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Summary 

Local dairy breeds, such as German Angler, usually have small population sizes and thus a 

reduced genetic gain, compared to high-yielding breeds. Especially since genomic selection is 

widely used in the latter, the performance gap between local breeds and high-yielding breeds 

increased further, as it requires large reference populations in order to achieve accurate 

estimated breeding values. As a result, many farmers switched to high-yielding breeds. On the 

other hand, to increase the performance of local breeds the introgression of high-yielding 

breeds was a common strategy in the past, which resulted in high amounts of foreign genetic 

material in many of them. Much of the original genetic background got lost, however, they do 

not achieve the same performance level as high-yielding breeds. Local breeds are therefore 

faced with the risk of two types of extinction, i.e. a numerical extinction due to the small and 

decreasing numbers of breeding animals, and a genetic extinction due to massive 

introgression from high-yielding breeds.  

To promote local dairy breeds, the implementation of a genomic rotational crossbreeding 

scheme can be a promising strategy. Local breeds can benefit from a genomic rotational 

crossbreeding scheme with a high-yielding breed due to 1) an enlarged reference population 

including both the local breed and crossbred animals, and 2) the increased performance level 

of crossbred animals. On the other hand, crossbreeding is particularly known to improve 

functional traits by the exploitation of heterosis. Thus, it appears to be an appealling option for 

high-yielding breeds, as well, as they tend to struggle with fitness related problems.  

This thesis aimed to develop genomic methods for numerically small local dairy breeds in 

crossbreeding schemes in order to improve their genetic gain, genetic uniqueness, and their 

ability to compete with high-yielding breeds. 

In Chapter 2 a review study conducted a comparison of different genomic models which are 

suitable for crossbred data. Different additive models (such as the parental model, a model 

with breed-specific allele effects, and a single step model) and dominance models, which were 

either line-dependent, line-independent or included imprinting were discussed. It was 

concluded that the model choice needs to be made based on desired accuracies, 

computational possibilities, and data availability. In general, dominance models showed to 

result in higher accuracies compared to additive models. 

A breed of origin of alleles model approach was introduced in Chapter 3, which assumes 

different SNP effects for different origins of haplotypes. This model is suitable for the multi-

breed genomic prediction of breeding values of numerically small breeds (i.e. German Angler) 

that have experienced introgression from high-yielding breeds in the past. The breed of origin 
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of alleles model approach tended to be advantageous for Angler over multi-breed and within-

breed genomic predictions with GBLUP. 

Chapter 4 contains a simulation study about the implementation of a rotational crossbreeding 

scheme including German Angler x German Holstein, while introducing genomic selection in 

Angler. Different sizes and structures of growing reference populations and selection goals of 

Angler were examined. The results showed that crossbred animals had a small overall 

superiority to both Holstein and Angler populations. In addition, a reference population 

containing both Angler and crossbred animals, in combination with a selection based on the 

purebred performance of Angler, gave the highest response to selection in the purebred Angler 

population and in the crossbred population. The difference between selection methods for 

Angler individuals could only be observed in the long term, as the purebred-crossbred 

correlations decreased. 

In Chapter 5 a simulation study on rotational crossbreeding was performed including different 

Optimum Contribution Selection methods, in order to realize genetic gain while regaining the 

original genetic background of Angler. Different constraints regarding mean kinships, native 

kinships, and migrant contributions from Holstein were applied to investigate their effects on 

Angler, crossbred, and Holstein populations. Constraining the amount of migrant contribution 

in Angler increased their genetic uniqueness. However, it led to a notable reduction of genetic 

gain and thus a reduced superiority of the crossbred animals. The slowed rate of genetic gain 

and thus the large difference of the performance between the parental breeds could not be 

compensated by heterosis effects.  

In Chapter 6 the thesis ends with a general discussion about further genomic models for 

crossbreeding, and the practical relevance of crossbreeding in dairy cattle. 
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Zusammenfassung  

Lokale Milchviehrassen, wie z.B. die Deutschen Angler, haben weitgehend kleine 

Populationsgrößen und einen entsprechend langsameren Zuchtfortschritt als 

Hochleistungsrassen. Durch den Einzug der genomischen Selektion in den 

Hochleistungsrassen  wurde dieser Trend noch verstärkt, da sie eine große Tieranzahl in der 

Referenzpopulation voraussetzt um genaue Zuchtwerte schätzen zu können. Der Unterschied 

zwischen den Leistungen lokaler Rassen und Hochleistungsrassen wurde somit weiter 

vergrößert. Als Resultat wechselten viele Züchter von lokalen Milchviehrassen zu 

Hochleistungsrassen. Gleichzeitig war in der Vergangenheit die Einkreuzung von 

Hochleistungsrassen in lokale Rassen eine populäre Strategie um deren Zuchtfortschritt zu 

verbessern. Sie zeigen daher heute zum Teil einen hohen Fremdgenanteil – dennoch können 

sie nicht mit dem Leistungsniveau von Hochleistungsrassen mithalten. Lokale Milchviehrassen 

sind daher durch zwei Arten des Aussterbens bedroht: einerseits zahlenmäßig durch die 

immer geringer werdende Anzahl an (Zucht)tieren, und andererseits genetisch, durch die 

massive Einkreuzung von  Hochleistungsrassen.  

Um lokale Rassen zu fördern kann die Implementierung eines Rotationkreuzungsprogrammes 

von Nutzen sein, insbesondere wenn zeitgleich die genomische Selektion eingeführt wird. 

Lokale Rassen können so zum einen von der großen, gemeinsamen Referenzpopulation mit 

den Kreuzungstieren profitieren, und zum anderen von der Leistungssteigerung durch die 

Kreuzungstiere. Daneben ist die Kreuzungszucht, durch die Ausnutzung von 

Heterosiseffekten, insbesondere bei der Verbesserung von funktionalen Merkmalen von 

Bedeutung. Sie kann dadurch ebenfalls für Züchter von Hochleistungsrassen, die zu 

Fitnessproblemen neigen, eine attraktive Option sein um ihre Herde zu verbessern.  

Das Ziel der Arbeit war es, genomische Methoden für lokale Milchviehrassen mit kleinen 

Populationsgrößen in Kreuzungszuchtprogrammen zu entwickeln, um ihren Zuchtfortschritt, 

ihre genetische Eigenständigkeit  und ihre Wettbewerbsfähigkeit zu steigern. 

In Kapitel 2 wurden in einem Review Artikel verschiedene genomische Modelle für die 

Zuchtwertschätzung in Kreuzungszuchtprogrammen analysiert und verglichen. Dabei wurden 

additive Modelle, wie das Parental Modell, ein Modell mit rassespezifischen Alleleffekten, und 

ein Single-Step-Modell, mit Dominanzmodellen, die entweder populationsabhängig oder –

unabhängig waren, bzw. Imprinting berücksichtigten, diskutiert. Die Wahl, welches 

genomisches Modell schließlich im Kreuzungszuchtprogramm zur Anwendung kommt, sollte 

je nach verfügbarer Datenmenge und -art, Rechenkapazitäten und gewünschten 

Genauigkeiten der geschätzten Zuchtwerte getroffen werden. Allgemein zeigten 

Dominanzmodelle höhere Genauigkeiten als Modelle, die lediglich additive Effekte 

berücksichtigten. 
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Ein genomisches Modell, welches den Ursprung von Allelen bezüglich der Elternrassen 

berücksichtigen kann, wurde in Kapitel 3 vorgestellt. Das Modell nimmt an, dass SNP Effekte, 

abhängig vom Ursprung ihrer Haplotypen, unterschiedlich sein können. Es ist daher passend 

für die genomische Zuchtwertschätzung unter Einsatz von Referenzpopulationen, die mehrere 

Rassen beinhalten, um kleinere Rassen mit hohem Fremdgenanteil zu evaluieren. Die 

Ergebnisse zeigten, dass das vorgestellte Modell, unter Berücksichtigung einer 

Referenzpopulation von mehreren Rassen, genauere genomische Zuchtwerte schätzen kann 

als verschiedene andere genomische Ansätze.  

Kapitel 4 beinhaltet eine Simulationsstudie zur Implementierung eines 

Rotationskreuzungsprogrammes mit den Rassen Angler und Holstein, während zeitgleich die 

genomische Selektion bei Anglern eingeführt wird. Es wurden verschiedene Arten von 

wachsenden Referenzpopulationen und Selektionszielen in der Anglerpopulation untersucht. 

Es konnte gezeigt werden, dass die Kreuzungstiere, unabhängig von der Referenzpopulation 

und dem Selektionsziel, den Holstein- und Angler-Reinzuchtlinien überlegen waren. Die 

Kombination aus einer die Referenzpopulation, die sowohl Angler, als auch Kreuzungstiere 

beinhaltete, und einer Selektion basierend auf der Reinzuchtleistung der Angler, zeigte den 

höchsten Zuchtfortschritt – sowohl in der Anglerpopulation, als auch bei den Kreuzungstieren. 

Die verschiedenen Selektionsmethoden der Angler zeigten lediglich in den späteren 

Generationen Unterschiede im Zuchtfortschritt, abhängig von der abnehmenden Korrelation 

von Reinzucht- und Kreuzungszuchtleistung. 

In Kapitel 5 wurde eine Simulationsstudie zur Implementierung eines 

Rotationskreuzungsprogrammes mit verschiedenen Arten von Optimum Contribution 

Selection Methoden durchgeführt. Das Ziel bestand dabei darin, Zuchtfortschritt zu erzielen, 

während die genetische Eigenständigkeit der Angler wiederhergestellt wird. Verschiedene 

Restriktionen bezüglich des Inzuchtlevels und Fremdgenanteils durch Holstein wurden 

angewendet und ihre Auswirkungen auf die Angler-, Kreuzungs-, und Holsteinpopulation 

untersucht. Die Restriktion des Fremdgenanteils in der Anglerpopulation zeigte eine Erhöhung 

der genetischen Eigenständigkeit der Rasse. Dennoch führte es zur deutlichen 

Verlangsamung des Zuchtfortschrittes und somit zu einer verringerten Überlegenheit der 

Kreuzungstiere. Der reduzierte Zuchtfortschritt in der Anglerpopulation, und somit die großen 

Leistungsunterschiede der Ausgangsrassen, konnte nicht durch die erzielten Heterosiseffekte 

ausgeglichen werden. 

Die Thesis endet in Kapitel 6 mit einer allgemeinen Diskussion zu  weiteren genomischen 

Modellen, sowie zur praktischen Relevanz von Kreuzungszuchtprogrammen in der 

Milchrinderzucht.  
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Chapter 1  

General Introduction 

In the last century economic and social changes, urbanisation and policy factors lead to the 

intensification of livestock production systems (Hoffmann and Scherf, 2005) and therefore to 

high selection pressure on production traits in dairy cattle. This fact caused a remarkable 

improvement of genetic gain, especially in high yielding breeds, e.g. Holstein-Friesian. The 

focus was on milk production and conformation, whereas functional traits such as fertility, 

health and longevity were considered less. As a consequence deterioration of functional traits 

could be observed, which was even intensified by the antagonistic correlations between 

production and functional traits (Rauw et al., 1998; Oldenbroek, 2007). In addition, insufficient 

health and fertility lead to decreasing milk yield which has an important effect on cow 

profitability.  

On the other hand, several studies (e.g. (Gandini et al., 2007; Curone, 2016, 2018) proved 

good functional characteristics of local lower yielding breeds. However, they are facing 

extinction, as their genetics have been replaced by high performance breeds due to economic 

reasons (Wellmann and Bennewitz, 2019). International markets for animal breeding and 

animal products threat this development of local production systems as well, as they provide 

only few different high yielding breeds (Hoffmann and Scherf, 2005).  Since arguments for 

conserving local breeds are recognised by farmers, public and the scientific community, the 

goal is not to analyse whether it is necessary to conserve them, but how to do it best 

(Mendelsohn, 2003; Ovaska and Soini, 2017). 

One possible solution can be rotational crossbreeding, as it also requires purebreeding of the 

parental breeds and thus would increase the importance of the local breed. Several studies 

showed the superiority of crossbred dairy cattle compared to purebreds as crossbred offspring 

are economically more efficient (Kargo et al., 2021) and showed improved functional traits, 

such as longevity, fertility, and udder health, compared to their parents’ breeds (Clasen et al., 

2017; 2019), independently from their management level (Kargo et al., 2012). These 

advantages led to an increasing interest in crossbreeding in dairy cattle (Sørensen et al., 

2008).  

In this project, German Angler and German Holstein were used. Angler is a dairy-focused dual 

purpose breed, originating from the northern part of Germany. In the past, the old Angler type 

was crossed frequently with Red Holstein and Holstein Friesian, in order to increase the 

performance. This resulted in today’s admixed Angler type (RSHeG, 2021a). Due to their past 

introgression and good functional traits they therefore serve as a representative for local 

breeds. On the other hand, the German Holstein breed represents high-yielding breeds in this 

project. 
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The overall goal of this thesis was to develop genomic methods to promote local dairy breeds 

to increase their competitiveness to high-yielding breeds. In this way, they would contribute to 

the dairy business by exploiting their good functional characteristics, as well as to the 

biodiversity of livestock. Thus, the objective of this thesis was to investigate how to implement 

genomic selection and rotational crossbreeding in German Angler. 

Genomic models which are suitable for crossbred data were reviewed in Chapter 2, in order 

to give an overview of the possibilities. Different additive models (such as the parental model, 

a model with breed-specific allele effects, and a single step model) and dominance models, 

which were either line-dependent, line-independent or included imprinting, were discussed 

regarding their accuracies, computational and data requirements. 

Chapter 3 introduced an approach of the breed of origin of alleles model for multi-breed 

genomic prediction of breeding values suitable for numerically small breeds which experienced 

introgression from popular mainstream breeds in the past, such as German Angler. The model 

assumes different SNP effects for different origins of haplotype segments. It was compared to 

multi-breed and within-breed genomic predictions with GBLUP.  

In Chapter 4 a simulation study shows how a genomic rotational crossbreeding scheme 

including Angler and the high-yielding breed Holstein can be implemented, examining different 

sizes and structures of reference populations and selection goals of Angler. The reference 

populations included only Angler individuals, only crossbred individuals, or both Angler and 

crossbred individuals. The selection of Angler was either based on purebred performance, on 

crossbred performance, or on a combined purebred-crossbred performance. 

In Chapter 5 a rotational crossbreeding scheme of Angler x Holstein was extended to different 

Optimum Contribution Selection methods to evaluate the possibilities of realizing genetic gain 

while regaining the original genetic background of the Angler breed. Different constraints 

regarding the kinships and migrant contributions from Holstein were applied, to investigate 

their effects on Angler, crossbred and Holstein populations. 

Finally, in Chapter 6 further genomic models for crossbreeding are discussed shortly, followed 

by the practical relevance of crossbreeding in dairy cattle. 
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Abstract 

Livestock breeding has shifted during the past decade towards genomic selection. For the 

estimation of breeding values in purebred breeding schemes, genomic best linear unbiased 

prediction has become the method of choice. Systematic crossbreeding with the aim to utilize 

heterosis and breed complementary effects is widely used in livestock breeding, especially in 

pig and poultry breeding. The goal is to improve the performance of the crossbred animals. 

Due to genotype-by-environment interactions, imperfect linkage disequilibrium, and the 

existence of dominance and imprinting, purebred and crossbred performances are not 

perfectly correlated. Hence, more complex genomic models are required for crossbred 

populations. This study reviews and compares such models. Compared to purebred genomic 

models, the reviewed models were of much higher complexity due to the inclusion of 

dominance effects, breed-specific effects, imprinting effects, and the joint evaluation of 

purebred and crossbred performance data. With the model assessment work conducted until 

now, it is not possible to come to a clear recommendation as to which existing method is most 

suitable for a specific breeding program and a specific genetic trait architecture. Since it is 

expected that a superior method includes all the different genetic effects in a single model, a 

dominance model with imprinting and breed-specific SNP effects is proposed. Further progress 

could be made by assuming realistic covariance structures between the genetic effects of the 

different breeding lines, and by using larger marker panels and mixture distributions for the 

SNP effects.  
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Introduction 

The crossing of different lines or breeds is widely used in animal breeding with the main aim 

to produce superior offspring. This superiority results from heterosis and from breed 

complementary effects. Continuous and discontinuous crossbreeding schemes have been 

designed and are implemented in various livestock species (Samorè and Fontanesi, 2016; 

Lopez-Villalobos et al., 2000). In discontinuous schemes, crossbred animals are used solely 

for production and are not selected as parents of the next generation. Breeding takes place in 

the parental breeds and the breeding goal is usually to improve crossbred performance. The 

level of organization in such a system is high and it is sometimes difficult to utilize by-products, 

such as male offspring of mother lines. These schemes can be predominantly found in 

livestock species with a high female reproduction rate such as pigs and poultry. In continuous 

breeding schemes, the female crossbreds are used as parents to breed the next generation. 

These systems are sometimes implemented in livestock species with a low female 

reproduction rate such as cattle. Since there are substantial non-additive effects for 

reproduction traits in dairy cattle (Jiang et al. 2017), the aims of crossbreeding in dairy cattle 

are to improve reproduction traits and other functional traits by exploiting heterosis and 

imprinting and by removing inbreeding depression (Sørensen et al., 2008; Buckley et al., 

2014).  

A further form of crossbreeding is the upgrading of low-performance breeds with high-yielding 

breeds. This introgression of genes from high-yielding breeds increases the production level 

in subsequent generations and reduces inbreeding depression by increasing the genetic 

diversity of the low-performance breed. This breeding system has frequently been applied to 

local breeds, such as the German Vorderwald cattle (Hartwig et al., 2014, 2015). However, if 

upgrading is repeated over several generations, then the breed eventually goes extinct 

because the native alleles are removed from its gene pool. The formation of a synthetic breed 

can also be seen as a special form of crossbreeding. A well-known example is the 

establishment of the so-called Schwarzbuntes Milchrind in the former East Germany (Freyer 

et al., 2008).   

Livestock breeding has shifted towards genomic selection, which is now frequently 

implemented in large pure breeds. The core of the system that has been implemented in pure 

breeds is a reference population that consists of genotyped and phenotyped animals. The 

phenotypes are either the animal’s own performance records, or deregressed conventional 

breeding values. The reference population is needed for the prediction of marker effects. The 

marker effects are then used for predicting genomic breeding values of the genotyped 
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selection candidates. The reliability of genomic breeding values depends on the size of the 

reference population, on the effective number of chromosome segments, and on the method 

used for the prediction of marker effects (Goddard, 2009).  

Extensive research has been dedicated to develop statistical models for the prediction of 

marker effects. These statistical models include the SNP-BLUP model that assumes normally 

distributed SNP effects, various Bayesian models that assume more heavy-tailed distributions, 

as well as non-parametric and semi-parametric models (Meuwissen et al., 2001; Gianola, 

2013). More complex models assume different SNP variances, depending on the type of 

control region the SNP belongs to (MacLeod et al., 2016). Some models avoid the prediction 

of marker effects by building a genomic relationship matrix based on SNP genotypes. The 

most prominent method based on genomic relationships is GBLUP, which is an equivalent 

model to SNP-BLUP (VanRaden, 2008; Goddard,  2009). The genotyped selection candidates 

are included in the model, and their genomic breeding values are calculated by utilizing their 

genomic relationships with the reference population. GBLUP assumes that all animals are 

genotyped, which is in general not the case. Therefore, the genomic breeding values are 

blended in a second step with pedigree-based breeding values to obtain genomically 

enhanced breeding values on which selection decisions are based. This two-step procedure 

can be avoided with so-called single-step GBLUP models (ssGBLUP). They were developed 

as extensions of GBLUP. Single-step models include genotyped and non-genotyped animals 

simultaneously (Legarra et al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010; Legarra 

et al., 2014) and assume a particular covariance structure for the breeding values that is 

computed from genomic and pedigree-based relationships. Fernando et al. (2014) extended 

the single step model towards non-normally distributed marker effects. In purebred routine 

application mostly additive effects are considered, with dominance being an integral part of the 

estimated breeding values. Some genomic models were extended towards accounting for 

dominance explicitly, but this increased the realibilities of the breeding values only slightly (Su 

et al. 2012; Wellmann and Bennewitz, 2012; Azevedo et al., 2015).  

To summarize, it seems that in practical purebred genomic evaluations, GBLUP and ssGBLUP 

have and will become the models of choice, and non-additive gene effects are usually not an 

issue. The picture is however somewhat different if data from crossbred animals in combination 

with the parental purebred data is analyzed. The potential applications of genomic models with 

non-additive genetic effects have been reviewed by Varona et al. (2018). The main breeding 

goal is in this case to improve the performance of the crossbred animals. Due to genotype-by-

environment interaction, imperfect LD, and the existence of dominance, epistasis and 

imprinting, purebred and crossbred performances (PP and CP, respectively) are not perfectly 

correlated (e.g. Wei and van der Werf, 1995; Dekkers, 2007; Zumbach et al., 2007; Duenk et 
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al., 2019). Wientjes and Calus (2017) reviewed existing literature about purebred-crossbred 

correlations in pigs. The average from 201 reported correlation coefficients was 0.63 with 50% 

of the reported coefficients being between 0.45 and 0.87. The purebred-crossbred correlation 

affects the optimal design of the reference population (van Grevenhof and van der Werf, 2015) 

and the choice of an appropriate genomic model. 

While genomic models are well established for pure breeds, much research has been 

conducted in the recent years to develop genomic models for the analysis of crossbred data. 

The aim of this study is to review genomic models for the prediction of crossbred 

performance that were recently developed and were evaluated either using simulated or real 

crossbred data.   

Genomic Models 

Genomic models for crossbred data are extensions of purebred models. The extensions were 

made in several directions. Most genomic models for the analysis of crossbred data are 

developed for two-way crosses. A two-way cross 𝒳 is created from a sire line 𝒜 and a dam 

line ℬ, which are usually not inbred. The pure lines have breeding values 𝒂𝒜 and 𝒂ℬ for PP, 

and breeding values 𝒄𝒜 and 𝒄ℬ for CP. Typically, some animals are genotyped, whereas others 

are not. The goal is to obtain accurate predictions of the breeding values for CP by utilizing 

phenotypic information from genotyped and ungenotyped purebred and crossbred animals. An 

overview over the considered models is given in Table 1. 

Table 1: Additive and dominance models for the prediction of crossbred performance. 

 
 

Data requirements  

Phenotyped 
crossbreds 

Genotyped 
crossbreds 

 

Additive 
Models 

Parental Model x   

 BSAM / ASGM x x  
 Single step x (x)  

Dominance 
Models 

Line-independent (x) (x) Provide more 
accurate 
breeding values 
for CP than 
additive models 

 Line-dependent (x) (x) 
 Dominance + 

Imprinting 
x x 

          (x) not necessarily needed but can be utilized 

The SNP alleles are usually assumed to be biallelic, so they may be coded as alleles 1 and 2. 

Most authors use centered allele content matrices as proposed by VanRaden (2008). The 

centering does not affect the predictions, but affects the model-based reliabilities (Strandén 

and Christensen, 2011). We denote with  
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𝒁𝐺
𝒜 = 𝑮𝒜 − 2𝑷𝒜 

the centered allele content matrix for the genotyped animals from line 𝒜, whereby the allele 

content 𝐺𝑖𝑚
𝒜 ∈ {0,1,2} of animal 𝑖 from line 𝒜 is the number of copies of allele 2, animal 𝑖 has 

at SNP 𝑚, and 𝑃𝑖𝑚
𝒜  is the frequency of allele 2 of SNP 𝑚 in line 𝒜. Moreover, we denote with 

𝒁𝒳
𝒜 = 𝑮𝒳

𝒜 − 𝑷𝒜 

 the centered allele origin matrix for alleles from cross 𝒳 that originate from line 𝒜. That is, 

𝐺𝒳𝑖𝑚
𝒜 ∈ {0,1} is the number of copies of allele 2, crossbred animal 𝑖 has obtained from sire line 

𝒜 at SNP 𝑚. These matrices are needed to define genetic values of purebred and crossbred 

animals. The vector with breeding values for CP for animals from line 𝒜 has the representation 

𝒄𝒜 = 𝒁𝐺
𝒜𝜶𝒜 , (1) 

where 𝜶𝒜 is the vector with allele substitution effects for CP. The vector with breeding values 

for PP has the representation 

𝒂𝒜 = 𝒁𝐺
𝒜𝜶̃𝒜 , (2) 

where 𝜶̃𝒜 is the vector with allele substitution effects for PP. The equations for 𝒂ℬ and 𝒄ℬ  are 

similarly.  

Most genomic models for two-way crosses utilize, that the vector 𝒂𝒳 with additive genetic 

values of the crossbred animals can be decomposed into a contribution 𝒄𝒳
𝒜 that comes from 

sire line 𝒜, and a contribution 𝒄𝒳
ℬ  that comes from dam line ℬ. That is,  

𝒂𝒳 = 𝒄𝒳
𝒜 + 𝒄𝒳

ℬ , (3) 

where

𝒄𝒳
𝒜 = 𝒁𝒳

𝒜𝜶𝒜,   and  𝒄𝒳
ℬ = 𝒁𝒳

ℬ𝜶ℬ. (4) 

The contribution 𝒄𝒳
𝒜  from line 𝒜 can be further decomposed into a contribution that comes 

from the breeding values 𝒄𝒜 for CP, and into a vector 𝒎𝒳
𝒜 that contains the Mendelian sampling 

terms of the transmitted gametes (Wei and van der Werf, 1994). That is,  

𝒄𝒳
𝒜 = 0.5 𝒁𝒳𝒜𝒄𝒜 +𝒎𝒳

𝒜 , (5) 

where matrix 𝒁𝒳𝒜 assigns animals from line 𝒜  to their crossbred offspring.  
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Different models have been developed for predicting CP, which can broadly be classified into 

additive models and dominance models. While some models predict the breeding values for 

CP directly with Equation (5), others predict the vector 𝛼𝒜 with allele substitution effects for 

CP. In the latter case, the estimated breeding values 𝒄̂𝒜 for CP in line 𝒜 are obtained by 

substituting 𝛼 
𝒜 with the prediction 𝛼̂ 

𝒜 in Equation (1).  

 

Additive Models 

Different additive models have been proposed in the literature. Some models assume that the 

crossbred animals are genotyped, whereas others do not. The general additive model for a 

two-way cross is a trivariate model that has two equations for the parental lines, and one 

equation for the cross. It has the general representation 

                           𝒚𝒜 = 𝑿𝒜𝒃𝒜 + 𝒁𝒜𝒖𝒜 + 𝒂𝒜 + 𝑬𝒜 

                            𝒚ℬ = 𝑿ℬ𝒃ℬ + 𝒁ℬ𝒖ℬ + 𝒂ℬ + 𝑬ℬ 

                            𝒚𝒳 = 𝑿𝒳𝒃𝒳 + 𝒁𝒳𝒖𝒳 +⋯+ 𝑬𝒳 , 

where 𝒚𝒜 , 𝒚ℬ, 𝒚𝒳  are vectors with phenotypic records of the respective subpopulation, 

𝒃𝒜 , 𝒃ℬ, 𝒃𝒳 are vectors of fixed effects with design matrices 𝑿𝒜 , 𝑿ℬ, 𝑿𝒳, and 𝒖𝒜 , 𝒖ℬ, 𝒖𝒳 are 

vectors of non-genetic random effects with design matrices 𝒁𝒜 , 𝒁ℬ, 𝒁𝒳. Finally, 𝒂𝒜 , 𝒂ℬ are the 

breeding values for PP, and 𝑬𝒜 , 𝑬ℬ, 𝑬𝒳 are the residual terms. The term “…” in the third 

equation depends on the respective model. 

The first two model equations are needed because PP and CP are genetically correlated 

(Wientjes and Calus, 2017), so phenotypic records of purebred animals increase the 

reliabilities of the breeding values for CP. 

The Parental Additive Model 

The parental additive model is based on Equations (2), (3) and (5), and is suitable when the 

crossbred animals are not genotyped. The model assumes that the Mendelian sampling terms 

are part of the residuals, so the model equations become 

                                   𝒚𝒜 = 𝑿𝒜𝒃𝒜 + 𝒁𝒜𝒖𝒜 + 𝒂𝒜 + 𝑬𝒜 

                                    𝒚ℬ = 𝑿ℬ𝒃ℬ + 𝒁ℬ𝒖ℬ + 𝒂ℬ + 𝑬ℬ 

                                    𝒚𝒳 = 𝑿𝒳𝒃𝒳 + 𝒁𝒳𝒖𝒳 + 0.5 𝒁𝒳𝒜𝒄𝒜 + 0.5 𝒁𝒳ℬ𝒄ℬ + 𝑬𝒳 ,  

where 𝒂𝒜 = 𝒁𝐺
𝒜𝜶̃𝒜, 𝒂ℬ = 𝒁𝐺

ℬ𝜶̃ℬ, 𝒄𝒜 = 𝒁𝐺
𝒜𝜶𝒜, and 𝒄ℬ = 𝒁𝐺

𝒜𝜶𝒜. 
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The BSAM and ASGM model 

The model with breed-specific allele effects (BSAM) and the model with breed-independent 

allele effects (ASGM) are based on Equations (2), (3) and (4), and require that the crossbred 

animals are genotyped. While the ASGM model predicts one effect per SNP, the BSAM model 

predicts one effect for the paternal allele, and one for the maternal allele of the crossbred 

animals. Origin-specific allele effects may occur e.g. due to a different LD pattern between the 

marker and the QTL, different gene frequencies at the QTL, imprinting effects, or the epistatic 

effects may be different in the pure breeds. This results in different effects of the marker alleles 

and thus affects the estimated breeding values.  

The first two equations of the BSAM and ASGM model are as above, whereas the third model 

equation becomes for the BSAM 

𝒚𝒳 = 𝑿𝒳𝒃𝒳 + 𝒁𝒳𝒖𝒳 + 𝒁𝒳
𝒜𝜶𝒜 + 𝒁𝒳

ℬ𝜶ℬ + 𝑬𝒳 . 

An equivalent representation for the ASGM model is 

𝒚𝒳 = 𝑿𝒳𝒃𝒳 + 𝒁𝒳𝒖𝒳 + 𝒂𝒳 + 𝑬𝒳 . 

Ibánez-Escriche et al. (2009) predicted CP of the parental lines from genotyped crossbred 

animals with BSAM and ASGM, whereby the breed-specific allele substitution effects of the 

BSAM model were a priori independent.  The allele substitution effects were estimated with 

BayesB, which is a method that assumes that many of them are actually zero. An oligogene 

trait was simulated with breed-independent QTL effects. Although the SNP effects are 

expected to be breed-specific due to differences in LD between markers and QTL, the authors 

found that the BSAM model outperformed ASGM only if the number of markers was low, the 

number of records for training was high, and if the parental breeds were distantly related. 

Lopes et al. (2017) used the BSAM model with normally distributed SNP effects to predict 

breeding values for CP from crossbred data, and compared the results with conventional 

GBLUP. The model provided similar prediction accuracies as conventional GBLUP for the 

traits litter size and gestation length in pigs. It may be not superior to GBLUP because the 

allele substitution effects of the different breeds were implicitly assumed to be uncorrelated, 

which is an assumption that is not likely to be fulfilled. 

Sevillano et al. (2019) extended the BSAM and ASGM model towards a three-way cross and 

distinguished SNP that showed a strong trait association from all remaining SNP. For the trait 

associated SNP breed-specific effects were estimated, whereas for the remaining SNP one 

effect was estimated, regardless of the allele origin. This model was compared with the BSAM 

model and with the ASGM model for the trait daily gain by assuming normally distributed SNP 
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effects. Purebred as well as crossbred data was used for training. The results showed a 

superiority of their method only if the estimated genetic correlations between PP and CP for 

the trait associated SNPs and the remaining SNPs were unequal.   

Vandenplas et al. (2017) derived equations for predicting the reliability of genomic breeding 

values for CP for BSAM and ASGM models and assumed normally distributed SNP effects. 

The authors found that BSAM outperformed ASGM for a specific parental line, if the effective 

number of chromosome segments in the crossbred reference animals that originate from the 

parental line is less than half the effective number of all chromosome segments that are 

independently segregating. 

Additive Single Step Model 

While BSAM has the disadvantage that all crossbred animals have to be genotyped, the 

parental additive model has the disadvantage, that the information provided by the Mendelian 

sampling terms cannot be utilized for prediction.  These problems could be resolved by using 

a trivariate model of the form 

                           𝒚𝒜 = 𝑿𝒜𝒃𝒜 + 𝒁𝒜𝒖𝒜 + 𝒂𝒜 + 𝑬𝒜 

                            𝒚ℬ = 𝑿ℬ𝒃ℬ + 𝒁ℬ𝒖ℬ + 𝒂ℬ + 𝑬ℬ 

                            𝒚𝒳 = 𝑿𝒳𝒃𝒳 + 𝒁𝒳𝒖𝒳 + 𝒄𝒳
𝒜 + 𝒄𝒳

ℬ + 𝑬𝒳 

that includes both, genotyped and phenotyped animals. Christensen et al. (2014) derived the 

joint covariance matrix 𝑨𝒜 of 𝒄𝒳
𝒜, 𝒄𝒜, and 𝒂𝒜  by using the pedigree-based model of Wei and 

van der Werf (1994) as a starting point. The authors derived the covariance matrix 𝑨𝒜 from 

pedigree relationships, and replaced it in a subsequent step by a covariance matrix 𝑯𝒜 that 

combines pedigree and genotype information.  

Xiang et al. (2016a) validated the model of Christensen et al. (2014) in a two-way pig cross for 

the trait number of piglets born. The authors found that the inclusion of crossbred genomic 

information improved the model-based reliabilities for CP and reduced to some extent the bias 

of prediction. 

Tusell et al. (2016) used a single-step model for two-way crossbred pigs and the sire line 𝒜, 

so the model reduced to a bivariate model. The purebred animals were partly genotyped. Since 

the crossbred animals were not genotyped, the third equation in the model of Christensen et 

al. (2014) was replaced by a parental additive model equation, i.e. the Mendelian sampling 

terms were part of the residual. This resulted in a model equation of the form 
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                           𝒚𝒜 = 𝑿𝒜𝒃𝒜 + 𝒁𝒜𝒖𝒜 + 𝒂𝒜 + 𝑬𝒜 

                           𝒚𝒳 = 𝑿𝒳𝒃𝒳 + 𝒁𝒳𝒖𝒳 + 0.5 𝒁𝒳𝒜𝒄𝒜 + 0.5 𝒁𝒳ℬ𝒄ℬ + 𝑬𝒳 . 

The authors evaluated six growth and meat traits and found that the genetic correlations 

between purebred and CP were larger than 0.69 for all traits. The accuracies of the genomic 

breeding values were higher than those obtained from univariate single-step models that took 

either purebred or CP into account, and also higher than those obtained with pedigree-based 

models. 

Dominance models 

Crossbreeding utilizes heterosis and breed complementarity. A widely accepted hypothesis is 

that heterosis arises predominantly from dominance effects. An animal carries a dominance 

effect only if it is heterozygous at a particular QTL. We denote with  

𝒁𝐻
𝒳 = 𝑯𝒳 − 𝑯̅𝒳 

the centered indicator matrix for heterozygosity. That is, 𝐻𝑖𝑚
𝒳 ∈ {0,1} equals one, if animal 𝑖 is 

heterozygous at SNP 𝑚, and 𝐻̅𝑖𝑚
𝒳  is the heterozygosity of SNP 𝑚 in line 𝒳. The dominance 

model assumes that the vector 𝒈𝒳 with genotypic values of the crossbred animals has the 

representation                         

𝒈𝒳 = 𝜇𝒳𝟏 + 𝒁𝐺
𝒳𝒂𝒳 + 𝒁𝐻

𝒳𝒅𝒳 , (6) 

where 𝜇𝒳 is the population mean, 𝒂𝒳 is the vector with population-dependent additive effects, 

and 𝒅𝒳 is vector with population-dependent dominance effects. The genotypic values of 

purebred animals are defined accordingly. The trivariate dominance model for a two-way cross 

and the parental lines has therefore the representation 

𝒚𝒜 = 𝑿𝒜𝒃𝒜 + 𝒁𝒜𝒖𝒜 + 𝒁𝐺
𝒜𝒂𝒜 + 𝒁𝐻

𝒜𝒅𝒜 + 𝑬𝒜 (7) 

                                          𝒚ℬ = 𝑿ℬ𝒃ℬ + 𝒁ℬ𝒖ℬ + 𝒁𝐺
ℬ𝒂ℬ + 𝒁𝐻

ℬ𝒅ℬ + 𝑬ℬ       

                                          𝒚𝒳 = 𝑿𝒳𝒃𝒳 + 𝒁𝒳𝒖𝒳 + 𝒁𝐺
𝒳𝒂𝒳 + 𝒁𝐻

𝒳𝒅𝒳 + 𝑬𝒳 ,       

which we call the dominance model with line-dependent effects. The vector 𝒄𝒜 with breeding 

values for CP from breed 𝒜 has the representation given in Equation (1), but the vector with 

allele substitution effects for CP is 

𝜶𝒜 = 𝒂𝒳 + (1 − 2𝒑ℬ) ∘ 𝒅𝒳 , 
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where 𝒑ℬ is vector with allele frequencies in the opposite line, and the Hadamard product " ∘ " 

is the component-wise product. The breeding values and allele substitution effects for line ℬ 

are defined accordingly. Predictions 𝒂̂𝒳 and 𝒅̂𝒳 of 𝒂𝓧 and 𝒅𝓧 are needed to get predictions of 

the allele substitution effects for CP in line 𝒜 with equation 

𝜶̂𝒜 = 𝒂̂𝒳 + (1 − 2𝒑ℬ) ∘ 𝒅̂𝒳 . 

Some solvers are unable to account for the fact that 𝐸(𝒅𝓧) = 𝜇𝑑
𝒳𝟏 ≠ 0 for most traits. As 

shown by Xiang et al. (2016b), one may write 𝒅𝓧 = 𝒅∗
𝒳 + 𝜇𝑑

𝒳𝟏 such that 𝐸(𝒅∗
𝒳) = 0. Then, the 

term 𝒁𝐻
𝒳𝒅𝒳 in Equation (7) equals 𝒁𝐻

𝒳𝟏𝜇𝑑
𝒳 + 𝒁𝐻

𝒳𝒅∗
𝒳 , where 𝜇𝑑

𝒳 is treated as an additional fixed 

effect. The same needs to be done for the parental lines. We can write 𝒁𝐻
𝒳𝟏𝜇𝑑

𝒳 = 𝜇𝑑
𝒳𝑀(𝒉̂𝒳 −

ℎ̅𝒳𝟏),  where 𝑀 is the number of SNPs, 𝒉̂𝒳 is the vector with heterozygosities of the crossbred 

animals, and ℎ̅𝒳 is the average heterozygosity of the crossbred animals. Hence, the value 

−𝜇𝑑
𝒳𝑀 quantifies the inbreeding depression per unit of genomic inbreeding. 

Vitezica et al. (2016) demonstrated how dominance models with normally distributed SNP 

effects can be transformed into equivalent dominance models with animal effects, whereby 

different covariance matrices are needed for the additive component and the dominance 

component of the animal effects. That is, if all SNP effects are normally distributed, then the 

SNP effects model can be replaced by the equivalent animal effects model 

𝒚𝒜 = 𝑿𝒜𝒃𝒜 + 𝒁𝒜𝒖𝒜 + 𝒁𝐻
𝒜𝟏𝜇𝑑

𝒜 + 𝒂̃𝒜 + 𝒅̃𝒜
∗ + 𝑬𝒜  

                                       𝒚ℬ = 𝑿ℬ𝒃ℬ + 𝒁ℬ𝒖ℬ + 𝒁𝐻
ℬ𝟏𝜇𝑑

ℬ + 𝒂̃ℬ + 𝒅̃ℬ
∗ + 𝑬ℬ       

                                     𝒚𝒳 = 𝑿𝒳𝒃𝒳 + 𝒁𝒳𝒖𝒳 + 𝒁𝐻
𝒳𝟏𝜇𝑑

𝒳 + 𝒂̃𝒳 + 𝒅̃𝒳
∗ +𝑬𝒳         

from which the SNP effects can be backsolved. Thereby, the animal effects satisfy 𝒂̃𝒳 = 𝒁𝐺
𝒳𝒂𝓧, 

and 𝒅̃𝒳
∗ = 𝒁𝐻

𝒳𝒅∗
𝒳, and so on. The joint covariance matrices of the animal effects are given in 

Christensen et al. (2019). 

The SNP effects in Equation (7) were assumed to be line-dependent, which may be the case 

because the LD between SNP and QTL differs between lines. This may be neglected if the 

marker panel is sufficiently large. In this case, the SNP effects can assumed to be line-

independent, and we obtain the simplified model 

                                            𝒚𝒜 = 𝑿𝒜𝒃𝒜 + 𝒁𝒜𝒖𝒜 + 𝒁𝐺
𝒜𝒂+ 𝒁𝐻

𝒜𝒅+ 𝑬𝒜 

                                            𝒚ℬ = 𝑿ℬ𝒃ℬ + 𝒁ℬ𝒖ℬ + 𝒁𝐺
ℬ𝒂 + 𝒁𝐻

ℬ𝒅 + 𝑬ℬ 
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                                            𝒚𝒳 = 𝑿𝒳𝒃𝒳 + 𝒁𝒳𝒖𝒳 + 𝒁𝐺
𝒳𝒂+ 𝒁𝐻

𝒳𝒅+ 𝑬𝒳 , 

which we call the dominance model with line-independent effects.  

Vitezica et al. (2013) emphasized that two different parameterizations of the dominance model 

exist. The first parameterization, which is given by Equation (6), is suitable for two-way crosses, 

and includes the additive and dominant SNP effects. In contrast, the second parameterization 

includes the allele substitution effects and the dominance deviations of the SNP. Both 

parameterizations are equivalent, but their interpretation is different. 

Model evaluation 

Zeng et al. (2013) compared a Bayesian dominance model with the corresponding BSAM 

model and the corresponding ASGM model. A BayesCπ type method was used to estimate 

the marker effects, so the prior assumption was that the SNP effects are either zero, or come 

from a normal distribution. The comparison was done for a simulated two-way crossbreeding 

program. A number of 20 generations of selection was simulated with the aim to improve CP 

in both parental lines. The marker effects were estimated only once in generation one from 

crossbred animals and used in all subsequent generations. The simulated traits showed a 

different degree of dominance variance, ranging from ‘large’ to ‘realistic’, or null. The 

dominance model was superior to the BSAM model and to the ASGM model. This superiority 

depended on the fraction of dominance and thus heterosis in the data, but even for situations 

where no dominance was simulated, the accuracy of the dominance model was similar to the 

additive model, indicating the robustness of the model. It can tentatively be concluded, that the 

use of a dominance model is in general advisable, even if dominance is not an important 

source of trait variability.  

Xiang et al. (2016b) used a dominance model with line-dependent effects for a two-way cross 

and the parental breeds. The SNP effects were normally distributed, and the additive and 

dominance effects of the three different populations were correlated. The authors found that 

the increased predictive ability of the dominance model arose solely from capturing inbreeding 

depression. This suggests that dominance effects of individual QTL have not been captured. 

The reason may be that a 60K SNP panel is not sufficient for achieving high LD between 

markers and QTL, and that the normality assumption is unlikely to be fulfilled.  

Esfandyari et al. (2016) compared a Bayesian dominance model with the corresponding 

Bayesian ASGM model at the example of litter size in a two-way pig cross, whereby BayesC 

of Habier et al. (2011) was used for prediction. Training was on the parental lines. The 

prediction accuracies for PP and CP obtained with the dominance model were both higher 

than those for PP obtained with the ASGM model.   
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Implications for breeding programs 

All additive models for predicting CP rely on phenotypic data collected from crossbred animals. 

This can be problematic in situations where the crossbred animals are not individually identified 

and thus such data collection pipeline is not implemented. This is likely the case on many farms 

housing crossbred animals. While additive models require phenotypes from crossbred 

animals, this is not the case for dominance models because the breeding values for CP can 

be derived from additive and dominance effects that are predicted in the pure breed, and from 

the allele frequencies in the opposite breed. Esfandyari et al. (2015a) proposed therefore to 

use dominance models for selecting purebred animals for CP based on purebred phenotypic 

and genotypic information only. They did a simulation study and estimated the marker effects 

with Bayesian LASSO (Park and Casella, 2008; los Campos et al., 2009). The results showed 

that the gain in CP was higher when the purebreds were selected for CPs, which demonstrated 

the feasibility of the method even when no crossbred data is available. Moreover, combining 

several related lines into a single reference population increased the prediction accuracy. 

However, as shown by Esfandyari et al. (2015b), training on crossbred animals leads to a 

higher selection response than training on purebred animals. A likely explanation is, that the 

level of heterozygosity was higher than in the purebred data.  

Although genomic selection for CP is a promising strategy to increase selection response for 

CP in the short and medium term, Esfandyari et al. (2018) found that genomic selection for CP 

leads eventually to lower CP in the long term than genomic selection on PP. This hold 

regardless of whether training was on purebred or crossbred animals. 

Dominance model with imprinting 

Dominance effects, as well as additive effects may depend on the breed of origin, which may 

be due to imprinting or breed complementarity. It could therefore be advantageous to account 

for imprinting explicitly. A dominance model with imprinting needs to distinguish between the 

paternal and the maternal allele. If an animal has received allele 𝐴1 from line 𝒜 and allele 𝐴2 

from line ℬ, then we denote its genotype as 𝐴1𝐴2. The centered indicator matrix for genotype 

𝐴1𝐴2 is given by 

𝑾𝒳
𝐴1𝐴2 = 𝑯𝒳

𝐴1𝐴2 − 𝑯̅𝒳
𝐴1𝐴2 , 

where 𝐻𝒳𝑖𝑚
𝐴1𝐴2 ∈ {0,1} equals one, if animal 𝑖 from cross 𝒳 has genotype 𝐴1𝐴2 at SNP 𝑚, and 

𝐻̅𝒳𝑖𝑚
𝐴1𝐴2 is the proportion of animals from cross 𝒳 that have this genotype at SNP 𝑚.  

The dominance model with imprinting assumes that the vector 𝒈𝒳 with genotypic values of the 

crossbred animals has the representation 



Chapter 2 

21 
 

𝒈𝒳 = 𝜇𝒳𝟏 + (𝑾𝒳
21 +𝑾𝒳

22)𝒂𝒜
𝒳 + (𝑾𝒳

12 +𝑾𝒳
22)𝒂ℬ

𝒳 +𝑾𝒳
21𝒅𝒜

𝒳 +𝑾𝒳
12𝒅ℬ

𝒳 , (8) 

where 𝜇𝒳 is the population mean, vectors 𝒂𝒜
𝒳  and 𝒂ℬ

𝒳 contain breed-of-origin dependent 

additive effects, and vectors 𝒅𝒜
𝒳  and 𝒅ℬ

𝒳 contain breed-of-origin dependent dominance effects. 

The model equation for the crossbred animals becomes 

𝒚𝒳 = 𝑿𝒳𝒃𝒳 + 𝒁𝒳𝒖𝒳 + (𝑾𝒳
21 +𝑾𝒳

22)𝒂𝒜
𝒳 + (𝑾𝒳

12 +𝑾𝒳
22)𝒂ℬ

𝒳 +𝑾𝒳
21𝒅𝒜

𝒳 +𝑾𝒳
12𝒅ℬ

𝒳 + 𝑬𝒳 . (9) 

If imprinting in the parental lines is neglected, then the model equations for the parental lines 

remain as in Equation (7). The vector with allele substitution effects for CP of line 𝒜 is in this 

case 

𝜶𝒜 = 𝒂𝒜
𝒳 + (1 − 𝒑ℬ) ∘ 𝒅𝒜

𝒳 − 𝒑ℬ ∘ 𝒅ℬ
𝒳 , (10) 

where 𝒑 
ℬ is the vector with allele frequencies in the opposite line. The proof is given in the 

electronic appendix. When the SNP effects in the cross do not depend on the breed of origin, 

then the model simplifies, and becomes identical to the dominance model with line-dependent 

effects.  

Nishio and Satoh (2015) proposed two alternative parameterizations for models with 

dominance and imprinting and fitted them by assuming normally distributed SNP effects. Their 

first model includes an additive effect, a dominance effect, and an imprinting effect for the 

heterozygous genotype, while their second model includes a paternal and a maternal gametic 

effect, and a dominance effect. The models provided in a simulation study more accurate 

estimates of genotypic values than GBLUP. While the models of Nishio and Satoh (2015) have 

the advantage that only 3 effects are needed in the equivalent SNP model  for modelling the 

contribution of each SNP to the genotypic value of an animal, the model in Equation (9) has 

the advantage that more rigorous prior assumptions can be made for the joint distribution of 

the effects. That is, if the paternal lines are closely related, then the additive effects 𝒂𝒜
𝒳  and 

𝒂ℬ
𝒳 could assumed to be a priori highly correlated, as well as the dominance effects 𝒅𝒜

𝒳  and 

𝒅ℬ
𝒳. However, the parameterization does not allow to predict the vectors 𝒂𝒜

𝒳 , 𝒂ℬ
𝒳 , 𝒅𝒜

𝒳  and 𝒅ℬ
𝒳 

individually. 

Esfandyari et al. (2015b) compared in a simulation study a Bayesian dominance model with 

imprinting with the corresponding dominance model with line-independent effects, but used a 

different parameterization. The model considered imprinting because it included a separate 

effect for each phased genotype. Compared to the model proposed above, it has the 

disadvantage that the effects have no direct interpretation as additive and dominance effects. 

The genetic effects of the parental breeds were a priori independent. Even though the authors 
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did not simulate imprinting, they found that the dominance model with imprinting was superior, 

if the reference population was sufficiently large, and if both lines were not closely related. The 

reason may be that the LD between markers and QTL was different in the cross and in the 

parental lines, so the additive effects and dominance effects were population-dependent.  

Discussion 

In this paper, genomic models for the analysis of discontinuous crossbred data were reviewed. 

Compared to purebred genomic models, the reviewed models were of much higher complexity 

due to the inclusion of dominance effects, breed-specific effects, imprinting effects, and the 

use of PP and / or CP data. In the following some additional aspects regarding the distribution 

of the SNP effects and the model choice are considered.   

Distribution of SNP effects 

The normal distribution is the most common assumption about the distribution of SNP effects. 

Such models have the advantage, that they have an equivalent representation as animal 

models with genomic covariance matrices for which fast solvers exist, such as DMU (Madsen 

et al., 2010), WOMBAT (Meyer, 2007), ASReml (Gilmour et al., 2009), blupf90 (Misztal, 1999), 

or MiX99 (Vuori et al., 2006). Although the assumption of a normal distribution is not likely to 

be fulfilled when large marker panels are used, the experience with purebred data suggest that 

the reliabilities of the breeding values are only slightly worse than those obtained with non-

normally distributed marker effects. However, the situation in crossbreeding is different 

because the parental lines are commonly distantly related, and it may be envisaged to evaluate 

all lines simultaneously in order to increase the reliabilities of the breeding values. This requires 

that all QTL are in high LD with at least one marker, which implies the necessity to use a large 

marker panel. However, if the marker panel is large, then only few markers are needed to 

capture the effect of any QTL. Consequently, the true effects of most markers are actually 

zero. The model for genomic selection should account for this and assume as a prior 

distribution for the SNP effects a mixture of two distributions. One component provides the 

distribution for markers that are in strong LD with a QTL, and the other one is actually zero. In 

this case, a random-variable 𝛾𝑚 is commonly introduced, which indicates whether the effects 

of an SNP 𝑚 are different from zero. Well-known examples are BayesB (Meuwissen et al., 

2001), BayesC (Habier et al., 2011), and BayesR (Erbe et al., 2012). Such algorithms are 

usually implemented with MCMC algorithms, which results in long computation times. 

However, alternative and faster implementations are available for some models (e.g. 

Meuwissen, 2009; Shepherd et al., 2010). 

For models with additive and dominance effects, an important aspect is, whether these effects 

are a priori independent or not. It may be advantageous to assume that all effects of a particular 
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SNP 𝑚 are of the same order of magnitude. This is possible if all effects of a particular SNP 𝑚 

have conditionally on the common covariance matrix 𝛾𝑚𝜎𝑚
2 Σ a normal distribution, where 

𝜎𝑚
2  ~ Inv-𝜒2(𝑣, 𝑠) and Σ is an appropriately chosen covariance matrix. For the dominance 

model with line-dependent effects, this means that 

(𝑎𝑚
𝒜 , 𝑎𝑚

ℬ , 𝑎𝑚
𝒳 , 𝑑𝑚

𝒜 , 𝑑𝑚
ℬ , 𝑑𝑚

𝒳)|𝜎𝑚
2 , 𝛾𝑚~𝑁(0, 𝛾𝑚𝜎𝑚

2 Σ). 

It can be shown that in this case, all effects of SNP 𝑚 would have for 𝛾𝑚 = 1 a 𝑡-distribution 

with 𝑣 degrees of freedom, and are for 𝛾𝑚 = 0 equal to zero. Moreover, the magnitude of the 

effect size would be is similar for all effects of a given SNP 𝑚, which reduces the proportion of 

overdominant SNP. Developing a fast algorithm for such a model is an area for future research. 

Model choice 

The most suitable model for a breeding program depends on the achievable accuracies for the 

breeding values of the selection candidates, and on the available data. Among the additive 

models, the parental model provided the least accurate predictions for CP, which is because 

the Mendelian sampling terms are part of the residual and can therefore not be utilized for 

prediction. It has, however, the advantage that the crossbred animals do not need to be 

genotyped and may therefore be suitable for animals with low economic value. 

The BSAM and ASGM models provided similar results in most cases. The BSAM model, 

however, needs the trace of the alleles from the purebred parent breed to the crossbred end 

product, which is a source of potential errors. This might even be more a problem when more 

complex crossbred structures are involved, e.g. three- or four-way crossbred data. Vandenplas 

et al. (2016) and Sevillano et al. (2016) developed a statistical pipeline for this purpose and 

applied it to a three-way crossbred pig data set.  

The reviewed papers suggest that the dominance models provide more accurate genomic 

breeding values for CP than the additive models. Although Xiang et al. (2016b) showed that 

this gain in accuracy results in the case of normally distributed SNP effects almost solely from 

capturing inbreeding depression, this may be not the case when large marker panels and 

appropriate Bayesian models are used for evaluation. Dominance models have the additional 

advantage that breeding values for crossbred performance can be obtained from purebred 

animals, so phenotyping and genotyping crossbred individuals may not be necessary. 

However, as shown by Esfandyari et al. (2015b), the accuracy of the breeding values can be 

increased when phenotyped and genotyped crossbred individuals are included in the reference 

population. 
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Three different dominance models have been applied to crossbred data, which are the 

dominance model with line-independent effects, the dominance model with line-dependent 

effects, and the dominance model with imprinting. The dominance model with line-dependent 

effects is likely to be inferior to the model with line-independent effects if the SNP effects of the 

different lines are falsely assumed to be statistically independent, the reference population is 

small, and the lines are closely related. This could be avoided by specifying a covariance 

between the SNP effects of the different lines. 

When imprinting is relevant, then a dominance model with imprinting is of interest. For 

example, Jiang et al. (2017) found that there is substantial imprinting for reproduction traits in 

dairy cattle. The application of imprinting models requires that the crossbred animals are 

genotyped and that the alleles are traced from the parental lines to the crossbred animals. 

Unfortunately, to the best of our knowledge, these models are not well analyzed yet. More 

research should be done in this area, which includes to analyze all models with common data 

sets. 

Conclusion 

Genomic models for crossbred data are of much higher complexity than models for purebred 

data, which results from the inclusion of dominance effects, breed-specific effects, imprinting 

effects, and from the joint evaluation of PP and CP. Although much research has already been 

done to develop genomic models for crossbred data, it can be expected that further progress 

can be made by developing statistical models that include all the different genetic effects in a 

single model, assume realistic covariance structures between the genetic effects of different 

breeding lines, use large marker panels, and assume realistic distributions for the SNP effects. 

The comparisons made in the reviewed papers are not sufficiently comprehensive to come to 

a clear recommendation as to which existing method is most suitable for a specific breeding 

program and a specific genetic trait architecture. Some papers suggested a superiority of 

dominance models. In the reviewed papers, the focus was on discontinuous crossbreeding 

schemes. This was because, to our best knowledge, no genomic models have been published 

that are specifically designed for continuous crossbreeding schemes.  
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Abstract 

Numerically small breeds have often been upgraded with mainstream breeds. This historic 

introgression predisposes the breeds for joint genomic evaluations with mainstream breeds. The 

LD structure differs between breeds. The marker effects of a haplotype segment may, therefore, 

depend on the breed from which the haplotype segment originates. An appropriate method for 

genomic evaluation would account for this dependency. This study proposes a method for the 

computation of genomic breeding values for small admixed breeds that incorporate phenotypic 

and genomic information from large introgressed breeds by considering the breed origin of alleles 

(BOA) in the evaluation. The proposed BOA model classifies haplotype segments according to 

their origins and assumes different but correlated SNP effects for the different origins. The BOA 

model was compared in a simulation study to conventional within-breed genomic best linear 

unbiased prediction (GBLUP) and conventional multi-breed GBLUP models. The BOA model 

outperformed within-breed GBLUP as well as multi-breed GBLUP in most cases. 

Keywords: Admixed population, multi-breed genomic prediction, BOA model, cattle, allele origin 
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Introduction 

The efficiency of breeding programs for local breeds is often compromised by the limited number 

of individuals and has resulted in a decreasing competitiveness with high yielding breeds, 

especially with the advent of genomic selection (GS). In GS large reference populations are 

required to accurately predict breeding values of the individuals (Goddard and Hayes 2009) and 

are therefore difficult to establish in small local breeds. In order to improve the performance of 

local breeds, sires of closely related high-yielding breeds were frequently used in the past and 

genetic gain has been generated by introgression. Such strategies increase the genetic 

relatedness between breeds because a certain number of alleles of the high yielding breed 

segregate within the target breed after introgression. 

Several studies were conducted using different approaches to enable GS in numerically small 

breeds using the reference population of a second breed (across-breed prediction) or extending 

the own reference population by adding the reference population of the second breed (multi-breed 

prediction) as reviewed by Lund et al. (2014, 2016). The major findings were that across-breed 

prediction is often not suitable to improve the accuracy of prediction and that the benefit of multi-

breed reference populations strongly depend on the relatedness between the breeds and density 

of the SNP panels. A substantial increase in accuracy can only be expected when the breeds are 

closely related and the number of SNPs is high to capture across-breed linkage disequilibrium 

(LD) between markers and QTLs. However, variation of LD as well as differences of allelic effects 

across populations limit the application of such approaches. Different models were proposed 

accounting for breed-specific effects (e.g. Makgahlela et al. 2012, Thomasen et al. 2013, El Hamidi 

and Rekaya 2015, van den Berg et al. 2020) and differences in LD (Rahimi et al. 2020) in the field 

of multi-breed dairy cattle evaluation. One way is to assign the breed origin of alleles (BOA) 

(Wellmann 2019, Vandenplas et al. 2016) that allows for models assuming SNP effects to be 

different but correlated across breeds. Such models were applied to simulated and real datasets 

of crossbred or admixed populations in cattle (Karaman et al. 2021) as well as other livestock (e.g. 

Duenk et al. 2019) or plant species (Rio et al. 2020) and are reviewed in Stock et al. (2020) and 

Duenk et al. 2021) The studies have shown that considering BOA has the potential to increase 

the accuracy of multi-breed GS.  

In many numerical small dairy cattle breeds sires from a large and high yielding breed were used 

in order to speed up genetic gain in the small breed. This resulted in some cases in a substantial 

amount of introgressed genes and in a mosaic-like haplotype pattern with a mix of native and 

introgressed haplotypes. For example, in the German Angler breed located in the northern part of 

Germany, admixture plays a substantial role in the population structure and the proportion of 
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migrant alleles from other breeds is remarkable  (Addo et al. 2019, Wang et al. 2017a,b,  

Schmidtmann et al. 2021).  A very close relationship to the Holstein Friesian breed, especially the 

Red Holstein breed, was observed (Wang et al. 2017b). A similar level of admixture was observed 

for the German Vorderwald breed, where the genetic progress was mostly driven by the 

introgressed genes (Hartwig et al. 2014, 2015). For these kinds of breeds, a genomic model that 

considers the mosaic pattern of the haplotype structure would be beneficial in multi-breed genomic 

evaluations.  

This study proposes a method for the computation of genomic breeding values for small admixed 

breeds that incorporates phenotypic and genomic information from large introgressed breeds. A 

multi-breed BOA model is derived for multi-breed genomic selection that is suitable for application 

when the individuals have fragmented genomes. It classifies haplotype segments according to 

their origins and assumes different SNP effects for the different origins. 

For validation, it was compared with models that did not consider the breed-origin of QTL alleles. 

All models were applied to simulated datasets. In the simulation, the genotypes of the small 

admixed breed were derived from German Angler cattle, while the genotypes of the introgressed 

breed were derived from German Holstein cattle. Different scenarios were investigated in which 

the number of genotyped animals of the target breed, i.e. the numerically small Angler breed, 

varied, while the number of genotyped animals of the large introgressed breed, i.e. the German 

Holstein, remained constant.  

 

Material and Methods 

Simulation 

The data basis for the simulation study were 50k SNP-chip (Illumina BovineSNP50 BeadChip, 

Illumina Inc., San Diego, CA) genotypes of Angler (AN) (Wang et al. 2017a) and Holstein (HF) 

(Streit et al. 2013) individuals from the German population. Starting with the base generation, one 

further generation was simulated for each breed according to the simulation protocol of Stock et 

al. (2021) with R-package x-breed (Esfandyari and Sørensen 2017). The resulting simulated HF 

dataset (simHF) consisted of 6,000 individuals and the simulated Angler data set contained 3,000 

individuals.  

Several subsets of the total Angler data set were sampled to mimic different population sizes for 

the small breed. Subset simAN1 consisted of 750 individuals, simAN2 consisted of 1,500 

individuals and simAN3 contained all 3,000 simulated Angler individuals. The different simAN 
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populations are referred to as breed size scenarios. The sample sizes represent 12.5%, 25% and 

50% of the number of simHF individuals. In each of the subsets, all sires had the same number of 

offspring. 

 

Table 2: Overview of scenarios. 

The size of the simulated Angler data set (n), the number of simulated Angler individuals in each 
validation set (Validation Set), the number of simulated Angler individuals in each reference set 
for within-breed prediction (Reference Set 1), the number of simulated Angler and simulated 
Holstein Friesian individuals in the reference set for multi-breed prediction (Reference Set 2), and 
the proportion of simulated Angler individuals in the multi-breed reference set (simAN %). 

 

From the 23,448 SNPs that segregated in both breeds, 1,000 SNPs were randomly selected as 

QTLs, while the remaining SNPs were used as markers for genomic prediction.  

The QTL effects for the simAN datasets and the simHF dataset were correlated. The additive 

effects 𝑎𝑞
HF, 𝑎𝑞

AN of QTL 𝑞 were correlated and normally distributed with 

(
𝑎𝑞
HF

𝑎𝑞
AN)~𝑁2 ((

0
0
) , 𝜎𝐴

2 (
1 0.95
0.95 1

)) 

Hence, the correlation of QTL effects between the two simulated breeds was 0.95.  Dominance 

was not modelled. The additive effects were scaled to represent a trait with an additive variance 

of 𝑉𝐴  ≈  0.3 in each of the pure breeds. The additive genetic variance was calculated using 

standard formulas (Falconer and Mackay 1996). The phenotypes were obtained by adding 

normally distributed errors to the true genotypic values. The error variance was chosen to obtain 

a phenotypic variance of 𝑉𝑃 = 1. The entire simulation was independently repeated ten times.  

True Breeding Values 

The true breeding values (TBV) were calculated as  

𝑇𝐺𝑉𝑖𝑘 = ∑ ∑ 𝑍𝐴𝑖𝑞
𝑘 𝑎𝑞

𝑘

𝑘∈{AN,HF}𝑞∈𝑄

 

Scenario n 
Validation 

Set 
Reference Set 1 
(within-breed) 

Reference Set 2 
(multi-breed) 

simAN % 
(multi-breed) 

simAN1 750 150 600 6,600 9.09 

simAN2 1,500 300 1,200 7,200 16.67 

simAN3 3,000 600 2,400 8,400 28.57 
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where 𝑎𝑞
𝑘 is the additive effect of QTL 𝑞 when the haplotype segment containing the QTL originated 

from breed 𝑘 ∈ {AN,HF}. The allele content 𝑍𝐴𝑖𝑞
𝑘 ∈ {0,1,2} equals the number of copies of the 

alternative allele in individual 𝑖 that originate from breed 𝑘. The R-package optiSel (Wellmann 

2019) was used to assign the QTL alleles from the simAN data set to either the Angler or the 

Holstein breed in a segment-based approach. Considered segments consisted of minimum 20 

consecutive markers and had a length of ≥ 1.5Mb. No Angler cattle were introgressed into Holstein 

cattle, so the summand corresponding to 𝑘 = AN equals zero in the simHF data set. 

Genomic Prediction 

The BOA model was compared with two conventional methods for the prediction of genomic 

breeding values, which are within-breed prediction with GBLUP for the simulated Angler cattle, 

and a multi-breed prediction with GBLUP. 

The BOA model: It is assumed that genotypes and phenotypes from several breeds or crosses 

are available, which includes the target breed. The number of SNP is denoted as 𝑀, and the total 

number of individuals as 𝑁. The genotypes are phased, so each individual 𝑖 has a maternal 

haplotype ℎ𝑖
♀ and a paternal haplotype ℎ𝑖

♂ . The binary coded alleles of individual 𝑖 at SNP 𝑚 are 

denoted as ℎ𝑖𝑚
♀ , ℎ𝑖𝑚

♂ ∈ {0, 1}. The origins 𝑜𝑖𝑚
♂ , 𝑜𝑖𝑚

♀  ∈  {1, . . . , K}  of all positions 𝑚 in all haplotypes 

ℎ𝑖
♀, ℎ𝑖

♂ are determined, whereby 𝐾 denotes the number of possible origins. Each origin can be 

considered as a genetic group, whereby the first genetic group is the target breed. The indicators 

for genetic group 𝑘 are denoted as 

𝛿𝑘𝑖𝑚
♂ = {

1 if 𝑜𝑖𝑚
♂ = 𝑘

0 otherwise
  and 

   𝛿𝑘𝑖𝑚
♀ = {1 if 𝑜𝑖𝑚

♀ = 𝑘

0 otherwise
. 

The model equation for the phenotypic value of individual 𝑖 is  

𝑦𝑖 = ∑ 𝑐𝑖𝑘𝛽𝑘

𝐾

𝑘=1

+ ∑ ∑(

𝑀

𝑚=1

𝐾

𝑘=1

ℎ𝑖𝑚
♂ 𝛿𝑘𝑖𝑚

♂ + ℎ𝑖𝑚
♀ 𝛿𝑘𝑖𝑚

♀ )𝑎𝑚
𝑘 + 𝑒𝑖 

where 𝑐𝑖𝑘  ∈  [0, 1] is the genetic contribution, individual 𝑖 has from genetic group 𝑘, 𝛽𝑘 is the fixed 

effect of genetic group 𝑘, 𝑎𝑚
𝑘  is the normally distributed additive effect of marker 𝑚 in genetic group 

𝑘, and 𝑒𝑖 is the residual. The model equation in matrix form is  
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𝑦 =  𝑋𝛽 + ∑𝑍𝐴
𝑘𝑎𝑘

𝐾

𝑘=1

+  𝑒 

where 𝛽 = (𝛽1, . . . , 𝛽𝐾)
𝑇 is the vector of fixed effects with 𝑁 ×  𝐾 design matrix 𝑋, where 𝑋𝑖𝑘  =

 𝑐𝑖𝑘. The 𝑀-vector 𝑎𝑘 of random SNP effects for genetic group 𝑘 has design matrix 𝑍𝐴
𝑘, 

where 𝑍𝐴𝑖𝑚
𝑘 = ℎ𝑖𝑚

♂  𝛿𝑘𝑖𝑚
♂ + ℎ𝑖𝑚

♀ 𝛿𝑘𝑖𝑚
♀  is the number of copies of the alternative allele that originate 

from genetic group 𝑘. The vector 𝑒 with residuals has covariance matrix 𝑅 =  𝜎𝑒
2𝐼.  The covariance 

matrix of the 𝐾𝑀-vector 𝑎 =  (𝑎1 
𝑇 , . . . , 𝑎𝐾 

𝑇)𝑇  is  

𝐷 =  𝐶𝑜𝑣(𝑎) = (
𝜎𝐴1
2 𝐼 ⋯ 𝜎𝐴1𝐾𝐼
⋮ ⋱ ⋮

𝜎𝐴1𝐾𝐼 ⋯ 𝜎𝐴𝐾
2 𝐼

) =  𝛴 ⊗ 𝐼 

with 

∑  =  (
𝜎𝐴1
2 ⋯ 𝜎𝐴1𝐾
⋮ ⋱ ⋮

𝜎𝐴𝐾1 ⋯ 𝜎𝐴𝐾
2
). 

Alternative representations of the model and the mixed model equations are given in the appendix. 

The BOA model requires the breed origins 𝑜𝑖𝑚
♂  and 𝑜𝑖𝑚

♀  of the haplotypes as input parameters. 

The R-package optiSel (Wellmann 2019) was used to assign all marker haplotype segments from 

the simAN data set to either the Angler or the Holstein breed. Considered segments consisted of 

minimum 20 consecutive markers and had a length of ≥ 1.5Mb. 

The covariance matrix Σ of the marker effects of the two pure breeds was needed as an input 

parameter. The correlation was determined by a grid search for each replicate and breed size. A 

5-fold cross-validation was conducted for each candidate value, and the correlation was chosen 

for further analyses that maximized the accuracy of the predictions with the BOA model. As the 

resulting correlation values were similar across all replicates and breed size scenarios and the 

mean value was approximately 0.75, this value (𝑟 = 0.75) was chosen as input parameter for all 

subsequent evaluations. It was expected that such an approach would avoid an overfitting of the 

model. The correlation matrix for the marker effects was multiplied with the estimated variance of 

the allele substitution effects to obtain the covariance matrix of the marker effects. 

Alternative models: For within-breed genomic prediction we used the model 

𝑦 =  𝛽𝟏 + 𝑍𝐴𝑎 +  𝑒, 
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where the 𝑀-vector 𝑎 of random SNP effects has covariance matrix 𝐷 = 𝜎𝑎
2𝐼 and design matrix 

𝑍𝐴, where 𝑍𝐴𝑖𝑚 is the number of copies of the alternative allele at marker 𝑚 in individual 𝑖. The 

vector 𝑒 with residuals has covariance matrix 𝑅 =  𝜎𝑒
2𝐼.  For multi-breed genomic prediction, the 

same model was used. We did not include a breed effect because no breed effect was simulated. 

The SNP markers for genomic prediction were chosen as follows. From the 22,448 SNPs that 

were not chosen as QTLs, all SNPs that segregated with a minor allele frequency (MAF) < 0.03 

within one of the simulated breeds and SNPs that did not segregate in both breeds were omitted. 

Across all replicates, on average 21,670 SNPs remained and were used for genomic prediction. 

Cross Validation 

The genomic predictions were done separately for each breed-size scenario and each replicate. 

The accuracies of prediction were assessed by a 5-fold cross validation. The individuals of the 

respective simAN dataset were assigned to 5 different classes such that individuals from different 

classes had no sires in common. Hence, each class included the offspring of 10 sires. In each 

cross-validation cycle, one class was used as the validation set, and the four remaining classes 

were used as the reference population. 

For multi-breed GBLUP and for the BOA model, the respective simAN reference set was joined 

with the simHF individuals. Consequently, the number of individuals from the simAN population in 

the reference population varied, while the number of simHF individuals was constant.  

An overview on the sample sizes is given in Table 1. The reference populations for within-breed 

prediction consisted of 600, 1,200, and 2,400 simAN individuals, respectively. The reference 

populations for multi-breed prediction were enlarged by the 6,000 simHF individuals. The 

proportions of simAN individuals in the multi-breed reference population were thus 9%, 17% and 

29% for the simAN1, simAN2 and simAN3 scenario, respectively. 

The marker effects were estimated with all three models for each cross-validation cycle.  

Estimated Breeding Values 

The genomic breeding values of the individuals in the validation set were computed for the BOA 

model as 

𝐺𝐸𝐵𝑉𝑖 = ∑ ∑ 𝑍𝐴𝑖𝑚
𝑘 𝑎̂𝑚

𝑘

𝑘∈{AN,HF}𝑚∈𝑀

, 

where 𝑀 is the set of SNP markers, 𝑎̂𝑚
𝑘   is the estimated SNP effect of marker 𝑚 that is used for 

haplotype segments originating from genetic group 𝑘, and the allele content  𝑍𝐴𝑖𝑚
𝑘 ∈ {0,1,2} equals 
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the number of copies of the alternative allele in individual 𝑖 that originate from genetic group 𝑘. For 

the other models, the genomic breeding values were estimated as 

𝐺𝐸𝐵𝑉𝑖 = ∑ 𝑍𝐴𝑖𝑚𝑎̂𝑚
𝑚∈𝑀

, 

where 𝑎̂𝑚 is the estimated SNP effect of marker 𝑚, and the allele content  𝑍𝐴𝑖𝑚 ∈ {0,1,2} equals 

the number of copies of the alternative allele in individual 𝑖 at marker 𝑚. 

Prediction Accuracies 

For each method, the prediction accuracy was calculated as the correlation between the GEBVs 

and the TBVs of the validation individuals. The accuracies presented in the results are the 

averages, taken over all cross-validation cycles and replicates.  

 

Results  

The mean proportion of SNPs with Holstein origin across all replicates was 0.157 ± 0.007. Table 

2 shows the results of the model comparison for all investigated breed-size scenarios. In general, 

the prediction accuracies increased with increasing size of the reference population. The BOA 

model provided the highest accuracies for simAN1 and simAN2, whereas it showed the same 

mean accuracy as within-breed GBLUP for simAN3. Multi-breed GBLUP was inferior to the other 

models in simAN1 and simAN3. Within-breed GBLUP resulted in the lowest accuracies in the 

medium-sized reference population scenario simAN2. The standard deviations (SD) of the 

accuracies were highest using the small reference set, while it showed the smallest SD values in 

the medium-sized reference set. The standard errors of the accuracies were relatively small 

(0.011-0.017). 

Table 3: Mean accuracies of genomic prediction in the simulated breed size scenarios. 

The mean, standard deviation (sd) and standard error (se) of the 5-fold cross-validation across 
the 10 simulated replicates are given for the breed size scenarios simAN1, simAN2 and simAN3 
and for the BOA and the GBLUP models. Column 2 indicates whether a multi-breed reference set 
or a within-breed reference set was used. 

Model 
Reference 

set 
simAN1  simAN2  simAN3 

  mean sd se  mean sd se  mean sd se 

BOA 
simAN + 
simHF 

0.407 0.110 0.016  0.492 0.074 0.011  0.546 0.085 0.012 

GBLUP 
simAN + 
simHF 

0.387 0.118 0.017  0.486 0.078 0.011  0.541 0.092 0.013 

GBLUP simAN 0.401 0.114 0.016  0.477 0.080 0.011  0.546 0.083 0.012 
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Discussion 

It was shown in this study that a multi-breed genomic prediction with the proposed BOA model 

can increase the accuracies of the GEBVs for numerically small admixed populations over multi-

breed and within-breed genomic predictions with GBLUP under certain conditions. The model 

considers the breed origin of each haplotype in individuals with admixed genomes consisting of 

native and introgressed haplotype segments. This makes it especially interesting for numerical 

small breeds with historic introgression from high yielding breeds, as it was observed e.g. in the 

German Angler or Vorderwald breed (Addo et al. 2019, Wang et al. 2017a,b, Schmidtmann et al. 

2021, Hartwig et al. 2014, 2015). 

The simulated QTL positions were the same in both breeds. Recent mutations were neglected 

that could have created new QTLs. The QTL effects of both genetic groups were assumed to be 

highly correlated with a correlation of 0.95. The QTL positions were chosen from the 50k chip, so 

the simulated QTLs are common variants whereas a large fraction of the additive variance is 

expected to come from rare QTL variants (e.g. Kemper and Goddard 2012, Visscher et al. 2017). 

This can compromise a direct transition of the simulation results to real data.  

The LD structures in the simulation are expected to be similar to those investigated in real 

populations (Qanbari et al. 2010, Addo et al. 2019, Schmidtmann et al. 2021) because only one 

generation was simulated, so recombination could occur only within one meiotic division. Although 

the QTL effects were highly correlated, the correlation of the marker effects was only 0.75. The 

reason for the relatively low correlation of marker effects is that the QTLs were excluded from the 

marker set. Therefore, the effect of a single QTL is captured by several markers and the LD 

between markers and QTLs is different in both genetic groups. The shorter ranges of LD in 

admixed populations like the German Angler compared with other breeds (Addo et al. 2019, 

Schmidtmann et al. 2021) contributes to the observed low correlation. A higher correlation 

between marker effects might be observed when more dense markers would be used and a 

heavy-tailed distribution of marker effects would be assumed. 

This paper focused on methods to improve GS in small admixed populations. It compared the 

prediction accuracies of various methods at the example of a simulated population that had a 

similar LD structure as the target breeds. A detailed quantification of the impact of influencing 

factors (e.g. LD and its consistency across populations, or the relatedness and genetic correlation 

between the populations) on the accuracies was beyond the scope of the study.  

In this study, the multi-breed BOA model was compared with conventional multi-breed GBLUP 

and within-breed GBLUP. The multi-breed BOA approach led to an increase in the accuracy of 

the genomic breeding values when the number of genotyped AN individuals was small and 
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medium, and showed similar results as the within-breed GBLUP method for the large reference 

sets. The difference between the prediction accuracies of the models, however, tend to decrease 

with an increasing number of genotyped AN individuals. The multi-breed prediction with GBLUP 

was not superior to within-breed prediction when the number of genotyped AN individuals was 

large. The reason is possibly that the multi-breed GBLUP model assumes a perfect correlation 

between the marker effects of both breeds. This assumption was certainly violated in the 

simulation. The BOA model, which accounts for the correlation between marker effects, could 

improve upon single-breed evaluations and outperformed multi-breed GBLUP in all cases. 

For the prediction of genomic breeding values of Angler in practice, to date, a joint reference 

population of several Scandinavian red dairy breeds (i.e. Danish Red, Norwegian Red, Swedish 

Red, and Finnish Ayrshire) is used. To increase the accuracies of the GEBVs for Angler, about 

170 genotyped and progeny-tested German Angler bulls have been included to this reference set 

as well (private communication RSHeG, 2021). Hence, the findings of the study in scenario 

simAN1 might be most relevant for the current Angler cattle breeding program.  

In the past decades, the Angler breed has been upgraded with other breeds, such as Red Holstein 

and Holstein Friesian to increase its economic value. This has led to relatively high kinships 

between them (Wang et al. 2017b). However, in this study only Holstein Friesian genotypes were 

available and considered, and thus the total amount of introgression was probably not detected 

completely. In addition, the available Holstein Friesian genotypes originated from the current 

population, which might have also biased the categorization of the native parts of the genome. 

Generally, multi-breed prediction is increasingly beneficial when applied to high density marker 

information or whole-genome sequence data (Lund et al. 2014), however, such datasets are 

mostly not available in cost-efficient breeding programs of small local cattle populations. 

 

Conclusion 

A multi-breed genomic prediction with the proposed BOA model increased the accuracies of the 

estimated genomic breeding values for numerically small admixed populations over multi-breed 

and within-breed genomic predictions with GBLUP. The BOA model assumes that the additive 

effect of an allele depends on the genetic group from which the respective haplotype segment 

originates. It is of special interest for multi-breed genomic predictions for numerical small breeds 

with past introgression from high yielding breeds.   
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Appendix 

 

The BOA model has the alternative animal-model representation  

𝑦 =  𝑋𝛽 + ∑ 𝑢𝑘
𝐾
𝑘=1 + 𝑒, 

where 𝑢𝑘 = 𝑍𝐴
𝑘𝑎𝑘 is the 𝑁-vector with animal effects from genetic group 𝑘. The 𝐾𝑁-vector 

𝑢 =  (𝑢1 
𝑇 , . . . , 𝑢𝐾 

𝑇)𝑇 with all animal effects has the representation  

𝑢 =  (
𝑍𝐴
1𝑎1
⋮

𝑍𝐴
𝑘𝑎𝑘

) = 𝑍̃𝐴𝑎 

with 𝐾𝑁 ×  𝐾𝑀-matrix 

𝑍̃𝐴 = 

(

 

𝑍𝐴
1 0 ⋯ 0

0 𝑍𝐴
2 ⋱ ⋮

⋮ ⋱ ⋱ 0
0 ⋯ 0 𝑍𝐴

𝐾)

 . 

The covariance matrix of 𝑢 is  

𝐺 = 𝐶𝑜𝑣(𝑢)  =  𝐶𝑜𝑣(𝑍̃𝐴𝑎)  =  𝑍̃𝐴 𝐶𝑜𝑣(𝑎) 𝑍̃𝐴
𝑇  =  𝑍̃𝐴 (𝛴 ⊗  𝐼) 𝑍̃𝐴

𝑇  

=  (
𝑍𝐴
1 ⋯ 0
⋮  ⋮
0 ⋯ 𝑍𝐴

𝐾
)(

𝜎𝐴1
2 𝐼 ⋯ 𝜎𝐴1𝐾𝐼
⋮  ⋮

𝜎𝐴𝐾1𝐼 ⋯ 𝜎𝐴𝐾
2 𝐼

)(
𝑍𝐴
1𝑇 ⋯ 0
⋮  ⋮
0 ⋯ 𝑍𝐴

𝐾𝑇
)  

= (
𝜎𝐴1
2 𝑍𝐴

1𝑍𝐴
1𝑇 ⋯ 𝜎𝐴1𝐾𝑍𝐴

1𝑍𝐴
𝐾𝑇

⋮  ⋮
𝜎𝐴1𝐾𝑍𝐴

𝐾𝑍𝐴
1𝑇 ⋯ 𝜎𝐴𝐾

2 𝑍𝐴
𝐾𝑍𝐴

1𝑇
) 

  

Thus, the mixed linear model has the alternative representation  

𝑦 =  𝑋𝛽 +  𝑍𝑢 +  𝑒 

with 𝑁 × 𝐾𝑁-matrix 𝑍 =  (𝐼, . . . , 𝐼). Henderson’s mixed model equations are  

(𝑋
𝑇𝑅−1𝑋 𝑋𝑇𝑅−1𝑍
𝑍𝑇𝑅−1𝑋 𝑍𝑇𝑅−1𝑍 + 𝐺−1

) (
𝛽
𝑢̂

̂
) = (

𝑋𝑇𝑅−1𝑦

𝑍𝑇𝑅−1𝑦
), 

where 𝑅 = 𝜎𝑒
2𝐼. They can be simplified as 
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(
𝑋𝑇𝑋 𝑋𝑇𝑍
𝑍𝑇𝑋 𝑍𝑇𝑍 + 𝜎𝑒

2𝐺−1
)(
𝛽
𝑢̂

̂
) = (

𝑋𝑇𝑦

𝑍𝑇𝑦
).  

The alternative model representation as an SNP-model is 

𝑦 =  𝑋𝛽 + 𝑍𝐴𝑎 +  𝑒, 

where 𝑍𝐴  =  (𝑍𝐴
1, . . ., 𝑍𝐴

𝐾), which provides the following alternative mixed model equation:   

(
𝑋𝑇𝑋 𝑋𝑇𝑍𝐴
𝑍𝐴
𝑇𝑋 𝑍𝐴

𝑇𝑍𝐴 + 𝜎𝑒
2𝐷−1

)(
𝛽
𝑎̂

̂
) = (

𝑋𝑇𝑦

𝑍𝐴
𝑇𝑦
),  

where 𝐷−1  =  𝛴−1  ⊗  𝐼. The expanded version of this equation is  

(

 

𝑋𝑇𝑋 𝑋𝑇𝑍𝐴
1 ⋯ 𝑋𝑇𝑍𝐴

𝐾

𝑍𝐴
1𝑇𝑋 𝑍𝐴

1𝑇𝑍𝐴
1 + 𝜎𝑒

2Σ11
−1𝐼 ⋯ 𝑍𝐴

1𝑇𝑍𝐴
𝐾 + 𝜎𝑒

2Σ1𝐾
−1𝐼

⋮ ⋮ ⋯ ⋮
𝑍𝐴
𝐾𝑇𝑋 𝑍𝐴

𝐾𝑇𝑍𝐴
1 + 𝜎𝑒

2Σ𝐾1
−1𝐼 ⋯ 𝑍𝐴

𝐾𝑇𝑍𝐴
𝐾 + 𝜎𝑒

2Σ𝐾𝐾
−1 𝐼)

 

(

 

𝛽
𝑎̂1
⋮
𝑎̂𝐾

̂

)

 =

(

 

𝑋𝑇𝑦

𝑍𝐴
1𝑇𝑦
⋮

𝑍𝐴
𝐾𝑇𝑦)
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Abstract  

In dairy cattle breeding, there is a clear trend towards the use of only a few high-yielding 

breeds. One main reason is that efficient breeding programs require a certain population size. 

Since some numerically small breeds are well known for their functional traits, they might be 

an interesting crossing partner for high yielding breeds with the aim to utilize heterosis. This 

simulation study investigated the transition period of a small cattle population for the 

implementation of genomic selection and rotational crossbreeding with a high-yielding breed. 

Real SNP chip genotype data from the numerically small red dairy breed Angler and the high-

yielding breed Holstein Friesian were used to simulate the base generations, from which 

rotational crossbreeding was conducted for 10 generations. A polygenic trait with many QTL 

with additive and directional dominance effects was simulated. Different selection methods for 

Angler sires (purebred performance, crossbred performance, and weighted purebred-

crossbred performance) and different sizes and structures of the reference population (Angler, 

crossbred animals, and Angler plus crossbred animals) were considered. The results showed 

that the implementation of a genomic rotational crossbreeding scheme is an appealing option 

to promote the numerically small Angler breed. The growing reference population consisting 

of Angler and crossbred individuals maximized the genetic gain for Angler and the performance 
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level for the crossbred individuals. Selection for purebred performance, crossbred performance 

or a weighted combination of both hardly affected the results, and differences between 

selection scenarios were observed only in the long term with decreasing purebred-crossbred 

correlations. 

 

Keywords: rotational crossbreeding, genomic prediction, purebred and crossbred 

performance, heterosis 

 

Introduction 

In dairy cattle breeding, there is a clear trend towards the use of a few high-yielding breeds to 

the detriment of many local breeds. This can probably best be observed in the Holstein Friesian 

population, which has become by far the most important dairy cattle breed in many countries 

during recent decades. One main reason is that efficient breeding programs require a certain 

population size. This holds true especially for genomic selection, where a large reference 

population is of central importance for the estimation of reliable genomic breeding values of 

young selection candidates (Meuwissen et al., 2016). Once this large reference population is 

established, genomic selection has the potential to double the genetic gain (Schaeffer, 2006). 

Because a large reference population can only be established in large populations, 

accelerating genetic gain by genomic selection is problematic in numerically small populations. 

Thus, the performance gap between large high-yielding breeds and breeds with small 

population sizes will continue to increase. As long as the numerically small breed has found 

its economic niche, e.g., as a source of special breed products or for use in landscape 

maintenance, this might be less of a problem. However, if the numerically small breed is used 

to produce products that are interchangeable with products from high-yielding breeds, the 

increasing performance gap will inevitably reduce the economic competitiveness, accelerating 

the trend of the decline of numerically small breeds. 

Several options have been investigated in the past to involve numerically small breeds in the 

genetic gain of high-yielding breeds and to increase their competitiveness. Genomic selection 

was attempted by using marker effects estimated in a large and related population or by 

building a common reference population with this large population. The results of these joint 

efforts were highly dependent on the genetic distance between the breeds, previous genetic 

admixture of the breeds, and their similarities in LD structure. They were not encouraging in 

most cases and thus genomic selection has not been widely adopted in numerically small 

breeds (Lund et al., 2014).  

A very efficient strategy to increase production yield is to introgress genetic material from high-

yielding breeds into numerically small breeds, which was frequently performed in the past 
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(Zhang et al., 2018). For example, Hartwig et al. (2014) reported the introgression of 

Montbeliarde and Red Holstein into Vorderwald cattle, a numerically small breed located in 

southern Germany. This introgression resulted in a substantial increase in milk yield and in an 

increase in genetic diversity within the Vorderwald breed. However, this strategy comes at the 

costs of the genetic uniqueness of the breed, which reduces its conservation potential and 

might result in the genetic extinction of the numerically small breed by replacement breeding 

in the long term (Wang et al., 2017b; 2019).  

Some local and numerically small breeds have been selected for many years for fertility, udder 

health, and other functional traits. Improvement of these trait complexes was one of the main 

reasons for conducting crossbreeding in dairy cattle breeding (Freyer et al., 2008; Sørensen 

et al., 2008). For example, Heins et al. (2006a, 2006b, 2006c) reported the results of a large 

crossbreeding experiment with Normande, Montbeliarde, and Scandinavian Red as the 

crossing partners of Holstein Friesian. Significant improvements in some functional traits were 

observed. Thus, a further option for local breeds might be their use as crossing partners for 

high-yielding breeds with the aim of utilizing breed complementary effects and heterosis, 

especially for functional traits. Naturally, rotational crossbreeding is the only suitable method 

for systematically crossbreeding dairy cattle due to their low female reproductive capacity and 

long generation interval. For the establishment of such a breeding design, several questions 

must be answered, for example, about the design of the reference population (van Grevenhof 

and van der Werf, 2015), the statistical model (reviewed in Stock et al., 2020), or the selection 

criteria regarding purebred or crossbred performance (Esfandyari et al., 2018). 

The implementation of a rotational crossbreeding scheme might be accompanied by the 

introduction of genomic selection in the numerically small breed. Therefore, the aim of the 

present study was to analyze the transition period of a small breed becoming a crossbreeding 

partner for a large high-yielding breed while genomic selection is introduced with a initially 

small but continuously growing reference population size. Stochastic simulations were 

performed considering different types of selection criteria and reference populations. The 

simulation protocol was designed to mimic the Angler dairy cattle breed, a numerically small 

dairy breed located in the northern part of Germany, and German Holstein, a high-yielding 

breed. Real SNP chip genotype data from these two breeds were used to simulate the two 

populations. A typical polygenic quantitative trait with additive genetic and dominance variance 

was simulated. 
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Material and Methods 

Simulation Protocol 

A rotational crossbreeding program, including the local red dairy cattle breed Angler and the 

high-yielding breed German Holstein, was simulated for 10 discrete generations using the R 

package xbreed (Esfandyari and Sørensen, 2017). The base populations of both breeds were 

distinct and were generated using real data from 268 Angler cattle (Wang et al., 2017b) and 

1,935 Holstein cattle (Streit et al., 2013), including 50K genotypes and pedigree information. 

After applying standard quality control parameters and excluding SNPs that were not available 

for both breeds, 23,448 SNPs in total remained for the analysis. Due to computation time, the 

simulated genomes consisted only of the first five chromosomes (BTA1-BTA5). Of the 5,843 

SNPs located on these 5 chromosomes, 500 were randomly chosen as QTL. The QTL alleles 

were assumed to be the same in both breeds, which resulted in high genetic correlations 

across populations in the first generations. Therefore, the QTL effects were jointly simulated 

by sampling additive effects from a gamma distribution (0.4, 1.66) (Meuwissen et al., 2001) 

and by calculating dominance effects by 𝑑𝑖 = ℎ𝑖 ∙ |𝑎𝑖|, with ℎ𝑖 as the degree of dominance, 

sampled from a normal distribution, ℎ𝑖 = 𝑁(0.5,1), leading to a directional dominance and 

therefore to positive heterosis. This way of simulating the QTL effects ensured that QTL with 

high values of additive effects were expected to have large dominance effects, as predicted by 

theory ((Wellmann & Bennewitz 2011) and frequently observed in real data (e.g. Bennewitz 

and Meuwissen (2010). Additionally, we expected crossbred offspring to show heterosis and 

a higher degree of heterozygosity compared to the parental breeds. 

A single trait with additive variance (0.3), dominance variance (0.15) and environmental 

variance (0.55) was specified for both breeds following the genetic architecture found in a 

large-scale experiment by Bolormaa et al. (2015). Additive and dominance effects were scaled 

to reach the desired additive and dominance variances of 0.3 and 0.15, respectively. 

Phenotypes were generated by adding a standard normal residual to the genotypic value. 

The founder generation was obtained from the real data within two generations without 

selection. Here, the aim was solely to increase the size to 3,000 Angler and 6,000 Holstein. 

From these founder generations, the first crossing was purebred Angler × purebred Holstein. 

In the following 9 generations, the crossbred dams were mated alternately to purebred Angler 

bulls and purebred Holstein bulls. Therefore, the simulated breeding scheme included 

purebreeding lines of both Holstein and Angler cattle (see Figure 1). The number of animals in 

each population was kept constant. It was assumed that each dam can have 3 offspring per 

generation. In each generation of purebreeding in Angler, 1,000 dams and 26 sires were 

selected as parents, to have a sufficient size of Ne, resulting in 3,000 (1,500 female and 1,500 

male) purebred offspring. In each generation of purebreeding in Holstein, 2,000 dams and 26 
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sires were selected, resulting in 6,000 (3,000 female and 3,000 male) offspring. For 

crossbreeding, 1,000 crossbred dams and 26 purebred bulls, alternating Angler or Holstein, 

were selected. The Angler bulls selected for crossbreeding were the same as those selected 

for purebreeding. This resulted in 3,000 (1,500 female, 1,500 male) crossbred offspring per 

generation. Discrete generations were considered for both pure and crossbreeding schemes. 

Allocation of sires and dams was random. 

 

 

Figure 1. Rotational crossbreeding scheme. HOL = Holstein, 

CROSS = crossbred, ANG = Angler, ref = reference population, f = 

female, m = male. In all even generations Angler were used as sires 

for crossbreds, in odd generations Holstein were used as sires for 

crossbreds. 
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Table 1. Overview of the nine simulated scenarios 

 

 

Genomic Evaluations 

True breeding values (𝑇𝐵𝑉) were calculated for both purebred (𝑇𝐵𝑉𝑝) and crossbred 

performance (𝑇𝐵𝑉𝑐) as the expected genotypic value of offspring in the next generation of a 

parent mated randomly to its own breed or to another breed, respectively. Thus, to calculate 

the 𝑇𝐵𝑉 for purebred performance of animal 𝑖 belonging to breed 𝑟,  

𝑇𝐵𝑉𝑝𝑖𝑟 =∑[(𝑥𝑖𝑗)(𝑝𝑗𝑟𝑎𝑗 + 𝑞𝑗𝑟𝑑𝑗)] + [(1 − 𝑥𝑖𝑗

500

𝑗=1

)(−𝑞𝑗𝑟𝑎𝑗 + 𝑝𝑗𝑟𝑑𝑗)], 

where 𝑥𝑖𝑗 indicates the genotype of animal 𝑖 at QTL 𝑗, which can be either 1 for 𝐴𝐴, 0.5 for 𝐴𝑎 

or 0 for 𝑎𝑎. 𝑝𝑗𝑟 and 𝑞𝑗𝑟 are the allele frequencies for 𝐴 and a at QTL 𝑗 in breed 𝑟, respectively, 

and 𝑎𝑗 and 𝑑𝑗 are the true additive and dominance effects of the 𝑗𝑡ℎ QTL, respectively. 

 

Analogous to that, the 𝑇𝐵𝑉𝑐 was calculated but using the allele frequencies for 𝐴 and 𝑎 of the 

other population (𝑟’), which are denoted as 𝑝𝑗𝑟’ and 𝑞𝑗𝑟’: 

𝑇𝐵𝑉𝑐𝑖𝑟 =∑[(𝑥𝑖𝑗)(𝑝𝑗𝑟’𝑎𝑗 + 𝑞𝑗𝑟’𝑑𝑗)] + [(1 − 𝑥𝑖𝑗

500

𝑗=1

)(−𝑞𝑗𝑟’𝑎𝑗 + 𝑝𝑗𝑟’𝑑𝑗)]. 

This means that for the Angler 𝑇𝐵𝑉𝑐 the other population 𝑟’ was Holstein in the first generation 

and the crossbred population to which Angler were mated in the later generations. Notably, 

Holstein were solely selected for purebred performance; thus, genomic values or breeding 

values for crossbred performance were not an issue. Calculating the genomic estimated 

breeding values for purebred (𝐺𝐸𝐵𝑉𝑝) and crossbred performance (𝐺𝐸𝐵𝑉𝑐) was similar, but 

Scenario Selection method Reference population 

1a 

Genomic estimated breeding value for purebred 
performance (𝐺𝐸𝐵𝑉𝑝) 

Angler 

1b Crossbreds 

1c Angler + Crossbreds 

2a 

Genomic estimated breeding value for crossbred 
performance (𝐺𝐸𝐵𝑉𝑐) 

Angler 

2b Crossbreds 

2c Angler + Crossbreds 

3a 

Weighted genomic estimated breeding value 
(𝐺𝐸𝐵𝑉𝑤) 

Angler 

3b Crossbreds 

3c Angler + Crossbreds 
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SNP genotypes were used instead of QTL genotypes, and estimated effects, denoted as 𝑎𝑗̂ 

and 𝑑𝑗̂, were used instead of true additive and dominance effects as follows. 

𝐺𝐸𝐵𝑉𝑝𝑖𝑟 = ∑ [(𝑥𝑖𝑗)(𝑝𝑗𝑟𝑎𝑗̂ + 𝑞𝑗𝑟𝑑𝑗̂)] + [(1 − 𝑥𝑖𝑗

4,843 

𝑗=1

)(−𝑞𝑗𝑟𝑎𝑗̂ + 𝑝𝑗𝑟𝑑𝑗̂)]. 

Analogous to that, the 𝐺𝐸𝐵𝑉𝑐 was calculated but again using the allele frequencies for 𝐴 and 

𝑎 of the other breed (𝑟’), denoted as 𝑝𝑗𝑟’ and 𝑞𝑗𝑟’, respectively: 

𝐺𝐸𝐵𝑉𝑐𝑖𝑟 = ∑ [(𝑥𝑖𝑗)(𝑝𝑗𝑟’𝑎𝑗̂ + 𝑞𝑗𝑟’𝑑𝑗̂)] + [(1 − 𝑥𝑖𝑗

4,843 

𝑗=1

)(−𝑞𝑗𝑟’𝑎𝑗̂ + 𝑝𝑗𝑟’𝑑𝑗̂)]. 

To predict the effects associated with each SNP (QTL were excluded), Bayesian ridge 

regression (BRR) implemented in the BGLR R package by Pérez and los Campos (2014) was 

the chosen method following the model 

𝑦𝑖 = 𝜇 +𝐻𝑖𝑏 +∑𝑋𝑖𝑗𝑎𝑗 +∑𝑍𝑖𝑗 𝑑𝑗
∗ + 𝑒𝑖, 

where 𝑦𝑖 is the phenotypic value of animal 𝑖 in the reference population, 𝜇 is the overall mean, 

𝐻𝑖 is observed heterozygosity for individual 𝑖 considered as covariate with effect 𝑏, 𝑋𝑖𝑗 indicates 

the genotype of animal 𝑖 at SNP 𝑗, which can be either 0 for 𝑎𝑎, 1 for 𝐴𝑎 or 2 for 𝐴𝐴. The 

random unknown additive effect for SNP 𝑗 is denoted by 𝑎𝑗, and 𝑍𝑖𝑗 indicates the 

heterozygosity of animal 𝑖 at SNP 𝑗, which is either 0 if animal 𝑖 is homozygous (𝑎𝑎/𝐴𝐴) or 1 if 

animal 𝑖 is heterozygous (𝐴𝑎) at marker 𝑗. The term 𝑑𝑗
∗ is the random unknown dominance 

effect at SNP 𝑗, and 𝑒𝑖 is the residual effect for animal 𝑖. As directional dominance effects were 

simulated for the trait architecture, to account for non-zero mean for dominance effects, the 

individual observed heterosis was considered as a covariate (𝐻𝑖) in the model as proposed by 

Xiang et al. (2016). Subsequently, dominance effects (𝑑𝑗) were obtained as 𝑑𝑗 = 𝑑𝑗
∗ + 𝑏/𝑁, 

where 𝑁 is number of SNP.  

BRR includes prior assumptions of Gaussian distributed effects, with a mean of zero and 

residual variance of 𝜎𝑒
2~𝑋−2(𝑑𝑓𝑒 , 𝑆𝑒) which is assigned to scaled-inverse chi-squared densities 

and indexed by a degree of freedom (𝑑𝑓𝑒 = 5) and scale (𝑆𝑒 = 0.33). The corresponding 

algorithm uses a Gibbs sampler. We chose 10,000 iterations and discarded the first 2,000 as 

burn-ins.  
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True genomic values (𝑇𝐺𝑉) were calculated as   

𝑇𝐺𝑉𝑖 =∑(𝑎𝑖𝑗 + (2 − 𝑥𝑖𝑗)𝑑𝑖𝑗)𝑥𝑖𝑗

500

𝑗=1

, 

using the above defined parameters. 

Genetic differentiation between Angler and Holstein in each generation was calculated by FST 

values, according to equation (8) of Weir and Cockerham (1984).  

Scenarios 

Genetic gain in Angler and their rotational crossbred progeny with Holstein was examined in 9 

different scenarios (Table 1). The simulated scenarios differed in the selection criteria and 

structure of the reference population used for the estimation of marker effects. Each scenario 

was replicated 10 times. Referring to Angler, 3 different selection methods were used to select 

animals as sires and dams. They were either selected based on their estimated breeding value 

for purebred performance (𝐺𝐸𝐵𝑉𝑝, scenario 1), crossbred performance (𝐺𝐸𝐵𝑉𝑐, scenario 2) 

or combined weighted purebred and crossbred performance (𝐺𝐸𝐵𝑉𝑤, scenario 3). When 

selection was based on 𝐺𝐸𝐵𝑉𝑤, the weight (𝑤) was 50% on purebred and 50% on crossbred 

performance as 𝐺𝐸𝐵𝑉𝑤 = (1 − 𝑤) ∙ 𝐺𝐸𝐵𝑉𝑝𝑖 +𝑤 ∙ 𝐺𝐸𝐵𝑉𝑐𝑖, with 𝑤 = 0.5. In all implemented 

scenarios, Holstein sires and dams were selected based on their purebred performance 

(𝐺𝐸𝐵𝑉𝑝). Crossbred animals were always selected randomly to be dams. 

In addition, 3 different female reference populations were used to predict the marker effects 

for Angler. In each generation, they accumulated and consisted of all available females, which 

resulted in an increasing reference population from generation to generation. Depending on 

the scenario, they were either Angler (scenario a), crossbreds (scenario b), or combined Angler 

+ crossbreds (scenario c). In each scenario, purebred Holstein built the reference population 

for Holstein. It was assumed that Angler competed with Holstein; thus, no common reference 

population with Angler and Holstein was considered. 

 

Results 

Genetic Gain 

The trends of the true genomic values (𝑇𝐺𝑉) over the ten simulated generations and nine 

scenarios are shown in Figure 2 and Figure 3 for crossbreds, Angler and Holstein. The 

averages are presented along with standard deviations for generations five and ten in Table 

4. In general, the population of crossbred animals was superior to both purebred Angler and 

Holstein populations. Starting with small differences in first generations, the differences within 

and between populations increased over time and therefore showed how the scenarios 
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affected the genetic gain. The genetic gain in Angler improved smoothly, whereas in crossbred 

animals it improved in waves depending on which breed was used as sire. Peaks occurred in 

even generations, when Angler were used as sires to produce the crossbred offspring. 

Regarding Angler, the highest response to selection was found in scenarios 1c, 2c, and 3c, 

where the reference population included both Angler and crossbred animals. Scenario 1c, with 

selection based on 𝐺𝐸𝐵𝑉𝑝, was slightly superior to 2c (selection on 𝐺𝐸𝐵𝑉𝑐) and 3c (selection 

on 𝐺𝐸𝐵𝑉𝑤). The lowest improvement over time was found in scenario 2b, where the reference 

population only included crossbred animals and selection was based on 𝐺𝐸𝐵𝑉𝑐. The highest 

genetic gain in crossbred animals was in scenario c, followed by a and b, which was similar to 

the results in Angler. While increasing of TGV in Angler was smooth, it developed in waves in 

crossbred animals. The amplitudes increased over time, with the largest differences between 

the generations in scenario a and b and the smallest in scenario c. In general, there were very 

small or lack of differences between scenarios a and b. In scenario 2 (selection based on 

𝐺𝐸𝐵𝑉𝑐), all a, b and c were very close to each other.  

Correlations between Purebred and Crossbred Performance (𝑟𝑝𝑐) 

Correlations between purebred and crossbred performance (𝑟𝑝𝑐) were calculated as 

correlations between 𝑇𝐵𝑉𝑝 and 𝑇𝐵𝑉𝑐 of Angler. They are shown in Figure 4. Up to generation 

4, 𝑟𝑝𝑐  was > 0.98 in all scenarios, which was expected because homogeneous QTL effects 

were simulated and the SNPs used were informative in both breeds. The 𝐹𝑆𝑇 values were 0.01 

in the first generations, showing little genetic differentiation between Angler and Holstein. It 

increased up to 0.08 in generation 10, with little differences between the scenarios (not shown 

elsewhere).  In later generations, a small decrease of 𝑟𝑝𝑐 was observed, with some waves. The 

amplitudes of the waves increased over time. The largest decrease was found in scenario 2c, 

with the lowest 𝑟𝑝𝑐  in generation 9 (0.825). In general, the lowest decrease was found in 

scenarios 1a, 1b, and 1c with the selection criterion of Angler based on 𝐺𝐸𝐵𝑉𝑝. 
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Figure 3. True genomic values (TGV) of 
purebred Angler and Holstein over 10 
generations of simulation. Scenarios grouped 
by selection criterion. From top to bottom: 
GEBVp, GEBVc, and GEBVw. a = reference 
population consisting of Angler, b = reference 
population consisting of crossbred animals, and 
c = reference population consisting of Angler 
and crossbred animals. 

Figure 2. True genomic values (TGV) of 
crossbred animals and Holstein over 10 
generations of simulation. Scenarios grouped 
by selection criterion. From top to bottom: 
GEBVp, GEBVc, and GEBVw. a = reference 
population consisting of Angler, b = reference 
population consisting of crossbred animals, and 
c = reference population consisting of Angler 
and crossbred animals. 
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Figure 4. Correlations of purebred and 
crossbred performance (r_pc) of purebred 
Angler. Scenarios grouped by selection 
criterion. From top to bottom: GEBVp, GEBVc, 
and GEBVw. a = reference population 
consisting of Angler, b = reference population 
consisting of crossbred animals, and c = 
reference population consisting of Angler and 
crossbred animals. 

Figure 5. Heterosis (𝐻) in crossbred animals 
over 10 generations of simulation. Scenarios 
grouped by selection criterion. From top to 
bottom: 𝐺𝐸𝐵𝑉𝑝, 𝐺𝐸𝐵𝑉𝑐, and 𝐺𝐸𝐵𝑉𝑤. a = 
reference population consisting of Angler, b = 
reference population consisting of crossbred 
animals, and c = reference population 
consisting of Angler and crossbred animals. 
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Figure 6. Degree of heterozygosity in crossbred animals (left) and purebred Angler (right) over 10 generations of 
simulation. Scenarios grouped by selection criterion. From top to bottom: GEBVp, GEBVc, and GEBVw. a = 
reference population consisting of Angler, b = reference population consisting of crossbred animals, and c = 
reference population consisting of Angler and crossbred animals. 
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Table 4. True genomic values (SD) of Angler, crossbreds and Holstein in generations 5 and 10. All scenarios shown. Scenario 1 = selection on 
GEBVp, scenario 2 = selection on GEBVc, scenario 3 = selection on GEBVw. a = reference population consisting of Angler, b = reference 
population consisting of crossbred animals, and c = reference population consisting of Angler and crossbred animals. Holstein animals are not 
affected by scenarios, thus results are the same in each scenario. 

 
  Angler  Crossbreds  Holstein (not affected by scenarios) 

Scenario  Generation 5  Generation 10  Generation 5  Generation 10  Generation 5  Generation 10 

1a  1.575 (0.600)  3.176 (0.493)  1.990 (0.601)  3.814 (0.487)  1.888 (0.591)  3.706 (0.477) 

1b  1.541 (0.602)  2.982 (0.495)  1.989 (0.616)  3.806 (0.481)       

1c  1.878 (0.599)  3.580 (0.477)  2.221 (0.598)  3.981 (0.488)       

2a  1.631 (0.618)  3.134 (0.470)  2.072 (0.594)  3.853 (0.488)       

2b  1.522 (0.596)  2.808 (0.497)  1.977 (0.621)  3.817 (0.499)       

2c  1.733 (0.576)  3.237 (0.474)  2.126 (0.586)  3.834 (0.476)       

3a  1.541 (0.603)  3.168 (0.490)  1.939 (0.601)  3.746 (0.484)       

3b  1.464 (0.619)  2.896 (0.497)  1.916 (0.616)  3.878 (0.503)       

3c  1.805 (0.587)  3.479 (0.473)  2.172 (0.590)  3.969 (0.485)       
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Heterosis and Degree of Heterozygosity 

Heterosis (𝐻) of crossbred animals was observed over 10 generations by the difference 

between 𝑇𝐺𝑉 of crossbred animals (CP) and the average 𝑇𝐺𝑉 of their parents’ populations 

(𝑃𝐴), such as  𝐻 =  𝐶𝑃 –  𝑃𝐴. The results (Figure 5) show most differences between type of 

reference and between generations in scenario 3, where selection was based on 𝐺𝐸𝐵𝑉𝑤. 

Within scenario 3, we found the highest amplitudes when the reference population included 

crossbred animals only (scenario 3b). The lowest differences were found in scenario 1c. In 

general, the amplitudes increased over time, with peaks when the sires were Angler and low 

values when the sires were Holstein. 

The degree of heterozygosity in crossbred animals and Angler was calculated as the average 

proportion of heterozygous loci to the total number of loci. The results showed a decreasing 

amount of heterozygosity over time (Figure 6). In general, the decrease in crossbreds was 

smaller. It evolved in waves, particularly in scenarios 1c and 3b. At the same time, the decline 

of heterozygosity in Angler was fastest in these scenarios. 

 

Discussion 

The transition period of a numerically small cattle population for the implementation of genomic 

selection and rotational crossbreeding with a high-yielding breed was simulated using real SNP 

chip genotypes from the small Angler and large German Holstein populations. The transition 

period was mimicked by an increasing reference population starting with 1,500 simulated 

individuals in the first Angler purebred and crossbred reference populations increasing to 

15,000 simulated individuals in the two reference populations after 10 generations. 

Simultaneously, rotational crossbreeding was introduced by a first cross of Angler ×  Holstein, 

followed by alternating crossings of Angler × crossbreds and Holstein × crossbreds.  The 

simulation of these first 10 generations revealed how to select Angler, how to establish the 

reference population during transition and how to proceed on the long run. 

Only the first five chromosomes were considered, equivalent to approximately 1/3 of the full 

genome (Thomsen et al., 2000). Following the scaling arguments in Meuwissen (2009), on a 

full-genome scale, the simulated individuals in the two reference populations at the beginning 

and after ten generations correspond to 4,500 and 45,000 individuals, respectively. The results 

from the last generations can be used to identify suitable strategies for the long term.  

We investigated response to selection under different selection criteria of Angler, which was 

either purebred, crossbred or combined purebred-crossbred performance. Additionally, SNP 

effects were estimated either based on purebred Angler, crossbred animals or Angler and 
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crossbred animals in the reference population.  In general, crossbred animals showed a slight 

superiority compared to purebred Angler and Holstein, regardless of the choice of reference 

population or selection criteria. This fact can make them, and therefore the implementation of 

a rotational crossbreeding scheme, attracting to breeders of both Angler and Holstein.  

The highest genetic gain in Angler was achieved in scenario 1c, where the selection criterion 

was based on 𝐺𝐸𝐵𝑉𝑝 and the reference population consisted of Angler and crossbred animals. 

In addition, crossbred animals performed best in this scenario, as well as their 𝑇𝐺𝑉 had the 

smallest amplitudes. In contrast, in scenarios 1b, 2b and 3b Angler and crossbred animals had 

the least genetic gain and amplitudes of crossbred animals were highest. From a practical and 

economically point of view these amplitudes are undesired because they introduce another 

source of variability making the herd stock more unequal. The use of the combined Angler and 

crossbred reference population maximised the crossbred and the purebred Angler 

performance and reduced the waves substantially. Therefore, 1c would be preferable over all 

other scenarios and genotyping crossbred cows in the long run is desired to increase the size 

of reference population with these cows.  

The superiority of crossbred animals was due to the heterosis effects, which were positive 

under all considered scenarios (Figure 5). The waves observed in the genetic values in 

crossbred animals (Figure 3) correspond to the waves of heterosis (Figure 5), as peaks 

occurred in the same generations and the degree of amplitudes was similar in the respective 

scenarios. Especially for scenario 1b, 2b and 3b (crossbred reference population), the waves 

increased over the generations. Intuitively, this goes against the expectation of maximum 

heterosis in the first cross generation and expectations from literature were not met, which 

assume heterosis in a two-way rotation to be highest in F1 and then to be settled at 67% of F1 

over time (Sørensen et al., 2008; Buckley et al., 2014). This can be attributed to past gene flow 

from the Holstein to the Angler (Wang et al., 2017b). During the simulations, no further gene 

flow between the populations was assumed. Consequently, the 𝐹𝑆𝑇values were low at the 

beginning, but increased over time. The performance waves in the crossbred individuals 

peaked in those generations where Angler were used as sires (see Figure 1). In these 

generations, the degree of heterozygosity was higher than that in the generations in which 

Holstein were used as sires (left panel of Figure 6). The heterozygosity in Angler decreased, 

especially for the scenarios where waves were observed (right panel Figure 6).  

Esfandyari et al. (2015) reported higher prediction accuracies of dominance effects using a 

crossbred instead of a purebred reference population, which was due to the higher level of 

heterozygosity. van Grevenhof and van der Werf (2015) studied the effect of adding crossbred 

individuals to a purebred reference population. If selection is for crossbred performance, the 
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addition of crossbred individuals results in an increase in genetic gain, but the effect of a 

replacement of purebred with crossbred individuals is small, especially for large 𝑟𝑝𝑐. In our 

study, 𝑟𝑝𝑐  was high during the first generations and decreased only later (Figure 4). This can 

be explained by their small genetic distance at the beginning. Thus, no effects could be 

observed for the performance of crossbreds (Figure 2) when using a crossbred reference 

population (scenario b) instead of a purebred Angler reference population (scenario a). 

Nevertheless, as 𝑟𝑝𝑐  might decrease further in following generations, a crossbred reference 

population could be advantageous in the long term. 

In this study, the combination of structure and size of the reference population had more impact 

on the genetic gain than the selection method, shown by overall highest values when the 

reference population included both Angler and crossbred animals. Especially in the first 

generations the selection method had almost no impact. In later generations we found slightly 

increasing differences between 𝐺𝐸𝐵𝑉𝑝, 𝐺𝐸𝐵𝑉𝑐 and 𝐺𝐸𝐵𝑉𝑤 in terms of the Angler performance 

and crossbred performance, respectively. Hence, a marked differentiation of the breeding goal 

regarding purebred or crossbred performance might be particularly an issue in the long term, 

if increasing distances between parent populations and thus decreasing 𝑟𝑝𝑐 occur. In a study 

by Esfandyari et al. (2018) they showed in a simulated crossbreeding scheme for pigs that 

selection in purebreds for 𝐺𝐸𝐵𝑉𝑐 increased crossbred performance only in the short term, 

whereas selection for 𝐺𝐸𝐵𝑉𝑝 was beneficial even for crossbred performances in the long term. 

The benefit of 𝐺𝐸𝐵𝑉𝑐 over 𝐺𝐸𝐵𝑉𝑝 for short-term response was because heterosis was 

maximized. Selection for 𝐺𝐸𝐵𝑉𝑝 drove beneficial QTL alleles faster to fixation in the pure 

breeds, which reduced heterosis in crossbreds, but this fixation was beneficial in the long term. 

As both short- and long-term responses are important, the authors suggested using 𝐺𝐸𝐵𝑉𝑤 

as a selection criterion. 

It is well known that marker density matters in regard to multibreed genomic evaluations (Erbe 

et al. 2012; Lund et al. 2014). A high marker density is also desired for the application of more 

advanced genomic models that, e.g., account for the breed origin of alleles or for the modeling 

of dominance (Ibánez-Escriche et al. 2009; Wellmann & Bennewitz 2012; Christensen et al. 

2014; Sevillano et al. 2017). On the other hand, it is unlikely that in a transition period the 

individuals of a small breed will be genotyped with dense SNP chips, and most high-yielding 

breeds are genotyped with a standard medium density SNP chip. Therefore, we relied on 50K 

SNP chip data during the simulation and applied a rather simple genomic model. To analyze 

the effect of a higher marker density, we additionally ran the genomic model for some scenarios 

without excluding the true QTL from the SNP panel. The results did not alter the general picture 

(results not shown); thus, for the model applied, the SNP density appeared to be sufficient. 
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The results showed that the implementation of the genomic rotational crossbred scheme is a 

twofold interesting option for the Angler population. First, the reference population can be 

augmented with individuals from the crossbred population; second, the population can be bred 

to become an interesting crossing partner for the high-yielding breed Holstein. However, the 

limits of the simulation scheme must be acknowledged. One trait with equal performance in 

both breeds was simulated. It is well known that average milk production performance is much 

higher in Holstein; on the other hand, Angler are well known for their functional traits. Hence, 

extending this study towards multiple traits and trait-specific population parameters (e.g., breed 

means) and genetic parameters (i.e., heritability, dominance variance) is needed to make 

inferences for the total merit index. In addition, it was assumed that the establishment of the 

crossbred population did not come at the cost of the number of Angler individuals. Translated 

into practice, this means that Holstein breeders must start crossbreeding, whereas at least 

most of the Angler breeders should continue purebreeding. 

Additionally, to further increase heterosis, the crossbreeding scheme could be extended 

towards three breeds. Recently, Shonka-Martin et al. (2019a; 2019b) showed that crossbred 

animals of Montbeliarde × Viking Red × Holstein were superior to purebred Holstein regarding 

feed efficiency, fertility and longevity; thus, it might be interesting to evaluate the potential of 

such a three-way rotational crossbreeding scheme including Angler. 

 

Conclusions 

The results showed that the implementation of a genomic rotational crossbreeding scheme 

could be an interesting option to promote the numerically small Angler breed. The growing 

reference population consisting of Angler and crossbred individuals maximized the genetic 

gain for Angler and the performance level for the crossbred individuals. Selection for purebred 

performance, crossbred performance or a weighted combination of both hardly affected the 

results, and the effects were observed only in the long term with decreasing purebred-

crossbred correlations. 
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Abstract  

Many local dairy cattle breeds are facing genetic extinction due to a large proportion of foreign 

genes which have been introgressed in the past. In addition, the performance gap to popular 

high-yielding breeds is increasing, resulting in a risk of numeric extinction. In the present 

simulation study, a genomic rotational crossbreeding scheme with the high yielding German 

Holstein breed and the numerically small German Angler breed was analysed with the aim to 

utilize heterosis effects in the crossbred animals, and simultaneously to control inbreeding, and 

to reduce the amount of Holstein migrant contribution observed in the Angler breed. Different 

scenarios of implementing OCS methods for Angler individuals were evaluated, which differed 

in their restrictions regarding conventional and native kinship, as well as the amount of migrant 

contributions from German Holstein. The results showed that rotational crossbreeding can 

result in superior crossbred offspring compared to the purebred parental lines, while 

simultaneously restricting the increase of inbreeding and reducing migrant contributions with 

OCS methods.  

However, reducing the amount of migrant contributions in Angler turned out to be the most 

compromising restriction with regard to genetic gain, and resulted in waves of heterosis effects 
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and genomic values observed in the crossbred individuals over the generations. Further, the 

reduction of migrant contribution did not increase heterosis effects in the crossbred offspring, 

and, thus did not result in superior crossbred offspring in general.  

 

Keywords: Rotational crossbreeding, advanced Optimum Contribution Selection, local dairy 

cattle breeds 

 

Introduction 

The landscape of dairy cattle breeds is characterized by only few numerically large high-

yielding breeds and several numerically small local breeds. Since genetic progress can be 

easier achieved in large breeds, especially using genomics selection, the performance gap 

between high yielding breeds and local breeds has increased further over the last decades. 

This has reduced the economic competitiveness of local breeds and, in many cases, resulted 

in a decline of their population sizes and in a threat by numerical extinction. 

In order to improve the performance of numerically small breeds, high-yielding breeds were 

frequently introgressed in the past, sometimes to a high extent. For example, the introgression 

of mainly Montbéliarde and Red Holstein reduced the proportion of native genes in the German 

Vorderwald breed to 40% (Hartwig et al., 2014). Comparable amounts of introgressed genes 

were reported for the German Angler and the Red and White Dual Purpose breed 

(Schmidtmann et al., 2021). Thus, although this introgression has improved performance 

levels (Hartwig et al., 2014), it has revealed another possibility of local breed extinction, namely 

extinction of the native gene pool or genetic extinction (Wellmann and Bennewitz, 2019).  

Amador et al. (2011) reported that even a small amount of introgressed material can reach a 

high level in the breed within several generations and that removing this is a challenging task. 

In order to act against the threat of genetic extinction, the proportion of native genes has to be 

increased in the breed. The method of advanced Optimum Contribution Selection (aOCS) was 

developed for this purpose (Wellmann, 2019). This selection method can be used for selecting 

dams and sires as parents of the next generation in order to decrease the level of migrant 

contributions and thus recover the native parts of a breed, while simultaneously achieving 

genetic gain and controlling the rate of inbreeding (Wang et al., 2017a). However, the costs 

for the additional constraint of reducing introgressed genes in the objective function of aOCS 

is a reduced genetic gain, compared to classical OCS without this extra constraint (Wang et 

al., 2017b). 
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Many local breeds are well-known for their superiority in functional traits and robustness 

compared to high-yielding breeds, which makes them interesting partners in systematic 

crossbreeding schemes with high-yielding breeds (Buckley et al., 2014). The reasons for these 

crossbreeding schemes are to use breed complementary effects and heterosis. For example, 

heterosis effects of 4.4 % were observed for milk and fat yield in a cross of Danish Jersey and 

Holstein cattle (Kargo et al., 2021). In the dominance model, the amount of heterosis is 

maximised when the parental breeds are divergent fixated at the QTN, dominance variance is 

substantial, and the dominance effects of heterozygote genotypes are on average positive 

(Falconer and Mackay, 1996). Thus, if a crossbreeding scheme is considered with a 

numerically small breed and a high-yielding breed which was introgressed recently in the small 

breed, it can be expected that the application of aOCS will increase heterosis effects due to 

the removal of introgressed genes.  

In a recent study (Stock et al., 2021) we showed how a genomic rotational crossbreeding 

scheme could be established for a small local breed and a high yielding breed at the example 

of simulated Angler and Holstein populations. However, due to the high level of similarity of 

both breeds due to recent introgression of Holstein genes into the Angler (Wang et al. 2017b, 

Schmidtmann et al. 2021), the level of heterosis was limited. The aim of the present simulation 

study was to analyse rotational crossbreeding schemes at the example of these two breeds 

with the application of aOCS in the Angler breed. Several and conflicting objectives were 

considered, i.e. the increase of native gene frequencies in the Angler, controlling inbreeding, 

genetic gain in the Angler for purebred and for crossbred performance, and maximisation of 

crossbred offspring performance.      

 

Material and Methods 

A two-way rotational crossbreeding scheme for the numerically small local dairy breed Angler 

and the high-yielding German Holstein breed was simulated for 8 discrete generations, using 

the R package xbreed (Esfandyari and Sørensen, 2017). The genotypes (Illumina 

BovineSNP50 BeadChip, 50k) and pedigree data from 268 Angler cattle (Wang et al., 2017a) 

and 1935 German Holstein (Streit et al., 2013) were used as input to create the founder 

generations of 3000 Angler and 6000 Holstein animals. The founder generations were 

obtained from the real data within one generation without selection, solely aiming to increase 

the size of animals to 3000 and 6000, respectively. The first crossing was purebred Angler x 

purebred Holstein, followed by 7 generations of the rotational crossbreeding scheme, in which 

Angler and Holstein bulls were mated alternately to crossbred dams. Thus, purebred lines of 

Angler and Holstein were generated, as well (see Figure 1, crossbreeding scheme). The 
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number of animals in each population was kept constant, either 3000 or 6000, to mimic a large 

Holstein population and a small Angler population. Allocation of sires and dams was always 

random. One offspring was generated per mating and the overall sex-ratio of offspring was 

50% female and 50% male. 

From the SNPs that were segregating in both breeds, 1000 were randomly chosen as QTL. 

The QTL effects were jointly simulated for both breeds by sampling additive effects from a 

gamma distribution Γ(0.4, 1.66) (Meuwissen et al., 2001) and by calculating dominance effects 

as 𝑑𝑖 = ℎ𝑖 ∙ |𝑎𝑖|, where the dominance degree ℎ𝑖 was sampled from the normal distribution, 

𝑁(0.5,1). This led to a directional dominance and therefore to positive heterosis. This way of 

simulating the QTL effects ensured that QTL with high values of additive effects were expected 

to have large dominance effects, as predicted by theory (Wellmann and Bennewitz, 2011). A 

single trait with additive variance (0.3), dominance variance (0.15), and phenotypic variance 

(1) was specified for both breeds. Additive and dominance effects were scaled to reach the 

desired variances, respectively. The simulated dominance variance was chosen to be large for 

demonstration purpose. Nevertheless, they are within the range as estimated by Bolormaa et 

al,. (2015) for a wide range of traits in cattle.  
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Scenarios 

Genetic gain, mean kinship, native kinship and migrant contributions in Angler and their 

rotational crossbred progeny with Holstein were examined in 3 different scenarios. The 

simulated scenarios differed in the selection criteria of Angler. Selection of individuals to 

become parents of the next generation was based on classical OCS or aOCS methods as 

implemented in the R package optiSel (Wellmann 2019). The classical OCS scenario 

maximized genetic gain and restricted the increase of mean kinship in the population. The 

aOCS scenario additionally restricted the increase of the native kinship and the amount of 

migrant contributions (MC) in the population. The kinship was computed as the segment-based 

Figure 1. Rotational crossbreeding scheme. HOL = Holstein, 
CROSS = crossbred, ANG = Angler, f = female, m = male.  
In all even generations Angler were used as sires for 
crossbreds, in odd generations Holstein were used as sires 
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kinship 𝑓𝑆𝐸𝐺 from marker data. The kinship between two individuals equals the probability that 

two alleles randomly taken from two individuals belong to identical segments (Cara et al., 

2013). We considered segments consisting of at least 20 consecutive markers and a length of 

at least 1.5Mb. Native segments in Angler were determined by their frequencies in Holstein. If 

a segment containing the allele had a frequency < 0.01 in Holstein, then it was classified as 

native in Angler. The migrant contribution (MC) of an Angler individual was calculated as the 

proportion of its genome classified to be native in Holstein. Hence, the migrant contribution 

calculated in this paper contains contributions from Holstein, but not contributions from other 

introgressed breeds. The native kinship 𝑓𝑆𝐸𝐺|𝑁 in Angler equals the conditional probability that 

two alleles randomly taken from two individuals belong to identical segments, given that they 

are native (Wellmann et al., 2012). The R package optiSel (Wellmann, 2019) was also used 

for the identification of the origin of alleles, computation of MC, 𝑓𝑆𝐸𝐺 and 𝑓𝑆𝐸𝐺|𝑁. Exact 

mathematical formulas for these calculations can be found in Wellmann and Bennewitz (2019). 

The overall goal of all scenarios was to maximize genetic gain in the Angler breed selected for 

a combined purebred and crossbred performance. The considered scenarios are summarized 

in Table 1.  

In Scenario 1 the upper bound for the mean kinship in generation 𝑡 + 1 was calculated as 

𝑢𝑏. 𝑓𝑆𝐸𝐺𝑡+1 = 𝜇𝑓𝑆𝐸𝐺𝑡
+ (1 − 𝜇𝑓𝑆𝐸𝐺𝑡

)∆𝐹 

 with ∆𝐹 being the desired rate of inbreeding, calculated as ∆𝐹 = 0.5𝑁𝑒 (Falconer and Mackay, 

1996) and a desired 𝑁𝑒 of 100. The term 𝜇𝑓𝑆𝐸𝐺𝑡
 is the mean kinship in the population in 

generation 𝑡. In Scenario 2 and 3, the upper bound for the native kinship was calculated by 

replacing 𝑓𝑆𝐸𝐺𝑡with 𝑓𝑆𝐸𝐺|𝑁𝑡 in the above equation. The upper bound for MC was either set as 

the mean MC from the founder generation (Scenario 2) or decreased by 1% each generation 

(Scenario 3). Angler sires selected for crossbreeding were the same as those selected for 

purebreeding. Selection of Holstein was always based on classical OCS and EBV for purebred 

performance. Selection of crossbred dams was always random. Based on the optimization 

goal and respective constraints, the optimum genetic contributions of individuals were 

calculated and used for the selection of sires and dams to breed the next generation. Each of 

the 3 different Scenarios was replicated 10 times. 
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Table 1. Overview of simulated scenarios.  

𝐸𝐵𝑉𝑤 = combined weighted estimated breeding values for purebred and crossbred 
performance, 𝑢𝑏. 𝑓𝑆𝐸𝐺= upper bound of segment-based kinship, 𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁= upper bound of 

segment based native kinship, 𝑢𝑏.𝑀𝐶= upper bound of migrant contribution. 

 

Genomic evaluations 

True breeding values (𝑇𝐵𝑉) were calculated for both purebred (𝑇𝐵𝑉𝑝) and crossbred 

performance (𝑇𝐵𝑉𝑐) as the expected genotypic value of offspring in the next generation of a 

parent mated randomly to its own breed or to another breed, respectively. Thus, to calculate 

the 𝑇𝐵𝑉 for purebred performance of animal 𝑖 belonging to breed 𝑟,  

𝑇𝐵𝑉𝑝𝑖𝑟 = ∑[(𝑥𝑖𝑗)(𝑝𝑗𝑟𝑎𝑗 + 𝑞𝑗𝑟𝑑𝑗)] + [(1 − 𝑥𝑖𝑗

1000

𝑗=1

)(−𝑞𝑗𝑟𝑎𝑗 + 𝑝𝑗𝑟𝑑𝑗)], 

where 𝑥𝑖𝑗 indicates the genotype of animal 𝑖 at QTL 𝑗, which can be either 1 for 𝐴𝐴, 0.5 for 𝐴𝑎 

or 0 for 𝑎𝑎, 𝑝𝑗𝑟 and 𝑞𝑗𝑟 are the allele frequencies for alleles 𝐴 and a at QTL 𝑗 in breed 𝑟, 

respectively, and 𝑎𝑗 and 𝑑𝑗 are the true additive and dominance effects of the 𝑗𝑡ℎ QTL, 

respectively. 

 

The true breeding value for crossbred performance (𝑇𝐵𝑉𝑐) was calculated analogously, but 

using the frequencies for the alleles 𝐴 and 𝑎 of the other population (𝑟’), which are denoted as 

𝑝𝑗𝑟′ and 𝑞𝑗𝑟′: 

𝑇𝐵𝑉𝑐𝑖𝑟 = ∑[(𝑥𝑖𝑗)(𝑝𝑗𝑟′𝑎𝑗 + 𝑞𝑗𝑟′𝑑𝑗)] + [(1 − 𝑥𝑖𝑗

1000

𝑗=1

)(−𝑞𝑗𝑟′𝑎𝑗 + 𝑝𝑗𝑟′𝑑𝑗)]. 

Scenario  
Selection method of Angler 

(optimization goal) 
Constraints 

1  OCS (𝐸𝐵𝑉𝑤) 𝑢𝑏. 𝑓𝑆𝐸𝐺  

2  aOCS (𝐸𝐵𝑉𝑤)  
𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, 

𝑢𝑏.𝑀𝐶 (as in founder generation) 

3  aOCS (𝐸𝐵𝑉𝑤) 
𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, 

decreasing 𝑢𝑏.𝑀𝐶 (-1% each generation) 
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This means that for the Angler 𝑇𝐵𝑉𝑐 the other population (𝑟′) was Holstein in the first 

generation and the crossbred population in the following generations.  

Estimated breeding values for purebred performance (𝐸𝐵𝑉𝑝), with reliability (𝑟2) of 0.75, were 

simulated according to Wang et al. (2017b): 

𝐸𝐵𝑉𝑝𝑖 = 𝜇𝑇𝐵𝑉𝑝 + 𝑟
2(𝑇𝐵𝑉𝑝𝑖 − 𝜇𝑇𝐵𝑉𝑝)+𝐸𝑖, 

where 𝜇𝑇𝐵𝑉𝑝 represents the mean of the true breeding values of the corresponding generation 

and 𝐸𝑖 is the residual term sampled from a normal distribution with mean 0 and variance 𝜎𝐸
2 =

𝑟2(1 − 𝑟2)𝜎𝑇𝐵𝑉𝑝
2 . Accordingly, estimated breeding values for crossbred performance (𝐸𝐵𝑉𝑐) 

were simulated with the same 𝑟2 of 0.75, using 𝑇𝐵𝑉𝑐 rather than 𝑇𝐵𝑉𝑝.  

As shown by previous studies (i.e. Esfandyari et al., 2018) selection for crossbred performance 

meets  short term goals in crossbreeding, whereas selection for purebred performance showed 

to be advantageous in crossbreeding in the long term.  In this study a combination of purebred 

and crossbred performance as the breeding goal was considered, to fit both short- and long-

term demands. Thus, weighted 𝐸𝐵𝑉 (𝐸𝐵𝑉𝑤) were used, which was a weighted combination of 

𝐸𝐵𝑉𝑝 (50%) and 𝐸𝐵𝑉𝑐 (50%), such as 

𝐸𝐵𝑉𝑤𝑖 = (1 − 𝑤) ∙ 𝐸𝐵𝑉𝑝𝑖 +𝑤 ∙ 𝐸𝐵𝑉𝑐𝑖 , with 𝑤 = 0.5.  

True genomic values (𝑇𝐺𝑉) were calculated as 

𝑇𝐺𝑉𝑖 = ∑(𝑎𝑖𝑗 + (2 − 𝑥′𝑖𝑗)𝑑𝑖𝑗)𝑥′𝑖𝑗

1000

𝑗=1

, 

with 𝑥′𝑖𝑗 = 0, 1, or 2, depending on the respective genotype. 

The amount of heterosis (𝐻) in crossbred animals was calculated as the difference between 

the crossbreds’ TGV (𝐶) and the average TGV of the parent’s populations (𝑃𝐴), such as 𝐻 =

𝐶 − 𝑃𝐴. 𝑃𝐴 in generation 𝑛 was calculated depending on the actual breed composition of the 

crossbred dam, e.g. for generation 𝑛 = 4 it was 

𝑃𝐴𝑛 =
1

2
𝑇𝐺𝑉𝑠𝑖𝑟𝑒𝑛−1 +

1

4
𝑇𝐺𝑉𝑠𝑖𝑟𝑒𝑛−2 +

1

8
𝑇𝐺𝑉𝑠𝑖𝑟𝑒𝑛−3 +

1

16
(𝑇𝐺𝑉𝑓𝑆 + 𝑇𝐺𝑉𝑓𝐷), 

where 𝑇𝐺𝑉𝑠𝑖𝑟𝑒𝑛−1 is the mean TGV of the sire breed in generation 𝑛 − 1, which is Holstein, 

in 𝑛 − 2 it is Angler, and in 𝑛 − 3 it is Holstein. 𝑇𝐺𝑉𝑓𝑆  and 𝑇𝐺𝑉𝑓𝐷  are the mean TGV of the 

sires and dams from the founder generation, respectively. Thus, the general representation of 

𝑃𝐴 for all generations is  



Chapter 5 

82 
 
 

 

𝑃𝐴𝑛 = ∑(
1

2𝑘
𝑇𝐺𝑉𝑠𝑖𝑟𝑒𝑛−𝑘) +

1

2𝑛
(𝑇𝐺𝑉𝑓𝑆 + 𝑇𝐺𝑉𝑓𝐷)

𝑛−1

𝑘=1

                               (1) 

 

 

Results 

The genetic gain (shown by TGV) of Angler, Holstein and crossbred animals in 3 different 

scenarios are presented in Figure 2 and Table 2. Angler showed the highest genetic gain in 

Scenario 1, in which classical OCS was applied, closely followed by Scenario 2, where aOCS 

with a constant threshold of migrant contribution was used. Scenario 3 (aOCS with decreasing 

threshold of migrant contribution) resulted in the slowest genetic gain in Angler. TGV of 

Holstein was superior to the Angler TGV in all cases.  

Crossbred animals outperformed Angler and Holstein, regardless of the scenario, up to 

generation 4. They performed best in Scenario 1 and 2, whereas Scenario 3 they showed the 

lowest improvement. Their genetic gain evolved in waves, with increasing amplitudes, 

particularly in Scenario 3. The peaks occurred when Holstein were used as sires. Crossbred 

animals outperformed Angler and showed a slight superiority to Holstein in the first 

generations. However, in the following generations their performance improved not as fast and 

thus in Scenario 1 and 2 it was similar to Holstein. In Scenario 3 crossbred animals showed a 

lower genetic gain than Holstein from generation 5 onwards. 

 

 Angler  Crossbred Animals  
Holstein (not affected by  
scenarios) 

 Gen 4 Gen 8  Gen 4 Gen 8  Gen 4 Gen 8 

 TGV SD TGV SD  TGV SD TGV SD  TGV SD TGV SD 

Scenario 1 1.899 1.012 3.928 0.949  2.356 1.004 4.426 0.939  2.136 1.005 4.381 0.941 

Scenario 2 1.847 1.005 3.867 0.951  2.417 1.008 4.458 0.952      

Scenario 3 1.458 1.041 2.422 1.049  2.337 1.018 4.111 0.967      

               

Table 2. True genomic values (TGV) of Angler, Holstein and crossbred animals in generation 4  
and 8.  
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The results over the time period of 8 generations (Figure 4) showed a general decrease of 

heterosis, while some notable differences between the generations could be observed in 

Scenario 3. Starting with a high amount of heterosis from the initial crossing of Angler x 

Holstein, it dropped after generation 2, before it increased again in generation 4. In the 

following generations heterosis dropped and rose alternately with increasing amplitudes in 

Scenario 3, while the amplitudes decreased in Scenario 1 and 2. Again, peaks were found in 

the generations where Holstein were used as sires for the crossbred population. The additive 

genetic variance (Va), estimated as the variance of the TBV, showed remarkable differences 

between Scenario 3 and the remaining scenarios in Angler (Figure 6). Within 8 generations it 

decreased only 20% in Scenario 3, whereas it decreased about 60% in Scenario 1 and 2.  

The amount of migrant contribution (Figure 5) from Holstein in Angler decreased only 

marginally in Scenarios 1 and 2, but notably in Scenario 3, as expected. Beginning with 17.5% 

MC in each scenario in generation 1, in generation 8 we found 15% MC in Scenario 1, in which 

it was not constrained, and 10.7% MC in Scenario 3, in which the amount of MC was 

constrained to decrease 1% each generation. The mean kinship and the native kinship (Figure 

3) in the Angler population increased in a similar pattern over the 8 generations of simulation. 

For both kinship measures, Scenario 1 showed the fastest increase. In Scenario 3 the mean 

kinship was increasing the least. Scenarios 2 and 3 showed the same increase of the native 

kinship. 

 

 

 

  

Figure 2. True genomic values (TGV) of Angler (left), Holstein and crossbred animals (right) over 
the simulated time period of 8 generations of rotational crossbreeding. Sc1 = Scenario 1 (OCS; 
𝑢𝑏. 𝑓𝑆𝐸𝐺), sc 2 = Scenario 2 (aOCS; 𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, 𝑢𝑏.𝑀𝐶 as in founder generation), sc 3 = Scenario 3 

(aOCS; 𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, decreasing 𝑢𝑏.𝑀𝐶 -1% each generation) 
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Figure 4. Heterosis in crossbred animals over the 
simulated time period of 8 generations of 
rotational crossbreeding. Sc1 = Scenario 1 (OCS; 
𝑢𝑏. 𝑓𝑆𝐸𝐺), sc 2 = Scenario 2 (aOCS; 𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, 

𝑢𝑏.𝑀𝐶 as in founder generation), sc 3 = Scenario 

3 (aOCS; 𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, decreasing 𝑢𝑏.𝑀𝐶 -1% each 

generation) 

 

Figure 3. Amount of mean kinship (sKin) and native kinship (sKinatN) in Angler over the simulated 
time period of 8 generations of rotational crossbreeding. Sc1 = Scenario 1 (OCS; 𝑢𝑏. 𝑓𝑆𝐸𝐺), sc 2 = 

Scenario 2 (aOCS; 𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, 𝑢𝑏.𝑀𝐶 as in founder generation), sc 3 = Scenario 3 (aOCS; 𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, 

decreasing 𝑢𝑏.𝑀𝐶 -1% each generation) 
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Discussion 

Crossbreeding has received increasing attention in dairy cattle breeding and research, mainly 

to utilize breed complementary and heterosis effects (Sørensen et al., 2008). Rotational 

crossbreeding is especially  practical in dairy cattle, mainly due to the long generation interval 

and low female reproductive capacity, although terminal crossbreeding schemes are also 

considered (Clasen et al., 2021a, b). In this study a genomic rotational crossbreeding scheme 

with the high yielding German Holstein breed and the numerically small German Angler breed 

was analysed that aims to utilize heterosis effects in the crossbred animals, and simultaneously 

to control inbreeding, and to reduce the migrant contribution in the Angler breed. Different 

scenarios of implementing OCS methods for Angler individuals were evaluated, which differed 

in their restrictions regarding conventional and native kinship, as well as the amount of migrant 

contributions from Holstein. It was shown that rotational crossbreeding can result in superior 

crossbred offspring compared to the purebred parental lines, when OCS methods are used. 

Figure 5. Amount of migrant contribution (MC) 
in Angler over the simulated time period of 8 
generations of rotational crossbreeding. Sc1 = 
Scenario 1 (OCS; 𝑢𝑏. 𝑓𝑆𝐸𝐺), sc 2 = Scenario 2 

(aOCS; 𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, 𝑢𝑏.𝑀𝐶 as in founder 

generation), sc 3 = Scenario 3 (aOCS; 
𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, decreasing 𝑢𝑏.𝑀𝐶 -1% each 

generation) 

 

Figure 6. Additive variance (Va) in Angler 
over the simulated time period of 8 
generations of rotational crossbreeding. Sc1 
= Scenario 1 (OCS; 𝑢𝑏. 𝑓𝑆𝐸𝐺), sc 2 = Scenario 

2 (aOCS; 𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, 𝑢𝑏.𝑀𝐶 as in founder 

generation), sc 3 = Scenario 3 (aOCS; 
𝑢𝑏. 𝑓𝑆𝐸𝐺|𝑁, decreasing 𝑢𝑏.𝑀𝐶 -1% each 

generation) 
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However, reducing the amount of migrant contributions in Angler slowed down their genetic 

progress and did not result in higher heterosis effects in their crossbred offspring. 

Homogeneous QTL effects were simulated for both breeds and complementary breed effects 

were not considered. Thus, the benefit of applying such a rotational crossbreeding for the 

Holstein breed were not analysed. This has to rely on practical data where next to heterosis 

also breed complementary effects are considered. For example, the average milk yield (protein 

yield) is 9,500 kg (330 kg) for the Holsteins and 8,300 kg (300 kg) for the Angler in the Northern 

part of Germany (LKV, 2020), underlying strong breed effects for milk production traits. For 

functional or health traits, no clear pattern regarding the differences between these two breeds 

reared in this region could be detected (LKV, 2020) although it is frequently said by farmers 

that the latter trait complexes are superior in the Angler.   

The performance of Angler was best in Scenario 1 and worst in Scenario 3, especially in later 

generations (Figure 2), which confirmed that genetic gain is in conflict with the reduction of 

migrant contribution and the restriction of conventional and native kinship. Crossbreds slightly 

outperformed Angler and Holstein in early generations due to heterosis. Since heterosis is 

decreasing over generations (Figure 4), the crossbred performance was not superior 

compared to the Holstein population from generation 5 onwards. Note, that in Holsteins the 

genetic gain is higher as in the Angler (Figure 2) due to the larger population size, and heterosis 

could not compensate for this in later generations.   

The flattened genetic gain observed for Angler in Scenario 3 caused also a reduced increase 

in TGV of the crossbreds and the TGV fluctuated with increasing amplitudes over generations. 

The amplitudes peaked in those generations where Holstein sires were used to produce the 

crossbred offspring. This can be explained by the overall higher genetic gain of Holstein 

compared to Angler (Figure 2), and by the heterosis effects (Figure 4). Removing Holstein 

genes means to favour animals for breeding that have low Holstein contributions. After few 

generations, only short Holstein segments remain in the population, which are difficult to 

remove. Consequently, the constraint that forces the Holstein contributions to reduce by 1% 

each generation becomes more serious in each generation. This constraint reduces the pool 

of animals that are eligible for breeding and thus reduces the genetic gain that can be achieved 

for the trait under selection. In general, a high marker density is desired to identify introgressed 

haplotype segments (Wang et al., 2017a).  

A moderately high historic effective population size of the Angler population in Germany was 

mainly achieved by introgression in the past. Some Angler breeders might have used 

introgression more extensively than others, so Angler breeders who did not want to use 



Chapter 5 

87 
 
 

introgression extensively had to choose their breeding animals from a smaller gene pool than 

the others. This implies that animals with small Holstein contributions tend to have similar 

Angler cattle in their pedigrees. Consequently, they have a higher native kinship. In this study, 

restricting the increase of the native kinship was, therefore, a slightly more serious constraint 

than restricting the increase of the conventional kinship (see Figure 2). Moreover, removing 

the Holstein genes from the Angler population while restricting the increase of the native 

kinship in Scenario 3 required strong selection on the maintenance of native allele diversity, 

which allowed only for a low selection intensity on the trait of interest, and thus resulted in a 

higher genetic diversity within Angler compared to Scenario 1 and 2, and also compared to 

Holstein. This can be seen by Figure 6, which shows that the additive genetic variance is 

substantially higher for Scenario 3 in later generations. This high variance caused the Angler 

animals in Scenario 3 to carry substantial heterosis effects by themselves.  

In Scenario 3, the heterosis effect observed in the crossbreds was the lowest (Figure 4). The 

opposite was expected because removing Holstein genes from Angler cattle would make the 

breeds genetically more dissimilar. The reason for the smaller heterosis is as follows. The 

heterosis was calculated as the difference between the parent average and the TGV. The more 

genetically diverse each breeding line is, the higher the parent average is.,. In Scenario 3, 

Angler cattle were substantially more genetically diverse than in the other scenarios. 

Consequently, the heterosis of the cross was the lowest. 

Applied to real animal data, the removal of Holstein haplotypes would even more compromise 

the genetic gain of the Angler, because it can be assumed that the introgressed Holstein 

haplotypes would contain favourable QTL alleles, due to the breed complementary effects for 

milk production traits and fertility traits illustrated above. Thus, in further simulation studies, i 

would be beneficial to identify the introgressed favourable QTL alleles in the Angler breed and 

to include them in the optimization process of aOCS. Future research is needed in order to go 

in this direction, as especially mapping the relevant QTL in such a small population is a 

challenging task. Further, it is well known, that not only Holstein but also other breeds were 

introgressed in the Angler breed (Schmidtmann et al., 2021). Hence, reducing the amount of 

MC could also include contributions from these other breeds. In this way the contribution 

coming from Holstein would not decrease as fast, yet the total amount of MC would be reduced. 

When a high genetic diversity of livestock breeds is politically intended, farmers need 

incentives that compensate for the lower competitiveness of endangered breeds. However,  

they might be less dependent on incentives when they can achieve a higher herd profitability 

by including crossbred animals that are superior to their local breed.  
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The heterosis effect cause two crossbred animals to be economically superior to the same 

number of purebred animals, whereby one animal is from the endangered breed and the other 

is from the high-yielding breed. Consequently, implementing a rotational crossbreeding 

program would lower the need for incentives when running a breeding program for the 

endangered breed. Thus, farms with local breeds and breeders engaged in conservation 

programs could be saved.  

The present paper showed that the gain in heterosis which arose from the removal of genetic 

contributions originating from the German Holstein could not compensate for the resulting 

lower breeding progress in the local Angler breed. Consequently, a breeding program that 

aims at increasing the proportion of the genome that is native requires incentives that 

compensate for the resulting lower breeding progress. 

 

Conclusions 

The results confirmed that the implementation of a genomic rotational crossbreeding scheme 

could be an interesting option to promote numerically small breeds like German Angler, as 

their superior crossbred offspring can lead to a higher herd performance, given that a suitable 

partner breed is available. Thus, rotational crossbreeding might increase the attractiveness of 

the local breed, and eventually might reduce their risk of numeric extinction. The results further 

showed that it is in general possible to combine a genomic rotational crossbreeding scheme 

with the maximization of genetic gain, while simultaneously restricting the increase of 

inbreeding and reducing migrant contributions. However, the latter one turned out to be the 

most compromising restriction with regard to genetic gain in purebreds and resulted in waves 

of heterosis effects observed in the crossbred individuals. The reduction of migrant contribution 

with the main aim to increase heterosis-effects in crossbreds was, therefore, not a 

recommendable breeding strategy in this study. This is because the possible gain in heterosis 

could not compensate for the reduced genetic gain imposed by the additional OCS restrictions. 
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Chapter 6  

General Discussion 
 

The main goal of this thesis was to develop methods for promoting local dairy breeds as 

crossing partners for high-yielding breeds in a rotational crossbreeding scheme.  

Chapter 2 reviewed genomic models that are most suitable for the analysis of crossbred data, 

depending on data availabilities, desired accuracies and computational possibilities. Different 

additive models (such as the parental model, a model with breed-specific allele effects, and a 

single step model) and dominance models, which were either line-dependent, line-independent 

or included imprinting, were discussed. It was concluded, that the model choice needs to be 

made based on desired accuracies, computational possibilities, and data availability. In 

general, dominance models showed to result in higher accuracies compared to additive 

models without considering dominance. 

A breed of origin of alleles (BOA) model approach was introduced in Chapter 3, which 

assumes different SNP effects for different origins of haplotypes, and thus fits especially local 

breeds with historical introgression from other breeds (i.e. Angler). The application of the BOA 

approach using a multi-breed reference set resulted in higher accuracies of genomic estimated 

breeding values for Angler compared to multi-breed and within-breed genomic predictions with 

GBLUP. 

In the simulation study of Chapter 4 different selection strategies were analysed when it comes 

to the implementation of genomic selection and rotational crossbreeding of Angler x Holstein, 

including different kinds of reference populations and selection goals. It was shown that 

crossbred animals tend to have a small overall superiority to both Holstein and Angler 

populations. Furthermore, a reference population containing both Angler and crossbred 

animals, in combination with a selection based on the purebred performance of Angler, 

resulted in the highest response to selection in the purebred Angler population and in the 

crossbred population. 

In order to realize genetic gain while regaining the original genetic background of Angler, a 

simulation study on rotational crossbreeding with Holstein was performed, including different 

Optimum Contribution Selection methods strategies for the Angler population (Chapter 5). 

Different constraints regarding the kinships and migrant contributions from Holstein were 

applied to investigate their effects on Angler, crossbred, and Holstein populations. 

Constraining the amount of migrant contribution in Angler increased their genetic uniqueness. 

However, it led to a notable reduction of genetic gain and thus a reduced superiority of the 
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crossbred animals. The reduced genetic gain and thus the large difference of the performance 

between the parental breeds could not be compensated by heterosis effects.  

In the following general discussion further genomic models for crossbreeding are discussed 

shortly, followed by the main part about the practical relevance of crossbreeding in dairy cattle, 

including different strategies of implementations, specific requirements of small sized 

populations, and the practical relevance of the studies’ findings in this thesis. Finally, the 

transition period of shifting from a purebreeding system to rotational crossbreeding is 

discussed at the farm level. 

Genomic Models 

To counteract the negative consequences of past selection schemes, crossbreeding 

demonstrated to be an effective strategy to improve the long-term profitability and sustainability 

of dairy herds (Buckley et al., 2014). The two reasons for superiority of crossbred animals is 

the utilization of different additive genetic levels between breeds and therefore new 

combinations of additive genetic components (Falconer and Mackay, 1996), and the 

exploitation of heterosis, due to non-additive genetic effects which is most pronounced for 

functional traits (Sørensen et al., 2008). However, non-additive effects used to be ignored in 

the past in genetic evaluation of animal breeding for several reasons, i.e. 1) no sufficient 

informative pedigree data, such as full sib families, 2) complex calculations, or 3) the difficult 

use of dominant values in practical mate allocation (Hill, 2010; Varona et al., 2018). Since 

dense SNP panels are available, several studies re-examined the importance of considering 

non-additive effects again and concluded that it can improve the accuracy of genomic 

predictions under certain conditions (Wellmann and Bennewitz, 2012; Zeng et al., 2013; Nishio 

and Satoh, 2014; Sun et al., 2014; Aliloo et al., 2016; Esfandyari et al., 2016; Lopes et al., 

2016).  

The goal of genomic prediction in crossbreeding is to improve the performance of crossbred 

offspring while selection takes place in the purebred parental lines. Typically, purebred 

reference populations are used, despite the fact that purebred-crossbred correlations, called 

rpc, are usually lower than one. Thus the genetic gain and response to selection of crossbred 

animals cannot be maximized (Duenk, 2018). Several studies (Esfandyari et al., 2015; van 

Grevenhof and van der Werf, 2015; Xiang et al., 2016; Lopes et al., 2017; Duenk, 2018; Duenk 

et al., 2019) found that the inclusion of crossbred animals in the reference population can 

increase the response to selection in crossbred offspring in typical crossbreeding schemes for 

pigs and broilers. Furthermore, Duenk et al. (2021) investigated the role of rpc and its 

components, such as dominance, epistasis, and G x E interactions more detailed in order to 

optimize genomic selection for crossbred performance. They pointed out, that the most 
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important factor to know about is the rpc and how it is affected. Therefore they suggested to not 

only obtain information about the size and structure of the reference population, but also the 

distance between the reference animals and the selection candidates, the genetic distance 

between the parental lines, and the heritability of the trait in order to get the highest accuracies 

of GEBV and response to selection. Based on this information the most suitable genomic 

model can be defined, and thus the required phenotype and genotype data. However, their 

work focused on terminal crossbreeding schemes and is therefore predominantly suitable for 

breeding strategies in pigs or poultry. 

Recently, some studies focused particularly on systematic crossbreeding in dairy cattle. 

Systematic crossbreeding in dairy cattle often includes rotational crossbreeding, thus different 

amounts of contributions from the founder breeds can be observed in the crossbred individuals 

from generation to generation. Therefore, it is beneficial to consider the actual composition of 

the crossbred individuals while predicting their GEBV. In VanRaden et al. (2020) it was shown 

that using marker effects from each parental breed and then weighting them depending on 

their contribution to the crossbred animals was advantageous in order to improve the 

accuracies of genomic predictions. However, Eiríksson et al. (2021) stated that this approach 

might be only appropriate for the initial crossing, as the local ancestry varies throughout the 

genome. Furthermore, the origin of the alleles was not taken into account by VanRaden et al. 

(2020), which is of interest for heterozygous loci. Hence, Eiríksson et al. (2021) recommended 

a genomic model which considers the breed of origin of alleles (BOA). In this way, the 

difference of marker effects due to differences in LD between markers and QTL can be 

accounted for in the prediction of GEBV for rotational crossbred animals. They concluded, that 

their approach could be a promising option to provide GEBV for crossbred dairy cows without 

the need for a large reference population of crossbreds, and thus could support efficient dairy 

farming. In practice, this is especially of relevance in countries in which genotype data of 

crossbred animals is sparsely available. These findings are in in accordance to Karaman et al. 

(2021) and the main results in Chapter 3, in which it was stated that the application of a BOA 

model in combination with breed specific SNP effects can improve genomic estimation of 

breeding values for rotational crossbred animals, as well as for populations with 

subpopulations or former introgression. 

Dairy Crossbreeding in Practice 

Heterosis is fully expressed in the F1 generation, as the level of heterozygosity is highest 

because genes at a locus originate from different breeds. Thus, the more different the parental 

breeds are, the more heterosis effects can be expected (Mäki-Tanila, 2007). But as dairy cattle 

have a low reproduction rate, a long generation interval and a relatively high economic value 
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per animal, continuous breeding schemes, such as two- or three- way rotational crossbreeding, 

fits better. Heterosis then settles at 67% or 86%, respectively (Buckley et al., 2014).  By 

exploiting heterosis effects functional traits can be improved to generate animals which show 

enhanced profitability and performance in comparison to their parents average, and to remove 

negative effects of inbreeding (Sørensen et al., 2008; Buckley et al., 2014). However, 

systematic crossbreeding of dairy cattle doesn‘t play a big role in most countries (Buckley et 

al., 2014), besides the exception of New Zealand  - there, crossbreeding showed its popularity 

in dairy production systems with a proportion of crossbred cows of around 50% in 2019 

(Livestock Improvement Corporation and Dairy NZ, 2020). 

The most common crossbreeding strategies in dairy cattle are: 

- Two-way crossbreeding: cows of the F1 generation are mated with a high 

genetic merit sire of one of the parents’ breeds. Average heterosis settles 

at 66.6% over time.  

- Three-way crossbreeding: cows of the F1 generation are mated with a high 

genetic merit sire of a third breed. Heterosis is 100%. In the following 

generations, when the sire of the third breed is reintroduced again, average 

heterosis settles at 85.7%.  

- Synthetic crossing: using high genetic merit crossbred sires to produce a 

new breed. Average heterosis settles at ~50% (Buckley et al., 2014).  

 

Rotational Crossbreeding 

To assess economic effects resulting from changes in performance for milk yield, milk solid 

contents, reproduction, health and replacement, induced by rotational crossbreeding Holstein 

with other breeds, a simulation model was developed by Dezetter et al. (2017). The performance 

of purebred Holsteins were compared to the performance of Holstein x Montbéliarde, Holstein x 

Montbéliarde x Normande and Holstein x Montbéliarde x Scandinavian Red. After 15 years of 

simulation all crossbreds showed reduced performance for milk yield compared to pure 

Holsteins. On the other hand, the performance concerning fitness was improved in all three 

crossbreeding schemes, which led to improved margins over variable costs, especially under a 

high prevalence of reproductive and health disorders. In a study by Shonka-Martin et al. (2019) 

real animal data of purebred Holsteins were compared with rotational crossbred animals during 

their first three lactations. Crossbred animals showed the same fat plus protein production as 

pure Holsteins while having a lower milk volume, a lower dry matter intake and a higher body 

condition score. Since an optimal body condition score is related to improved fertility and 

reduced health disorders (Roche et al., 2009), and in addition, low dry matter intakes lead to 
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reduced feed costs, Shonka-Martin et al. (2019) concluded that crossbred cows may have a 

higher profitability in commercial milk production than purebred Holsteins. This is in accordance 

to the results of several other studies which showed the economic superiority of rotational 

crossbreeding schemes compared to a pure breeding strategy (Lopez-Villalobos et al., 2000; 

Heins et al., 2012; Clasen et al., 2020; Hazel et al., 2020).  

Furthermore, even in different environments and management levels, such as low- and high-

input, milk production benefits from crossbreeding, as shown by several Scandinavian studies. 

To reject the myth about crossbreeding only being beneficial for low production levels and poor 

managed production systems, Kargo et al. (2012) investigated how the effect of heterosis is 

expressed in different management levels in crossbred Jersey herds. They concluded that 

heterosis for milk yield, protein yield, and fat yield was smallest in the low producing herds and 

showed the highest effect in the intermediate groups. Thus, they recommended crossbreeding 

as a strategy to consider for any dairy producer. These findings were supported by Clasen et al. 

(2019) who additionally included functional traits in their analyses. Their results of comparing 

Holstein with Holstein x Nordic Red demonstrated that heterosis effects in production traits were 

largest in high-yielding herds, whereas it was independent from the production level for fitness 

related traits, such as fertility, udder health, stillbirth, and survival. Further, in a following study, 

Clasen et al. (2020) could prove that crossbreeding Swedish Red x Swedish Holstein has 

economic advantages over purebred Swedish Holstein herds. This applied to both organic and 

conventional dairy production systems and was most successful in rotational crossbreeding.  

Composite Breeds 

In Latin America a common strategy in the beef cattle industry is to use composite breeds in 

order to combine the favorable fitness and adaptability traits from indicine cattle (Bos indicus) 

and the production and carcass traits from European cattle (Bos taurus) (Buzanskas et al., 

2017). The composite breed Brangus was developed in order to meet the needs of meat 

production in tropical and subtropical environments. Thus, adaptability, disease resistance, 

maternal instinct and general robustness traits from Zebu (mainly Brahman) were combined with 

fertility and meat quality traits from Angus. This resulted in a founder breed composition of 62.5% 

Angus and 37.5% Zebu (Goszczynski et al., 2018). Other composite breeds, such as Canchim 

(Charolais x Zebu) or Braford (Brahman x Hereford) are used for meat production, as well 

(Orellana et al., 2009; Buzanskas et al., 2017), whereas Girolando (Holstein x Gyr) was 

developed to improve dairy production systems (Canaza-Cayo et al., 2016). Also in Germany a 

synthetic breed was developed in the past - during the 1970s and 1980s the composite breed 

Schwarzbuntes Milchrind (SMR) was used in former East Germany for commercial milk 

production. To generate this dual-purpose breed with focus on milk production, a three-breed 
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crossing including native East German Black and White, Danish Jersey and Canadian Holstein-

Friesian was done (Freyer et al., 2008). The three-breed crossbreeding, originally suggested by 

Schönmuth (1963), started in the 1960s by crossing East German Black and White dams and 

Jersey sires, to generate F1 dams. Then, in the following years, Holstein sires were mated with 

F1 dams, to achieve a long-term breeding goal defined as an annual milk production of 5000 to 

6000kg with 4% fat, sufficient muscling for 600kg body weight and around 130cm in height at 

withers. In 1975 the breeding of SMR in pure lines began. SMR showed to be a useful breed for 

milk production, even under suboptimal management conditions and feeding which were found 

in former East Germany. After the reunification of Germany in 1990, the conditions in East 

Germany improved and thus the need for SMR decreased. As a result, it was decided to 

incorporate the SMR population into the German Holstein breed (Freyer et al., 2008). 

Terminal Crossbreeding 

The “Beef-on-dairy” strategy and the potential of beef-on-dairy production systems was 

reviewed in Berry (2021). In several countries, such as New Zealand (Morris, 2008), Sweden 

(Federation of Swedish Farmers, 2019), and Finland (Niemi and Ahlstedt, 2013), 60-80% of the 

total beef output is produced in dairy herds. This meat originates directly (such as culled cows) 

or indirectly (such as surplus calves of beef x dairy matings) from dairy production systems. 

Especially the latter is of growing interest, as it can provide overall advantages. In combination 

with sexed semen and the use of dairy-beef breeding indexes, it can be an appealing option for 

dairy farmers to extend their businesses. In addition, from the consumers increasing awareness 

of environmental and ethical issues of animal production systems, beef x dairy calves provide 

improvement for both (Berry, 2021). Assuming an environmental footprint attributed to kg of the 

end product, beef from dairy herds showed to yield lower (i.e. in terms of global warming 

potential, acidification potential, eutrophication potential, energy usage, and land usage) 

compared to beef produced in suckler-based systems. This can be explained by the fact that in 

suckler-based systems the whole environmental impact is allocated to the production of beef, 

whereas in dairy-based systems it is allocated to milk and beef. Thus, the impact is distributed 

more widely and it is lower per kg of output. In addition, the advantage of beef from dairy herds 

holds true for both concentrate-based and roughage-based systems and was observed to show 

further potential to mitigate environmental impact when dual-purpose cattle or dairy x beef 

crosses were used – caused by faster growth rates and improved feed efficiency (de Vries et 

al., 2015). In order to meet the societies’ concerns about worthless bobby calves, which may be 

slaughtered at a very young age as they are neither suitable for replacement of the herd nor for 

profitable fattening, a beef-on-dairy production might be a promising strategy. In this way, the 

number of bobby calves could be reduced remarkably, particularly in combination with sexed 
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semen. However, beef x dairy animals tend to have poorer performance (i.e. primal cut yield) 

compared to beef animals, as well as they can have high labor and specialized infrastructure 

requirements in their pre-weaning period. This might lead to low margins, which might be a 

major weakness of the system under certain conditions (Berry, 2021). 

Despite the fact of long generation intervals and low reproduction rates, terminal crossbreeding 

can also be advantageous in dairy breeding systems in terms of total economic benefits. Clasen 

et al. (2021b) investigated whether breeding tools, such as sexed semen, genomic testing, beef 

semen, and terminal crossbreeding can improve the profitability at herd level. They concluded 

that breeding tools in general led to high economic returns, while a combination of terminal 

crossbreeding, sexed semen and genomic testing resulted in the highest profitability. 

Nevertheless, Clasen et al. (2021a) showed another advantageous aspect of terminal 

crossbreeding by examining the conservation potential of native breeds at farm level when 

terminal crossbreeding is applied. Due to higher herd economies caused by crossbred animals, 

and lowered associated costs, farms with local breeds could be kept viable. Hence, the number 

of breeders engaged in conservation schemes could be saved. In addition, the marketing of 

niche products from the local breed might be a solution to further increase the benefits of keeping 

them. However, it is of crucial importance to control the crossbreeding and to have a well-

managed conservation scheme, in order to not exterminate the local breeds by inappropriate 

crossbreeding schemes (leading to displacement of the original genes) or high inbreeding levels 

(leading to inbreeding depression).  

Genetic Diversity in Small Sized Populations 

Another threat to local breeds can be a special form of crossbreeding called “upgrading”. In 

this way cows of moderate or low performance breeds are crossed with sires of high yielding 

breeds to increase the production level of subsequent generations in the low performance 

breed. At the same time it increases the genetic diversity within the breed and counteracts 

potential inbreeding problems. Upgrading was frequently applied in low-sized and local breeds 

in the past, e.g. in the Vorderwald cattle in southern Germany (Hartwig et al., 2014) or German 

Angler (Schmidtmann et al., 2021). However, if this upgrading is repeated over several 

generations, the original breed might become extinct due to the replacement of the native 

genes (Wang et al., 2017; 2019).  

Domestic breeds often have small effective population sizes and a low genetic diversity within 

the breeds. Thus, much of the genetic diversity is found between breeds. On the other hand, 

to ensure future selection response breeds need a certain level of within-breed diversity. 

Hence, it is required to maintain both within- and between-breed genetic diversity in order to 

meet future demands for robust and food-efficient breeds, such as the ability to adapt to climate 
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changes or new diseases (Wellmann and Bennewitz, 2019). For numerically small breeds with 

historic introgression the focus should be therefore on the between-breed diversity and thus 

the original genetic background. To realize the latter, or in other words, to regain the genetic 

uniqueness of a breed, advanced Optimum Contribution Selection (aOCS) showed to be the 

method of choice (Wang et al., 2019; Kohl et al., 2020a, 2020b). In this way, genetic gain can 

be achieved while the rate of inbreeding and the amount of migrant contributions is controlled. 

However, the optimization goal and the corresponding constraints of aOCS methods should 

meet the main goal of the breeding program, as there can be a large deficit in genetic gain, as 

soon as the amount of foreign genetic material is restricted (see Chapter 5). This deficit then 

might lead to a very low profitability of the breed and thus very little interest of farmers to keep 

it. A breeding program for local breeds with the main goal to remove introgression from 

mainstream breeds or to conserve endangered breeds is therefore economically depended on 

subsidies, as stated in Wellmann and Bennewitz (2019) and in Chapter 5. 

Practical Relevance of Studies’ Findings 

In practice, GEBV for Angler are available since 2016. The corresponding reference population 

is provided by the Danish breeding organization VikingGenetics and contains the following 

Scandinavian red dairy breeds: Danish Red, Norwegian Red, Swedish Red and Finnish 

Ayrshire. It includes about 5000 bulls and 30.500 cows. To increase the accuracies for the 

GEBV of Angler, Angler bulls have been added to the reference population, as well (August 

2021: 174 bulls) (RSHeG, 2021b). Hence, the first step to realize a genomic rotational 

crossbreeding scheme in practice could be to start with simplified conditions, such as selecting 

Angler and Holstein sires for crossing based on their available (genomic) breeding values (see 

Scenario 1a in Chapter 4). However, as soon as the rotational crossbreeding program has 

established and showed evident benefits, breeding organizations might be willing to invest 

money for further improvement, such as genotyping more animals of the local breeds. In this 

way the advantages of additional data (i.e. enlarging the reference population in general or 

increasing the contribution of the target breed in the reference population) could be used to 

increase the accuracies of GEBV and the response to selection. As a next step to improve 

such a breeding scheme, phenotype and genotype data from crossbred animals could be 

collected and used for more complex genomic models. As a consequence, both crossbred 

animals and local breeds could profit from further increased accuracies and thus genetic gain. 

Given that the performance of Angler is high, implementing aOCS methods could be the final 

step to improve the overall breeding scheme. Depending on financial support, such as 

subsidies, and the considered foreign breeds that caused migrant contributions, a remarkable 
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regain of the original genetic background could be realized without suffering from economic 

disadvantages.  

Implementation of Rotational Crossbreeding on Farm 

In general, to make the implementation of a rotational crossbreeding scheme possible, 

breeders must be willing to participate. Introducing a new breeding scheme, such as changing 

from purebreeding to rotational crossbreeding is not self-evident as it leads to a higher overall 

effort in farm management in the transition period (Quénon et al., 2020).  

However, there seem to be common factors that drive farmers to consider crossbreeding, as 

studied by Magne and Quénon (2021) in France. The drivers were clustered in three main 

groups containing several indicators such as 

I) Counteracting breeding and health problems of high-yielding cows 

- Improving performance level of purebred herds 

- Improving functional traits, i.e. fertility, health, robustness 

- Increasing protein and fat content in the milk 

- Managing the inbreeding level of purebred herds 

II) Shifting towards are more sustainable and resilient dairy production system  

- Transition to a grassland based / low-input / organic farming system 

- Improving farm economic profitability 

- Improving working conditions 

III) Regaining decision-making autonomy in their farm management 

- Countering the separation of knowing about animal breeding and actually 

performing it 

 

The majority of farmers referred to improving performance and functional traits (group I) as the 

main reason to shift their breeding strategy, and to a lesser extend group II) and III). Once they 

decided to shift, they were faced with challenges, such as lack of knowledge about the possible 

crossbreeding schemes or practical implementation, but also with cultural and technological 

barriers and concerns about low-economic return. In addition, many French stakeholders who 

are involved in dairy breeding (i.e. breeding societies, research institutions, consultants, 

livestock traders) were not able or willing to support rotational crossbreeding, which might even 

enhanced the challenges of the dairy farmers (Magne and Quénon, 2021).  

This could be the reason why rotational crossbreeding is still not commonly used in dairy 

production systems, even though its popularity has been increased over the last two decades 

(Quénon et al., 2020). Nevertheless, once the decision about starting a rotational 

crossbreeding scheme was made, Quénon et al. (2020) observed typical technical pathways 
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and whole-farm transitions when it came to the practical transition in French production 

systems. By interviewing and retrospectively analyzing, they showed three different pathways 

of adapting rotational crossbreeding as follows: 

I) Customizing and implementing a rotational crossbreeding scheme quickly while 

redesigning the whole farm, such as converting to organic or low-input farming 

systems. 

II) Customizing and implementing a rotational crossbreeding scheme progressively 

while redesigning the whole farm, such as converting to organic or low-input 

farming systems. 

III) Implementing a relatively well-known rotational crossbreeding scheme quickly to 

fix fertility issues without changing the overall farming system. 

 

Farmers of pathways I) and II) customized the breeding scheme in a trial-and-error phase to 

find a scheme which fits their herd and personal objectives best, before they started the actual 

crossbreeding. Thus, they gained autonomy in decision-making over dairy genetics. In 

contrast, in pathway III) farmers relied on existing breeding schemes (i.e. the commercial three-

way rotational crossbreeding scheme ‘ProCROSS’) which reduced uncertainty and provided 

technical advising services. A consequence of the fast transition in pathway I) and III) was a 

change in the herd demographics shown by excess heifers. Strategies to manage these 

animals were increasing sales and stopping the purchase of heifers, replacing some dairy 

crossings with beef crossings, and increasing the overall herd size. However, regardless of the 

chosen pathway, the transition must be accompanied by feedback loops between herd 

management, their effect on herd performances, herd demographics, and technical choices 

(Quénon et al., 2020). In addition, to support dairy farmers who are considering to start 

rotational crossbreeding, it is of crucial importance to understand how former transitions have 

been performed by others and to develop informal peer networks to overcome doubts and 

impediments arising during transition (Quénon et al., 2020; Magne and Quénon, 2021). 

Nevertheless, to support the popularity of crossbreeding in order to improve dairy production 

systems, the corresponding knowledge should be spread at all levels, including all kinds of 

different stakeholders, as well as farmers. 

Relating the results from France to the findings of this thesis, the shift from purebreeding to 

rotational crossbreeding in dairy cattle appear to be highly complex. Thus, providing the 

methodical answers for the implementation (i.e. GEBV for crossbred animals, reference 

population design, selection methods) should be interpreted as one part of the big picture, 

rather than an overall solution.  
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Concluding Remarks 

Despite the knowledge about the advantages of systematic crossbreeding in dairy cattle it is 

still not widely adapted in Europe. Challenges include complex genomic models to obtain 

accurate genomic prediction of crossbred animals, as they require a certain amount of 

genotype and phenotype data. However, up to now, routine genomic evaluation is neither 

implemented widely for crossbred dairy nor for numerically small breeds. Thus, to implement 

a genomic rotational crossbreeding scheme in local breeds, perhaps even including OCS 

methods, lacking animal data would be the main barrier to overcome. A further challenge might 

be of practical relevance. Farmers must be willing to shift to a new breeding scheme and 

accept possible uncertainties during the process. Therefore, it is of importance that dairy 

breeding stakeholders are supporting them. To achieve solutions for the above mentioned 

challenges, further activities might focus on technological topics, i.e. feasible data collection 

and feasible data processing in genomic models, and public relations work in the dairy 

breeding sector, in order to obtain an overall progress. 

  



Chapter 6 

104 
 
 

References 

Aliloo H, Pryce JE, González-Recio O, Cocks BG and Hayes BJ 2016. Accounting for 

dominance to improve genomic evaluations of dairy cows for fertility and milk production 

traits. Genetics, Selection, Evolution: GSE 48, 8. doi:10.1186/s12711-016-0186-0. 

Berry DP 2021. Invited review: Beef-on-dairy-The generation of crossbred beef × dairy cattle. 

Journal of Dairy Science 104, 3789–3819. doi:10.3168/jds.2020-19519. 

Buckley F, Lopez-Villalobos N and Heins BJ 2014. Crossbreeding: implications for dairy cow 

fertility and survival. Animal : an international journal of animal bioscience 8 Suppl 1, 122–

133. doi:10.1017/S1751731114000901. 

Buzanskas ME, Ventura RV, Seleguim Chud TC, Bernardes PA, Santos DJdA, Regitano 

LCdA, Alencar MMd, Mudadu MdA, Zanella R, da Silva MVGB, Li C, Schenkel FS and 

Munari DP 2017. Study on the introgression of beef breeds in Canchim cattle using single 

nucleotide polymorphism markers. PLoS ONE 12, e0171660. 

doi:10.1371/journal.pone.0171660. 

Canaza-Cayo AW, Cobuci JA, Lopes PS, Almeida Torres R de, Martins MF, dos Santos 

Daltro D and Barbosa da Silva MVG 2016. Genetic trend estimates for milk yield 

production and fertility traits of the Girolando cattle in Brazil. Livestock Science 190, 113–

122. doi:10.1016/j.livsci.2016.06.009. 

Clasen JB, Fikse WF, Kargo M, Rydhmer L, Strandberg E and Østergaard S 2020. Economic 

consequences of dairy crossbreeding in conventional and organic herds in Sweden. 

Journal of Dairy Science 103, 514–528. doi:10.3168/jds.2019-16958. 

Clasen JB, Fogh A and Kargo M 2019. Differences between performance of F1 crossbreds 

and Holsteins at different production levels. Journal of Dairy Science 102, 436–441. 

doi:10.3168/jds.2018-14975. 

Clasen JB, Kargo M, Fikse WF, Strandberg E, Wallenbeck A, Østergaard S and Rydhmer L 

2021a. Conservation of a native dairy cattle breed through terminal crossbreeding with 

commercial dairy breeds. Acta Agriculturae Scandinavica, Section A — Animal Science 

136, 1–12. doi:10.1080/09064702.2020.1867632. 



Chapter 6 

105 
 
 

Clasen JB, Kargo M, Østergaard S, Fikse WF, Rydhmer L and Strandberg E 2021b. Genetic 

consequences of terminal crossbreeding, genomic test, sexed semen, and beef semen in 

dairy herds. Journal of Dairy Science 104, 8062–8075. doi:10.3168/jds.2020-20028. 

de Vries M, van Middelaar CE and Boer IJM de 2015. Comparing environmental impacts of 

beef production systems: A review of life cycle assessments. Livestock Science 178, 279–

288. doi:10.1016/j.livsci.2015.06.020. 

Dezetter C, Bareille N, Billon D, Côrtes C, Lechartier C and Seegers H 2017. Changes in 

animal performance and profitability of Holstein dairy operations after introduction of 

crossbreeding with Montbéliarde, Normande, and Scandinavian Red. Journal of Dairy 

Science 100, 8239–8264. doi:10.3168/jds.2016-11436. 

Duenk P 2018. Accuracy of genomic estimated breeding values for crossbred performance in 

broilers using a purebred or crossbred reference population. Proceedings of the World 

Congress on Genetics Applied to Livestock Production. 

Duenk P, Bijma P, Wientjes YCJ and Calus MPL 2021. Review: optimizing genomic selection 

for crossbred performance by model improvement and data collection. Journal of Animal 

Science 99. doi:10.1093/jas/skab205. 

Duenk P, Calus MPL, Wientjes YCJ, Breen VP, Henshall JM, Hawken R and Bijma P 2019. 

Validation of genomic predictions for body weight in broilers using crossbred information 

and considering breed-of-origin of alleles. Genetics, Selection, Evolution: GSE 51, 38. 

doi:10.1186/s12711-019-0481-7. 

Eiríksson JH, Karaman E, Su G and Christensen OF 2021. Breed of origin of alleles and 

genomic predictions for crossbred dairy cows. Genetics, Selection, Evolution: GSE 53, 84. 

doi:10.1186/s12711-021-00678-3. 

Esfandyari H, Bijma P, Henryon M, Christensen OF and Sørensen AC 2016. Genomic 

prediction of crossbred performance based on purebred Landrace and Yorkshire data 

using a dominance model. Genetics, Selection, Evolution: GSE 48, 40. 

doi:10.1186/s12711-016-0220-2. 

Esfandyari H, Sørensen AC and Bijma P 2015. A crossbred reference population can 

improve the response to genomic selection for crossbred performance. Genetics, 

Selection, Evolution: GSE 47, 76. doi:10.1186/s12711-015-0155-z. 



Chapter 6 

106 
 
 

Falconer DS and Mackay TFC 1996. Introduction to quantitative genetics. 4th edition. 

Longmans Green, Harlow. 

Federation of Swedish Farmers 2019. LRFs Statistikplatform - not. Gris Och Lamm, 

Federation of Swedish Farmers, Stockholm, Sweden. 

Freyer G, König S, Fischer B, Bergfeld U and Cassell BG 2008. Invited review: 

crossbreeding in dairy cattle from a German perspective of the past and today. Journal of 

Dairy Science 91, 3725–3743. doi:10.3168/jds.2008-1287. 

Goszczynski DE, Corbi-Botto CM, Durand HM, Rogberg-Muñoz A, Munilla S, Peral-Garcia P, 

Cantet RJC and Giovambattista G 2018. Evidence of positive selection towards Zebuine 

haplotypes in the BoLA region of Brangus cattle. Animal : an international journal of 

animal bioscience 12, 215–223. doi:10.1017/S1751731117001380. 

Hartwig S, Wellmann R, Hamann H and Bennewitz J 2014. The contribution of migrant 

breeds to the genetic gain of beef traits of German Vorderwald and Hinterwald cattle. 

Journal of Animal Breeding and Genetics 131, 496–503. doi:10.1111/jbg.12099. 

Hazel AR, Heins BJ and Hansen LB 2020. Health treatment cost, stillbirth, survival, and 

conformation of Viking Red-, Montbéliarde-, and Holstein-sired crossbred cows compared 

with pure Holstein cows during their first 3 lactations. Journal of Dairy Science 103, 

10917–10939. doi:10.3168/jds.2020-18604. 

Heins BJ, Hansen LB and Vries A de 2012. Survival, lifetime production, and profitability of 

Normande × Holstein, Montbéliarde × Holstein, and Scandinavian Red × Holstein 

crossbreds versus pure Holsteins. Journal of Dairy Science 95, 1011–1021. 

doi:10.3168/jds.2011-4525. 

Hill WG 2010. Understanding and using quantitative genetic variation. Philosophical 

transactions of the Royal Society of London. Series B, Biological sciences 365, 73–85. 

doi:10.1098/rstb.2009.0203. 

Karaman E, Su G, Croue I and Lund MS 2021. Genomic prediction using a reference 

population of multiple pure breeds and admixed individuals. Genetics, Selection, 

Evolution: GSE 53, 46. doi:10.1186/s12711-021-00637-y. 



Chapter 6 

107 
 
 

Kargo M, Madsen P and Norberg E 2012. Short communication: Is crossbreeding only 

beneficial in herds with low management level? Journal of Dairy Science 95, 925–928. 

doi:10.3168/jds.2011-4707. 

Kohl S, Wellmann R and Herold P 2020a. Advanced optimum contribution selection as a tool 

to improve regional cattle breeds: a feasibility study for Vorderwald cattle. Animal : an 

international journal of animal bioscience 14, 1–12. doi:10.1017/S1751731119001484. 

Kohl S, Wellmann R and Herold P 2020b. Implementation of advanced Optimum 

Contribution Selection in small-scale breeding schemes: prospects and challenges in 

Vorderwald cattle. Animal : an international journal of animal bioscience 14, 452–463. 

doi:10.1017/S1751731119002295. 

Livestock Improvement Corporation and Dairy NZ 2020. New Zealand dairy statistics 2019-

2020. 

Lopes MS, Bastiaansen JWM, Janss L, Knol EF and Bovenhuis H 2016. Genomic prediction 

of growth in pigs based on a model including additive and dominance effects. Journal of 

Animal Breeding and Genetics 133, 180–186. doi:10.1111/jbg.12195. 

Lopes MS, Bovenhuis H, Hidalgo AM, van Arendonk JAM, Knol EF and Bastiaansen JWM 

2017. Genomic selection for crossbred performance accounting for breed-specific effects. 

Genetics, Selection, Evolution: GSE 49, 51. doi:10.1186/s12711-017-0328-z. 

Lopez-Villalobos N, Garrick DJ, Blair HT and Holmes CW 2000. Possible Effects of 25 Years 

of Selection and Crossbreeding on the Genetic Merit and Productivity of New Zealand 

Dairy Cattle. Journal of Dairy Science 83, 154–163. doi:10.3168/jds.S0022-

0302(00)74866-1. 

Magne M-A and Quénon J 2021. Dairy crossbreeding challenges the French dairy cattle 

sociotechnical regime. Agronomy for Sustainable Development 41, 1. 

doi:10.1007/s13593-021-00683-2. 

Mäki-Tanila A 2007. An overview on quantitative and genomic tools for utilising dominance 

genetic variation in improving animal production. Agricultural and Food Science 16, 188. 

doi:10.2137/145960607782219337. 

Morris ST 2008. A review of beef cross dairy bred cattle as beef breeding cows. Report 

prepared for Meat and Wood, New Zealand. 



Chapter 6 

108 
 
 

Niemi J and Ahlstedt J 2013. Finnish agriculture and rural industries 2013. Publication 114a. 

MTT Agrifood Research Finland, Helsinki, Finland. 

Nishio M and Satoh M 2014. Including dominance effects in the genomic BLUP method for 

genomic evaluation. PLoS ONE 9, e85792. doi:10.1371/journal.pone.0085792. 

Orellana C, Peña F, García A, Perea J, Martos J, Domenech V and Acero R 2009. Carcass 

characteristics, fatty acid composition, and meat quality of Criollo Argentino and Braford 

steers raised on forage in a semi-tropical region of Argentina. Meat science 81, 57–64. 

doi:10.1016/j.meatsci.2008.06.015. 

Quénon J, Ingrand S and Magne M-A 2020. Managing the transition from purebred to 

rotational crossbred dairy cattle herds: three technical pathways from a retrospective 

case-study analysis. Animal : an international journal of animal bioscience 14, 1293–1303. 

doi:10.1017/S1751731119003458. 

Roche JR, Friggens NC, Kay JK, Fisher MW, Stafford KJ and Berry DP 2009. Invited review: 

Body condition score and its association with dairy cow productivity, health, and welfare. 

Journal of Dairy Science 92, 5769–5801. doi:10.3168/jds.2009-2431. 

RSHeG 2021. Genomic selection in the German Angler population. Personal Communication 

(Email, K. Breuer, 12.11.2021). 

Schmidtmann C, Schönherz A, Guldbrandtsen B, Marjanovic J, Calus M, Hinrichs D and 

Thaller G 2021. Assessing the genetic background and genomic relatedness of red cattle 

populations originating from Northern Europe. Genetics, Selection, Evolution: GSE 53, 6. 

doi:10.1186/s12711-021-00613-6. 

Schönmuth G 1963. Zur Züchtung eines milchbetonten Zweinutzungsrindes mit hohem 

Milchfett- und Eiweißgehalt und bestem Euter. Archives Animal Breeding, 79–92. 

Shonka-Martin BN, Heins BJ and Hansen LB 2019. Three-breed rotational crossbreds of 

Montbéliarde, Viking Red, and Holstein compared with Holstein cows for feed efficiency, 

income over feed cost, and residual feed intake. Journal of Dairy Science 102, 3661–

3673. doi:10.3168/jds.2018-15682. 

Sørensen MK, Norberg E, Pedersen J and Christensen LG 2008. Invited review: 

crossbreeding in dairy cattle: a Danish perspective. Journal of Dairy Science 91, 4116–

4128. doi:10.3168/jds.2008-1273. 



Chapter 6 

109 
 
 

Sun C, VanRaden PM, Cole JB and O'Connell JR 2014. Improvement of Prediction Ability for 

Genomic Selection of Dairy Cattle by Including Dominance Effects. PLoS ONE 9. 

doi:10.1371/journal.pone.0103934. 

van Grevenhof IEM and van der Werf JHJ 2015. Design of reference populations for 

genomic selection in crossbreeding programs. Genetics, Selection, Evolution: GSE 47, 

14. doi:10.1186/s12711-015-0104-x. 

VanRaden PM, Tooker ME, Chud TCS, Norman HD, Megonigal JH, Haagen IW and 

Wiggans GR 2020. Genomic predictions for crossbred dairy cattle. Journal of Dairy 

Science 103, 1620–1631. doi:10.3168/jds.2019-16634. 

Varona L, Legarra A, Toro MA and Vitezica ZG 2018. Non-additive Effects in Genomic 

Selection. Frontiers in Genetics 9, 78. doi:10.3389/fgene.2018.00078. 

Wang Y, Bennewitz J and Wellmann R 2019. Managing genomes of conserved livestock 

breeds with historical introgression to decrease genetic overlap with other breeds. Journal 

of Animal Breeding and Genetics 136, 505–517. doi:10.1111/jbg.12405. 

Wang Y, Segelke D, Emmerling R, Bennewitz J and Wellmann R 2017. Long-term impact of 

Optimum Contribution Selection strategies on local livestock breeds with historical 

introgression using the example of German Angler cattle. G3 (Bethesda, Md.) 7, 4009–

4018. doi:10.1534/g3.117.300272. 

Wellmann R and Bennewitz J 2012. Bayesian models with dominance effects for genomic 

evaluation of quantitative traits. Genetics Research 94, 21–37. 

doi:10.1017/S0016672312000018. 

Wellmann R and Bennewitz J 2019. Key Genetic Parameters for Population Management. 

Frontiers in Genetics 10, 667. doi:10.3389/fgene.2019.00667. 

Xiang T, Nielsen B, Su G, Legarra A and Christensen OF 2016. Application of single-step 

genomic evaluation for crossbred performance in pig. Journal of Animal Science 94, 936–

948. doi:10.2527/jas.2015-9930. 

Zeng J, Toosi A, Fernando RL, Dekkers JCM and Garrick DJ 2013. Genomic selection of 

purebred animals for crossbred performance in the presence of dominant gene action. 

Genetics, Selection, Evolution: GSE 45, 11. doi:10.1186/1297-9686-45-11. 

 



Acknowledgments 

110 
 
 

Acknowledgments 
 

Nie geplant und doch so schön. Das sind wahrscheinlich die zutreffendsten Worte für meine 

Doktorandenzeit hier am Fachgebiet für Tiergenetik und Züchtung. Angefangen hat alles mit 

meiner Masterarbeit, gemeinsamen Mittagspausen in der Mensa und der Info über eine frei 

gewordene Doktorandenstelle. Dann nahmen die Dinge ihren Lauf und ich möchte nichts 

davon missen. 

Allen voran gilt mein Dank Prof. Dr. Jörn Bennewitz, meinem Doktorvater, für die tolle 

Betreuung, fürs Nachhaken und gemeinsame Überlegen, fürs Fordern und Fördern, für das 

Eröffnen von Möglichkeiten, über mich selbst hinaus zu wachsen.  

Auch möchte ich mich herzlich bei Prof. Dr. Dirk Hinrichs und Prof. Dr. Mizeck Chagunda für 

die Übernahme der 2. und 3. Prüfung bedanken, und der dazu aufgebrachten Zeit und Muße. 

Weiterhin danke ich der H. Wilhelm Schaumann Stiftung für das Promotionsstipendium, ohne 

welches dieses Promotionsprojekt nicht hätte realisiert werden können.   

Auch ohne die Co-Autoren wäre Vieles nicht möglich gewesen. Ein ganz großer Dank gebührt 

daher auch ihnen: Dr. Dr. Robin Wellmann, der stets mit konstruktivem Feedback und Ideen 

zur Stelle war; Dr. Markus Schmid, oft mein erster Ansprechpartner, mit dem immer offenen 

Ohr für kleinere oder größere Probleme. And last but not least, Dr. Hadi Esfandyari. I’ve never 

expected that the very first Email I sent to you would turn out into such a nice collaboration. 

Thank you so much for your support and time! 

Further, I want to thank Christopher Childs for the language editing and not turning my thesis 

into a scifi novel. However, I might keep it in mind for the future. 

Ganz besonders möchte ich mich abschließend bei den Doktorand*innen und beim gesamten 

Team des Fachgebietes bedanken, die mich auf diesem Weg begleitet haben. Von euch lebt 

der Teamspirit, den ich hier so genossen habe. Die Zeit mit euch war fabelhaft! 

 

 

  



Curriculum Vitae 

111 
 
 

Curriculum Vitae 
 

  

Personal Details  

Name Joana Stock 

Date of Birth 20.03.1990 

Place of Birth Herford, Germany 

 

Education 

 

10/2018 – to date Ph.D., Department of Animal Genetics and Breeding 

University of Hohenheim, Germany 

 

10/2015 – 09/2018 M.Sc. Animal Sciences 

University of Hohenheim, Germany 

 

10/2012 – 09/2015 B.Sc. Agricultural Sciences 

University of Hohenheim, Germany 

 

03/2012 – 07/2012 Internship at organic farm Biohof Bobbert 

Bielefeld, Germany 

 Hohenheim, 20. Januar 2022                                                            

                                                                                                                 Joana Stock 



Eidesstattliche Versicherung 

112 
 
 

Eidesstattliche Versicherung 
 

gemäß § 8 Absatz 2 der Promotionsordnung der Universität Hohenheim zum Dr.sc.agr. 

 

1. Bei der eingereichten Dissertation zum Thema „Genomic Methods for Rotational 

Crossbreeding in Local Dairy Cattle Breeds“ 

handelt es sich um meine eigenständig erbrachte Leistung. 

2. Ich habe nur die angegebenen Quellen und Hilfsmittel benutzt und mich keiner 

unzulässigen Hilfe Dritter bedient. Insbesondere habe ich wörtlich oder sinngemäß aus 

anderen Werken übernommene Inhalte als solche kenntlich gemacht. 

3. Ich habe nicht die Hilfe einer kommerziellen Promotionsvermittlung oder -beratung in 

Anspruch genommen. 

4. Die Bedeutung der eidesstattlichen Versicherung und der strafrechtlichen Folgen einer 

unrichtigen oder unvollständigen eidesstattlichen Versicherung sind mir bekannt. 

Die Richtigkeit der vorstehenden Erklärung bestätige ich. Ich versichere an Eides Statt, dass 

ich nach bestem Wissen die reine Wahrheit erklärt und nichts verschwiegen habe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Hohenheim, 20. Januar 2022                                             

                                                                                                                 Joana Stock 

 


