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Abstract

This article presents a robust augmented Kalman filter that extends the data– clean-
ing filter (Masreliez and Martin, 1977) to the general state space model featuring
nonstationary and regression effects. The robust filter shrinks the observations to-
wards their one–step–ahead prediction based on the past, by bounding the effect
of the information carried by a new observation according to an influence function.
When maximum likelihood estimation is carried out on the replacement data, an
M–type estimator is obtained. We investigate the performance of the robust AKF
in two applications using as a modeling framework the basic structural time series
model, a popular unobserved components model in the analysis of seasonal time
series. First, a Monte Carlo experiment is conducted in order to evaluate the com-
parative accuracy of the proposed method for estimating the variance parameters.
Second, the method is applied in a forecasting context to a large set of European
trade statistics series.
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1 Introduction

State space models and the Kalman filter offer a powerful tool for statistical analysis

of time series. Any linear Markovian time series model can be put into a state space

form and then the Kalman filter can be applied to estimate the model parameters by

maximum likelihood via the prediction error decomposition. However, if the considered

series is contaminated by outliers, the estimated parameters might be strongly biased.

Masreliez and Martin (1977) proposed a robustification of the Kalman filter to remove

the outlier effects. This approach relies on scaling residuals by an influence function, a

continuous and bounded function, so that the estimator resulting from the application

of the robust Kalman filter belongs to the class of M–estimators. Martin (1979) and

Martin and Thomson (1982) are early works examining the robust Kalman filter in the

case of ARMA models. A comprehensive account is provided in chapter 8 of Maronna

et al. (2006). Recent extensions of the original robust Kalman filter include algorithms

developed by, e.g., Liu et al. (2004), Gandhi and Mili (2010) and Ruckdeschel et al. (2014).

So far, the robust Kalman filter has been derived in a stationary setting.

In this paper we propose another extension of the robust Kalman filter which is suited

for nonstationary series and/or models capturing regressor effects. In particular, we build

on the augmented Kalman filter (AKF) proposed by de Jong (1991). To the best of our

knowledge, this is the first paper that combines the AKF with a robustification procedure.

Our approach is based on the heuristic argument of shrinking a suspect observation to-

wards its one-step-ahead prediction so as to achieve robustness. A theoretically consistent

and empirically viable approach to robustness in time series analysis has been recently

proposed by Harvey (2013). The approach, however, deals with unobserved components

whose dynamics is driven by the conditional score of the observation density and, unlike

our proposed method, cannot handle models with multiple source of errors.

Since the presented approach – the robust AKF – might be of relevance for economic

time series many of which are nonstationary and affected by outlying observations, we

consider the class of structural time series models, i.e. models formulated in terms of

unobserved components, like trend, cycle, seasonal or irregular components, inherent in

many economic time series (Harvey, 1989). To account for the fact that treatment of

outliers usually accompanies the removal of the seasonal component from the data, as the

reference model we use the basic structural model (BSM) for univariate series (Harvey

and Todd, 1983), often applied for the purpose of seasonal adjustment. The BSM is a

simple yet flexible model providing a satisfactory fit to a wide range of seasonal time

series.

Using the BSM as the modeling framework, we investigate the performance of the
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robust AKF in a Monte Carlo simulation exercise and in an empirical application. In

the Monte Carlo experiment, the simulated series are affected by additive or innovation

outliers. Our results complement and extend Bianco et al. (2001), in that we assess the role

of specific outlier types on estimating the correct size of a particular variance component in

a nonstationary dynamic regression framework. In the empirical application, we conduct

a pseudo real–time forecasting experiment on a large dataset of 540 monthly European

trade statistics series, that are contaminated with additive outliers. The aim of the study

is to investigate whether the robust AKF is capable of cleaning the data effectively and

thus reducing the forecast uncertainty.

The remainder of the article is organized as follows. In Section 2, we set out the refer-

ence state space form and we present the AKF. The robust AKF is exposed in Section 3.

Section 4 presents the modeling framework used in the application part of the study. In

Section 5, we evaluate the robust AKF by means of a Monte Carlo experiment whereas

in Section 6 we discuss the results of the forecasting exercise. Section 7 concludes.

2 The Augmented Kalman Filter

The augmented Kalman filter, see Rosenberg (1973) and de Jong (1991), is an essential

tool for likelihood inferences on the parameters of a state space model and for linear

prediction. Given the parameter values, it evaluates the likelihood via the prediction error

decomposition, and once the parameters are estimated as the maximizers of the likelihood

function, it enables the out–of–sample prediction of the series and the estimation of the

states in real time.

2.1 State space form

Consider a multivariate time series yt with N elements. The state space model for yt is

given by:

yt = Ztαt +Xtβ +Gtεt, εt ∼ N(0, σ2I),

αt+1 = Ttαt +Wtβ +Htεt, t = 1, ..., n
(1)

where αt is the (m × 1) state vector, Xt and Wt denote fixed and known matrices of

dimension (N × k) and (m× k), respectively. Vector β contains regressor effects and/or

initial values of nonstationary elements of yt. The initial state vector is specified as

follows:

α1 = α̃
∗
1|0 +W0β +H0ε0, (2)
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where α̃∗
1|0, W0, and H0 are known quantities.

The leading case of interest is when β is partitioned as

β =







α
†
0

βx

βw






,

Xt =
[

0,X†
t , 0

]

,

Wt =
[

0, 0,W†
t

]

,

W0 =
[

T†, 0,W†
0

]

,

where α†
0 is a subset of initial states corresponding to nonstationary elements of αt, X

†
t

is an (N × kx) matrix of explanatory variables affecting the response variable, W†
t is an

(m × kw) matrix of explanatory variables affecting αt+1, and T† is a matrix relating α1

to α†
0.

The vector β can be considered as fixed (and unknown), or as a random vector with

a diffuse distribution, β ∼ N(0,Σβ), where Σ−1

β → 0.

2.2 Recursions

Consider the state space model (1), with initial conditions stated in (2). Setting A1|0 =

−W0 and P∗
1|0 = H0H

′
0, the AKF is, for t = 1, . . . , n:

ν∗
t = yt − Ztα̃

∗
t|t−1, Vt = Xt − ZtAt|t−1,

F∗
t = ZtP

∗
t|t−1

Z′
t +GtG

′
t, K∗

t = (TtP
∗
t|t−1

Z′
t +HtG

′
t)F

∗−1
t ,

α̃∗
t+1|t = Ttα̃

∗
t|t−1 +K∗

tν
∗
t , At+1|t = TtAt|t−1 −Wt +K∗

tVt,

P∗
t+1|t = TtP

∗
t|t−1

T′
t +HtH

′
t −K∗

tF
∗
tK

∗′

t .

(3)

The starred quantities correspond to the usual Kalman filter applied to yt with β = 0,

when the nonstationary initial effects are set to zero and no explanatory variables are

considered (i.e. using the initial condition α̃∗
1|0). The individual columns of the matrices

Vt and At+1|t, t = 1, . . . , n, arise from running to each of the columns of Xt and At|t−1,

respectively, analogous recursions as for yt and α̃
∗
t+1|t.

Defining

st =
t

∑

i=1

V′
iF

∗−1

i ν∗
i , St =

t
∑

i=1

V′
iF

∗−1

i Vi,

for t ≥ k we obtain

β̃t|t−1 = S−1

t−1st−1

as the estimate of β using the information set up to the period t−1, {Yt−1,X t−1,W t−1},
where Y t−1, X t−1, and W t−1 include yi, Xi and Wi, respectively, up to i = t− 1.
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If β is considered as a fixed vector, then β̃t|t−1 is its generalized least square (GLS)

estimator using the observations up to time t−1. The covariance matrix of the regression

coefficients is Bt|t−1 = σ2S−1

t−1. In the diffuse case, β̃t|t−1 represents the mean of the

posterior distribution, see de Jong (1991), and σ2S−1

t−1 represents its posterior covariance

matrix.

The innovations, νt = yt − E(yt|Y t−1,X t−1,W t−1), the one–step–ahead prediction

of the state vector, α̃t|t−1 = E(αt|Yt−1,X t−1,W t−1), and the corresponding estimation

error covariance matrices are

νt = ν∗

t −Vtβ̃t|t−1, Ft = F∗

t +VtBt|t−1V
′
t,

α̃t|t−1 = α̃∗

t|t−1
−At|t−1β̃t|t−1, Pt|t−1 = P∗

t|t−1
+At|t−1Bt|t−1A

′
t|t−1

.
(4)

2.3 Real–time estimates and predictions

As St = St−1 + V′
tF

∗
tVt, by the Sherman–Woodbury–Morrison matrix inversion lemma

(Henderson and Searle, 1981),

S−1

t = S−1

t−1 − S−1

t−1V
′
t

(

F∗

t +VtS
−1

t−1V
′
t

)−1
VtS

−1

t−1.

The updated or, in other words, real–time estimate of the vector β is β̃t|t = S−1
t st. In view

of st = st−1 + V′
tF

∗
tν

∗
t , the above matrix inverse, and recalling (4), β̃t|t can be written,

after some algebra, as:

β̃t|t = β̃t|t−1 +Bt|t−1V
′
tF

−1

t νt.

The updated covariance matrix is

Bt|t = Bt|t−1 −Bt|t−1V
′
tF

−1

t VtBt|t−1.

The updated estimates of the state vector, α̃t|t = E(αt|Yt,X t,W t), and their covari-

ance matrix Var(αt|Y t,X t,W t) = σ2Pt|t are:

α̃t|t = α̃∗
t|t−1 −At|t−1β̃t|t +P∗

t|t−1
Z′

tF
∗−1
t (ν∗

t −Vtβ̃t|t),

Pt|t = P∗
t|t−1

−P∗
t|t−1

Z′
tF

∗−1
t ZtP

∗
t|t−1

+At|tBt|tA
′
t|t.

(5)

The GLS residual can be rewritten in terms of the innovations:

ν∗
t −Vtβ̃t|t = F∗

tF
−1

t νt,

so that

α̃t|t = α̃∗
t|t−1 −At|t−1β̃t|t +P∗

t|t−1
Z′

tF
−1
t νt. (6)
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Finally, denoting ε̃t|t = E(εt|Y t,X t,W t),

ε̃t|t = G′
tF

∗−1
t (ν∗

t −Vtβ̃t|t)

= G′
tF

−1
t νt.

(7)

Notice that the same real–time estimates would be obtained from

α̃∗
t|t = α̃

∗
t|t−1 +P∗

t|t−1
Z′

tF
∗−1
t ν∗

t , At|t = At|t−1 +P∗
t|t−1

Z′
tF

∗−1
t Vt,

P∗
t|t = P∗

t|t−1
−P∗

t|t−1
Z′

tF
∗−1
t ZtP

∗
t|t−1

(8)

setting

α̃t|t = α̃
∗
t|t −At|tβ̃t|t, Pt|t = P∗

t|t +At|tBt|tA
′
t|t. (9)

For the regression coefficients set β̃t+1|t = β̃t|t and Bt+1|t = Bt|t. When HtG
′
t = 0,

the prediction step for the state vector gives:

α̃∗
t+1|t = Ttα̃

∗
t|t, At+1|t = TtAt|t −Wt,

P∗
t+1|t = TtP

∗
t|tT

′
t +HtH

′
t

(10)

3 The Robust Augmented Kalman Filter

To control for the effects of outliers, the AKF equations in Section 2 are modified using

an influence function applied to the standardized innovations.

Let ut = F
−1/2
t νt denote the standardized innovations; further, let ψ(uit) denote the

influence function of a standardized innovation uit, i = 1, . . . , N , and w(uit) = ψ(uit)/uit

be the corresponding weight function. Moreover, let ψ(ut) = (ψ(u1i), . . . , ψ(uNt))
′ and

w(ut) = diag (w(u1i), . . . , w(uNt)).

An influence function is a piecewise continuous bounded function ψ : R → R, such

that ψ(−u) = −ψ(u), ψ(u) = u for |u| ≤ c, and |ψ(u)| is bounded for |u| > c. For

redescending functions, lim|u|→∞ ψ(u) = d = 0, so that the effect of high values of u is

zero, whereas for monotone non–decreasing functions the effect is bounded by a constant

d, i.e. |ψ(u)| ≤ d, for u > d > 0. Details on the specific form of the influence function

considered in this paper are postponed to Section 3.2.

Assume also that at the t = k–th update, all the AKF quantities have been computed

and the following inferences are available: β̃k|k = β̃k+1|k = S−1

k sk. Then, for t = k +
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1, . . . , n, the robust AKF is given by:

ν∗
t = yt − Ztα̃

∗
t|t−1, Vt = Xt − ZtAt|t−1,

F∗
t = ZtP

∗
t|t−1

Z′
t +GtG

′
t, K∗

t = (TtP
∗
t|t−1

Z′
t +HtG

′
t)F

∗−1
t ,

νt = ν
∗

t −Vtβ̃t|t−1, Ft = F∗

t +VtBt|t−1V
′
t,

(11)

β̃t|t = β̃t|t−1 +Bt|t−1V
′
tF

−1/2
t ψ (ut) ,

Bt|t = Bt|t−1 −w(ut)Bt|t−1V
′
tF

−1
t VtBt|t−1,

(12)

α̃t|t = α̃
∗
t|t−1 −At|t−1β̃t|t +P∗

t|t−1
Z′

tF
−1/2
t ψ (ut) ,

Pt|t = P∗
t|t−1

−w(ut)P
∗
t|t−1

Z′
tF

∗−1
t ZtP

∗
t|t−1

+At|tBt|tA
′
t|t,

(13)

α̃∗
t+1|t = Ttα̃

∗
t|t−1 +w(ut)K

∗
tν

∗
t ,

At+1|t = TtAt|t−1 −Wt +w(ut)K
∗
tVt,

P∗
t+1|t = TtP

∗
t|t−1

T′
t +HtH

′
t −w(ut)K

∗
tF

∗
tK

∗′

t .

(14)

Equations (11) are the usual AKF equations for computing the innovations and their

covariance matrix (up to a scale factor). Equations (12) shrink the real–time estimate of

the coefficient vector β towards β̃t|t−1 +Ctd, where Ct = Bt|t−1V
′
tF

−1/2
t ; for d = 0 this

corresponds to the one–step–ahead prediction β̃t|t−1. The covariance matrix is adjusted

accordingly, i.e. the estimation error variance is reduced by a smaller amount depending

on the size of the standardized innovations. Equations (13) provide the robust real–

time estimate of the state vector at time t: if ψ(ut) → d, α̃t|t → α̃t|t−1 + Dtd, where

Dt = P∗
t|t−1

Z′
tF

−1/2
t −At|t−1Ct. If d = 0, then no updating takes place, and no reduction

in the state estimation error variance matrix occurs. Finally, the first two equations of

(14) are such that if w(ut) = I, α̃∗
t+1|t −At+1|tβ̃t|t equals the one–step–ahead prediction

α̃t+1|t; otherwise, if w(ut) → 0, α̃∗
t+1|t − At+1|tβ̃t|t → α̃t+1|t−1 + (TtDt − WtCt)d. For

d = 0, α̃∗
t+1|t −At+1|tβ̃t|t tends to the two–step–ahead prediction of the states.

The robust AKF shrinks an outlying observation towards the one–step–ahead predic-

tion ỹt|t−1 = Ztα̃t|t−1 +Xtβ̃t|t−1. In particular, it replaces yt = ỹt|t−1 + νt with

y
†
t = ỹt|t−1 + F

1/2
t ψ(ut)

Alternatively, this can be written as

y
†
t = Ztα̃t|t +Xtβ̃t|t +GtG

′
tF

−1/2
t ψ(ut),

where α̃t|t and β̃t|t are as in (13) and (12), respectively, and the last term is the robust

counterpart of ε̃t|t in eq. (7). In both these versions, y†
t is equal to yt if ψ(ut) = ut; if,
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however, ψ(ut) → d, y†
t tends to ỹt|t−1 + F

1/2
t d, which reduces to the one–step–ahead

prediction in the case of d = 0. The sequence {y†
t}, t = 1, . . . , n, represents a cleaned

data set which can be used for robust parameter estimation.

3.1 Estimation of model parameters

Estimation of the model parameters (θ,β, σ2) is carried out by maximum likelihood. In

particular, we will maximize the diffuse likelihood, defined as

L(θ, σ2) = −1

2

{

N(n− k) ln σ2 +
∑

ln |F∗
t |+ ln |Sn|+ σ−2

[

∑

ν∗′
t F

∗−1

t ν∗

t − s′nS
−1

n sn

]

,
}

.

The maximum–likelihood (ML) estimator of σ2 is

σ̂2 =
1

N(n− k)

[

n
∑

t=1

ν∗′
t F

∗−1

t ν∗

t − s′nS
−1

n sn

]

, (15)

and the profile likelihood is

Lσ(θ) = −1

2

[

N(n− k)(ln σ̂2 + 1) +

n
∑

t=1

ln |F∗
t |+ ln |Sn|

]

. (16)

The notion of a diffuse likelihood is close to that of a marginal likelihood, being based

on reduced rank linear transformation of the series that eliminates dependence on β; see

Francke et al. (2010).

The ML estimator of the parameters is not robust to outliers. A robust M–type

estimates can be obtained by the following procedure:

1. Compute the ML estimates of θ and obtain a robust scale estimate by replacing

(15) by the median absolute deviation of the standardized innovations:

[med (|uit −med(uit)|) /0.6745]2 ,

where med(·) is the median of the distribution.

2. Run the robust AKF of Section 3 to obtain a clean series.

3. Estimate the parameters on the clean series by ML.

Steps 2–3 may be iterated until the robust AKF coincides with the AKF and no further

corrections to the series are made.
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3.2 Influence function

The influence function is an essential building block of the robust AKF. In our applica-

tions, we shall use the Huber influence function which, for a variable u, is given by

ψ(u) =











u, if |u| ≤ c

d = c sign(u), if |u| > c

The Huber function belongs to the class of monotone non–decreasing influence functions

and is the most–widely used influence function. The tuning constant c regulates the

trade–off between the so–called breakdown point and the efficiency of the estimator. The

breakdown point is a measure of robustness of an estimator as it gives the fraction of

bad data the estimator can tolerate before giving results towards the boundary of the

parameter space. Lower values of c increase the breakdown point but reduce efficiency. We

set c = 1.345 which guarantees 95% efficiency when sampling from the normal distribution.

The Huber influence function ψ(u) and the corresponding weight function w(u) = ψ(u)/u

for c = 1.345 are depicted in Figure 1.

-10 -5 0 5 10
-1.5

-1

-0.5

0

0.5

1

1.5

ψ(u)

w(u)

Figure 1: Huber influence function ψ(u) and weight function w(u) for c = 1.345.

4 Modeling Framework: the Basic Structural Model

After the robust AKF has been introduced for a general class of linear Markovian models,

in the following we review the BSM, which will serve as the common modeling framework

in the application part of the article.
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The BSM postulates an additive and orthogonal decomposition of a time series into

unobserved components representing the trend, seasonality and the irregular component.

If yt denotes a time series observed at t = 1, . . . , n, the decomposition can be written as

follows:

yt = µt + γt + ǫt, t = 1, . . . , n, (17)

where µt is the trend component, γt is the seasonal component, and ǫt ∼ IID N(0, σ2
ǫ ) is

the irregular component.1

The trend component has a local linear representation:

µt+1 = µt+ ρt + ηt
ρt+1 = ρt + ζt,

(18)

where ηt and ζt are mutually and serially uncorrelated normally distributed random shocks

with zero mean and variances σ2
η and σ2

ζ , respectively.

The seasonal component can be modeled as a combination of six stochastic cycles

whose common variance is σ2
ω. The single stochastic cycles have a trigonometric rep-

resentation and are defined at the seasonal frequencies λj = 2πj/12, j = 1, . . . , 6. The

parameter λ1 denotes the fundamental frequency (corresponding to a period of 12 monthly

observations) and the remaining ones represent the five harmonics (corresponding to peri-

ods of 6 months, i.e. two cycles in a year, 4 months, i.e. three cycles in a year, 3 months,

i.e. four cycles in a year, 2.4, i.e. five cycles in a year, and 2 months):

γt =

6
∑

j=1

γjt,

[

γj,t+1

γ∗j,t+1

]

=

[

cosλj sinλj
− sinλj cosλj

][

γj,t
γ∗j,t

]

+

[

ωj,t

ω∗
j,t

]

, j = 1, . . . , 5, (19)

and γ6,t+1 = −γ6t + ω6t. The disturbances ωjt and ω∗
jt are normally and independently

distributed with common variance σ2
ω for j = 1, . . . , 5, whereas Var(ω6t) = 0.5σ2

ω.

The state space representation (1) of the BSM has m = 13 state components, αt =

[µt, ρt, γ1t, γ
∗
1t, . . . , γ6t]

′, and disturbances

εt = σ

[

ǫt
σǫ
,
ηt
ση
,
ζ

σζ
,
ω1t

σω
, . . . ,

ω6t

σω

]′

.

The system matrices are time–invariant, Zt = Z,Gt = G,Tt = T,Ht = H, and

Z = [1, 0, 1, 0, . . . , 1],G =
[σǫ
σ
, 0, . . . , 0

]

,

1Eq. (17) can additionally include regressors that account for any known interventions as well as
calendar effects which are, apart from outlier effects, typically also removed during seasonal adjustment.
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,
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

















.

Moreover, it holds that Wt = 0, t = 1, . . . , n. The scale parameter σ2 is set equal to one

of the variance parameters, and we adopt σ2 = σ2
ǫ as a default. The initial conditions are

set as follows: α̃∗
1|0 = 0, α̃1|0 = β = α†

0, W0 = T†, T† = T, and H0 = H.

In the next two sections, we illustrate an application of the robust AKF to structural

time series models using the BSM. First, in Section 5, we conduct a Monte Carlo exper-

iment to assess the gains in the precision of the parameter estimates when additive or

innovation outliers are present in the simulated data. As detection of outliers of this kind

may also have consequences for forecasting, in the second step, in Section 6, we illustrate

an application of the robust AKF in the context of forecasting. For this purpose, we use

a large set of real data contaminated by outliers.

5 A Monte Carlo Experiment

5.1 Design of the experiment

We generate time series of length n = 144 observations (12 years of monthly data) using

the data generating process (DGP) given by the BSM in eq. (19).2 We distinguish between

five scenarios regarding variance parameters regulating the DGP:

• the benchmark scenario with σ2
ǫ = 1, σ2

η = 0.08, σ2
ζ = 0.0001, σ2

ω = 0.05. As the

irregular variance is set equal to 1, the remaining parameters are interpreted as

signal to noise ratios. The benchmark DGP is chosen on the basis of our experience

in fitting the BSM to industrial production and turnover time series. Note that the

values of σ2
ǫ and σ2

ζ remain unchanged across different scenarios.

• a stable trend–stable seasonal scenario (labeled sT–sS) with σ2
η = 0.00008 and σ2

ω =

0.00005

• a stable trend–unstable seasonal scenario (sT–uS) with σ2
η = 0.00008 and σ2

ω = 0.5

2The initial values for the components are: µ0 = 91.06, ρ0 = 0.00015, [γ1,0, γ
∗
1,0] = [−0.381; 4.1483],

[γ2,0; γ
∗
2,0] = [−6.863;−4.00136], [γ3,0; γ

∗
3,0] = [−3.41264; 9.99139], [γ4,0; γ

∗
4,0] = [2.032516;−5.47096],

[γ5,0; γ
∗
5,0] = [−6.65170; 2.93962], γ6,0 = 5.88545. These values correspond to the values of the respective

smoothed components of the Italian industrial production series in 1995.
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• an unstable trend–stable seasonal scenario (uT–sS) with σ2
η = 0.8 and σ2

ω = 0.00005

• an unstable trend–unstable seasonal scenario (uT–uS) with σ2
η = 0.8 and σ2

ω = 0.5

The simulated series are contaminated with randomly located and sized outliers of

a particular type. The considered outlier types are: additive outliers (AOs), occurring

either individually or in a patch, and innovation outliers (IOs). As a result of outlier

contamination, we observe yt = y‡t + ξt, where y
‡
t is generated according to the BSM and

ξt represents the outlier effect depending on the outlier type.

The AO generating model is zt δ It, where δ denotes the reference size, zt is IID N(0,1),

and It is an IID Bernoulli random variable with success probability p = 0.02. The value

of δ and consequences of a random zt will be discussed later. As for the patch of AOs,

we allow only for a single patch of k consecutive outliers, with the first one located at a

random time τ . More specifically, we draw k from a discrete uniform distribution with

support {3, 4, . . . , 12}; the location τ is drawn at random from a uniform distribution

with support {1, 2, . . . , n−k+1}; setting It(τ, k) = 1 for t = τ, . . . , τ+k−1, the AO patch

is generated by zt δ It(τ, k). In the case of individual AOs, it holds that ξt = δztIt and

for a patch of AOs ξt is given by ξt = δztIt(τ, k). This means that the outlier signature,

i.e. the influence of an outlier occurring at a particular time point on the current and

future observations, coincides in both AO cases with the outlier magnitude ztδ.

In the IO case, for the location τ at which the outlier occurs, we define the dummy

variable taking values

Dt(τ) =











0, t = 1, . . . , τ − 1

1, t = τ

ZTt−τ−1K∗, t = τ + 1, . . . , n,

where K∗ denotes the Kalman gain in the steady state. The outlier signature is thus

given by the impulse–response function derived from the innovation form of the state

space model (1). The occurrence of outliers is, similarly as in the AO case, governed

by an IID Bernoulli random variable It with success probability p = 0.02. If It = 1 at

locations t = τj, j = 1, . . . , J , then the outlier effect at each time point t is given by

ξt =
∑J

j=1
zj δ Dt(τj), where zj are IID standard normal draws.

The reference size δ is expressed by δ = 7·PESD with PESD = σF 1/2 denoting the

prediction error standard deviation, which is obtained from the innovations form of the

model in the steady state (F = limt→∞ Ft). The PESD increases with σ2
η and σ2

ω and

attains the highest value in the uT–uS scenario. Hence, tying δ to the PESD accounts

for the difficulty of detecting outliers in the case of a high overall variation. A detailed

discussion of the choice of the outlier magnitude for structural time series models is

11



provided by Marczak and Proietti (2015), who consider the same settings regarding the

model for simulations (BSM) and the values for the variance parameters. In addition to

the reference size δ = 7·PESD, also chosen as a reference size in Marczak and Proietti

(2015), we consider δ = 14·PESD. Increasing the magnitude of δ is motivated by the fact

that, in contrast to Marczak and Proietti (2015), the final outlier size is not given by δ

but is obtained by scaling δ with a standard normal variable zt. Since the probability that

zt takes on values between −1 and 1 is 68.27%, the final outlier size is in most of the cases

smaller than δ. A higher δ is thus supposed to countervail low values of zt. It is to be

noted that instead of scaling δ with a random number, we could have examined different

values of δ obtained by scaling PESD with a range of factors. However, our setting is

a more realistic one as it allows for different sizes of outliers affecting a particular series

whereas the alternative setting would imply the same deterministic magnitude.

Taking into account the settings described above, for each combination of the vari-

ance parameters and outlier types a simulation experiment is conducted to evaluate the

performance of the robust AKF. Every single experiment consists of the following steps:3

1. Obtain series contaminated with outliers using the BSM and an outlier generating

process.

2. Fit the simulated series to the BSM and put the BSM into the state space form (1).

3. Run the ordinary AKF to the simulated series and the state space model and,

by maximizing the likelihood function in eq. (16), obtain the ML estimates of the

variance parameters: σ̂2
ǫ , σ̂

2
η , σ̂

2
ζ , σ̂

2
ω.

4. Apply the procedure described in Section 3.1 to obtain the robust estimates of the

parameters: σ̃2
ǫ , σ̃

2
η , σ̃

2
ζ , σ̃

2
ω.

5. After 1000 replications of steps 1–4, compute relative efficiency corresponding to

each of the variance parameters, given by the ratio of the mean square error (MSE)

of the ML estimates to the MSE of the robust estimates.

3All computations are performed with Matlab R2015a. We also experimented with different values of
δ and, as alternatives to the Huber function, we also investigated different redescending functions, which
exhibit higher resistance to large outliers than monotone functions. More specifically, we considered the
Chauchy function as a soft redescender and two strong redescenders – the Hampel function and the Tukey
biweight function. The latter two proved inferior to the Huber function in the Monte Carlo experiment.
The Cauchy function yielded, similarly to the Huber function, satisfactory results but at the cost of
overadjusting the series. These further outcomes of the simulation experiment are available from the
authors upon request.
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Figure 2: Examples of simulated series affected by random AOs, IOs, and a random
AO patch, respectively (left panel). Location of random outliers of a particular type is
indicated by: vertical dashed lines in a) (AOs) and c) (IOs), and a shaded vertical band
in e) (AO patch). The corresponding outlier effects are depicted in the right panel. The
contaminated series are generated using the benchmark setting; the outlier size is set
relative to δ = 7· PESD.
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5.2 Results

Table 1 summarizes the simulation results for series contaminated by AOs for the five

different parameter scenarios outlined above, and two different values of δ regulating the

outlier size. In particular, the table displays the relative efficiency of the ML estimator

compared to that of the robust estimator of the variance parameters, as measured by

the ratio of the respective MSE values. It is evident that for all parameters as well as

both values of δ and all variance combinations, the robust estimator is more efficient

than the ML estimator. Only for the seasonal variance, σ2
ω, the efficiency ratio is in

one of the ten considered cases slightly below one. Increasing the reference size from the

benchmark value to 14·PESD leads, however, to a considerable improvement of the results

for all variance parameters. Independently of δ, the most sizeable efficiency gain for the

Table 1: Series contaminated by random AOs: MSE ratio of the ML estimator to that of
the robust estimator.

Benchmark: δ = 7·PESD δ = 14·PESD
Benchmark sT–sS uT–sS sT–uS uT–uS Benchmark sT–sS uT–sS sT–uS uT–uS

σ2
ǫ 3.695 9.012 6.769 2.532 3.517 5.305 27.022 10.352 5.708 6.459

σ2

η 1.783 3.536 6.515 5.177 1.380 2.653 10.621 20.823 8.077 6.723
σ2

ζ 2.145 1.189 3.427 2.930 2.598 2.672 1.290 6.819 2.738 3.507

σ2

ω 1.675 7.370 3.917 3.302 0.842 4.087 26.199 7.373 7.806 3.001

irregular variance, σ2
ǫ , is visible in the sT–sS scenario. The gain decreases if the seasonal

component is unstable. As regards the variances of the level and the slope disturbance,

σ2
η and σ2

ζ , respectively, the efficiency of the robust estimator is the highest in the uT–sS

scenario. For σ2
ω, similarly as for σ2

ǫ , the robust estimator shows the highest accuracy in

the sT–sS case. In general, it can be concluded that the highest accuracy of the robust

estimator is achieved if the seasonal component is stable which means that in such a case

it is easier to decouple the effect of outliers from the variation of a particular component.

Evaluation results for a random patch of AOs are reported in Table 2. Similarly as

for individually occurring AOs, the robust estimator is in general more efficient than the

ML estimator, especially if the reference size δ is doubled. For σ2
ω, the robust estimator

turns out to be less efficient if δ is of the benchmark size and the seasonal component

is not stable but it improves in efficiency relative to the ML estimator if the reference

size is larger. Overall, the efficiency gains are found to be the highest if the seasonal

component is stable, with an exception for σ2
ζ . In this case, the best performance of the

robust estimator is observed in the uT–uS and sT–uS scenarios.

If the series are contaminated with random IOs (see Table 3), the general tendency in
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Table 2: Series contaminated by a random patch of AOs: MSE ratio of the ML estimator
to that of the robust estimator.

Benchmark: δ = 7·PESD δ = 14·PESD
Benchmark sT–sS uT–sS sT–uS uT–uS Benchmark sT–sS uT–sS sT–uS uT–uS

σ2

ǫ 4.934 6.147 7.994 4.054 4.741 8.654 17.677 14.863 8.745 9.511
σ2

η 3.001 4.413 8.243 2.995 3.689 4.009 11.341 16.492 4.736 5.609
σ2

ζ 3.002 3.446 3.288 2.554 4.134 3.687 8.000 0.966 13.359 4.689

σ2

ω 0.702 11.097 6.723 0.473 0.461 1.623 22.690 21.537 1.150 1.446

the findings is similar to that for individual AOs and AO patch. For both reference sizes,

the highest gain of applying the robust estimator is found for σ2
ǫ as well as σ

2
ω in the sT–sS

scenario. For σ2
η , the robust estimator performs better in terms of efficiency in the uT–sS

scenario, like for the previously discussed outlier types. Differently than in the additive

outlier case, the efficiency gain is on average the highest for σ2
ω, a result being especially

in contrast to the case of a random AO patch. This difference can be explained by the

fact that AOs particularly corrupt the ML estimate of the irregular variance and an AO

patch, which resembles a level shift, possibly also distorts the level variance estimate. IOs,

on the other hand, affect all components and the distortion is here especially articulate

for the ML estimates of the seasonal component.

Table 3: Series contaminated by random IOs: MSE ratio of the ML estimator to that of
the robust estimator.

Benchmark: δ = 7·PESD δ = 14·PESD
Benchmark sT–sS uT–sS sT–uS uT–uS Benchmark sT–sS uT–sS sT–uS uT–uS

σ2
ǫ 4.476 12.619 4.384 1.504 2.833 6.782 45.443 15.312 2.198 6.124

σ2
η 1.908 3.559 8.411 2.644 3.933 3.591 19.688 24.039 4.850 8.865

σ2

ζ 2.107 1.282 2.769 4.230 2.948 2.668 2.253 5.819 2.364 6.515

σ2
ω 2.026 12.711 4.581 6.803 7.688 4.513 53.330 19.332 6.039 14.750

Next, we compare the distributions of the ML and robust estimates of the BSM param-

eters is presented in Figure 3 for the benchmark scenario. The plot is divided into three

panels, according to the outlier type (AOs, AO patch and IOs). The light blue bars (his-

togram) and the dashed red line (density) correspond to the ML estimates, whereas the

dark blue bars (histogram) and the solid red line (density) refer to the robust estimates.

It can be observed that for all three types of outlier contamination the distribution

of the ML estimates of all variance parameters is more dispersed than the distribution of

the robust estimates. Further, for all variance parameters, except for σ2
ζ , the distribution

of the ML estimates is shifted to the right relative to that of the robust estimates.
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Figure 3: Distribution of the ML and robust estimates of the disturbance variances in the
case of individual random AOs, a random patch of AOs and random IOs; ML estimates:
light blue bars (histogram) and dashed red line (density), robust estimates: dark blue
bars (histogram) and solid red line (density). The true parameter values correspond to
the benchmark case: σ2

ǫ = 1, σ2
η = 0.08, σ2

ζ = 0.0001, σ2
ω = 0.05.
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In the case of random AOs (Figure 3a), lower dispersion of the robust estimates is

particularly clear for σ2
ǫ and σ2

ω. In addition, the distribution of the robust estimates

of σ2
ǫ is concentrated around the true value 1. For σ2

ω, the mode of the distribution in

the robust case occurs, in contrast to the ML case, at a value lower than the true one

(0.05). However, from the inspection of the histogram it is evident that ML substantially

overestimates σ2
ω in a large number of cases.

Similar observations as for individual AOs can be made also for a random AO patch

and random IOs as regards both parameters, σ2
ǫ and σ2

ω. Unlike in the AO case, for

the other outlier types noticeable differences in the distributions of the robust and ML

estimates are found also for the parameter σ2
η. Even though in the case of an AO patch

(Figure 3b) both distributions are concentrated around a value distant from the the true

one (0.08), ML leads to a considerably larger overestimation of σ2
η . As the effect of outliers

occurring in a group resembles that of a level shift, variance of the level disturbance is

estimated by ML with a large positive bias. The robust method thus helps reduce this

bias but it is clear that the difficulty of the robust estimator to classify an AO patch

as bad observations is bigger than for single random AOs. As far as IOs are concerned

(Figure 3c), the distribution of the ML estimates of σ2
η peaks around the true value.

However, the histogram indicates that ML overestimates σ2
η more often than the robust

estimator.

Finally, the performance of the robust AKF in detecting outliers is examined. To

that end, we compute the proportion of correctly adjusted outliers and focus thereby

on individual AOs.4 The results corresponding to our experiment design with randomly

located and sized outliers are reported in Table 4. The findings show that regardless of

the scenario and the reference size of the outliers, the robust AKF is capable of identifying

AOs in nearly 100% cases. It is thus a very effective outlier detection method.

4We restrict the analysis to individual AOs for the following reasons. As regards AO patches, it is
well–known that their effect on the series is very similar to that of a level shift lasting for a limited period.
Detecting a level shift by capturing the single outlying observations in the time interval of the shift is
very difficult; see, e.g., Marczak and Proietti (2015). Therefore, the proportion of identified AOs in a
patch is expected to be lower than the proportion of identified single AOs. As regards IOs, differently
than for the AO type, the proportion of the correctly adjusted outlier effects may not be an appropriate
measure to evaluate an outlier detection method. While the effect of an AO lasts for one period only, the
effect of an IO persists until the end of the series. Even though the effect of an IO at the time point of
its occurrence would correspond to the effect of an AO, the effects at the subsequent time points may be
very small and hardly detectable.
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Table 4: Proportion of correctly adjusted outlier effects (in %) in
the case of randomly located AOs. The outlier size at a location τ
is given by zt δ.

Reference size Benchmark sT–sS uT–sS sT–uS uT–uS

Benchmark δ = 7·PESD 96.14 99.62 99.45 99.13 99.26

δ = 14·PESD 99.96 99.92 99.96 99.96 99.92

6 Robust Forecasting: an Application

If the series is generated as yt = y‡t + ξt, with y
‡
t and ξt denoting uncontaminated latent

series and outlier effects, respectively, robust forecasting deals with predicting y‡t using

the observed past values of yt. Two issues are involved: the first one is robust estimation

of the model parameters; the second one deals with robustifying the forecasting method,

so that a contaminated observation does not exert excessive influence on the forecast.

Replacing yt by an estimate of y‡t in the expression of the optimal linear predictor goes

in this direction. The forecast application presented in this section aims at assessing

the effectiveness of this strategy for forecasting a set of time series of trade flows. The

perspective that is taken here is that we either believe that the outliers are not going to

affect the future of yt, or that we are inherently interested in forecasting the component

y‡t . If interest lies in predicting yt, taking into account that outlier contamination can

occur also in the future, so that the predictive density reflects the additional uncertainty

due the presence of the outliers, other methods, such as modeling the distribution of the

BSM disturbances as scale mixtures of normals, should be applied; see Bruce and Jurke

(1996) and Bernardi et al. (2011).

6.1 Data

In the forecasting part of the study, we use a large set of international trade data

by BEC product group classification for 28 members of the European Union. The

dataset is provided by Eurostat (download at: http://ec.europa.eu/eurostat/web/

international-trade/data/database, label: ext st 28msbec). The data is given on

a monthly basis and the original dataset covers the time span 1991.M1 – 2015.M5. We

construct a dataset relevant for our application by taking a subset of the first 560 series.

All series from this subset represent trade balance (indicated by the acronym BAL RT)

and are non–seasonally adjusted volume indices (IVOL NSA). These series, all related to a

respective country of the European Union, are divided into two categories. The first one

is the trade partner: euro area without Latvia and Lithuania (EA17), euro area without
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Lithuania (EA18), euro area with all current members (EA19), or European Union (EU28).

The second category is related to the product type: capital goods (CAP), consumption

goods (CNS), consumption goods plus motor spirit and passenger motor cars (CTR), or all

products (TOTAL). We restrict the sample to the time span 2000.M1 – 2014.M1, as the

series for all countries except Croatia are available in this time interval. Non–missing

observations for all Croatian series start only in 2003.M1 and thus series corresponding

to Croatia are excluded from the analysis. The final dataset consists of 540 series, each

having 180 observations.

There are various reasons for considering international trade statistics for the purpose

of this article. First, these series are typically contaminated by outliers which, at times,

can be large. To illustrate the degree of contamination, four series taken from the dataset

are plotted in Figure 4. Second, the dataset has large dimensions – a total of 45,361 series

included in the original dataset. Outlier detection in such a case necessitates a procedure

which allows for quick processing of each series. Although we focus on a subset of data

for illustration purposes, our proposed method provides a simple and fast procedure for

robust estimation and forecasting, and is capable of handling big data, like trade statistics.

Finally, resorting to a large dataset enables a more reliable evaluation of the proposed

data–cleaning procedure.

6.2 Design of the forecasting exercise and results

For the total sample of 540 series, we perform a pseudo real–time recursive forecasting

exercise using two specifications. In both cases, each of the series is modeled using the

BSM, but in the first one (labeled “non–robust”) no correction of the data takes place

whereas in the second one (labeled “robust”) the robust AKF is applied for data clean-

ing. Outlier detection and correction in the robust scenario is, just as estimation and

predictions, performed in a recursive manner. The training sample covers the time span

2001.M1 – 2009.M1. For a particular series, starting in 2009.M1 as the first forecast

origin, we compute 1– to 12–period–ahead non–robust and robust forecasts. Then, for

each next forecast origin until 2013.M12, the sample is extended by one month and 1– to

12–period–ahead forecasts are obtained for both specifications. This forecasting exercise

yields for each forecast horizon from 1 to 12 a total of 540 forecasts for 60 time points

from the respective time span. For example, 1–step–ahead forecasts are available in the

time span 2009.M2 – 2014.M1, while the relevant time span for 12–step–ahead forecast is

2010.M1 – 2014.M12.

In the evaluation of the forecasting precision in the non–robust and robust scenario, we

focus on the assessment of the respective forecast densities instead of point forecasts. As
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Figure 4: Four series from the international trade statistics dataset for 28 mem-
bers of the European Union. Each series depicted in the figure has the signature
BAL RT,IVOL NSA,EA17, belongs to one of four product categories (CAP, CNS, CTR, INT),
and represents one of 28 European Union countries.

shown by Ledolter (1989) in an ARIMA framework, point forecasts are largely unaffected

by additive outliers unless there are very close to the forecast origin. In contrast, outliers

always inflate the variance of the prediction errors and, hence, the width of the prediction

intervals. This means that even though the location of the forecast densities corresponding

to contaminated and clean data may be very similar, the spread of the latter density is

supposed to be smaller. The aim of the forecasting exercise is to test whether data cleaning

by means of the robust AKF has a beneficial effect on the prediction uncertainty.

Forecast densities associated with each point forecast are in this study obtained condi-

tionally on the estimated parameters and assuming Gaussianity.5 To compare the sharp-

5Giving up the Gaussianity assumption and accounting for parameter uncertainty would on the one
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ness of densities associated with non–robust and robust forecasts, we apply scoring rules

for evaluating the quality of density forecast. See Gneiting and Raftery (2007) for a com-

prehensive review of different scoring rules. In this article, we adopt two proper scores:

the log score, proposed by Good (1952), and the continuous ranked probability score

(CRPS), introduced by Matheson and Winkler (1976).6 The log score (LogS) at the

realized outcome yt is given as:

LogS(yt) = log f(yt),

where f(u) denotes a density forecast with the corresponding cumulative distribution

function F (u). Despite the desirable properties of the log score and its widespread use in

the evaluation of density forecasts, one drawback is its lack of robustness. For example,

in the presence of outliers, if for a single observation the forecast density is completely

missing the realized outcome, the log score attached to this observation approaches −∞.

As a consequence, if a forecasting model is evaluated based on an average score, then the

log scoring rule discredits this model, even if its overall forecasting performance at all other

observations might be good. Therefore, to safeguard against the possible non–robustness

of the log score, we also adopt the CRPS – a more robust and tolerant scoring rule which

assigns high numerical scores for probabilities at values close, but not necessarily equal,

to the realized one. CRPS penalizes deviations of the predictive cumulative distribution

function from the true one for a particular time point. More formally,

CRPS(yt) = −
∫

[F (u)− I(yt)]
2 du, (20)

where I(·) is an indicator variable taking value 1, if u > yt, and 0 otherwise. Eq. (20) can

be also written as (Gneiting and Raftery, 2007):

CRPS(yt) =
1

2
EF |Y − Y ′| − EF |Y − yt|, (21)

where EF is the expectation with respect to the forecast distribution F , and Y and Y ′

are independent random draws from F . For the computation of the CRPS according to

eq. (21), we implement algorithms for approximating expressions in eq. (21) provided by

hand provide more reliable forecast densities, on the other hand it would require computationally expen-
sive algorithms, such as bootstrapping. In the case of a large set of series, the computational burden is
too high relatively to the gain in terms of more reliable prediction densities. Moreover, our interest lies in
the comparison of density forecasts in the non–robust and robust case, and as the densities are obtained
based on the same assumptions, the uncertainty will be underestimated in both cases.

6A scoring rule is proper if the expected value of the score is maximized for an observation drawn
from the distribution being the same as the one the forecasts are issued from.
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Panagiotelis and Smith (2008).

To facilitate the comparison between the non–robust and robust forecasts, we consider

differences between the score values (log score or CRPS) obtained in the robust and non–

robust case. As both the log score and the CRPS are defined in a way that higher values

indicate a lower dispersion, positive score differences are in our case an evidence of the

superiority of the robust alternative. The forecasting experiment based on the full set

of series results, for a particular forecast horizon from 1 to 12, in the distribution of the

log score and CRPS differences given at each time point of the evaluation sample. The

empirical distributions of the score differences based on 540 series are smoothed using a

Gaussian kernel.

The smoothed distributions of differences between scores corresponding to the robust

and non–robust forecasts are depicted in Figure 5. The selected forecast horizons are 1, 6

and 12 months. The height of the surface plot at each point as well as the color along with

the hue give the information about the probability value. The color scale ranges from dark

indicating the lowest probabilities to the yellow indicating the highest probabilities. To

make the results easier to interpret, each three–dimensional surface plot is projected on a

two–dimensional plane. It is evident that for both scoring rules and all forecast horizons,

the mass of the distribution at any of the time points is concentrated at positive values

of the score differences. This means that the scores associated with the robust forecasts

are higher or, in other words, forecasts obtained with cleaned data are fraught with lower

uncertainty. The results in favor of the robust alternative are, independent of the forecast

horizon, more pronounced in the CRPS case. As regards the log score, the superiority of

the robust alternative is especially visible in the case of 1–period–ahead forecasts.

All these findings confirm that, for the considered set of international trade statistics,

the robust AKF effectively cleans the data, which is reflected in the reduced forecast

uncertainty and in better calibrated predictive densities.

7 Conclusions

This paper develops a robust augmented Kalman filter (AKF) for data cleaning. This al-

gorithm allows for a robust estimation of model parameters if the data contaminated with

outliers is nonstationary and/or the model features regressor effects. The idea for achiev-

ing robustness is in our framework based on the correction of an observation classified as

a contaminated one towards its one–step–ahead prediction by using an influence function.

Our methodology combines the approach of the robust Kalman filter by Masreliez and

Martin (1977) with the augmentation approach for the Kalman filter accounting for the
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Figure 5: Distributions of differences in the scores based on the robust and non–robust
forecasts for 540 European trade statistics series. The robust (non–robust) forecasts are
obtained in a pseudo real–time recursive forecasting exercise using cleaned (original) data.
Data cleaning is performed recursively for each forecast origin. Training sample: 2000.M1
– 2009.M1; evaluation sample: 2009.2 – 2014.M12. Rows indicate the corresponding
forecast horizons: (from top to bottom) 1–, 6,–, and 12–step–ahead forecasts. Left panel:
log score differences; right panel: CRPS differences. Empirical densities are smoothed
using the Gaussian kernel.

23



presence of nonstationary elements and regressors (de Jong, 1991).

For the purpose of evaluating the proposed method we focus on the class of structural

time series models and, in particular, on the basic structural model (BSM) which is

a popular model used for seasonal adjustment. In the application part of the paper,

we conduct in the first step a Monte Carlo experiment, in which the series generated

according to the BSM with different parameter settings are affected by random additive

outliers (AOs) occurring either individually or in a patch, and random innovation outliers

(IOs).

To assess the performance of the robust AKF, we compare the efficiency of the M–

type robust estimator based on the robust AKF relative to the maximum–likelihood (ML)

estimator. The results show that for all three types of outlier contamination and for all four

disturbance variances the robust estimates are more accurate. The gain in efficiency is, in

general, the highest if the seasonal component is stable. Whereas in the case of individual

AOs the robust method shows, on average, the highest efficiency for the irregular variance,

in the case of random IOs it is the variance of the seasonal disturbance that benefits the

most from the application of the robust estimator. After the Monte Carlo experiment, in

the next step we apply the robust AKF in the context of a recursive forecasting exercise.

The examined dataset is a set of 540 European trade statistics series contaminated with

AOs. We compare the dispersion of the forecast density based on the original data with

that related to the data cleaned with the robust AKF where the cleaning is performed for

every sample changing with the new forecast origin. As measures for the evaluation of the

distribution spread, we have applied two scoring rules: the log score and the continuous

ranked probability score. The conclusion from this application is that data cleaning with

the robust AKF reduces the forecast uncertainty. Our proposed method is thus suitable

for cleaning data affected by AOs or IOs. Being a simple and fast procedure, the robust

AKF is a particularly attractive tool for handling large sets of series, like the international

trade statistics database.
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