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4 Introduction 

This dissertation was conducted under a grant from the German Research Foundation 

(DFG) in the research group FOR 1695 - “Agricultural Landscapes under Global 

Climate Change – Processes and Feedbacks on a Regional Scale”. For a better 

understanding of the specific questions raised in this dissertation, the general goals 

and approach of the research group are explained first.  

The Intergovernmental Panel on Climate Change (IPCC) defines climate change as 

“[…] a change in the state of the climate that can be identified […] by changes in the 

mean and/or the variability of its properties, and that persists for an extended period, 

typically decades or longer” (IPCC, 2013). In its Fifth Assessment Report, the IPCC 

states that climate change is expected to amplify existing climatic risks (IPCC, 2014). 

Changes in the biophysical processes affecting crop production have been found to be 

largely caused by a changing climate (Högy et al., 2013 (a); Högy et al., 2013 (b)), 

which represents a challenge for farmers’ crop management and decisions regarding 

the optimal allocation of land (Crane et al., 2011).  

Agricultural landscapes are not only affected by but also contribute to the processes 

that drive changes in climatic conditions (Foley et al., 2005). The objective of FOR 

1695 is to provide a better understanding of how agricultural landscapes evolve over 

time due to the influence of climatic change. The research group hypothesizes that this 

objective can only be reached by a combination of integrated modeling and advanced 

process understanding. To achieve this goal, the research group is developing a 

complex simulation model at high spatial and temporal resolutions that is capable of 

capturing complex interactions between the land, atmosphere and human environment 

(www.klimawandel.uni-hohenheim.de).  

 

Climate change can be investigated at different spatial resolutions. The empirical work 

conducted by different parts of the research group focuses on two study regions in 

southwest Germany in the state of Baden-Wuerttemberg, the Swabian Alb and the 

Kraichgau region. These are regions with distinct climatic conditions and different 

intensities of agricultural land use (Aurbacher et al., 2013). Evidence for ongoing 

climate change on a regional scale can be found in the time series data from the 

German Meteorological Service (DWD) (Jänecke et al., 2016), which supports the 

research group’s use of a very high spatial resolution for their analyses. 

 

One unique characteristic of the research group is that its research interest is not only 

to investigate the impacts of climate change on land use but is also to incorporate the 

manner in which potential feedback processes that are caused by agricultural land use 

may act on a global scale (www.klimawandel.uni-hohenheim.de). As a consequence, 

this means that any methodology developed within the scope of the research group 

must have the potential to incorporate feedback processes.  

 

To achieve the group’s goal, the project was subdivided into nine sub-projects, each 

with a specific research focus that was intended to contribute to the overall modeling 
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effort. In this sense, the research group is interdisciplinary. This dissertation stems 

from the “Microeconomic analysis of land use management under climate change with 

emphasis on risk and learning” sub-project. The goal of this sub-project was to explore, 

extend and strengthen the scientific basis for assessing farmers’ strategies and 

decision-making behavior under the influence of climate change. This dissertation 

examines risk in the context of land use management. 

 

4.1 Climatic influence in agricultural planning decisions 

Climatic influence is ubiquitous in crop production and can provide opportunities and 

challenges for farmers’ management. In this project, the goal is to identify how much 

influence perceived climatic changes have on farmers’ strategic reactions, particularly 

land use planning decisions in crop production.  

In economic models, the planning of crop schedules is based on gross margin analysis 

(Hardaker et al., 2004). This methodology operates under the assumption that only the 

information about the variability of production outcomes in the gross margin equation 

is sufficient for adaptation analysis.  

It has been found that available models either under- or overestimate farmers’ actual 

adaptation behavior, as has been criticized by many authors (Ortiz-Bobea, 2013; White 

et al., 2011; Just and Peterson, 2003; Just and Pope, 2003; McCown et al., 1991). The 

climatic effect has even been found to be overpowered by market or policy influences 

in strategic planning decisions (Lehmann et al., 2013; Henseler et al., 2009). This may 

be due to market and policy influences having unambiguous impacts and 

consequences for production in the form of prices, rules, and regulations imposed on 

the farmers as opposed to the climatic influence. Climatic influence is relatively difficult 

to separate from other influences, such as policy or market effects, when using the 

available methodological approaches. 

Both Menapace et al. (2015) and Wheeler et al. (2013) found that a belief in an increase 

of climate-induced (production) risks in the future is not sufficient to trigger a change 

in farmer behavior on its own.  

Whether farmers react to an expected increase in climatic risks depends on whether 

they consider those risks to be relevant to the production at their specific location 

(Hirschauer and Mußhoff, 2012; Hardaker et al., 2004). The most obvious sources for 

information about the influence of climate are farmers’ own perceptions made when 

rating and monitoring crop development throughout the season.  

Li et al. (2017) found that connecting the drivers of planning decisions to their 

consequences, which is the actual behavior following the planning, is key to better 

understanding farmer’s decision-making process. This supports our approach.  

We hypothesize that one reason for the bad model fit lies in not considering what 

occurred during production at the point of planning, as this may paint a different picture 

of the relevance of a certain yield levels. Crop yield is only a single point at the end of 
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a long series of observations by the farmer regarding the climate’s influence on a crop 

(Reinmuth et al., 2017).  

 

4.2 Research objectives 

Integrated bioeconomic simulation models, such as the FarmActor model (Aurbacher 

et al., 2013), provide an opportunity to assess how the evaluation of the production 

process could be integrated in economic risk analyses by using a method that is 

representative of real-world scenarios (Berger and Troost, 2014; Schreinemachers and 

Berger, 2011), as the decision-making component of the model is highly resolved to 

daily time-steps. FarmActor’s dynamic nature would even allow for the inclusion of 

feedback processes from the production process in the economic decision component 

(Antle et al., 2016) and vice versa. This trait, however, is left for future research. 

The overall hypothesis of this dissertation is as follows: 

Incorporating risk perceptions from monitoring growth processes, from an 

economic point of view, into planning decisions will increase the understanding 

of how climatic changes drive farmers’ adaptation of their land use decisions 

and thus increase the validity of the FarmActor model. 

The specific objectives of this dissertation are as follows:  

1. To investigate whether farmers are aware of changes in the climatic conditions at 

their location and to confirm the statistical evidence of changes in average values 

of climatic variables.  

2. To determine farmers’ subjective attitudes towards climate-induced variability in 

crop production. Perceptions about the riskiness of the climatic influence on the 

production process are subjective and process specific. Each perception during the 

process is also an economic evaluation of the eventual monetary value of the yield. 

Individual farmers’ attitudes towards the climate’s influence on the process should 

be gathered in order to identify different risk types, and these attitudes should be 

crop specific, as land allocation is by crop in the FarmActor model.  

3. To develop a methodological approach that allows the integration of intertemporal 

perception processes in the planning decision. 

4. To test the methodological approach to be developed using the bioeconomic 

simulation model FarmActor (Aurbacher et al., 2013). In other words, a mechanism 

must be developed that can be incorporated into the simulation model in order to 

represent the theoretical approach.  

 

4.3 The empirical model/measuring subjective risk 

The determination of risk profiles, which assesses how much risk a farmer is willing to 

accept, is an important factor when evaluating different risk strategies (Hirschauer and 

Mußhoff, 2012). A risk strategy in this context is a possible crop allocation scenario 
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based on the riskiness of crops and given certain constraints, such as crop rotation to 

name one (Hardaker et al., 2004).  

The results of the empirical work are to be implemented in the FarmActor model. As 

FarmActor is dynamic and highly resolved to the field level, risk analysis in this context 

must answer the question of how the allocation of a crop to a single field is influenced 

over time (Aurbacher et al., 2013). This is a resolution that is not covered by most of 

the available simulation models when investigating decision-making under risk. 

FarmActor is one of only a small number of models that operates on this resolution. 

The APSIM model (Keating et al., 2003) can also operate at this resolution, but it lacks 

a risk component that can be customized for our purposes. 

Willingness-to-accept.  

In pre-tests, farmers stated that their work needs to be worth the effort, which was an 

important criterion when evaluating the suitability of crops for their management plan.  

The economic valuation of the production process and its ability to trigger adaptation 

processes both depend on farmers’ “willingness-to-accept” (wta) outcome fluctuations 

(Hardaker et al., 2004). However, during the growth process, various biophysical states 

at the same development stage can finalize at the same yield level. Furthermore, many 

levels of the observed biophysical state can still finalize at a yield level associated with 

economic profitability. Additionally, many yield levels can lead to the same gross-

margin outcome. 

Following Antle (2010) and Just and Peterson (2003), this dissertation uses thresholds 

that approximate farmers’ lower boundaries of acceptable yield variability while still 

generating a profitable production outcome from an economic point of view. This value 

is represented by the “still-good-yield” (sgy) and was derived empirically throughout 

both study regions (Reinmuth et al., 2017). 

 

4.4 Coupling intertemporal perceptions with planning decisions 

In the simulation model, the yield threshold “still-good-yield” was then embedded in a 

mechanism that scales the states of development during production by assigning utility 

values to observational parameters at sequential observation points for a given crop. 

This mechanism aggregates into a utility score that represents a downside risk 

measure based on evaluations of embedded risks. It is denoted as the Annual Risk 

Score (ARS) (Reinmuth et al., 2017).  

Downside risk focuses on the point where decision makers perceive a loss (Sortino 

and van der Meer, 1991). The ARS score indicates how often a potentially risky 

development was perceived that might indicate a loss or non-profitability. Continuously 

high ARS scores over time indicate a negative climatic influence, meaning that over 

many points during the production process, the crop responded in a way that might 

indicate a loss in yield based on farmer’s willingness-to-accept fluctuations. Because 
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the sgy threshold triggers the ARS, farmers risk attitude is already included in this 

measure, which assesses the climatic impact.  

An evaluation of the growth process at different points during crop production 

corresponds to what farmers do in the real world (Antle, 2010). This is the most obvious 

source for perceptions about how crops respond to climatic influences.  

In the FarmActor model, observations occur either when an activity is taking place or 

at a defined temporal distance to an activity, which ensures that observations always 

occur at the same point during the process to make observation results comparable 

(Reinmuth et al., 2017). This is possible because one trigger condition for each 

production activity tests for the achievement of a predefined phenological development 

stage of the crop (BBCH stage (JKI, 2001)) (Aurbacher et al., 2013). Comparability is 

important when calculating the risk scores over time. 

The utility score 
,t c  is used to represent perceived risk in the simulation model; t 

stands for an observation point, and c is a crop. The utility score for an observation 

point can have several (crop-specific) observation parameters i with (1,..., )i n . 

The utility score 
,i,c 0t   if the perceived value (

,c ipv ) for an observation parameter i 

at an OP (t) lies within the predefined acceptable range (AC): 
, , , , , ,i,t,cl i t c i t c uAC pv AC 

, with 
, , ,l c i tAC  and 

, , ,u c i tAC  being the lower (l) and upper boundaries (u), respectively, 

of the acceptable range for a certain parameter (i) and crop (c) at an OP (t). 

A score of 1 represents perceived risk for a certain parameter and crop at an OP. The 

perceived value thus falls outside the predefined acceptable ranges 
, , ,i,t,ci t c lpv AC  or 

, , ,i,t,ci t c upv AC . This means that the parameter is either smaller than the lower boundary 

of the acceptable range or higher than the upper boundary of the acceptable range 

(Reinmuth et al., 2017). 

The intertemporal utility score at an OP is given by: 

, ,

1

n

t c i c

i

 


  for all t and c. 

All the assessed utility values after the harvest add up to 
,T c , which is the total utility 

score of a production year’s conditions for crop c “as the result of the intermediate 

rankings” (Reinmuth et al., 2017, p. 6 ) of the ARS score. This can be written as: 

,c ,

1

m

T t c

t

ARS  


   with (1,..., )T m  for all observation points during the growing 

season (Reinmuth et al., 2017). 

With this utility score, the climatic influence can be separated from the economic or 

market influences in planning crop portfolios. It should be noted that market and 

political influences can also evidently influence the ARS score by changing the yield 
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threshold representing profitability; however, the threshold “still-good-yield” is the lower 

boundary of the acceptable yield fluctuations and thus already includes various 

economic influences over the past. How fast the threshold changes is left for future 

research. 

 

4.5 Technical challenges in bioeconomic modeling 

The basic idea behind FarmActor is the dynamic representation of a linear planning 

model (Aurbacher et al., 2013). Linearity is broken up by explicitly modeling many 

processes that otherwise would be parameterized. The economic decision model 

component is coupled to the crop growth model Expert-N (Priesack et al., 2006). 

Growth processes are modeled with many parameters describing plant components 

using an endogenous mechanism (Aurbacher et al., 2013). The results of this process 

are documented in daily time-steps as development proceeds. Climatic influence is 

represented by daily weather data, which are stored in a relational database. The 

database also contains all parameters that are used to either trigger the decision-

making process or calculate the outcomes of the management routine. However, there 

are also input parameters that come from within the programming code, which are so-

called hard coded settings. The advantage provided by the FarmActor model’s highly 

resolved decision-making context that allows a high resolution of decision-making 

process data is at the same time technically challenging.  

The methodology to be developed could not be fully tested. Ongoing technical 

problems and troubleshooting led to a strong theoretical focus of this work.  

White et al. (2011) reviewed over 300 articles that described the application or 

development of a simulation model to be used for the analysis of a research problem. 

They concluded that almost none of these articles had sufficient documentation for the 

methodological aspects or input parameters of simulation models that contributed to 

the research outcome. Such missing information is most likely the result of very 

complex model mechanisms that are not sufficiently documented for users of a given 

model. Model developers and model users are usually not the same people (Dillon et 

al., 1991). In addition, those who develop such models are often non-IT trained persons 

who do not have the time to provide a good user experience in scientific simulation 

models (Reinmuth and Dabbert, 2017). It is apparent that what hindered the progress 

in this dissertation is the rule/reality for many such projects rather than the exception. 

On the downside, and as a consequence, many modeling efforts vanish after being 

used to answer a specific research question (van Ittersum et al., 2008; Janssen and 

van Ittersum, 2007). 

Supported by the findings of White et al. (2011) and the papers of Nicolson et al. 

(2002), Keating and McCown (2001), and Dillon et al. (1991), we decided to use our 

experience and difficulties with the simulation model to provide lessons learned for all 

future modelers in an integrative review (Reinmuth and Dabbert, 2017). The last part 

of this dissertation is thus an effort to elaborate on the software engineering process 
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when developing an integrated bioeconomic simulation model for research purposes. 

We suspect that many aspects that we cover in the last article of this dissertation 

(Reinmuth and Dabbert, 2017) are reasons for the infrequent re-use of research 

modeling. 

Though we pursued this issue with a strong technical focus, our recommendations are 

for scientists in the field who are non-IT trained, which applies to the majority of 

developers, and who intend to contribute to developing, redesigning, innovating and 

applying simulation models. As such models are working versions of a future modeling 

software package, we provide the reader with critical issues to consider and resolve 

for their situation to help make such an endeavor more efficient for everyone involved. 

Furthermore, we encourage all future modelers to contribute to this list and test our 

recommendations. The goal is to promote an easier re-use of model designs 

(Reinmuth and Dabbert, 2017). 

 

4.6 Organization of the thesis 

The thesis is written as a cumulative dissertation and is composed of five articles. 

Articles one, three, four and five have been published by peer-reviewed journals. The 

second has been published as a peer-reviewed conference proceeding. The fourth 

manuscript was resubmitted after major revisions at the point of submission of the 

thesis. It was accepted shortly after submission without conditions and was published 

in PLOS ONE journal in August, 2017. Chapters 5-9 represent one publication each. 

How farmers’ risk perceptions due to climatic influence affect their land use decisions 

is the main research interest that we attempt to answer with the newly developed 

approach presented in the fourth article (Reinmuth et al., 2017). Articles two and three 

are preliminary analyses (Parker et al., 2015, Jänecke et al., 2016). The first and the 

last articles address the integrated bioeconomic simulation model, which is the 

technical framework that is used to investigate farmers’ land use decisions (Aurbacher 

et al., 2013, Reinmuth and Dabbert, 2017). 

The first article, by Joachim Aurbacher, Phillip S. Parker, German A. Calberto 

Sánchez, Jennifer Steinbach, Evelyn Reinmuth, Joachim Ingwersen, and 

Stephan Dabbert, is called “Influence of climate change on short term 

management of field crops – A modeling approach” and introduces the integrated 

bioeconomic simulation model and a first application of its functionality. The 

methodological contribution of this dissertation was the introduction of flexible time 

windows that trigger decision processes. This is the foundation for incorporating 

feedback processes into the modeling of production processes. The article is published 

in Agricultural Systems 119, pp.44-57 (2013). “FarmActor is intended to improve the 

land-use side of coupled land-atmosphere models and derive sophisticated adaptation 

strategies” (Aurbacher et al., 2013, p. 45). 

The second article, by Phillip S. Parker, Evelyn Reinmuth, Joachim Ingwersen, 

Petra Högy, Eckhart Priesack, Hans-Dieter Wizemann, and Joachim Aurbacher, 
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is called “Simulation-based Projections of Crop Management and Gross Margin 

Variance in Contrasting Regions of Southwest Germany”. It was published in the 

Journal of Agricultural Studies, Vol. 3 No. 1, pp. 79-98 (2015). “Past and future gross 

margin fluctuations” (Parker et al., 2015, p. 81) are compared using the integrated 

simulation model FarmActor. This article is a general investigation into how gross 

margins in crop production, which are the basis for strategic planning in standard 

planning models and thus land use, can be affected by climate change. This 

dissertation contributed the underlying methodological concept, specifically regarding 

the subject of risk. The article is based on preliminary works within the part of this 

dissertation that stems from using simulated production outcomes from the FarmActor 

model. It was found that price and yield fluctuations are independent, and as a 

consequence, the climatic impact on yields could be offset due to favorable price 

developments. Price projections are modeled as extrapolations of historical prices 

(Parker et al., 2015). The article pursues an established methodological approach that 

does not, however, exploit FarmActor’s full potential.  

Furthermore, prices have a higher impact on gross margins (Henseler et al., 2009), as 

each change in prices is a change in the final outcome, while for crop production, the 

majority of changes, especially those due to climatic influences, are intertemporal in 

nature: they occur during the plant development process. The final result, the yield, is 

achieved only once a year for a crop. Thus, the climatic influence is easily overpowered 

in an equation that only uses final outcomes.  

Climate as an uncertainty factor is something to which farmers constantly react. Thus, 

so-called risk profiles are actually the result of cumulative perceptions acquired during 

and after the production processes. This fact supports the need to develop a new 

methodological approach that uses the full potential of the FarmActor model. Such a 

model may improve economic risk analysis by incorporating intertemporal perceptions 

to qualify the statements about the actual climatic impact on crop production and, as a 

consequence, land use.  

As a complement, the article by Aileen Jänecke, Marius Eisele, Evelyn Reinmuth, 

Jennifer Steinbach, and Joachim Aurbacher, with the title “German Farmers’ 

Perceptions of Climate Change Effects and Determinants Influencing Their 

Climate Awareness,” is published as a conference proceeding in Kühl, R., Aurbacher, 

J., Herrmann, R., Nuppenau, E.-A., Schmitz, M. (Edit.). Schriften der Gesellschaft für 

Wirtschafts- und Sozialwissenschaften des Landbaus e.v., Bd. 51, 2016, pp. 407-418. 

This article investigates whether farmers in the study regions of Kraichgau and 

Swabian Alb “perceive a change in weather conditions for their location and expect 

consequences for their farming activities due to these developments” (Jänecke et al., 

2016, abstract). Farm owners, who make decisions about land use, were found to 

perceive an increased weather variability at their locations. The regression analysis 

yielded the result that, among other variables, the farm location is a significant predictor 

of how farmers evaluate changes in climatic conditions. The work of this dissertation 

contributed methodologically to the analysis and the preliminary empirical work when 

creating the questionnaire. The article builds a further argumentative basis for the 
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newly developed approach employed in this dissertation, which focuses on perceptions 

in the specific context of crop production. 

In the fourth article, the interdisciplinary methodology that was developed as the main 

part of this dissertation is presented as original research. The methodology is a utility 

concept that allows for the inclusion of Annual Risk Scores based on mid-season risk 

perceptions in strategic crop planning decisions. The methodology isolates the climatic 

influence in farmers’ planning decisions based on their personal attitudes towards yield 

variability. This approach is employed for winter wheat production in the Kraichgau, a 

region in Southwest Germany, using the integrated bioeconomic simulation model 

FarmActor and empirical data from that region. The article by Evelyn Reinmuth, 

Phillip S. Parker, Joachim Aurbacher, Petra Högy, Stephan Dabbert is titled 

“Modeling perceptions of climatic risk in crop production”, it is published in PLOS 

ONE 12(8): e0181954. August, 2017. 

A full implementation of the new methodology in the simulation model could not be 

achieved due to technical problems. Thus, the hypotheses could not be fully tested. 

Throughout the existing literature, we found indications that many modeling efforts are 

not pursued by other modelers, but rather, new modeling approaches are developed. 

Given our experience, we hypothesize that many of the aspects that we had trouble 

with prevent modelers from reusing existing modeling efforts. The last article is thus a 

reflection on the issues of bioeconomic modeling from a technical standpoint. It can be 

seen as a synthesis in that regard. Thus, these aspects are briefly discussed in the 

synthesis of the thesis. The integrative review article by Evelyn Reinmuth and 

Stephan Dabbert is published in Computers and Electronics in Agriculture, Vol. 138, 

pp. 29-38, June, 2017 and has the title “Toward more efficient model development 

for Farming Systems Research – an integrative review”. 
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Climatic change is likely to have an influence on arable farms in Central Europe. We use a modelling
approach to assess the effects of weather and its long term development due to climate change on
short-term decisions like planting and harvesting, as well as yields. Two models are coupled, a farm man-
agement model FARMACTOR and the crop growth model system EXPERT-N to investigate the interplay
between management and crop growth on a daily basis. We examine different methods of adapting
expectations concerning the timing of cropping actions and annual yields to actual observed weather
and yield data. Our study focuses on the two major crops winter wheat and silage maize in the Swabian
Alb in southwestern Germany. Results show that the model can satisfactorily reproduce the development
of planting and harvesting as well as yields that have occurred in the past. Different methods of expec-
tation formation only show minor differences in their effect on action dates and yields. Future climatic
change is likely to shift the timing of field actions. Assuming no change in technology (e.g. cultivars),
summer crops may be seeded earlier while winter crops could tend to be sown later; harvest may occur
earlier and yields might slightly decrease while showing more volatility. This modelling approach has the
potential to increase the knowledge about risk profiles of short time agricultural management actions
and to improve the land use modelling part of coupled earth system models.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Agriculture is not only one of the significant drivers of climate
change but is also directly affected by shifting climatic conditions
as it relies upon natural processes in the field. Thus, research on
the effects of climate change on agriculture has to take these ef-
fects into account. Agriculture in Europe is subject to continuous
structural development and has for decades faced the challenge
of poor profitability (Deutsche Bundesregierung (Ed.), 2011). Cli-
mate change is considered to have an ambivalent influence on
farming in Central Europe. While the increase in average tempera-
tures and atmospheric CO2 content are assumed to increase yields,
reduced precipitation during summer as well as increasing vari-
ability of precipitation is likely to reduce yields (Schaller and Wei-
gel, 2007).

To estimate the effects of future climate scenarios on agricul-
ture, several approaches are reasonable. There are a number of
econometric approaches that relate certain land uses to climate
parameters. Cabas et al. (2010) use an econometric model to ex-
plain yield as a function of climatic and economic variables. They
infer that yields will rise with increasing temperatures and longer
growing seasons despite greater variability in rainfall, which in
principle negatively influences yields.

The so-called Ricardian approach which uses land values as a
dependent variable was pioneered by Mendelsohn et al. (1994)
and has meanwhile been applied mainly in North America (Men-
delsohn and Reinsborough, 2007; Schlenker et al., 2006) but also
in Germany (Lippert et al., 2009). The latter found that increasing
temperatures should result in higher rates of return and land rental
prices in Germany.

Apart from econometric approaches, programming models are
widely used to focus on regional scale as this allows a depiction
of the economic situation of agriculture and elements of techni-
cal–biological processes of land use. Typically, these models are
coupled with crop growth models and refer to climate scenarios
published by the Intergovernmental Panel on Climate Change
(IPCC).

http://dx.doi.org/10.1016/j.agsy.2013.04.005
mailto:joachim.aurbacher@agrar.uni-giessen.de
http://dx.doi.org/10.1016/j.agsy.2013.04.005
http://www.sciencedirect.com/science/journal/0308521X
http://www.elsevier.com/locate/agsy
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This research field has been covered by the following projects.
Both the EURuralis project and the ATEAM study apply top-down
methodology to explore changes in land use, scaling continent-le-
vel data. (Busch, 2006; Verburg et al., 2008). EURuralis disaggre-
gates results of a general equilibrium model to local scale
according to biophysical, socio-economic and policy considerations
(Van Meijl et al., 2006). A bottom-up method is utilized in ACCEL-
ERATES (Audsley et al., 2006), GLOWA-Elbe (Gömann et al., 2005)
and SEAMLESS (Flichman et al., 2006; Van Ittersum et al., 2008;
Van Ittersum, 2009) to examine regional decision-making pro-
cesses. While ACCELERATES uses linear programming (LP) in an
individual farm model to judge optimal land use, GLOWA-Elbe
and SEAMLESS-IF base regional agricultural sector models on Posi-
tive Mathematical Programming in order to simulate dynamic
land-use (Flichman et al., 2006; Van Ittersum et al., 2008). Farm
System Simulator (FSSIM), a component of SEAMLESS-IF, is a com-
ponent-based, bio-economic model widely applicable to modelling
generic processes (Janssen et al., 2010; Kanellopoulos et al., 2010;
Louhichi et al., 2010). FSSIM uses regional supply and response
functions (NUTS2) to analyse the implications for farm manage-
ment stemming from political and technological developments.
Hermans et al. (2010) compare different arable crops considering
climate change, predicting an increase in yields and a shift of pro-
duction into the most competitive regions for each crop. Henseler
et al. (2009) model both impacts of policy scenarios as well as cli-
mate change on agricultural land use as well as farm income using
a regional PMP approach. Their main finding is that policy change
towards liberalisation is likely to exert major influence on agricul-
ture. Freier et al. (2011) use a Markov chain meta-model of EPIC
(Environmental Policy Impact Calculator) to explore the economic
and ecological effects of drought on rangeland management in
southern Morocco.

All these studies work at rather coarse spatial levels such as re-
gion or district. However, as shown by Reidsma et al. (2009), the
individual farm is an important level of analysis concerning yield
variability and adaptation to climate change, as farm characteris-
tics and management greatly influence adaptation processes.

Farm based bio-economic models are used to study the interac-
tion of farms with their environment (Janssen and Van Ittersum,
2007). Many of these exist already. As Balbi and Giupponi (2009)
show in their review article, this type of model is felicitous for cou-
pling economic and environmental models. Matthews et al. (2007)
confirm this by reviewing different applications of agent-based
models. Matthews (2006) sets up an agent-based model (PALM)
that closely links farmer behaviour to plant growth and nutrient
cycles. He makes use of object-oriented programming techniques
and explicit formalisation of knowledge. The modelling system
MODAM (Zander and Kächele, 1999) also explores farm-level man-
agement decisions and their reciprocity with ecological aspects.
MODAM has recently been used for policy and multifunctionality
analysis (Uthes et al., 2010). Finger (2012) modelled climate
change impacts on maize production in the eastern Swiss Plateau
region combining a crop growth model with a bio-economic model
representing the behaviour of a risk-averse farm manager. Moss
et al. (2001) highlight the suitability of agent-based models for
the study of implications of climate change. They advocate a better
behavioural foundation for decision-making in contrast to pure
economic reasoning. Balbi and Giupponi (2009) mention a persis-
tent lack of application of agent-based models to the field of cli-
mate change. They emphasise the potential for using these types
of models to evaluate adaptation to a changing environment. Gan-
dorfer and Kersebaum (2008) modelled the effects of climate
change at three sites in Bavaria, Germany concerning the profit-
ability of farms and its variability by linking a crop growth model
driven by climate scenario data with an economic evaluation mod-
el. They concluded that yields and profits should tend to decrease
while risk is likely to increase. However, they did not account for
adaptation other than modifying nitrogen fertilisation intensity.
Rowan et al. (2011) developed a dynamic modelling framework de-
signed to map farm behaviour related to irrigation issues. They ap-
plied this model to a fictitious Australian farm and found that
increasing weather variability decreases farm profits and increases
the uncertainty related to prediction of farm viability.

The literature shows that intra-annual variability of weather,
interaction between crop growth and management decisions and
the management actions influenced by these weather conditions
have not yet been sufficiently analysed. This interaction, however,
is important for explaining short-term land-use decisions. Based
on the concepts of Aubry et al. (1998), in the framework of the
GLOWA-Danube project an extension (the ‘‘DEEPFARMING’’ module)
to the scope of agricultural farm modelling was developed, taking
short-term actions into account (Apfelbeck et al., 2009). Similar to
the approach of DEEPFARMING, Flichman et al. (2006) combined Agri-
cultural Production and Externalities Simulator (APES) and FSSIM
to evaluate short-term management by farmers. DEEPFARMING builds
on their work by dynamically modelling interactions between
weather, crop growth and agricultural management.

While in the GLOWA-Danube project the economic reasoning is
evaluated at district level, we present here a newly developed bot-
tom-up model with the working name FARMACTOR that links both
economic optimisation and management at the individual farm le-
vel and interacts closely with the crop growth modelling system
EXPERT-N. This is intended to improve the land-use side of coupled
land-atmosphere models and derive sophisticated adaptation
strategies for agricultural stakeholders.

The remainder of the paper is organized as follows: Section 2
presents the models FARMACTOR and EXPERT-N and their calibration
and coupling. Section 3 presents the results of their application
to the study region in southern Germany. Section 4 provides dis-
cussion on these results and Section 5 draws conclusions.
2. Methods and data

To account for the interactions between weather, management
and crop growth at daily time scale, we couple a farm management
model with a plant growth model. Both models are driven by daily
weather data. The two models and their relationship are presented
in this chapter.
2.1. Farm management model FARMACTOR

The farm management model FARMACTOR follows the assertion
that agent-based models are especially suitable for modelling im-
pacts of climate change (Moss et al., 2001). In contrast to existing
agent-based models, we refine the scope of the model from annual
planning decisions to daily management decisions and hence
incorporate dynamic determination of action dates. This capacity
was inherited from the DEEPFARMING component of the DANUBIA mod-
el which, however, does not take farm-level economic consider-
ations into account (Apfelbeck et al., 2008).

The schematic sequence of the several modules within FARMAC-

TOR is shown in Fig. 1 and proceeds as follows. A model run starts
with an initialisation procedure. All farm-specific data, such as
the number and size of fields, fixed assets, crops that can be
planted on each field and all other production and marketing activ-
ities are exogenous input, as is weather data (temperature, precip-
itation, solar radiation, relative humidity and wind speed) at daily
resolution. The model proceeds in daily time steps, commencing in
August with the annual planning of crops to be cultivated. August
was chosen because in southwest Germany, at this point in the
year, decisions as to the subsequent crop on a field has the greatest



Fig. 1. Schematic sequence of FARMACTOR modules.
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degree of flexibility, as no crop that will be harvested in the follow-
ing year has yet been seeded. The first crop to be sown in late sum-
mer is usually winter rape, towards the end of August. Late-
maturing crops such as maize or sugar beets that are still in the
field preclude the planting of a winter crop until after harvest.
The main annual planning procedure is based on an LP model ar-
ranged at the field level. This allows for costs or yields to differ be-
tween fields, as a result of different soil qualities, field sizes, or
other factors. With the planning procedure particular crops are
allocated to each field. This step is necessary because LP-type mod-
els usually deliver not just one crop as a solution but a share of dif-
ferent crops that can be seen as shares in a crop rotation. The
allocation of a single crop to each field is modelled by a Markov
chain stochastic simulation, which takes usual crop rotations of
the region, results of the planning procedure, and the previous crop
into account. Where reasonable, a catch crop is added before sum-
mer crops. The planning and distribution algorithms are published
in detail in Aurbacher and Dabbert (2011). The main focus of this
paper is the crop management module of FARMACTOR and its connec-
tion to crop growth. For this reason, in this study, we created farm
models where only one crop (winter wheat or maize) was included
to focus on the management and performance of these two crops. If
several crops were included in the crop rotation, their selection
would also depend on economic considerations and farm charac-
teristics that would require inclusion of additional detailed
assumptions.

2.1.1. Crop management
Depending on weather, soil conditions and plant development,

management is conducted on a daily basis. Thus, the execution
date of management actions like planting, fertilising or harvesting
is endogenous to the model and dependent on weather and crop
development. Each crop requires certain actions to be carried out
in sequence. In FARMACTOR this is soil preparation, seeding, fertilis-
ing, and harvesting. The execution of actions is controlled by a
set of conditions, or ‘‘triggers’’, associated with each action. Trig-
gers are defined by a range of tolerable values for each applicable
variable. Only when all conditions are simultaneously fulfilled will
an action be carried out. Fig. 2 shows the triggers for the sowing of
winter wheat. The following variables act as triggers and are de-
rived as follows. Air temperature and amount of precipitation are
read directly from a database of weather records while soil tem-
perature and water content are output from the coupled crop
growth model EXPERT-N. Information on the present state of the
crop being grown (BBCH crop stage and current biomass) is also ta-
ken from the crop growth model each simulated day. The proper
sequence of actions (e.g. soil preparation before planting), is con-
trolled by a defined crop status that changes as actions are per-
formed. Another type of triggers refers to the day of the year and
contains the ‘‘usually suitable’’ periods for certain actions (‘‘time
windows’’). This is necessary because not all action dates can be
determined by actual weather and plant information but must con-
sider expectations of weather throughout the growing season.
Depending on the nature of an action, variables and triggers are as-
signed. This flexibility should ensure a realistic execution of actions
depending on relevant conditions.

2.1.2. Adaptation of management to changing climate and learning
from observations

As climate changes, the time windows designated for particular
actions, as well as yield expectations are subject to modification
over the years. Capturing this aspect in a farm management model
is crucial to long-term accuracy (O’neill, 2008). The chosen ap-
proach of an agent-based model is especially suitable therefore
(Nolan et al., 2009). We implement a so-called ‘‘learning algo-
rithm’’ which modifies activities before planning of the next sea-
son. Yield expectations are updated based on the observed yields
of previous years. The amount of nitrogen fertiliser is adapted to
the expected yield. Time windows for seeding are also shifted
according to observed weather during previous years. To adjust
the time window for seeding of winter crops, the remaining cumu-
lative heat in a year is used, defined as the sum of daily average
temperatures exceeding 0 �C for the rest of the year. To account
for the fact that actions are normally carried out a few days after
the beginning of the time window, the beginning of the window
is set to 4 days before the remaining temperature sum is expected
to reach a given threshold. For spring crops, a temperature thresh-
old is used that refers to the average temperature of the upper
5 cm of topsoil during a sequence of 7 days. The planting period
is set to begin on the first day at which this (crop-specific) thresh-
old is expected to be exceeded, based on a calculation of past years’
soil temperatures. The end of a planting period is set to a crop-spe-
cific later date, (eight weeks for maize, six for winter wheat). Tem-
perature thresholds, as well as the other triggers for both winter
wheat and maize are given in Tables 1 and 2.

There are many ways to include and weight the observations
from past years when calculating expectations for upcoming peri-
ods. A simple method is to base expectations entirely on the obser-



Fig. 2. Decision tree for the triggers using the example of sowing winter wheat. Source: Own depiction based on Apfelbeck et al. (2008)

Table 1
Action triggers for planting and harvest of winter wheat.

Action Trigger Observeda Assigned

Mean Range

Sowing Crop status – – ‘‘Prepared’’
Day (Julian) 270 255–294 continuously adapted
Soil moisture (%) 32.5 22–42 638
Precipitation (mm) 2.53 0–40.7 0
Soil temperature (�C) 13.8 8.5–23.1 P3
Remaining GDDb – – P475

Harvest Crop status – – ‘‘planted’’
Crop stage (BBCH) – – P92
Day (Julian) 227 213–247 180–250
Soil moisture (%) 31.4 22.9–

46.5
641

Precipitation (mm) 1.3 0–16.3 0
Air temperature (�C) 17.9 8.4–24.6 P8

a Comparing observed action dates with observed weather data; 1980–2010
(DWD, 2011, 2012).

b The trigger ’remaining GDD‘ is not applied directly. It is used retrospectively to
adapt the ‘day’ trigger for the next year.

Table 2
Action triggers for planting and harvest of silage maize.

Action Trigger Observeda Assigned

Mean Range

Sowing Crop status – – ‘‘prepared’’
Day (Julian) 122 101–137 continuously adapted
Soil moisture (%) 30.5 23–46.5 638
Precipitation (mm) 1.3 0–12 0
Soil temperature (�C) 11.8 3.5–19 P10 �C
Air temperature (�C) 10.8 4.9–16.8 P10 �C
3-day air temp. (�C) 8 0.6–13.4 P10 �C
7-day soil temp.b – – P10 �C

Harvest Crop status – – ‘‘planted’’
Crop stage (BBCH) – – P85
Day (Julian) 267 233–291 225–300
Soil moisture (%) 33.5 22.7–

43.7
638

Precipitation (mm) 1.2 0–9.9 63

a Comparison of observed action dates with observed weather data; 1980–2010
(DWD, 2011, 2012).

b The trigger ‘7-day soil temp.’ is not applied directly, but used retrospectively to
adapt the ‘day’ trigger for the next year.
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vations from 1 year prior. More realistic are methods that aggre-
gate values from past years. We examined the following methods
we refer to as ‘‘learn modes’’ further on. The first option is to use
a 10-year moving average (MA) to represent how agents form their
own expectations. However, people tend to forget events further in
the past (Birbaumer and Schmidt, 2010, p. 206), so exponential
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smoothing (ES) (Ragsdale, 2011, p. 482) is used to ‘discount’ each
previous year’s observations by an assigned factor. In contrast to
Waha et al. (2012), we use 0.9 as the ‘‘discounting factor’’ for each
previous year because 0.95 assigns too much weight to distant
years. A third option is to compute a regression trend (RT) from
past observations. We use a linear regression over 20 rolling obser-
vations to extrapolate expectations for the coming year. The math-
ematical representations of the learning algorithms are given in
Table 3.

As the learning algorithm with its adaptation of yield expecta-
tions is carried out at the end of July each model year, only yield
observations of crops that have been harvested by then can be ta-
ken into account. As maize and wheat are usually harvested later,
inclusion of their yield observations in the learning algorithm is
lagged 1 year.

2.1.3. Data and calibration of FARMACTOR

The model has been set up using numerous data sources. The
general cropping method has been designed according to standard
data from the Association for Technology and Structures in Agricul-
ture (KTBL, 2010).

Trigger values were derived using agronomic literature and ex-
pert knowledge as a base and adjusting values to fit modelling re-
sults to crop phenology observations in the period 1980–2010. As
phenological observations refer to the beginning each year of
planting and other actions, correlation between observed and sim-
ulated dates was the emphasis of calibration, with the aim of cap-
turing inter-year variability. The limits used for this paper are
given in Tables 1 and 2 as well as in Tables 10 and 11 in the
appendix.

Actions are only possible when crops are of the correct status
(prepared, planted, etc.) and within their allotted time windows.
For most actions these windows are fixed and long enough to per-
form actions when immediate conditions are acceptable.

The suitability of a given day for planned field actions depends
largely on soil moisture and immediate precipitation (Rounsevell,
1993; Mueller et al., 2003; Van Oort et al., 2012).

First, an estimate of volumetric moisture content based on soil
suction (pF) at the lower plasticity limit (LPL) of the silty clay soil in
the study area provided a maximum for field trafficability (Jumikis,
1984; Mapfumo and Chanasyk, 1998; Ad-Hoc-Ag Boden, 2005).
This proved to be too restrictive, so as in Rotz and Harrigan
(2005) the ability of soil to withstand traffic and respond well to
tillage was defined according to percentage of field capacity (FC),
with soil-engaging actions (ploughing, planting, etc.) optimal at
approximately 95% of FC, surface actions at 100% and harvesting
possible at 105%. Despite the possibility of partial days without
rain being sufficient to accomplish fieldwork but concealed in daily
weather resolution (Rotz and Harrigan, 2005), in our model, any
amount of rainfall precludes action on a prospective day due to
the daily resolution of weather data.

The sowing date of winter wheat is planned according to ex-
pected remaining growing degree days (GDDs) to winter dormancy
(Mcmaster and Smika, 1988) and assigned a 6-week period begin-
ning 4 days before the latest expected day at which a given total
Table 3
The three expectation building procedures (‘‘learn modes’’).

Moving averages
(MA)

Exponential
smoothing (ES)

Regression

Calculation of
expectation Ŷ

Ŷ t0þ1 ¼ 1
N

Pt0
t¼t0�Nþ1Yt Ŷt0þ1 ¼ ð1� aÞYt þ aŶ t Ŷt0þ1 ¼ b0

for t in [t0

Used parameters N = 10 a = 0.9 N = 20

t0: current year (the latest year for which observations are available); Yt: observed valu
GDD will be reached before winter dormancy (see above). Wheat
is flexible in terms of sowing date, able to enter winter dormancy
at various stages of development. Earlier planting, however, has
been shown to increase kernel weight and the number of seeds
per unit area, but increase the risk of damage from certain pests
(Tapley et al., 2013). Early establishment of the crop leads to great-
er root and above ground biomass, which makes for resilience to
drought and cold stress throughout the growing season.

Kucharik (2006) pointed out many advantages to earlier plant-
ing of maize, including a longer potential growing season, reduced
risk of late-season frost and pest damage as well as greater flexibil-
ity in spring operations. Kucharik (2008) also estimated the contri-
bution of earlier planting dates to yield increases in the US over
recent decades to be between 19% and 53%. Maize planting is thus
driven earlier by the potential for greater yields. This, however, is
tempered by persistent weather risks. Spring planting dates vary
with trafficability and crop-specific temperature requirements
(Sacks et al., 2010; Waha et al., 2012). The first day of the earliest
consecutive 7 days each year, during which average daily temper-
ature is not less than a given threshold, is used as the beginning of
the maize planting period. As silage maize will germinate at 8 �C
soil temperature and grow with at least 14 �C air temperature,
(Diepenbrock et al., 2005) these can be seen as minimum desirable
thermal conditions for planting. Immediate soil and air tempera-
ture as well as a minimum air temperature during a given number
of days prior, as an indication of consistent weather, (Honermeier,
2012, personal communication) are thus criteria for planting dur-
ing the allotted window.

Harvest is commensurate with crop maturity, trafficability, and
post-harvest activities such as grain-drying. For this reason, a min-
imum temperature for wheat harvest is given, along with the stip-
ulation of no precipitation. The precipitation criterion is relaxed
with silage maize as maturity is of primary importance.

The rigidity of triggers can lead to failed actions in years with
persistent bad weather or a coincidence of prohibitive daily condi-
tions. To overcome this, following Leenhardt and Lemaire (2002)
near the end of a year’s prescribed action period, triggers are re-
laxed in order to make the action possible (see Table 12 in the
appendix). For maize, activation of these late-period ’catch‘ triggers
was necessary four times each, in different years, for planting and
harvesting maize in the simulated years 1980–2010.

2.2. The crop growth model system EXPERT-N

EXPERT-N is an integrated, modular-structured model that simu-
lates the water, nitrogen, carbon and heat dynamics in a soil–
plant–atmosphere system and details process dynamics on a daily
basis. The model consists of different sub-modules, each composed
of algorithms based on published concepts or developed by the EX-

PERT-N team (Stenger et al., 1999; Priesack, 2006; Priesack et al.,
2001, 2006; Biernath et al., 2011). The simulation modules com-
pute plant growth, soil water movement, heat transfer, and nitro-
gen/carbon dynamics.

In the simulations performed for this study the following sub-
modules were employed. For soil water movement the module HY-
trend (RT)

þ b1ðt0 þ 1Þ where b0 and b1 are derived from the linear model Yt ¼ b0 þ b1t þ et

� N + 1, . . . , t0]

e of the concerned variable in year t.



Table 4
Performance of calibrated Crop growth model.

Wheat Maize

Biomass Phenological
Stages

LAI Biomass Phenological
Stages

LAI

Bias 0.55 2.63 0.10 1.10 �6.63 �0.06
RMSE 0.95 4.75 0.19 1.32 7.71 0.17
ME 0.98 0.94 0.95 0.93 0.88 0.93

LAI: Leaf Area Index; RMSE: root mean square error; ME: model efficiency.

Table 5
Optimized model parameters for the crop growth model CERES.

Wheat Maize
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DRUS 1D (Šimůnek and Van Genuchten, 2008; Šimůnek et al.,
1998) was used. Soil heat transfer was taken from the DAISY model
(Abrahamsen and Hansen, 2000) and nitrogen dynamics were sim-
ulated using the following configuration: mineralization and nitri-
fication as well as soil carbon and nitrogen turnover with SOILN
(Johnsson et al., 1987). Denitrification, urea hydrolysis, nitrogen
transport, deposition and volatilization with LEACHN (Hutson
and Wagenet, 1991). Management used EPIC (Williams et al.,
1989), and plant growth was simulated based on the Crop Estima-
tion through Resource and Environment Synthesis (CERES) model
(Godwin et al., 1990; Jones and Kiniry, 1986; Ritchie, 1991). Some
factors influencing crop growth are not included in these models;
examples are damage from frost or pests and fertilisation by ele-
vated ambient CO2 content.
Parameter Unit Value Parameter Unit Value

P1V – 3.6 P1 GDD 138
P1D – 2.5 P2 h�1 0
P5 – 2.6 P5 GDD 586
G1 – 4.2 G2 Kernel/g (stem) 996
G2 – 4.3 G3 (mg seed�1 d�1) 8.5
G3 – 2.3
fPhint – 84

P1V: vernalisation coefficient; P1D: photoperiodism coefficient; P1: time from
seedling emergence to end of juvenile stage (degree days > 6 �C); P2: sensitivity to
photoperiod set to zero; P5: grain fill duration coefficient; G1: kernel number
coefficient; G2: kernel weight coefficient; G3: spike number coefficient; fPhint:
Phyllochron interval, in EXPERT-N set to 84 (Priesack, 2006).
2.2.1. EXPERT-N calibration
EXPERT-N was parameterized starting with values from literature

and optimized to on-farm measurements taken from the study
area between 2009 and 2011, together with phenological observa-
tions from the German Weather Service (Deutscher Wetterdienst,
DWD, 2012) and district-level yield data from the Statistical Office
of Baden-Wuerttemberg (Statistisches Landesamt Baden-Würt-
temburg, 2012). Sensitivity analysis and parameter optimization
were conducted with the universal inverse code, UCODE_2005,
from the United States Geological Survey (USGS). UCODE_2005
has a high degree of flexibility and adaptability to every kind of
model or set of models (Poeter et al., 2005).

In Table 4 the model performance statistics used in the calibra-
tion are shown. The root mean squared (RMSE) was used to explain
the average difference between simulated and observed data (Lenz,
2007; Lenz-Wiedemann et al., 2010). Modelling Efficiency (ME)
was used to quantify the agreement between model predicted
and observed values (Willmott, 1981, 1982; Wallach, 2006).

The parameter values that have been modified are presented in
Table 5, other genotype-specific settings of the CERES model were
not changed and are readily available in CERES model documenta-
tion (Jones and Kiniry, 1986; Godwin et al., 1990; Ritchie, 1991).
2.2.2. Soil parameter values
Pedo-transfer functions were applied to calculate soil physical

properties (carbon pools, wilting point, field capacity, total pore
volume, and saturated hydraulic conductivity). Further, soil
hydraulic curve parameters were determined for the Van Genuch-
ten equation (Table 6). Finally, we used the C/N ratio measured by
project partners to calculate nitrogen pools from the carbon con-
tent for every soil horizon. As proposed in the DAISY model (Müller
et al., 2003) soil organic matter is divided into three main pools:
dead native soil organic matter (SOM) added organic matter
(AOM) and microbial biomass (SMB). Moreover, with the purpose
of describing all turnover processes, the main pools are divided
into two sub-pools: slow turnover (SOM1, AOM1, and SMB1) and
Table 6
Soil properties and hydraulic parameters.

H Layer (cm) qb Sand (%) Silt (%) Clay (%) Hr

Ap1 0–21 1.31 6.2 56 37.8 0.09
Ap2 21–29 1.34 8.9 52.5 38.6 0.09
Tv 29–41 1.32 8.4 43.3 48.4 0.10

H KS (cm/day) Total N C:N Ratio Porosity (%)

Ap1 13.59 0.28 0.095 50.2
Ap2 11.93 0.13 0.098 49.4
Tv 13.11 0.11 0.091 50.6

H: horizon; Dz: depth interval; qb: soil bulk density; Hr: residual vol. water content; H
hydraulic conductivity.
fast turnover (SOM2, AOM2, and SMB2). The turnover rates and re-
lated partition coefficients were obtained from literature review
(Hansen et al., 1990; Müller et al., 1997, 2003).
2.3. Technical aspects and model coupling

FARMACTOR is set up in a modularised way, using the program-
ming language Java. It is separated into several parts (controller,
farm model, crop growth model) that can be run on different com-
puters that interact via network connections (Java remote method
invocation (RMI)). Thus, the model is flexible to use different hard-
ware as needed. All input and output data is stored in a relational
database (MySQL) where it can easily be evaluated. The model has
been coupled to the crop growth model system (EXPERT-N), so crop
management actions are passed to the crop model and the effects
on plant growth can be observed on a daily basis. In order for EX-

PERT-N, (which is normally used with static parameters for one sea-
son at a time) to account for dynamic management decisions that
evolve during a simulation, FARMACTOR was programmed so that as
soon as an action is executed, the EXPERT-N simulation reverts to the
beginning of the current crop’s season and runs until 3 months
after the action date to take its effects into account. These results
(1) Hs (1) a (1/cm) n (�) m (�)

5 0.492 0.0099 1.46 0.314
4 0.482 0.0102 1.45 0.310
0 0.500 0.0142 1.36 0.262

Field capacity (%) Water content, pF 4.2 (%)

39.5 21.7
37.0 33.1
40.8 30.4

s: saturated vol. water content; a, n, m: van Genuchten parameters; KS: saturated
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Fig. 3. Simulated and observed planting dates (A), harvesting dates (B) and yields
(C) of winter wheat; learn mode moving averages (MA).
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are kept on record to drive the management module until the next
action is executed.

2.4. Study region and weather data

The study region Central Swabian Alb is a karst region located in
southwest Germany in the federal State of Baden-Wuerttemberg.
As part of the greater Swabian Alb, a hilly plateau having mostly
clayey, weathered lime soils of the upper Jura, it is characterized
by plateaus of different altitude between 700 m and 1000 m above
sea level (Hauffe, 2010; Grees, 1993). Annual mean temperature is
around 7 �C and annual mean precipitation fluctuates around
900 mm (Grees, 1993; Renner, 1991).

Agriculture occupies on average around 50% of the available
land area and there is a nearly equal proportion of usage between
permanent grassland and crop production (LEL, 2012). Slightly
more than 20% of all farmers cultivate 50 ha or more (representing
around 60% of the agricultural area) (Statistisches Landesamt Ba-
den-Württemberg (Ed.), 2011b). Typical for this region is part-time
farming (over 70%) (LEL, 2012). The main crops cultivated over the
winter are wheat and barley and the latter also dominates the
summer crops together with silage maize (Statistisches Landesamt
Baden-Württemberg (Ed.), 2011a).

2.5. Simulation

The weather station ‘‘Stötten’’ (48.67�N, 9.87�E), of the German
Weather Service (Deutscher Wetterdienst, DWD), lies within the
study area. For this station historical weather data, phenological
observations as well as projected climate simulations were avail-
able for this study. Historical weather data contain daily time ser-
ies from 1947 onward (DWD, 2011). Phenological data are
available for the same station starting in 1951 (DWD, 2012).

Prospective weather data were taken from the statistics-based
WETTREG climate model (Kreienkamp et al., 2010). Values were
used that correspond to the station ‘‘Stötten’’. Statistics-based
models do not produce reliable results with a single run, so three
(0, 4, and 8) of the 10 runs available from the ‘‘WETTREG 2010’’
experiment, corresponding to the IPCC climate scenario A1B were
used. This scenario assumes an economic rather than environmen-
tal orientation of global development in connection with a bal-
anced use of fossil and renewable energies. It presumes a
moderate reduction of climate gas emissions from 2050 onward
(Ipcc, 2007, p. 44). This scenario was chosen because it contrasts
significantly with the current situation and climate scenario runs
are available. Table 7 presents an overview of the weather data
used in simulations. To ensure valid simulation by providing the
learning modes with precursory observations, the model was
started 20 years before the displayed results.

3. Results

We modelled two major crops of the region (winter wheat and
silage maize). Model results show how planting and harvest dates
react to changing weather conditions, adapt to changing climate
Table 7
Summary statistics on weather data used for simulation (Station ‘‘Stötten’’ 48.67�N, 9.87�

DWD 1980–2010 WETTREG Run 0 2010

Average temperature (�C) 7.48 8.37
Standard deviation (�C) 0.76 0.65
Precipitation (mm/yr) 1089 991
Standard deviation (mm/yr) 172 130
Global radiation (MJ/m2 d) 11.01 11.30
Standard deviation (MJ/m2 d) 0.55 0.33
and how yields vary over time. We compared modelled results to
observed planting and harvest dates (from phenological observa-
tions) as well as observed yields (from statistical records of the dis-
trict) in the region. Further, we present a comparison of different
learning modes, and provide an outlook on possible developments
in the future.

3.1. Winter wheat

Fig. 3 shows simulated and observed planting and harvest dates as
well as yields for a 31-year period from 1980 to 2010 for the learn
mode moving averages (MA). The average simulated planting day
is 2.26–4.13 days earlier than that observed (Table 8). Although
in some years the deviation from the average is well captured
(e.g. 2001) in general the changes in seeding dates are not. This
leads to a correlation of modelled and observed dates near zero.
For harvest dates, the bias between modelled and observed day
is between 5.55 and 5.90 days, however the correlation coefficient
is between 0.62 and 0.63. Due to the greater bias, the RMSE (‘‘root
mean square error’’, which is a measure that captures both bias and
fluctuation) of harvest dates is only slightly less than for sowing.
Yields are generally overestimated (bias 8.1–8.4 dt/ha). However,
yields of the last 20 years are better reproduced than for the dec-
ade from 1980 to 1990.

When looking at the last decade modelled, some differences in
model accordance are noticeable. Correlation coefficients and
E). Source: DWD (2011), Kreienkamp et al. (2010) and (WETTREG).

–2040 WETTREG Run 4 2010–2040 WETTREG Run 8 2010–2040

8.37 8.40
0.55 0.56
966 953
119 162
11.36 11.28
0.37 0.33



Table 8
Summary of observed and modelled results for winter wheat.

Parameter Observed data Modelled data

MAa ESb RTc

Winter Wheat 1980–2010 Average sowing day (Jul. days) 270.39 266.26 266.45 268.13
Correlation coefficient of sowing days 0.02 �0.08 �0.02
RMSE of sowing days (Jul. days) 12.1 12.7 12.3
Average harvest day (Jul. days) 227.42 221.52 221.61 221.87
Correlation coefficient of harvest days 0.63 0.62 0.63
RMSE of harvest days (Jul. days) 10.2 10.2 9.9
Average yield (dt/ha) 66.95 75.35 75.57 75.09
Correlation coefficient of yields �0.11 �0.11 �0.14
RMSE of yields (dt/ha) 18.0 18.3 18.2

Winter Wheat 2000–2010 Average sowing day (Jul. days) 267.09 267.18 267.27 270.00
Correlation coefficient of sowing days 0.18 0.19 �0.06
RMSE of sowing days (Jul. days) 10.1 10.0 12.7
Average harvest day (Jul. days) 224.00 217.82 217.55 217.91
Correlation coefficient of harvest days 0.30 0.28 0.34
RMSE of harvest days (Jul. days) 12.6 12.8 12.3
Average yield (dt/ha) 75.73 69.26 69.46 68.27
Correlation coefficient of yields 0.53 0.55 0.49
RMSE of yields (dt/ha) 15.2 15.3 15.6

a Expectation building based on Moving Averages (10 years included).
b Expectation building based on exponential smoothing (factor 0,9).
c Expectation building based on regression trends (20 years included).
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RMSE increase slightly, except for the learn mode ‘‘regression
trend’’ where these measures worsened. For harvest dates, the
quality measures also decrease slightly, whereas the accordance
of simulated and observed values increases. The correlation coeffi-
cient rises from about �0.11 to 0.53 for the learn mode MA for
instance.

Fig. 4 shows the effect of different adaptation algorithms (‘‘learn
modes’’) on the results. Overall, the results for the different modes
are very similar. For sowing dates, the regression trend (RT) learn
mode tends to result in greater volatility, especially in the late
1980s, early 1990s and late 2010s.
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Fig. 4. Comparison of planting dates (A) and harvesting dates (B) as well as yields
(C) for different adaptation methods (learn modes: MA: moving averages, ES:
exponential smoothing, RT: regression trend) for winter wheat.
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Fig. 5. Sowing dates (A), harvest dates (B) and yield (C) of three simulations using
projected weather data (Model WETTREG) for winter wheat.
Fig. 5 shows the results of the model for a simulation forced with
future weather data obtained from the WETTREG model. Based on
that data, our model produces time series of sowing and harvest
dates as well as yields. The overall trends are toward later sowing
and earlier harvest of winter wheat. As in the model sowing of win-
ter wheat is mainly dependant on the time window calculated by
the learning algorithm, the curves are very smooth. Actual (simu-
lated) weather exerts greater influence on harvest dates and yields
which leads to deviating results when using different climate sce-
nario runs. The trend throughout all three runs, however, is very
similar. While sowing tends to be postponed with future climate
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(by about 0.31 days per year, significant at the 0.1% level) harvest
tends to occur earlier by about 0.52 days per year (significant at
the 0.1% level). Yields also show a slightly decreasing trend by
about 0.51 dt/year (significant at the 1% level).
3.2. Silage maize

The model was able to reproduce past observations concerning
planting and harvest dates as given in Fig. 6; Table 9 further sum-
marises the results. Sowing dates are modelled on average 2.32–
3.52 days earlier than observed. A positive correlation coefficient
between modelled and observed dates (for MA: 0.3) indicates that
the main drivers of the decision of when to plant are captured by
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Fig. 6. Simulated and observed planting dates (A), harvest dates (B) as well as yields
(C) of silage maize, learn mode moving averages (MA).

Table 9
Summary of observed and modelled results for silage maize.

Parameter

Silage Maize 1980–2010 Average planting day (Jul. days)
Correlation coefficient of planting days
RMSE of planting days (Jul. days)
Average harvest day (Jul. days)
Correlation coefficient of harvest days
RMSE of harvest days (Jul. days)
Average yield (dt/ha)
Correlation coefficient of yields
RMSE of yields (dt/ha)

Silage Maize 2000–2010 Average planting day (Jul. days)
Correlation coefficient of planting days
RMSE of planting days (Jul. days)
Average harvest day (Jul. days)
Correlation coefficient of harvest days
RMSE of harvest days (Jul. days)
Average yield (dt/ha)
Correlation coefficient of yields
RMSE of yields (dt/ha)

a Expectation building based on moving averages (10 years included).
b Expectation building based on exponential smoothing (factor 0, 9).
c Expectation building based on regression trends (20 years included).
the triggers. The RMSE is between 11.1 and 12.5 days, about the
same level as for wheat. Harvest dates are modelled, on average,
2.61–3.55 days earlier than observed yielding a correlation coeffi-
cient of 0.34 (RMSE between 17.1 and 17.3 days). In spite of using
calibration techniques, modelling yield development was much
more difficult. The model overestimates yields, e.g. for the learn
mode MA with 517 dt/ha vs. the observed 475 dt/ha. For the other
learn modes the results are similar (bias between 38.0 and 41.2 dt/
ha). While in the 1980s, the modelled yields tend to be lower than
observed; in the remaining 20 years modelled yields exceed those
observed in almost every year. The correlation coefficient between
modelled and observed yields is still decent at 0.42 indicating that
some relation between annual weather and yield has been cap-
tured. When regarding just the last decade of the simulation,
accordance of seeding and harvesting dates declines slightly,
whereas the correlation between observed and modelled yields
improves (Table 9).

The comparison of different learning modes for silage maize leads
to similar results as with wheat (see Fig. 7). The differences be-
tween the different learning modes are generally minor, except
in the mid-1990s, where the regression trend algorithm leads to
earlier planting and harvest. This leads to a slightly higher yield
for this algorithm in the year 1995 whereas in 1997 the yield is less
than with the other modes. In 1994 the exponential smoothing (ES)
learning mode leads to positive deviation of the yield from the
other modes.

Results of simulation of future scenarios using WETTREG
weather data for maize are depicted in Fig. 8. Planting dates show
a very small tendency towards earlier dates (�0.19 days per year)
which is not significant however. Harvest dates, however, occur
about 0.75 days earlier per year, significant at the 1% level. The
yield development however is noticeable. Fluctuations seem to in-
crease compared to the already high volatility in the past (see
Figs. 6 and 8). The trend of yields shows a slope of about �1.8 dt/
year, significant at the 10% level.
4. Discussion

Model performance and results are subject to some noteworthy
annotations. The deviations of seeding dates from the average has
been captured well for wheat in some years (e.g. 2001), in general
Observed data Modelled data

MAa ESb RTc

121.94 118.42 119.61 119.35
0.30 0.20 0.09
11.1 11.7 12.5

266.71 263.74 264.10 263.16
0.34 0.33 0.39
17.3 17.1 17.2

475.41 516.63 516.35 513.45
0.42 0.43 0.41
70.9 71.1 71.1

120.64 113.18 113.27 113.18
0.11 0.11 0.1
12.3 12.3 12.3

266.64 253.27 253.27 253.27
0.33 0.33 0.33
22.0 22.0 22.0

466.57 530.58 529.45 531.71
0.77 0.77 0.78
73.4 72.0 73.9
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Fig. 7. Comparison of planting dates (A) and harvest dates (B) as well as yields (C)
for different adaptation methods (learning modes: MA: moving averages, ES:
exponential smoothing, RT: regression trend) for silage maize.
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though, the changes in seeding dates are not yet captured well.
This explains the correlation between modelled and observed
dates near zero. One reason might be that observed winter wheat
sowing dates depend on the harvest dates of the previous crop in
the crop rotation, e.g. maize, a dependence not covered in this
study. For harvest dates, the correlation coefficient is much greater.
This indicates that the actual harvest dates depend largely on ef-
fects that have been captured in the model. For maize the RMSE
for planting is at about the same level as for wheat, however
slightly lower. This shows that planting dates have been modelled
slightly better for maize than for wheat. A reason could be that
seeding of maize is more determined by actual weather conditions
than that for winter wheat is. Sowing dates for maize show a posi-
tive correlation coefficient between modelled and observed dates
(for MA: 0.3), which indicates that the main drivers of the decision
of when to plant are captured by the triggers. For harvest of maize,
the correlation coefficient is positive, while the RMSE is greater
than for wheat, which implies that the direction of the deviations
from the average date is accurately modelled whereas the magni-
tude of the deviation is on average greater than for wheat.

As mentioned, yields for wheat have been, on average, overesti-
mated. However, yields of the latest decades are better reproduced
than for the first one (1980s). This is likely to be a result of chang-
ing agricultural practices, including cultivars used, while the model
simulates static cultivars and technology (Ahlemeyer and Friedt,
2012). Further, simulated yields and those from district-level sta-
tistics have to be compared carefully as the latter are averages over
a multitude of fields, whereas the model produces results for just
one site. Thus, modelled values tend to fluctuate more than the
yields from statistical survey, particularly observable in the years
2003 and 2006, when average temperatures in June and July were
more than three degrees greater than the 1980–2010 average, and
less than half of the period’s average total rainfall occurred.
Regarding only the last decade, the model fitness improved com-
pared to the overall period. This emphasises that the calibration
of the model concerning yield is more suitable for recent years
than for the past as a consequence of not modelling technical pro-
gress and calibrating the plant growth model to recent observa-
tions. For maize, in the 1980s, the modelled yields tend to be
lower than observed, in the remaining 20 years modelled yields ex-
ceed those observed in almost every year. Again, one has to take
into account that the observed yields are averages over many,
not necessarily identical fields, where an extension of maize crop-
ping into less suitable areas may be cause for the stagnation of ob-
served yields.

The analysis comes with an important caveat: the use of differ-
ent cultivars in the future, different cropping technologies as well
as the influence of CO2 fertilisation will alter the results. Ahlemeyer
and Friedt (2012) carried out field trials of wheat cultivars released
during the last 40 years and show a roughly 30 kg/ha annual in-
crease in grain yield as a result of breeding alone. This, largely a re-
sult of increasing numbers of grains per spike, can be incorporated
into hypothetical future wheat cultivars to be used in simulation.
CO2 increase will have a fertilising effect on plant growth. For
wheat, a crop with a so-called C3 metabolism, an increase of ambi-
ent CO2 content from 409 to 537 ppm is estimated to lead to a yield
increase of between 11% (Högy et al., 2010) and 15% to 25% in dry
years (Ko et al., 2010). On the other hand, crop protein content is
likely to decline in this regard (Högy and Fangmeier, 2008). For
crops like maize with a C4 metabolism, the CO2 fertilisation effects
are likely to be minor and influence yield mainly by the reduction
of drought stress (Manderscheid et al., 2012; Sicher and Barnaby,
2012). Thus for maize the results are likely to be only slightly
biased by the omission this effect in the model while for wheat
the estimated yield decline may be overestimated. CO2 fertilisation
may reduce yield decline by about half of the given numbers. Later
versions of the model should aim at including CO2 fertilisation ef-
fects especially for wheat. Ziska et al. (2012) show that there is
high potential to increase the yield responsiveness with respect
to CO2 of crops by breeding, thus CO2 fertilisation effects may be
higher for future cultivars.

The included triggers can explain a significant share of variation
in the observed action dates. However, a large amount of this var-



Table 10
Actions and action triggers for soil preparation and fertilisation of winter wheat.

Action Trigger Calibration

Ploughing Crop status ‘‘Initiated’’
Day (Julian) 174–301
Soil moisture (%) 636.1
Precipitation
(mm)

0

Seedbed
preparation

Crop status ‘‘Prepared’’
Day (Julian) 210–306
Soil moisture (%) 638
Precipitation
(mm)

0

Fertilisation N1 Crop stage
(BBCH)

P15

Day (Julian) 20–151
Soil moisture (%) 638
Precipitation
(mm)

0

Fertilisation N2 Crop stage
(BBCH)

P30

Day (Julian) 85–180
Soil moisture (%) 638
Precipitation
(mm)

0

Fertilisation N3 Crop stage
(BBCH)

P39

Day (Julian) 95–212
Soil moisture (%) 638
Precipitation
(mm)

0

Fertilisation P Crop status ‘‘Initiated’’, ‘‘prepared’’, or
‘‘planted’’

Crop stage
(BBCH)

630

Day (Julian) 173–300
Soil moisture (%) 638
Precipitation
(mm)

0

Table 11
Actions and action triggers for soil preparation and fertilisation of silage maize.

Action Trigger Calibration

Ploughing Crop status ‘‘Initiated’’
Day (Julian) 274–150
Soil moisture (%) 636.1
Precipitation (mm) =0

Seedbed preparation Crop status ‘‘Prepared’’
Day (Julian) 75–150
Soil moisture (%) 638
Precipitation (mm) =0

Fertilisation N1 Crop status ‘‘Planted’’
Day (Julian) 100–160
Soil moisture (%) 638
Precipitation (mm) =0

Fertilisation N2 Crop status ‘‘Planted’’
Crop stage (BBCH) P19
Day (Julian) 150–195
Soil moisture (%) 638
Precipitation (mm) =0

Fertilisation P Crop status ‘‘Planted’’
Day (Julian) 100–160
Soil moisture (%) 638
Precipitation (mm) =0
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iation cannot so far be explained. There are a number of possible
explanations. First, the observed values, especially district-level
yields, do not measure exactly what is modelled. Second, calibra-
tion of the two models is imperfect, and the given calibration data
fail to cover the whole picture. Third, the used model is naturally
only a simplification of real farmer decision-making, where many
other factors including experience, weather forecasts and even
chance play a role.

Results show that different learn modes produce very similar
results. Especially harvest and yields are much more determined
by actual weather in the respective year than by the learn mode
chosen to adapt planting periods and yield expectations. Although
20 annual observations were used in the regression trend (RT), op-
posed to the 10 used in the moving average (MA) learn mode, the
increased volatility is a result of the extrapolation being less con-
servative than calculation of averages. By extrapolating trends,
estimated values can lie outside the observed range, something
impossible with averaging. All in all, the selection of learn modes
does not seem to be critical (at least from those we chose and
which are in about the same range as reported by Waha et al.,
2012). However, not adapting planting and harvest periods at all
may significantly increase error, because the gradual shift of dates
would not be modelled whatsoever.

Given the caveats of the present model as discussed above, the
future trends are plausible. For wheat the slight delay of seeding
dates is also shown by Bondeau et al. (2007), which also ignore
crop rotation timing effects. The rationale is that a winter crop
should develop to within a certain range of maturity before winter
dormancy, and that outside this range implies increased exposure
to biotic and abiotic risks (i.e. pests and weather). Earlier harvest-
ing dates are acknowledged also by Bondeau et al. (2007), Waha
et al. (2012) and Olesen et al. (2012). When wheat, as a determin-
istic crop, passes through its development stages, it depends on
certain temperature sums, which, with anticipated warmer cli-
mate, will be reached earlier. This characteristic also explains some
of the decrease in yields of wheat, as the grain-filling period is
shortened (Schaller and Weigel, 2007, p. 84). A similar result is ob-
tained by Strauss et al. (2012) and Gandorfer and Kersebaum
(2008) who also omit the effects of genetic and atmospheric CO2

developments. In contrast, Ewert et al. (2005) and Bindi and Olesen
(2011) project increasing future wheat yields. They, however, in-
clude continuing trends in technical and biological progress, which
supersedes the effects of climate change.

For maize, literature suggests an advancement of planting dates
for the future. Sacks and Kucharik (2011) analysed the advance-
ment of maize seeding for the period from 1981 to 2005. Bondeau
et al. (2007) and Olesen et al. (2012) estimate the advancement of
maize seeding dates to continue in the future. A slight tendency to
earlier dates is also shown in our results; however it cannot be
confirmed with statistical significance. Further, the trend towards
earlier harvest dates as given by the model is very plausible, given
the assumption of unmodified cultivars. The prolongation of the
growing season provides opportunity to adapt cultivar choice
and thus the possibility to obtain higher yields (Sacks and Kuchar-
ik, 2011). Slightly decreasing yields when not taking cultivar adap-
tation into account conforms to the simulation by Strauss et al.
(2012).

Both for wheat and maize an increase in yield volatility due to
increased volatility in weather is in line with findings from Cabas
et al. (2010).

Future research should try to increase the share of explained
variation in action dates and yields. Starting points could be inclu-
sion of the development of cultivars over time or the introduction
of fuzzy logic into the triggers. Further, inclusion of risk aversion
parameters, for example in the planting of summer crops might re-
duce the error of specific dates.
5. Conclusions

Modelling experience and results permit drawing several note-
worthy conclusions. The approach to modelling crop planting and
harvest dates seems to be promising, as it is capable of reproducing



Table 12
Relaxed triggers at the end of the time windows.

Value 7 days before
end of period

Value 3 days before
end of period

Winter
wheat

Soil moisture
(%)

40 42

Seeding Precipitation
(mm)

2 4

Winter
wheat

Soil moisture
(%)

42 44

Harvest Precipitation
(mm)

2 5

Silage
maize

Soil moisture
(%)

42 46

Seeding Precipitation
(mm)

4 6

Silage
maize

Soil moisture
(%)

43 45

Harvest Precipitation
(mm)

3 10
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the main trends and reactions to weather events. Main findings are
in line with expected results, given the mechanisms of climate
change and the effects included in the model. Not all adaptations
of farmers may be smooth and can directly be derived from obser-
vations. For example, the optimal seeding time for winter crops de-
pends very much on expectations of the remaining weather of the
year and is thus subject to nontrivial adaptation. Further the model
allows deriving statements on the statistical characteristics of
these short-term decisions, for example, on the likelihood of a cer-
tain strategy for planting maize being successful. It will also allow
creating risk profiles for different cropping strategies, which are
likely to depend on climatic change. The results may benefit stake-
holders and policy makers not only in terms of short-term manage-
ment, but may also have consequences for agricultural capacity
adaptations, e.g. when optimal seeding and harvesting periods will
narrow or broaden.

Finally there is great potential to improve climate change mod-
els, as the feedbacks between land-use and climatic development
can be modelled more precisely.
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Abstract 

Crop simulation is a modern tool used to mimic ordinary and extraordinary agriculture 

systems. Under the premise of continuing foreseeable climatic shift we combine 

adaptive field-level management decisions with their effects on crop performance. 

Price projections are used to examine yield and price effects on gross margins of the 

predominant crops in two specific regions of Southwest Germany into the coming 

decades. After calibration and validation to historic records, simulated future weather 

is used to explore how farmer behavior and performance of wheat, barley, rapeseed 

and maize could develop under anticipated global change. This development is 

examined based on a comparison of historic and projected gross margin variance. 

Simulations indicate that when yield levels increase, the relative variability of gross 

margins may decline in spite of some increasing variability of yields. The coefficient of 

variance of gross margins decreases even more due to the independence of price and 

yield fluctuations. This shows how the effects of global change on yields could be offset 

by economic conditions. 

Keywords: Integrated modelling, Yield forecasts, Simulated gross margins, Global 

change, Agricultural adaptation, Risk. 
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Abstract 

This paper focuses on the attitude of German farmers towards climate change effects 

and aims to identify determinants affecting their perception of weather conditions. For 

this purpose, descriptive statistics and multiple linear regression approaches were 

applied. Data was collected using a questionnaire survey, which was conducted in 

spring 2013 among 173 German farmers in the two regions Swabian Alb and 

Kraichgau. The analyses revealed that four main factors influence the perception of 

weather variability. In particular, respondents’ age, the region where the farm is 

located, the share of agricultural income and the farm profit are statistically significantly 

related with the degree of support for the respective weather statements. The findings 

further indicated age of farmer, location of the farm, method of production and farm 

size as significant predictors concerning the farm leader’s perception of climate change 

consequences. As descriptive statistics revealed, the majority of farmers perceive for 

their location a change in weather conditions, an increase in weather variability as well 

as decreasing predictability of weather and expect consequences for their farming 

activities due to these developments. 

Keywords: Perception of climate change effects, weather variability, demographic 

characteristics, attributes of farm and household, regional scale, German farmers  
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Abstract

In agricultural production, land-use decisions are components of economic planning that

result in the strategic allocation of fields. Climate variability represents an uncertainty factor

in crop production. Considering yield impact, climatic influence is perceived during and eval-

uated at the end of crop production cycles. In practice, this information is then incorporated

into planning for the upcoming season. This process contributes to attitudes toward climate-

induced risk in crop production. In the literature, however, the subjective valuation of risk is

modeled as a risk attitude toward variations in (monetary) outcomes. Consequently, climatic

influence may be obscured by political and market influences so that risk perceptions during

the production process are neglected. We present a utility concept that allows the inclusion

of annual risk scores based on mid-season risk perceptions that are incorporated into field-

planning decisions. This approach is exemplified and implemented for winter wheat produc-

tion in the Kraichgau, a region in Southwest Germany, using the integrated bio-economic

simulation model FARMACTOR and empirical data from the region. Survey results indicate that

a profitability threshold for this crop, the level of “still-good yield” (sgy), is 69 dt ha-1 (regional

mean Kraichgau sample) for a given season. This threshold governs the monitoring process

and risk estimators. We tested the modeled estimators against simulation results using ten

projected future weather time series for winter wheat production. The mid-season estima-

tors generally proved to be effective. This approach can be used to improve the modeling of

planning decisions by providing a more comprehensive evaluation of field-crop response to

climatic changes from an economic risk point of view. The methodology further provides

economic insight in an agrometeorological context where prices for crops or inputs are lack-

ing, but farmer attitudes toward risk should still be included in the analysis.

Introduction

Climate change contributes to the evolution of agricultural landscapes and is also subject to a

feedback loop as changes in land use, especially conversion to cropland, drives processes such

as the global carbon cycle that have been linked to changes in climatic conditions [1].
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Variabilities in the biophysical processes in agricultural production have been found to be

closely associated with climate [2–6]. The Intergovernmental Panel on Climate Change (IPCC)

[7] stated in its Fifth Assessment Report that climate change is expected to amplify existing cli-

matic risks. For crop farmers, this can represent a challenge in terms of the optimal allocation of

land under their management [8]. The manager’s job is to choose crops suited to the environ-

ment in their location [9], subject to stipulations including risk aversion [10]. Strategic crop

selection and rotation are a cornerstone of successful agricultural enterprises [11]. Studies of

agricultural production systems must account for managerial strategies that are based on

dynamic environmental and economic conditions. Climate change impact assessment usually

treats land use as a planning decision. The climatic influence is regarded as a source of gross-

margin variation, which makes planning more difficult, and it is therefore considered to be a

source of risk and uncertainty [12]. Available methodological approaches have been found to

either over- or underestimate the rate of adaptation by farmers to climatic impacts [13–16].

Furthermore, economic drivers, such as commodity prices or agricultural policy, have been

found to dominate climatic influences at the gross-margin level, particularly in terms of the

speed of farmer response to stimuli [17, 18], through planning decisions. The challenge lies in

the isolation of the climatic influence in such risk analysis [14, 19]. The aim of the present work

is to exemplify a more comprehensive methodology for incorporating risk, in particular cli-

mate-induced risk, into agricultural simulation. This approach should contribute to the ongoing

pursuit of more robust system representation to enable more reliable predictive capacity.

Materials and methods

Currently used models show how climate change can be expected to induce transition pro-

cesses in agricultural land use, for example the Integrated Land-use Model (ILM) [20] and

MPMAS [21]. Although they are coupled with complex biophysical models (EPIC [22] and

Expert-N [23], respectively), these models consider only the final outcome of the production

process, such as yield. Valuable information produced throughout the simulated growing cycle

is ignored for lack of a realistic methodology to incorporate it into the representation of agri-

cultural strategy.

Furthermore, in reality, farmers continuously evaluate crop development on their fields,

even when no activities are pending. At certain intervals throughout the growing season, farm-

ers base their estimates regarding eventual production outcomes on an evaluation of the cur-

rent crop development stage [24]. This process is accompanied by an automatic perception of

the crop’s response to the season’s climate at a certain location. This evaluative monitoring

goes beyond a pure input efficiency analysis that accounts for (seasonal) variability in agricul-

tural production, as has been investigated [24–28]. Over time, the aggregation of these evalua-

tions shape a farm manager’s cumulative perception of the climate-induced variability of a

crop in the form of a perceived response pattern. This knowledge is, in practice, incorporated

into planning decisions, and can be used to set crop yield within the context of the respective

production processes while including how climate affects production efficiency.

Thus, the primary hypothesis here is that incorporating inter-temporal evaluations of agro-

economic processes in planning decisions will cultivate a more thorough understanding of the

impact of climatic changes on land-use (planning) decisions and, thus, of how agricultural

landscapes evolve over time.

Bio-economic simulation models with dynamic module integration (e.g., crop-soil-man-

agement-weather-prices), operating at adequate spatio-temporal resolution [29], offer the pos-

sibility of investigating different processes and dynamics of decision-making over time while

being representative of the real world [30]. Mid-season risk perceptions can only be modeled

Isolating the climate stimuli in land-use decisions
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at fine (e.g., daily, at least sub-annual) resolution [14]. Few bio-economic models operate at an

appropriate temporal resolution to allow the study of farmers’ perception processes during the

growing season (APSIM [31] and FARMACTOR [32]).

The APSIM model [31], is able to mimic production process decisions at daily resolution

and at the field level. Crop management decisions can be made according to weather, plant

and soil conditions. In the APSIM model, a trigger mechanism is used to adjust tactical deci-

sion-making in the context of response farming [33]. The FARMACTOR model, as coupled to the

Expert-N crop model [23, 34–37], incorporates all the functionality of the APSIM model in

terms of daily management in response to soil-crop-weather dynamics [32]. FARMACTOR is fur-

ther able to adapt simulated crop management in response to long-term climatic influences

through model-endogenous mechanisms. It therefore resonates with actual agricultural activ-

ity at multiple scales (daily, yearly, decadal, etc.) of the managerial perspective and, thus, at

scales where strategy can be implemented. Both models are designed to explore the optimiza-

tion of production routines and the planning process in an agro-meteorological context.

The FARMACTOR model’s environmental condition triggers that govern field management

decision-making are designed to mimic agronomic reasoning such that it can accurately

reproduce empirically observed farmer behavior, particularly the timing of sowing and harvest

[38]. Observed behavior, in a soil-weather context, is assumed to be in pursuit of profit maxi-

mization in response to embedded production risks. The timing of field management actions

provides a traceable link between farm strategy and eventual yields. The extraction of eco-

nomic reasoning that drives observed statistics is tenuous [39], whereas in bio-economic simu-

lation, trigger settings provide a transparent mechanism to quantify the system components

that steer productivity.

By definition, bio-economic simulation models go beyond agronomic aspects and are

designed to use the coupling of model components to integrate agronomic aspects into eco-

nomic analysis. This functionality is the key to integrated process evaluations in economic

planning decisions but has yet to be well developed for APSIM and FARMACTOR.

Data and study region

Data were obtained empirically as part of a structured survey on risk and decision-making in

agriculture that was conducted in the Kraichgau study region in Southwest Germany (~1,400

km2) [32]. The Kraichgau is, from an agricultural point of view, a fertile region with intensive

agricultural activity on mostly loess-rich soils and a relatively homogenous agricultural land-

scape [40, 41]. Elevations are between 100 and 400 m asl with a landscape defined by moderate

slopes. The mean annual precipitation ranges from 730 to 830 mm and has a mean annual

temperature of 9 to 10˚C.

The farmers were informed through an introductory cover letter about the content and pur-

pose of the questionnaire and the planned use of their data. They were further assured that all

procured data would be evaluated with the safeguard of anonymity and for scientific purposes

only within the framework of the research group and that their personal information would be

treated confidentially. As an incentive to increase the response rate, there was also the possibility

of participating in a lottery drawing to win one of 20 vouchers for a farm supply company; each

voucher had a value of 30 EUR. The response rate was 23.4%, or 91 completed questionnaires.

No ethics committee or institutional review board was contacted because it was not com-

pulsory at the time. The questionnaires were read by all members of the research group and

were approved by all responsible project leaders before they were sent out. The empirical work

was subsequently approved by the Ethics Committee of the University of Hohenheim, 70599

Stuttgart.

Isolating the climate stimuli in land-use decisions
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Empirical approach

Mid-season evaluation is conducted to assess variations in the crop development process [42]

and, when significant, can provide expectations regarding eventual yield levels. Preferential

outcomes during the season or at harvest are constructed after consideration of an immense

number of possible options that a decision-maker faces, many of which are similar in nature

[43]. Therefore, the agroeconomic focus should be on thresholds as a component of wealth

dynamics, as suggested by Just et al. [44] and Antle [25], to scale preferences properly. Risk

bearing, which is also a scalar, is related to a decision-maker’s willingness to accept (wta) out-

come fluctuations [45]. Willingness to accept is a downside-risk measure because it focuses on

incurred losses and individual assessment of such losses [46]. Because aspects of preferences

and perceived risks are constructed according to local conditions, there is a need to establish a

context within which an economic subject acts.

This need led to the execution of the farmer survey in the Kraichgau region. Farmers were

asked to give a subjective evaluation of crop observations according to their experience with all

crops in their production branch (question 1.11 of S1 Questionnaire). Downside-risk attitude

was elicited in a crop-wise manner because of the highly resolved decision-making component

in the FARMACTOR model that plans the allocation of crops for each field of a farm individually

and, thus, mid-season observations are modeled crop-specific.

The willingness to accept is defined in physical units as follows: py–sgy = wta, where py =

peak yield and sgy = (farmer-defined) “still-good yield”. The sgy level was set as the lower

boundary of a farmer’s acceptable level of fluctuation. All values above the sgy provide utility

to a farmer in an economic sense. Below the sgy, the values represent the production outcome

levels that might imply agronomic non-profitability according to farmer experience; more spe-

cifically, they imply economic losses and thus represent risk.

To compare different sgy statements, a definition for a sensitivity type in this context is pro-

vided that uses the third elicited point of a farmers’ crop yield distribution, i.e., the average

yield (avyfarm). Sensitivity types are similar to risk aversion types, as suggested by Arrow [47]

and Pratt [48] to account for farmers having a different subjective acceptance of risk [49] and

are part of the methodological concept to be presented.

Sensitivity types. The average yield (avyfarm) determines the location of sgy in the yield

distribution and allows for the identification of comparative performance between farms for a

given crop. We can argue that when avyfarm > avyregion for a given crop, the farmer’s yield dis-

tribution and the processes underlying the result are likely to be favorably skewed. This reason-

ing is based on the assumption that climatic influences are comparable throughout the

relatively uniform Kraichgau study region and production conditions, such as the availability

of inputs are assumed to be relatively homogenous throughout this region.

If a farmer declares sgy to exceed avyfarm, despite avyfarm being higher than avyregion, the

farmer can be considered to be more sensitive to yield for a particular crop as opposed to a

farmer that declares his sgy below avyfarm.

A sensitivity type in this context is thus identified by two conditions with regard to a given

crop: first, determine if sgy is above or below avyfarm; second, compare the individual average

performance of a crop at the farm level avyfarm to the individual avyfarm.

Empirical results

Despite avyfarm>avyregion, only 13, or 17.81% (n = 73), of the farmers in the Kraichgau sample

declared their sgy above avyfarm and could thus be identified as being highly sensitive with

regard to fluctuations of one or more crops produced on their farm. Due to the low sample

size and strong sample heterogeneity, neither regression nor cluster analysis yielded significant

Isolating the climate stimuli in land-use decisions
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results when attempting to categorize the sampled Kraichgau farmers into typical groups

according to age, experience and stated farm characteristics. However, this particular informa-

tion is not necessary to introduce the methodological approach.

Descriptive statistics for the three subjective values (peak, still-good and average yield) as

reported by questionnaire respondents regarding winter wheat in the Kraichgau are displayed

in Table 1. Winter wheat results are presented because of their economic importance and their

use to exemplify the methodological approach. Of 91 returned questionnaires, 82 incorporated

information related to this study.

For the Kraichgau sample, the average reported sgy is below the mean reported avy, which

is near the five-year (2008–2012) mean yield of 71.4 dt/ha for winter wheat across the four dis-

tricts (Landkreise) that comprise the study region [50].

The empirically elicited sgy threshold was then translated for mid-seasonal process observa-

tions using the FARMACTOR model based on the following utility concept. The sgy threshold is

used to scale perceived variance during production from an economic perspective [14].

Utility concept

The introduction of utility is necessary and a useful measure for economic evaluations during

the season and to ensure compatibility with economic reasoning at the level of planning [51]

in the simulation model.

Thus, at sequential observation points (OPs), which represent specific crop management or

monitoring actions, the modeled farmer evaluates crop development, soil water content and

soil temperature, as driven by soil-plant-climate interactions, using simulation model output

parameters, namely, the set that describes the current status, with i 2 (1,. . .,n) as the total num-

ber of possible (crop-specific) observation parameters. The evaluation of each observed param-

eter value is assessed with a utility score αi,c at each OP (c stands for crop).

Each parameter has an assigned acceptance range that triggers the monitoring procedure in

the model. Anticipated economic profitability and thus an absence of risk (αi,c = 0) are implied

when the observation parameter lies inside a predefined acceptance range; yield levels above

the sgy threshold are expected based on the inter-temporal observation. A utility score of 1

results during a “risky” season when an observed parameter value lies outside a predefined

acceptance range that is associated with crop profitability. The observational procedure is

independent of simulated management. It is only used to accumulate perceptions of the cli-

matic influence dependent on the sgy threshold.

The utility risk score at an individual OP for a crop is represented as the sum of the utilities

of all observation point parameters:

at;c ¼
Xn

i¼1

ai;c for all t and c ð1Þ

Table 1. Empirical results for winter wheat from the Kraichgau sample.

Mean Min Max Std. Dev. Skewness Variance Var. Coef. n

Peak yield (dt/ha) 87.78 65 116 10.36 -0.17 107.43 0.12 81

Still-good yield (dt/ha) 69.17 40 90 10.05 -0.70 100.92 0.15 78

Average yield (dt/ha) 74.44 50 90 8.43 -1.00 70.98 0.11 80

Note: Min = Minimum, Max = Maximum, Std. Dev. = Standard Deviation; Var. Coef. = Variation Coefficient. Different sample sizes are related to various

levels of questionnaire completion. Source: Own survey (2013), question 1.11 of S1 Questionnaire.

https://doi.org/10.1371/journal.pone.0181954.t001
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where t is an OP at a certain point in time with t 2 (1,. . .m) within the growing process of crop

c. The season’s accumulated utility values of all OP’s are summed after harvest to obtain αT,c,

the total utility score, or ARS, of a production year for a given crop as the result of the interme-

diate rankings. This relation can be written as

ARS ¼ aT;c ¼
Xm

t¼1

at;c for all c: ð2Þ

Fig 1 exemplifies the ARS concept for winter wheat production in the Kraichgau. The tim-

ing for the OPs is inferred from the FARMACTOR model’s list of field management actions for

winter wheat production. The management procedure in the simulation model has been previ-

ously calibrated for Kraichgau (see, [32]). The chosen OPs represent one possible option and

can be adjusted for other crops.

Most importantly and to understand the evaluative monitoring, an ARS score and its com-

ponents are not used to govern the inter-temporal optimization process but, rather, as an

instrument for risk assessment and selecting relevant information regarding the climatic influ-

ence. Therefore, each αt,c identifies the composite risk (across observed conditions) for a given

observation point that becomes part of an overall assessment at the end of the year.

There is no further weighting of inter-temporal utility coefficients because the utility of a

value is only revealed ex post [12, 52] despite the fact that the utility regarding sequential obser-

vations has been referred to as the “utility of the moment” [53], indicating that it is only valid

for a short period of time until the situation reveals new information to be processed [54]. The

Fig 1. Economic risk evaluation via mid-season assessment. Risk perceptions are documented at eight OPs, 0 to 7, in

the FARMACTOR model. The example of winter wheat production in the Kraichgau is shown. Each observation is conducted

parallel to wheat production. Source: Adapted from [32].

https://doi.org/10.1371/journal.pone.0181954.g001

Isolating the climate stimuli in land-use decisions

PLOS ONE | https://doi.org/10.1371/journal.pone.0181954 August 1, 2017 6 / 16

https://doi.org/10.1371/journal.pone.0181954.g001
https://doi.org/10.1371/journal.pone.0181954


state of available information is the factor that changes with subsequent crop development and

observation, while the uncertainty regarding further development remains the same [24].

Simulations. Before the simulation model is able to assess climatic impacts, based on the

ARS methodology, the model must be provided with information about what level of mid-sea-

son variability is acceptable. The ARS methodology is exemplified using the empirically elic-

ited average sgy from the Kraichgau sample, 69.17 dt/ha (Table 1), to scale the boundaries of

the acceptance ranges in the simulation model.

Acceptance ranges for inter-temporal crop conditions embody the experience of a farmer

in crop production. This experience pertains to a certain range of tolerable fluctuations in

growth patterns from a downside risk perspective at a given point in time during the growing

season. To initialize these ranges, it was necessary to simulate a reasonable number of “histori-

cal” growing seasons to accumulate an experience pool for the simulated farmer.

To create a knowledge pool, FARMACTOR’s crop management routine was overridden in

order to compile a comprehensive set of simulated agro-ecological states (crop biomass, soil

moisture, etc.) arrived at through what-if scenarios using an array of day-of-year (DOY) start-

ing points (sowing dates). A standard production procedure was used for these model runs,

and input levels for fertilization were kept constant. All wheat-specific actions, apart from

planting (three fertilization applications, harvesting, and preparation of fields; Fig 1) were gov-

erned by their existing weather and plant-growth-dependent trigger arrays [32] and [38]. A

range of plausible starting points for winter wheat growth processes for the Kraichgau region

extends from DOY 283 to 324 (early-mid October to mid-late November) [38]. The later the

simulated DOY for sowing, through the associated growth-process simulation, the less likely

the yields will be acceptable or greater than sgy, thus justifying the maximum in the sowing

DOY chosen for simulation. For each of the 46 DOY, a time series of 30 years (1983–2013) was

modeled. This produced “historical” growth processes for each weather year and resulted in

1,380 permutations of the annual growth processes for winter wheat.

Data from the modeled growth processes were then used to initialize the acceptance ranges

of all observation points used to monitor the growth processes. A season’s first observation

point is the sowing date, OP 0 (see Fig 1). The acceptance range for OP 0 (sowing) is described

by the relative frequency in which a DOY led to a yield� sgy (average sgy for the Kraichgau

region 69.17 dt/ha (Table 1)) throughout the historical time frame. This value is the ratio of

desired to total yield outcomes compiled over all simulation years (n = 30) and stems from

that particular sowing DOY. The higher the relative success frequency of a DOY, the more

often a yield� sgy is observable in the 30-year times series with this DOY as a starting point,

and consequently, the more suitable a DOY is for sowing.

For crop surveillance after sowing, at OP 1 through 7, ten observable field parameters are

used for monitoring to give a complete picture of crop response to external influences: above-
ground biomass and generative biomass (kg/ha); leaf area index (LAI); crop development stage
(BBCH) (BBCH-scale [55]); soil water content at 20, 50 and 120 cm depths (% volume); and

soil temperature at 5, 20 and 50 cm depths (˚C). The crop development stage is used indirectly;

it is incorporated into the decision triggers of the simulation management routine to ensure

that observations each year are made at a comparable stage of crop development (compare

[32]).

Mid-season indicators of forthcoming yields, or OP 1 to 7, are based on simulated growth

processes, however, not all modeled values for a given parameter could serve as a reference for

an economically interpretable observation. The base of 1,380 data points for each OP parame-

ter was reduced to those in which the corresponding final yield did not fall below the down-

side-risk threshold, i.e., the average sgy for the Kraichgau region, 69.17 dt/ha (Table 1). The

results represent the farm actor’s “knowledge” that has accrued over a 30-year time-span.
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These data provide a simulated knowledge base to generate expectations about crop response

to seasonal variability, with reference to a yield benchmark, which implies agronomic utility.

Because the states of physical growth processes are compiled as observational data, it is

important to determine acceptance ranges that cover a wide range of outcomes to prevent the

model from being too sensitive to fluctuations. When plotting the data with boxplots, the lim-

its for each observation point parameter were set at the whiskers of selected point-specific out-

comes for a given parameter. The outliers represent a result of rare combinations of plant

response and environmental conditions that still resulted in a yield� sgy and were thus

excluded. The outliers are data points that lie below the first quartile minus 1.5 times the inter

quartile range (x0.25−1.5 IQR) or above the third quartile plus 1.5 times the inter quartile range

(x0.75 + 1.5 IQR). Whiskers are assigned to the next inner data points, which are not considered

outliers. Boxplots were calculated with STATA [56]. We examined the result of the data extrac-

tion further to test whether it made any difference in our acceptance ranges when all 1,380

data points were plotted. The acceptance ranges were consequently much greater in both

directions.

Acceptance ranges. Table 2 gives an overview of all acceptance ranges we obtained from

extracting simulation data for all OPs in winter wheat production in the Kraichgau using the

FARMACTOR model.

Acceptance ranges represent tolerable fluctuation during the growth process from a down-

side-risk point of view. The values between the boundaries are not ranges that indicate the

Table 2. Observation trigger ranges for winter wheat production in the Kraichgau region for the production years 1983–2013 and 10 observation

parameters throughout 7 observation points; average regional sgy level: 69.17 dt/ha (Table 1); weather data from Eppingen station (see details

[32]).

OP 0: Planting (day-of-year) Min 280

Max 313

Leaf Area Index Soil Water at Soil Temperature at Above Ground

Biomass

BBCH

30 cm 60 cm 90 cm 120 cm 5 cm 10 cm 50 cm

OP1: 30 days after

planting

Min 0.07 28.5 26.62 25.64 26.7 -6.01 -4.58 -0.18 39.27 8.06

Max 0.77 34 35.58 35.02 32.63 12.64 11.86 10.33 302.52 13.58

OP2: Fertilization 1 Min 1.32 19.25 21.88 23.53 25.78 4.34 5.26 5.72 913.18 25

Max 4.17 34.78 33.21 32.03 32.14 19.58 17.88 13.06 2744.6 25.81

OP3: 14 days after

fertilization 1

Min 2.54 21.67 20.97 22.34 24.62 6.65 6.47 7.04 1709.2 27.05

Max 6.05 36.09 33.39 31.57 31.15 20.46 19.69 14.75 4126.6 33.74

OP4:

Fertilization 2

Min 2.57 21.67 21.98 22.23 24.57 7.53 7.72 8.72 1695.8 30

Max 6.84 35.81 32.63 31.37 30.03 20.43 19.33 14.48 4690 32.88

OP5:

Fertilization 3

Min 3.62 18.31 17.43 19.8 23.4 8.66 8.96 9.16 3404.4 39

Max 7.25 37.28 35.63 32.05 29.12 21.23 20.31 15.5 6505 42.83

OP6: 14 days after

fertilization 3

Min 3.84 16.12 15.2 17 21.06 10.09 10.05 10.41 6380.1 52.14

Max 6.88 40.12 32.4 30.26 30.22 22.42 21.74 17.51 9631.9 61.26

OP7: Harvest Min 1.17 10.87 11.13 11.72 16.27 13.64 13.54 13.1 7343.61 90.7

Max 2.12 32.99 31.01 27.16 27.63 21.67 20.56 18.91 88031 92.7

Note
1 At harvest, the parameter observed is generative (grain) biomass (kg/ha). The minimum and maximum values are respective of the lower and upper

boundaries of an acceptance range for an observation parameter. Mid-season observations are based on aboveground biomass (dt FM/ha)—for example,

at OP 2 (Fertilization 1). This measurement for winter wheat was usually between 913.18 and 2,744.6 in weather/production years that resulted in a yield�

sgy of 69.17 dt/ha. Thus, the observable biomass during a given year between these two values can still be considered as risk-neutral fluctuation or as not

affecting downside risk in terms of economic loss expressed in yield levels.

https://doi.org/10.1371/journal.pone.0181954.t002
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optimal state. The upper boundaries of the acceptance ranges, therefore, can be more than

twice the value of the lower boundary, especially in the earlier observation point ranges. The

later the observation point is, the closer the boundary values are. After initialization, the

attained acceptance ranges with farmers’ revealed preferences for yield fluctuations are used to

test and exemplify the approach. Thus, in the next section, the knowledge pool based on past

climatic impacts is used to test how changes in future climatic conditions can be perceived by

the model farmer using the ARS methodology.

Application to future climate. Future simulations for winter wheat production in the

Kraichgau were performed using the coupled FARMACTOR-EXPERT-N models forced with simu-

lated future climate in the form of daily weather parameters in ten realizations (25002–00 and

25002–99) of WETTREG 2010 future scenarios [57], corresponding to the German Weather

Service [58] weather station at Eppingen (Kraichgau study site) and based on the IPCC sce-

nario A1B [59]. For each WETTREG future realization, the model simulated a 20-year (2014–

2034) time series for winter wheat with only one standard production procedure each year on

a representative field [32]. FARMACTOR’s management routine was not manipulated in this

case. These ten time series, each with 20 years of future growth processes, were then used to

comprehensively test the methodological approach. All growth processes were evaluated with

the ARS mechanism by comparing them to their acceptance range at each observation point

(OP 0–7) to conduct a comparative analysis and investigate the performance of the proposed

approach under diverse climatic conditions.

As described above, observations outside the acceptance ranges are assigned a binary utility

value of 1 (0 otherwise). At the end of each year, from evaluating all observations made during

the production season, the ARS is compiled. With 10 observation parameters and 7 observa-

tion points (OP 1 to OP 7) plus OP 0 for planting, a maximum score of 71 is possible for a

year. OP 0 is related to the desirability of a given DOY for planting. If its relative frequency of

yields� sgy is less than 0.5, that is to say, if more than half of the time the harvest is disappoint-

ing, this observation is assigned a value of 1. Thus, if planting is forced to a day (through

weather-dependent trigger conditions) that has a relative frequency value less than 0.5, then

OP 0 is assigned a value of 1 for that production year.

Results of future climate simulations. The results of this investigation are displayed in a

comparative static context in Table 3, in which the results are further refined into a mean-stan-

dard deviation approach.

The mean-standard deviation analysis provides an overview of how each of the ten future

WETTREG weather realizations affects winter wheat production based on a standard production

procedure. All ten realizations were used to avoid any bias in a single realization based on their sta-

tistical nature and to examine a range of possible outcomes using the sgy approach.

Table 3. Simulated yield statistics for over 20 years, 2014–2033, using 10 WETTREG future realizations for Eppingen weather station.

WETTREG future weather realization 00 11 22 33 44 55 66 77 88 99

Mean yield (dt/ha) 74.54 68.61 70.31 68.64 72.39 72.39 65.18 65.15 71.41 61.77

Standard deviation (dt/ha) 3.50 16.26 16.97 16.44 4.72 4.72 21.97 21.97 5.57 26.25

Skewness 0.31 -4.07 -3.88 -3.90 -1.94 -1.94 -2.76 -2.76 0.40 -2.04

Variation coefficient 0.05 0.24 0.24 0.24 0.07 0.07 0.34 0.34 0.08 0.43

Rel. Frequency y � sgy 0.95 0.7 0.75 0.7 0.85 0.85 0.7 0.65 0.7 0.7

Mean ARS score 4 4.05 5 5.2 3.9 4.9 3.95 5.15 2.45 5.95

Std. dev. ARS score 3.70 3.76 4.22 4.10 3.16 4.52 4.61 4.11 2.01 7.90

Note: All results have been obtained from the FARMACTOR standard production procedure for winter wheat in Kraichgau (see [32, 38]). Source: Own

calculations.

https://doi.org/10.1371/journal.pone.0181954.t003
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At a sgy level of 69.17 dt/ha, the results for the WETTREG-forced winter wheat production in

the Kraichgau can be interpreted from a risk point of view as follows. Realizations 44 and 55

show the second lowest yield standard deviation (4.72 dt/ha, Table 3) for all future weather years.

The standard deviation of ARS scores for the same realizations is noticeably higher than its coun-

terparts. For realization 55, the standard deviation of all ARS scores is the third highest, although

the yield standard deviation is the second lowest in the mean variance comparison. The relative

frequency is also relatively favorable, at 0.85 (Table 3) for realizations 44 and 55. Thus, for 85% of

the 20-year yield time series, a yield� sgy of 69.17 dt/ha could be achieved. This finding repre-

sents favorable skewness for a decision-maker who sets his economic profitability yield threshold

at this level. However, when taking a farmer´s mid-season assessment into account, those future

production years are characterized by relatively large deviations from the modeled acceptance

ranges. This result gives an indication that farmers often experience anomalous winter wheat per-

formance sometime during the season, even in favorable years with a yield� sgy.

The additional information provided here for the analysis is that a farmer’s mid-season

observations are often ambiguous regarding what yield can be expected at a harvest [25, 45].

A different picture is drawn with realization 99. For such a projection of future climatic

conditions, a mean-variance analysis at yield level illustrates the same issue as the ARS meth-

odology, in which the highest mean of ARS scores corresponds to the highest standard devia-

tion of ARS scores. The mean yield is among the lowest, and the standard deviation is the

highest. Low yields that are traceable to a problematic climate at the 69.17 dt/ha sgy level show

how mean-variance analysis at a yield level leads to the same conclusions as the ARS method-

ology. Farmers’ knowledge of crop-response patterns to climatic influences holds true and

leads to accurate expectations regarding their yields.

The picture drawn with realization 11 in Table 3 is most interesting. The mean-variance

analysis shows a completely different picture than the ARS methodology. This realization led

to one of the highest standard deviations (16.26 dt/ha) in yields and a relatively low mean yield

(68.61 dt/ha) (Table 3), close to the average sgy level for the Kraichgau region (69.17 dt/ha,

Table 1). However, the mean ARS score is at 4.05 (Table 3), which is not among the highest

scores achieved over all future climate realizations. This finding indicates that conditions were

not unfavorable throughout the studied growing season but rather single events were responsi-

ble for the production outcomes in this time series of winter wheat yields.

Discussion

A modeling approach that can account for climatic stress that is normally hidden from eco-

nomic analysis can more thoroughly examine climatic impacts and provide more information.

The results of a first application of the ARS methodology with mid-season estimators show

generally effective outcomes. Inter-temporal observations can provide better information as to

where and how the production process is affected so that a modeled farmer can identify and

apply the appropriate risk measures. Such information is more useful in annual planning deci-

sions. ARS scores could be derived from 71 points, with an average score of less than 10

throughout the future time series for winter wheat in Kraichgau region (Table 3). This conclu-

sion suggests that using near-term climate projections of a rather statistical nature, such as

WETTREG 2010 [57], has a relatively low impact for winter wheat for a given average sgy
threshold based on the Kraichgau regional sample. Considering that the average regional sgy
threshold for this region is less than the region’s average yield (Table 1), the picture could be

drawn completely differently for any of the 13 highly sensitive farmer types found in the

empirical sample who declared their sgy threshold above 69.17 dt/ha. However, a more in-

depth analysis is left for future research applying the ARS methodology.
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ARS scores in a dynamic context

Given a series of weather years where mid-season observations appear to be poor determinants

of yield outcomes greater than the sgy, farmers gain new experience. When apparently risky

inter-temporal states lead to learning processes that change the perception of crop response to

climatic influence, the sgy approach can be used to provide the foundation of learning pro-

cesses, thus creating a useful feature for bio-economic models.

The decision-making mechanism in FARMACTOR is designed to modify annual decisions to

account for long-term trends in climate, with implied relationships between production risk

and annual weather [32].As a consequence, the observation parameter value ranges can change

over time.

How acceptance ranges can adapt. As a consequence of evaluating inter-temporal pro-

duction outcomes, the following implications are possible for the perception mechanism in the

simulation model: (1) no consequence and (2) a shift in the acceptance range. These implica-

tions can be the consequence of three possible scenarios. First, an observation value is within

the acceptance range and a yield higher than or equal to the sgy is achieved; then, the entire pro-

cess can be assessed as having gone as expected for a given parameter value. The observed value

from the now past production year is included in the distribution of observation points that

constitute the observation parameters’ acceptance ranges for the upcoming year without caus-

ing a shift of the range. Second, if an observed value is outside the acceptance range and a yield

lower than the sgy is achieved, the observation parameter range for the upcoming year is not

affected since this was an expected yield loss considering the set loss threshold (sgy). The third

consequence is that observational fluctuations lie outside the acceptance range but do not result

in negative consequences for the acceptance ranges because a yield above the sgy threshold is

achieved. In that case, the observation is collated as a non-downside-risk value for the distribu-

tion of observations for a given parameter. However, depending on the amplitude of the fluctu-

ation, a shift in the acceptance range may occur. When such outliers accumulate, they will add

to a shift in the acceptance range that changes the expected performance of a given crop in its

response to climatic (and management) influences. The larger the amplitude of the deviating

value is, the longer it will most likely remain among the outliers that are excluded during the ini-

tialization process for the acceptance ranges in the model. Many outliers over several years in a

row—again, depending on the learning mechanism—may indicate that a crop is quite difficult

to cultivate at a given location. This can occur even though the simulated farmer annually

adapts production procedures while also responding to daily environmental conditions.

Use of ARS scores for comparative analyses

Additionally, different learning patterns that assign weights to ARS scores allow the study of

the arrangement of a farmer’s crop portfolio and, thus, of land use over time. It is thus possible

to give information about the climatic influence on crop portfolio and crop sequence choices

as opposed to influences from prices and policies.

For crops that are not yet established in a region, simulation models could provide informa-

tion regarding when cultivation of a certain crop in a region may become more likely and eco-

nomically attractive. This analysis can be done by applying acceptance ranges governed by an

averaged sgy level of a comparative region to growth processes of a potential future crop in the

region of interest and under future climatic conditions.

Conclusion

This work introduces a new approach for bio-economic simulation models to integrate farmer

perceptions of climatic changes through an economic downside-risk evaluation of plant
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performance at various stages of production. The approach operates alongside the modeling of

the production process, which underlies an optimization mechanism that governs the immedi-

ate decision-making process.

Developed at the field level for a small-scale study region, this methodology was designed to

be customized for any site to study the perception processes of farmers. It can be applied with

relatively little and cost-efficient empirical effort once a bio-economic simulation model has

been calibrated for a study site. The methodology may find its way into other regions, for

which bio-economic simulation models are used for analysis of strategic decision-making pro-

cesses in crop production. The above approach may be particularly interesting for farming

regions where major components of the crop yield are not brought to market or where market

prices are not available; an economic risk analysis regarding climate change should still be con-

ducted. The sgy approach does not require price modeling for an economic risk analysis

because the economic valuation of profitability is embedded and expressed in yield or other

biophysical terms.

Recommendations

In the current version of the FARMACTOR model, the field allocation process is performed

according to a predefined crop rotation that is based on a Markov sequence, relying on empiri-

cal observations of the past [60]. What occurs during the production cycle is no longer relevant

at the time of the simulated field-use planning. Economic considerations are not incorporated

in the field allocation process. The ARS score is the missing link to be used at the time of plan-

ning [61] for climate change impact analysis.

ARS scores in that context should be used as a constraint. The constraint should be

modeled as follows:

X

f

X

c

ARSc � ARS0;c ¼
dARSc ð3Þ

were f = field and c = crop;

ARS0,c = the reference ARS score for the current year (the latest year for which observations

are available) of all fields that have been allocated with a crop c [60].

dARSc = the expected ARS score for an activity (i.e., crop) as explained in the following. The

ARS score for an activity should not be lower than the expected ARS score for an activity. Oth-

erwise, certain fields should no longer be planted with a certain crop, or management options

need to be evaluated in the model, which would provide an improvement in the production

process.

The expected ARS score ( dARSc;t ) of crop c in year t is the average ARS score of past produc-

tion processes for a certain crop in a farmer’s fields. How the average ARS score is calculated is

subject to how learning is modeled and thus past observations are weighted, a topic left for

future research. Learning depends on the weighting of past observations and if-then rules [24],

which lead to consequences for the farm agent´s decision-making in bio-economic models.

Overall, the sgy approach is designed to provide a more comprehensive understanding of

the drivers of farm planning decisions by explicitly modeling how farmers monitor produc-

tion. Only when such underlying processes are better represented in more up-scaled bio-eco-

nomic simulation models [62, 63] can deterministic statements about the climatic impact on

agricultural production and land-use decisions be improved, as stated by White et al. [16].

Future research should aim to attach different valuations and learning patterns to this sug-

gested mechanism and thus gain a more realistic and less assumption-driven understanding of
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farmers’ climate change perceptions and adaptation responses in their land-use decisions [62].

This approach may even assist in diminishing over- and underestimations of the rate of adap-

tation, which many models show through strong behavioral assumptions despite the high

degree of complexity and level of detail of the approach [13–16, 33].
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Bio-economic simulation models are widely established in Farming Systems Research; they are used to
investigate complex real-world phenomena in agricultural production. Such simulation models are lar-
gely designed and created by scientists from different disciplines who are not modeling experts. Thus,
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ground. IT knowledge is essential for the maintenance, development, and applicability of simulation
models. Often, bio-economic simulation models require a fair amount of time to ensure basic function-
ality before specific research questions can be answered. Researchers who contribute to the creation of
a bio-economic simulation model often spend the majority of their time ensuring basic model function-
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1. Introduction

Farming Systems Research places the farm at the center, and
everything in the analysis emanates from it. Farming Systems
Research was revolutionized as a result of technical progress, and
complex integrated bio-economic simulation models (Janssen
and van Ittersum, 2007; Feola et al., 2012) were established as
analysis tools. Definitions of integrated bio-economic simulation
models are not precise, as this type of model is for the most part
unique and resists labelling. Following Janssen and van Ittersum
(2007) and Oriade and Dillon (1997), we define an integrated
bio-economic simulation model as a model that has components,
either parametrical or sub-model types, that are able to describe
farmers’ management processes according to the chosen context
and scale or level of model resolution through computer simula-
tion. An integrated model subsumes interdisciplinary modeling
approaches (Dabbert et al., 1999; Oriade and Dillon, 1997;
Rotmans and van Asselt, 1996), which can be of a bio-physical,
(socio-) economic or institutional nature. Bio-economic simulation
models are used in studies of system analysis or impact assessment
(Thornton and Herrero, 2001). They are either used by scientists
only or serve as a decision support system where scientists in
cooperation with stakeholders (farmers for example) try to achieve
decision support by modeling the consequences of decisions
(Schreinemachers and Berger, 2011; Troost and Berger, 2014;
Keating and McCown, 2001). This is a way to gain an understand-
ing of complex real-world phenomena and systems (van Ittersum
et al., 2008; Rotmans and van Asselt, 1996), which for the most
part cannot be investigated in a laboratory (Schreinemachers and
Berger, 2011) or can otherwise be achieved solely through long
and costly experiments (Keating and McCown, 2001). ‘‘The neces-
sity of a bio-economic model and integrated approaches comes
from the fact that both systems (biology and economy) are interre-
lated (Prellezo et al., 2012, p. 423).”

Farming Systems Research with (integrated) bio-economic sim-
ulation models incorporates multiple research fields (Rotmans and
van Asselt, 1996), from plant modeling to meteorology and the
economic and social sciences. Covering so many disciplines is chal-
lenging when recruiting personnel (Dabbert et al., 1999). It is
nearly impossible to find people who are experts in all of the
required research fields. A specialist in a field of research is neces-
sary to be able to produce results that are publishable in a scientific
journal. The fact that results should be obtained via bio-economic
modeling requires a commitment to interdisciplinary thinking and
a willingness to gain skills that are specific or elementary to a dis-
cipline outside one’s scientific expertise (Nicolson et al., 2002). As
simulation models are computer based, basic knowledge of com-
putational rules is essential. A successful simulation model
depends on the application of rules that were established in the
field of Information Technology. These rules relate to the establish-
ment, documentation, maintenance, and application of simulation
models.

The concept of using simulation models as a research tool dates
back to the mid-sixties (Dillon et al., 1991). Tremendous techno-
logical progress has occurred since that time. However, the estab-
lishment of such a model is still a considerable undertaking that
must not be underestimated (Fall and Fall, 2001). It is astonishing
how many new models were developed rather than using estab-
lished models and expanding or customizing them as Dillon et al.
(1991) projected. Many of these modeling efforts are forgotten
once there is no more funding or a specific research question is
answered (van Ittersum et al., 2008; Janssen and van Ittersum,
2007). ‘‘A common problem with many models is that they are
large, complicated, and poorly documented ‘‘black boxes”, and con-
sequently few if any researcher beyond the developers are able to
use them (Antle and Stoorvogel, 2006, p. 41).” This is also a critical
point with regard to replicability of results (Fall and Fall, 2001).
Replicability of results, a fundamental aspect of the scientific
method, depends heavily on compliance with software design
principles in this context (Keating and McCown, 2001).

Models will only be of use for other scientists if their infrastruc-
ture offers a good basis for an efficient customization process. Most
features that support user-friendliness and model flexibility
require a great deal of work, which is seldom part of the research
proposal (Holzworth et al., 2014) and does not necessarily lead
to scientific or publishable results. Greater user-friendliness and
flexibility are the result of high-quality software configuration
management and an efficient documentation process. Knowledge
about promoting these features in scientific software is gained
from the development process. Preventing access to such knowl-
edge can lead ‘‘to premature releases of science with users apply-
ing incomplete models to real world scenarios, something that
risks incorrect analysis (Holzworth et al., 2014, p. 344)”.

The crop growth modeler community (both bio-economic sim-
ulation models and stand-alone model frameworks) has already
addressed this issue. Authors such as Porter et al. (1999) suggested
that there is an increased need for research on approaches that
support more effective model development as well as a documen-
tation process.

We draw on their propositions when formulating the objective
of this paper, for example, providing recommendations that are
intended to support a more efficient development of bio-
economic simulation models at all levels of complexity, thus mak-
ing them attractive for re-use. There is certainly no standard or
established methodology for formulating such recommendations.
We use our own experience from active participation in such inter-
disciplinary modeling projects as the basis for an integrative liter-
ature review (Pautasso, 2013) to create this piece of inductive
research. We found further support for our objectives in papers
by Janssen and van Ittersum (2007), Nicolson et al. (2002),
Keating and McCown (2001), and Dillon et al. (1991), which are
in parts literature reviews themselves. Unlike these authors, we
place greater emphasis on the practical, technical aspects of the
software engineering process. By doing so, we aim to call attention
to this issue among non IT-trained scientists who intend to build
models for Farming Systems Research as well as to reviewers of
these works. Given our limited experience, our recommendations
are to be tested in terms of their usefulness to others.

The remainder of this paper is organized as follows. After clas-
sification of bio-economic simulation models according to their
level of integration, we start by answering how such models
should be designed. Then, we show how model improvements or
developments at different stages should be managed. We further
focus on the importance of testing. We provide a best evidence
review of successful models that survived their initial stage and
note why they are relevant for re-use. Finally, we explain why IT
specialists should be hired to assist with model development and
give a short list of mandatory recommendations for future
modelers.

1.1. A classification

Simulation models come in all degrees of complexity, depend-
ing on the model focus. The implementation of one of the large
model frameworks is determined based on research context
(scope), expertise, time and financial constraints (Dillon et al.,
1991). Often, data availability retards/hinders the generation of a
solution by means of a complex bio-economic simulation model.
In such cases, sub-models of large modeling frameworks are
loosely coupled (Antle et al., 2001) with the parametrical function,
where simulation output is used in the parametrical function. This
is even more likely when the construct is only a means to investi-



Table 1
Concepts of model integration and their levels.

Levels of Integration
(Crissman et al., 1998)

Level of Integration (Antle
et al., 2001)

General Categorization
(Brown, 2000)

Concepts of Model Integration (Brown, 2000; Crissman et al., 1998)

Depth of integration increases
Level 1 Loosely coupled One result as input for other

model
� Independent simulation of economic and bio-physical models and
subsequent combination of outputs

Level 2 Close coupled One result influences the other
result

� Output of economic model is used as input for bio-physical compo-
nent and vice versa
� No feedback between bio-physical and economic components

Level 3 Fully coupled Includes feedback processes,
dynamic models

� Joint simulation of economic and bio-physical component
� Dynamic feedback (over subsequent periods) from bio-physical to
economic component
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gate a detail or is only one part of a research question rather than
being another part of the overall result of the research study.

Model systems that are able to incorporate system dynamics
are the most complex (Antle et al., in press; Antle and
Stoorvogel, 2006). Such models are able to explicitly incorporate
time and investigate results as well as all aspects that are neces-
sary to achieve the result. In addition, they often pursue a positivis-
tic approach that describes how a decision maker achieves his or
her decision rules while also investigating the underlying mecha-
nisms of a decision-making process (Feola et al., 2012). Due dili-
gence with regard to rules of software integration management
increases with the level of integration largely because interdepen-
dencies between model components and model complexity
increases.

Table 1 gives an overview of how bio-economic simulation
models can be categorized according to level of integration.
2. Recommendations for model system design

Solving research questions by means of an (integrated) bio-
economic simulation model requires a deep understanding of the
system components and how they are linked (Herrero et al.,
1999). It is left to the modeler to determine how the components
are linked and how the decision-making process is set up. With
regard to how problems can be investigated, many (integrated)
bio-economic simulation models are highly flexible; nevertheless,
it is most likely that a model that fits every purpose is not available
(van Ittersum et al., 2008). Either a custom design has to be devel-
oped from scratch, or if a prototype/framework exists, it has to be
adjusted to generate results that answer a specific research ques-
tion. Once the decision has been made to create an integrated
bio-economic simulation model, there are several important points
that must be taken into account to achieve easier re-use of model
designs and to avoid a failed modeling effort.
2.1. Modeling objective

At the beginning of each modeling project, the scientific scope
has to be communicated to each party (Dabbert et al., 1999). What
is the goal of the modeling exercise? What is the modeling objec-
tive (Meynard et al., 2012)? What is the purpose of the research?
Further, it should be certain that there is a common understanding
of concepts and that everyone involved has the same understand-
ing of key information and functionality of the simulation model at
each stage of development (Nicolson et al., 2002).

One option to achieve a coherent model design is noted by Antle
et al. (2015) in the AgMIP approach. Key system components are
identified and characterized by the development of a representa-
tive system diagram or ‘‘cartoons”. Meynard et al. (2012) refer to
Le Masson et al. (2006) to describe additional ways to design a
farming system. First, a rule-based design is described, and then
an innovative design is presented. While the rule-based design
builds on existing products, the innovative design makes it possi-
ble to explore new dimensions in modeling.

2.2. Model system design and documentation during development

Each model (framework) has a basic or core design that evolves
with model development. It is created by the simulation model
creator and updated by subsequent developers. Design relates to
the technical structure of a model as well as the content structure.
A structured design facilitates an overall understanding of the
model (framework). Even if the model is at the conceptual stage,
a documented model design in the form of a preliminary draft is
useful for current users (Balzert, 2001).

A model consists of the overall model structure and has an inner
core that consists of several sub-models. This is the basis of the
modular approach, which is supported and promoted by many
experienced modelers (Holzworth et al., 2014; Janssen and van
Ittersum, 2007; Porter et al., 1999). It has the advantage that each
part can be improved, developed and worked on separately (Porter
et al., 1999).

‘‘Developers and users of simulation models are typically differ-
ent (especially in the case of agricultural economic applications)
because of the expertise needed to develop such models (Dillon
et al., 1991, p. 214).” However, there are cases where this separa-
tion is not given.

Ideally, a modeler is responsible for the overall model, which
represents, for example, a farming system. That person does not
have to be an expert in one of the sub-model types but must
understand the interaction of sub-models and take control of the
overall structure based on the model (framework). Sub-models,
like plant growth models, are designed by specialists for a specific
part of a simulation model. Before a sub-model can be designed,
modelers gather ideas about how the overall farming system
design should look and determine the functionality and resolution
of the model. Gathering ideas and structuring them according to
the overall model design leads to groups of ideas that have the
closest connection (Balzert, 2001). These groups are the basis for
a sub-model.

Once a model is built, it can be transformed into actual code, as
the scheme in Fig. 1 attempts to display.

A good model structure is the best foundation for a sound pro-
gramming code structure, as shown by State II in Fig. 1.

Most often, budget constraints limit the number of participating
modelers, or the modelers are scientists who focus on a particular
research question that is not necessarily model related. To be able
to participate in sub-model development, a significant amount of
time is required to familiarize oneself with model design. Thus,
the content driven scientist must study the basic principles of pro-
gramming model design. As a consequence, this person can never
be as experienced as an IT-trained expert, which may have a neg-
ative impact on the quality of the overall model (Dillon et al.,



Fig. 1. Model design – target (State II) vs. non-ideal state (State I). Source: Own depiction based on Balzert (2001) and Arthur (1988).

32 E. Reinmuth, S. Dabbert / Computers and Electronics in Agriculture 138 (2017) 29–38
1991). Consequently, a good model structure is nonexistent, and
State I (Fig. 1) is the actual state, which is the result of a missing
structuring process. All ideas are translated unfiltered into code.
As a result, so-called anti-patterns or ‘‘spaghetti code” can be found
in the programming code, or model conjunctions are not thought
through.

Spaghetti code can have several negative consequences for
model maintenance. Errors are more likely, and it may take a sig-
nificant amount of time to find the source of an error. Further,
the execution time of the code is slowed down as the code is less
efficiently structured; this increases with the size or resolution of
the simulation model.
2.2.1. Common terminology
A common terminology helps to avoid misunderstandings.

Communication among modelers, who are specialists from differ-
ent scientific fields, can be challenging (Farrell et al., 2013;
Nicolson et al., 2002). Every modeler obtains his own understand-
ing while working with the model and applies his discipline-
specific terminology. When communicating with other modelers,
it is essential to gain a common understanding and define certain
terms. This is similar to creating a ‘‘corporate” language (Dabbert
et al., 1999). An incorrect understanding of model terminology
may lead to an incorrect use of the model. Such model-related ter-
minology is equivalent to the provision of appropriate tools for all
specialists.

However, in addition to a common understanding is an under-
standing of the model system design. A sound model design offers
two advantages; first, it provides a benchmark against which
everyone can test their contributions and expectations, whether
technical or content related. Second, the overall goal is to achieve
a sound software infrastructure, which results from the aforemen-
tioned. The better the software infrastructure, the better is the
reusability of the model or model components in different con-
texts. Furthermore, it supports the ability to link other model com-
ponents to the basic components of the model (framework) (van
Ittersum et al., 2008).

2.2.2. Model integration
Once a model design is established, the actual work of program-

ming and assembling model components begins. One should start
with the base of the model (which, in a farming system, is most
likely the farm), as everything else is linked to it. Other sub-
models should be added only when the farm, as the base sub-
model, is fully functioning. Initially, other sub-components should
be kept as abstract as possible. In this context, abstraction is
related to the level of detail with which the model entity is
described (Prellezo et al., 2012).

The number and type of fields to be modeled may remain unde-
cided. A field is an abstract entity with abstract characteristics,
though it can later become a more specific entity, such as a field
becoming a wheat field with certain seeds, fertilizer and activities.

Another critical design decision that must be made at this stage
is how to best integrate the economic and bio-physical dimensions
in such a model. To account for feedback processes in a Level 3
model (Table 1), the economic component must use measures con-
sistent with those used in the bio-physical model. In particular,
when representing technology, it is not possible to achieve a sound
integration if a dual approach (through costs) is applied, as is the
case in many economic models (Flichman and Allen, 2014). The
influencing factors that determine the units of shared measures
between the economic and bio-physical models include the tem-
poral resolution, the theoretical approach behind the economic
model and the resolution of available data.

There are two ways to couple the economic and bio-physical
model components to achieve complete integration (see Fig. 2).

2.2.3. Examples for coupling via exchange of simulation output
The simulation results can be used in one of two ways: (a) They

are linked via a call-up mechanism to trigger dynamic adaptation
of daily crop management decisions. The overall results from the



Fig. 2. Examples for the integration of economic and bio-physical models to simulate feedback.
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Fig. 3. Issues of sub-model development with missing structure at superordinate level. Source: Own depiction.
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management routine are evaluated from an economic perspective
at the point of planning and feedback to the crop management
module (Aurbacher et al., 2013). Alternatively, (b) simulation
results are used to define states of selected variables to be used
as engineering coefficients in a production function, as in the
meta-modeling approach of Belhouchette et al. (2012).

2.2.4. Coupling via embedding the bio-physical model in the code
In the case of Holden et al. (2005), the bio-physical dimension is

represented by modeling the yield as a function of select variables,
such as the soil type or soil depth.

The yield is used as the reference value to benchmark changes
on both the economic consideration side and the production side
to analyze the effects of conservation technology over time.

When the bio-economic model is included in the code, the com-
patibility of the economic model code with the code of the bio-
physical model should be evaluated beforehand, and the way that
model calibration influences the progress of development at each
stage should also be considered. Each coupling approach has its
own merits. Coupling via exchange of simulation output allows
for an independent development of each sub model by specialized
modelers. If such specialists are not part of the team or data for cal-
ibrating a stand-alone bio-physical model are not available and
given it serves the overall modeling objectives, embedding the
bio-physical model in the code can be an efficient way to achieve
complete integration.

For the overall model framework, Schreinemachers and Berger
(2011) recommend a case-by-case development whose steps fol-
low a particular research question. Such a procedure may be most
convenient for scientific models, but there are pitfalls in case-by-
case development that should be avoided.

2.2.5. What happens when step 2 is forced to come before step 1?
Depending on the availability of experts, a model feature

attached to a lower level of abstraction (scheduled for a later stage)
may be implemented before the basic model is fully employed. The
problems that can occur in such a situation are demonstrated in
the example ‘‘Implementation of Risk Behavior”.

Risk behavior is most often modeled by a sub-model modeler
who is an expert in risk analysis. Risk behavior is a feature that
is not part of the basic functionality; it is an add-on analysis tool.
An expert for such a specific part of a model may join the team
later in the process. Possible consequences are displayed in Fig. 3
for a model where a) State II (see Fig. 1) is not achieved and b)
the overall model is not yet fully employed and only sub-
components are functioning; the functionality for risk behavior
shall be implemented at this stage.

Risk behavior in principle can be implemented at different
levels of a farming system. Typically, it is implemented at the high-
est level, which is the farm, as displayed in Fig. 3; this triggers com-
ponents throughout the sub-levels with regard to risk. In this
example, the implementation takes place at an intermediate model
development stage. It is not possible to implement risk behavior
where it was initially intended to occur. Thus, it may have to be
implemented in a different part of the model so that the hired
expert can be on time and achieve usable results. Nevertheless,
developers creating the sub-model for risk cannot ignore the final
state of the simulation model. Here, the importance of a sound
structure is evident. The risk expert has to change his initial plans
and create a new implementation. A poor structure complicates
the understanding of how and where this behavioral aspect is
appropriately implemented. In addition, comprehensive documen-
tation is the foundation of a successful model.
2.3. Documentation

White et al. (2011) and Antle and Stoorvogel (2006) criticized
the lack of transparency regarding how results are obtained by
simulation models. They found that almost all research papers fail
to provide full documentation on how outputs were actually



Fig. 4. Documentation life cycle management. Source: Own depiction based on Balzert (2001) and Arthur (1988).
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achieved. Only a model with proper documentation meets scien-
tific standards, in particular for the reproduction of results (Antle
et al., 2015; Nicolson et al., 2002).

Furthermore, documentation supports the scientific practice of
revision and change. It is an ongoing task that must be performed
by all model developers. With proper documentation, changes can
be reversed, thought processes are reproducible, and errors may be
avoided.

Fig. 4 gives an overview of how documentation should evolve
over the life cycle of a simulation model.

Once an idea has been transformed into a model and translated
into code, a new chapter of the life cycle of a simulation model
begins.

Certain key information must be part of each (intermediate)
documentation procedure regarding changes to any part of the
model.

– Who is affected by the changes?
– Is it a fundamental change in the model or only an additional
feature of the model?

– What part of the model is affected and how? A functional graph
may be very helpful for everyone involved.

– If settings are affected, how are they affected? Do configuration
files have to be set up differently? If yes, how?

– Is the data base or its structure affected? If so, how and is it nec-
essary to update the data base?

– Does it change model behavior? If so, where and how?
– Can errors occur and what are possible causes for them? How
can they be solved?

Whatever the case, documentation must help all users – regard-
less of the level of familiarity with the model – become acquainted
with innovations in a reasonable amount of time at any stage of
model development.

Once everything is written down, there is a structured way of
making information available to others. This can be done via ver-
sion management. One of the most important aspects of this form
of management is the ability to use a certain development stage as
a functioning model version, while those who develop the model
structure can operate with their ‘‘own versions”.
2.4. Version management via SVN

Ideas, updates and model versions are usually stored at a single
location that serves as a version control center. Here, access to all
files and versions is coordinated. The location where all versions
are saved is called a repository. It is recommended that the repos-
itory be placed on a server that is accessible by anyone who needs
to work with a certain version of the model. A popular form of ver-
sion control is SVN, which stands for Subversion (Collins-Sussman
et al., 2005). SVN systematics makes it possible to manage versions
and developments of single parts of the program. It structures the
versions of a model that are usually stored on a server. SVN follows
a tree systematic (Collins-Sussman et al., 2005). The main branch
contains the latest version of the software. Side branches are usu-
ally used for bug fixing or specific developments that are scheduled
to be tested. These ideas are typically tested separately in order not
to compromise the main program, as it may remain an idea and
only be incorporated into the main program after sufficient testing.
Branches are there for side developments, like special features of a
software that are not necessary to operate the main system but can
be useful when exploring specific problems (Collins-Sussman et al.,
2005). The SVN systematic can also be used to manage updating
processes. Updating processes are intended to provide end-users
or other modelers with new versions of the software. The sec-
ondary effect of the updating process is the documentation of all
stages of development. Nevertheless, it must be noted that the
updating process is a major source of error. Users who are not
modelers take the new version from the repository without having
the option to check for the correctness or completeness of the con-
tent. What may be forgotten is that not all changes can be easily
recognized via the model output. Model misbehavior may occur
despite the fact that a user was using the new version of the soft-
ware correctly. Thus, a fundamental part of model development is
testing by developers before a new model version can be provided
to other users.
2.5. Testing

Accadia et al. (2013) defined three types of tests. A Unit Test is
performed when code developers change a section of the code. This
is a rather basic test that checks parts of the software code. The
Integration Test accounts for changes in multiple code sections
that have passed the Unit Test successfully and are now integrated
into the software. This is the last test before the whole framework
is tested in the System Test.

During model construction, there are certain stages when
model testing is strongly recommended. With a State II design as
displayed in Fig. 1, testing is usually conducted after a sub-model
has been implemented or an implemented sub-model has been
extended.

Testing is a plausibility check (Balzert, 2001). This procedure
requires the current version of the overall model to be rebuilt from
the beginning, as would be done by an ‘‘external” model user who
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installs this simulation model for the first time. If any part mal-
functions, this part must be revised immediately before any other
extension is implemented. Meanwhile, everyone else who partici-
pates in the development of a model or uses interim versions has
to operate with the ‘‘old” but fully functioning version.

2.5.1. How should testing be conducted?
Preparation: The device used for testing must be free of any part

of the program to be tested. Ideally, one uses a different computer
than the one the program has been developed with. If this is not
possible, the complete program has to be deleted from the com-
puter with which it will be tested, including any supporting soft-
ware or programs that are necessary to ensure software
operability. Testing is a strong deterministic procedure (Balzert,
2001). Every outcome of a test has to be defined in detail before
the procedure begins. Tests must be repeatable, always giving back
the same predefined result at a given parameterization (Accadia
et al., 2013).

If a modeling framework is designed to be operable in different
hardware environments and thus transportable, testing must be
extended to include issues other than the code. The whole testing
procedure needs to be conducted with different compilers and
computers (Dillon et al., 1991). If model improvements are tested
successfully, they can be released to all participating parties in a
new model version. Release documentation is recommended in
order for all participating units to be able to update the old version
and become familiar with the new version (Troost and Berger,
2014). It is strongly recommended that each modeler creates doc-
umentation according to his or her own view of the model as well
as how version updates affect his or her model usage, in particular
with regard to errors.

2.6. Documentation of errors

An often neglected aspect of documentation for scientific mod-
els is the importance of sources of error. It is also important to
illustrate how errors have been fixed and can be avoided in the
future.

Errors may be of diverse origin, which are not obvious to every
user. Potential errors are typically documented in the code, so-
called run-time errors; they are presented in the console with
which the program is operated. However, there are errors that
are not included in the code; such errors are difficult to find, even
for experienced modelers.

Possible reasons for errors are the following:

– misapplication;
– misbehavior of model components due to incorrect
parameterization;

– errors caused by incorrect model settings in general, for exam-
ple, missing data in the data base.

2.7. Misapplication

Misapplication of a model can have many sources. One is the
wrong combination of settings in the initialization file. Settings
are commands with which a program can be operated.

Depending on the quality of a software, the initialization set-
tings for a model run can be set in one file (van Ittersum et al.,
2008) or may have to be set in different files. The worst case occurs
if settings are hidden somewhere within thousands of lines of code.
This is called hard-coded settings, which means that each time this
part of the model has to function differently, it cannot be triggered
by a different command in the initialization file; the setting has to
be changed directly in that part of the source code (Dillon et al.,
1991). In working versions, hard-coded parameter settings may
not be the exception but the rule, as this can be an efficient way
to test ideas for new features. However, once these features
become part of the actual model, settings should be moved to a
single initialization file. If a modeler decides to use a hard-coded
setting, there are two important points to be considered. First, it
has to be made explicit in the documentation where these settings
are hidden in the code. Second, this part of the code should receive
special attention when new versions are created and all code is
compiled.

In commercial software packages, settings are often provided in
the form of a drop down menu with instructions describing which
settings are necessary for the type of model run scenario. This often
is not the case for scientific software that is under development. It
is thus necessary to provide target users with information about
the settings and combinations of settings that are required for a
certain output.

Settings can also be summarized and provided via files. This
applies in particular for dynamic models where sub-components
can be endogenously operated by the main model. A prominent
example is settings for plant growth models, such as Crop Syst
(Stöckle et al., 2003) or Expert-N (Priesack, 2006). Such models
simulate the bio-physical processes of a plant in integrated bio-
economic simulation models (Oriade and Dillon, 1997). In Crop
Syst, simulation runs can be produced by using the simulation con-
trol file. Different types of input files that are necessary for a speci-
fic type of run are combined in this file. Users are also able to
choose whether they want to switch additional effects on or off
(Stöckle et al., 2003).

For more convenient handling of input file settings, small exe-
cutable programs can be created – so-called shared libraries (e.g.
DLL) files – that contain the correct settings to run a simulation
and that only have to be saved by the user at a predefined location.
This is highly recommended, in particular when the end-users are
scientists who are not experts in plant growth models, for example,
agricultural economists. First, finding the correct settings within a
given time is most likely not their field of expertise, and second,
this task can usually be completed during validation and calibra-
tion of the sub-model component ‘‘plant growth model” (see
Fig. 1). It is recommended that users be provided with such files
and a reference output so that they may test the file with their ver-
sion of the program.

Apart from this option, a common place for settings is a data
base.
2.8. Data base

Data bases usually store input data and simulation outputs.
They are the foundation of many successful models. Instead of ini-
tialization files, data bases offer an easy way to store initialization
settings for model run scenarios. A drawback of using them is that
settings can very easily be changed by accident. Depending on the
size of the data base, such unintended changes may not be revealed
or found very easily. Furthermore, database maintenance can be
very time consuming depending on the level of detail of the infor-
mation that is covered by the data base (Feola et al., 2012).

Another important aspect of data base content is that it is usu-
ally processed data or a unit free ‘‘version” of raw data, i.e., plain
figures. Therefore, it is mandatory at any preliminary stage that
units be defined. When information regarding units is not listed
in the column of a data base, it must either be provided in the
information box of the data base tables or in a related part of the
documentation repository. Further, the original source of the data
stored in the database that has not been created by simulation
needs to be documented. Sources should be easily accessible and
made explicit in the documentary file; a corresponding version
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number should be provided that indicates the version in which the
data are to be used.

The size and design of a database can affect the performance of
a simulation model. The more data that are stored and taken from
the data base during simulation, the more likely is the occurrence
of technical problems. This case applies in particular to users who
access data bases via a VPN (Virtual Private Network) connection. A
VPN is a secure connection that makes it possible to exchange data.
In such cases, data bases are managed from a headquarters and are
not provided for local storage. At a certain amount of data volume
exchanged during runtime, this can affect either the performance
of the simulation model, or results may require more time due to
connection problems, not to mention a loss of results.

A solution for such problems is to make the data base scheme
available by providing a so-called dump for other model users so
that the data base is set up at a different computer or location.
Dumps can be made available for the whole structure or only parts
of the data base that must be stored at different locations, and they
are useful for performing updates. Programs that can be used to
facilitate a data base dump can offer users support in creating data-
base queries that provide access to (inter-temporal) results, for
example, TOAD for SQL (www.toadworld.com), which is a freeware
software.
2.9. Successful examples of bio-economic simulation models

Over time, several models have survived the initial stages and
are available for re-use. The number of publications that emerged
from the application of these models is the best evidence of their
usefulness within the scientific community. Most of the recom-
mendations mentioned earlier are realized in successful models.
A small selection of these models are introduced below as part of
a review that includes information about their creation and what
makes them relevant to other scientists.

The Agricultural Production Systems sIMulator (APSIM) soft-
ware was developed to study the influence of climatic risks on agri-
cultural systems. Its structure is modular, with components that
represent plant, soil, and farm management. Its simulation options
make it possible to analyze long periods of time within the
research framework, thus accounting for how resource issues can
be best managed under a changing climate (Keating et al., 2003).
The APSIM Initiative offers one of the most professional managed
research frameworks available for Farming Systems Research, pro-
viding not only the software but full documentation, user tutorials
and support for users (Holzworth et al., 2014). They also support
their modelers by offering ‘‘science and software peer reviews,
automated testing, continuous integration, training users to under-
take ‘‘due diligence” (Holzworth et al., 2014, p. 344)” in order to
promote models of high quality that ensure correct analysis.

Foundation Members of the APSIM Initiative are, among others,
the State of Queensland (Department of Agriculture Fisheries and
Forestry) and The University of Queensland.

The System for Environmental and Agricultural Modelling
(SEAMLESS) is a platform that is used to study ‘‘land-bound agri-
cultural activities and their interactions with the environment,
economy and rural development” (van Ittersum et al., 2008, p.
152). The interdisciplinary and multinational modeling approach
unites more than 100 scientists. The model design for SEAMLESS
was distributed among modelers according to expertise. Two types
of modelers are distinguished: integrative modelers and domain-
specific modelers. Integrative modelers implement and run model
chains. Domain-specific modelers manage the sub-components of
the model and their source code or data (van Ittersum et al.,
2008). For SEAMLESS, interaction with users has a strong influence
on the design of the model.
OpenDanubia is an integrated simulation model that incorpo-
rates coupled sub-models under the term deep-actor to assess ‘‘fu-
ture impacts of Global Change on agriculture, industrial
production, water supply, households and tourism businesses
(http://www.glowa-danube.de/eng/opendanubia/opendanubia.
php, accessed by 2016/07/20)” (Hennicker et al., 2016; Ernst et al.,
2016). The model framework was designed for answering a wide
range of research questions. Feedback between system compo-
nents can be modeled within the framework of the model, which
offers documentation that addresses system installation as well
as a reference simulation that shows an example application of
the system. When models are coupled, it is sometimes necessary
to install additional programs or scripts to convert model lan-
guages or make them compatible with a system. For this purpose,
OpenDanubia offers suggestions on the homepage.

‘‘MPMAS, Mathematical Programming-based Multi-Agent
Systems, is a software package for simulating land use change in
agriculture and forestry. It combines economic models of farm
household decision-making with a range of biophysical models,
simulating the crop yield response to changes in the crop water
supply and changes in soil nutrients (https://mp-mas.uni-hohen-
heim.de/, accessed by 2016/20/07)”. MPMAS is a multi-agent sys-
tem model that couples physical landscape models with an
agent-based component in order to study land use decisions
(Parker et al., 2003). The outstanding feature is its ability to model
interactions between decision makers that then have an effect on
their environment. The modeling scale is highly flexible and can
be adapted to the model context (Troost and Berger, 2014).

Input files for MPMAS are MS-Excel workbooks with additional
add-ins needed for scenario set-ups. Further, a toolbox was created
that supports the creation of model inputs. It relies on a database
that stores important model inputs and outputs. In addition, as
with other software packages, MPMAS offers a user manual with
additional documentation of country-specific equations and model
parameters. Their homepage offers tutorials for sample applica-
tions (https://mp-mas.uni-hohenheim.de).

IMAGE (Integration modeling of global environmental change)
as an earth system model, is a framework that allows for ‘‘inte-
grated assessment of global sustainability issues (MNP, 2006,
p.6)”. IMAGE has evolved over a history of 36 years of development
and application with several model versions. It has an Advisory
Board that makes strategic decisions regarding model improve-
ment, enhancements and extensions. Model improvements built
on prototypes and updates are regularly published (MNP, 2006).
3. Discussion and conclusion

Agricultural scientists are often the initiators of simulation
models that aim to solve problems in Farming Systems Research
by mimicking real-world processes in the virtual world. A priority
for any scientist is therefore good representation of all relevant ele-
ments of the farming system to be investigated. This is what drives
software establishment rather than the technical side. The princi-
ples of software development, presented in the methodological
part of this article, are rules that should be mandatory for everyone
involved in software design. However, we do not claim that these
are complete, as farming systems are multifarious.

When researchers attempt to address a research question with
a new simulation model, they should think about what makes
established models so successful, and they should set themselves
the objective of achieving the same reliability with their own
design.

Some agricultural scientists may be well trained in computer
languages or principles of software design; the majority of model
designers are, however, specialists in their scientific field; they

http://www.toadworld.com
http://www.glowa-danube.de/eng/opendanubia/opendanubia.php
http://www.glowa-danube.de/eng/opendanubia/opendanubia.php
https://mp-mas.uni-hohenheim.de/
https://mp-mas.uni-hohenheim.de/
https://mp-mas.uni-hohenheim.de
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are therefore content driven (Dabbert et al., 1999). Therefore, it
should be noted that the in-depth technical knowledge of an IT
specialist cannot be easily duplicated with study, in particular in
terms of objectivity, disciplined testing and adequate documenta-
tion (Antle et al., 2015).

A lack of testing discipline can result in model users acting as
involuntary model testers. There may be models that are never
completed and end up as working versions. Whatever the case,
results must be replicable, and important elements should be
reusable.

A scientific simulation model cannot be a secret tool. The pro-
cess requires transparency. Ideas that have been translated into a
model should nourish new ideas, both technical and content
related. Otherwise, the simulation model approach as a scientific
analysis tool may lose its relevance when no improvements can
be added to the body of literature (Janssen and van Ittersum,
2007, p. 634) and many issues remain to be solved in that regard.

An IT specialist whose only task is to provide support for such
projects may be a resource for future endeavors. Such specialists
should be available at every research facility as they are able to
control the development process and offer technical support. An
additional point in that regard is that such a specialist may con-
tribute to ensuring that each participating unit is able to clearly
delineate their contribution from that of others (Dabbert et al.,
1999).

Working in the context of decision support models, Antle et al.
(in press) argue for greater emphasis on (target) user needs when
creating a new generation of models ‘‘by starting with user needs
and working back to the models (Antle et al., in press, p. 2).” This
claim fits our purpose.

Finally, each researcher who is funded has a certain time limit
within which his research is to be completed (Dillon et al., 1991)
and most often has limited resources (Holzworth et al., 2014). Most
critical is the aforementioned for projects where simulation mod-
els are built from scratch and the model is part of the overall
research output. Simulation results can then only be a preliminary
output for a significant amount of time and may be restricted for
use in technical papers only. Furthermore, the nature of software
engineering is such that a great deal of time goes into work that
is necessary but of no use for a specific research objective
(Holzworth et al., 2014; Dabbert et al., 1999). The development
of a trouble-free model forces the commitment of all parties
involved, and individual interests can easily be pushed into the
background. However, pushing individual interest into the back-
ground and committing oneself 100% to a project instead of com-
pleting individual tasks is impossible, in particular in an
academic environment (Dabbert et al., 1999). A simulation model
should be planned carefully with regard to budget, time and scope.

The points presented in the recommendation part of this article
are lessons that are provided for future modelers, as we found that
many of these critical aspects are rarely discussed from a technical
point of view. If they are discussed, it is for the most part in terms
of interdisciplinary or less practical recommendations. In our expe-
rience, these are key factors that can be decisive in the success or
failure of modeling projects. For IT specialists, they are mandatory
but not for inexperienced modelers.

The following bullet points summarize our findings. Successful
farming system model development, redesign, innovation and
application are dependent on the following:

1. Definition of a common terminology to avoid
misunderstandings.

2. A well-structured model design with agreed upon modeling
objectives.

3. Proper testing of newly implemented model system parts.
4. Comprehensive and understandable documentation. Ideally,
users should create their own documentation according to their
understanding of the model.

5. Full documentation of errors, which can occur at all stages, from
model set-up to complex cases of model usage.

6. Professionally managed version management.

Future model designers should contribute to this list to facili-
tate successful model developments.
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10 Synthesis and Outlook 

Integrated bio-economic simulation models have become an established means to 

investigate agricultural land use systems which are affected by many exogenous 

factors such as climate change (Jones et al., 2017; Flichmann et al., 2014). 

On the technical side, these simulation models mostly consist of different model 

components such as bio-physical and economic sub-models, which are integrated in 

a model framework (Jones et al., 2017; Reinmuth and Dabbert, 2017). Through an 

interplay of the model components, dynamics in decision-making and feedback 

processes can be mimicked (Aurbacher et al., 2013), which otherwise could not (or 

through costly endeavors only) possibly be investigated in the real world (Berger and 

Troost, 2014; Schreinemachers and Berger, 2011). 

Crop production is one of the most important land use components worldwide (Foley 

et al., 2005). Climatic influence represents an uncertain input factor for agricultural 

production. Crop management and, specifically, the strategic planning of crop-related 

land use are most likely to become more challenging in a future with a projected 

increase in climatic variability (IPCC, 2014)  

During production and at yield level, certain variability in a crop’s response to climatic 

influence is perceived as “business-as-usual” to a farmer. However, depending on the 

level of acceptance of variability, certain fluctuations are perceived as risks by the 

farmers because this divergence may imply a financial loss (Hardaker et al., 2004). 

Through technical developments, many aspects of the steps involved in a decision-

making process under risk can be mimicked more realistically with state-of-the-art 

dynamic integrated bio-economics simulation models.  

However, highly resolved integrated bio-economic simulation models still lack a proper 

method to operationalize risk (perception). Oftentimes, risk is not integrated but 

analyzed in a comparative static way using a simulation model output that does not 

feed back into the decision-making process of the upcoming production cycles. One 

very obvious reason lies in the nature of available statistical models for risk analyses, 

which could be implemented in simulation models.  

Although decision makers’ attitudes towards risks can be included in statistical models, 

these attitudes only refer to the result of the (agricultural) production process, although 

farmers’ assessments of the riskiness of a crop are not based solely on yields. The 

yield is only one single point at the end of a long process. A proper assessment of risk 

that integrates the assessment from process to planning requires a solution tailored to 

the nature of state-of-the-art highly resolved integrated bio-economic simulation 

models.  

The main body of work of this dissertation thus represents a newly developed 

methodology for dynamic risk assessment in agricultural planning decisions. It was 

developed using the highly resolved dynamic bio-economic farm-simulation model 

FarmActor (Aurbacher et al., 2013).  
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So-called ARS scores summarize farmers´ perceptions from the process to be used 

during planning (Reinmuth et al., 2017). This way, it is possible to operationalize 

dynamic risk assessment.  

An important side-effect of this approach is that it enables modelers to better isolate 

the climatic influence in planning decisions from other influences. This is another 

important achievement because the isolation of single effects in the decision-making 

process was found to be a challenge in many contexts of previous decision-making 

analyses (Gbetibouo, 2009; Just and Pope, 2003) and is necessary to provide the best 

basis for decision makers.  

In the following, the objectives of this dissertation are discussed critically in terms of 

achievement and further research needs. The critical analysis of the technical tool, the 

integrated bio-economic simulation model, is presented as an integrative review article 

in the last component of this cumulative dissertation. Thus, more emphasis is placed 

on the research needs that emerged during the development of the new 

methodological approach.  

 

10.1 Empirical work 

The empirical work that underlies this dissertation was part of a mail survey conducted 

by four PhD students. This method did require a limitation in the number of possible 

questions supporting the methodological task of each of the students involved.  

As presented in the third article, farmers were found to perceive a change and 

increased variability in climatic conditions. Additionally, the predictability of weather 

decreased, and consequences from these changes are expected for farmers’ 

businesses (Jänecke et al., 2016). Though methodologically correct, strong 

assumptions about the actual distribution of the variables underlie the analysis.  

The number of respondents in both study regions was low overall, which is why the 

number of observations for the regression models in the third article, for example, 

ranged from 114 to 133 cases. The predictor variables in the empirical sample are also 

very heterogeneous, which affects the underlying distributions of the models.  

This also affected the analysis of risk sensitivity types that resulted from the empirical 

work presented in the fourth article of this dissertation (Chapter 8) and discussed in 

the next chapter. 

 

10.2 Farmers’ subjective attitudes towards climate-induced variability 

As part of the farmers’ tolerance for yield variability, three points about the yield 

distribution of each of their crops were assessed. This three-point approach was used 

to investigate how farmers classify their crop distributions at their farms based on their 

personal experience. The three points assessed were the peak yield (py), the average 

yield (avy) and the sgy (Reinmuth et al., 2017).  
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This approach is based on the following assumptions: The most important is that, 

because the data were collected from a relatively small region, the overall climatic 

conditions lead to a certain achievable average output that can be used as a reference 

output for this region with which it is possible to be profitable. This output was achieved 

by calculating regional average yield for a given crop from the distribution of farmers’ 

avy (farm) for that given crop (Reinmuth et al., 2017). 

The py minus the sgy represents farmers’ absolute wta. The location of the sgy, 

whether above or below the avy of the farm, gives a first indication of farmers’ yield 

sensitivity. Benchmarking farmers’ sgy and avy against the avy of the region further 

categorizes their performance level and leads to a second indication that describes 

their sensitivity. A farmer who has an avy for a given crop that is above the avy of the 

region can be seen as relatively more successful for that given crop. If that farmer still 

places his sgy above his or her avy, he or she can be considered to be highly sensitive 

to variability in yields. This can be seen as an indication that such farmers pay more 

attention to changes in the response of their crops to exogenous influences such as 

climate (Reinmuth et al., 2017). 

Whether, how and how fast farmers adapt to climatic changes are subject to learning, 

which is not investigated in this dissertation. However, all the work done in this 

dissertation is preparatory and to be used to investigate learning and adaptation 

strategies in the future because it underlies learning processes (Baerenklau, 2005). 

Due to the low sample size, the number of highly sensitive famers was 13 for the 

Kraichgau sample (Reinmuth et al., 2017). Thus, descriptive statistics were not a 

suitable means of analysis because providing too much detail would have conflicted 

with the confidentiality agreement given to the farmers. However, there are some very 

interesting results that build the basis for further research that applies this approach in 

eliciting farmers’ attitudes towards risk in the context of climate change research. 

Among these highly sensitive farmers, farmers were found to be classified 

simultaneously as both risk prone in the context of portfolio theory (which is how they 

constitute their crop portfolio) and highly risk sensitive at the yield level. These were 

comparatively successful farmers regarding their avy level, which was significantly 

above the region’s average. Despite this result, they placed their sgy above the avy for 

a given crop at their farms. Their crop portfolios, on the other hand, consisted of very 

few crops as opposed to almost six crops on average over the whole Kraichgau 

sample. These interesting aspects require more analysis and are subjects for further 

research, especially with regard to learning behavior.  

 

10.3 Modeling risk perceptions 

The empirical results have been produced by a newly developed interdisciplinary 

methodology that was derived from a combination of established theoretical models, 

excessive studies of bio-economic simulation model approaches for assessing risk 

perception and farmers’ actual production practices. 
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Even though it was not possible to fully implement the approach in the simulation 

model, a first impression was derived. It was shown that the methodology is sensitive 

to different climatic conditions. The acceptable ranges turned out to be not very 

sensitive but captured extreme amplitudes in physical growth processes that can be 

considered risky from a farmer’s perspective. The ARS scores provide a different 

picture of the assessment of climatic influence on crops compared to a simple mean-

variance analysis (Reinmuth et al., 2017).  

 

10.4 Outlook 

The overall goal of the sub-project to which this dissertation contributed was to 

advance the FarmActor model by implementing the methodology as described in this 

section. With FarmActor being constantly under construction, this endeavor turned out 

to be more challenging than expected throughout the thesis and could not be 

completed. Thus, the outstanding integration procedure is presented here theoretically. 

Planning decisions in the FarmActor model are made once a year (July 31st), which is 

post-harvest for most crops (Aurbacher et al., 2013). The current model version of 

FarmActor uses a Markov Sequence that relies on empirical observations from the 

past (Aubacher and Dabbert, 2011). This means that the actual process of allocating 

crops in the field is independent to what occurred during production and is not coupled 

with economic considerations in the model. FarmActor operates on daily time steps 

(Aurbacher et al., 2013). This means that the majority of information produced as a 

result of extensive modeling efforts is not used (Reinmuth et al., 2017). 

The methodology behind the field allocation process was published by the creator of 

FarmActor, Joachim Aurbacher, in 2011. It is based on a linear planning approach. 

The field allocation process is triggered by the maximum entropy criterion (Aurbacher 

and Dabbert, 2011).  

The LP is disaggregated at the field level by distinguishing both activities at the field 

and farm levels as well as constraints for the two levels. This yields land-use decisions 

for specific fields. The structure of the model is as follows: 

Objective: 
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With the following symbols: 
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f field 

af activity at the field level 

ah activity at the farm level 

d factor demand (technical coefficient) 

X activity level 

G gross margin of activity 

rf constraint at the field level 

rh constraint at the farm level 

C capacity 

TG objective (total gross margin) 

Aurbacher and Dabbert (2011, p. 472). 

 

In the optimization process, the land allocation is triggered by the maximum entropy 

criterion, which is the second optimization step to achieve a unique solution. Entropy is 

a measurement of uncertainty in a probability distribution and goes back to the work on 

information theory of Shannon (1948). Shannon proposes a measure of 

1

log
n

i i

i

H p p


   for the information content of a data source, where u denotes the 

number of possible outcomes i and ip  their respective probabilities.  

The entropy H is maximal when p is evenly distributed.  

Minimum cross entropy is a generalization of maximum entropy that uses prior 

information.  

Mathematical formulation of cross entropy is: 
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  where iq   prior distribution (Golan et al., 1996, p. 11). This approach 

minimizes H and thus the difference between the unknown distribution ip  and the given 

prior distribution iq . 
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X G X    with 0TG  is the minimum gross-margin level 

(Aurbacher and Dabbert, 2011, p. 473). 

 

As one result of the methodological work in this dissertation, and in order to emphasize 

the impact of climate on the crop distribution process over the fields and thus land 

allocation, it is recommended that the ARS level for each activity be added as a further 
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constraint. This allows for an introduction of type-dependent risk considerations from 

an economic point of view to the field allocation process.  

“The constraint should be modeled as follows: 

0,af af af

f af

ARS ARS ARS    

with af = activity at field level = crop, 
0,afARS  = the ARS score of the current year (the 

latest year for which observations are available). The afARS  = the expected ARS score 

for an activity (= crop) as explained in the following. The ARS score for an activity 

should not be lower than the expected ARS score for an activity. Otherwise, certain 

fields should no longer be planted with a certain crop, or management options need to 

be evaluated in the model, which would provide an improvement in the production 

process. […] The expected ARS (
,a tARS ) of an activity   in year t  is the average ARS 

score of past production processes for a certain crop in the farmer’s fields” (Reinmuth 

et al., 2017, p 12). The average ARS is used in the formula that represents learning 

processes in the simulation model. Learning is represented by how farmers value past 

observations (Aurbacher et al., 2013). To provide an example, we display the ARS 

score as a moving average to represent a learning processes in the FarmActor model. 

0

0
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N   

    

where ARS  = the expected ARS score, and N = the number of parameters used, 

which is the number of past ARS scores.  

A second option for an implementation and thus application of ARS scores is given 

below: 

ARS scores could be implemented to trigger yield expectations, which would make the 

FarmActor model less sensitive to single extreme yields with regard to the adaptation 

of actions or inputs when using a limited number of past observations to trigger 

adaptation processes. 

Future research should use the ARS score to weight past yield observations and 

thereby help improve the learning mechanism 
0

0

0

, 1 , ,
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
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  (adapted from 

Aurbacher et al., 2013, p. 48) by attaching the corresponding ARS score to a year’s 

yield. In this way, not only is the final outcome used as a basis for expectation building 

( Ŷ ) but also is the assessment of the whole production process, which could be used 

to put yield variability into a different perspective.  

Further research is necessary to evaluate the best mechanisms to be included in the 

FarmActor model for representing more realistic learning processes about the climatic 

influences on crops and the resulting consequences for agricultural landscapes.  
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10.5 Concluding remarks 

The application of integrated bio-economic simulation models as a means and basis 

for original research is a challenge for everyone involved. On the one hand, the 

justification for the application of such models comes from the opportunity to 

investigate aspects of human behavior that cannot be represented easily in 

parametrical or statistical approaches due to the strong assumptions behind such 

methodologies (Schreinemachers and Berger, 2011). On the other hand, complex 

models require a deep understanding of their functionality (Reinmuth and Dabbert, 

2017) and demand a high level of creativity with regard to the empirical work that is 

required to validate new modeling approaches to decision making.  

There is an increased need for model developers to be very accurate regarding all 

aspects of Information Technology that affect the use, application and development of 

bio-economic simulation models (Reinmuth and Dabbert, 2017).  

Methodologically, future research must face the challenge of identifying learning types 

with regard to climatic influences, which can then be used to fully employ the risk 

perception methodology that was developed in this dissertation to be used in the 

economic component of an integrated bio-economic simulation model.  

Another question that could be answered by an implementation of this methodology is 

how risk profiles evolve over time. One influential aspect is how farmers update their 

information and form their expectations. The methodology developed within the scope 

of this dissertation provides a basis for the research on learning types, as risk attitude 

is one aspect of how people can learn and thus adapt their behavior over time 

(Baerkenklau, 2005). 

As an overall goal, ARS Scores are to be used in the integrated modeling component 

of the Research Group FOR 1695 to couple processes in the field with larger-scale 

land use models and thus will offer the opportunity to move towards the overall goal, 

which is to assess the processes and feedbacks of climate change on a regional scale. 

The goal is to provide an understanding of how agricultural landscapes evolve over 

time due to climate change. 
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11 Summary 

This cumulative dissertation was conducted under a grant from the German Research 

Foundation (DFG) for the research group FOR 1695 - “Agricultural Landscapes under 

Global Climate Change – Processes and Feedbacks on a Regional Scale”. The goal 

of the sub-project from which this dissertation stems from was to explore, extend and 

strengthen the scientific basis for learning and risk strategies and the adaptation 

behavior of farmers’ economic planning decisions in crop production under the 

influence of climate change. The integrated bioeconomic simulation model FarmActor, 

was to be used as an experimental tool to develop an interdisciplinary methodological 

approach supported by empirical work in two study regions in Southwest Germany, the 

Kraichgau and the Swabian Alb. This dissertation examines risk in the context of land 

use management and specifically crop production. Risk in this context is related to how 

outcome distributions are affected by climatic influences. Risk strategies assess these 

contributions and account for them in the resulting decisions. 

The thesis is written as a cumulative dissertation and is composed of five articles. Four 

articles have been published by peer-reviewed journals. A fifth article has been 

published as a peer-reviewed conference proceeding. The article at fifth place 

represents the results of the main focus of this dissertation as presented in the 

following. 

Available economic models assume that farmers assess climatic risks only through 

yields or costs when building their land use management risk strategy for crop 

production. However, the available methodological approaches have been criticized 

for either under- or overestimating farmers’ actual behavior. In reality, and as a basis 

for field allocation planning, farmers have additional knowledge from monitoring crop 

development throughout the whole season. Yield is actually just the last point in a long 

sequence of (economic) evaluative observations about the production process. This 

influences how farmers define not only the riskiness of a yield distribution but also its 

costs. We hypothesize that, because it is not possible to methodologically integrate 

process evaluations in economic planning decisions, models lack performance, and as 

a consequence, it is very difficult to conduct proper research on the climate’s influences 

on land use management decisions. 

In this original research, we present a newly developed downside risk measure based 

on evaluations throughout the production process that can be included in the planning 

process as an additional parameter—so-called Annual Risk Scores. A comparative 

static analysis was performed to demonstrate how ARS scores assess future climatic 

conditions in the example of winter wheat production in the Kraichgau region as 

supported by empirical data. It was shown that the mechanism is sensitive to different 

climatic conditions. Furthermore, the ARS scores provide a different picture of climatic 

influence compared to an analysis based only on yields.  

The last article presented in this dissertation represents an integrative review that 

promotes more efficient model development and the reuse of newly developed 
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methodologies in the field of integrated bio-economic simulation models. The review is 

based on lessons learned from working with the simulation model. Thus, the intended 

and outstanding full implementation of the ARS mechanism is presented in the last 

part of the synthesis, where we advise including the ARS scores as another constraint 

in the field allocation mechanisms of the FarmActor model. This is expected to improve 

the integration of both bio-physical and economic dimensions for complex integrated 

bio-economic simulation models. 
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12 Zusammenfassung 

Diese kumulative Dissertation wurde im Rahmen eines Teilprojekts der 

interdisziplinären DFG Forschergruppe FOR 1695 “Agricultural Landscapes under 

Global Climate Change – Processes and Feedbacks on a Regional Scale” 

durchgeführt. Das Ziel des Teilprojekts war, Grundlagenforschung in Bezug auf Risiko-

, Lernstrategien und sich daraus ergebendes Anpassungsverhalten für strategische 

Landnutzungsentscheidungen unter Klimaeinfluss zu erforschen. Unterstützt wurde 

die Arbeit durch eine empirische Datenerhebung in zwei Untersuchungsgebieten im 

Südwesten Deutschlands, dem Kraichgau und der Schwäbischen Alb. Diese 

Dissertation beschäftigt sich schwerpunktmäßig mit dem Thema Risiko und 

Risikostrategien in Bezug auf Landnutzungsentscheidungen, speziell in der 

Getreideproduktion.  

Die Dissertation wurde als kumulative Dissertation erstellt. Sie besteht aus fünf 

Artikeln. Vier dieser Artikel wurden in Peer-Review Zeitschriften veröffentlicht. Ein 

weiterer Artikel ist in einem Peer-Review Konferenzband erschienen. Die ersten drei 

gelisteten Artikel stellen vorbereitende Analysen dar und beschäftigen sich mit dem 

verwendeten Simulationsmodell. Der Schwerpunkt des an vierter Stelle gelisteten 

Artikels, ist gleichzeitig auch der Schwerpunkt dieser Dissertation, der nun im 

Folgenden kurz vorgestellt werden soll. 

Bestehende ökonomische Modelle zur Risikoanalyse unterstellen, dass 

landwirtschaftliche Entscheidungsträger lediglich die Endergebnisse des 

Produktionsprozesses, also die Erträge heranziehen, um ihre Risikostrategien in 

Bezug auf die Klimaeinwirkung festzulegen. Diese Ansätze werden dafür kritisiert, 

dass sie das tatsächliche Verhalten der Landwirte entweder stark über- oder 

unterschätzen. 

In der Realität und als Grundlage für die Planungsentscheidungen, steht Landwirten 

weiteres Wissen über den Klimaeinfluss auf die Getreideproduktion an einem 

bestimmten Standort zur Verfügung. Im Rahmen von sequentiell durchgeführten 

Bonituren bewerten Landwirte den Klimaeinfluss nicht nur pflanzenbaulich, sondern 

auch ökonomisch. Sie bilden Erwartungen darüber, wie die klimatischen Einflüsse das 

Erreichen eines profitablen Ertragsniveaus beeinflussen. Der Ertrag ist eigentlich nur 

der letzte Beobachtungspunkt der Boniturenabfolge. Das hierbei erworbene Wissen 

hat einen starken Einfluss darauf, wie Landwirte das tatsächliche Risiko einer 

Ertragsverteilung und die damit verbundenen Kosten bewerten. Dies führte zu 

folgender Hypothese: Ökonomische Modelle zur Bewertung des Klimaeinflusses 

bleiben hinter ihren Möglichkeiten zurück, weil es derzeit nicht möglich ist, 

ökonomische Boniturbewertungen in die strategischen Planungsentscheidungen 

einzubeziehen.  

Eine methodische Grundlage für die Entwicklung eines interdisziplinären 

Modellansatzes, bot das gekoppelte, dynamische bioökonomische Simulationsmodell 

FarmActor. Als Ergebnis präsentieren wir einen neu entwickelten Ansatz, der den 
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Einbezug von sequentiellen ökonomischen Bewertungen von Produktionsrisiken, in 

Form einer zusätzlichen Variablen, für strategische Planungsentscheidungen 

ermöglicht. Diesen Parameter haben wir ARS Score, den sogenannten 

Jahresrisikoscore, genannt. In einem ersten Anwendungsfall, im Rahmen einer 

komparativ-statischen Analyse, haben wir dargestellt, wie ARS Scores den 

zukünftigen Klimaeinfluss bewerten. Dies wurde am Beispiel für Winterweizen im 

Kraichgau durchgeführt, unter Hinzunahme von empirischen Daten aus dieser Region, 

besonders in Bezug auf die Akzeptanzbereitschaft für Schwankungen im 

Produktionsprozess, die den ARS Mechanismus steuern. Es konnte gezeigt werden, 

dass der Risikomechanismus auf verschiedene Klimaeinflüsse reagiert. Darüber 

hinaus bieten die ARS Scores zusätzliche Informationen über die risikotypenabhängig 

Einschätzung des Klimaeinflusses, der die bestehenden Analysemethoden ergänzt.  

Der an fünfter Stelle gelistete Artikel dieser Dissertation beinhaltet eine integrative 

Literaturanalyse, die sich mit der Frage beschäftigt, wie integrierte bioökonomische 

Simulationsmodelle effizienter (weiter-)entwickelt werden können und wie man 

darüber hinaus sicherstellt, dass neu entwickelte Modellierungsansätze von anderen 

Modellierern weiterverwendet werden können. Dieser Artikel baut auf unserer eigenen 

mehrjährigen Erfahrung in der Arbeit mit Simulationsmodellen in einem 

interdisziplinären Kontext auf und verbindet diese mit den relevanten Aussagen, die 

wir in der Literatur gefunden haben.  

Eine noch ausstehende vollständige Integration des neu entwickelten ARS Ansatzes, 

wird am Ende dieser Dissertation als Empfehlung vorgestellt. Wir sehen den ARS 

Score als zusätzliche Variable, die den strategischen Feldplanungsprozess in 

Landnutzungsmodellen, wie FarmActor, steuert. Wir erhoffen uns durch die 

Implementation des ARS Mechanismus, die Modellqualität zu erhöhen, weil hierdurch 

der bio-physikalische Prozess mit dem ökonomischen Planungsprozess besser 

gekoppelt werden kann.  
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