomium and Geomyces species. Most cellulose 

users were also identified as leaf and root consumers, indicating the importance of cellulose 

as a substrate from plant materials. Surprisingly, although the mineralization and assimilation 

of roots was lower than that of leaves, the same key taxa used both plant materials, indicating 

that the quality of complex substrates affects the decomposition rate but not the primary 

degrading taxa. Involvement of myxobacteria as well as protozoa suggests secondary trophic 

labeling already during early stages of decomposition. 

In conclusion, this thesis extends our understanding of decomposition of different resources, 

C turnover and the identity of specific microorganisms directly involved in these processes, 

which is an important basis for improvement of current decomposition and food web models. 
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2 ZUSAMMENFASSUNG 

2 Zusammenfassung 

Bodenmikroorganismen spielen eine zentrale Rolle im Abbau von organischer Substanz und 

beeinflussen somit Nährstoffkreisläufe und die Funktion von Ökosystemen. Die 

Verfügbarkeit und Qualität von Ressourcen bestimmt die Aktivität, das Wachstum und die 

Identität der entsprechenden Substratnutzer. In Agrarökosystemen ist die Verfügbarkeit von 

Ressourcen zum Beispiel abhängig von Kulturpflanzenart, Bodenbearbeitung, Jahreszeit und 

Bodentiefe. In der Tiefe ist die Substratverfügbarkeit und somit auch die mikrobielle 

Biomasse verringert. Aber es ist immer noch wenig bekannt über den C-Umsatz im 

Unterboden und wie und ob Prozesse im Oberboden die Abundanz, Aktivität und Funktion 

von Mikroorganismen im Unterboden beeinflussen. In Bezug auf die Substratqualität wird 

davon ausgegangen, dass Bakterien vor allem am Abbau hoch qualitativer und leicht 

abzubauender Substrate beteiligt sind, während Pilze eine wichtigere Rolle beim Abbau von 

qualitativ minderwertigeren und schwerer abzubauenden Substraten (z.B. Cellulose, Lignin) 

spielen. Die vorliegende Arbeit wurde durchgeführt, um das Verständnis des C-Umsatzes und 

den Einfluss von Verfügbarkeit und Qualität von Substraten auf Mikroorganismen in einer 

Agrarfläche zu verbessern. 

In der ersten und zweiten Studie wurde ein Feldversuch genutzt, der angelegt wurde, um mit 

Hilfe eines C3-C4 Pflanzenwechsels den C-Fluss von unterirdischen (Wurzel) und 

oberirdischen (Streu) Ressourcen ins unterirdische Nahrungsnetz zu untersuchen. 

Maispflanzen wurden angebaut, um das C4-bürtige Signal in den Boden einzuführen. Dies 

geschah einerseits durch Pflanzenwachstum (unterirdisch / Wurzelkanal) und andererseits 

durch das Rückführen von Streu auf die Flächen (oberirdischer Streukanal). Um den C-Fluss 

des Wurzel- und Streu-Kanals zu trennen, wurde Streu auf Flächen aufgebracht, auf denen 

Weizen angebaut wurde, während auf der Hälfte der Flächen, auf denen Mais angebaut 

wurde, keine Streu zurückgeführt wurde. Weizenflächen auf denen keine zusätzliche 

Maisstreu aufgebracht wurde, wurden als Referenz für die Berechnung des C-Eintrags in die 

unterschiedlichen Bodenpools genutzt. Bodenproben wurden in 2 aufeinanderfolgenden 

Jahren im Sommer, Herbst und Winter genommen. Es wurden 3 unterschiedliche Bodentiefen 

betrachtet (0-10 cm: Oberboden, 40-50 cm: durchwurzelte Zone unter dem Pflughorizont, 60-

70 cm: nicht durchwurzelte Zone). In der dritten Studie wurde ein Mikrokosmenexperiment 

mit Substraten unterschiedlicher Rekalzitranz und Komplexität durchgeführt, um primäre 

Nutzer von unterschiedlichem Pflanzenmaterial (Blätter und Wurzeln) während der frühen 
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Abbauphase (32 Tage) zu identifizieren und den C-Fluss in eine nächst höhere trophische 

Ebene (Protozoen) zu untersuchen. 

Die erste Studie zeigte, dass der Zeitpunkt der Bodenprobenahme einen großen Einfluss auf 

die Abundanz von bakteriellen und pilzlichen Phospholipidfettsäuren (PLFAs) in jeder der 

drei betrachteten Bodentiefen hatte. Die hohe Abundanz von bakteriellen und pilzlichen 

PLFAs und Enzymaktivitäten vor allem an den Winterterminen deutete auf eine erhöhte 

Substratverfügbarkeit und verbesserte Fließbedingungen im Bodenprofil, nach einer 

Erhöhung des Bodenwassergehalts und Frier/Tau-Zyklen, hin. Eine erhöhte 

Substratverfügbarkeit, wahrscheinlich durch die erhöhte Wurzelbiomasse des Weizens im 

Vergleich zu Mais und demnach höchstwahrscheinlich auch eine vermehrte Exsudation, 

führte zu erhöhten Mengen von extrahierbarem organischen C (EOC) und einer höheren 

Abundanz bakterieller und pilzlicher PLFAs in den Weizenplots. Diese Effekte waren 

hauptsächlich im Oberboden zu beobachten, seltener auch in der Tiefe bei 40-50 cm. Die 

Enzymaktivitäten waren im Oberboden nicht so deutlich von der Kulturpflanzenart 

beeinflusst, dafür aber stärker in 40-50 cm. Das Aufbringen von Streu führte ebenfalls zu 

einer Erhöhung der bakteriellen und pilzlichen PLFA Abundanzen sowie der 

Enzymaktivitäten, dies war aber nur im Oberboden zu beobachten. Der positive Effekt durch 

das Aufbringen der Streu war noch nach fast einem Jahr zu sehen. In der untersten Tiefe (60-

70 cm) konnten nur selten Behandlungseffekte verzeichnet werden. Die reduzierte 

Substratverfügbarkeit in der Tiefe führte zu geringeren bakteriellen und pilzlichen PLFA 

Abundanzen und reduzierter Aktivität der hydrolytischen Enzyme. Überraschenderweise 

zeigten die oxidativen Enzyme eine andere Tiefenverteilung. Die Aktivitäten dieser Enzyme 

blieben in der Tiefe gleich oder waren sogar erhöht. Da diese Enzyme bevorzugt an 

mineralischen Oberflächen gebunden sind, könnten sie in der Tiefe stärker stabilisiert worden 

sein als die hydrolytischen Enzyme. Der ansteigende pH-Wert in der Tiefe, der näher an dem 

optimalen pH-Wert der oxidativen Enzyme liegt, könnte ebenfalls eine Rolle gespielt haben. 

Die höheren spezifischen Enzymaktivitäten (Enzymaktivität pro mikrobielle Biomasse) von 

hydrolytischen und oxidativen Enzymen in den unteren Tiefen im Vergleich zum Oberboden 

können unterschiedliche Gründe haben. Die spezifischen Bedingungen in tieferen 

Bodenschichten, wie z.B. geringere Substratverfügbarkeit und daher eine wahrscheinlich 

höhere räumliche Trennung von Mikroorganismen, Enzymen und deren Substraten, könnte zu 

einer Erhöhung der Produktion und Effizienz der Mikroorganismen geführt haben bzw. zu 

einem Wechsel der mikrobiellen Gemeinschaft zu generell effizienteren Arten. Außerdem 
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spielte wahrscheinlich eine grundsätzlich größere Stabilisierung von Enzymen in der Tiefe 

eine Rolle. 

In der zweiten Studie wurde gezeigt, dass der C aus den unterschiedlichen Ressourcen 

(Wurzeln und Streu) schon nach ein paar Monaten in den unterschiedlichen Pools detektiert 

wurde und über die Zeit anstieg. Überraschenderweise unterschieden sich die absoluten und 

relativen C-Mengen der Ressourcen (Wurzel vs. Streu) in den untersuchten Pools nicht, 

obwohl die zur Verfügung gestandene Menge von wurzelbürtigem C fünffach geringer war 

als die der Streu. Dies deutet darauf hin, dass wurzelbürtiger C in hohem Maße von 

Mikroorganismen assimiliert und stärker in die unterschiedlichen Pools eingebaut wurde im 

Vergleich zu streubürtigem C. Der additive Effekt, der auftrat, wenn beide Ressourcen zur 

Verfügung standen, deutet darauf hin, dass keine der beiden Ressourcen präferiert genutzt 

wurden oder synergistisch wirkten. Der höchste relative Einbau von C wurde im pilzlichen 

Biomarker Ergosterol nachgewiesen, was die hohe und schnelle Assimilation von 

Rhizodepositen und sowie der Streu durch Pilze belegt. 

Die dritte Studie zeigte, dass die Substratqualität die Abbauraten sowie die Substratnutzer 

beeinflusst. Alle untersuchten Gruppen (Bakterien, Pilze, Protisten) waren am Abbau der 

Substrate beteiligt. Das labilste Substrat, Glukose, wurde am schnellsten mineralisiert und 

stärker in die mikrobielle Biomasse aufgenommen als die anderen Substrate. Die Cellulose 

Mineralisation und Assimilation war etwas verzögert, wahrscheinlich da erst Enzyme 

produziert werden mussten, um die Cellulose nutzen zu können. Am Ende der Inkubation 

(nach 32 Tagen) waren die mineralisierten Mengen der Glukose und Cellulose gleich, 

während die Blätter und Wurzeln in geringerem Ausmaß mineralisiert wurden. Die 

Mineralisation und Assimilation der Wurzeln war am geringsten, was die geringe 

Substratqualität widerspiegelt. Die Haupt-Glukose Nutzer waren Actinobacteria 

(Arthrobacter spp., Humicoccus spp.) und Proteobacteria (Oxalobacteraceae, Pseudomonas 

spp.), die Hefe Cryptococcus spp., and das Pflanzen Pathogen Phytium spp.. Die Glukose 

Nutzer unterschieden sich deutlich zu den anderen Substratnutzern. Nur Flavobacterium und 

Phytium spp. waren auch am Abbau der anderen Substrate beteiligt. Die Haupt-Cellulose 

Nutzer gehörten zu Proteobacteria (Cellvibrio spp.), Bacteroidetes (Flavobacterium spp.) and 

Actinobacteria (Streptomycetaceae, Kitasatospora spp.). Haupt-Pilz Nutzer waren 

Chaetomium and Geomyces Arten. Die meisten Cellulose Nutzer waren auch am Abbau der 

Pflanzenmaterialien beteiligt. Obwohl die Mineralisation und Assimilation der Wurzeln 

geringer war als die der Blätter, wurden keine Unterschiede in den substratnutzenden Taxa 
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festgestellt. Dies deutet darauf hin, dass die Qualität von komplexen Substraten die Abbaurate 

bestimmt, aber die Nutzer sich erstmal nicht unterscheiden. Die Anreicherung von 

Myxobakterien und Protozoen deutete auf eine sekundäre Anreicherung durch trophische 

Verknüpfungen hin. 

Diese Arbeit erweitert das Verständnis vom Abbau unterschiedlicher Ressourcen, C Umsatz 

und der direkten Beteiligung von spezifischen Mikroorganismen, was einen wichtigen Beitrag 

zur Verbesserung von bisherigen Abbau- und Nahrungsnetz-Modellen leisten kann. 
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3 General Introduction 

3.1 Carbon cycle 

Soils comprise the largest terrestrial reservoir for carbon (C) (Chapin III et al. 2009). The total 

soil C pool is four times higher than the biotic pool, composed of vegetation, and three times 

higher than the atmospheric pool (Lal 2004). Estimations of soil C stocks in the top 100 cm 

range from 1500-2000 Pg C (Janzen 2005). About 30 % of earth’s land area is used for 

agriculture and about one-fourth of soil organic matter C is stored in agricultural soils (Nieder 

& Benbi 2008, Schulze 2006). 

Carbon dioxide (CO2) concentration in the atmosphere has risen from a pre-industrial value of 

about 280 ppm to 379 ppm in 2005 (IPCC 2007). The global increase in CO2 concentration is 

primarily due to burning of fossil fuels. However, land use change, which includes 

deforestation and land management practices, is another significant factor (IPCC 2007).  

There is still uncertainty about how the observed rising atmospheric CO2 concentration will 

affect soil C stocks due to resulting temperature increases and changing precipitation patterns. 

Whether soils will serve as sources or sinks of increasing C, assuming that increased CO2 

concentration will enhance plant growth while higher temperatures will increase 

decomposition, will depend on the relationship between plant derived C inputs and 

decomposition (Davidson & Janssens 2006). Agricultural management has the potential to 

enhance C sequestration in soil and can therefore mitigate CO2 emissions to some extent. For 

example, tillage practices like ploughing physically disrupt aggregates and bring hitherto 

inaccessible organic matter (OM) into contact with microorganisms, increasing soil organic 

matter (SOM) decomposition. Leaving plant residues or returning them to the soil surface 

after harvest increases the SOM pool by the amount of plant derived C in the residues and 

lowers the potential of C loss by erosion (Lal 2004). Application of fresh organic matter 

(FOM) can also result in increased SOM mineralization, the so called priming effect 

(Fontaine et al. 2007). However, it is expected that the priming effect is more important as a 

short-term effect than it is for long-term C-sequestration (Stockmann et al. 2013). 

The goal of agricultural soil management under the conditions of a changing climate is to 

ensure plant growth, to reduce the loss of plant derived C from SOM, and to simultaneously 

maintain the nutrient cycles needed to sustain or enhance the quality and productivity of soil 

(Lal 2004). Therefore, to adapt agricultural management in a sustainable way, identification 
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of the microbial groups involved in microbially mediated soil processes such as 

decomposition, and their role in the C-cycle in soil, are important (King 2011). 

 

3.2 Decomposition and involved soil organisms 

Major routes of C-input into soil are via living plants by rhizodeposition and via dead plant 

material such shoot litter and roots. In soils a huge consortium of organisms (macrofauna, 

mesofauna, microfauna and microflora) is directly or indirectly involved in the formation and 

turnover of SOM by decomposition of plant residues and remineralization of nutrients 

(Bardgett et al. 2005). The most important group in decomposition is the microflora, due to 

their biochemical and phylogenetic diversity (Coleman & Crossley 1996). As primary 

degraders of organic material, both bacteria and fungi play key roles in decomposition and 

represent an important basis of the food web (Bardgett et al. 2005, deBoer 2005, Berg & 

McClaugherty 2008).  

Traditionally, food webs are separated into herbivore and detrital food chains; the latter is 

further separated into bacterial and fungal energy channels (Moore et al. 2005). The bacterial 

channel is believed to process more labile organic matter and dominates in fertile and 

productive ecosystems, whereas the fungal channel processes dominantly more recalcitrant 

organic matter and is prevalent in infertile and unproductive ecosystems (Wardle et al. 2004). 

In addition, the bacterial channel is assumed to be a fast cycle with rapid nutrient and biomass 

turnover of the food web members. In comparison, the fungal channel is seen as a slow cycle 

with slow turnover of nutrients and biomass (Moore et al. 2005).  

Earlier views on food webs regarded aboveground litter as the main source of decomposer 

fauna, often ignoring the belowground root system as a significant food source. But recent 

food web analyses in grasslands and forests have shown the importance of belowground root 

derived C-input to food webs (Ostle et al. 2007, Pollierer et al. 2007). Further, the structure of 

the decomposer system can be highly influenced by the quantity and quality of root exudates 

and litter (Wardle et al. 2004, Krashevska et al. 2012). However, the relative importance of 

and influence on the food web structure of aboveground vs root derived resources is still 

largely unknown.  

As food webs can be regulated either top-down (predation) or bottom-up (resource quantity 

and quality) this can have consequences for biotic interactions and on the further C flow 

through the soil food web (Wardle et al. 2004, Ayres et al. 2009). Therefore, as the basis of 
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the soil food web, bacteria and fungi can be important bottom-up drivers of the structure of 

soil food webs by their specific resource utilization during decomposition of organic matter. 

 

3.2.1 Resource availability and its influence on microbial degraders 

Resource availability affects microbial biomass and activities (Geisseler et al. 2011). The 

input and turnover of organic C through both topsoil and subsoil processes is influenced by 

agricultural management, e.g. soil tillage, crop type, nitrogen (N) amendment, and residue 

management such as mulching (Clapp et al. 2000, Lorenz & Lal 2005). For example, 

vegetation dependent factors such as plant species influence the size and composition of 

microbial communities (Grayston et al. 2001, Moore-Kucera & Dick 2008). Within the soil 

profile the distribution of roots and the amounts of exudates affect resource availability into 

deeper soil layers. In mulching systems, plant litter left on fields serves as additional substrate 

and is likely to affect microbial communities and their function. No-tillage systems with plant 

litter returned to the soil surface promote fungal growth whereas conventional systems, in 

which chopped plant resources are distributed back into the soil by ploughing promote the 

bacterial pathway (Hendrix et al. 1986). The advantage fungi have are their hyphal structures; 

with these they are able to grow towards aboveground litter or translocate nutrients from the 

soil into fungal biomass in the litter layer (Holland & Coleman 1987, Frey et al. 2003). 

Additionally, fungi have greater resistance to the low water potentials that are often a 

condition close to surface residues (Holland & Coleman 1987). 

Resource amounts and types change within seasons due to growth stages of the plants and/or 

management system, and these in turn affect decomposer communities (Hendrix et al. 1986, 

Kaiser et al. 2010). During plant growth rhizodeposits such as exudates are released into the 

soil; after harvest, roots and, depending on management, residual plant litter and roots remain, 

respectively, on or in the soil. Observed changes in the microbial community over seasons has 

been attributed to alterations in both C and nutrient availabilities (Smit et al. 2001, Lipson & 

Schmidt 2004, Schadt et al. 2003). The proportion of fast-growing bacteria was highest in 

summer and highest species richness has been found in spring and autumn after fertilization 

and harvest of plants (Smit et al. 2001). It has been shown as well that under snow cover 

microbial activity was measurable and that the community differed between summer and 

winter; therefore a change in the function of microorganisms would be expected (Schmidt & 

Lipson 2004, Schadt et al. 2003). 

10



3 GENERAL INTRODUCTION 

  

Seasonal changes in abiotic factors such as temperature, drying/rewetting and freeze/thaw 

cycles can influence the availability of substrates and therefore strongly influence microbial 

biomass, community composition and activity; seasonal effects can be even higher than 

treatment effects (Debosz et al. 1999, Bell et al. 2010). The transport of organic matter 

through the soil profile is also highly dependent on seasonal weather variations during the 

year. Drying/wetting, strong precipitation events, or freeze/thaw cycles increase the release of 

mobile organic dissolved and particulate substances (MOPS) (Majdalani et al. 2008). 

Depending on the season, these events result in enhanced transport of MOPS (Totsche et al. 

2007), DOM (Kalbitz et al. 2000) and colloids (Cheng & Saiers 2009) in the soil profile and 

therefore availability of substrates at depth as well. 

In general, lower substrate availability in deeper soil layers in comparison to topsoil results in 

decreasing microbial biomass (Blume et al. 2002, Bausenwein et al. 2008, Gelsomino & 

Azzellino 2011) and activity (Fang & Moncrieff 2005). However, specific activities (activity 

per microbial biomass) of assimilation and mineralization do not always decrease with depth 

(Blume et al. 2002, Gelsomino and Azzellino 2011). Observed reduced decomposition in 

deeper soil layers is additionally due to stabilization of organic matter which is highly 

associated with clay minerals (Rumpel et al. 2004). Spatial separation between 

microorganisms and the substrate seems to play a role in subsoil as well (Salomé et al. 2010). 

Therefore additional mechanisms which reduce the availability of resources must be included 

when decomposition processes in subsoil are considered. Although deeper soil layers store 

high amounts of organic C (Jobbagy & Jackson 2000), the contribution of microorganisms to 

carbon dynamics in subsoils has received far less attention than in topsoils (Rumpel & Kögel-

Knabner 2011). 

 

3.2.2 Resource quality and its influence on microbial degraders 

Resource quality influences decomposition processes, microbial consumers, and therefore 

potential C retention in soil. Roots are generally more slowly degraded in comparison to 

leaves, resulting in higher retention of root derived C in comparison to aboveground litter 

derived C in SOM (Puget & Drinkwater 2001, Rasse et al. 2005, Kätterer et al. 2011). These 

effects can be explained by both higher chemical recalcitrance and limited enzymatic access 

in roots in comparison to leaves. For example, lower amounts of soluble compounds, higher 

contents of recalcitrant compounds like lignin, tannin, cutin, suberin, and greater 

11



3 GENERAL INTRODUCTION 

  

interconnections with phenolic acids within the cell walls restrict enzymatic attack (Abiven et 

al. 2005, Rasse et al. 2005, Bertrand et al. 2006, Fujii & Takeda 2010). 

Rasse et al. (2005) calculated the residence time of shoot and root derived C from 14 studies 

including field and laboratory experiments. In field experiments with in situ root growth the 

mean residence time of root derived C was 2.4 times higher than of shoot-C. In comparison, 

in experiments with litter bags in the field and in lab experiments, when root and shoot litter 

were mixed into the soil, the residence time of root litter was on average only 1.3 times higher 

than of shoot litter. The authors proposed that in situ root growth results in specific 

stabilization mechanisms, in addition to the general higher chemical recalcitrance of roots. 

They argued that the specific chemical nature of rhizodeposits leads to high physico-chemical 

stabilization with minerals; the specific water conditions at the root surfaces as well as the 

small structures of root hairs and mycorrhizal hyphae promote the physical stabilization of 

aggregates. The lower contribution of root derived C in litter experiments in comparison to in 

situ experiments is therefore explained by the exclusion of living roots and the specific 

stabilization mechanisms connected to them (Rasse et al. 2005). 

Although it is known that root derived components are stabilized in SOM to a greater extent 

than aboveground derived material, only a few studies have considered the contribution of 

root derived C in comparison to aboveground litter in different soil fractions, in the microbial 

biomass, or different groups of microorganisms (i.e. Balesdent & Balabane 1996, Puget & 

Drinkwater 2001, Williams et al. 2006). During plant growth, rhizodeposits, composed of 

water-soluble exudates such as sugars and organic acids and water-insoluble compounds like 

sloughed off cells, mucilage, and other root debris, are released actively or passively from 

roots (Grayston et al. 1996, Farrar et al. 2003). Exudates are readily available substrates for 

microorganisms and are normally quickly mineralized or used for growth (Kuzyakov 2002). 

Puget & Drinkwater (2001) observed that rhizodeposit-derived C was also biologically 

immobilized (incorporated into microbial biomass) in soil to a greater relative extent than 

shoot litter-derived C. The mechanisms behind this are unclear. One possible explanation is 

that resource inputs which are delivered continuously in low quantities (such as rhizodeposits) 

are retained to a greater extent than resources which are applied once (such as aboveground 

litter) (Puget & Drinkwater 2001). This effect was observed by Jans-Hammermeister et al. 

(1998) who did a microcosm experiment with 
14

C-glucose. Mineralization of substrate-

derived C was lower and storage efficiency was higher in the microbial biomass under a daily 

addition of glucose as compared to a pulse addition. 
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It is commonly thought that high quality and more easily decomposable compounds (i.e. 

exudates) are used mainly by bacteria and low quality SOM (i.e. lignin) degradation is 

dominated by fungi. For example Paterson et al. (2007) observed that the main decomposers 

of different plant fractions were defined by the quality of the fraction (labile: mainly by 

bacteria vs. recalcitrant: mainly by fungi). Further, Elfstrand et al. (2008) showed that root- 

and shoot litter-derived substrates are processed by different soil organisms. Therefore, the 

quality of plant C resources determines degrader communities and affects C allocation and 

sequestration in soil (Eisenhauer et al. 2010, Ladygina & Hedlund 2010).  

The contribution of C accumulation in soil by the microbial community itself is dependent on 

1) its growth efficiency (the efficiency with which substrates are incorporated in the microbial 

biomass); 2) the rate at which biomass derived compounds or metabolites are degraded by 

other organisms, and 3) the degree of protection of their biomass (e.g. from grazing) (Six et 

al. 2006). There is still a debate about C use efficiencies of different microorganisms and 

whether or not fungi do have a higher C use efficiency in contrast to bacteria. Fungal cells 

have a higher C/N ratio than bacteria, which results in a higher C content of fungal as 

compared to the same amount of bacterial biomass (Six et al. 2006). Additionally cell wall 

components of fungi are degraded more slowly than bacterial cell walls (Nakas & Klein 

1979), and turnover times of fungi are generally longer than those of bacteria (Rousk & Bååth 

2011). However, due to their smaller size and their occupation of smaller soil pores bacteria 

are expected to be better protected against grazing by higher trophic levels (Wardle et al. 

1993). In addition, fungi are involved in macroaggregate formation, which protects SOM 

from decomposition (Bossuyit et al. 2001, Helfrich et al. 2008), which could explain why 

higher fungal activity has been correlated with higher C contents in soils under different land 

uses (forest, grassland, agricultural land) and management systems (Bailey et al. 2002). 

Hence, the authors concluded that C sequestration was higher in fungal dominated systems. 

Therefore the interaction between resource quality and the resulting selections by resource 

consumers can determine C accumulation in soil. 

 

3.3 Enzymes 

One important function of soil microorganisms is the degradation by extracellular enzymes of 

insoluble polymers such as, i.e. cellulose, lignin, and chitin into smaller subunits. It has been 

shown that substrate presence induces respective enzyme synthesis (Suto & Tomita, 2001) 
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and therefore enzyme activities can be used to yield information about availability and 

decomposition of particular substrates in soils (Geisseler & Horwath 2009). Whereas 

hydrolytic enzymes (e.g. β-glucosidase, N-acetyl-β-D-glucosaminidase, xylosidase) are 

responsible for the decay of organic substrates with faster turnover times like carbohydrates 

or chitin, oxidative enzymes (e.g. phenol- and peroxidase) have an important function in the 

degradation of SOM components with slower turnover times (e.g. lignin) (Horwath 2007). 

For degradation of complex resources a cascade of enzymes is necessary to degrade organic 

components completely and since one taxon normally does not produce all necessary enzymes 

a synergistic interaction between different taxa is required (Sinsabaugh et al. 1991). 

Besides intracellular enzymes, which remain in the cell, extracellular enzymes occur attached 

to the outer parts of microbial cells or are released completely and exist as free enzymes either 

in the soluble phase or associated with minerals and organic components (Burns 1982, Burns 

& Dick 2002). Factors such as C and N availability and the diffusion rates of enzymes, 

substrates, and products affect the production of enzymes in soil (Allison et al. 2005, Allison 

2005). In addition to substrate availability and the stoichiometry of microbial nutrient 

demand, the productivity of enzymes also depends on climatic and environmental parameters 

such as temperature, moisture, and pH (Sinsabaugh et al. 1991, Geisseler et al. 2011). 

Hydrolytic and oxidative enzyme activities seem to be influenced differently by 

environmental factors. This was shown by the observed greater dependency on pH of 

oxidative than of hydrolytic enzymes’ activity (Sinsabaugh et al. 2008, Sinsabaugh 2010). For 

this reason oxidative and hydrolytic enzyme activities are often uncorrelated to each other 

(Sinsabaugh 2010). Since enzymes’ production is cost-intensive their production follows 

‘ecological rules’ meaning that resource gains must be higher than costs (Allison et al. 2005, 

Allison 2005). 

Some enzymes seem to be constitutively produced at a low-level or stabilized on minerals 

(Burns 1982, Allison et al. 2005, German et al. 2011). When the target substrate is available, 

enzyme activities increase the amount of microbially available substrates and the expression 

of respective enzymes is stimulated (Suto & Tomita 2001). Stabilization of enzymes on 

minerals or humic acids may alter their turnover rate and also their activity status. Allison 

(2006) observed increased activity of enzymes when they were stabilized by the addition of 

allophane, but activities of the same enzymes were strongly inhibited by the presence of 

humic acids.  
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A way to look at enzyme activities that takes into account the microbial biomass is the 

specific enzyme activity or enzyme efficiency on a per unit microbial biomass basis. This 

ratio gives further information about the production and / or stabilization of enzymes 

(Kandeler & Eder 1993, Taylor et al. 2002, Allison et al. 2007). Changes in efficiencies can 

be due to differing nutrient demands of microorganisms, higher or lower affinity of enzymes 

or quality of resources (Allison et al. 2007, Amin et al. 2013) and has been associated with a 

community change (Allison et al. 2007). However, community changes are not necessarily 

connected to changes in enzyme activities (Lucas et al. 2007). A higher specific enzyme 

activity can also be observed due to stabilization of enzymes, in which case it is not clear if 

the in-situ activity is comparable to the measured potential enzyme activity (Wallenstein & 

Weintraub 2008, Geisseler et al. 2011).  

 

3.4 Use of stable isotope C to determine C flow in soil 

The application of stable isotope tracer methods to determine fluxes within and between C 

pools in soil has increased considerably (Balesdent & Balabane 1992, 1996, Bowling et al. 

2008). Transformations of C have been followed by switching from C3 to C4 plants or 

resources derived from C3 or C4 plants (Steinbeiss et al. 2008, Esperschütz et al. 2009, 

Nottigham et al. 2009). Additionally, 
13

C or 
14

C pulse labeling or continuous labeling has 

been applied to introduce a distinct C signal into the soil system and to quantify the C 

incorporation into different soil pools (Kuzyakov & Cheng 2004, Leake et al. 2006, Williams 

et al. 2006, Werth & Kuzyakov 2008). 

The analysis of the incorporation of specific resources into the microbial biomass (i.e. 
13

Cmic) 

provides valuable information about the general utilization of these substrates by 

microorganisms. A higher resolution of microorganisms involved in particular processes can 

be achieved with compound-specific stable isotope probing (CSIP) which can provide a direct 

link of abundance and function in situ (Sims 2007). 

A common marker to estimate fungal biomass in soil is ergosterol, which is the predominant 

sterol in fungal cell membranes. It is only present in higher fungal phyla, i.e. Basidiomycota, 

Ascomycota and the majority of Zygomycota, and does not occur in plants (Weete & Gandhi 

1997, Klamer & Bååth 2004). Conflicting data regarding the presence of ergosterol in 

membranes of arbuscular mycorrhizal fungi (AM fungi) have been reported in the literature 

(Hart & Reader 2002, Olsson et al. 2003). 
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With nucleic acid based stable isotope probing (NA-SIP) a much higher taxonomic resolution 

of substrate-utilizing organisms is possible. To separate the labeled and non-labeled nucleic 

acids by density-gradient centrifugation a high label of RNA or DNA is required which can 

be achieved only through the application of artificially labeled material (>98 atom%). For this 

reason, most studies applying NA-SIP are lab experiments. The advantage of using RNA 

rather than DNA is the higher synthesis rate of RNA, resulting in more efficient labeling; it is 

dependent only on the activity of the cell and independent of replication (Manefield et al. 

2002). The combination of stable isotope probing with new generation (high-throughput) 

sequencing techniques (i.e. pyrosequencing) also makes it possible to detect less abundant or 

less active organisms which would have been missed by cloning and could have potentially 

high importance for an ecosystem (Baldrian et al. 2012, Dohrmann et al. 2013). 
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4 Overview of the thesis 

In the present thesis, biomarkers of groups of microorganisms (PLFAs of gram+, gram-, 

general bacteria, fungi) and enzyme activities were used to identify the influence of both 

substrate availability and quality on members of the microbial community and their function 

(Study 1). In addition, the stable isotope 
13

C was used to follow the C flow of differing 

resources into soil pools such as total organic matter (Corg), extractable organic C (EOC), as 

well as into microorganisms (Cmic, ergosterol) (Studies 2 & 3). Nucleic acid stable isotope 

probing (NA-SIP) was used to identify, at a high taxonomic resolution, the microorganisms 

involved in degradation of substrates of varying recalcitrance and complexity (Study 3). 

In the first study we focused on the question of how crop type (wheat vs. maize), management 

(litter amendment), and season (two consecutive years: summer, autumn, winter) influenced 

the abundances of different groups of microorganisms (bacteria, gram+, gram-, and fungi) and 

their functions (via enzymes involved in C-cycling of labile and more recalcitrant substrates). 

Different depths in the soil profile (0-10 cm: topsoil, 40-50 cm: beneath the plough layer, and 

60-70 cm: unrooted zone) were examined. We expected that crop type, management strategy 

and season would have more pronounced effects in top- than in subsoil on microbial 

abundances and enzyme activities. Further, we hypothesized that decreasing substrate 

availability at depth result in lower abundances and activities but that specific conditions in 

subsoil result in changes in the physiology of soil microorganisms as indicated by their 

enzyme production, and that abiotic interactions between microorganisms, substrates, and soil 

enzymes function as drivers of C dynamics in subsoils. 

To quantify C incorporation from belowground (root / rhizodeposit) and aboveground (shoot 

litter) resources into different soil pools and microorganisms over time (two consecutive 

years: summer, autumn, winter), topsoil samples from the field experiment were analysed 

with 
13

C isotope probing in the second study. We hypothesized that the incorporation of C 

into soil pools (Corg, EOC, Cmic and ergosterol) depends on the origin of C resources (root vs. 

shoot litter) entering the soil. 

The specific bacterial and fungal degraders of particular resources, and their contributions and 

interactions during degradation of organic matter, are largely unexplored. With nucleic acid 

stable isotope probing (NA-SIP) it is possible to identify substrate assimilating 

microorganisms at high taxonomic resolution. Therefore, in the third study, a microcosm 

experiment was carried out with highly 
13

C labelled materials. We used substrates of varying 
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recalcitrance and complexity. As complex substrates of different qualities we used maize 

leaves and roots. To be able to detect the users of either labile or more recalcitrant 

components of the litter materials we additionally used single substrates which are highly 

abundant in litter materials as model substances (glucose and cellulose). CO2 production, 

incorporation of substrate derived C into CO2 and into microbial biomass (Cmic) were 

analyzed over time for 32 days. We considered bacteria and fungi as primary decomposers, 

and protists (Peronosporomycetes, protozoa) as further decomposers and as members of the 

next trophic level. We hypothesized that the complexity and recalcitrance of substrates 

defines primary consumers across kingdoms, that distinct bacterial and fungal substrate 

utilization channels may actually not exist, and that the diversity of primary consumers as 

well as secondary trophic links should increase with substrate complexity. 
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Abstract 

Many studies of the microbial ecology of agricultural ecosystems focus on surface soils, 

whereas the impacts of management practice and season on soil microbial community 

composition and function below the plough zone are largely neglected. Deep soils have a high 

potential to store carbon; therefore any management driven stimulation or repression of 

microorganisms in subsoil could impact biogeochemical cycling in agricultural sites. The aim 

of this study was to understand whether soil management affects microbial communities in 

the topsoil (0-10 cm), rooted zone beneath the plough layer (40-50 cm), and the unrooted 

zone (60-70 cm). In a field experiment with different crops [wheat (Triticum aestivum L.) and 

maize (Zea mays L.)] and agricultural management strategies (litter amendment) we analysed 

microbial biomass as phospholipid fatty acids (PLFAs) and enzyme activities involved in the 

C-cycle (β-glucosidase, N-acetyl-β-D-glucosaminidase, xylosidase, phenol- and peroxidase) 

across a depth transect over a period of two years. Wheat cultivation resulted in higher 

bacterial and fungal biomass as well as higher enzyme activities at most sampling dates in 

comparison to maize cultivated plots, and this effect was visible to 50 cm depth. Litter 

application increased bacterial and fungal biomass as well as hydrolytic enzyme activities but 

effects were apparent only in the topsoil. In winter high microbial biomass and enzyme 

activities were measured in all soil layers, possibly due to increased mobilization and 

translocation of organic matter into deeper soil. Hydrolytic enzyme activities decreased with 

depth, whereas oxidative enzyme activities showed no decrease or even an increase with 

depth. This could have been due to differing sorption mechanisms of hydrolytic and oxidative 

enzymes. Specific enzyme activities (enzyme activity per microbial biomass) were higher in 

the deeper layers and possible reasons are discussed. 
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Introduction 

Soils have a great potential to store carbon throughout entire soil profiles (Lorenz and Lal, 

2005). The global carbon stock within the first meter of soils has been estimated at 1500-2000 

Pg (Janzen, 2005). Although over 50 percent of the global organic carbon pools in soil are 

found below 30 cm depth (Jobbagy and Jackson, 2000), the contribution of microorganisms to 

carbon dynamics in subsoils has received far less attention than in topsoils (Rumpel and 

Kögel-Knabner, 2011). Focusing on top- as well as on subsoils in agricultural ecosystems is 

important, because soil management (e.g. soil tillage, crop type, N amendment, and residue 

management such as mulching) may influence not only the input and turnover of organic C 

(Clapp et al., 2000; Lorenz and Lal, 2005), but also alter subsoil processes related to plant 

nutrient acquisition (Harrison et al., 2011).  

Soil microorganisms play an important role in the formation and turnover of SOM by 

decomposition of plant residues and remineralization of nutrients (Bardgett et al., 2005). 

Their size, community composition and function can therefore be used to investigate 

decomposition and deduce SOM turnover in soil. Soil microbial communities are not 

uniformly dispersed throughout the soil profile, but reflect patches of available resources, 

predominantly plant litter and roots. Crop type or management strategy therefore affect 

community structure and distribution. For example, vegetation dependent factors such as 

plant species influence the size and composition of microbial communities (Moore-Kucera 

and Dick, 2008) through amount, availability and quality of exudates, distribution of roots in 

the soil profile, and through the quality of plant residues. With agricultural amendments such 

as litter application the additional substrates are likely to affect microbial community and 

their function throughout the soil profile. Studies in natural ecosystems indicate that increased 

nutrient availability modifies microbial assemblages not only in topsoils but also in subsoils 

of the vadose zone (Schütz et al., 2009). 

To understand SOM dynamics in top- and subsoils it is also important to take into account 

abiotic changes in depth. For example, higher absolute amounts of minerals in deeper soil 

layers can result in higher stabilization potential of organic matter with minerals at depth 

(Rasse et al., 2005). Also seasonally dependent abiotic factors such as temperature and soil 

moisture can have a strong influence on biomass and activity of microbes, and seasonal 

effects can even be higher than treatment effects (Debosz et al., 1999; Bell et al., 2010). 

Moreover, climatic forcing in the topsoil, e.g. drying/wetting or freezing/thawing cycles, 

triggers the release of mobile organic dissolved and particulate substances (MOPS) 
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(Majdalani et al., 2008). Transient flow conditions affecting organic matter further occur as a 

result of cell death and lysis during drying, disruption of soil structure due to mechanical 

stress, and harvesting practices which increase fractured plant residues. Overall these multiple 

factors result in an enhanced transport of MOPS (Totsche et al., 2007), DOM (Kalbitz et al., 

2000) and colloids (Cheng and Saiers, 2009) in the soil profile, depending on season.  

It is widely thought that substrate quality is lower in subsoil than in topsoil, suggesting that 

soil organic matter is less degradable at depth. Both substrate pools and microbial biomass 

generally decline (Blume et al., 2002; Bausenwein et al., 2008; Gelsomino and Azzellino, 

2011), and activity also decreases with increasing soil depth (Fang and Moncrieff, 2005). 

However, in studies where assimilation or mineralization activities were normalized to the 

size of the microbial biomass, these specific activities showed either similar values within the 

soil profile or even an increase with depth (Blume et al., 2002; Gelsomino and Azzellino, 

2011).  

One important function of soil microorganisms is the degradation of insoluble polymers like 

cellulose, lignin, and chitin into smaller subunits by extracellular enzymes. It has been shown 

that substrate presence induces respective enzyme synthesis (Suto and Tomita, 2001) and 

therefore enzyme activities can be used to yield information about availability of particular 

substrates in soils (Geisseler and Horwath, 2009). Whereas hydrolytic enzymes (e.g. β-

glucosidase, N-acetyl-β-D-glucosaminidase, xylosidase) are responsible for the decay of 

organic substrates with faster turnover times like carbohydrates or chitin, oxidative enzymes 

(e.g. phenol- and peroxidase) have an important function in the degradation of SOM 

components with slower turnover times (e.g. lignin) (Horwath, 2007). Specific enzyme 

activity (enzyme activity per unit microbial biomass) gives further information about the 

production and / or stabilization of enzymes (Kandeler and Eder, 1993; Taylor et al., 2002; 

Allison et al., 2007). 

The present study investigated the effects of frequently cultivated crop types (maize and 

wheat) and management (litter and no litter) on microbial community composition (PLFAs), 

and its function (enzyme activities) at three different depths (topsoil, rooted zone beneath 

plough layer, unrooted zone) in an arable field over a period of two years.  

We hypothesized that crop type, management strategy (litter amendment) and season have 

more pronounced effects on microbial properties in the top- than in the subsoil, as surface 

communities are more exposed to mechanical, chemical or vegetation changes. Further, we 
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expected that not only lower microbial abundance, but also changes in physiology of soil 

microorganisms (their enzyme production and expression), as well as abiotic interactions 

between microorganisms, substrates, and soil enzymes may drive C dynamics in subsoils.  

 

Materials and methods 

Field site and soil samples 

The main field experiment investigating carbon flow in belowground food webs was set up by 

the University of Göttingen (Lower Saxony, Germany) on arable land (51°33´N, 91°53´E; 

158 m a.s.l.) in April 2009 (Kramer et al., 2012). The area has a temperate climate with mean 

annual precipitation of 720 mm and mean air temperature of 7.9°C. Dominant soil types at the 

site are Luvisols and Cambisols with partially stagnic properties (IUSS 2007). The clay and 

sand fractions decrease from 7.0 and 5.8 to 6.8 and 4.8 % (w / w) from the Ap1 to the Bv2 

horizon, respectively, whereas the silt fraction increases from 87.2 to 88.4 % (w / w). The soil 

bulk density of the site increases from 1.38 g cm
-3

 in the Ap1 to 1.68 g cm
-3

 in the Bv2 

horizon. The pHCaCl2 in the Ap1 to the Bv2 (> 65 cm) horizon increases from 6.0 to 7.0. The 

Corg and total N content decrease from the Ap1 to the Bv2 (> 65 cm) horizon from 11.6 to 1.8 

mg g
-1

 dry weight and 1.2 to 0.3 mg g
-1

 dry weight, respectively (for details see Kramer et al., 

2012; Pausch and Kuzyakov, 2012). 

Four treatments were established which were differentiated by crop type (wheat vs. maize) 

and management strategy (litter or no litter application). To allow feasible agricultural 

management a strip design was chosen, with wheat (Triticum aestivum L) cultivated in the 

first (north) and maize (Zea mays L.) in the second (south) strip, each strip with 10 plots of 24 

x 24 m. Before sowing, soil was tilled with a chisel plough to a depth of 12 cm. In the first 

vegetation period (2009) winter wheat (“Julius”, sown at 224 kg ha
-1

) and maize 

(“Ronaldinio”, sown at 34 kg ha
-1

) were grown. In the second period (2010) the varieties used 

were summer wheat (“Melon”, sown at 224 kg ha
-1

) and hybrid maize (“Fernandez”, sown at 

26 kg ha
-1

). Fertilization practice was as follows: on the maize plots ammonium nitrate urea 

solution (2009: 122.4 kg N ha
-1

; 2010: 79.2 kg N ha
-1

) and di-ammonium phosphate (2009 / 

2010: 32.4 kg N ha
-1

 and 82.8 kg P ha
-1

) were applied twice, shortly before and after seeding. 

The wheat plots received granular NS fertilizer (21.0 kg N ha
-1

, 24.0 kg S ha
-1

) in March 2009 

and ammonium nitrate urea solution between 39.5 and 61.3 kg N ha
-1

 in April, May and June 

in both 2009 and 2010. After harvest in early November 2009 chopped maize litter excluding 
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cobs (0.8 kg m
-2

 dry weight equivalent to 0.35 kg C m
-2

) was applied on 5 randomly chosen 

plots from the 10 plots in each strip to establish the Corn Maize (CM) and Wheat + maize 

Litter (WL) treatments. The other 5 plots of each strip were the plots without litter addition 

and designated Fodder Maize (FM) and Wheat (W) treatments. In November 2010 the 

harvested maize litter from this year was applied. 

Soil samples were taken with a soil corer to 70 cm depth and separated as follows: topsoil (0-

10 cm), rooted zone beneath the plough layer (40-50 cm), and unrooted zone (60-70 cm). Ten 

soil cores randomly distributed on each plot were taken between plants. The soil from each 

depth was mixed and homogenized. Soil samples were cooled and transported to the 

laboratory. Soils were sieved (< 2 mm), water content was gravimetrically determined (105 

°C for 24 h), and samples were frozen at -24 °C. All data presented here are expressed on a 

soil dry weight basis.  

Soil samples were collected three times a year; in summer, autumn, and winter. Summer 

sample collections were July 2009 and 2010 (high root exudation) and autumn collections in 

September 2009 and 2010 (shortly before maize harvest). Winter sample collections (highest 

translocation of MOPs) were in December 2009 and in January 2011. The second winter 

collection was delayed due to heavy snow in December 2010. For more details see Kramer et 

al. (2012). 

 

Analyses 

Extractable organic Carbon (EOC) 

Ten g (fresh weight) of soil were extracted with 0.025 M K2SO4 solution (1:4, w/v, 

soil/extractant ratio), shaken for 30 min on a horizontal shaker at 250 rev min
-1

, and 

centrifuged for 30 min at 4422 x g. Organic C was measured with a DOC/TN analyzer 

(Dimatoc 100, Dimatec, Essen, Germany). Addition of 1 M HCl to the extracts of samples 

from 60-70 cm before measurement removed potentially present small amounts of inorganic 

C (Pausch and Kuzyakov, 2012).  

 

 Phospholipid fatty acid analysis (PLFA) 

PLFAs of two replicates of 4 g soil (fresh weight) from each plot were extracted following the 

description of Frostegård et al. (1991) with Bligh / Dyer solution [chloroform, methanol, 
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citrate buffer (pH = 4; 1:2:0.8; v/v/v)] and further separated into glyco-, neutral lipids and 

phospholipid fatty acids with silica acid columns (0.5 g silicic acid, 3 ml; Varian Medical 

Systems, Palo Alto, California). Before fractionation of lipids the two replicates were 

combined onto one silica column. Glyco - and neutral lipids were not of interest in this study, 

thus only the PLFA-fractions were analysed. 

To transform the PLFAs into fatty acid methyl esters (FAMEs) a mild alkaline methanolysis 

of PLFAs was done as described in Frostegård et al. (1991) and Ruess et al. (2007). The 

resulting PLFA-MEs were measured using an AutoSystem XL gas chromatograph (Perkin 

Elmer Corporation, Norwalk, CT, USA) equipped with a capillary column HP-5 (crosslinked 

5 % phenyl methyl siloxane; 50 m x 0.2 mm, film thickness of 0.33 µm) and a flame 

ionisation detector. Helium was used as the carrier gas. The injector temperature was 260 °C 

and that of the detector 280 °C. Initial temperature was 70 °C, held for 2 min, increased to 

160 °C by 30 °C min
-1

 and then by 3 °C min
-1

 until 280 °C was reached and held for 15 min. 

Identification of FAMEs was based on their retention time assessed with a fatty acid methyl 

ester- and a bacterial acid methyl ester-mix (Sigma-Aldrich, St. Louis, USA). Quantification 

was calculated with an added internal fatty acid methyl ester-standard (Sigma-Aldrich, St. 

Louis, USA) which was added to the samples before methanolysis. 

FAMEs were exemplarily identified by GC-MS using a HP 5890 Series II Plus coupled with a 

5972 mass selective detector (Hewlett Packard/Agilent, Waldbronn, Germany) equipped with 

a DB-5MS column (30 m x 0.25 mm x 0.25 µm). Helium 5.0 was used as the carrier gas at 1 

ml min
-1

. The temperature program was set as follows: 50 °C, held for 1 min, increasing by 9 

°C min
-1

 to 180 °C, 5 °C min
-1

 to 260 °C and 20 °C min
-1

 to 300 °C and held for 11 min. The 

injector temperature was set at 250 °C and the transfer line temperature at 300 °C. A mass 

range of m/z 50 – 450 was monitored. 

The branched fatty acids i15:0, a15:0, i16:0 and i17:0 were considered as gram positive and 

the cy17:0 and cy19:0 as gram negative in origin (Zelles, 1999). In addition to these 

biomarkers, 16:1ω7 was included for the total bacteria calculation (Frostegård and Bååth, 

1996). 18:2ω6,9c was assessed as a fungal biomarker (Frostegård and Bååth, 1996; Kaiser et 

al., 2010a). For calculation of PLFAsum the following fatty acids were summed: specific 

bacterial, specific fungal, 14:0, 15:0, 16:1ω6, 16:1ω5, 16:0, 17:0, 18:2ω6,9t, 18:1ω9c, 

18:3ω3, 18:1ω7, 18:1ω9t, 18:0, 20:4ω6, 20:5ω3, 20:3ω6, 20:2, 20:0, 22:0, 24:0. 
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Potential enzyme activities 

The activities of the enzymes β-glucosidase (EC 3.2.1.21), N-acetyl-β-D-glucosaminidase 

(EC 3.2.1.52) and β-xylosidase (EC 3.2.1.37) were analysed according to Marx et al. (2001). 

Substrates linked to fluorescent 4-methylumbelliferone (4-MU), standards and MES-buffer 2-

[N-morpholino]ethanesulfonic acid (pH 6.1) were obtained from Sigma Aldrich (St. Louis, 

USA). After dissolving substrates in dimethyl sulfoxide (DMSO), sterile water was added and 

aliquots were mixed with autoclaved MES-buffer (0.1 M) to a final concentration of 1 mM. 

Standards were dissolved in methanol and deionised water was added. Aliquots were mixed 

with MES-buffer to a final concentration of 10 µM. 

One g soil (fresh weight) was mixed with 50 ml sterile water and dispersed with an ultrasonic 

disaggregator (50 J s
-1

 for 120 s). From this, 50 µl soil suspension, 50 µl buffer and 100 µl of 

respective substrate were added into microplate wells (PP microplate, black 96 well, Greiner 

Bio-one GmbH, Frickenhausen, Germany). Standards were added to 50 µl soil suspensions 

and the respective buffers to get concentrations of 0, 0.5, 1, 2.5, 4 and 6 µM. After pre-

incubation (30 min) at 30 °C, measurements were made at 0, 30, 60, 120 and 180 min with a 

Fluorescence Microplate Reader (FLx800, BioTek Instruments Inc., Winooski, VT, USA) 

with excitation at 360 nm and emission at 460 nm. Between measurements the microplates 

were kept in an incubator at 30 °C. Three analytical replicates of all samples were run. 

The potential enzyme activities of phenoloxidase and peroxidase were measured 

spectrophotometrically using tetramethylbenzidin (TMB) as the substrate (Johnsen and 

Jacobsen, 2008). TMB was dissolved in dimethyl sulfoxide (DMSO) and water to a final 

concentration of 60 mM. The working solution was made with sodium acetate buffer for a 

final concentration of 12 mM TMB. For phenoloxidase activity measurement 50 ml sodium 

acetate buffer (50 mM) (pH 5.0) was added to 0.4 g of soil (fresh weight) and dispersed by an 

ultrasonic disaggregator (50 J s
-1

 for 120 s). Each sample well contained 200 µl of soil 

suspension to which 50 µl of the working solution was added. Blank wells contained soil 

suspension and 50 µl sodium acetate buffer instead of substrate. Negative control wells 

contained no soil suspension. For peroxidase activity measurement the procedure was the 

same as described above but in addition 10 µl hydrogene peroxide solution (0.3 %) was added 

to every well and peroxidase activity was calculated as the difference between measured 

activity of phenoloxidase (without H2O2) and measured activity with H2O2. Three analytical 

replicates of each sample were analyzed. Measurements were made at 0, 6, 9, 12 and 15 min 

on a microplate reader (ELx808, Absorbance Microplate Reader, BioTek Instruments Inc., 
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Winooski, VT, USA) at 630 nm. Between measurements the microplates were kept in an 

incubator at 25 °C. 

Enzyme activities were calculated on the basis of soil dry weight and on the basis of total 

microbial biomass (PLFAsum) to yield information about the specific enzyme activity of the 

microbial community. 

 

Data analyses 

Factorial ANOVA was used to test for effects of crop or litter with sampling dates (at one 

depth) or depths (at one date) as repeated measures. Separate ANOVAs for each sampling 

date and every depth were performed when significant results were obtained. Tukey`s Honest 

Significant Difference (HSD) test for comparison of means was used. Best fitted 

transformation (log or root transformation) was used to improve homogeneity of variance 

(tested by Levene’s test). For statistical analyses the software STATISTICA 6.0 (Tulsa, OK, 

USA) was used. All errors are reported as standard error. 

To get information about the differences in microbial abundances and activities between 

topsoil and subsoil, subsoil-to-topsoil ratios of PLFAsum data, enzyme activities and specific 

enzyme activities (averaged over all treatments per depth and sampling date) were calculated. 

 

Results 

Soil water content and extractable organic C (EOC) 

Soil water content generally decreased with soil depth, with the exception of summer 2010 

where highest water content was measured at 60-70 cm (Tab. 5.1). At all depths, soil water 

content showed a strong seasonal effect, with higher water content in winter than in summer 

and autumn (Tabs. 5.1, S5.1). In the topsoil, water content was affected by crop and litter, 

whereas in the two deeper layers an effect of litter on the water content was not observable 

(Tab. 5.1). In many cases, higher water content was measured in wheat than in maize plots 

(Tab. 5.1). 

Extractable organic C (EOC) content decreased significantly with soil depth in all treatments 

(Tab. 5.1). The date of sampling generally affected the EOC content in the different soil 

depths (Tab. S5.1). The highest EOC contents were observed in the topsoil in summer 2010 

and in the deeper layers two months later, in autumn 2010. In the topsoil, wheat plots often 
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showed higher EOC content than maize plots (Tabs. 5.1, S5.1). Litter application increased 

the EOC content in the topsoil especially in the winter samplings and in autumn 2010 (Tabs. 

5.1, S5.1) but in general there was no treatment effect detectable in the two deeper layers 

(Tab. 5.1). 

 

Table 5.1 Soil water content (SWC) and extractable organic C (EOC) with SE in parentheses 

at different sampling dates and depths. Letters indicate significant effects of treatments (C = 

crop; L = litter) within depth and date. Depth as repeated measure was significant at every 

date when not denoted differently. W = Wheat, WL = Wheat + maize Litter, FM = Fodder 

Maize, CM = Corn Maize. * = P < 0.05; ** = P < 0.01. 

 
  Treatment     

 Depth [cm] W WL FM CM ANOVA 

SWC [%]       

Summer 09 0-10 23.74 (1.04) 23.72 (1.00) 21.37 (1.21) 22.26 (0.91)  

 40-50 n.d. n.d. n.d. n.d.  

 60-70 13.14 (0.68) 14.56 (0.49) 19.16 (0.15) 19.31 (0.33) C** 

Autumn 09 0-10 19.45 (1.23) 19.95 (0.27) 14.84 (0.79) 14.22 (0.73) C** 

 40-50  # 19.84 (0.64) 20.26 (0.41) 11.88 (0.31) 11.71 (1.26) C** 

 60-70 17.56 (1.17) 18.39 (0.90) 14.29 (0.42) 15.02 (0.29) C** 

Winter 09/10 0-10 27.65 (0.45) 28.54 (0.67) 25.07 (0.39) 27.34 (1.10) C*,L* 

 40-50 23.35 (0.36) 24.01 (0.29) 22.44 (0.31) 22.70 (0.33) C** 

 60-70 22.85 (0.46) 23.24 (0.25) 22.43 (0.47) 23.42 (0.44)  

Summer 10 0-10 11.86 (0.12) 14.44 (0.99) 12.98 (0.79) 13.12 (0.28)  

 40-50 10.50 (0.59) 15.20 (1.54) 15.35 (1.49) 13.99 (1.22) CxL* 

 60-70 13.81 (1.07) 18.14 (0.93) 20.81 (1.75) 18.90 (0.63) C*,CxL* 

Autumn 10 0-10 20.70 (0.72) 21.49 (0.56) 16.50 (0.87) 16.76 (0.89) C** 

 40-50 18.77 (0.69) 19.26 (0.76) 15.41 (0.72) 15.90 (1.25) C** 

 60-70 16.98 (0.95) 17.28 (0.94) 16.61 (0.44) 17.05 (0.34)  

Winter 10/11 0-10 31.80 (1.16) 36.79 (3.20) 29.86 (0.16) 32.09 (1.23)  

 40-50 28.12 (0.84) 29.37 (0.39) 27.47 (1.07) 26.35 (0.65) C* 

 60-70 25.80 (0.21) 26.78 (0.28) 27.02 (0.52) 26.80 (0.68)  

EOC  

[µg C g
-1

 soil] 

 
     

Summer 09 0-10   ¤ 20.77 (2.44) 21.23 (3.43) 29.09 (2.12) 23.80 (0.82) C* 

 40-50 n.d. n.d. n.d. n.d.  

 60-70 5.58 (0.13) 5.15 (0.67) 8.02 (1.52) 7.27 (1.37)  

Autumn 09 0-10   ¤ 22.33 (2.30) 22.48 (0.77) 19.94 (0.84) 21.36 (1.24)  

 40-50 9.53 (1.41) 9.92 (1.30) 14.37 (2.53) 9.26 (2.40)  

 60-70 8.62 (1.39) 11.40 (1.84) 6.70 (0.22) 7.30 (1.37) C* 

Winter 09/10 0-10   ¤ 20.95 (0.90) 30.58 (2.30) 16.75 (1.44) 23.48 (2.42) C*,L** 

 40-50 13.64 (1.73) 13.65 (0.86) 12.99 (1.99) 12.39 (1.23)  

 60-70 n.d. n.d. n.d. n.d.  

Summer 10 0-10   ¤ 33.69 (2.62) 34.53 (2.73) 25.00 (2.26) 27.49 (1.37) C** 

 40-50 9.18 (1.16) 8.86 (1.16) 7.17 (0.60) 8.08 (0.83)  

 60-70 9.73 (4.30) 9.84 (4.30) 10.61 (3.32) 8.93 (2.07)  

Autumn 10 0-10   ¤ 22.84 (2.24) 26.03 (1.39) 13.81 (0.88) 16.99 (0.47) C**,L* 

 40-50 20.57 (2.73) 20.17 (2.60) 16.55 (1.96) 16.28 (0.76)  

 60-70 11.10 (1.69) 11.17 (1.90) 12.15 (0.78) 13.53 (1.45)  

Winter 10/11 0-10   ¤ 20.43 (2.09) 23.27 (1.58) 10.99 (1.01) 19.96 (2.93) C**,L* 

 40-50 14.80 (1.42) 14.12 (1.23) 14.93 (0.76) 15.61 (2.49)  

 60-70 8.75 (1.35) 8.08 (1.19) 8.64 (0.63) 8.67 (1.45)  
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PLFA content 

The PLFAs of all microbial groups (total bacteria, gram positive and gram negative bacteria, 

and fungi) decreased significantly with depth (Figs. 5.1, S5.1) with the exception of fungal 

PLFA, which showed comparable values at 40-50 cm and 60-70 cm depths in summer 2010 

and winter 2010/2011 (Fig. 5.1b).  

PLFAs of the different microbial groups showed a strong seasonal effect at all soil depths 

(Tab. S5.1). In the topsoil, highest total bacterial PLFAs were measured in winter 2009/2010 

(Fig. 5.1a) averaging 12 % higher than at the other dates. Gram positive and gram negative 

PLFAs, on the other hand, averaged 10 % higher in summer 2010 than at the other dates (Fig. 

S5.1). In the 40-50 cm layer, total bacterial PLFAs and gram positive and gram negative 

PLFAs were 20 to 30 % higher in both the wheat and maize plots in winter 2009/2010 in 

comparison to the other dates. In autumn and winter 2010/2011, increases in these PLFAs of 

around 15 % in comparison to the other dates were due mainly to increases in the wheat plots 

only. At 60-70 cm depth bacterial PLFAs were highest in winter 2009/2010, averaging 30 % 

higher than at the other dates. Highest fungal PLFA values were measured in topsoil in winter 

2010/2011, at 40-50 cm depth in winter 2009/2010, and at 60-70 cm depth in summer 2010, 

averaging 50, 40 and 30 % higher, respectively, than the same depths at the other dates. 

The type of crop (wheat vs. maize) influenced the amount of total bacterial, gram positive and 

gram negative bacterial and fungal PLFAs to a soil depth of 50 cm at most sampling dates, 

with higher PLFA amounts in wheat than in maize plots. Litter application significantly 

increased microbial PLFAs in the topsoil, but not in deeper layers (Figs. 5.1, S5.1, Tab. S5.1). 
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Figure 5.1 Total bacterial (a) and fungal (b) PLFAs (+SE) in the four treatments, in the three 

depths and at the different sampling dates. Letters indicate significant effects of treatments 

within depth and date (C = crop; L = litter). Depth as repeated measure was significant at 

every date. W = Wheat, WL = Wheat + maize Litter, FM = Fodder Maize, CM = Corn Maize. 

n.d. = not determined; * = P < 0.05; ** = P < 0.01. 

 

Hydrolytic and oxidative enzyme activities 

Activities of the hydrolytic enzymes β-glucosidase, N-acetyl-β-D-glucosaminidase, and 

xylosidase decreased significantly with soil depth (Figs. 5.2, 5.3a). Depth profiles of phenol- 

and peroxidase activities were less clear than for hydrolytic enzymes (Figs. 5.3b, S2). 

Phenoloxidase activity was highest in the 60-70 cm layer at most sampling dates (Fig. 5.3b), 

while peroxidase activity showed no consistent depth effect, with highest activities varying 

between top- and subsoil (Fig. S5.2). Seasonal variation in hydrolytic and oxidative enzyme 

activities was detected both in the topsoil and in deeper soil layers (Tab. S5.1). Single 

hydrolytic enzyme activities peaked within the soil profile either in winter 2009/2010 or 

2010/2011 with the exception of β-glucosidase activity in the topsoil, which had highest 

values in autumn 2010. In both autumn samplings high phenoloxidase activities were 
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observed in the 60-70 cm depth (Fig. 5.3b). Seasonal variation in peroxidase activity could 

not be related to a specific season. 

In the topsoil, litter application had a greater influence on hydrolytic enzyme activities over 

time than cultivation of the different crops (wheat vs. maize) (Tab. S5.1). This effect was 

reversed in deeper soil layers: N-acetyl-β-D-glucosaminidase and xylosidase activities at 40-

50 cm were affected only by crop and not by litter application (Figs. 5.2b, 5.3a).  

No general effect of crop or litter could be detected for phenoloxidase activity in the topsoil 

(Tab. S5.1). Two exceptions where crop type did show an effect were: phenoloxidase activity, 

in the wheat cultivated plots which increased in summer 2009 and increased in the maize 

cultivated plots in winter 2010/2011 (Fig. 5.3b). Wheat enhanced peroxidase activity to a 

depth of 40-50 cm (Fig. S5.2, Tab. S5.1). 

 

Figure 5.2 β-glucosidase (a) and N-acetyl-β-D-glucosaminidase (b) activities (+SE) in the 

four treatments, in the three depths and at the different sampling dates. Letters indicate 

significant effects of treatments within depth and date (C = crop; L = litter). Depth as repeated 

measure was significant at every date. W = Wheat, WL = Wheat + maize Litter, FM = Fodder 

Maize, CM = Corn Maize. n.d. = not determined; * = P < 0.05; ** = P < 0.01. 
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Figure 5.3 Xylosidase (a) and phenoloxidase (b) activities (+SE) in the four treatments, in the 

three depths and at the different sampling dates. Letters indicate significant effects of 

treatments within depth and date (C = crop; L = litter). Depth as repeated measure was 

significant at every date when not denoted differently. W = Wheat, WL = Wheat + maize 

Litter, FM = Fodder Maize, CM = Corn Maize. n.d. = not determined; * = P < 0.05; ** = P < 

0.01; # = no significant effect of depth. 

 

Comparison of PLFAs, enzyme activities and specific enzyme activities in top- and subsoil 

Subsoils (60-70 cm) contained about 10 % of the PLFA values measured in topsoil over the 

study period and this percentage was similar for all microbial groups (data not shown). 

Hydrolytic enzyme activities always showed lower activities in the subsoil relative to topsoil, 

resulting in sub- to topsoil ratios of between 0.1 and 0.5 in 2009 and between 0.01 and 0.15 in 

2010/2011 (data not shown). In contrast, phenol- and peroxidase activities showed enhanced 

activities mostly in subsoil, leading to higher ratios for phenol- and peroxidase than for 

hydrolytic enzyme activities. 
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In general, sub- to topsoil ratios of specific enzyme activities often showed values above 1 

with lower ratios for hydrolytic enzymes than for phenol- and peroxidase (Fig. 5.4). 

Comparison of the two years showed that ratios of N-acetyl-β-D-glucosaminidase and 

xylosidase were lower in the second than in the first year of the study. When topsoil enzyme 

activities and specific enzyme activities were related to mid-depths (40-50 cm), ratios showed 

an opposite trend with higher sub- to topsoil ratios for the samplings in 2010/2011 than in 

2009 (Fig. 5.4). 

 

Figure 5.4 Ratios of specific enzyme activities in subsoil to topsoil. Specific enzyme 

activities in 60-70 cm are related to respective specific enzyme activity in 0-10 cm (solid 

lines). In addition specific enzyme activities of xylosidase and N-acetyl-β-D-glucosaminidase 

in 40-50 cm are related to respective value in 0-10 cm (dotted lines). Pictured are: β-

glucosidase (β-glu), xylosidase (xyl), N-acetyl-β-D-glucosaminidase (N-ac-glu), peroxidase 

(perox) and phenoloxidase (phenolox). Ratio of 1 is marked by the grey line. 

 

Discussion 

Crop and litter effects at different depths 

Higher PLFA amounts were more noticeable in the wheat than in the maize cultivated plots 

(Fig. 5.1), indicating higher substrate availability under wheat than under maize. Higher EOC 

content also in the wheat than in the maize cultivated plots, indicates the presence of easily 
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available C sources, and suggests higher exudation by wheat roots than by maize, at least in 

topsoil. This corresponds to the higher root biomass of wheat in comparison to maize in the 

topsoil in July 2009 (0.47 vs. 0.15 mg C g
-1

 soil, respectively) (Kramer et al., 2012). It is 

therefore likely that the topsoil in wheat cultivated plots was directly influenced by roots to a 

greater degree than in maize cultivated plots, leading to higher substrate availability (e.g. 

EOC), which could be used by microorganisms.  

At depth, crop type affected PLFA abundance down to at least 50 cm soil depth, but this was 

not reflected by the EOC content in these soil layer (Tab. 5.1). Highest root biomass of maize 

(Pausch et al., 2013) and wheat (J. Pausch, pers. comm.) in the upper layers in comparison to 

the deeper layers (Tab. S5.2) indicates highest input of plant derived substrate into the topsoil, 

the most easily available of which (mainly rhizodeposits) were quickly used by 

microorganisms. Substrates translocated into deeper layers could be either immediately 

assimilated by microorganisms or be more strongly adsorbed onto mineral particles than in 

topsoil (Kalbitz et al., 2000). 

Increased biomarker PLFAs in the topsoil in winter 2009/2010 and during the following year 

after litter application in November 2009 suggest enhanced substrate availability for more 

than nine months. Use of maize derived litter C by both bacteria and fungi as described by 

McMahon et al. (2005) and Williams et al. (2006) was demonstrated at this field site by 

following the 
13

C flow from maize into the total microbial biomass and ergosterol (Kramer et 

al., 2012). In deeper soil layers, litter application did not change the amount of specific 

PLFAs. Litter was only dispersed on the soil surface; maize derived substrates could have 

been immobilised by topsoil communities, and not transported in sufficient amounts into 

deeper soil layers. This corresponds to the structure of the fungal community, which, as the 

major decomposer of recalcitrant plant substrate, was responsive to litter availability 

predominantly in the topsoil (Scharroba et al., 2012). 

With respect to hydrolytic enzymes, effects on their activities were observable by the 

presence of litter derived carbon in the topsoil. In deeper soil layers, both hydrolytic and 

oxidative enzymes were influenced by root derived carbon from different crops (Figs. 5.2, 

5.3; Tab. S5.1). Enzyme activities were often higher under wheat than under maize, 

suggesting that both quantity and quality of crop derived substrates were important regulators 

of enzyme production and expression in the different soil layers. Fresh, energy rich substrates 

(e.g. rhizodeposits or soluble components of litter) can result in production and activation of 

enzymes that decompose more recalcitrant substrates (Fontaine et al., 2003). Thus, higher root 
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density and root biomass combined with the derived labile carbon compounds may have 

stimulated enzyme activities under wheat down to 50 cm depth. The increase in hydrolytic 

enzyme activities by litter application in the topsoil corresponded with observed litter effects 

on the biomarker PLFAs in the soil profile, which suggest that litter derived compounds in 

deeper soil layers were of minor importance. 

 

Seasonal effects in different depths 

Season distinctly affected resource availability (EOC) and microbial community structure 

(PLFAs). In topsoil, high EOC content and high bacterial PLFAs in winter 2009/2010 and 

summer 2010 suggest advantageous nutrient conditions for bacteria, possibly due to substrate 

mobilization in winter and exudation in summer. High amounts of total bacterial PLFAs as 

well as of gram positive and gram negative PLFAs in the wheat plots corresponded to 

increased EOC content at 40-50 cm depth in autumn 2010. 

During autumn and winter, water flux and carbon export from the topsoil may have positively 

influenced bacterial PLFA amounts in both deeper soil layers, predominantly under wheat 

(Fig. 5.1a). This may have been due to translocation of substrates after rain events, which 

created transient flow conditions (Totsche et al., 2007). Mobilization of organic carbon can 

have many causes, such as drying/rewetting (autumn) or freezing/thawing (winter) cycles, 

which result in microbial cell death and lysis (Majdalani et al., 2008). Moreover, mechanical 

stress at harvest can result in an increase in fractured plant residues, which trigger release of 

bacterial substrates. Our measured PLFA data imply that transport occurred in autumn (plant 

senescence) and winter (fallow) suggesting that water demand by plants during the growing 

season hampers translocation processes; this is supported by the significantly higher soil 

water content measured during winter samplings. 

Highest fungal PLFA amount in the topsoil was measured in winter 2010/2011 (Fig. 5.1b), 

indicating high substrate availability after snow melt, possibly due to decomposition of 

remaining litter, increased availability of dead microbial biomass (Schmidt and Lipson, 2004), 

and destabilization of substrates due to disruption of soil structure after freeze / thaw cycles 

(Kalbitz et al., 2000). At 40-50 cm depth the highest fungal biomass was measured in winter 

2009/2010, but not in autumn 2010 in contrast to bacteria. Hence, labile and recalcitrant 

resources showed differences in availability at depth. The observed fungal development 

indicates enhanced transport processes of plant derived recalcitrant substrates into deeper soil 
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layers and/or root decomposition after harvest of aboveground crops. In particular the 

frequent occurrence of macropores at the field site (K. Totsche, pers. comm.) may play a 

considerable role in rapid transport of organic resources into subsoils, thereby fueling 

belowground microbial communities. 

Season also strongly affected hydrolytic and oxidative enzyme activities at all soil depths. 

Seasonal and interannual variation in enzyme activities of topsoils have been found to be 

highly variable due to changing patterns of temperature, precipitation and vegetation cover 

(Debosz et al., 1999; Kandeler et al., 1999; Bell et al., 2010; Gutknecht et al., 2010; Kaiser et 

al., 2010b). Studies which investigated seasonal effects on enzyme activities in depth are 

scarce. However, in our study, hydrolytic enzymes showed highest activities in deeper soil 

layers in winter. This corresponds to the biomass measurements by PLFAs and underlines the 

impact of abiotic factors such as higher moisture content and higher substrate availability 

after transport of mobile organic matter from topsoil to subsoil. 

 

Depth distribution of microbial properties 

The amounts of the biomarker PLFAs as well as EOC decreased with depth (Tab. 5.1, Figs. 

5.1, S5.1). Hence, reduced substrate availability in deeper soil was the most likely reason for 

the decline in microbial biomass. Decreasing microbial biomass with depth has been observed 

by others (Blume et al., 2002; Fierer et al., 2003; Fang and Moncrieff, 2005; Bausenwein et 

al., 2008). 

A clear difference in depth distribution between hydrolytic and oxidative enzyme activities 

was observed in this study. The activities of these two classes of enzymes are often not 

correlated to each other (Sinsabough, 2010). Hydrolytic enzyme activities generally decreased 

with depth while oxidative enzymes showed a different depth distribution, sometimes with 

even higher activities in the deeper layers (Figs. 5.2, 5.3, S5.2). Our findings are in 

accordance with Brockett et al. (2012) and Jackson et al. (2009) who found similar results in a 

forest site in Canada and a peat swamp forest in Malaysia. 

The results of hydrolytic and oxidative enzyme measurements can be interpreted both on the 

basis of substrate distribution within the soil profile and on the basis of enzyme stability. 

Whereas the depth profile of ß-glucosidase, N-acetyl-β-D-glucosaminidase and xylosidase 

mirrored the expected availability of their respective substrates (Leinweber et al., 2008; 

Geisseler and Horwath, 2009), phenol- and peroxidase patterns within the profile can be 
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explained by the increasing adherence of these oxidative enzymes to mineral surfaces within 

the soil profile. Allison and Jastrow (2006) demonstrated that two cellulose-degrading 

enzymes and a chitin-degrading enzyme were bound mainly to the particulate organic matter 

(POM) fractions and that highest polyphenol oxidase activity was found in the clay-size 

fraction, despite a higher mean residence time for carbon in this fraction. Soluble substrates 

are frequently used for potential activity measurements of oxidative enzymes, even though 

under environmental conditions substrates are commonly insoluble and/or bound to minerals. 

Therefore, the actual activity and function of both oxidative enzymes might be low under 

field conditions as compared to laboratory measurements due to less efficient enzyme-

substrate interactions in the field (Allison, 2006). A second reason for higher activities in 

deeper soil layers might be the pH optimum of these enzymes. Optimal conditions for phenol- 

and peroxidase enzyme activities were found to be at a pH of 8 ± 1 (Sinsabough et al., 2008, 

2010). Soil pHCaCl2 of our field site increased from pH 6.0 in the topsoil to 7.0 in deeper soil 

layers (>65 cm depth), leading to conditions in deeper soil layers that were closer to the 

optimum of oxidative enzymes. 

 

Comparison of sub- and topsoil - effects on specific enzyme activities 

The specific enzyme activities of hydrolytic and oxidative enzymes often had sub- to topsoil 

ratios above 1 (Fig. 5.4), meaning higher enzyme activity per microbial biomass in subsoil as 

compared to topsoil. This can be driven by several factors. (1) The production of enzymes by 

single microorganisms may be higher in subsoil in contrast to topsoil due to higher spatial 

separation of microbes from substrates (Salomé et al., 2010). (2) Spatial separation between 

microbes may lead to lower numbers of cheaters (microbes which do not produce enzymes 

but use enzyme products) (Allison, 2005) resulting in more microorganisms producing 

enzymes in subsoil than in topsoil. (3) A microbial community capable of producing higher 

quantities of enzymes or more efficient ones were present in the subsoil in comparison to 

topsoil, indicated by T-RFLP analyses (terminal restriction fragment length polymorphism) at 

our site (Scharroba et al., 2012). (4) Enzymes in the subsoil may also be protected to a greater 

extent against degradation and non-biological denaturation than in topsoil due to higher 

interaction with mineral components at depth, leading to stabilization of enzymes (Burns, 

1982, Taylor et al., 2002). Stabilized enzymes that maintain their activity at depth may be 

advantageous for microorganisms because mineral-bound enzymes degrade available 
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substrates, resulting in “trigger” molecules (Burns, 1982) inducing production of respective 

enzymes. 

 

Conclusions 

We studied patterns of microbial community composition and function in an arable soil to 

understand whether management practice such as crop type and litter amendment affect not 

only topsoil but also subsoil processes. We detected a distinct crop effect on microbial 

communities in topsoil and the rooted zone beneath mainly due to crop specific root 

distribution and hence release of exudates and increased quantities of other root derived 

compounds. Translocation processes of microbial substrates occurred predominantly in the 

autumn and winter seasons due to higher water availability in the soil in comparison to 

summer. In contrast, litter application did not show an influence on growth of microorganisms 

and enzyme activities in the subsoil. This indicates that litter derived substrates were not 

transported in significant enough amounts into the subsoil to change the abundances of 

microorganisms and activity of enzymes but were instead assimilated by the communities in 

the topsoil. One of the most interesting results of this study was that hydrolytic and oxidative 

enzyme activities showed different depth gradients that could be related to microbial 

abundance and expected substrate availability for hydrolytic enzymes only. It is possible that 

hydrolytic and oxidative enzymes are bound to different particle size fractions, i.e. hydrolytic 

enzymes to the POM fraction and phenol- and peroxidase to minerals. In addition, specific 

enzyme activity increased in the subsoil, possibly due to higher production of enzymes as a 

result of greater spatial separation between microbes and between microbes and substrates, a 

community shift in the subsoil, and a higher stabilization of enzymes at depth. Future 

approaches to quantify turnover times of enzymes and to estimate both the activity status of 

enzymes and distances between microorganisms and their respective substrates in subsoil are 

needed to more fully understand the importance of subsoil microbial ecology for C dynamics 

in arable soil profiles. 
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Supplementary material 
 

Fig. S5.1 Gram positive (a) and gram negative (b) PLFAs (+SE) in the four treatments, in the three depths and at the different sampling dates. 

Letters indicate significant effects of treatments within depth and date (C = crop; L = litter). Depth as repeated measure was significant at every 

date. W = Wheat, WL = Wheat + maize Litter, FM = Fodder Maize, CM = Corn Maize. n.d. = not determined; * = P < 0.05; ** = P < 0.01. 
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Fig. S5.2 Peroxidase activity (+SE) in the four treatments, in the three depths and at the 

different sampling dates. Letters indicate significant effects of treatments within depth and 

date (C = crop; L = litter). Depth as repeated measure was significant at every date. W = 

Wheat, WL = Wheat + maize Litter, FM = Fodder Maize, CM = Corn Maize. n.d. = not 

determined; * = P < 0.05; ** = P < 0.01. # = no significant effect of depth. 
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Table S5.1 Statistical results of two-way ANOVA in different depths with date of sampling 

as repeated measure. Significant effects are highlighted in bold. C = Crop; L = litter; T = time 

of sampling. β-glu = β-glucosidase; N-ac-glu = N-acetyl-β-D-glucosaminidase; Xyl = 

xylosidase; Perox = peroxidase; Phenolox = phenoloxidase. 

 
Parameter Factor   Depth [cm]    

  0-10  40-50  60-70  

  F1,12 P F1,12 P F1,12 P 

Soil water  C 26.433 < 0.001 24.805 < 0.001 5.990 0.031 

content L 5.169 0.042 1.203 0.294 3.309 0.094 

 C x L 0.485 0.499 3.384 0.0910 2.561 0.136 

  F5,60 P F4,48 P F5,60 P 

 T 211.142 < 0.001 227.138 < 0.001 144.460 < 0.001 

 T x C 3.662 0.005 23.450 < 0.001 29.942 < 0.001 

 T x L 1.791 0.128 0.717 0.584 0.718 0.612 

  F1,12 P F1,12 P F1,12 P 

EOC C 25.762 < 0.001 0.782 0.394 0.364 0.558 

 L 12.131 0.005 0.446 0.517 0.001 0.981 

 C x L 0.002 0.969 0.320 0.582 0.011 0.920 

  F5,60 P F4,48 P F4,48 P 

 T 17.722 < 0.001 21.361 < 0.001 4.249 0.005 

 T x C 7.680 < 0.001 1.005 0.414 1.345 0.267 

 T x L 3.834 0.004 0.579 0.679 0.208 0.933 

  F1,12 P F1,12 P F1,12 P 

Total C 63.206 < 0.001 21.156 < 0.001 1.442 0.253 

Bacteria L 14.381 < 0.001 0.178 0.681 0.018 0.895 

 C x L 0.908 0.359 0.039 0.847 0.045 0.836 

  F5,60 P F4,48 P F5,60 P 

 T 9.607 < 0.001 30.079 < 0.001 12.765 < 0.001 

 T x C 4.238 0.002 14.464 < 0.001 3.543 0.007 

 T x L 3.752 0.005 0.617 0.652 0.996 0.428 

  F1,12 P F1,12 P F1,12 P 

Gram+ C 45.422 < 0.001 17.938 0.001 1.024 0.332 

Bacteria L 5.754 0.034 0.179 0.680 0.121 0.735 

 C x L 0.494 0.496 0.002 0.963 0.012 0.914 

  F5,60 P F4,48 P F5,60 P 

 T 34.760 < 0.001 24.829 < 0.001 9.837 < 0.001 

 T x C 3.409 0.009 11.491 < 0.001 4.008 0.003 

 T x L 2.796 0.025 0.691 0.602 1.166 0.337 

  F1,12 P F1,12 P F1,12 P 

Gram- C 26.420 < 0.001 22.746 < 0.001 2.599 0.133 

Bacteria L 9.730 0.009 0.261 0.619 0.009 0.927 

 C x L 2.150 0.168 0.004 0.950 0.105 0.752 

  F5,60 P F4,48 P F5,60 P 

 T 10.157 < 0.001 18.546 < 0.001 14.420 < 0.001 

 T x C 2.892 0.021 11.990 < 0.001 3.018 0.017 

 T x L 2.113 0.076 0.354 0.840 0.954 0.453 

  F1,12 P F1,12 P F1,12 P 

Fungi C 55.325 < 0.001 26.501 < 0.001 0.008 0.931 

 L 51.307 0.021 1.053 0.325 0.735 0.409 

 C x L 13.013 0.004 0.224 0.644 0.377 0.551 

  F5,60 P F4,48 P F5,60 P 

 T 28.411 < 0.001 14.039 < 0.001 13.247 < 0.001 

 T x C 2.774 0.026 6.739 < 0.001 2.710 0.028 

 T x L 2.115 0.076 0.589 0.672 0.708 0.619 

  F1,12 P F1,12 P F1,12 P 

β-glu C 0.401 0.540 3.602 0.082 0.640 0.439 

 L 5.930 0.031 2.926 0.113 0.000 0.989 

 C x L 0.003 0.961 0.086 0.772 0.654 0.434 
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  F5,60 P F4,48 P F5,60 P 

 T 64.357 < 0.001 18.662 < 0.001 21.308 < 0.001 

 T x C 0.457 0.806 7.761 < 0.001 1.790 0.129 

 T x L 0.817 0.543 1.655 0.176 0.319 0.899 

  F1,12 P F1,12 P F1,12 P 

N-ac-glu C 4.207 0.063 4.944 0.046 0.116 0.740 

 L 31.312 < 0.001 2.196 0.164 0.133 0.722 

 C x L 0.161 0.696 0.664 0.431 0.828 0.381 

  F5,60 P F4,48 P F5,60 P 

 T 10.983 < 0.001 12.934 < 0.001 41.166 < 0.001 

 T x C 1.151 0.344 8.437 < 0.001 2.998 0.018 

 T x L 3.347 0.010 1.846 0.136 0.494 0.780 

  F1,12 P F1,12 P F1,12 P 

Xyl C 4.631 0.053 6.400 0.026 3.690 0.079 

 L 21.610 < 0.001 3.304 0.094 0.1222 0.733 

 C x L 0.190 0.670 0.217 0.650 0.630 0.443 

  F5,60 P F4,48 P F5,60 P 

 T 28.737 < 0.001 15.578 < 0.001 57.971 < 0.001 

 T x C 3.340 0.009 5.852 < 0.001 2.070 0.082 

 T x L 0.566 0.726 3.304 0.094 0.201 0.961 

  F1,12 P F1,12 P F1,12 P 

Phenolox C 0.472 0.505 8.191 0.014 8.660 0.012 

 L 0.101 0.756 0.004 0.949 0.153 0.703 

 C x L 0.204 0.660 0.869 0.370 0.058 0.814 

  F5,60 P F4,48 P F4,48 P 

 T 35.031 < 0.001 7.819 < 0.001 49.639 < 0.001 

 T x C 1.700 0.148 0.731 0.576 12.291 < 0.001 

 T x L 0.660 0.655 0.161 0.957 1.453 0.231 

  F1,12 P F1,12 P F1,12 P 

Perox C 46.331 < 0.001 9.990 0.008 3.122 0.103 

 L 0.716 0.414 0.138 0.717 0.381 0.549 

 C x L 1.652 0.223 0.331 0.576 1.079 0.320 

  F5,60 P F4,48 P F4,48 P 

 T 124.567 < 0.001 51.615 < 0.001 42.600 < 0.001 

 T x C 3.690 0.006 8.387 < 0.001 2.746 0.039 

 T x L 0.623 0.681 2.167 0.087 0.930 0.455 
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Table S5.2 Depth distribution of root biomass of wheat and maize in July 2009 at the field 

site. 

 

Depth 

[cm] 

Root biomass 

[mg C g
-1

 soil] 

S.E. 

Wheat
+
   

0-10 0.47 0.17 

10-20 0.66 0.30 

20-30 0.36 0.13 

30-40 0.11 0.06 

40-50 0.02 0.01 

Maize
++

   

0-10 0.15 0.04 

10-20 0.06 0.01 

20-30 0.03 0.01 

30-40 0.01 0 

40-50 0.01 0 

 
+
 J. Pausch, personal communication 

++
 data derived from Pausch et al., 2013 
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Abstract 

The origin and quantity of plant inputs to soil are primary factors controlling the size and 

structure of the soil microbial community. The present study aimed to elucidate and quantify 

the carbon (C) flow from both root and shoot litter residues into soil organic, extractable, 

microbial and fungal C pools. Using the shift in C stable isotope values associated with 

replacing C3 by C4 plants we followed root- vs. shoot litter-derived C resources into different 

soil C pools. We established the following treatments: Corn Maize (CM), Fodder Maize 

(FM), Wheat + maize Litter (WL) and Wheat (W) as reference. The Corn Maize treatment 

provided root- as well as shoot litter-derived C (without corn cobs) whereas Fodder Maize 

(FM) provided only root-derived C (aboveground shoot material was removed). Maize shoot 

litter was applied on the Wheat + maize Litter (WL) plots to trace the incorporation of C4 

litter C into soil microorganisms. Soil samples were taken three times per year (summer, 

autumn, winter) over two growing seasons. Maize-derived C signal was detectable after three 

to six months in the following pools: soil organic C (Corg), extractable organic C (EOC), 

microbial biomass (Cmic) and fungal biomass (ergosterol). In spite of the lower amounts of 

root- than of shoot litter-derived C inputs, similar amounts were incorporated into each of the 

C pools in the FM and WL treatments, indicating greater importance of the root- than shoot 

litter-derived resources for the soil microorganisms as a basis for the belowground food web. 

In the CM plots twice as much maize-derived C was incorporated into the pools. After two 

years, maize-derived C in the CM treatment contributed 14.1, 24.7, 46.6 and 76.2 % to Corg, 

EOC, Cmic and ergosterol pools, respectively. Fungi incorporated maize-derived C to a greater 

extent than did total soil microbial biomass. 
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Introduction 

Detailed knowledge on the carbon (C) flow in terrestrial ecosystems is a prerequisite for 

understanding ecosystem services and for managing agricultural systems in a sustainable way. 

Considerable information is available on total amounts, individual fractions and residence 

time of C in soil (Amundson 2001; Bol et al. 2009; Janzen 2004; Marschner et al. 2008; 

Verchot et al. 2011). In contrast, the fate of belowground C, and especially the flux of C 

through the soil food web, is poorly understood. The transfer of C from plant roots into soil 

via rhizodeposition annually recycles around 10 % of atmospheric CO2, which is an order of 

magnitude greater than current rates of fossil fuel C combustion (Raich et al. 2002). A second 

pathway of C flow is via litter decomposition which is mediated by the microbial community, 

predominantly bacteria and fungi (Rosenbrock et al. 1995; Frankland 1998; Dilly et al. 2001). 

As primary decomposers of rhizodeposits and litter residues, soil microorganisms form the 

basis of the soil food web. 

Plant inputs are key determinants of microbial activity and community composition in soil. 

Rhizodeposits lead to a proliferation of microorganisms, altering community structure, and 

consequently changing the C transfer through the decomposer system (Kuzyakov 2002; 

Butler et al. 2003; Wasaki et al. 2005). As a result, the quality and quantity of plant C 

resources and therefore the composition of plant communities create feedbacks to soil 

microorganisms affecting microbial activity and C allocation in the rhizosphere (Eisenhauer 

et al. 2010, Ladygina and Hedlund 2010). Generally, labile and recalcitrant plant fractions are 

utilised by distinct microbial communities, affecting soil C transformation (Paterson et al. 

2008; Kramer and Gleixner 2008). Further, root- and litter-derived substrates are processed by 

different soil organisms (Elfstrand et al. 2008) and root-derived C presumably is immobilized 

in soil to a greater extent than shoot litter-derived C (Puget and Drinkwater 2001; Rasse et al. 

2005). Such effects of resource quality are important bottom-up drivers of soil food webs 

(Salamon et al. 2006).  

Recently, the application of stable isotope tracer methods to determine fluxes within and 

between C pools in soil has been increased considerably (Bowling et al. 2008). 

Transformations of C have been followed by switching C3 to C4 plants or resources derived 

from C3 or C4 plants (Steinbeiss et al. 2008; Esperschütz et al. 2009; Nottigham et al. 2009), 

as well as by 
13

C or 
14

C pulse labelling or continuous labelling to introduce a distinct C signal 

into the soil system (Kuzyakov and Cheng 2001, 2004; Leake et al. 2004, 2006; Williams et 

al. 2006a; Werth and Kuzyakov 2008).  
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Only few studies have separated root- and shoot litter-derived C flow and followed C 

incorporation into different soil and microbial C pools. Soil microorganisms are of particular 

interest, as they form the basis of the soil food web. For this reason the present study aims to 

quantify the transfer of C from both root- and shoot litter-derived C as well as of each C 

source separately into soil C pools [soil organic C (Corg) and extractable organic carbon 

(EOC)], total microbial biomass (Cmic) and ergosterol as a proxy for fungal biomass 

(Djajakirana et al., 1996) using 
13

C natural abundance techniques. Typically a mixture of 

sterols in fungi is present which one of these is dominant and contributed over 50 % of the 

total sterol composition (Weete et al. 2010). Ergosterol is the predominant sterol in fungal cell 

membranes and only present in higher fungal phyla, i.e. Basidiomycota, Ascomycota and the 

majority of Zygomycota and does not occur in plants (Weete and Ghandi 1997, 1999; Klamer 

and Bååth 2004). Conflicting data regarding the presence of ergosterol in membranes of 

arbuscular mycorrhizal fungi (AM fungi) have been reported in the literature. Hart and Reader 

(2002) used it to quantify the biomass of inoculated AM fungi in roots and soil, but in 

mycelium of AM fungi and colonised roots no ergosterol could be detected by Olsson et al. 

(2003). The major sterol in spores of AM fungi is 24-ethyl cholesterol and no ergosterol has 

been detected (Grandmougin-Ferjani et al. 1999).  

A field experiment was established at an agricultural site with known long-term C3 cropping 

history (at least 25 years). In 2009 the following treatments were set up to investigate and 

quantify the flow of C into the belowground soil food web: Corn Maize (CM), where the new 

13
C (or C4) signal entered the soil system via the shoot litter and root pathway, and Fodder 

Maize (FM), where the aboveground parts of plants were removed at harvest and C supplies 

were derived mainly from roots and rhizodeposits. To gain a C4 
13

C signal solely through the 

aboveground channel, maize litter was added to plots planted with wheat [Wheat + maize 

Litter (WL)]. Plots with Wheat (W) only served as C3 reference for the incorporation of the 

maize 
13

C signal into the different C pools. In the present study soil microorganisms as the 

basis of the complex soil food webs were investigated and we hypothesized that the 

incorporation of C into soil pools (Corg, EOC, Cmic and fungal biomass) depends on the origin 

of C resources (root vs shoot.) entering the soil.  
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Materials and methods 

Study site 

The experimental agricultural field is located on a terrace plain of the river Leine north-north-

west of the city of Göttingen (Niedersachsen, Germany). The local climate, with a mean 

annual temperature of 8.7 °C and mean annual precipitation of 645 mm, represents a 

temperate climate zone, affected by the transgression from the maritime Atlantic climate to 

the west to the continental climate to the east. The elevation of the plane is 155 to 160 m, 

a.s.l., striking towards north-west with a mean base slope of approximately 2 %. 

Geologically the area belongs to the Leinegraben, a rift formation embedded within the Harz 

Mountains to the east and the Weserbergland Mountains to the west. Up to 15 m of 

quaternary materials deposited mainly during the Weichsel glacial period, form the stratum on 

top of Mesozoic rocks, predominantly limestones and mudstones of the Mittlerer Keuper. The 

quaternary deposits are composed of clayey and fine sandy materials interbedded with silty 

loess materials, which are now decalcified in the upper part of the profile. These deposits are 

parent material for the actual soil formation.  

According to IUSS (2007), the dominant soil types are Luvisols (Parabraunerden, KA5 2005) 

and stagnic Luvisols (Pseudogley, KA5 2005). However, long agricultural use has severely 

affected the build up of the soil profiles. The albic horizon typically found for these soils can 

no longer be detected in the field due to centuries of intensive tillage. In general, two plough 

layers (0.2 m and 0.3 m below surface) can be detected, with strong compaction below the 

second plough layer in particular. This is especially evident in the relatively high bulk density 

(1.6 g cm
-3

) in and below the second plough layer (Table 6.1).  

Table 6.1: Selected soil properties of the study site. 

Horizon* Depth Texture
1 

clay/silt/
sand 

pH 
(H2O) 

pH 
(CaCl2) 

Ks bd Porosity 

 [m] % (w/w)   [cm d
-1

] [g cm
-3

] [cm
3
 cm

-3
] 

Ap1 0-0.25 7.0/87.2/
5.8 

6.6 6.0 3.0 1.38 0.44 

A(l)p2 0.25-0.37 7.1/87.8/
5.0 

6.9 6.2 1.8 1.61 0.38 

Btv1 0.37-0.65 7.1/87.7/
5.1 

7.3 6.6 4.0 1.55 0.40 

Btv2 >0.65 6.8/88.4/
4.8 

7.7 7.0 n.d. 1.68 0.38 

*Classification according to KA5. 1: Texture according to the German classification system. 

Ks: Saturated hydraulic conductivity, bd: Bulk density.  
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Establishment of the experiment 

Before the start of the experiment the isotopic signature of C and N in soil were screened in 

10 cm layers to 90 cm depth in April 2009. The δ
13

C values of the Ah horizon were typical 

for C3 vegetation, with a mean value of -27.3 ± 0.04 ‰ (Fig. S6.1 top). The δ
13

C values 

increased with depth. The mean C and N contents of the Ah horizon were 11.6 ± 0.2 (Fig. 

S6.1 bottom) and 1.2 ± 0.02 mg g
-1

 dry weight, respectively, and the average C/N ratio was 

9.7 ± 0.1. Background screening revealed comparable isotopic compositions and total soil C 

and N contents across the experimental field site. 

The experimental plots were arranged in a factorial design in April 2009 (Fig. S6.1). The plots 

were aligned in two west-east striking rows to facilitate tillage during the experiment, 10 

experimental plots (24 × 24 m) with maize (Zea mays L.) in one row and 10 plots with wheat 

(Triticum aestivum L.) in the other. Wheat seedlings on the maize plots were removed using a 

non-selective herbicide (“Round-up”, Monsanto Agrar, Düsseldorf, Germany). Maize plots 

were then tilled with a chisel plough to a depth of 12 cm and hybrid maize (“Ronaldinio”, 

KWS Saat Ag, Einbeck, Germany) was sown in April 2009 at a density of 11.5 grains m
-2

 (34 

kg ha
-1

). N fertilizer (ammonium nitrate urea solution: 122.4 kg N ha
-1

) and NP fertilizer 

(diammonium phosphate: 32.4 kg N ha
-1

, 82.8 kg P ha
-1

) were added shortly before and after 

seeding to improve growth of maize plants. Winter wheat (“Julius”, KWS Saat AG, Einbeck, 

Germany) was sown in October 2008 at a density of 380 grains m
-2

 (224.0 kg ha
-1

). Fertilizers 

to wheat were applied as follows: NS fertilizer (granular SSA: 21.0 kg N ha
-1

, 24.0 kg S ha
-1

) 

in March 2009 and ammonium nitrate urea solution two times in April (50.4 kg N ha
-1

 each) 

and once in May and once in June 2009 (39.5 kg N ha
-1

 each). During the growing season 

different herbicide combinations were applied twice on the maize plots (Mesurol liquid 0.2 l 

ha
-1

, TMTD 98 % Satec 0.1 kg ha
-1

), whereas the wheat plots received different herbicide 

combinations six times (22.10.2008: Arena C 0.41 l ha
-1

; 03.04.2009: ARTUS 25.0 g ha
-1

, 

Attribut 70.0 g ha
-1

, CCC 720 1.0 l ha
-1

, PRIMUS 50.0 ml ha
-1

; 25.04.2009: BRAVO 500 SC 

0.5 l ha
-1

, CCC 720 0.5 l ha
-1

, Input 0.8 l ha
-1

, Moddus 0.1 l ha
-1

; 19.05.2009: Matador 300 0.6 

l ha
-1

, U 46 M-Fluid 1.3 l ha
-1

; 05.06.2009: Bulldock 0.3 l ha
-1

, Matador 300 0.5 l ha
-1

, Taspa 

0.3 l ha
-1

, Primor Granulate 0.2 kg ha
-1

). 

In August 2009 wheat plants were harvested and the straw was removed from the wheat plots. 

After harvest of maize plants which were separated from corncobs and then chopped, four 

treatments were established in early November differing in the source of C4 C input: Corn 

Maize (CM), Fodder Maize (FM), Wheat + maize Litter (WL), and Wheat as a reference (W). 
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In the CM plots the C4-derived 
13

C signal was introduced belowground through 

rhizodeposition during the growing period and the decomposition of dead roots after harvest, 

and aboveground through maize shoot litter addition after harvest. On the FM plots no maize 

shoot litter was applied, therefore, the C4 signal derived from roots and rhizodeposits. In the 

WL plots the C4 signal derived only from added maize shoot litter. The W plots did not 

receive any C4 plant input and served as reference plots. The cultivation of wheat on the W 

and WL plots was necessary to maintain habitat functions of the soil without changing its 

isotopic C signature. To establish the CM and WL treatment the maize shoot litter (0.8 kg dry 

weight m
-2

, equivalent to 0.35 kg C m
-2

) was applied to half of both the maize and wheat 

plots. Each treatment was replicated five times. Because one plot of every treatment was 

saved for 
13

C and 
15

N labeling experiments, 16 plots (4 replicates of each treatment) were 

sampled for this study.  

In April 2010 all experimental plots were tilled with a chisel plough to a depth of 12 cm, and 

hybrid maize (“Fernandez“, KWS Saat Ag, Einbeck, Germany) was sown at a density of 12.1 

grains m
-2

 (25.6 kg ha
-1

) with additional N (ammonium nitrate urea solution: 79.2 kg N ha
-1

) 

and NP fertilizer (diammonium phosphate: 32.4 kg N ha
-1

, 82.8 kg P ha
-1

). To improve 

comparability of maize and wheat plots during the growing season of 2010, summer wheat 

(“Melon”, Saaten-Union GmbH, Isernhagen, Germany) instead of winter wheat (2009) was 

sown at a density of 440 grains m
-2

 (224 kg ha
-1

), and N fertilizer (ammonium nitrate urea 

solution) was added in April and June (61.3 kg N ha
-1

 and 39.5 kg N ha
-1

, respectively). 

During the 2010 growing season two herbicide combinations were applied on the maize plots 

(14.04.2010: Mesurol liquid 0.2 l ha
-1

, TMTD 98 % Satec 0.1 kg ha
-1

; 05.06.2010: Click 1.0 

l ha
-1

, Milagro 0.5 l ha
-1

, Peak 14.0 g ha
-1

), and one herbicide combination on the wheat plots 

(29.04.2010: Biathlon 70.0 g ha
-1

, MCPA Berghoff 1.3 l ha
-1

). In early November 2010 maize 

(without corncobs) and wheat plants were harvested after which chaffed maize straw was 

applied to the respective plots (0.8 kg dry weight m
-2

, equivalent to 0.35 kg C m
-2

).  

 

Determination of root biomass and rhizodeposition  

Root biomass of maize and wheat was determined three times in 2009. At the maize plots 

samples were taken directly at the position of the maize plants, 12.5 and 25 cm away from the 

plants within rows, 20 and 40 cm away from the plants in inter-row locations, and 23.5 and 47 

cm away from the plant at the diagonal between row and inter-row. At the wheat plots frames 
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(25 × 25 cm) were placed randomly within four of the wheat plots and soil samples were 

taken at 5 positions within each frame. A soil corer (Riverside auger, inner diameter 5 cm; 

Eijkelkamp, Giesbeek, The Netherlands) was used and samples were taken to a depth of 50 

cm in 10 cm layers. All roots were washed free of soil, dried and weighed.  

In addition to root biomass, the input of C through rhizodeposition was estimated for maize 

based on the rhizodeposition-to-root ratio determined under controlled conditions (J. Pausch, 

unpubl. data). 

 

Plant carbon and δ
13

C 

Wheat shoot material (summer 2010), maize leaves (senescent; litter) and maize roots (from 

respective soil sampling dates) were ground and about 3 mg was analysed by an elemental 

analyser (Euro EA 3000, EuroVector, Milan, Italy) coupled with an isotope ratio mass 

spectrometer (IRMS, Delta Plus XP, Thermo Finnigan MAT, Bremen, Germany) for 

estimation of C and N content and δ
13

C. Glutamic acid USGS-40 (IAEA, Vienna; δ
13

C -26.39 

± 0.04 ‰) was used as reference material for calibration of CO2 reference gas. Acetanilide 

(C8H9NO, Merck, Darmstadt) was used as a secondary laboratory reference material for 

internal calibration and determination of C and N content. δ
13

C values are expressed relative 

to Vienna Pee Dee belemnite (V-PDB). 

 

Soil sampling  

Soil was sampled in summer shortly before plant flowering (highest exudation), autumn 

(shortly before maize harvest) and winter (highest translocation of mobile organic particles). 

Summer sampling was conducted in July 2009 and 2010, autumn sampling in September 

2009 and 2010, and winter sampling in December 2009 and in January 2011 because of heavy 

snow in December 2010 (Fig. S6.2). 

In each plot ten soil samples were taken to 70 cm depth with a soil corer in 10 cm layers 

randomly between two plants within a row. The samples from each layer were thoroughly 

mixed and homogenized by hand. Samples were transported in a cooling box to the laboratory 

and stored at 4°C until sieving (no longer than one week). After sieving (< 2 mm) and careful 

removal of plant particles, the soil was stored at -28 °C until analysis. Water content of 
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samples was determined gravimetrically after drying at 105 °C for 24 h. Here we focus on the 

top soil layer at 0-10 cm. All data presented are related to dry weight of soil. 

 

Soil organic carbon and δ
13

C 

For estimation of Corg and δ
13

C about 3 g of soil was dried at 105 °C for 24 h and 

subsequently ground. Soil subsamples of 15 – 30 mg were measured with a coupled system 

consisting of an elemental analyser (NA 1500, Carlo Erba, Milan, Italy) and an isotope ratio 

mass spectrometer (MAT 251, Thermo Finnigan, Bremen, Germany). 

 

Microbial biomass 

Cmic was estimated by chloroform-fumigation-extraction (Vance et al. 1987). In brief, 10 g 

soil (fresh weight) of a homogeneous subsample of each plot was fumigated under vacuum 

with ethanol-free chloroform in a desiccator for 24 h. After removing the chloroform, samples 

were extracted by adding 40 ml of a 0.025 M K2SO4-solution (1:4 w/v soil / extractant ratio), 

shaken for 30 min at 250 rev min
-1

 on a horizontal shaker and centrifuged for 30 min at 4422 

g. A second subsample of 10 g was treated similarly but without fumigation for the estimation 

of 0.025 M extractable organic C (EOC). Organic C in the supernatants was measured with a 

DOC / TN-analyser (Dimatoc 100, Dimatec, Essen, Germany). EOC content of the fumigated 

samples was subtracted from C content of the non-fumigated samples and resulted in 

extractable Cmic. For estimation of total Cmic a kec factor of 0.45 was used (Joergensen 1996).  

 

δ
13

C of microbial biomass 

For analysis of δ
13

C values of EOC and Cmic, 10 ml aliquots of the supernatants of both non-

fumigated and fumigated samples were dried in a vacuum rotary evaporator (RVC 2-25, 

Martin Christ, Osterode am Harz, Germany) at 60 °C. The remnant was ground, weighed into 

tin capsules within a range of 7 – 30 mg (minimum of 10 µg C) per capsule (Marhan et al. 

2010), and analyzed as described for the plant material. 

To calculate the δ
13

C of Cmic following equation was used: 

δ
13

Cmic = (cnf × δnf – cf × δf) / (cnf – cf), 
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where cnf and cf are the corresponding extracted organic C contents (µg C g
-1

soil) of the non-

fumigated and fumigated sample and δnf and δf are the corresponding δ
13

C values. 

 

Ergosterol 

Ergosterol was extracted using a modified method of Djajakirana et al. (1996). To 2 g soil 

(fresh weight) 25 ml ethanol was added and shaken at 250 rev min
-1

 on a horizontal shaker for 

30 min. Extracts were then centrifuged for 30 min at 4422 g and 10 ml of supernatant per 

sample was dried at 50 °C in a vacuum rotary evaporator (Martin Christ, RVC 2-25, Osterode 

am Harz, Germany). To dissolve the extracts 1 ml methanol was added and samples were 

transferred into 2 ml brown glass HPLC vials with cellulose-acetate filters (0.45 µm; Sartorius 

Stedim Biotech GmbH, Göttingen, Germany). Ergosterol in samples was quantitatively 

determined by HPLC analysis (Beckmann Coulter, System Gold 125, Fullerton, USA) using a 

250 × 4.6 mm Spherisorb ODS II 5 µm column with a mobile phase of pure methanol, a flow 

rate of 1 ml min
-1

 and a detection wavelength of 282 nm (Beckmann Coulter, System Gold 

166 UV-detector, Fullerton, USA). For calibration pure ergosterol (Sigma-Aldrich, St. Louis, 

USA) was dissolved in methanol and diluted to give final concentrations of 0.1, 0.2, 0.5, 1 

and 2 µg ergosterol ml
-1

. 

 

13
C ergosterol 

For extraction of ergosterol for δ
13

C determination, 11 - 15 g soil (fresh weight) was mixed 

with 170 ml ethanol and 5 g NaOH, homogenised in an ultrasonic bath and saponified (30 

min at 80 °C). After cooling, samples were filtered through folded filters (Ø 15 cm; 

Macherey-Nagel, Oensingen, Switzerland). Filtered extracts were mixed with 100 ml of 

deionised H2O and 80 ml of petroleum ether and shaken for 1 min, separating into two phases. 

The upper phase was saved and the lower phase was mixed again with 50 ml petroleum ether 

and shaken for another 1 min. Both resulting upper phases were pooled and 20 µl of ethylene 

glycol was added. Samples were evaporated to near dryness in a rotary evaporator at 300 – 

500 mbar at 40°C. Residues were re-dissolved in 2 ml of methanol / water (95/5; v/v), 

transferred to Eppendorf vials and centrifuged for 2 min at 12,000 g. Supernatants were 

transferred into brown glass HPLC-vials. 

Concentration and cleaning of the extracts was performed with a Varian preparative HPLC 

with a Varian Pro-Star 210 pump and 701 Fraction Collector equipped with a Grohm 
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Nucleosil 120 C4 (250 × 16 mm) column. The eluent was methanol / water (95/5; v/v) with a 

flow rate of 6 ml min
-1

. One ml of each sample was injected and the ergosterol fraction was 

collected. Retention time was monitored using the Galaxy Chromatography Data System 

(Version 1.7.4.5) software. The fraction was than evaporated under nitrogen at 60 °C, 

dissolved in 70 µl isooctane and transferred to a brown glass vial. A GC-C-IRMS system was 

used to determine the isotopic C composition of ergosterol. The system consists of a gas 

chromatograph (6890 series, Agilent Technologies, USA) coupled via a gas chromatography-

combustion III Interface (Thermo Finnigan, Waltham, USA) to a Delta Plus XP mass 

spectrometer (Thermo Finnigan MAT, Bremen, Germany). An Rtx-5 (30 m × 0.25 mm, film 

thickness of 0.25 µm) column with helium as the carrier gas (flow rate of 1.5 ml min
-1

) was 

used. The combustion reactor had a temperature of 940 °C and the reduction reactor 640 °C. 

The GC program was set as follows: initial temperature was 160 °C and held for 1 min, 

temperature was increased to 270 °C at a starting rate of 5 °C min
-1

 followed by a rate of 2 °C 

min
-1

 to 300 °C then held for 10 min. The injector temperature was 280 °C and the samples 

were measured in a splitless mode. 

Each sample was measured at least two times. For internal calibration and to check 

fractionation during separation of ergosterol with preparative HPLC, δ
13

C of ergosterol 

standards (50 µg ml
-1

) (ACROS Organics, Geel, Belgium, purity: 98 %) was also determined 

with every series of measurement. No 
13

C isotopic fractionation could be detected as a result 

of cutting the ergosterol with the preparative HPLC (-10.11 ± 0.08 ‰ vs. -10.05 ± 0.14 ‰, 

ergosterol standards unprocessed and processed with preparative HPLC, respectively). 

 

Calculation of maize-derived C  

For calculation of the relative amounts of maize C in Corg, EOC, Cmic, and ergosterol the 

following mixing model was used: 

%C-maize = (δsample - δreference) / (δmaize - δwheat), 

where δsample is the δ
13

C value of the respective sample, and δreference is the δ
13

C mean value of 

a sample from the reference plots (with wheat crop alone). δmaize is the δ
13

C value of the maize 

residues. An average δ
13

C value of maize material (-13.01 ‰) was used for calculation of 

maize C because there were only small differences in δ
13

C values between maize litter (2009: 

-13.04 ± 0.04 ‰; 2010: -13.34 ± 0.13 ‰) and maize roots (-12.82 ± 0.09 ‰), as well as over 

time. To assess the relative amount of maize C in EOC, Cmic and ergosterol, the average 
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δ
13

Corg value (δwheat) over two years of the reference plots was used (-26.99 ± 0.03 ‰). For 

calculation of relative amounts of maize C in the Corg for δwheat the δ
13

C value of the wheat 

plants was used (-28.31 ± 0.16 ‰). δ
13

C mean values and standard errors of all samples in the 

different pools are given in Table S6.1.  

Absolute amounts of maize-derived C were calculated by multiplying relative amounts of 

maize-derived C by C content of the respective samples. 

 

Statistical analyses 

Treatment and date effects on Corg, EOC, Cmic and ergosterol as well as on the amounts of 

maize-derived C in these pools were analysed by ANOVA with sampling dates as repeated 

factors. In addition separate ANOVAs with post hoc tests (Fischer LSD) for comparison of 

means were performed for each sampling date. Best fitted transformation (log or reciprocal 

transformation) was used to improve homogeneity of variance (tested by Levene`s test). For 

statistical analyses the software STATISTICA 6.0 (Tulsa, OK, USA) was used. 

 

Results 

Root biomass and Corg 

In July 2009 wheat root biomass was 0.47 ± 0.17 mg C g
-1

 soil, while maize root biomass 

(without crown roots) was only 0.15 ± 0.04 mg C g
-1

 soil. Before this sampling calculated 

rhizodeposit-derived C had been 0.37 ± 0.10 mg C g
-1

 soil.  

During the sampling period Corg content of soils ranged from 10.59 to 13.74 mg g
-1

 soil (Fig. 

6.1a). Corg was significantly affected by treatment only at the last sampling date in winter 

2010/2011 (date × treatment effect: F15,60 = 2.34, P = 0.011). For this date Corg was 

significantly different between treatments (F3,12 = 9.82, P = 0.001), with 23 % lower values in 

the FM in comparison to the WL treatment. Maize-derived C was detected in the Corg of the 

FM and CM plots starting with the first sampling in summer 2009 and the maize signal in 

samples of the WL plots were detected one month after litter amendment in winter 2009/2010 

(Fig. 6.1a, b). During the vegetation period 2010, the highest amount of maize-derived C was 

present in the CM plots, unlike both the FM and the WL plots, which showed similar amounts 

of maize-derived C. Maize-derived Corg increased continuously in each of the treatments 
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during the two years (Fig. 6.1a, b). After two years the amount of maize-derived C in Corg was 

7.28, 7.50 and 14.12 % in the FM, WL and CM plots, respectively (Fig. 6.1b). 

 

Figure 6.1 Means and standard errors of Corg and absolute amounts of maize-derived C (a) 

and relative amounts of maize-derived C (b) in the different treatments Wheat (W), Fodder 

Maize (FM), Wheat + maize Litter (WL) and Corn Maize (CM) at respective soil sampling 

dates . Different letters indicate statistically significant differences between treatments at this 

date (Fisher LSD: P < 0.05). In (a) letters above bars specify significance for total Corg and 

letters below bars for absolute amounts of maize-derived C in this pool. Arrows indicate litter 

application. 

 

Extractable organic carbon  

During the sampling period EOC content varied between 10.99 and 34.52 µg C g
-1

 soil (Fig. 

6.2a). Effects of treatment on EOC differed over the sampling period (date × treatment effect: 

F15,60 = 4.21; P < 0.001). Although similar amounts of EOC were detected in all of the 

treatments in summer and autumn 2009, EOC content in soils was significantly higher in the 

WL than in the FM plots during the following soil sampling dates. In 2010, EOC content 
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tended to be higher in the wheat plots (WL and W), but the difference was only significant in 

autumn 2010 (F3,12 = 15.41; P < 0.001). In winter 2010/2011 EOC content in the FM plots 

was significantly different (F3,12 = 6.86; P = 0.006) between treatments, with about 50 % 

lower contents in the FM than in the other treatments. 

Maize-derived C in EOC was first detected in the FM and CM plots in autumn 2009 (Fig. 

6.2a, b). In winter 2009/2010, one month after addition of maize litter, maize-derived C was 

also detected in the WL plots. After summer 2010 the relative amount of maize-derived C was 

higher in the CM plots but no significant differences could be detected between the FM and 

WL plots. This was reflected at the end of this study by 12.88, 13.94 and 24.67 % maize C 

incorporation into EOC in the FM, WL and CM plots, respectively. 

 

Figure 6.2 Means and standard errors of total extractable organic C (EOC) and absolute 

amounts of maize-derived C (a) and relative amounts of maize-derived C (b) in the different 

treatments at respective soil sampling dates. Different letters indicate statistically significant 

differences between treatments at this date (Fisher LSD: P < 0.05). Arrows indicate litter 

application; for legend see Fig. 6.1. 
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Microbial biomass C 

Microbial biomass C ranged from 120.7 to 222.8 µg g
-1

 soil (Fig. 6.3a). The date of sampling 

significantly affected Cmic (F5,60 = 7.41, P < 0.001) but the variations did not show a clear 

seasonal trend. In autumn 2010 Cmic in the FM plots was significantly lower than in WL and 

W plots (F3,12 = 3.59, P = 0.046). In winter 2010/2011 Cmic significantly differed between 

treatments (F3,12 = 4.30, P = 0.028) and was 34 % lower in the FM than in the WL plots (Fig. 

6.3a). 

Maize C derived from rhizodeposition was detected in Cmic in the FM and CM plots at the 

first sampling in summer 2009 (Fig. 6.3a, b). In winter 2009/2010, maize litter-derived C was 

also detected in Cmic of the WL plots. Subsequently, the amounts of maize-derived C in FM 

and WL plots were similar, while in the CM plots they were about twice as high (Fig. 6.3a, b). 

The maize-derived signal in the Cmic increased continuously during the two years resulting in 

25.1, 25.6 and 46.6 % maize C in Cmic in the FM, WL and CM plots at the end of the two year 

period, respectively. 
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Figure 6.3 Means and standard errors of total microbial biomass (Cmic) and absolute amounts 

of maize-derived C (a) and relative amounts of maize-derived C (b) in the different treatments 

at respective soil sampling dates. Different letters indicate statistically significant differences 

between treatments at this date (Fisher LSD: P < 0.05). In (a) letters above bars specify 

significance for total Cmic and letters below bars for absolute amounts of maize-derived C in 

this pool. Arrows indicate litter application; for legend see Fig. 6.1. 

 

Ergosterol C 

Amounts of ergosterol C ranged from 0.53 to 2.23 µg C g
-1

 soil. In both winter 2009/2010 and 

2010/2011 amounts of ergosterol C tended to be higher in the WL and CM plots than in the W 

and FM plots (Fig. 6.4a). During the vegetation period 2010, ergosterol C tended to be higher 

in the wheat (WL and W) plots compared to the maize plots but significant differences 

between treatments were only found in autumn 2010 (F3,10 = 7.87, P = 0.005). 

In summer 2009, maize C in ergosterol was detected in both FM and CM plots, and in winter 

2009, one month after litter addition, it also appeared in the WL plots (Fig. 6.4a, b). During 
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the growing seasons in both WL and CM plots, the amount of maize C tended to be highest at 

the winter samplings. Over the whole sampling period no significant differences in the 

relative amounts of maize-derived C could be detected between the FM and WL plots. After 

two years the amount of maize C in ergosterol accounted for 35.6, 39.5 and 76.2 % in the FM, 

WL and CM plots, respectively. 

 

 

Figure 6.4 Means and standard errors of total ergosterol C and absolute amounts of maize-

derived C (a) and relative amounts of maize-derived C (b) in the different treatments at 

respective soil sampling dates. Different letters indicate statistically significant differences 

between treatments at this date (Fisher LSD: P < 0.05). In (a) letters above bars specify 

significance for total ergosterol C and letters below bars for absolute amounts of maize-

derived C in this pool. Arrows indicate litter application. Note numbers on some data points 

in (b) which also apply to (a); for legend see Fig. 6.1. 

 

 

 

70



6 CARBON FLOW INTO MICROBIAL AND FUNGAL BIOMASS 

 

Discussion 

The origin and quantity of plant inputs to soil are primary factors controlling the size and 

structure of the soil microbial community. The present study aimed to elucidate and quantify 

the C flow from both root and shoot litter residues into soil organic, extractable, microbial and 

fungal C pools. Our experimental approach allowed separating the flux of root-derived from 

shoot litter-derived C by switching from C3 (wheat) to C4 (maize) crops and by the addition 

of C4 shoot litter to plots with C3 plants.  

 

Plant effects 

Wheat was grown on the W and WL plots to maintain habitat functions of the soil without 

changing its isotopic C signature. However, the type of crop influenced the total amounts of 

Corg, EOC, Cmic and ergosterol, with typically greater amounts in treatments with wheat plants 

(W vs. FM and WL vs. CM treatment). The effect of wheat was generally more pronounced 

in 2010 than in 2009. In July 2009 wheat root biomass was 0.47 mg C g
-1

 soil, while maize 

root biomass (excluding crown roots) was only 0.15 mg C g
-1

 soil. Therefore, we suggest that 

higher substrate (rhizodeposit) availability in treatments with wheat plants was responsible for 

greater amounts of C in the organic C, microbial, and fungal pools. Furthermore, we cannot 

exclude the possibility that microbial diversity differences in the wheat and maize plots (WL 

and CM) result in assimilation of substrates by varying species. However, nearly additive 

amounts of maize-derived C in FM and WL to CM plots indicate that assimilated C quantities 

were independent of maize or wheat growing plots and the respective microorganisms 

present.  

The wheat-derived C input, with its depleted δ
13

C signature compared to maize, probably led 

to an underestimation of maize C incorporation into the different pools of the WL treatment. 

The increase in the EOC pool in the WL (and W) treatment during summer 2010, when the 

plots were planted with wheat, indicates that a certain amount of EOC was derived from the 

rhizodeposition of wheat. In contrast, the amount of maize C in the EOC pool of the WL 

treatment decreased. The wheat-derived C presumably was mineralized quickly as the total 

amount of EOC decreased but the maize-derived C in the EOC pool increased until the 

following soil sampling in autumn 2010. Similar increases in maize-derived C in almost all 

pools in the WL and CM treatments after litter addition between the autumn and winter 
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samplings further indicate that the contribution of wheat root material to the δ
13

C signal of the 

different pools was negligible in the WL treatment.  

 

Total C input 

In the first year of the experiment (2009), total root-derived C input of maize was 0.52 mg C 

g
-1

 soil (0.37 mg C g
-1

 of total rhizodeposits until July 2009 plus 0.15 mg C g
-1

 root biomass 

in July 2009). In spring 2010 the maize crown roots (aboveground root material) were 

incorporated into the soil by chisel plough tillage, contributing to an additional input of 8.0 

mg C g
-1

 into soil. Taking the incorporation of the crown root material into account, over the 

study period the total C input by roots was almost two times higher (9.04 mg C g
-1

 soil ) than 

the C input derived from litter (5.08 mg C g
-1

 soil). A decomposition experiment with litter-

bags in the field showed that after one year only 42 % of maize root material (without crown 

roots), but up to 88 % of maize shoot litter material was decomposed (N. Scheunemann, 

unpubl. data) indicating faster decomposition of shoot than root litter. Presumably, after 

incorporation into soil, the decomposition of the crown root material was further slowed down 

in comparison to the belowground root biomass due to its more compact and solid structure. 

We assume therefore that access and utilization of crown root material by decomposers was 

strongly limited and that the contribution of this material to the investigated C pools as a 

source for C was negligible. With the assumption that the root biomass and rhizodeposition 

were equal in both years (although maize varieties changed) root C input in the maize plots 

(without the crown root material) was only 1.04 mg C g
-1

 soil during the study period, which 

is only one fifth of the maize shoot litter input and similar to the root biomass C (without 

rhizodeposition) input in the wheat plots (see above). Indeed, total quantities of C in all pools 

of the FM treatment were slightly lower as compared to the other treatments in the second 

year of the study. 

 

Absolute incorporation of maize C into different soil C pools 

The pool of Corg is assumed to be stable with long turnover times (Flessa et al. 2008, von 

Lützow et al. 2008). However, maize-derived C in Corg was detected almost immediately, 

beginning with the first growing period. Balesdent and Balabane (1992) also found the δ
13

C 

values of different soil particle size fractions to differ significantly in the first year after 

replacing C3 by C4 plants. 
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The total amount of Corg varied little over time; it decreased only slightly in the FM treatment 

and increased slightly in the WL treatment with significantly lower amounts in the FM 

treatment only in winter 2010/2011. However, the concentration of maize-derived C increased 

with time in each of the treatments indicating that the decrease in Corg in the FM treatment 

was due to the mineralization of C3-derived C. Clapp et al. (2000) investigated the SOC of 

maize cultivated fields over 13 years and showed that the SOC amount declined in treatments 

where aboveground plant parts were removed from the soil, which is comparable to the FM 

treatment in the present study.  

The EOC pool represents a more mobile fraction of soil organic C than Corg and is assumed to 

be an important C source for the soil microbial community (Marschner et al. 2002). In the 

present study no maize-derived C from rhizodeposition was detected in the EOC pool at the 

first sampling date in summer 2009, three months after seeding of maize, but it was detected 

in Cmic and Corg. The minor contribution of maize exudates to the EOC pool in the bulk soil 

presumably was due to the fact that bulk soil was sampled 25 cm away from the maize plants 

and not directly in the rhizosphere. Marx et al. (2007) found only low amounts of C derived 

from rhizodeposits in the rhizosphere of maize and wheat plants, while in bulk soil 

rhizodeposit C was present in Cmic and CO2. Relative amounts of water soluble C were shown 

to decrease with increasing distance to wheat roots (Merbach et al. 1999). Hütsch et al. (2002) 

concluded that extractable organic compounds derived from rhizodeposits were assimilated 

immediately by microorganisms and/or stabilized in Corg.  

Root-derived C also was already detected in fungal biomass (ergosterol) at the first sampling 

in summer 2009. Since only limited amounts of ergosterol were found in Glomeromycota (see 

review of Weete et al. 2010), we assume minor contribution of AM fungi-derived C in the 

ergosterol fraction in our experiment. Only low AM colonisation of maize roots in the same 

field experiment during two sampling times in 2009 were detected (J. Moll, pers. 

communication). Therefore, we conclude that mainly saprotrophic fungi might have 

incorporated maize-derived C from rhizodeposits (and shoot litter) into the ergosterol fraction. 

Generally, fungi can play an important role in C cycling in bulk soil because their hyphae can 

grow in the direction of the substrate source or from substrate into the bulk soil (Frey et al. 

2003; Butenschoen et al. 2007). Esperschütz et al. (2009) found that fungi are involved in 

transporting 
13

C compounds from labelled rhizodeposits into bulk soil. Soon after labelling 

the fungal PLFA 18:2ω6,9 was highly enriched in the rhizosphere, later it was also enriched 

in bulk soil. The translocation of the assimilated substrates within the hyphal network is an 
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advantage fungi have over bacteria which depend more on external transport processes, such 

as the flux of water through soil (Poll et al. 2006). 

In contrast to root-derived C, litter-derived C was detected in the EOC pool at the first 

sampling one month after litter addition (winter 2009/2010). Even distribution of litter on the 

plots presumably fostered direct leaching of water soluble C from the litter into the underlying 

bulk soil. Diffusion of soluble C and advective transport from labelled rye litter into the soil 

were also found by Poll et al. (2008). A similar quick uptake of maize litter C was also 

detected in Cmic and ergosterol in winter 2009/2010. While total Cmic generally did not 

respond to litter addition, fungal biomass increased in winter in the litter addition treatments. 

Increased fungal biomass by the addition of maize litter has been shown previously (Helfrich 

et al. 2008; Potthoff et al. 2008; Rottmann et al. 2010), suggesting that fungi in bulk soil 

benefit from aboveground litter resources in arable systems. 

 

Relative contribution of root- and litter-derived C to the different C pools 

After two vegetation periods the proportion of maize-derived C increased in the order Corg < 

EOC < Cmic < ergosterol. With the exception of ergosterol, which has not been investigated 

before, this is in accordance with previous studies (Gregorich et al. 2000; Liang et al. 2002). 

For example, Gregorich et al. (2000) simulated changes in δ
13

C values in different soil pools 

which had been under maize monoculture from 4 to 37 years. They calculated exponential 

enrichment in the first two years with higher enrichments in Cmic than in water soluble C, and 

very slow enrichment in humus C. Liang et al. (2002) found in a 110 day greenhouse study 

with maize 11.5, 23.3 and 48.0 % maize-derived C in SOC, water soluble organic C (WSOC) 

and Cmic, respectively. Due to higher proportions of maize-derived C in WSOC and Cmic they 

concluded that recent plant C was more bioavailable than the older soil-derived soluble C 

pool. 

After two vegetation periods, the relative incorporation of maize-derived C was at a 

maximum in fungal biomass (ergosterol) with up to 76.2 % maize C in ergosterol in the CM 

treatment. Similarly, the fungal biomarker PLFA, 18:2ω6,9, was highly enriched in 

comparison to bacterial PLFAs due to the addition of litter or by rhizodeposition (Butler et al. 

2003; Jin and Evans 2010; Paterson et al. 2008; Rubino et al. 2009). Flessa et al. (2008) 

calculated from the data of Kramer and Gleixner (2006) that after 23 years of maize 

cultivation 93.8 % of the C in the fungal biomarker PLFA 18:2ω6,9 derived from the C4 
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plant. In current concepts of food webs, the fungal energy channel, which is favoured by 

recalcitrant organic materials and high C/N ratio in soils, is considered a slow cycle (Scheu et 

al. 2005; Joergensen and Wichern 2008). Fungi are thought to use organic substrates more 

efficiently than bacteria (Sakamoto and Oba 1994) and to be more resistant to mortality 

factors as compared to bacteria (Guggenberger et al. 1999). In contrast, readily decomposable 

substrates are favoured by the bacterial energy channel which is characterized by rapid 

growth, turnover of C, and fast cycling of nutrients (Holtkamp et al. 2008; Ingwersen et al. 

2008) 

In spite of different C input quantities of the resources (root vs. litter) similar relative amounts 

of maize-derived C had been incorporated in each of the four soil C pools by the end of both 

vegetation periods (winter) with the effects of root and litter input being additive. The similar 

relative incorporation or assimilation of maize C in the treatments with only maize root or 

shoot litter is noteworthy because the total size of the different pools varied between 

treatments (with mostly lower total amounts in the FM plots; see above).  

Generally, a large fraction of root-derived C is assumed to be stable in soil and hence has 

longer turnover time in comparison to shoot-derived C (Rasse et al. 2005). Balesdent and 

Balabane (1996) found more root-derived than shoot-derived maize C to be stable in different 

soil fractions four years after changing from C3 to C4 plants. They assumed high production 

but slow decomposition of belowground C compounds. Higher stability of root-derived C was 

also found by Puget and Drinkwater (2001). After one growing season of labelled hairy vetch 

(Vicia villosa Roth subsp. villosa) 48.8 % of root-derived C and 13.2 % of litter-derived C in 

Corg were retrieved, while almost equal relative amounts of root C (4.1 %) and shoot C (6.5 

%) were recovered in Cmic. They concluded that even though the amount of shoot C input into 

soil was threefold higher than that of root C, relatively more root-derived C was assimilated 

by Cmic. Williams et al. (2006a) detected similar proportions of ryegrass root- and straw-

derived C in the fungal biomarker PLFA 18:2w6,9 two months after mixing ryegrass and 

crimson clover litter into the soil, although input of straw litter was 4.5 fold greater than the 

root biomass.  

In our experiment root-derived input of C was lower than the shoot-derived input but similar 

relative amounts of root- and shoot-derived C were recovered in the Corg, EOC, Cmic and 

fungal (ergosterol) pools. Data from the present study underline the results of the above 

mentioned studies in which typically more root- than shoot-litter derived C is stabilized in the 

soil organic C pools and assimilated in the total soil microbial and the fungal biomass.  
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Our results indicate that not only for soil food webs in forests (Pollierer et al. 2007) but also 

for the basis of food webs in agricultural ecosystems belowground C input via roots is of great 

importance.  

 

Conclusions 

We presented data on the incorporation of root and shoot litter C into organic and microbial C 

pools under field conditions over a period of two years, providing a basis for future modelling 

of C transfer through the belowground food web. Notably, similar amounts of C derived from 

the two resources differing in substrate quality and amount were incorporated into the Corg, 

EOC, Cmic and ergosterol pools over time, indicating the importance of root-derived C for the 

soil food web. High incorporation of maize C (up to 76.2 %) into ergosterol suggests fast and 

high assimilation of maize C into fungal biomass, with major implications for the flux of C 

through the bacterial and fungal energy channels of arable systems.  
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Supplementary material 

 

Fig. S6.1 δ
13

C signature of Corg (top) and Corg amount (bottom) of the Ah horizon at the field 

site. Solid lines mark the experimental plots with treatment alignment, Wheat (W), Fodder 

Maize (FM), Wheat + maize Litter (WL) and Corn Maize (CM). 
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Fig. S6.2 Daily means of air temperature (°C) and precipitation (mm) over the study period in 

Göttingen. Arrows indicate date of soil samplings. Data were provided from the Wetterstation 

Göttingen in Hardegsen (Lower-Saxony) 8 km from the field site. 
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Table S6.1. Means and standard errors (in parentheses) of δ
13

C values of different C pools in 

the four treatments Wheat (W), Fodder Maize (FM), Wheat + maize Litter (WL) and Corn 

Maize (CM) at six consecutive sampling dates.  

 
Sampling 
 

Treatment Corg EOC Cmic Ergosterol C 

Summer 2009 W -27.04 (0.03) -26.69 (0.09) -25.86 (0.27) -27.44 (0.51) 
 FM -26.71 (0.08) -27.20 (0.12) -24.53 (0.20) -25.45 (0.41) 
 WL -27.06 (0.10) -26.90 (0.41) -26.21 (0.36) -27.09 (0.32) 
 CM -26.72 (0.03) -27.19 (0.20) -24.79 (0.27) -26.15 (0.37) 
Autumn 2009 W -26.99 (0.11) -27.57 (0.07) -26.10 (0.06) -27.51 (0.10) 
 FM -26.66 (0.03) -26.69 (0.16) -24.75 (0.04) -26.17 (0.67) 
 WL -26.90 (0.09) -27.55 (0.02) -26.25 (0.12) -27.50 (0.43) 
 CM -26.71 (0.08) -26.94 (0.09) -24.45 (0.07) -25.92 (0.42) 
Winter 2009 W -26.98 (0.03) -27.27 (0.04) -25.77 (0.12) -28.51 (0.19) 
 FM -26.57 (0.08) -26.41 (0.12) -24.00 (0.27) -25.64 (0.38) 
 WL -26.59 (0.16) -25.67 (0.46) -24.20 (0.50) -24.17 (1.23) 
 CM -25.98 (0.24) -24.64 (0.48) -22.19 (0.61) -20.86 (1.71) 
Summer 2010 W -27.10 (0.10) -27.50 (0.07) -25.28 (0.29) -28.24 (0.20) 
 FM -26.46 (0.06) -26.26 (0.48) -23.47 (0.17) -26.67 (0.98) 
 WL -26.68 (0.02) -26.68 (0.12) -23.57 (0.21) -24.85 (0.50) 
 CM -25.65 (0.27) -24.82 (0.70) -21.11 (0.73) -21.33 (1.04) 
Autumn 2010 W -26.98 (0.02) -27.27 (0.05) -26.14 (0.12) -27.71 (0.42) 
 FM -26.17 (0.03) -25.30 (0.33) -23.00 (0.64) -20.73 (2.01) 
 WL -26.36 (0.24) -25.76 (0.40) -24.45 (0.40) -24.84 (0.71) 
 CM -24.85 (0.35) -24.14 (0.41) -20.55 (0.24) -20.51 (0.63) 
Winter 2010 W -26.86 (0.04) -27.30 (0.14) -25.97 (0.11) -27.16 (0.25) 
 FM -25.75 (0.05) -25.50 (0.22) -22.46 (0.28) -22.17 (0.67) 
 WL -25.72 (0.14) -25.35 (0.10) -22.38 (0.17) -21.64 (0.23) 
 CM -24.70 (0.41) -23.85 (0.68) -19.45 (0.90) -16.49 (1.61) 
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Abstract 

The mineralization and flow of plant-derived carbon in soil is relevant to global carbon 

cycling. Current models of organismic carbon fluxes in soil assume separate bacterial and 

fungal energy channels in the detritusphere, depending on substrate complexity and 

recalcitrance. Still, precise details on the most relevant microbiota involved, as well as on 

resource partitioning, interactions and competition between them are largely lacking. Here, a 

microcosm experiment was performed to trace the mineralization and assimilation of four 

13
C-labeled detritusphere substrates (glucose, cellulose, maize leaves and roots) in an 

agricultural soil. Key label-assimilating bacteria, fungi and protists were identified by rRNA 

stable isotope probing and pyrotag sequencing. The different substrates were consumed by 

only a few key players within the three investigated kingdoms. Distinct lineages within the 

Actinobacteria, Bacteroidetes and Gammaproteobacteria were the main bacterial 

decomposers. For fungi, basidiomycetous yeasts degraded labile and ascomycetes the more 

recalcitrant substrates. Specific protists (Pythium spp.) were also highly active already in early 

stages of substrate decomposition. Thus, bacteria, fungi and protists were identified as 

primary consumers of all substrates, irrespective of complexity or recalcitrance. Secondary 

trophic activity was more apparent for amoeboid protozoa than for flagellates, and was 

observed also for bacterivorous as well as fungivorous protozoa and bacterial micropredators. 

Only for detritusphere bacteria, consumer diversity increased with substrate complexity. 

Members of all investigated kingdoms simultaneously consumed available detritusphere 

substrates, irrespective of resource quality. Thus, separate energy channels were not apparent 

in this agricultural soil, which advances current modeling concepts for litter decomposition in 

soil.  
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Introduction  

Microbes fulfill crucial functions as primary decomposers of organic material such as plant 

litter in soil (Berg and McClaugherty 2008, Schmidt et al 2011). Bacteria have been 

classically understood to be mainly involved in the degradation of labile organic matter, being 

more active in early phases of decomposition (‘bacterial energy channel’). In contrast, fungi 

were assumed to be more involved in the degradation of recalcitrant compounds and to 

dominate in later stages of decomposition (‘fungal energy channel’, de Boer et al 2005, 

Moore and William Hunt 1988, Paterson et al 2008). However, more recent work has 

suggested a significant role of bacteria also in the mineralization of recalcitrant substrates, and 

of fungi in early stages of labile plant litter decomposition (Bastian et al 2009, España et al 

2011, Poll et al 2010). This has fuelled a still ongoing debate on the specific functions of 

distinct soil microbiota in different phases of litter degradation (Strickland and Rousk 2010). 

Soil microbes are known to undergo a succession during the degradation of plant residues 

(Bastian et al 2009, Poll et al 2010, Voriskova and Baldrian 2013). Furthermore, the diversity 

of soil microbiota is positively influenced by substrate complexity and has been shown to 

increase during decomposition (Mula-Michel and Williams 2012). Thus, resource partitioning 

between microbes consuming more complex substrates may be an important driver of the 

diversity of soil microbial communities (Zhou et al 2002). Yet to date, the role of these 

important mechanisms in controlling key microbial populations in the detritusphere across 

microbial kingdoms has not been addressed.  

Higher trophic levels also significantly influence the primary degraders of organic matter. The 

bacterial energy channel is understood to be subject to top-down control by protozoan grazers, 

the next relevant trophic level of soil food-webs (De Ruiter et al 1996, Ekelund and Ronn 

1994). Fungal hyphae and yeast cells as well as complex organic matter can also be consumed 

by protozoa (Adl and Gupta 2006, Hess et al 2012). Substrate-dependent successions of prey 

organisms can also be expected to affect the succession of protozoan grazers. However, the 

larger group of protists is also known to harbor primary detritus decomposers (Termorshuizen 

and Jeger 2008). Thus, although a general understanding of the ecology of protists exists for 

the detritusphere, a comprehensive grasp of their trophic strategies, interactions and 

competition for resources with other microbes remains to be elaborated (Tixier et al 2013). 

Modern isotopic labeling strategies such as nucleic acid-based stable isotope probing (SIP) 

can be seminal for the tracing of substrate-derived carbon flows and the identification of key 
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microorganisms in the soil detritusphere (Stursova et al 2012). While most respective studies 

have been focused on bacterial consumers of defined detritusphere substrates (e.g. (Haichar et 

al 2007, Padmanabhan et al 2003, Schellenberger et al 2010), a number of SIP studies has 

also addressed the use of complex substrates over different kingdoms and/or trophic levels 

simultaneously (Bernard et al 2007, Drigo et al 2010, Eichorst and Kuske 2012, Lueders et al 

2006, Stursova et al 2012, Vandenkoornhuyse et al 2007). Still, a comprehensive tracing of 

the turnover of a range of 
13

C-labeled plant-derived substrates of distinct quality over all most 

relevant microbial groups in a given soil has not been reported to date.  

Here, a SIP microcosms experiment was conducted with a well-investigated arable soil from 

an experimental maize field (Dibbern et al 2014, Kramer et al 2012, Pausch et al 2013, 

Scharroba et al 2013). Treatments included the amendment of 
13

C-labeled glucose and 

cellulose as representative components of plant biomass, as well as maize leaves and roots as 

composite substrates. We traced key label-assimilating bacteria, fungi and protists by rRNA-

SIP at an early and a later stage of decomposition. rRNA-SIP was combined with pyrotag 

sequencing, a strategy yielding superior insights into the diversity of labeled taxa (Pilloni et al 

2012, Stursova et al 2012). We hypothesized that i) the complexity and recalcitrance of 

substrates defines primary consumers across kingdoms; ii) distinct bacterial and fungal 

substrate utilization channels may actually not exist; and that iii) the diversity of primary 

consumers as well as secondary trophic links should increase with substrate complexity. This 

comprehensive approach can significantly advance the current understanding of resource 

partitioning and trophic interactions between detritusphere microbes in arable soils.  

 

Materials and methods 

Soil  

The soil originated from a recently installed agricultural field experiment located near 

Göttingen (Germany), designed to trace the flow of plant-derived carbon into soil food webs 

(Kramer et al 2012). Topsoil (0-10 cm) was taken from plots under wheat in October 2010. 

The dominant soil types at the sampling site are Cambisols and Luvisols. The C and N 

content of the soil were 1.37 and 0.14 %, respectively; soil pHCaCl2 was 6.0. Topsoil texture 

comprised 7 % clay, 87 % silt and 6 % sand. Further soil parameters can be found in (Kramer 

et al 2012). Rapid and pronounced incorporation of litter derived C into fungal biomass has 
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been shown, suggesting a high activity and assimilation potential of fungi in the detritusphere 

of this soil (Kramer et al 2012).  

 

Microcosm setup for SIP 

Soil corresponding to 50 g dry weight was filled into small steel cylinders (diameter = 5.5 cm, 

height = 4 cm). Four different substrates (glucose, cellulose, senescent maize leaves and 

roots) were mixed into the soil, all were 
13

C-labeled (> 98 atom %, determined by the 

supplier). Soil microcosms without substrate amendment as well as with unlabeled substrates 

(natural abundance of δ
13

C; ‘
12

C controls’) were set up as controls. Substrates were purchased 

from IsoLife (Wageningen, Netherlands). Materials were added to the soil to a final amount 

of 12 mg C microcosm
-1

 (240 µg C g
-1

 soil). Soil cylinders were placed into air-tight glasses 

containing a small vessel attached to the lid to hold 1 M NaOH for absorbing evolving CO2. 

The microcosms were incubated in a climate chamber at 12°C, representing the long term 

mean temperature of autumn months at the field site. 
12

C treatments including controls were 

replicated three times while 
13

C treatments were not replicated. For further details see SI.  

CO2 production, microbial biomass carbon (Cmic), as well as the δ
13

C in CO2 and Cmic was 

determined during incubation as described (SI). The relative amounts of substrate derived 

carbon in CO2 and Cmic were inferred. Microcosms were destructively sampled after 2, 8, 16 

and 32 days.  

 

RNA extraction and rRNA stable isotope probing (rRNA-SIP) 

RNA was extracted from soil as described by (Lueders et al 2004a) with minor modifications 

(see SI). RNA extracts from the most representative time points were selected for SIP 

gradient centrifugation based on substrate mineralization data, substrate derived CO2 and 

assimilation. These were day 8 (high substrate use) and day 32 (later stage of decomposition) 

for all treatments. Soil from 
12

C-control incubations was pooled and extracted as one sample. 

Isopycnic centrifugation and gradient fractionation were done as previously described 

(Glaubitz et al 2009, Kleindienst et al 2014) with 750 ng of total RNA loaded into each 

gradient resulting in 12-13 fractions per sample. 
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Fingerprinting and pyrotag sequencing of density resolved rRNA  

Bacterial, fungal and protistan rRNA in resolved SIP fractions (fractions 2 to 10 of all 

gradients) were analyzed by T-RFLP fingerprinting (Euringer and Lueders 2008, Glaubitz et 

al 2009, Lueders et al 2004a). Only the glucose and leaf treatments could be analyzed for 

protists, for reasons of capacity and resources. See SI for full methodological detail. Based on 

these rRNA fingerprints (Figs. S7.1, S7.2, S7.3), fractions 3 (‘heavy’) and 8 (‘light’) of the 

12
C and 

13
C SIP gradients from day 8 and 32 were selected and subjected to 454 amplicon 

pyrosequencing (Kleindienst et al 2014, Pilloni et al 2012). Further details are given in the SI. 

All pyrotag sequencing raw data have been deposited with the NCBI sequence read archive 

under SRA accession numbers [to be added in revision] (bacterial 16S) [t.b.a. in revision] 

(protistan 18S) and SRP033337 (fungal 18S).  

 

Calculation of taxon-specific enrichment factors in heavy fractions 

To directly identify taxa involved in the assimilation of 
13

C from amended substrates within 

the different groups (bacteria, fungi, protists), pyrotag ‘enrichment factors’ (EF) in ‘heavy’ 

rRNA fractions were deduced modified after Zumsteg et al. (2013). We calculated enrichment 

factors if the relative abundance of a given taxon in the ‘heavy’ rRNA of the 
13

C treatment 

was > 2 % for at least one treatment and one time point. Only for protozoa, all taxa were 

included in the calculation irrespective of their relative abundance in the heavy fractions. The 

enrichment factors were calculated as follows: 

Enrichment = 
13C

heavy / 
13C

light – 
12C

heavy / 
12C

light, 

where 
13C

heavy and 
13C

light is the relative abundance of reads of a given taxon in sequenced 

heavy and light rRNA fractions from 
13

C treatments, and 
12C

heavy and 
12C

light is the same for 

the respective 
12

C-control treatments. All taxa which showed an enrichment factor > 0.5 

where considered as 
13

C-labeled. In the interpretation of our labeling results, not only these 

enrichment factors, but also total relative rRNA read abundance of given taxa in ‘heavy’ 

rRNA in 
13

C treatments, as well as labeling patterns evident from T-RF abundances linked to 

certain taxa across entire SIP gradients were considered (Figs. S7.1, S7.2, S7.3). 
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Consumer diversity in heavy fractions 

The ‘functional organization’ (Fo) index was calculated for the T-RFs of ‘heavy’ 
13

C-gradient 

fractions as a further measure of the diversity and evenness of labeled bacterial and fungal 

populations. Fo is based on Pareto-Lorenz evenness curves (Marzorati et al 2008), and as in 

Shannon-Wiener diversity H’, community richness and relative abundances of individual taxa 

are considered in Fo. However, rare taxa are less important, as the cumulative relative 

abundance of 20 % of all taxa is derived. This would be 0.2 at perfect evenness. The higher 

the Fo index, the more important the dominating taxa and the less diverse the respective 

community becomes. Fo was calculated and averaged over three ‘heavy’ rRNA fractions per 

13
C-gradient. 

 

Results 

Mineralization of amended substrates and 
13

C-assimilation  

Mineralization of 
13

C-labeled substrates as well as carbon flow into Cmic depended on the 

quality of the added substrate. Approximately two-thirds of added glucose-C and cellulose-C 

were mineralized after 32 days of incubation, but only ~45 and ~12 % of leaf- and root-C 

were mineralized over the same time, respectively (Fig. 7.1). Mineralization of 
12

C and 
13

C 

substrate amendments was not significantly different (F1,14 = 0.004; P = 0.95). At day 2, 

almost 70 % of the CO2 produced originated from glucose in the respective treatments, but 

was diluted down to around 7 % by the end of the experiment (Fig. 7.2A). In contrast, 

mineralization of cellulose and maize leaves peaked at day 8, with 64 and 48 % of substrate-

derived CO2, respectively. In the root treatment, the proportion of substrate-derived CO2 

remained at a constantly low level, between 12 and 17 % throughout the experiment (Fig. 

7.2A). Consistently, resource-derived C incorporated into Cmic was highest for glucose (~40 

%) after only 2 days of incubation (Fig. 7.2B). Assimilation efficiency appeared much lower 

for the other substrates, and substrate-derived C was at a maximum of ~15 % for cellulose on 

day 8, and of ~11 % and ~5 % for leaf and root, respectively, towards the end of the 

experiment (Fig. 7.2B).  

 

90



7 EAT ALL YOU CAN – RESOURCE PARTITIONING BETWEEN BACTERIA, FUNGI AND PROTISTS  

 

 
 

Figure 7.1 Substrate-C mineralized to CO2 after 32 days of soil incubation.  

 

 

 
 

 

Figure 7.2 Time course of substrate derived C in CO2 and Cmic during SIP incubation. 
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Table 7.1 Summary of most important 
13

C-labeled taxa in the detritusphere SIP experiment. 

Treatment  Glucose   Cellulose   Leaf   Root  

Time point 8d  32d 8d  32d 8d  32d 8d  32d 

Bacteria ++ 

++ 

+ 

+ 

+ 

+ 

 

Arthrobacter 

Micrococcaceae 

Flavobacterium  

Pseudomonas  

Oxalobacteraceae  

Humicoccus 

++ 

◄ 

— 

◄ 

+ 

◄ 

 

++ 

++ 

— 

— 

+ 

+ 

+ 

+ 

 

Cellvibrio 

Flavobacterium 

Streptomycetaceae 

Kitasatospora 

Cytophaga 

Mucilaginibacter 

Rugamonas 

Myxobacteria 

► 

► 

◄ 

◄ 

► 

— 

◄ 

◄ 

++ 

++ 

++ 

+ 

+ 

+ 

+ 

— 

 

Cellvibrio 

Flavobacterium 

Mucilaginibacter 

Cytophaga 

Ohtaekwangia 

Streptomycetaceae 

Kitasatospora 

Myxobacteria 

 

◄ 

++ 

— 

► 

◄ 

+ 

+ 

◄ 

 

++ 

++ 

++ 

+ 

+ 

— 

+ 

— 

 

Cellvibrio 

Flavobacterium 

Mucilaginibacter 

Cytophaga 

Ohtaekwangia 

Streptomycetaceae 

Kitasatospora 

Myxobacteria 

 

► 

► 

— 

— 

◄ 

+ 

+ 

◄ 

 
Fungi ++ Cryptococcus ++ ++ 

— 

 

Chaetomium 1 

Geomyces 
— 

◄ 
++ 

+ 

 

Chaetomium 2 

Fusarium 
++ 

◄ 
++ 

— 

— 

 

Chaetomium 2  

Chaetomium 1 

Fusarium 

++ 

◄ 

◄ 

Protists ++ 

 
Pythium 

 
++ 

 
 n.a.  ++ 

++ 

+ 

+ 

+ 

| 

+ 

— 

— 

Pythium 

Vannellidae 

Acanthamoebidae 

Nucleariidae 

Vampyrellidae 

Leptomyxida 

Chrysophyceae 

Chlamydophryidae 

Rhynchomonas 

++ 

— 

◄ 

— 

— 

◄ 

— 

◄ 

◄ 

 n.a.  

* ++ strongly labeled; + labeled; – not labeled or detected; ◄ increasing labeling; ► decreasing labeling; n.a. not analysed 
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rRNA stable isotope probing 

The incorporation of label into substrate-specific subsets of bacteria, fungi and protists was 

evident already via the comparison of T-RFLP fingerprints from 
13

C and 
12

C-control gradients 

(Figs. S7.1, S7.2, S7.3). However, our interpretation of labeling results relies chiefly on 

taxon-specific pyrotag ‘enrichment factors’ (EF). To support this novel approach, almost all 

important labeled T-RFs (Figs. S7.1, S7.2, S7.3) could in fact be linked to pyrotag-defined 

microbial taxa (see SI for details and methodological discussion). A summary of the most 

relevant labeled prokaryotes and microeukaryotes detected in our experiment is given in 

Table 7.1. 

 

Labeled bacterial rRNA  

The different bacterial taxa incorporating 
13

C-label belonged mainly to three bacterial phyla: 

Actinobacteria, Bacteroidetes and Proteobacteria (Fig. 7.3). Amongst the latter, mostly 

Gammaproteobacteria, but also Beta- and Deltaproteobacteria were labeled. At day 8 of 

incubation, reads affiliated with Arthrobacter spp. (T-RFs 61, 71, 159, Fig. S7.1) were 

strongly enriched (EF 31, Fig. 7.3) and most abundant (~40 %, Fig. S7.4) in ‘heavy’ rRNA of 

the glucose treatment. However, also unclassified Micrococcaceae (T-RFs 61, 71), 

Flavobacterium spp. (T-RF 80), unclassified Oxalobacteraceae and Pseudomonas spp. (T-RF 

490) were enriched, albeit at lower read abundances. Interestingly, although most glucose 

mineralization activity was complete after 8 days, a dynamic labeling pattern was still 

observed after 32 days. Here, reads related to Flavobacterium spp. had lost the label; those 

related to unclassified Micrococcaceae, Humicoccus (T-RFs 137, 145) and Pseudomonas spp. 

became more enriched. But Arthrobacter spp. was still the dominant taxon in ‘heavy’ rRNA. 

In the cellulose treatment Cellvibrio- (T-RFs 137, 486, 487, 490) and Flavobacterium-(T-RFs 

79, 80) related reads were most highly enriched (EF 297 & 99) and abundant (40 & 27 %) in 

‘heavy’ rRNA after 8 days. While both were strongly reduced after 32 days, sequences of 

unclassified Streptomycetaceae and Kitasatospora spp. (T-RF 157) became very important in 

labeled rRNA at this later time point. Less enriched and/or abundant taxa were Cytophaga 

spp. after 8 days and Rugamonas spp. after 32 days. 

The highest enrichment in leaf and root treatments was observed for the abundant taxa 

Flavobacterium (T-RFs 79, 80, 84) and Cellvibrio spp. (T-RFs 486, 487, 490), but also in the 

less frequent Mucilaginibacter (T-RF 524) and Cytophaga spp. after 8 days. After 32 days, 
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high enrichment was detected for Cellvibrio, Flavobacterium and Ohtaekwangia spp. (T-RF 

205) in both leaf and root treatments. In contrast to the leaf treatment, Cellvibrio rRNA 

showed a strongly decreased 
13

C-enrichment in the root treatment. Similarly, some of the 

Actinobacteria became more enriched in ‘heavy’ rRNA upon biomass degradation after 32 

days. Interestingly, the unclassified Polyangiaceae (T-RFs 69, 500) as well as other 

Myxobacteria became noticeably more abundant (3 – 17 %) and also enriched (EF 4 – 15) 

with cellulose, leaf and root amendments after 32 days. Only one genus (Ohtaekwangia spp.; 

T-RF 205) appeared exclusively enriched in leaf and root treatments after 32 days, while 

virtually no labeling was observed under glucose or cellulose amendments.  

In essence, the diversity of key taxa labeled during leaf and root decomposition was not 

noticeably larger than with glucose and cellulose (Table 7.1). However, the functional 

organization (Fo) of bacterial rRNA fingerprints in ‘heavy’ fractions showed a clear decrease 

towards the more complex substrates (Table 7.2) suggesting a higher diversity and fewer 

dominant bacterial taxa in rRNA of labeled bacterial consumers of leaves and roots.  

 

Figure 7.3 
13

C-labeled bacterial taxa after 8 and 32 days of incubation. Labeling was inferred 

via comparative pyrotag enrichment in ‘heavy’ vs. ‘light’ rRNA gradient fractions of 
13

C and 
12

C treatments. Only labeled taxa are shown. 
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Table 7.2 Functional organization (Fo) of heavy rRNA fingerprints as a measure of the 

structure of labeled microbial populations.  

 

Time 8 days 32 days 

Treatment Glucose Cellulose Leaf Root Glucose Cellulose Leaf Root 

Bacteria 
0.77  

± 0.01 a 

0.75  

± 0.04 a 

0.68  

± 0.01 b 

0.57  

± 0.03 c 

0.77  

± 0.03 ab 

0.83  

± 0.02 a 

0.61  

± 0.05 c 

0.71  

± 0.06 bc 

Fungi 
0.85  

± 0.03 ab 

0.84  

± 0.09 ab 

0.88  

± 0.02 a 

0.70  

± 0.09 b 

0.64  

± 0.15 b 

0.80  

± 0.10 ab 

0.89  

± 0.03 a 

0.83  

± 0.01 ab 

* Fo was calculated for fingerprints as introduced by (Marzorati et al 2008). Calculations 

were averaged over the ‘heavy’ rRNA fractions 2, 3 and 4 of 
13

C-gradients and are shown ± 

SD. Letters indicate significant differences between the treatments at the respective date 

(Tukey HSD; P < 0.05). 

 

Labeled fungal rRNA  

Labeled fungi were less diverse and showed less pronounced enrichment in ‘heavy’ rRNA 

than bacteria. However, they showed more pronounced preferences for specific substrates. All 

fungal degraders of the added detritusphere substrates belonged to Basidiomycota and 

Ascomycota (Fig. 7.4). A consistent trend of the Fo of ‘heavy’ fungal rRNA fingerprints with 

substrate complexity was not observed (Table 7.2). 

Glucose carbon was mainly assimilated by Cryptococcus spp. (T-RF 564, Fig. S7.2), as 

shown by highly abundant (>50 %) and enriched (EF 7) reads in ‘heavy’ rRNA (Figs. 7.4, 

S7.5). Surprisingly, no other fungi were labeled in the glucose treatment. In turn, 

Cryptococcus yeasts were not labeled in any of the other treatments. Under cellulose 

amendment, enrichment was only observed for Chaetomium-related phylotype 1 (T-RF 708) 

after 8 days (~23 %, EF 9), while Geomyces spp. belonging to the Ascomycota were the only 

labeled fungi after 32 days. In the leaf and root treatments, a second Chaetomium-related 

phylotype (T-RF 708) was enriched and highly abundant after 8 days (39 – 61 %, EF 4). After 

32 days, labeling was additionally observed for Fusarium spp. in both plant biomass 

treatments, as well as for the first Chaetomium phylotype in the root amendment. 
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Figure 7.4 
13

C-labeled fungal and protist taxa after 8 and 32 days of incubation. Labeling was 

inferred via comparative pyrotag enrichment in ‘heavy’ vs. ‘light’ rRNA gradient fractions of 
13

C and 
12

C treatments. Only labeled taxa are shown. 

 

Labeled protist rRNA 

Protists within the Peronosporomycetes (formerly: Oomycetes) related to Pythium spp. (T-

RFs 418, 421, Fig. S7.3) were clearly enriched (EF ~8) and abundant (12 – 18 %) in ‘heavy’ 

rRNA fractions of both treatments investigated for protists (glucose and leaf, Figs. 7.4, S7.5). 

Protozoa rRNA read abundances in the ‘heavy’ rRNA fractions were very low in the glucose 

treatment (in comparison to fungal and Oomycete rRNA which were also detected with the 

used eukaryote primer). Overall, five amoeboid and three flagellate taxa appeared enriched in 

the leaf amendment. After 8 days, enrichment was found in four amoeboid taxa with strongest 

enrichment in the highly abundant Vannellidae (Amoebozoa, T-RF 429, 4.7 %, EF 14) and in 

the less abundant Nucleariidae (Opisthoconta, 0.8 %, EF 7) (Figs. 7.4, S7.5). Labeling of 

Vannellidae and Vampyrellidae disappeared after 32 days, while still detectable in 

Acanthamoebidae (T-RF 484) and Nucleariidae. Leptomyxida (Amoebozoa) were also 

enriched at this later time. Amongst the flagellates, the Chrysophyceae appeared labeled after 
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8 days. This label had disappeared again after 32 days, but increased in Chlamydophryidae 

(T-RF 412), as well as in Rhynchomonas spp.. 

 

Discussion 

The diversity and succession of specific pro- and microeukaryotes actively involved in the 

degradation of detritusphere substrates in an agricultural soil was investigated here. Our 

approach was based on the interpretation of rRNA labeling relying on taxon-specific pyrotag 

abundances in density-resolved gradient fractions, which is an advance of classical gradient 

interpretation based on fingerprinting (Lueders et al 2004b, Lueders et al 2006). A careful 

discussion of this approach can be found in the SI.  

 

Mineralization and assimilation of detritusphere substrates  

Mineralization was not influenced by the isotopic composition of amendments (Fig. 7.1). 

There was no difference in cumulative mineralization between the glucose and cellulose 

treatments, but initial mineralization rates were clearly highest for glucose (Fig. 7.2A). The 

much less efficient mineralization and assimilation of plant biomass amendments (Figs. 7.1, 

7.2) relates directly to the higher complexity of these materials (Bertrand et al 2006, de Boer 

et al 2005). Additionally, roots appeared more resistant to decomposition than leaves, 

possibly due to their lower content of water soluble compounds and their more rigid 

secondary cell wall structures (Bertrand et al 2006). Overall, the observed substrate 

mineralization and assimilation rates indicated an adequate range of substrates chosen to 

address our initial hypotheses.  

 

Bacterial key-players  

The identified actinobacterial glucose consumers (unclassified members of the 

Micrococcaceae and Arthrobacter spp., Fig. 7.3, Table 7.1) have been previously described as 

glucose utilizers in soil (Padmanabhan et al 2003, Schellenberger et al 2010). The high 

abundance of labeled Arthrobacter rRNA in our study indicated a high specific activity. Still, 

respective rRNA enrichment was not as high as for some of the labeled taxa in the other 

treatments, suggesting the simultaneous use of other intrinsic and probably more recalcitrant 

substrates. Therefore, involvement of Arthrobacter spp. in priming effects is likely, as 
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previously proposed for Actinobacteria (Bastian et al 2009, Bernard et al 2007). 

Pseudomonas spp. are well known as opportunistic soil and rhizosphere bacteria (Hartmann et 

al 2009). Surprisingly, this taxon was labeled only under glucose amendment in our study 

(Fig. 7.3, Table 7.1). This is partly in contrast to previous studies, where Pseudomonas spp. 

have been shown to utilize glucose as well as more recalcitrant compounds including lignin 

(Goldfarb et al 2011, Padmanabhan et al 2003).  

The early cellulose degrading community, dominated by Cellvibrio, Flavobacterium and 

Cytophaga spp., shifted to unclassified members of Streptomycetaceae and Kitasatospora 

spp. after 32 days. Members of Bacteroidetes, Cellvibrio and Flavobacterium spp. 

specifically, are known to grow on different sugars and on cellulose (Haichar et al 2007, 

Padmanabhan et al 2003, Schellenberger et al 2010). Although also many Streptomycetes can 

decompose polysaccharides and possess both exo- and endocellulases (Kämpfer 2006), their 

successional involvement as observed here has never been reported. Their capacity to form 

hyphae could potentially be relevant during later stages of decomposition. 

The consistent labeling of most bacterial taxa identified as cellulose decomposers also in the 

plant residue amendments illustrates the importance of cellulose as a substrate for plant litter 

degraders. Ohtaekwangia spp., the only taxon solely labeled in the plant litter treatments, 

seemed to thrive specifically on biomass constituents other than glucose and cellulose. 

Similarly, the higher abundance and stronger label of Mucilaginibacter spp. in the plant 

biomass amendments after 8 days indicated a preferred utilization of other substrates. A clear 

labeling of unclassified members of Polyangiaceae, Sorangium and Byssovorax spp. 

(Deltaproteobacteria) emerged in cellulose, leaf and root treatments after 32 days. These 

Myxobacteria are known as micropredators (Lueders et al 2006, Reichenbach 1999), and 

could have been labeled via feeding on microbial biomass of primary substrate consumers. 

 

Fungal key-players  

Detritusphere fungi showed not only a clear distinction between defined substrate-utilizing 

taxa (glucose and cellulose), but in contrast to bacteria, also between utilizers of defined 

(cellulose) and more complex substrates (leaf and root, Fig. 7.4). Although Zygomycetes, so 

called ‘sugar fungi’ such as Mortierella and Mucor spp., are often considered the most 

important users of low molecular weight carbon sources (de Boer et al 2005), Cryptococcus 

spp. dominated glucose utilization throughout our experiment. This highlights the role of 
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these fast-growing yeasts as important competitors for labile resources in soil. Cryptococcus 

species were also identified as cellulose utilizers in another recent study (Stursova et al 2012), 

but in our experiment, they were labeled only with glucose.  

The dominating early stage cellulose utilizer, Chaetomium-phylotype 1, belongs to a genus 

known to include fast growing fungi (Straatsma et al 1994). However, these were completely 

replaced by Geomyces spp. at the later stage of decomposition. Geomyces spp. can thrive 

under nutrient limitation (Hayes 2012) which could well explain their delayed involvement. 

Both genera have been previously identified as cellulose utilizers in SIP experiments 

(Eichorst and Kuske 2012, Stursova et al 2012). The distinct substrate utilization pattern of 

both labeled Chaetomium phylotypes suggests that these may have different exoenzymatic 

capabilities. Critical enzymes in the degradation of plant biomass are known to be generally 

much less prevalent in bacterial than fungal populations (Romani et al 2006). The generally 

high abundance of Chaetomium-phylotype 2, especially in ‘heavy’ rRNA fractions (Fig. S7.5) 

could indicate that these fungi were of key importance in the release of cellulose from plant 

biomass, thus potentially even making it available for other detritusphere microbes. 

Although Fusarium species are opportunistic plant pathogens, known to be amongst the first 

colonizers of both living and dead plant biomass (Leplat et al 2013), their involvement in the 

degradation of leaf and root amendments became apparent only after 32 days. In our 

experiment, these fungi seemed only of minor importance during the initial attack on maize 

biomass, especially when compared to the aforementioned Chaetomium spp.. 

 

Protist key-players  

The flow of carbon into protists was investigated for the glucose and leaf litter treatments 

only. Because of the large overlaps in labeled bacteria detected in the non-glucose treatments 

(Table 7.1), we are confident that this subset allowed inferring also the most relevant 

distinctions in protist labeling. Although the Peronosporomycetes (formerly Oomycetes) 

morphologically and physiologically resemble fungi, they are classified as heterotrophic 

protists in the taxon Stramenopiles (Adl et al 2005). Peronosporomycetes, such as Pythium 

are important plant pathogens (Hendrix and Campbell 1973), but can also act as pioneer 

saprotrophs on fresh plant residues in soil (Deacon 1997). The high abundance and 
13

C-

enrichment of protists rRNA related to Pythium spp. for both treatments and time points 
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indicated an important role of these protists during decomposition of these substrates. 

Remarkably, no other protists were identified as labeled in the glucose treatment.  

In contrast, clear labeling of heterotrophic protozoan taxa over time indicated a substantial 

flow of carbon from labeled prey into protozoan grazers in the leaf treatment. 
13

C enrichment 

was mainly found in amoeboid protozoa (Fig. 7.4). Acanthamoeba are among the most 

dominant protozoa in soil (Page 1976). Not surprisingly, Acanthamoebidae were one of the 

dominant labeled taxa, especially at the later stage of leaf decomposition, while Vannellidae 

dominated early in the succession (Fig. S7.5). A succession of labeled taxa during leaf 

decomposition was also observed for bacterivorous flagellates, although their rRNA was 

much less abundant. Likely the amoeboid life style was more competitive under the 

conditions in our soil microcosms.  

Remarkably, facultative fungivorous taxa, such as Vampyrellidae (Hess et al 2012) and 

Leptomyxida were also labeled in the leaf treatment. Traditionally, mostly bacterivorous 

protists are considered as relevant in soil food webs (Moore et al 2003, Moore et al 2005, 

Mulder et al 2011), despite fungivorous protozoa are also ubiquitous (Ekelund 1998, Petz et al 

1986). Our study clearly demonstrates a significant carbon flux from litter material to 

fungivorous amoebae.  

 

Substrate complexity and consumer diversity 

We show that substrate complexity and recalcitrance indeed defined the primary consumers. 

However, unexpectedly, we did not observe marked distinctions in key taxa which assimilated 

carbon from leaf and root detritus, in spite of the lower mineralization and assimilation of the 

roots. Although effects of substrate quality (e.g. recalcitrance) on overall microbial 

community structure and diversity in soils have been reported (Nicolardot et al 2007), this 

seems not always the case (Mula-Michel and Williams 2012). In our study, the most 

noticeable distinction between leaf and root treatments was that some of the labeled bacterial 

populations showed a much higher enrichment with root amendment after 8 days, but were 

sometimes less abundant in ‘heavy’ rRNA compared to the leaf treatment (i.e. Cytophaga, 

Mucilaginibacter, Flavobacterium and Cellvibrio spp.). This indicates that these taxa may 

have developed strategies to specifically access recalcitrant substrates, which may be a key 

determinant of bacterial niche partitioning in the detritusphere (Baldrian et al 2013, Goldfarb 

et al 2011). Such patterns were not observed for fungal decomposers. 
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Surprisingly, in view of the considerable microbial diversity present in the investigated soil 

(Dibbern et al 2014), all substrates appeared to be consumed by only a few key players over 

all investigated kingdoms. The early dominance of yeasts and Actinobacteria indicate an 

inter-kingdom competition between fast growing r-strategists for labile substrates. This is in 

line with the hypothesis that despite the high diversity of microbes in soil, only a minority 

dominates decomposition processes (Vandermeer et al 1998). However, such mechanisms 

seem to be less pronounced for more complex substrates, as supported by the lower Fo 

(higher evenness) of labeled bacterial rRNA in leaf and root treatments compared to defined 

substrates (Table 7.2).  

 

Trophic interactions  

The most marked succession of bacterial and fungal key players was observed during 

cellulose decomposition, a substrate of intermediate complexity and recalcitrance. Potentially, 

top-down rather than bottom-up controls of bacteria could have been involved here. This was 

especially apparent in the shifting dominance of Cellvibrio and Flavobacterium to 

Actinobacteria populations in the cellulose, but also leaf and root treatments over time (Table 

7.1, Fig. 7.3). It is well known that the Gram-positive Actinobacteria (dominating glucose 

consumers after 8 days), are far less attractive prey for protozoa than Gram-negatives due to 

their more rigid cell walls and hyphal growth (Jezbera et al 2005). It is conceivable that the 

initial bursts of Cellvibrio and Flavobacterium populations in the cellulose treatment were 

controlled top-down by the diverse amoeboid protozoa labeled in the leaf treatment, providing 

niches for the development of more grazing-resistant actinobacterial cellulose utilizers over 

time. Similarly, the absence of labeled protozoan rRNA in the glucose treatment could well be 

related to Actinobacteria as main utilizers.  

Our labeling results also provide tentative evidence for intra-bacterial predation in the 

detritusphere. As mentioned above, myxobacteria are known for their specialization in 

decomposition of biomacromolecules and complex organic matter (Eichorst and Kuske 2012, 

Reichenbach 1999), but they are also potential micropredators of bacterial populations 

(Lueders et al 2006). Their secondary rRNA labeling in the cellulose and plant treatments 

suggests that they consumed biomass of primary detritusphere bacteria in parallel to 

protozoan predators.  
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Conclusions and outlook  

In this detritusphere SIP experiment of an agricultural soil, bacteria, fungi, and also protists 

were identified as primary consumers of all amendments, irrespective of substrate complexity 

or recalcitrance. Therefore, the notion of distinct detritusphere energy channels in soil (de 

Boer et al 2005, Moore and William Hunt 1988, Paterson et al 2008) appears to be an 

oversimplification not supported by our data. In contrast, our results support an ‘eat all you 

can’ perspective of the simultaneous activity and overlapping substrate usage patterns of 

bacteria, fungi and protists in the detritusphere, irrespective of resource quality. Further, this 

study provides an unprecedented level of detail on the microorganisms involved in 

detritusphere carbon flow in an agricultural soil. Distinct bacterivorous and fungivorous 

protozoan key players were identified as labeled. Although taxonomic detail on fungal 

feeding protozoa in soil exists, this is the first direct demonstration of their importance in a 

plant litter based microbial food web.  

It may not be possible to generalize the findings of this SIP study conducted for just one 

specific agricultural soil. Moreover, our methodological approach does not allow for clear 

quantitative statements on the involvement of the identified taxa in detritusphere carbon flow. 

Nevertheless, we believe that this work may well be of use to improve current modelling 

concepts for litter decomposition in soil. More specific, functionally and trophically defined 

microbial components may indeed be vital to improve current ecosystem models to more 

accurately predict feedbacks of e.g. changing temperatures or hydrological regime on carbon 

cycling (Bradford 2013, McGuire and Treseder 2010, Moore et al 2005, van der Wal et al 

2013). Here, the direct linking of key microbial populations to globally relevant 

decomposition processes is still a major challenge (Trivedi et al 2013).  
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 Supporting Information (SI) 

 

Supplementary Materials and Methods 

Setup of microcosm experiment 

The soil was sieved (< 2 mm), stored at 4 °C for a few days and water holding capacity was 

determined. Two weeks before the start of the SIP experiment, soil was pre-incubated at the 

experimental temperature of 12 °C. Soil water content was gravimetrically determined two 

days before the start of the experiment. Soil moisture content was adjusted to 60 % of the 

water holding capacity. Soil bulk density was set at 1.4 g cm
-3

. During incubation, 

microcosms were weighed repeatedly to control water content. No significant decrease in soil 

water content was observed, adjustment was not necessary. The amended maize leaf (C/N: 

13
C of 82, 

12
C of 54) and root (C/N: 

13
C of 50, 

12
C of 37) material was milled (< 1 mm) by the 

supplier. Microcosms were destructively sampled, the soil was homogenized and subsamples 

were stored at -80 °C for RNA extraction, and at -24 °C for all other analyses. 

 

CO2 production and microbial biomass C 

CO2 production was determined by titration over the entire incubation time in increasing time 

distances between measurements (Marhan et al 2008). CO2 was trapped in 1 M NaOH and 

precipitated with 0.5 M BaCl2. The remaining NaOH was titrated with 0.1 M HCl with 

phenolphthalein indicator (Marhan et al 2008). After sampling for titration, lids of the 

microcosms were left open to allow gas exchange. Another part of the precipitated BaCO3 

was used for δ
13

C determination of the evolved CO2 (only in the 
12

C treatments). 

Microbial biomass C (Cmic) was determined by chloroform-fumigation extraction (Vance et al 

1987). 3 g (fresh weight) of homogenized soil was extracted with 0.025 M K2SO4 [1:4 soil 

solution ratio (w/v)], shaken for 30 min at 250 rev min
-1

 on a horizontal shaker and 

centrifuged for 30 min at 4,422 x g. Parallel subsamples were fumigated with ethanol-free 

chloroform in a desiccator for 24 h before extraction. Organic C in the supernatants was 

measured with a DOC / TN-analyser (Dimatoc 100, Dimatec, Essen, Germany). 
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δ
13

C determination of CO2 and the microbial biomass 

For δ
13

C determination in evolved CO2, precipitated BaCO3 was washed with 10 ml deionised 

H2O and centrifuged at 250 x g, after which the supernatant was discarded. This was repeated 

three times until all residual NaOH was removed. Pellets of BaCO3 were then dried at 60 °C 

for two days and 0.3 – 0.6 mg was weighed into tin capsules. For analysis of δ
13

C in Cmic 

(Marhan et al 2010, only in 
12

C treatments), 10 ml aliquots of the supernatants of both non-

fumigated and fumigated samples were dried in a rotary vacuum evaporator (RVC 2-25, 

Martin Christ, Osterode am Harz, Germany) at 60 °C. The remnant was ground and weighed 

into tin capsules within a range of 7 – 30 mg (minimum of 10 µg C per capsule). For 

calculation of the δ
13

C of Cmic, the following equation was used: 

δ
13

Cmic = (cnf × δnf – cf × δf) / (cnf – cf), 

whereas cnf and cf are the corresponding extracted organic C content (µg C g
-1

soil) of the non-

fumigated and the fumigated sample, and δnf and δf are the corresponding δ
13

C values. 

δ
13

C measurements were done with an elemental analyzer (Euro EA 3000, EuroVector, 

Milan, Italy) coupled with an isotope ratio mass spectrometer (IRMS, Delta Plus XP, Thermo 

Finnigan MAT, Bremen, Germany). Glutamic acid USGS-40 (IAEA, Vienna; δ
13

C -26.39 ± 

0.04 ‰) was used as reference material for calibration of CO2 reference gas. Acetanilide 

(C8H9NO, Merck, Darmstadt) was used as a secondary laboratory reference material for 

internal calibration. δ
13

C values are expressed relative to Vienna Pee Dee belemnite (V-PDB). 

For calculation of the relative amounts of substrate derived C in CO2 and Cmic the following 

mixing model was used: 

% C-substrate = (δsample - δreference) / (δsubstrate - δsoil), 

where δsample is the δ
13

C value of the respective sample, and δreference is the δ
13

C mean value of 

control samples (soil without substrate amendment). δsubstrate is the δ
13

C value of the respective 

amended material, and δsoil the δ
13

C value of the Corg at the beginning of the experiment.  

 

RNA extraction 

Total nucleic acids were extracted from the soil following a previously described procedure 

(Lueders et al 2004a) with minor modifications: 0.4 g (fresh weight) of soil were used and 

bead beating was done in the presence of sodium phosphate, sodium dodecyl sulphate and 

phenol-chloroform-isoamyl alcohol (25:24:1, pH 8). All centrifugation steps were conducted 
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at 20,000 x g and 4 °C for 5 min. Extracted total NAs were dissolved in 80 µl EB buffer 

(Qiagen GmbH, Hilden, Germany). Silica gel columns (DyeEx 2.0 Spin Kit; Qiagen) were 

used for further purification and elimination of humics. DNA was removed by digestion with 

DNAse I (Promega, Madison, WI, USA) following manufacturer protocols. Afterwards, RNA 

was precipitated with 2 vol. PEG solution (30 % (w/v) polyethylene glycol 6000, 1.6 mM 

NaCl) and centrifugation for 30 min at 4 °C and 20,000 x g. RNA pellets were washed once 

with ice cold 70 % (v/v) ethanol, air-dried and dissolved in 50 µl EB Buffer. The resulting 

RNA was quantified using the RiboGreen quantification kit (Life Technologies, Carlsbad, 

CA). 

 

Quantitative gradient analyses 

After fractionation and precipitation of density-resolved rRNA, bacterial, fungal and protist 

rRNA (the latter only for selected samples) was quantified in gradient fractions via RT-qPCR 

as described in Glaubitz et al. (2009). The initial screening revealed a 
13

C-dependent increase 

of bacterial and microeukaryotic rRNA in ‘heavy’ fractions (data not shown). The buoyant 

density of the bulk rRNA peak remained unchanged in ‘light’ fractions (~1.78 – 1.79 g/ml 

CsTFA), indicating that only specific subsets of soil microbiota were actively involved in the 

utilization of the labeled detritusphere substrates. 

 

Terminal restriction fragment length polymorphism (T-RFLP) fingerprinting  

Bacterial, fungal and protistan rRNA populations in resolved SIP fractions were analyzed by 

T-RFLP fingerprinting. See Table S1 for a summary of all utilized PCR assays. Bacterial 

communities were analyzed with primers Ba27f-FAM / 907r and subsequent MspI digestion 

as previously described (Pilloni et al 2011). Protistan communities were characterized with 

primers Euk20f-FAM / Euk519r and Bsh1236I digestion, in a minor modification of the assay 

originally published by Euringer and Lueders (2008). Reverse transcription of eukaryotic 

rRNA and PCR amplification was done with the Brilliant III Ultra-Fast SYBR Green one-step 

RT-qPCR Master Mix (Agilent Technologies Inc., Santa Clara, California) as specified by the 

manufacturer with 0.3 µl of each primer and 2 µl of RNA template. For both bacterial and 

protistan amplicons, digests were purified and separated by capillary electrophoresis (Pilloni 

et al 2011).  
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Fungal communities were characterized with primers nu-SSU-0817-5’- FAM / nu-SSU-1536-

3’ (Borneman and Hartin 2000) and MspI digestion after (Edel-Hermann et al 2008). First-

strand cDNA was prepared using the RevertAid Premium First Strand cDNA Synthesis kit 

and provided random hexamer primers (Thermo Scientific, St. Leon-Rot, Germany). PCR 

was performed in 40 µl reaction mixtures containing 20 µl 2x GoTaq Green Master mix 

(Promega, Madison, WI, USA), 20 µM of each primer and 3 µl template cDNA. PCR 

products were purified using 5Prime PCRExtract Mini Kit (5PRIME, Inc., Bucksfield Road, 

Gaithersburg, USA) followed by MspI (Thermo Scientific, St. Leon-Rot, Germany) digestion 

of 80 ng PCR product for two hours according to the manufacturer’s protocol. After 

purification of the reaction mixture by ethanol precipitation, fungal communities were 

analyzed on a ABI 3730xl capillary electrophoresis sequencer (Applied Biosystems, Foster 

City, CA, USA) as described previously (Scharroba et al). 

Bacterial and protistan raw T-RFLP data were further processed with the T-REX online 

software (Culman et al 2009). Background noise filtering (Abdo et al 2006) was on default 

factor 1 for peak heights and the clustering threshold for aligning peaks across the samples 

was set to 1 using the default alignment method of T-Align (Smith et al 2005). Relative T-RF 

abundance was inferred from peak heights. For reduction of data complexity, T-RFs that 

occurred in less than 5 % of the samples were excluded from further analysis. Fungal T-RFLP 

data with all peaks above a threshold of 100 fluorescence units were binned and normalized 

with an automatic binning script (Ramette 2009) using R version 2.12.2 (R Development 

CoreTeam 2012). The binning frame with highest correlation values between samples and a 

window size of two was chosen. Peaks with a relative abundance below 0.1 % were discarded 

as background noise. 

 

Amplicon sequencing 

Bacterial pyrotags were generated as reported previously (Pilloni et al 2012), adapting the 

workflow to rRNA templates instead of DNA. Shortly, RT-PCR was done under identical 

conditions as for fingerprinting, applying amplicon fusion primers with respective primer A 

or B adapters, key sequence and multiplex identifiers (MID) as reported (Pilloni et al 2012). 

Amplicons were purified and pooled in equimolar 10
9
 µl

-1
 concentration, and emulsion PCR, 

emulsion breaking and sequencing were performed as previously described in detail (Pilloni 

et al 2012) following manufacturer protocols using a 454 GS FLX pyrosequencer using 
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Titanium chemistry (Roche, Penzberg, Germany). Bidirectional reads were quality-trimmed 

and filtered as previously described (Pilloni et al 2012), and reads shorter than 250 bp after 

trimming were excluded from further analysis. Classification of bacterial taxa was done with 

the RDP classifier (Wang et al 2007).  

Protistan pyrotags were only generated for the glucose and leaf treatments, same as for 

fingerprints. Amplicon preparation for protists was done as for bacteria but with modified 

PCR conditions (Table S7.1) and with the same Brilliant III Ultra-Fast RT-qPCR Master Mix 

(Agilent Technologies, Santa Clara, USA) as used for respective T-RFLP fingerprinting. 

Quality-trimming and filtering was the same as for bacterial pyrotags. 18S rRNA amplicon 

sequences were taxonomically analyzed with the CREST toolbox (Lanzén et al 2012). In 

brief, the amplicons were taxonomically assigned by MEGAN analysis of BLASTN files 

against the SilvaMod SSU rRNA reference database (LCA parameters: min. bit score 330, 

min. support 1, top percent 2; 50 best blast hits).  

For the linking of T-RF and pyrotag data, matching sequences from bidirectional amplicon 

pools were assembled into contigs with the SEQMAN II software (DNAStar) using assembly 

thresholds of at least 97 % sequence similarity over a 50 bp match window for T-RF 

prediction (Pilloni et al 2012). Only contigs containing at least one forward and one reverse 

read were used to predict in-silico-T-RFs for dominating consensus phylotypes using TRiFLe 

(Junier et al 2008). 

For sequencing of fungal rRNA, pyrotags were amplified as described for the fungal T-RFLP 

analyses, except of using the unlabeled forward primer nu-SSU-0817-5’ combined with the 

fusion primer B (modified after Becklin et al. (2012). MID barcodes were inserted between 

the A primer and primer nu-SSU-1536-3’ to allow post-sequencing sample identification. 

PCR products were purified from agarose gels using the QIAquick Gel Extraction kit 

(Qiagen, Valencia, CA, USA). The clean amplicons were quantified using the Quant-IT 

PicoGreen dsDNA Reagent kit (Life Technologies GmbH, Darmstadt, Germany), diluted to 

10
9
 molecules /µl and equimolarly pooled into an amplicon library following manufacturer 

protocols (Roche, Penzberg, Germany). The fungal pyrotags were sequenced in one 1/4
th

 plate 

using GS-FLX+ sequencer (Roche, Penzberg, Germany). The pyrosequences were processed 

and quality filtered using mothur (Schloss et al 2009). Barcodes and primers were trimmed 

and sequences were extracted based on 100% barcode similarity, an average quality score of 

20, read length of 300 bp after trimming of the last 30 bp and homo-polymers of 8 bases. The 

chimera check command ‘uchime’ with ‘template self’ was used to detect potentially chimeric 
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sequences and remove them from the dataset. Sequences were then clustered to operational 

taxonomic units (OTUs) using ‘cd-hit-est’ with a threshold of 97 % pairwise identity. 

Representative sequences in the respective clusters, were extracted and taxonomically 

assigned according to the arb silva eukaryotic taxonomy using the ‘classify seqs’ command of 

mothur with 80 % cutoff. The taxonomic position of the dominant fungal OTUs was manually 

verified using the NCBI blast database. Fungal in-vitro T-RFs were generated based on full 

length clone library sequences done for ‘heavy’ fraction 3 with the software TRiFLe (Junier et 

al 2008). 

 

Statistical Analysis 

Cumulative CO2 in 
12

C and 
13

C treatments and functional organization of bacteria and fungi 

after 8 and 32 days was analyzed by One-way ANOVA. Best fitted transformation 

(cumulative CO2: root transformation) was used to improve homogeneity of variance 

(determined by Levene’s test). Post hoc test (Tukey HSD) was used for comparison of means 

of the functional organization between treatments. Statistical analyses were done with the 

software STATISTICA 6.0 (Tulsa, OK, USA). 

 

Table S7.1 Primer pairs and PCR conditions used in this study. 

Group Primers PCR conditions 

Bacteria Ba27f   (5’-3’) 

   AGA GTT TGA TCM TGG CTC AG 

Ba907r   (5’-3’) 

   CCG TCA ATT CCT TTG AGT TT 

Reverse transcription:  

30 min 45°C 

 

PCR: 5 min 95 °C; 13-25 cycles [30 sec 

95°C / 30 sec 52°C / 1 min 68°C]; 5 min 

68°C 

Protists Euk20f (5’-3’) 

   TGC CAG TAG TCA TAT GCT TGT 

Euk519r   (5’-3’) 

   ACC AGA CTT GYC CTC CAA T 

Reverse transcription:  

20 min 45°C 

PCR: 5 min 94°C; 25 cycles [30 sec 94°C / 

30 sec 52°C / 1 min 70°C]; 5 min 70°C 

Fungi Random hexamers 

 

nu-SSU-0817-5’-FAM 

TTAGCATGGAATAATRRAATAGGA 

nu-SSU-1536-3’ 

ATTGCAATGCYCTATCCCCA 

Reverse transcription: 

10 min 25°C, 30 min 60°C, 5 min 80°C  

PCR: 2 min 94°C, 35 cycles [45 sec 94°C / 

45 sec 51°C / 1 min  72°C]; 10 min 72°C  
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Supplementary Methodological Discussion 

Our approach involves the interpretation of rRNA labeling via taxon-specific pyrotag 

abundances in density-resolved gradient fractions. This is an advance of classical gradient 

interpretation based on fingerprinting (Lueders et al 2004b, Lueders et al 2006) in line T-RF 

‘subtraction values’ in ‘heavy’ vs. ‘light’ rRNA fractions recently introduced by Zumsteg et 

al. (2013). A cautionary discussion of this methodological approach is to be found here.  

Most of the pitfalls questioning the reproducibility and semi-quantitative rigor of 

pyrosequencing libraries reported to date concern less abundant taxa and rare OTUs, and the 

reliability at which they can be recovered (Gihring et al 2012, Lee et al 2012, Pinto and 

Raskin 2012). We have recently reported a strong reproducibility of OTU abundances across 

biologically replicated pyrotag libraries for the employed bacterial pyrotag sequencing 

approach, and shown that relative read abundances can be semi-quantitatively meaningful for 

templates with abundances between 0.2% and 20% (Pilloni et al 2012). Our identification of 

labeled detritusphere microbes in this study relied on taxa with read abundances well within 

that range, thus we are confident that our approach for inferring taxon-specific rRNA 

enrichment factors provides robust information. Since fingerprinting of gradient fractions is a 

well-established tool to infer labeling in SIP, we chose to combine both, T-RFLP 

fingerprinting and pyrotag sequencing of fractions. The fact that we could actually link most 

of the important labeled taxa to T-RFs consistently enriched in heavy rRNA (Figs. S7.1 to 

S7.3) increases the confidence in our conclusions. Nevertheless, we want to caution that 

replicate SIP gradients and also pyrotag libraries were not analyzed in this study. SIP is, after 

all, not a quantitative but a qualitative method to identify microbes involved in a given carbon 

flow, at best providing some cautious information on comparative labeling intensity.  

In contrast to bacterial pyrotag sequencing, the sequencing and interpretation of fungal and 

especially protistan pyrotag libraries is still not routine. In that respect our study represents an 

advance. Because of the rRNA-SIP approach, we used 18S rRNA markers for fungal 

community analysis, instead of the much more frequently used ITS sequencing. The primers 

used here have been successfully applied to characterize fungal communities in soils using T-

RFLP fingerprints (Edel-Hermann et al 2009, Zumsteg et al 2012), Sanger sequencing (Chen 

et al 2012, Jumpponen 2003, Jumpponen 2011) as well as pyrosequencing (Arfi et al 2012, 

Becklin et al 2012). For protists, we are in fact introducing a new bidirectional pyrotag 

sequencing approach here, based on primers previously optimized for protistan T-RFLP 

fingerprinting in subsurface environments (Euringer and Lueders 2008). These were utilized 
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and analyzed analogously to our bacterial pyrotag pipeline. Therefore, in summary, we are 

confident that our general approach of inferring taxon-specific 
13

C-labeling via comparative 

pyrotag enrichment in SIP gradients is sufficiently robust to support our conclusions and, 

backed up by ‘classical’ T-RF-based gradient analyses (Figs. S7.1 – S7.3), a consistent further 

development of well-established SIP gradient evaluation criteria (Whiteley et al 2006). 
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Supplementary Figures 

 

 
Figure S7.1 Bar plots of bacterial 16S rRNA T-RFLP fingerprints from SIP gradients. 

Arrows indicate ‘heavy’ to ‘light’ fractions 2 to 10 of rRNA gradients from the 
12

C and 
13

C 

treatments. Selected relevant T-RFs identified to represent labeled taxa and mentioned in the 

text are highlighted by numbers [fragment length in bp]. Relative abundance of all T-RFs is 

100 %. 
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Figure S7.2 Bar plots of fungal 18S rRNA T-RFLP fingerprints from SIP gradients. Arrows 

indicate ‘heavy’ to ‘light’ fractions 2 to 10 of rRNA gradients from the 
12

C and 
13

C 

treatments. Selected relevant T-RFs identified to represent labeled taxa and mentioned in the 

text are highlighted by numbers [fragment length in bp]. Relative abundance of all T-RFs is 

100 %. 
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Figure S7.3 Bar plots of protist 18S rRNA T-RFLP fingerprints from SIP gradients. Arrows 

indicate ‘heavy’ to ‘light’ fractions 2 to 10 of rRNA gradients from the 
12

C and 
13

C 

treatments. Selected relevant T-RFs identified to represent labeled taxa and mentioned in the 

text are highlighted by numbers [fragment length in bp]. Relative abundance of all T-RFs is 

100 %. 
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Figure S7.4 Relative abundance of 
13

C-labeled bacterial taxa in ‘heavy’ rRNA after 8 and 32 

days of incubation. Only labeled taxa as identified in Fig. 7.3 are shown. 

 

 
 

Figure S7.5 Relative abundance of 
13

C-labeled fungal and protistan taxa in ‘heavy’ rRNA 

after 8 and 32 days of incubation. Only labeled taxa as identified in Fig. 7.4 are shown. 
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8 General Conclusions and final remarks 

8.1 Substrate availability and its influence on abundance and function of 

microorganisms 

Substrate availability changed with season, crop type, litter amendment and depth. Seasonal 

variability had a strong influence on microbial PLFA abundances and their enzyme activities 

in top- as well as in subsoil. This was likely due to climatic factors (temperature, moisture) 

and management (crop growth, litter amendment) and the corresponding changes in substrate 

availability. In winter especially, the relatively high abundances of bacterial and fungal 

PLFAs and enzyme activities in each soil layer irrespective of treatment indicated enhanced 

substrate availability. A release of resources due to climatic conditions (e.g. dead microbial 

cells, breakup of aggregates by freezing and thawing) in topsoil and transport of resources 

into deeper soil layers due to enhanced flow conditions after rain or thawing could have been 

the reason for this. The higher root biomass of wheat and therefore likely also higher 

rhizodeposition in comparison to maize enhanced the availability of resources in the wheat 

plots, which was also indicated by increased EOC. This resulted in increased bacterial and 

fungal PLFA abundances in wheat in comparison to maize cultivated plots to the bottom of 

the rooted layer (40-50 cm). However, higher enzyme activities in wheat than in maize 

cultivated plots were measured mainly in the 40-50 cm depth. The increased substrate 

availability due to litter amendment was observed only in the topsoil, indicating that litter-

induced substrate availability played no role in deeper soil layers. Abundances of both 

bacterial and fungal PLFAs as well as enzyme activities remained elevated for nearly one year 

until the next litter application. At depth, bacterial and fungal PLFAs and hydrolytic enzyme 

activities decreased due to declining substrate availability in deeper soil layers. The depth 

distribution of oxidative enzyme activities, discussed below, showed a different pattern and 

could not be linked to substrate availability alone.  

Although both bacteria and fungi profited from enhanced substrate availability in the topsoil 

(higher abundances of both in wheat and litter amended plots), fungi generally incorporated 

higher relative amounts of substrate C than did the total microbial biomass. This indicates that 

an increase in the abundance of microorganisms is not necessarily linked to their C 

assimilation efficiency of the respective resource. 
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8.2 Substrate quality and C assimilation by microorganisms 

Substrate quality of rhizodeposits, aboveground litter and root litter differ. It was expected 

that high quality and more labile substrates (rhizodeposits) are used mostly by bacteria and 

that substrates of lower quality and higher recalcitrance (aboveground litter, root litter) are 

preferentially used by fungi. 

We found that both bacteria and fungi assimilated C from substrates of different qualities. 

Surprisingly, irrespective of resource quality, fungi incorporated higher relative C amounts 

than the total microbial biomass at the field site. And although we did not measure the 

incorporation of C into bacteria directly, this indicates that bacteria, similar to fungi, 

assimilated root derived C as well as aboveground litter derived C, but to a lesser extent than 

fungi. This shows the high efficiency of fungi in assimilating resource C and supports the 

cited literature claims that fungal biomass contains more C and that fungi therefore have 

higher C needs in comparison to bacteria. But longer turnover times of fungi than of bacteria 

and / or a higher grazing pressure on bacteria could have contributed as well to our findings. 

Further studies that include higher trophic levels would help to quantify the C flow from 

bacteria and fungi and could help clarify the high accumulation of C in fungal biomass. 

Another surprise was that although root derived C was calculated as five times less than shoot 

litter derived C, both relative and absolute incorporated C amounts in the different soil pools 

were the same. This shows that root derived compounds were more strongly sequestered than 

aboveground litter derived C not only in SOM (Rasse et al. 2005) but also in microorganisms, 

supporting the findings of Puget & Drinkwater (2001). 

In the NA-SIP microcosm experiment, bacteria, fungi and additionally Peronosporomycetes 

were involved in the degradation of all amended substrates irrespective of substrate 

recalcitrance and complexity. Although microbial diversity in the soil was high, we found that 

only a few key taxa contributed significantly to the degradation of the respective substrates. 

Among both bacteria and fungi, taxa that assimilated glucose differed from taxa which used 

the more complex and recalcitrant substrates. Surprisingly, although mineralization and 

assimilation of roots was lower than of leaves, indicating the different quality of the plant 

materials, we did not observe different key users. This suggests that the quality of complex 

substrates affects the decomposition rate but not the main degrading taxa, at least during early 

stages of decomposition. 
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Both, bacterivore and fungivore protozoa assimilated substrate derived C but the change in 

the user community of the bacterial community was more evident than of the fungal user 

community; it seems therefore that grazing affected the competitive ability of bacteria more 

than of fungi. The delayed enrichment in myxobacteria, which are known for feeding on 

bacterial biomass, indicated additional intra-bacterial grazing. 

Since NA-SIP is a qualitative rather than a quantitative method, it is not possible to conclude 

which group, bacteria or fungi, incorporated higher amounts of the respective plant litter 

materials or if bacterivore or fungivore protozoa assimilated higher amounts of bacterial or 

fungal derived C. 

 

8.3 Depth related effects on microorganisms and their function 

Lower microbial abundances and hydrolytic enzyme activities at depth were explained by 

lower substrate availability. Interestingly, this did not hold true for oxidative enzymes, which 

showed either no depth gradient or even increased activity at depth. It is possible that because 

oxidative enzymes are mostly located on mineral surfaces, they were more strongly stabilized 

in deeper soil in comparison to hydrolytic enzymes which are mainly bound on particulate 

organic matter (POM). But if these stabilized enzymes were active in situ is uncertain. 

Although different distribution patterns of hydrolytic and oxidative enzyme activities were 

observed with depth, the specific enzyme activities (enzyme activity per microbial biomass) 

of hydrolytic as well as oxidative enzymes increased in deeper soil layers. This indicated that 

in subsoil, either stabilization and / or production or efficiency of enzymes differs. Conditions 

such as greater interactions of enzymes and substrates with minerals or lower substrate 

availability, which could lead to greater spatial separation between microbes and substrates, 

would necessitate higher production or efficiency of enzymes. A microbial community shift at 

depth [shown by T-RFLP analyses in another study of this field experiment (Scharroba et al. 

2013)] could indicate that taxa able to produce higher amounts or more efficient enzymes 

were present in deeper soil layers. 

 

8.4 Final remarks 

This thesis illustrates the value of stable isotope probing and demonstrates that abundance or 

diversity data alone do not suffice to explain decomposition processes or to identify 

microorganisms involved in a particular process. Although we detected high microbial 
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diversity in the soil, we identified only a few key players in every group (bacteria, fungi, 

Peronosporomycetes) involved in the degradation of the substrates. 

We showed that both bacteria and fungi assimilate labile (such as exudates, glucose) as well 

as more recalcitrant (aboveground litter, roots) resources. Further, fungi are very important in 

decomposition of resources, as indicated by the high enrichment in the fungal biomass. The 

importance of fungi is generally assumed in forest and no-tillage agricultural sites. We 

demonstrated that also in agricultural sites with reduced tillage they are very efficient in 

assimilating resources of different qualities. Furthermore, due to their high enrichment, fungi 

could have a higher C sequestration potential based on their biomass alone than bacteria. 

However, since the methods we used are only adequate for relative rather than absolute 

comparisons of bacterial and fungal biomass, it was not possible to relate the absolute 

amounts of accumulated C by bacteria and fungi. In addition to availability and quality of 

resources, factors which are highly important in the topsoil, stabilization and spatial 

separation must be taken into account when considering decomposition processes in the 

subsoil. 
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