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Abstract 

In the past decades, digitalization has increasingly influenced our daily lives and habits in 

almost all areas and has even become indispensable for individuals, organizations, and 

society. The interactions between individuals and organizations have changed significantly as 

digitalization extends the boundaries of organizations to the point at which it affects 

individuals. Consequently, new research efforts and better understanding are essential to 

understand how the behavior of individuals is affected by the use of digital technologies, how 

customers’ demands change, and how the purchasing process of organizations needs to be 

adapted. 

Currently, the literature on digital transformation is mainly treating the organizational 

perspective. Nevertheless, organizations should not neglect the individual perspective as it is 

essential to understand customer needs and their consequences affected by digital 

technologies. Matt et al. (2019)1 present a holistic research framework with three research 

perspectives for the digitalization of the individual. This framework encompasses the behavior 

of individuals, the design of information systems, and the consequences that digitalization 

entails. Additionally, this research framework suggests that a digitized individual can take on 

different roles, namely the individual itself, as a social being, citizen, customer, and employee. 

The dissertation uses this framework of Matt et al. (2019)1 to structure and classify the covered 

contents and research objectives.  

The aim of this dissertation is to contribute to a comprehensive overview for organizations to 

understand their customers’ concerns regarding digital technologies, which design options 

they have to address these concerns, and how it influences their behavior to realize the 

potential of the technologies or reduce their harms. Therefore, this work applies pluralistic 

methodological approaches (qualitative methods, e.g., semi-structured interviews and 

qualitative content analysis, and quantitative methods, e.g., quantitative decision models and 

data collection from online questionnaires). With that, the dissertation provides novel insights 

for organizations to better implement digital technologies by regarding the consequences for 

individuals and the behavior of individuals. 

First, to contribute to an understanding of the negative consequences digitalization can bring 

along for individuals, part A of this dissertation presents two research articles that focus on 

the concerns of individuals. The research papers P1 and P2 show in two different domains 

 
1 Matt, C., Trenz, M., Cheung, C. M. K., & Turel, O. (2019). The digitization of the individual: Conceptual 

foundations and opportunities for research. Electronic Markets, 29(3), 315–322. 
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what individuals are concerned about when using digital technologies and what prevents 

individuals from using them. P1 focuses on those concerns that arise with the use of automated 

decision-making. P2 takes a closer look at the concerns that patients and professionals have 

about the digital transformation in healthcare. Therefore, this dissertation presents knowledge 

about the fears and concerns of the individuals have and offers starting points to develop 

responsible and transparent digital technologies that address the concerns of the individuals. 

Second, to contribute to design approaches for information systems that enable organizations 

to increase customer satisfaction with digital products and services, part B presents design 

approaches that organizations can use to address individuals’ perceived consequences and 

change their behavior using digital technologies. Both research papers in part B present 

quantitative decision models as decision support for organizations. P3 develops a quantitative 

decision model that enables organizations to make informed decisions on whether or not to 

integrate certain customers in their business processes, all while accounting for the necessary 

customer support. P4 provides a formal decision model on customer relation recovery 

investments. Thus, this dissertation offers two design approaches that provide organizations 

with information on designing technologies to serve digitized individuals and foster them 

better to make well-founded decisions when introducing digital technologies.  

Third, to contribute to the understanding of why and how individuals behave in certain ways 

and how this behavior can be influenced, Part C examines the behavior of individuals when 

using digital technologies. Research paper P5 develops a metric to better explore the privacy 

paradox - the irrational inconsistency between individuals’ actual behavior and their 

theoretical concerns about disclosing their private information when using digital 

technologies. With that, this dissertation offers a basis, especially to researchers and 

individuals, to prevent unwanted behavior when using digital technologies. 

To sum up, this dissertation contributes to scientific knowledge in research on the 

digitalization of the individual and thus addresses a subject of fundamental importance in this 

digital age. The models and approaches developed in this dissertation explore ways to improve 

conditions for the digitized individual at all three research perspectives – consequences, 

design, and behavior – with equal regard for the individual as itself and the individual as a 

customer.
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Zusammenfassung 

In den vergangenen Jahrzehnten hat die Digitalisierung zunehmend unseren Alltag und unsere 

Gewohnheiten in fast allen Bereichen des Lebens beeinflusst und ist damit für Individuen, 

Organisationen und die Gesellschaft unverzichtbar geworden. So hat sich die Beziehung 

zwischen Individuen und Organisationen erheblich verändert, da die Digitalisierung die 

Organisationsgrenzen aufweicht und ihre Kundinnen und Kunden mehr integriert. Folglich 

sind neue Forschungsanstrengungen und ein besseres Verständnis erforderlich, um 

nachvollziehen zu können, wie das Verhalten von Individuen durch den Einsatz digitaler 

Technologien beeinflusst wird, wie sich die Anforderungen von Kundinnen und Kunden 

ändern und wie der Kaufprozess von Organisationen angepasst werden muss. 

Derzeit wird in der Literatur zum Themengebiet der digitalen Transformation hauptsächlich 

die organisationale Perspektive behandelt. Nichtsdestotrotz sollten Organisationen die 

individuelle Perspektive nicht vernachlässigen. Sie ist grundlegend, um die 

Kundenbedürfnisse, die durch digitale Technologien beeinflusst werden, und deren Folgen zu 

verstehen. Matt et al. (2019)1 stellen einen ganzheitlichen Forschungsrahmen mit drei 

Forschungsperspektiven für die Digitalisierung des Individuums vor. Dieser umfasst das 

Verhalten der Individuen, die Gestaltung von Informationssystemen und die Konsequenzen, 

die die Digitalisierung für Individuen mit sich bringen kann. Zusätzlich zeigt dieser, dass ein 

digitalisiertes Individuum verschiedene Rollen einnehmen kann, wie die Rolle als Individuum 

selbst, als soziales Wesen, als Bürgerin oder Bürger, als Kundin oder Kunde und als 

Mitarbeiterin oder Mitarbeiter. Die Dissertation nutzt das Framework von Matt et al. (2019)1, 

um die Inhalte und Forschungsziele zu strukturieren und einzuordnen. 

Ziel dieser Dissertation ist es, einen Beitrag zu einem umfassenden Überblick für 

Organisationen zu leisten, um die Individuen im Zuge der Digitalisierung zu verstehen. Dabei 

wird untersucht, welche Bedenken ihre Kundinnen und Kunden in Bezug auf digitale 

Technologien haben, welche Gestaltungsmöglichkeiten sie haben, um diese Bedenken zu 

adressieren, und wie es das Verhalten von Kundinnen und Kunden beeinflusst. Dadurch 

können sie das Potenzial dieser Technologien realisieren oder ihre Schäden reduzieren. Diese 

Arbeit wendet eine Vielzahl an methodischen Ansätzen an (qualitative Methoden, z.B. 

halbstrukturierte Interviews und qualitative Inhaltsanalyse, und quantitative Methoden, z.B. 

quantitative Entscheidungsmodelle und Datenerhebung aus Online-Fragebögen). Damit 

 
1 Matt, C., Trenz, M., Cheung, C. M. K., & Turel, O. (2019). The digitization of the individual: 

Conceptual foundations and opportunities for research. Electronic Markets, 29(3), 315–322. 
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liefert die Dissertation neue Erkenntnisse für Organisationen, um digitale Technologien besser 

zu implementieren, indem sie die Konsequenzen für Individuen und das Verhalten von 

Individuen betrachtet. 

Um erstens einen Beitrag zum besseren Verständnis der negativen Folgen, die die 

Digitalisierung für den Einzelnen mit sich bringen kann, zu leisten, umfasst Teil A dieser 

Dissertation zwei Forschungsartikel, die sich mit den Bedenken des Einzelnen beschäftigen. 

Die Forschungsartikel P1 und P2 zeigen in zwei unterschiedlichen Bereichen, welche 

Bedenken Individuen bei der Nutzung digitaler Technologien haben und was Individuen 

davon abhält, diese zu nutzen. P1 konzentriert sich auf diejenigen Bedenken, die bei dem 

Einsatz automatisierter Entscheidungsfindung in Erscheinung treten können. P2 beschäftigt 

sich mit den Bedenken, die Patientinnen und Patienten sowie Fachkräfte im Hinblick auf die 

digitale Transformation im Gesundheitswesen haben. Daher präsentiert diese Dissertation 

Wissen über die Ängste und Bedenken der Individuen und bietet Ansatzpunkte, um 

verantwortungsvolle und transparente digitale Technologien zu entwickeln. 

Um zweitens einen Beitrag zu Gestaltungsansätzen für Informationssysteme zu leisten, 

werden in Teil B Gestaltungsansätze vorgestellt, mit denen Organisationen die 

wahrgenommenen Konsequenzen für Individuen adressieren und das Verhalten im Umgang 

mit digitalen Technologien ändern können. Diese ermöglichen es Organisationen die 

Kundenzufriedenheit bei der Nutzung von digitalen Produkten und Dienstleistungen zu 

erhöhen. Beide Forschungsarbeiten in Teil B stellen quantitative Entscheidungsmodelle als 

Entscheidungshilfe für Organisationen vor. P3 entwickelt ein quantitatives 

Entscheidungsmodell, das Organisationen in die Lage versetzt, fundierte Entscheidungen 

darüber zu treffen, ob bestimmte Kundinnen und Kunden in ihre Geschäftsprozesse integriert 

werden sollen oder nicht. Dabei wird die notwendige Kundenunterstützung berücksichtigt. P4 

liefert ein formales Entscheidungsmodell für Investitionen zur Rückgewinnung von 

Kundinnen und Kunden. Somit bietet diese Dissertation zwei Gestaltungsansätze, die 

Organisationen Informationen zur Gestaltung von Informationssystemen liefern und sie dabei 

unterstützen, fundierte Entscheidungen bei der Einführung digitaler Technologien zu treffen.  

Drittens, um zum Verständnis beizutragen, warum und wie sich Individuen auf bestimmte 

Weise verhalten und wie dieses Verhalten beeinflusst werden kann, wird in Teil C das 

Verhalten von Individuen bei der Nutzung digitaler Technologien untersucht. P5 entwickelt 

eine Metrik, um das Privacy-Paradoxon besser zu erforschen. Das bedeutet, die irrationale 

Abweichung zwischen dem tatsächlichen Verhalten von Individuen und ihren theoretischen 
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Bedenken bezüglich der Preisgabe ihrer privaten Informationen bei der Nutzung digitaler 

Technologien. Damit bietet diese Dissertation eine Grundlage, insbesondere für 

Forscherinnen und Forscher sowie Individuen, um unerwünschtes Verhalten bei der Nutzung 

digitaler Technologien zu verhindern. 

Zusammenfassend lässt sich sagen, dass diese Dissertation wissenschaftliche Erkenntnisse zur 

Erforschung der Digitalisierung des Individuums leistet und damit ein Thema von 

grundlegender Bedeutung im digitalen Zeitalter behandelt. Die in dieser Dissertation 

entwickelten Modelle und Ansätze zeigen Wege auf, wie die Bedingungen für das 

digitalisierte Individuum auf allen drei Forschungsperspektiven (Folgen, Gestaltung und 

Verhalten) verbessert werden können. 
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1 Introduction 

1.1 Motivation1 

For decades now, digitalization has become an ever more powerful engine of change in near 

enough all areas of our daily lives so much so that it has become virtually indispensable for 

individuals, organizations, and society at large (Gimpel & Schmied, 2019; Legner et al., 

2017). As far as organizations are concerned, increasing digitalization often affords them 

valuable advantages, yet it also poses significant challenges. Digital transformation requires 

them not only to react quickly to changing markets but also to negotiate a constant, finely 

balanced recalibration of their interactions with individuals (Legner et al., 2017; Matt et al., 

2019). What is more, digital technologies enrich the appeal of existing products and services, 

yet they also give flexible, tech-savvy organizations the precious opportunity to implement 

new and more lucrative business models (Legner et al., 2017; Matt et al., 2019). These digital 

technologies, like social media, big data, the Internet of Things, mobile computing, and cloud 

computing, are an integral part of many products and services and influence processes and 

business models in all industry sectors from autonomous cars in the automotive industry to 

robo-advisors in financial services (Legner et al., 2017). Digital transformation, then, has seen 

economies grow as digitally aware organizations have become more profitable (Hitt & 

Brynjolfsson, 1996; G. Lee et al., 2018).  

Notwithstanding these impressive upsides to digital technologies, however, their use can also 

have downsides. “Dark side of IT” has become a familiar term and research has already turned 

its focus on the negative effects of IT use (D’Arcy et al., 2014; Tarafdar et al., 2015). Kim et 

al. (2011) developed a taxonomy to deal with the malicious use of the Internet, such as spam, 

malware, hacking, or violation of digital property rights. Meanwhile, Pirkkalainen and Salo 

(2016) reviewed two decades’ worth of dark side research and identified four types of negative 

effects: technostress, information overload, IT addiction, and IT anxiety. Gimpel and Schmied 

(2019) looked at the risks and side effects of digitalization to develop a taxonomy of the 

adverse effects of IT use. In a literature study, Vial (2019) showed that value creation through 

digital transformation has positive as well as negative ramifications for organizations. These 

 
1 Since it is in the nature of a cumulative dissertation that it consists of individual research papers, this 

section as well as the last Section 5 partly comprise content taken from the research papers included in 

this thesis. To improve the readability of the text, I omit the standard labeling of these citations. 
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adverse side effects can occur at multiple levels, be it the individual, the organizational, or the 

societal. 

Digitalization affects individuals and is not limited to the organizations’ borders (Matt et al., 

2019). Individuals make their own decisions about which technologies they use, and about 

when and how they use them. In doing so, they are responsible for the costs of those 

technologies and their use (Matt et al., 2019). At the individual level, digitalization has 

become a key issue since the exponential rise of new technologies and the constant 

development of existing technologies have created heavily digitized individuals (Matt et al., 

2019). Many have become willing to adopt new digital technologies that might improve their 

private lives, and yet there is a long list of concerns due to unclear benefits and unknown risks 

(D’Arcy et al., 2014). As IT becomes ever more intelligent, networked, and ubiquitous, the 

use of digital technologies may have unexpected, unintended, and unfortunate effects for 

individuals (Gimpel & Schmied, 2019). Indeed, extensive use of digital technologies can have 

far-reaching consequences for individuals, such as technostress, privacy loss, digital overload, 

or addictive behaviors (Legner et al., 2017; Matt et al., 2019). Even if digitized individuals 

enjoy various advantages (e.g., improved health, increased motivation, or improved quality of 

life), researchers and organizations should look beyond the obvious positive effects, since the 

hazards associated with digital technologies may have a deep and long-lasting impact on 

individuals (Matt et al., 2019).  

The digitalization of the individual should also be taken into account by organizations and 

requires new research efforts as the interactions between individual customers and 

organizations have changed significantly (Matt et al., 2019). New digital technologies impact 

more than decision-making and have a massive impact on individuals’ behavior because they 

now have unprecedented information access and communication capabilities (Chanias, 2017; 

He et al., 2017; Hong & Lee, 2017; Vial, 2019). The literature to date has already provided 

first comprehensive approaches that consider the afore-mentioned organizational, individual, 

and social levels of this phenomenon, yet there remains a sizeable gap in the research on the 

dynamic process of digitalization (Majchrzak et al., 2016; Newell & Marabelli, 2015; Vial, 

2019). Matt et al. (2019) have made the valid point that we need a better understanding of 

how the behaviors of individuals are affected by digital technologies, how customers demand 

change, and how the purchasing process of organizations has to be adapted to create more 

value for organizations and individuals.  
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To be economically successful, organizations would do well to adapt their customer 

relationship management (CRM) to the changing needs of digitized individuals (Leußer et al., 

2011). This means that all corporate activities ought to be given a comprehensive, value-

oriented focus on the customer, with a view to coordinated and adequate marketing, sales and 

service concepts, and the targeted use of information technologies (Gneiser, 2010). In doing 

so, they should take into account the various phases of the customer relationship lifecycle 

(e.g., customer acquisition, customer retention, or customer recovery), different interaction 

channels (e.g., personal visits, video advisory, social networks, or automated product 

recommendations), different instruments (e.g., quality, complaint, or service management), 

and different customer segments (e.g., grouped by customer needs or technology acceptance) 

(Bruhn, 2016; Leußer et al., 2011). As digital products and services take an increasing market 

share, organizations can collect, process, and share ever more customer data (Karwatzki et al., 

2017). This individual customer data is of essential importance to make better decisions and 

achieve CRM objectives throughout the customer relationship lifecycle (Reimer & Becker, 

2015). For customers, however, this wealth of data can come at the price of unintended 

consequences (Karwatzki et al., 2017). To mitigate those, organizations cannot use customer 

data for their analytics and decision-making without fully understanding the negative as well 

as the positive consequences for customers as individuals (He et al., 2017; Matt et al., 2019). 

To be clear, the digitalization of the individual calls for a coherent and elaborate approache 

on the part of organizations and researchers in order to advance their understanding of 

digitized individuals and help to exhaust the full benefits of digitalization are available in all 

applications and contexts while the associated risks are mitigated (Matt et al., 2019). 

1.2 The roles and perspectives of individuals in a digital world 

Digitalization extends beyond the boundaries of organizations to the point at which it affects 

individuals (Matt et al., 2019). Matt et al. (2019) present a holistic research framework with 

different research perspectives on the digitalization of the individual (see Figure 1.2-1). The 

latter causes different behaviors and consequences for individuals, and as such it requires new 

views on technological design. The various research perspectives presented here offer a 

comprehensive understanding of digitized individuals, which helps organizations to analyze 

their customers as individuals. As will become evident in the following pages, the framework 

shows that a digitized individual can take on different roles, be it that of the individual itself, 

the citizen, the social being, the customer, or the employee. Using this framework, researchers 

can classify and precisely delineate this research area of the digitalization of the individual in 

a structured way. 
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Figure 1.2-1 Roles of the individual and research perspectives (Matt et al., 2019) 

 

In general, digitalization refers to the sociotechnical phenomena and processes of adopting 

and using digital technologies and media (Legner et al., 2017). In detail, digital technologies 

and media are “all the electronic devices (hardware) and applications (software) that use 

information in the form of numerical codes (usually binary codes), as well as all the media 

(i.e., means and channels of general communication in society) that are coded in formats that 

can be processed by these devices and applications” (Gimpel & Schmied, 2019, p. 4). Matt et 

al. (2019, p. 315) define the digitalization of the individual “as the proliferation of digital 

technologies in the lives of individual users.” It is worth noting that, according to this 

definition, individuals decide for themselves which technologies they use, and when and how 

they use them. Furthermore, they are responsible for the consequences of their usage (Matt et 

al., 2019). Upon deeper consideration, however, the individual acts in several simultaneous 

roles when using digital technologies, namely that of the individual itself well as that of the 

social being, the citizen, the customer, and the employee (Matt et al., 2019; Vodanovich et al., 

2010). These different “roles of the individual describe the different spheres in which the 

digitized individual acts and exerts active or passive influence“ (Matt et al., 2019, p. 317). In 

the following section, we shall go into some detail about these different roles. 

Digitalization promises several advantages for the individual as itself, such as more 

conveniences and self-determination in daily life. However, essential questions remain about 

technology adoption and usage and how individuals can manage the increasing complexity of 

their IT portfolios (Matt et al., 2019). When using digital technologies, individuals must weigh 

positive and negative consequences (Gimpel & Schmied, 2019; Matt et al., 2019). 
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Digital technologies have fundamentally changed the interaction between individuals. Ever 

since, individuals as social beings can communicate with each other via social media and 

online communication applications, regardless of time and place (Appel et al., 2020; Olsson 

et al., 2020). These new forms of communication, however, can also lead to psychological 

suffering and isolation since social media provide a platform for virtual bullying with dire 

consequences (Yao et al., 2019). Content posted on social media has a lasting legacy and can 

spread far and wide in no time (Yao et al., 2019). What is more, now that digital technologies 

are used as the standard tool for communication between individuals, more personal data is 

available online than ever before (Olsson et al., 2020). As a result, individuals face new 

challenges, first in protecting themselves against the misuse of vast amounts of personal data, 

and then in dealing with the consequences of said misuse. 

Digitalization extends its considerable advantages to the implementation of public processes. 

For example, it can help shape public opinion, increase equality, and impact education, jobs, 

and culture (Matt et al., 2019). Nevertheless, individuals as citizens are vulnerable to certain 

dangers of digitalization in the public sector. The sources of information that citizens use to 

form their opinions have changed significantly over time, as social media such as Facebook 

and Twitter have become more powerful (Mason et al., 2018). This can have far-reaching 

consequences, including the spread of fake news with its detrimental impact on democracy 

(Mason et al., 2018). 

Individuals as customers are becoming ever more important for organizations, as changing 

customer expectations are a powerful driver for digitalization (Urbach et al., 2019). 

Increasingly so, organizations are embracing new opportunities to integrate individuals into 

their business processes, which requires them to rethink their business models in a changing 

competitive environment (Legner et al., 2017). The attendant advantages for customers 

include changed buying behavior via new channels and devices, reduced purchasing behavior, 

and automatic demand analysis while executing purchases (Matt et al., 2019). Nevertheless, 

these data-intense services raise serious customer concerns that organizations must closely 

address (Karwatzki et al., 2017). 

These days, digitalization affords organizations as well as employees a wide range of novel 

opportunities, since office work can now often be done anywhere and anytime, and frequently 

on an individual’s private device (J. Lee et al., 2017; Messenger & Gschwind, 2016). 

Accordingly, individuals as employees have gained convenience, increased flexibility, and 

improved work-life balance (Messenger & Gschwind, 2016). Meanwhile, organizations have 
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begun to profit from increased productivity and reduced expenses (G. Lee et al., 2018), and 

yet the digitalization of individuals as employees can also pose challenges. For instance, many 

individuals now have greater privacy concerns about an organization taking more control over 

IT (Matt et al., 2019). What is more, the increasing fusion of private and professional lives 

can raise an individual’s stress perception, as work is no longer confined to the job 

environment (Sarker et al., 2018). 

If the advantages of digitalization are to outweigh the negative consequences for individuals 

in their various roles and organizations, it is necessary to better understand how individuals 

perceive the consequences of digital technologies, how their behavior changes when using 

them, and how the design of digital technologies ought to be adapted. What follows is an 

explanation of the three research perspectives in Figure 1.2-1. 

The first research perspective focuses on the positive and negative consequences of digital 

technologies being used in different application contexts (Matt et al., 2019). As Gimpel and 

Schmied (2019) have shown in their taxonomy, the adverse effects of IT use are many in 

number and range from shifting political control and ethical challenges to health impairment 

and privacy issues. To focus, for a moment, on the latter as a key issue of digitalization, more 

and more personal data is collected by intelligent algorithms and big data analytics, which is 

causing unintended privacy issues for individuals (Karwatzki et al., 2017; Matt et al., 2019). 

The second research perspective provides organizations with information on how to design 

technologies to better serve digitized individuals. This research perspective includes topics 

such as product and service design fit for the changing expectations of individuals as well as 

new interaction channels between individuals and organizations (Matt et al., 2019). 

The third research perspective considers the behavior of digitized individuals and “aims at an 

understanding of why and how individuals behave in certain ways and how this behavior can 

be influenced” (Matt et al., 2019, p. 317). To gain a deeper understanding of how individual 

behaviors are affected by digital technologies, researchers and organizations need to 

investigate subject areas such as technology adoption by individuals (in their role as 

individuals themselves), social interactions of individuals (in their role as social beings), and 

purchase behavior of individuals (in their role as customers) (Matt et al., 2019). 

It is worth noting that these three research perspectives should not be considered in isolation. 

Together, they form a continuous cycle in which the behaviors of individuals have certain 

consequences which in turn have implications on the design of digital products and services. 

All research perspectives thus influence one another, so the cycle can be started from all 
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perspectives. The stated purpose of all three is to work together to realize the potential of 

digitalization and minimize its negative impact on individuals and organizations (Matt et al., 

2019). 

1.3 Aim and outline of this dissertation 

At present, the literature on digital transformation is focused mainly on the organizational 

perspective (Vial, 2019). Nevertheless, organizations would do well not to neglect the 

individual perspective, since it pays great dividends to understand customer needs and how 

individuals are affected by digital technologies (Matt et al., 2019). What this calls for is a 

comprehensive understanding of how digital technologies extend beyond the boundaries of 

the organization into the individual context (Matt et al., 2019; Vial, 2019). With that in mind, 

this dissertation aims at contributing to an emerging overview for organizations to understand 

their customers’ concerns about digital technologies, which design options are available to 

organizations to address these concerns, and how it influences their behavior to realize the 

potential of digital technologies and mitigate their risks. In short, this dissertation provides 

organizations with novel insights on how to better implement digital technologies by 

regarding the individual perspective. The framework used in the following pages is that of 

Matt et al. (2019), which is designed to structure and classify the research objectives of Figure 

1.2-1. The dissertation covers the three research perspectives outlined above and focuses on 

the individuals’ roles as themselves and as customers. 

Table 1.3-1 provides an overview of the structure and the research articles included in this 

dissertation. Part A deals with the negative consequences of the digitalization for the 

individual (P1 and P2). Part B examines design approaches of technologies in organizations 

(P3 and P4). Part C analyzes the behaviors of individuals in a digital world (P5). And lastly, 

this table also presents titles, objectives, research methods, co-authors, and publication outlets 

of all research articles.  
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Table 1.3-1 Research overview of the dissertation 

Part A: Negative consequences of the digitalization for the individual 

No. Research paper title Objective Method Co-Authors 

P1  

(Ch. 2.1) 

Fear of algorithms: A synopsis of concerns 

about automated decision-making 

 

Identifying, structuring, and communicating 

individuals’ concerns about ADM for improving 

ADM-related offers and services that consider 

individuals’ perspectives 

Qualitative 

content analysis 

Bayer, Sarah; 

Schmied, Fabian 

P2 

(Ch. 2.2) 

Individual concerns associated with the digital 

transformation in healthcare: Professionals’ and 

patients’ hindrances to adopt digital healthcare 

services 

Providing a framework that explains individuals’ 

concerns and fears about the negative impacts of 

digital transformation in healthcare to anticipate, 

explain, or assess problems with the adoption of 

digital healthcare services 

Qualitative 

research using 

techniques from 

the grounded 

theory method 

Blaß, Marlene; 

Gimpel, Henner; 

Regal, Christian 

Part B: Design approaches for information systems in organizations 

No. Research paper title Objective Method Co-Authors 

P3 

(Ch. 3.1) 

Self-Services – Do not leave your customers 

alone with the technology1 

 
Published in the Proceedings of the 12th International 

Conference on Wirtschaftsinformatik, March 4-6 

2015, Osnabrück, Germany 

Developing a mathematical approach for the 

optimal customer integration in business 

processes that takes full account of the 

corresponding customer support to help the 

introduction of self-services 

Quantitative 

decision model 

Kryzhanivska, Lena; 

Müller, Anna-Luisa; 

Rupprecht, Lea 

P4 

(Ch. 3.2) 

Between death and life – a formal decision 

model to decide on customer recovery 

investments2 

 
Published in Electronic Markets (2018) 28: 423–435. 

Proposing a formal decision-making model on 

whether or not to invest in customer relations to 

improve customer recovery and reduce 

companies’ customer recovery costs 

Quantitative 

decision model 

Kleindienst, 

Dominikus 

Part C: Behavior of individuals in a digital world 

No. Research paper title Objective Method Co-Authors 

P5 

(Ch. 4.1) 

The disclosure of private data: Measuring the 

privacy paradox in digital services 

 

 

 
Published in Electronic Markets (2018) 28:475–490 

Development of a privacy paradox metric that 

aggregates consumers’ privacy intentions and 

behavior to a single measure and quantitatively 

assesses the extent of paradoxical privacy 

behavior on the part of consumers in the context 

of digital services 

Metric 

development 

using design 

science 

Gimpel, Henner; 

Kleindienst, 

Dominikus 

 
1 Please note that this research paper was published under my maiden name “Engel.” In the meantime, my surname changed to “Waldmann.” 
2 Please note that I was the lead author of this research paper. 
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Part A: Negative consequences of the digitalization for the individual 

Part A of this dissertation addresses the negative consequences of the digitalization for the 

individual. It includes two research articles that examine the concerns of individuals. P1 

focuses on those to do with the use of automated decision-making (ADM). P2 takes a closer 

look at the concerns that patients and professionals have about the digital transformation in 

healthcare. Thus, whereas P1 reviews the issue in general terms, P2 gives a more detailed 

insight into a specific context.  

P1 examines concerns of individuals about the use of ADM. In the course of digitalization, 

the impact of ADM and algorithms are spreading far and wide , as decision-making is no 

longer determined by humans alone but already supported by technology or indeed entirely 

replaced by algorithms (Diakopoulos, 2016; Martin, 2019; Wachter et al., 2017). The use of 

algorithms promises a wide range of benefits, as they can analyze extensive amounts of data 

to make predictions at a level of accuracy unattainable for any human being (Martin, 2019; 

Power, 2015; Strobel, 2019). However, algorithms can also have significant negative 

consequences for individuals. Since the concerns about those consequences might inhibit the 

adoption of ADM, a broad overview is necessary. The overview might help to address the 

individuals’ concerns to support the implementation of ADM applications and enable 

individuals to be better informed about potential risks. P1 identifies, structures, and 

communicates the context-independent concerns many individuals have about ADM. The 

method used for this purpose is a structured literature review and a qualitative content analysis 

of semi-structured interviews. The overall framework could serve as a basis upon which 

organizations can develop transparent ADM-related products and services, all while dealing 

with the concerns of individuals in a responsible manner. P1, then, addresses the following 

research question: 

Which concerns do individuals have about the use of automated decision-making? 

Digitalization plays a significant role in the healthcare sector and e-Health has proven itself 

to be an efficient healthcare instrument. The level of acceptance among healthcare 

professionals and patients, however, is relatively low. To examine the reasons for this, P2 

develops a framework for the concerns many individuals have about adverse outcomes of 

digital transformation in healthcare. The methodology applied here is based on the Grounded 

Theory Method, including interviews with patients and healthcare professionals. E-Health will 

not be implemented successfully, nor will the adoption of digital health services be expedited, 
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until the reservations of patients and professionals are fully understood and overcome. 

Therefore, P2 centers on the following research question: 

Which factors can hinder an individual’s intention to use digital technologies in healthcare? 

Part B: Design approaches for information systems in organizations 

Part B presents various design approaches for information systems that enable organizations 

to increase customer satisfaction with digital products and services. What this requires is a 

focus on the individual perspective, and this is of further interest to organizations seeing as 

digitalization has given them new opportunities to integrate customers into their business and 

value creation processes (Cheung et al., 2014; Libo Liu et al., 2016). The purchase behavior 

of individuals is constantly changing, but given the wide variety of new communication 

channels and devices, individuals can be (partially) integrated into tasks previously performed 

by organizations. P3 develops a quantitative decision model that enables organizations to 

make informed decisions on whether or not to integrate certain customers in their business 

processes, all while accounting for the necessary customer support. What is more, 

digitalization increases market transparency, which allows customers to get a better overview 

of products and services than ever before. As a result, switching between different providers 

becomes almost effortless. To show how to counteract this behavior, P4 provides a formal 

decision model on customer relation recovery investments.  

Customer support has become an essential factor of a company’s competitiveness (Negash et 

al., 2003). Integrating customers in business processes, however, is somewhat problematic, 

since not all of those processes lend themselves to integration and it is uncertain how 

customers will react to self-services. Consequently, organizations ought to consider whether 

or not a customer needs support, and this consideration is facilitated in the pages of P3. In it a 

quantitative decision model is developed to answer the question of whether or not to integrate 

customers into business processes all while considering the economic effect of the 

corresponding customer support. This decision is predicated on the change in cash flow which 

in turn is predicated on the introduction of self-service. On the one hand, customer support 

generates costs. On the other hand, however, it has a positive impact on service quality and 

customer satisfaction, which means it also has a positive impact on the economic value of a 

customer, especially with a view to the resultant increase in the customer’s acceptance of the 

self-service technology (Anselmsson, 2001; Reinders et al., 2008). The applicability of this 

model and its practical benefit are illustrated by a case study. P3, then, answers the following 

research question: 
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In which business processes should customers be integrated when considering the necessary 

extent of customer support? 

P4 develops a formal decision model that computes the threshold at which investing in an 

individual customer relation is economically viable by considering the probability of a 

customer relation being “alive,” “dying,” or “dead.” With digitalization, customer migration 

is easier than ever before and individuals show a growing willingness to make the switch due 

to increasing market transparency and rising impersonality (Desai, 2014; Leußer et al., 2011). 

Many organizations neglect customer recovery as they focus on customer acquisition and 

retention. As a result, they lose a large part of their revenue when their customers defect 

(Griffin & Lowenstein, 2001). With the help of customer recovery management, an 

organization can win back customers who have explicitly terminated the business relationship 

or implicitly done so by taking their custom elsewhere (Leußer et al., 2011). Accordingly, the 

research question of P4 is: 

How can an organization decide whether or not to invest in a customer relation on the basis 

of the probability that the customer relation is “dying”? 

Part C: Behavior of individuals in a digital world 

In part C, this dissertation investigates the third research perspective presented in Figure 1.2-1, 

i.e., behavior. In the course of digitalization, individuals can encounter adverse consequences. 

An organization can address these by refitting its digital products and services with 

customized designs that account for changes in the behavior of individual customers. 

However, the behavior of individuals is not always rational since individuals are endowed 

with bounded rationality and often act without having essential information at hand (Keith et 

al., 2012). What is more, the rise of digital technologies makes an ever greater amount of 

personal data available and thus increases their users’ privacy concerns. Hence, privacy is an 

important topic for individuals as well as for organizations and one that cannot be ignored 

when examining the downsides of digitalization. Therefore, P5 deals with non-rational 

privacy behavior. Individuals may often claim that they want to protect their privacy, and yet 

many behave as though the opposite were true (Acquisti, 2004). This irrational behavior is 

called the privacy paradox (Norberg et al., 2007). P5 develops a privacy paradox metric (PPM) 

that aggregates and quantifies in a single measure the deviation between the privacy intentions 

and privacy behaviors of individuals. Organizations will then be able to use this metric to 

identify the unintentional data release of a customer and manage the associated risks. As the 

first quantitative measure of the privacy paradox, the PPM may have several benefits for 
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companies that provide digital services as well as for ICT platform providers, consumer 

protection organizations, consumers themselves, and researchers. The design science research 

methodology is used to contribute to a design theory by answering the following research 

question: 

How can the privacy paradox metric, which aggregates the privacy intentions and privacy 

behaviors of consumers into a single measure, be quantified for digital services? 

In summary, Figure 1.3-1 presents a detailed outline of this dissertation. Chapter 1 provides 

an introduction. Chapter 2 analyses the dire consequences that customers fear when using 

automated decision-making (Chapter 2.1) and digital health services (Chapter 2.2). Chapter 3 

presents design options to address such concerns by first determining the necessary extent of 

customer support when integrating customers into business processes (Chapter 3.1), and then 

by introducing a decision model that makes it possible to decide on the right customer 

recovery investments (Chapter 3.2). Chapter 4 provides a detailed insight into the behavior of 

individuals and discusses the privacy paradox, i.e., the divergence between stated privacy 

attitudes and actual behavior. And finally, Chapter 5 discusses the results, provides an outlook 

for future research, and offers the dissertation’s overall conclusion. 

 

 

Figure 1.3-1 Structure of this doctoral dissertation 
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2 Part A: Negative consequences of digitalization for the 

individual 

2.1 Fear of algorithms: A synopsis of concerns about automated 

decision-making 

Abstract 

Automated decision-making (ADM) is making its impact in all areas of modern life. Decisions 

previously made by humans are increasingly supported or replaced by algorithms. Many 

people harbor reservations about ADM, and yet, there is no exhaustive study that structures 

these concerns. The objective of our research is to outline a comprehensive framework of 

concerns about ADM. Based on a structured review of the literature and a qualitative content 

analysis of semi-structured interviews, we identified ten major concerns regarding the 

underlying technology, data, or the decision itself. Furthermore, we identified 14 concerns 

about the potential consequences of using ADM. Our framework is intended to guide future 

research on concerns about ADM, while also serving as a touchstone for anyone developing 

ADM-related offers and services that account for the potential reservations of the intended 

user group. 
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 Introduction 

Algorithms are “a sequence of computational steps that transform inputs into outputs, and 

range from simple if-then statements to artificial intelligence (AI), machine learning, and 

neural networks” (Martin, 2019). Nowadays, algorithms are involved in all areas of life, for 

instance by producing news articles based on structured data, by supporting recruitment 

processes, by detecting fraud in sports betting, by deciding which physicians see which 

patient, and by defining dynamic prices in many application areas, such as e-commerce (e.g., 

Amazon), tourism (e.g., Airbnb), and transportation (e.g., Uber) (Diakopoulos, 2016; Martin, 

2019; van den Broek et al., 2019). In some of these areas, we see “complex and networked 

algorithms that are beyond proper human understanding and control” (Gimpel & Schmied, 

2019, p. 8). This comes with certain adverse, unexpected, and unintended effects (Gimpel & 

Schmied, 2019; Majchrzak et al., 2016), and these effects – positive as well as negative – are 

extending their reach into all aspects of modern life (Diakopoulos, 2016). Decision-making 

processes previously made by humans are increasingly supported (augmented by technology) 

or even replaced by algorithms (fully automated) (Martin, 2019; Wachter et al., 2017).  

In the future, algorithms are expected to gain even more influence due to an ever-increasing 

degree of automation in decision-making processes as well as the expansion of application 

areas of ADM. This is affecting individuals, organizations, and society at large. On the one 

hand, organizations and public authorities may benefit from the accuracy, scale, speed, 

simplicity, and cost-efficiency of automated decisions (Diakopoulos, 2016). There are those 

who argue that algorithmic decisions foster objectivity and fairness (van den Broek et al., 

2019). Others predict that algorithms may have significant negative consequences for 

individuals affected by automated decisions. Two prime examples are when potentially biased 

algorithms support policing (known as predictive policing) or assist judicial decision-making 

in court (Angwin et al., 2016; Binns et al., 2018; Corbett-Davies et al., 2016; Dressel & Farid, 

2018; Martin, 2019). Algorithmic decisions are further criticized for facilitating other ethical 

violations such as sexism or privacy invasions (van den Broek et al., 2019). In this paper, we 

focus on reservations that individuals harbor about ADM. 

Prior literature has already investigated potential risks and side effects of ADM for 

individuals, such as discrimination, lack of data protection, unfairness, or wider ethical issues. 

Most research articles discussed these issues in highly specific (and primarily future-oriented) 

use cases. However, there is no comprehensive overview of the chief concerns held by 

individuals when dealing with ADM, which is a necessary foundation to improve ADM 
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adoption. What is missing, therefore, is a synopsis of these concerns about ADM derived from 

literature (focused mainly on specific single use cases) and complemented with a survey of 

multiple ADM cases. To fill this gap in the research and to provide a starting point for further, 

detailed research about these concerns, we aim to answer the following question: 

Which concerns do individuals have about the use of automated decision-making? 

The overview we have generated in reply to this question may serve as a foundation upon 

which others can develop responsible and transparent ADM-related offers and services with 

full regard for the fears and reservations of those affected (Diakopoulos, 2016). Furthermore, 

we intend to summarize as well as extend existing research to offer a basis for future research. 

The paper is structured as follows: The following section provides the theoretical background 

for algorithmic decision-making and concerns. Then, we describe the methodological 

approach of our structured literature search and the qualitative content analysis of our semi-

structured interviews, followed by the presentation of results. After the result section, or 

discussion includes practical and theoretical implications, and an outlook towards future 

research, followed from the conclusion.  

 Theoretical background 

To understand concerns about ADM one must first dive deeper into the negative aspects of 

IT. Although there is an apparent pro-IT bias in information systems (IS) research, there is 

also research on the “dark side of IT.” The Information Systems Journal published two 

consecutive special issues on the dark side of information technology use (Tarafdar et al., 

2015a, 2015b). These special issues comprise articles that focus on one negative aspect of IT 

use at a time, such as technostress, IT interruptions, computer abuse, IT-mediated control, or 

unauthorized file sharing (Tarafdar et al., 2015a, 2015b). Further, Pirkkalainen and Salo 

(2016) review 37 articles in the AIS Senior Scholars’ Basket of Journals and detect four types 

of dark side phenomena: information overload, IT addiction, and IT anxiety. Kim et al. (2011) 

provide a taxonomy of the dark side of the Internet and focus on attacks, costs, and appropriate 

responses. They identify technology-centric dark side effects like spam, malware, hacking, 

and digital property rights violations. Additionally, they identify non-technology-centric dark 

side effects such as online theft, cyberbullying, and the aiding and abetting of crime. Gimpel 

and Schmied (2019) aim to provide a broad overview of dark side phenomena by developing 

a taxonomy of the most severe risks and side effects of digitalization, such as adverse 

exchange, adverse economic shifts, impairment of health, undesirable behavioral adaptation, 
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or losing control over algorithms. Some of those dark sides of IT also relate to the use of 

algorithms. 

ADM takes place when a result, e.g., a recommendation or a purchase, is achieved without 

human intervention (Allen & Masters, 2020). Thus, ADM is either supported by modern 

information and communication technologies (ICTs) or the decision is entirely made by the 

application of specific algorithms (Allen & Masters, 2020). This is why ADM is also called 

algorithmic decision-making. Another way to achieve ADM, however, may be to use complex 

artificial intelligence (AI) supported and trained by machine learning (ML) (Allen & Masters, 

2020). Within AI, the different analytical techniques, such as descriptive, predictive, or 

prescriptive analytics, facilitate ever greater intelligence and business efficiency. Whereas 

descriptive and predictive analytics require a human manager to interpret the results, 

prescriptive analytics enables ADM (Vahn, 2014). In other words, it goes beyond predicting 

future results by anticipating what will happen, when it will happen, and why it will happen. 

What is more, it gives recommendations that benefit from those predictions (Kumar, 2015; 

Shankararaman & Gottipati, 2015). Consequently, prescriptive analytics answers the question 

“How can we make it happen?” (Shankararaman & Gottipati, 2015). 

The impact of ADM on the lives of individuals triggers certain concerns about ADM. 

According to Lowry et al. (2011), we define concerns in use cases of ADM as the extent to 

which a person worries about possible risks and consequences associated with ADM use. The 

existing literature has already discussed the concerns some individuals have about ADM, e.g., 

discrimination (Strobel, 2019), or data privacy (Newell & Marabelli, 2015). It has also 

discussed factors that inhibit ADM adoption, e.g., control (Dietvorst et al., 2018) or trust 

(Castelo et al., 2019). It has further discussed a variety of use cases for ADM, e.g., automated 

travel planning (Cho & Han, 2019), autonomous driving (Dietrich & Weisswange, 2019), or 

automated purchases (Ringe et al., 2019), and the literature has also already discussed the 

implementation of ADM in business use cases (Dwivedi et al., 2021). However, these 

discussions have typically been grouped around single concerns, and most of the studies have 

focussed on a specific context. A comprehensive overview of concerns that might inhibit 

ADM adoption does not yet exist. In this paper, we argue for the need of a better understanding 

of how individuals perceive the impact of using ADM in daily life. This is necessary if we are 

to gain a deeper insight into the relationship between the perception of ADM’s use, the 

perception of the consequences of ADM’s use, and actual behavior, because organizations 

need to know which consequences individuals fear and how to address those negative 

perceptions (Karwatzki et al., 2017).  
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Further areas of academic research, such as data privacy, has indicated that individual 

concerns can be manifold (Hauff et al., 2015; Smith et al., 1996). Smith et al. (1996) have 

identified seven major data privacy concerns of customers (including data collection, 

secondary use, or improper access). Hauff et al. (2015) have investigated how perceived 

privacy-invasive data collection and usage can affect individuals. Their research has shown 

that, for some individuals, there are concerns at different levels. Meanwhile, Karwatzki et al. 

(2017) have developed a categorization of how individuals perceive the consequences of 

access to their personal information. This categorization spans seven types of consequences: 

psychological, social, career-related, physical, resource-related, prosecution-related, and 

freedom-related. Nevertheless, this research has merely discussed data privacy concerns (e.g., 

regarding unauthorized access to individuals’ information), which we believe to be only one 

type of concern about ADM. As such, the existing research does not provide a comprehensive 

overview of potential concerns. 

 Research methodology and approach 

To answer our research question, we take a two-step approach by way of a structured literature 

search and a qualitative content analysis of semi-structured interviews. First, we reviewed the 

existing (IS) literature to identify concerns about ADM. In so doing, we also identified current 

use cases for ADM, which served as a basis for the semi-structured interviews conducted in 

the second step. We used a search string, combining “automated decision” with the most 

common synonym used in the literature (“algorithmic decision”), as well as the term 

“prescriptive analytics,” which is used primarily in the research area of statistics. Furthermore, 

we linked those expressions with “concern” and synonyms for concern commonly used in the 

literature, which yielded the following search terms: (“automated decision” OR “algorithmic 

decision” OR “prescriptive analytics”) AND (“concern” OR “risk” OR “attitude” OR 

“danger” OR “aversion”). As advised by Webster and Watson (2002), we did not restrict our 

literature search to databases with a focus on the IS discipline (covered by the databases ACM 

Digital Library and AIS Electronic Library). Instead, we expanded our search to general 

databases so as to cover a wide range of different research areas with our main focus directed 

at the domain of electronic commerce and computer science, engineering, law, marketing, 

logistics, and beyond (covered by the databases Science direct, EBSCOhost, JSTOR Library, 

SpringerLink, ProQuest). Since ADM is frequently embedded in highly topical discussions 

about AI, we included news from associations and academic journals. The structured literature 

search resulted in 175 articles. After the initial screening of titles and abstracts, the full texts 

of the remaining 30 articles were examined, whereupon 18 articles were classified as relevant. 
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An article was considered relevant if the following two conditions were met: (1) the article 

dealt with ADM in general or in a specific use case and (2) the article named or explained 

concerns or adverse effects of ADM for a specific use case or in general terms. With regard 

to those 18 articles, we highlighted words or phrases expressing concerns about ADM (e.g., 

“discrimination” (Strobel, 2019), “computer implementation may be incorrect” (Brauneis & 

Goodman, 2018)) and use cases for ADM (e.g., “recommender systems” (Borràs et al., 2014), 

“loan application” (Strobel, 2019)). 

This also proved to be highly useful in preparing the semi-structured interviews, which we 

then conducted to identify further concerns about ADM. We chose interviewees with diverse 

backgrounds to cover a broad cross-section of the population in terms of age and gender as 

well as educational and professional backgrounds. We met the interviewees in person or spoke 

to them on video calls, and in each case we recorded the interview. In total, we conducted 13 

interviews, as shown in Table 2.1-1. 

Table 2.1-1 Demographic overview of interviewees 

ID Age Gender Highest educational level Profession / Occupation 

1 25 male University degree Student 

2 60 female  High school diploma Secretary 

3 28 male University degree Doctoral candidate 

4 34 male Secondary school IT administrator 

5 33 female University degree Doctoral candidate 

6 29 male University degree Technical employee  

7 26 female Secondary school  Nurse  

8 28 male University degree Student 

9 27 male University degree Doctoral candidate 

10 57 male Secondary school  Civil servant 

11 57 female University degree Civil servant 

12 22 male High school diploma Student 

13 28 female University degree Doctoral candidate 

 

After 11 interviews, the 12th did not reveal further insights of any relevance. We conducted a 

13th interview anyway, but this, too, revealed nothing new. Reassured that we had reached 

saturation point, we determined that we had gathered enough data via interviews. The duration 

of each ranged from 15 to 45 minutes and comprised four steps: (1) present a definition of 

ADM (“decisions that are made or at least supported by algorithms”) and ensure a common 

understanding of ADM, (2) ask open questions about prior experiences with ADM and any 

associated concerns, (3) present five use cases to discuss concerns with regard to each use 

case, (4) present and discuss the results of our literature search. 
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We presented five ADM use cases (automated lending (Brauneis & Goodman, 2018), 

intelligent travel bots (Cho & Han, 2019), automated evaluation of applicants (Faliagka et al., 

2012), autonomous driving (Dietrich & Weisswange, 2019), and automated purchases (Ringe 

et al., 2019). We chose those use cases because they are current in both mainstream media and 

academic research, and because they cover a broad spectrum of modern life, ranging from 

consumption, travel and locomotion, to the professional environment. Furthermore, we 

attached importance to the fact that the cases represent current progress as well as future 

scenarios. We provided the interviewees with images and a short description of these use 

cases. We transcribed all interviews verbatim in order to conduct a qualitative content analysis 

in line with the eight steps proposed by Schreier (2013). These eight steps bring together the 

best of various approaches to a thorough qualitative content analysis (Boyatzis, 1988; Hsie & 

Shannon, 2005; Mayring, 2010; Rustemeyer, 1992). We used the software MAXQDA to code 

the interviews, and each step of this methodology is outlined in detail below. 

(1) Deciding on a research question: Our research question was defined ahead of the 

interviews (cf. Section 2.1.1).  

(2) Selecting material: We conducted semi-structured interviews, each of which was fully 

transcribed. As our interview sample includes two different types of stakeholders (students 

and doctoral candidates involved in ADM research as well as individuals without professional 

experience in ADM), we chose two interviews from each group in order to set up the coding 

frame.  

(3) Building a coding frame: To build main categories (“structuring”) and generate the 

subcategories (“generating”), we combined a concept- and data-driven approach. Since our 

ultimate aim is to analyze concerns about ADM, the main category of the coding frame is 

concerns about ADM. In the following, where we only use one main category, we also refer 

to categories on the second level as main categories, while categories on the third level are 

called sub-categories. The results of our literature research were used to generate certain main- 

and sub-categories in a concept-driven way (e.g., technology, data and societal as main 

categories, as opposed to privacy incidents, discrimination and job loss as sub-categories). 

Furthermore, we adopted the strategy of subsumption as proposed by Mayring (2010) for data-

driven categories: We reviewed the interview transcripts until we encountered a relevant 

aspect, then checked whether this aspect is already covered by a category and either attributed 

the aspect to the existing category or created a new category (e.g., organizational for main 

categories, as opposed to lack of enjoyment and lack of spontaneity for subcategories).  
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As advised by Schreier (2013), our coding frame meets the requirements of unidimensionality 

(our main categories are unidimensional), mutual exclusiveness (sub-categories within one 

main category are mutually exclusive), and exhaustiveness (all relevant aspects of the material 

are covered by a category). After the definition of the coding frame, we defined each category 

(Schreier, 2013). Subsequently, we examined the bigger picture of the coding frame, then 

merged and split a few categories, and refined our definitions.  

(4) Segmentation: As suggested by Schreier (2013) we divided our material into segments. 

Since the use cases of ADM mentioned in the interviews are suitable to specify the start and 

the end of a unit, we chose the use cases as a thematic criterion for segmentation. 

(5) Trial coding: In the next step, we applied the coding frame to further interview transcripts. 

We split the material among the researchers and each researcher coded the material twice 

within two weeks.  

(6) Evaluating and modifying the coding frame: We evaluated consistency and validity. 

Less than 10% of codes were assigned to different categories in two coding rounds. We 

discussed the respective categories and revised each definition. As we did not have any 

leftover categories but managed to assign each code to a proper category, we determined our 

coding frame to be valid. See Table 2.1-3 and Table 2.1-4 for the coding frame. 

(7) Main analysis: We coded the rest of the interviews, and due to the high validity and 

consistency, there was no need to double-code the rest of the material (Schreier, 2013).  

(8) Presenting and interpreting the findings: Below, we present our framework in visual 

terms alongside explanations of the categories of concerns in Table 2.1-3 and Table 2.1-4. 

Additionally, we explain each category, illustrated by quotes in the following section. 

 Results 

With the help of our structured literature search and semi-structured interviews, we identified 

24 concerns. 13 concerns resulted from the structured literature search, 22 from the semi-

structured interviews, which is to say that eleven emerged from both sources. Figure 2.1-1 

structures the 24 concerns. We divided the framework into two categories of concerns: On the 

left-hand side of the chart, we identify concerns inherent to technology, data, or decisions. 

Those concerns do not necessarily have a direct impact but can develop into graver concerns 

about the consequences on the right-hand side.  

Since applied technology, such as an algorithm, needs data to make automated decisions for 

the user, the concerns on the left-hand side of the framework are divided into three categories: 
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technology, data, and decision. These concerns about technology, data, and decision can lead 

to further concerns in different categories adapted from Karwatzki et al. (2017) and described 

in Table 2.1-2. 

Table 2.1-2 Categories of concerns about consequences that individuals have due to the 

use of ADM adapted from Karwatzki et al. (2017) 

Category Definition 
Physical Loss of physical safety due to the application of ADM 
Social  Change in social status due to the application of ADM 
Resource-related  Loss of resources due to the application of ADM 
Psychological Negative impact on one’s peace of mind due to the application of ADM 
Prosecution-related Legal actions taken against an individual due to the application of ADM 
Career-related Negative impacts on one’s career due to the application of ADM 
Freedom-related Loss of freedom of opinion and behavior due to the application of ADM 

 

A concern on the left-hand side can give rise to more than one concern on the right-hand side. 

For example, “poor decision quality” can lead to various specific concerns at different levels 

on the right-hand side of the framework, e.g., “negative financial impact” if the algorithm 

opts for more expensive consumer goods, “negative physical impact” if the autonomous 

driving car gets involved in an accident, or “discrimination” if the algorithm discriminates 

females for job offers. With the icons in Figure 2.1-1, we indicate whether a concern originates 

from semi-structured interviews (microphone) and/or from the literature review (book).  
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Figure 2.1-1 Framework of concerns about the use of ADM 

 

Job loss and environmental harms are the only two aspects that did not occur in any interview 

but solely in the literature. All other 13 concerns that we found in the literature were confirmed 

in the interviews. Furthermore, our interviews added four concerns to the framework’s left-

hand side and seven concerns to the right-hand side. Table 2.1-3 presents the inherent concerns 

(left-hand side of Figure 2.1-1). Table 2.1-4 presents the concerns about consequences (right-

hand side of Figure 2.1-1). For each concern, an explanation is provided, and literature sources 

as well as the IDs of the respective interviewees are shown to identify the origin of each 

concern. 
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Table 2.1-3 Individuals’ inherent concerns about ADM 

Concerns Description Literature sources Interviews 

Technology 

Breakdown 

of technology 

Concerns about failures in 

technology or single features of 

technology 

Winters (2017); 

Woldeamanuel and 

Nguyen (2018) 

5, 10 

Security 

incidents 

Concerns about security incidents 

via technology or enabled by 

technology, such as misuse of 

related IT systems 

Winters (2017); 

Woldeamanuel and 

Nguyen (2018) 

4, 5, 13 

Immaturity Concerns that technology is not 

yet fully mature and does not meet 

functional expectations  

- 2, 6, 7, 8  

Data 

Privacy 

incidents 

Concerns about data privacy, in 

particular the use of and access to 

personal data (privacy invasion), 

disclosure of personal data to 

third parties (e.g., employers and 

health insurance companies), 

misuse of personal data for other 

purposes, and loss of control over 

the usage of personal data 

Alawadhi and Hussain 

(2019); Coudert (2010); 

Duarte (2017); Newell 

and Marabelli (2015); 

Winters (2017); 

Woldeamanuel and 

Nguyen (2018) 

1, 6, 7, 8, 9, 

10, 11, 12, 

13 

Data 

manipulation 

Concerns that manipulated data 

underlying the algorithm may 

lead to biased results of ADM 

Winters (2017); Yang 

et al. (2018) 

1, 5, 9 

Insufficient 

or wrong data 

basis 

Concerns that the data basis is 

insufficient, or that the data 

provided cannot be explained 

adequately  

- 3, 4, 6, 9, 

10, 13 

Decision 

Poor decision 

quality 

Concerns about the poor 

decision-making quality of a given 

system, leading to mistakes or 

decisions that do not match the 

fears, wishes, and preferences of 

individuals 

Bahner et al. (2008); 

Brauneis and Goodman 

(2018); Strobel (2019); 

Uhl (1980); Winters 

(2017); Woldeamanuel 

and Nguyen (2018) 

1, 2, 3, 4, 7, 

8, 11, 12, 13 

Lack of 

transparency 

and missing 

verifiability 

Concerns about the lack of 

traceability of decisions by ADM, 

as decision-making takes place in 

the background (“black box”) 

and is thus not comprehensible for 

individuals 

Brauneis and Goodman 

(2018); Strobel (2019); 

Westin et al. (2016); 

Yang et al. (2018) 

1, 3, 8, 9, 13 

Fading of 

individual 

influence 

Concerns about losing the ability 

to influence the decision-making 

process due to loss of personal 

bargaining power, as opposed to 

traditional decision-making 

- 1, 2, 3, 6, 7, 

11  
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Omission of 

human 

decision 

factors 

Concerns about the lack of human 

elements (empathic capacity) in 

ADM’s decision-making, i.e., soft 

aspects and special cases are no 

longer taken into account 

- 1, 2, 5, 8, 9, 

10, 12, 13 

 

The first category, technology, describes concerns about the technology used for ADM. 

Breakdown of technology is primarily seen as dangerous because “humans are highly 

dependent on technology” (Interviewee 10) and because technology could create “accidents 

involving humans” (Winters, 2017). The literature also shows that individuals are concerned 

about disruption to infrastructure (Winters, 2017) or potential system failure (Woldeamanuel 

& Nguyen, 2018). Security incidents refer to security concerns about system as a whole, and 

especially to the underlying data. Woldeamanuel and Nguyen (2018) indicate that the majority 

of individuals has security concerns, be they clear-cut security incidents or more general 

concerns about incidents associated with technology, e.g., the fear that someone may know 

when you are not home and then “burgle the house” (Interviewee 5, 13). Doubts that the 

system “will ever be mature enough to work 100%” (Interviewee 7) are summarized in the 

category immaturity. 

The category data comprises concerns that individuals expressed about data used for ADM. 

Privacy incidents facilitated by “complete transparency of individuals” (Interviewee 1) are 

widely discussed in the literature (Alawadhi & Hussain, 2019; Coudert, 2010; Duarte, 2017; 

Newell & Marabelli, 2015; Strobel, 2019; Winters, 2017), and indeed in our interviews. The 

statements of Interviewee 12 (“the idea that one is completely predictable is daunting”), 

Interviewee 13 (who expressed concern about “having no control at all” over personal data), 

or Interviewee 11 (who said “data collected will be used for any other purpose”) confirm the 

relevance of this issue. Concerns about manipulation of “the input that the algorithm receives” 

(Interviewee 9), e.g., via “false statements” (Interviewee 1), “paid advertisement that 

influences the algorithm” (Interviewee 1, 5), or that “small changes in the input data […] may 

lead to drastic changes in the output, making the result uninformative and easy to manipulate” 

(Yang et al., 2018) are summarized in data manipulation. Insufficient or wrong data basis 

includes, e.g., concerns about “weak points in the entered data, where you know they can be 

misinterpreted without further explanation” (Interviewee 3) or that data quality “depends on 

how well I maintain my personal data, e.g., how I answer the questions” (Interviewee 13), 

related to the thought that “an algorithm needs all data from my wife and me, and so it is not 
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capable of booking a holiday for us, as it will never know how many and which compromises 

are possible and which are not” (Interviewee 10).  

The category decision presents concerns that individuals have about the automated decision 

itself. Individuals are concerned about poor decision quality. They are convinced that 

“implementation will never be 100% correct” (Interviewee 1) and think that the algorithm 

cannot respond with sufficient sensitivity to highly individual needs. The topic of poor 

decision quality is also discussed in the literature as the fear individuals have, for example, 

about incorrect decisions (Strobel, 2019) or false recommendations. Furthermore, individuals 

are concerned about a lack of transparency and missing verifiability of decisions made by 

ADM, i.e., they cannot verify whether the decision really is the best one or “if it is only the 

third-best offer” (Interviewee 1), because they “don’t know about the decision basis in the 

background” (Interviewee 1). Intransparency is another relevant topic in the literature, as 

individuals do not fully understand the opacity of a system (Westin et al., 2016). Meanwhile, 

fading of individual influence is discussed in the interviews with regard to “loss of bargaining 

space” (Interviewee 1) or a sense that there is no “possibility for a personal introduction, where 

my abilities might be recognized“ (Interviewee 11) due to a lack of human involvement. 

Omission of human decision factors refers to “missing empathy” (Interviewee 9), “complete 

reduction to numbers” (Interviewee 5), and the thought that a “human can be better assessed 

by other humans than by algorithm” (Interviewee 12), especially in “exception cases” 

(Interviewee 12). Having illustrated the inherent concerns, Table 2.1-4 shows concerns about 

consequences of ADM. 
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Table 2.1-4 Individuals’ concerns about consequences of ADM 

Concerns Description Literature sources Interviews 

Physical 

Physical harms Concerns that use of ADM may 

result in physical harm, such as 

accidents involving individuals 

Brauneis and Goodman 

(2018) 

6, 7, 13 

Psychological 

Psychological 

harms 

Concerns that the feeling of 

being at the mercy of ADM 

systems has negative 

consequences on individuals’ 

mental health 

- 13 

Social 

Discrimination Concerns that existing 

discrimination in human 

decision-making is being 

systematized through ADM, 

leading to structural biases and 

unfairness in decisions  

Albarghouthi and 

Vinitsky (2019); Binns 

et al. (2018); Brauneis 

and Goodman (2018); 

Dietrich and 

Weisswange (2019); 

Kullmann (2018); 

Persson and 

Kavathatzopoulos 

(2017); Strobel (2019); 

Veale and Edwards 

(2018); Woldeamanuel 

and Nguyen (2018); 

Yang et al. (2018) 

1, 2, 3, 4, 6, 

7, 8, 11, 13 

Resource-related 

Negative 

financial 

impact 

Concerns about ADM making 

decisions that are financially 

unfavorable for individuals 

- 6, 8, 13 

Environmental 

harms 

Concerns about negative 

impacts on environment through 

the spread of ADM  

Winters (2017); 

Woldeamanuel and 

Nguyen (2018) 

- 

Prosecution-related 

Obscure legal 

regulation of 

responsibility 

Concerns about missing or 

unclear legal accountability for 

the decisions taken by 

algorithms 

Binns et al. (2018); 

Persson and 

Kavathatzopoulos 

(2017); Woldeamanuel 

and Nguyen (2018) 

2, 3 

Career-related 

Job loss Concerns about becoming 

unemployed due to widespread 

use of ADM  

Winters (2017) - 

 

  



2 Part A: Negative consequences of digitalization for the individual 43 

 

Freedom-related 

Monopolization 

of economy 

Concerns about monopolization 

on a limited number of platforms 

which gain disproportionate 

power from data, leading to a 

centralized and unbalanced 

market 

- 1, 8, 11 

Skill loss Concerns about individuals 

losing abilities or skills because 

they are no longer used to 

performing certain tasks  

Winters (2017) 2, 7, 8, 10, 

12 

Obscure 

explicitation of 

value system 

Concerns about a lack of 

morality in ADM or a mismatch 

between the moral values of the 

system and personal values  

- 1, 2, 4, 8, 

12, 13 

Negative effects on human well-being 

External 

determination 

Concerns that individuals give 

up more control over their lives 

to ADM systems (and 

organizations operating those 

systems)  

Newell and Marabelli 

(2015); 

Woldeamanuel and 

Nguyen (2018) 

3, 4, 6, 8, 9, 

11, 12 

Lack of 

enjoyment 

Concerns that ADM decreases 

sensual and joyful moments, as 

the decision-making process 

itself is an enjoyable part of life 

that is no longer experienced by 

humans  

- 2, 6, 8, 9, 

10, 13 

Lack of 

individuality 

Concerns that ADM is not 

capable of reaching a level of 

individuality close to that of 

highly individual human 

decision-making  

- 1, 2, 8, 9, 

12, 13 

Lack of 

spontaneity 

Concerns that rigid patterns of 

ADM curtail the human value of 

spontaneity in daily life 

- 1, 4, 7, 13 

 

Physical harms refer, for the most part, to accidents caused by ADM, e.g., via self-driving 

cars and other health hazards due to the increasing use of ADM technologies. In contrast, 

psychological harms denote “emotional damage” (Interviewee 13) through ADM. In the 

literature, Brauneis and Goodman (2018) also mention the concern that data can be used to 

hurt individuals.  

Discrimination is among the most frequently discussed topics in the literature on ADM. 

Perhaps the most common form this takes is gender discrimination against individuals or 

protected groups (Kullmann, 2018; Persson & Kavathatzopoulos, 2017; Yang et al., 2018). 
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Our interviews confirm this, as many interviewees fear biased decisions due to the 

“discrimination between men and women” (Interviewee 8) and “exclusion of people who 

cannot afford or use technologies that get more and more sophisticated and therefore 

expensive” (Interviewee 11). Often, discriminatory decisions made by automated systems 

result from biased training data sets (Interviewee 1). 

Furthermore, individuals are concerned about ADM having a negative financial impact, 

primarily caused by data manipulation, e.g., when an algorithm orders a product at “a 

disadvantageous price” due to a paid advertisement (Interviewee 8) or a faulty product that 

will not be used (Interviewee 6). The category environmental harms comprises aspects such 

as increasing air pollution or greenhouse gas emission (Winters, 2017; Woldeamanuel & 

Nguyen, 2018). 

The following concern obscure legal regulation of responsibility is prosecution-related. 

Individuals fear that it is unclear “who bears responsibility if something happens” 

(Interviewee 3). One such concern relates to the use case of autonomous driving, as stated by 

Interviewee 2: “In case somebody dies, or gets injured or anything else, who is responsible?”  

Individuals also have career-related concerns. Winters (2017) states that individuals fear 

losing their jobs (job loss) due to ADM.  

The first concern in the category of freedom-related concerns is the monopolization of 

economy, meaning that “the market becomes more unbalanced” (Interviewee 1). Skill loss 

refers to the concern that with an increasing number of automated decisions and thus a 

diminishing proportion of human-made decisions, individuals lose human abilities, such as 

“empathy” (Interviewee 10) and decision-making skills (Interviewee 12). Skill loss also 

includes a concern about “humans becoming lazy or less industrious” and “losing certain 

abilities or skills” (Winters, 2017). In obscure explicitation of value system, individuals fear a 

lack of morality in ADM or a mismatch between the moral values of the system and personal 

values. For instance, this may result from distinct cultural backgrounds of an algorithm’s 

programmer and its users.  

The subcategory of negative effects on human well-being comprises four concerns. 

Individuals prefer non-binding “recommender systems” (Interviewee 2, 8) in contrast to a 

completely automated decision in order to avoid external determination. The literature 

confirms these views, as concerns about dependence and loss of control have already been 

investigated (Newell & Marabelli, 2015; Woldeamanuel & Nguyen, 2018). Lack of enjoyment 

includes statements that ADM in private life is associated with having less fun. For example, 
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decisions about food or traveling are perceived as “fun” (Interviewee 6, 9), and to some the 

decision-making process itself constitutes an “experience” (Interviewee 13), which is why 

some do not want to give up decision-making. Meanwhile, lack of individuality denotes 

concerns about the inability of ADM to reach a sufficiently high level of individuality in 

decision-making: “No matter how complex the algorithm, it will never offer a highly 

individual trip for me” (Interviewee 8). Another interviewee raised the question: “Where is 

the individuality?” (Interviewee 2). The omission of human decision factors is seen as the 

chief reason why ADM will not achieve sufficiently high individuality. Moreover, individuals 

are concerned about a lack of spontaneity through the use of ADM in their daily lives, as they 

feel that the algorithm cannot respond unprompted to changes, which is why there will no 

longer be any room for spontaneity (Interviewee 1). Incidentally, according to some 

individuals it is simply “nice if not everything is planned, but you just happen to stumble over 

something” (Interviewee 8). 

 Discussion 

The interviewees confirmed concerns that were identified by the structured literature search. 

Only two concerns originating from the literature could not be confirmed by our qualitative 

content analysis (job loss, environmental harms). This might be due to the abstract nature of 

these two long-term consequences of ADM, which is to say that our interviewees may well 

have thought of those aspects as being too far in the future to be caused by single automated 

decisions. Yet these two aspects aside, the concerns discussed in the literature were 

supplemented by eleven further concerns that were first identified in our qualitative content 

analysis. To break down those numbers, four concerns were added to the literature on the left-

hand side of the framework (immaturity, insufficient or wrong data basis, fading of individual 

influence, omission of human decision factors).  

A closer look at the inherent concerns in Table 2.1-3 shows that only concerns in the category 

decision are unique to ADM. Conversely, technology and data concerns can also be 

transferred to other new technologies, such as the Internet of Things (IoT) or Blockchain. For 

example, security and privacy incidents have already been discussed in depth in the existing 

IoT literature (Leloglu, 2017; Naeini et al., 2005). Further concerns, such as immaturity, also 

pertain to other new technologies and are, therefore, not specific to ADM (Lepekhin et al., 

2019). Concerns arising from these two categories – technology and data – can lead to 

concerns about consequences for individuals, organizations, or society, and these concerns 

can be held regardless of whether a specific automated decision is executed. For example, a 
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security incident where personal data is stolen, which causes a privacy incident, might lead to 

discrimination in another context, one that is quite distinct from the original decision-making 

process during which the data was collected and therefore not governed nor indeed controlled 

by the initial decision. 

As explained above, our framework contains eleven concerns that emerged solely from our 

interviews and have not been addressed in previous research. Within all categories, the 

interviews revealed new inherent concerns as well as concerns about consequences that lend 

themselves to further examination in future research (see Figure 2.1-1), which is strongly 

recommended in order to reduce individuals’ skepticism about ADM and improve its 

acceptance among users. Some of the associated concerns worthy of further research are as 

follows: first, interviewees mentioned several aspects that mitigate their concerns about ADM, 

chief among them the fact that for many there is no perceived difference between ADM and 

a human decision-making process. For instance, interviewees often do not see a notable 

difference whether they provide their personal data to a human or to an algorithm. 

Furthermore, they tend to think that nowadays many organizational processes are already 

automated to a high degree, even though a human employee is involved. Another crucial 

aspect that would seem to attenuate many concerns is transparency. If individuals think they 

understand the decision-making process, which is to say that if they understand how and why 

the algorithm comes to its decision, many concerns are mitigated. A research area that focuses 

on this phenomenon is called explainable AI (XAI). XAI research analyses the black-box 

problem, i.e., that AI is becoming ever more complex. Hence, it becomes more difficult for 

the user to truly understand how the system works, and this diminishes the transparency of the 

user system (Bahdanau et al.). This, in turn, brings us to trust, the third mitigating aspect 

mentioned in our interviews. Individuals state that their concerns about a specific ADM 

system significantly decrease when they trust the system, for instance, if they have had good 

experiences with the same system in the past.  

In addition to those attenuating aspects, interviewees mentioned potential positive aspects of 

ADM, as opposed to human-made decisions. These include time savings, less effort for 

individuals, less subjectivity and more fairness in decisions, variety and positive surprises 

through ADM, and lower error rate in decisions. Future research could be of interest to 

examine the relationship between those attenuating and positive aspects of ADM on the one 

hand and the afore-mentioned concerns on the other. It might be very helpful for the 

development of ADM systems to know which concerns could be addressed by which 
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attenuating aspects and under which circumstance, or for instance in which use case a user 

will focus more on positive aspects and less on concerns. 

To develop these findings into a coherent theory, we follow in the footsteps of Urquhart et al. 

(2010): “Theoretical integration means relating the theory to other theories in the same or 

similar field.” Since there is, at the time of writing this, no relevant theory to draw on with 

regard to ADM, we employ a related theory from the field of information privacy research. 

Specifically, we compare our framework with Karwatzki et al. (2017), who investigate 

adverse consequences of access to individuals’ information. What makes this comparison 

especially apt is that Karwatzki et al. (2017) examine individuals’ technology-related concerns 

and develop a comprehensive conceptualization and categorization in terms of physical, 

social, resource-related, psychological, prosecution-related, career-related, and freedom-

related adverse consequences. In our own research, we transfer this categorization to the field 

of ADM and use it to structure individuals’ concerns about consequences, i.e., the right-hand 

side of our framework (see Table 2.1-4). What is more, we identify inherent concerns about 

technology, data or decisions, i.e., the left-hand side of our framework (see Table 2.1-3). 

Karwatzki et al. (2017) present very detailed manifestations in each category, i.e., concrete 

concerns (e.g., kidnapping and imprisonment, slander and bullying, stalking), and these also 

apply to ADM. For instance, the manifestation “financial loss (direct or indirect)” is very 

similar to our concern negative financial impact Karwatzki et al. (2017). Another example is 

the manifestation “being fired”. This relates to our concern job loss Karwatzki et al. (2017). 

However, Karwatzki et al. (2017) identified other manifestations, such as “time loss”, which 

do not apply to ADM as they are mentioned neither in the literature nor in our interviews. 

Moreover, we expect our framework to provide several meaningful insights for individuals 

and organizations using ADM, and it is our express hope that our work in this area will lead 

to further research. ADM is a current topic of great interest and potential, but so far researchers 

have focused either on the possibilities of using and implementing ADM or on dealing with 

its technical consequences and ethical issues, while the concerns of individuals have only been 

considered selectively or disregarded entirely. None of the papers to date have focused on any 

reasons for reluctance from an individual’s point of view. Our primary theoretical contribution 

is, therefore, the understanding and structuring of concerns that prevent individuals from using 

ADM applications. Our framework can be used – either ex-ante or ex-post – to anticipate and 

evaluate problems associated with the introduction of ADM applications. We believe that our 

framework provides an interesting new perspective on this issue and will guide future 
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research. Furthermore, it contributes to the extensive literature on the dark side of IS since it 

contains individuals’ concerns and fears about using a specific technology, i.e., ADM.  

Our results also offer practical benefits. A thorough consideration of concerns is essential as 

it can determine whether or not ADM applications are successfully disseminated. Our findings 

clearly show that some of the concerns are subjective feelings. Companies that implement or 

think about implementing ADM use cases should consider these concerns when developing 

ADM applications. They can use the framework to address these concerns, offer their 

prospective users targeted information, and strengthen trust in process outcomes based on 

automated decisions. Furthermore, our framework allows individuals to systematically gather 

information about ADM’s potential risks for themselves and thus balance their concerns about 

ADM applications with facts. Many interviewees did not raise many concerns at the beginning 

of our interview but instead required concrete use cases to articulate their concerns.  

Nevertheless, our research does not yet go far enough. Whereas the findings from the literature 

review are based on studies from different regions and countries, the interviews were all 

conducted in Germany. Expecting interesting cultural differences, the framework may be 

improved by extending the scope of the interviews to different countries (Bélanger & Crossler, 

2011). Even though we included open questions regarding concerns about ADM at the 

beginning of each interview, future research may strive for more generalizability or test 

concerns for a specific use case. Moreover, future research may clarify the relationship 

between the concerns by collecting quantitative data and evaluating it, e.g., with factor 

analysis. Such future research may also contribute to the current discussion by developing 

appropriate countermeasures that address individuals’ concerns about ADM. 

 Conclusion 

The aim of this paper was to provide an overview of concerns about ADM and thus show the 

need for further research in this area. To date, the literature in the field has neglected the 

individual human side. Therefore, it has failed to account for the importance of individuals’ 

concerns as limiting factors in the adoption of ADM. Based on a thorough structured literature 

search and semi-structured interviews, we identified the concerns already addressed in the 

literature as well as those it has so far neglected. In total, we identified 24 concerns associated 

with integrating automated decisions into a person’s life. We structured these concerns in a 

framework divided into different categories: technology, data, decision for inherent concerns, 

and concerns adapted from the categories of Karwatzki et al. (2017). It is our belief that this 

framework will help in summarizing and communicating concerns about ADM with a view 
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to increasing confidence in automated decisions. As a result, this framework shall also support 

the adoption of ADM applications and enable individuals to be better informed about potential 

risks. 
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2.2 Individual concerns associated with the digital transformation in 

healthcare: Professionals’ and patients’ hindrances to adopt 

digital healthcare services 

Abstract 

Healthcare systems are facing enormous changes as digital technologies find their way to 

address current challenges. To foster acceptance of digital healthcare services in the future 

and support the digital transformation of healthcare, it is crucial to understand and overcome 

individuals’ hindering factors in adopting digital technologies. This paper presents eleven 

hindering factors structured along four categories. These hindering factors are deduced from 

an in-depth interview study with 26 healthcare professionals and patients. Thus, we provide a 

sound set of individual hindering factors mapped on the well-established Unified Theory of 

Acceptance and Use of Technologies and discuss general implications for digital technology 

adoption in healthcare. Our paper is a first step towards addressing relevant hindering factors 

and can be used – either ex-ante or ex-post – to anticipate, explain, or evaluate problems with 

the adoption of digital healthcare services. 
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 Introduction 

The healthcare sector has a long-standing reputation for being slow to adopt new technologies 

(Lucas et al., 2013), yet, finally, digital transformation has arrived (Pucihar, 2020; Vial, 2019). 

Driven by waves of digital innovations, digital technologies are now helping to realize the 

triple aim of improving the health of populations, enhancing experiences of care, and reducing 

the per capita cost of healthcare (Barello et al., 2015; Berwick et al., 2008; Devaraj & Kohli, 

2000; Sharma et al., 2016). But change can also imply disruption and, in healthcare, we are 

currently facing enormous changes resulting from the increasing availability of digital 

technologies. Such technologies enable changes in healthcare value creation paths, as the 

structure of traditional healthcare services is extended to incorporate additional stakeholders, 

such as IT service providers. This can lead to positive and negative impacts, for example, 

privacy-related issues for users (Vial, 2019) which can hinder their acceptance and use of 

digital technologies in healthcare.  

Regardless of its potential advantages and benefits, if a technology is not accepted – and, thus, 

not used – it creates no value. Therefore, the acceptance of technol Venkatesh et al. (2003)ogy 

has always been an essential aspect of information system research (Venkatesh et al., 2012), 

as has the acceptance of digital healthcare services (Hennemann et al., 2016, 2017). Currently, 

adoption levels of digital technologies (DTs) in healthcare remain relatively low. A 2018 

study, for example, reported that 94% of patients in Germany are concerned about risks to 

privacy or misdiagnosis when DTs are used in patient consultations (PWC Health Research 

Institute, 2018). A recent study suggests that only one in ten healthcare professionals (for 

short: professionals) is highly accepting of digitalization (Hennemann et al., 2017). 

Subsequent research found similarly low acceptance rates among patients (Hennemann et al., 

2018). One approach to analyzing the factors driving the acceptance of DTs is the well-

established Unified Theory of Technology Acceptance (UTAUT), proposed by Venkatesh et 

al. (2003). The theory defines acceptance as the intention to use technology, directly 

determined by the four constructs performance expectancy, effort expectancy, social 

influence, and facilitating conditions.  

However, individual concerns about undesirable outcomes resulting from digital 

transformation in healthcare may hinder the acceptance of a DT, as such concerns can 

negatively impact a user’s expectations regarding the four constructs of UTAUT. To enable 

the targeted addressing of users’ hindering factors in adopting DTs in healthcare, and to 

provide a holistic perspective on the topic, we see a need for an integrated, human-centered 
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model that unifies factors influencing professionals’ and patients’ reluctance over DT 

adoption in healthcare. Therewith, we aim to improve the understanding of acceptance issues 

relating to digital healthcare services and enable factors underlying individuals’ reluctance to 

be addressed. Directly investigating the individual, user-centric perspective will foster a broad 

understanding of acceptance among users – professionals and patients. In turn, this 

understanding will help to address factors contributing to this reluctance and, thus, to exploit 

the potential of digital transformation and digital healthcare service. Hence, we propose the 

following research question: 

Which factors can hinder an individual’s intention to use digital technologies in healthcare? 

This research question leads to three research objectives: (1) We aim to uncover factors 

contributing to professionals’ and patients’ reluctance to adopt DTs in healthcare and, as 

raised by Vial (2019), concerns about resultant negative impacts in the healthcare value 

creation path. To provide a human-centered understanding of the factors hindering adoption, 

we empirically identify and analyze individual’s perceptions of negative impacts resulting 

from the digital transformation in healthcare. (2) We aim to provide insights on technology 

adoption issues in healthcare by integrating the identified hindering factors in the UTAUT 

proposed by Venkatesh et al. (2003). (3) We aim to analyze how concerns differ between 

professionals and patients. To identify hindering factors, we conduct 26 interviews with the 

two main user-groups of DTs in healthcare – professionals and patients – which allow us 

insights into users’ perceptions. We use open and axial coding to identify concerns from the 

interview data (Corbin & Strauss, 1990). The literature on technology acceptance and digital 

transformation in healthcare is reviewed and integrated during our research process. Drawing 

on our insights, we derive eleven hindering factors resulting from the changes in the healthcare 

value creation path. We then integrate these factors – which we assign to four main categories 

of user, digital technologies, data, and resources – into the UTAUT. 

Our empirical results contribute to both research and practice. This study extends prior 

research on technology acceptance in healthcare by taking account of users’ different 

perspectives on negative impacts resulting from digital transformation in healthcare, yet doing 

so from a DT- independent perspective. Our work contributes to practice by offering a 

differentiated understanding of factors that may inhibit technology acceptance. We make two 

key contributions of importance for service providers and chief executive officers in 

healthcare, in particular, those considering the digitalization of healthcare services. Firstly, 

our study recognizes that digital transformation in healthcare is a sensitive issue, and that there 
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are manifold concerns among users that can hinder adoption. Secondly, we demonstrate that 

using our framework to map these concerns can help to address these hindering factors and 

foster acceptance. 

This paper is organized as follows: Firstly, we provide a brief overview of digital 

transformation in healthcare services and its acceptance. Secondly, we outline our qualitative 

research method, its application, and our approach to answering our research question. 

Thirdly, we present the derived framework and illustrate the identified concerns and potential 

risks regarding digital healthcare services from a professional and patient perspective. 

Fourthly, we discuss the study, its implications and limitations, and present our conclusions. 

 Theoretical background 

We aim to embed our study in the conceptual frame of digital transformation and technology 

adoption literature. Thus, there are two parts to our theoretical foundation: Firstly, we provide 

an overview of digital transformation in healthcare and the associated structural changes. 

Secondly, we review the current levels of acceptance and adoption of digital healthcare 

services and related approaches, like eHealth or health information technology.  

2.2.2.1 Digital transformation of healthcare services 

Digital transformation has emerged as an essential phenomenon in recent years, describing 

the profound changes related to the use of digital technologies (Majchrzak et al., 2016). 

Following Vial (2019), we understand the process of digital transformation to comprise eight 

main components: digital technologies create disruption triggering strategic responses to alter 

value creation paths while managing structural changes and organizational barriers that 

affect positive and negative impacts. This inductive framework is not domain-specific and, 

therefore, applicable to the transformations relating to digital healthcare services. And, as 

Lucas et al. (2013, p. 377), have pointed out: “IT-enabled transformation of health care is just 

beginning, and it cannot happen too fast.”  

In healthcare, the use of digital technologies is also becoming apparent. Digital innovations 

propel digital transformation towards realizing the triple aim of improving the health of 

populations, enhancing experiences of care, and reducing the per capita cost of healthcare 

(Agarwal et al., 2010; Berwick et al., 2008; Gopal et al., 2019). The technologies that Vial 

(2019) refers to are also present in healthcare: social (e.g., Liu et al., 2017), mobile (e.g., 

Fedele et al., 2017), analytics (e.g., Kane, 2016, 2017), platforms (e.g., Reuver et al., 2018), 

and Internet of Things (e.g., Dang et al., 2019).  
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Consequently, digital technologies in healthcare enable changes in the value creation paths 

that affect the ways that healthcare services are deployed and newly created. In healthcare, 

these changes become apparent when looking at the differences between traditional and digital 

healthcare services. In traditional healthcare services, the primary interactions take place 

between professionals and their patients. Individuals interact with one another during the 

provision of medical services, exchanging relevant information and engaging in screening-, 

prevention-, diagnosis-, treatment-, and care-related service. Therefore, the main flow of 

information is between these two parties. With the adoption of digital healthcare services, 

traditional interaction changes as DTs become an integral part of information and 

communication during healthcare service delivery (Batalden et al., 2016; Srivastava & 

Shainesh, 2015). Another important stakeholder of digital healthcare services is the service 

provider, who is responsible for the knowledge, provision, and installation of DTs (Srivastava 

& Shainesh, 2015).  

These changes in value creation paths generate both positive and negative impacts (Vial, 

2019). Vial (2019) mainly refers to privacy-related issues that are also present in healthcare. 

As a consequence of this newly emerging triangular relationship, the amount of health-related 

data is increasing enormously (Senthilkumar et al., 2018). On the one hand, this offers new 

ways of providing digital healthcare services to patients (e.g., integrating other professionals 

or insurances). On the other hand, third parties have more opportunities to (illegally) gain 

access to the data generated (Abouelmehdi et al., 2017). Figure 2.2-1 illustrates our research 

focus based on a simplified version of Vial’s (2019) framework. 

 

Figure 2.2-1 The process of digital transformation, proposed by Vial (2019), in digital 

healthcare services 
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Our study aims to address professionals’ and patients’ concerns about negative impacts 

resulting from structural changes to value creation paths (Vial, 2019). The use of digital 

technologies enables changes in the healthcare value creation path which have positive and 

negative impacts. Please note that Figure 2.2-1 summarizes basic flows of information – in 

specific services, some of these flows may be missing (e.g., the information flow between 

patient and DT in cases where the software is solely available to professionals). Further 

information flows might exist, such as for the service provider charging the patient for the 

service. However, this would not be part of the digital healthcare service itself and, thus, is 

excluded from Figure 2.2-1. 

2.2.2.2 Technology adoption in healthcare 

Technology adoption has received widespread attention. The understanding of individual 

acceptance and use of information technology is now a key research stream within the 

information system research community (Venkatesh et al., 2012). In general, adoption refers 

to the decision to use an innovation, for example, a service, product, process, or technology 

(Frambach & Schillewaert, 2002). The decision may be taken at an individual or an 

organizational level (Gopalakrishnan & Damanpour, 1997). In this research article, we 

investigate the decisions at the individual level; specifically, we examine the perspectives of 

professionals’ and patients’ as they represent the main users of DTs in healthcare and, 

therefore, their acceptance is decisive for technology adoption. Thus, we focus on individual 

users’ perspectives on and concerns about DT’s in healthcare.  

Research on information systems proposes several theoretical approaches to technology 

adoption and healthcare uptake at an individual level. Well-established theoretical 

frameworks, such as the UTAUT (Venkatesh et al., 2003; Venkatesh et al., 2012), 

operationalize acceptance as the intention to use technology, which is directly determined by 

different constructs. The UTAUT proposed by Venkatesh et al. (2003) posits three direct 

determinants of the intention to use a DT, namely performance expectancy, effort expectancy, 

and social influence, and one direct determinant of usage behavior, namely, facilitating 

conditions. See Table 2.2-1 for the definition of these constructs. 
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Table 2.2-1 The four constructs of the Unified Theory of Acceptance proposed by 

Venkatesh et al. (2003) 

Construct Definition Root Constructs 

Performance 

Expectancy 

The degree to which an individual 

believes that using the DT will 

improve performance 

 

Perceived usefulness, extrinsic 

motivation, job-fit, relative 

advantage, and outcome 

expectations 

Effort 

Expectancy 

The degree of ease associated with the 

use of the system 

Perceived ease of use, 

complexity, and ease of use 

Social 

Influence 

The degree to which an individual 

perceives that important others believe 

he or she should use the new system 

Subjective norms, social factors, 

image 

Facilitating 

Conditions 

The degree to which an individual 

believes that an organizational and 

technical infrastructure exists to 

support the use of the system 

Perceived behavioral control, 

facilitating conditions, 

compatibility 

 

The UTAUT aims to explain an individual’s decision-making process in accepting new DTs. 

The theory has been widely adopted, including in healthcare (Hoque et al., 2017; Kim et al., 

2016; Kohnke et al., 2014; Wills et al., 2008), where results indicate a positive relationship 

between the constructs in the UTAUT and users’ behavioral intentions (e.g., Wang et al., 

2020). Further studies investigate drivers of and barriers to patients’ (Ebert et al., 2015; 

Hennemann et al., 2016; Hoque et al., 2017) and professionals‘ (Ami-Narh & Williams, 2012; 

Hennemann et al., 2017; Li et al., 2013) acceptance of digital healthcare services, e-Health, 

or certain healthcare information technologies. These frameworks provide a useful lens to 

explain technology adoption in healthcare (Hennington & Janz, 2007). However, they must 

account for the specific technology in focus and its context (Jöhnk et al., 2021; Molla & 

Licker, 2005). Thus, they either investigate the adoption of a specific DT in healthcare or 

adopt the above-mentioned theories relating to a specific DT, context, or user group. However, 

a holistic view that unifies those factors discouraging users from adopting a DT is necessary 

to address technology adoption issues in a targeted manner.  

Several studies, such as those by Hennington and Janz (2007) and Alaiad and Zhou (2017), 

use the UTAUT by Venkatesh et al. (2003) to illustrate factors hindering the adoption of 

technologies in healthcare settings. In some cases, these factors reflect specific properties of 

the DT, and in others, the context. We aim to build on these studies and apply a perspective 

independent from a specific DT to investigate hindering factors relating to changes in the 

healthcare value creation path. In doing so, we investigate factors hindering professionals’ 
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and patients’ adoption of DTs for healthcare services. Previous studies on technology adoption 

in healthcare have reported low adoption rates among both professionals and patients. For 

example, Hennemann et al. (2017) surveyed German professionals and reported that nearly 

50% displayed a low level of acceptance, 40% a moderate level, and only 12% a high level. 

Likewise, patients show similar low-to-moderate acceptance rates of DT adoption in 

healthcare (Hennemann et al., 2018). Thus, a shared understanding of DT adoption issues in 

healthcare will enable further targeted research and practice to address – and, thus, help to 

foster – technology adoption in healthcare in the longer term. Specific factors hindering 

technology use in the healthcare contexts have been examined in prior research. Privacy, in 

particular, is a major issue in healthcare due to the sensitive nature of health-related data (C. 

L. Anderson & Agarwal, 2011; Black et al., 2011; Dhagarra et al., 2020). In general, the 

collection and analysis of personal data are often perceived as negative due to the potential 

for adverse physical, social, resource-related, psychological, prosecution-related, career-

relate, or freedom-related consequences for the individuals concerned (Karwatzki et al., 

2017). Other factors affecting technology adoption in healthcare may include the effectiveness 

of DT in healthcare (Ariens et al., 2017; Ash et al., 2004; Blachetta et al., 2016) , the fear of 

technical failures (Fichman et al., 2011; Khan et al., 2012) , and the cost of DTs (Alaiad & 

Zhou, 2017).  

In sum, recent research provides theoretical groundwork on technology adoption in 

healthcare, and on factors hindering in technology adoption by individuals, but does not 

identify relevant healthcare-specific, technology-independent hindrances that impede 

technology acceptance. Drawing on these previous studies, we seek to provide insights on 

factors hindering professionals’ and patients’ uptake, stemming from the fear of negative 

impacts resulting from changes in healthcare value creation paths. The resultant holistic view 

of these adoption issues and the ways in which hindering factors influence individuals’ 

intentions to use DTs can, then, be linked with insights from general research on consumer 

behavior to provide a first step toward understanding the adoption of DTs in healthcare 

services. This will enable research and practice to foster technology adoption in healthcare in 

the long term.  
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 Methods 

We adopt a qualitative research method in this study to answer our exploratory research 

question on concerns regarding the digital transformation in healthcare (Bhattacherjee, 2012). 

Specifically, we use an interpretative research approach based on exploratory interviews.  

2.2.3.1 Data collection 

For this study, we conducted interviews with individual healthcare professionals, including 

doctors, nurses, and caregivers, and with individual patients from a range of demographic 

backgrounds. We selected these two groups (professionals and patients) to identify 

commonalities and differences (Orlikowski, 1993). We used purposive sampling to identify 

our interview partners. The selection of interviewees was based on criteria that the authors 

believe have an impact on concerns about the use of digital healthcare services, namely 

affinity for technology, health status, and profession. All of these factors were assessed by a 

self-assessment of the interviewees. This allowed us to holistically examine individuals’ 

concerns about the use of DT in healthcare, to engage with the two main stakeholders of a 

digital healthcare service – the professionals and the patients – and to reflect on the key 

differences among and between these two user groups.  

We continued to collect data until ‘theoretical saturation’ was reached (i.e., the incoming data 

from each group was no longer contributing relevant input). In total, we conducted 26 

interviews with 12 professionals and 14 patients. The interviews took place either via video-

conferencing or in-person. A detailed overview of the interviewees can be found in 

Appendix 2.2.A and Appendix 2.2.B.  

Each interview lasted between 30 minutes and 50 minutes. The authors conducted the 

interviews equipped with detailed instructions and a semi-structured catalog of questions to 

ensure consistency. This approach provided initial guidance and the flexibility to 

accommodate the unique concerns of each individual. It also enabled the exploration of new 

and unexpected ideas (Karwatzki et al., 2017). We structured the interviews in three parts. 

Firstly, we asked the interviewee whether he or she had already heard of digital healthcare 

services, in general, to foster a shared understanding about the focus of the interview (Myers 

& Avison, 2002). Secondly, we asked some general questions on the topic of digital healthcare 

services. Thereby, we mainly focused on the interviewee’s experiences of digitalization in 

healthcare in daily life and their concerns and hopes for the future. Thirdly, we presented 

different digital healthcare services (see Appendix 2.2.C for an overview of the presented 

services) and asking the participants for their thoughts on each of these services. The services 
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have been selected so that they cover different medical areas and are in line with the latest 

developments in the field. In this part, we provided the interviewees with images and text to 

provide a clearer picture the different services. As language barriers during interviews can 

present significant challenges to researchers and may lead to misunderstanding (Squires, 

2009), all interviews were conducted in the interviewees’ native language (German). 

2.2.3.2 Data analysis 

All interviews were recorded and transcribed verbatim. The transcripts were then loaded into 

the software “f4Analyse,” which facilitates the evaluation of qualitative interviews by 

allowing researchers to organize the different codes and categories identified. We performed 

an iterative analysis using open and axial coding, following Corbin and Strauss (1990). Firstly, 

we used open coding techniques to compare opinions and thoughts that our interviewees 

mentioned, and identified similarities and differences. We also identified preliminary 

categories with no prior categorization. In total, the first round resulted in over 800 codes and 

more than 30 categories. Secondly, we grouped the categories into themes during axial coding 

and investigated the relationships between these categories (Corbin & Strauss, 2008). We 

variously renamed and re-classified codes, merging those that were similar and excluding 

concerns that were not directly related to DTs in healthcare. This resulted in 12 concerns 

comprising 4 broad categories. The entire coding process was performed by three researchers 

in eight coding workshops, each lasting at least 60 minutes. Ongoing discussions and the 

comparison of codes and categories ensured a common understanding of the data. During both 

coding stages, we also reviewed literature on general technology acceptance and the 

digitalization of healthcare services.  

As Glaser and Strauss (1967) observed, data collection and analysis are interrelated processes. 

The process does not merely involve reading an interview and conducting the analysis but 

consists of multiple steps. These include repeated consideration of the records, the 

identification of suitable passages, and comparisons with other interviews to identify codes. 

The aim was to develop a mutually exclusive, collectively exhaustive list of the interviewees’ 

most pressing concerns about digital healthcare services. By doing so, we aimed to identify 

concerns common to both patients and professionals. If a concern was only held by members 

of one of these groups, it would show up in the results. However, it turned out that (on a level 

of abstraction that emerged in the codes), each concern was present for both patients and 

professionals.  
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Like research by Parks et al. (2017) and Karwatzki et al. (2017), our interpretive approach 

was guided by two criteria that ensure the (1) trustworthiness (Lincoln & Guba, 1985) and (2) 

adequacy of our research process and its empirical grounding (Corbin & Strauss, 2008). 

Firstly, trustworthiness ensures our research is credible, transferable, dependable, and 

conforms with necessary standards (cf. Appendix 2.2.D). Secondly, Appendix 2.2.E provides 

detailed information on the criteria used to evaluate the empirical grounding of our work. 

Thirdly, we follow Corbin and Strauss‘s (2008) criteria for evaluating interpretative research, 

which will help the reader to assess the adequacy of the research process (Parks et al., 2017). 

These criteria are evaluated and documented in Appendix 2.2.F. 

 Findings 

Within the scope of our study, we identified eleven main factors hindering the digital 

transformation in healthcare, as perceived by professionals and patients. We assigned these 

factors, which were identified during the coding process, into four categories that specify 

fields of action that respond to incidences of risk and the occurrence of side effects related to 

DT in healthcare. Although these four categories are not entirely distinct, we believe they 

provide a good indication of the expected consequences of patients’ and professionals’ 

perspectives on changes in the healthcare value creation pathway which, ultimately, may lead 

to predicted negative impacts. Since the elements of the value creation path are 

interdependent, this also applies to the four categories and the hindering factors presented 

therein. Our results indicate that changes in the healthcare value creation path lead to negative 

impacts through the use of DTs and the increasing amount of personal, health-related data 

relating to users and resources. See Figure 2.2-2 for an overview of individuals’ concerns 

regarding negative impacts resulting from the changes in the healthcare value creation path, 

adapted from Vial (2019).  

2.2.4.1 Users 

Users – namely, patients and professionals – represent the central agent in digital healthcare 

services. Hence, hindering factors in the category “user” comprise all concerns that directly 

affect users’ personal integrity, self-esteem, dignity, and psychological health.  

Discrimination describes the individual’s concern that a user or user group will be treated 

differently, and notably worse, than others (L. M. Anderson et al., 2003; Peña Gangadharan 

& Niklas, 2019). An increased use of DTs in healthcare might lead to different medical 

services being made available to different groups of patients. This may relate to individual 

factors such as income, age, and affinity for technology, which can prevent or hinder access 
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to and the use of DTs, resulting in the exclusion of certain patients or patient groups from the 

latest standard in healthcare. For example, the elderly might constitute such a risk group since 

their affinity for technology is often low: “Elderly generations […] can [probably] not make 

use of digital healthcare services [as most of them] cannot even operate their mobile phones. 

Hence, the provision of digital healthcare services is an idea that is not beneficial for 

everyone” (Professional 4). Patients expressed fears of being treated differently by others, 

including professionals or acquaintances, due to individual factors: “Then, if I don’t want to 

or can’t use a service because it’s too expensive or burdensome for me, am I a second-class 

patient?” (Patient 12). The factor underlying this hinderance is the concern of negative 

impacts on the relationship between professionals and patients (Hennington & Janz, 2007). 

Patients are likely to feel excluded and may hold negative feelings towards their professionals. 

Losing the autonomy to act, either objectively or in the user’s perception, is a feeling of 

reduced individual freedom from external control or influence, resulting from the use of DT 

(Gimpel & Schmied, 2019). Firstly, professionals reported concerns about losing their 

objectivity, as DTs in healthcare offer service providers an opportunity to place targeted 

advertisements. The professionals spoke of their fear of being influenced or even manipulated 

to use a specific, promoted product rather than follow their own opinion on the best options 

for their patients. Professional 2 gave us a vivid example of a system for managing surgery 

that he uses in his daily work. This software “[…] is sponsored by several pharma companies 

and on the sides [of the screen] the relevant advertisement is displayed. Hence, when [the 

software] notices, with the help of the information from the patient file, that the patient has 

diabetes mellitus type II, it displays a fitting advertisement. Alternatively, for a patient with 

problems of the thyroid glands, when it is was noted in the patient file as a diagnosis, suddenly 

an advertisement for L-Thyroxin […] appears on the right-hand side”. Similar remarks are 

also made by patients, who consider that “companies are better at personalized advertising 

and try to influence [patients]” (Patient 6). Through this influence, a certain amount of 

autonomy is lost, since “there are enough people who say they are persuaded to purchase by 

personalized advertising” (Patient 1). Another issue concerns the ease of access to, and 

richness of, patients’ information. The overload of information can make it hard for 

professionals to objectively and thoroughly process all the information necessary to make a 

decision. For example, Professional 1 claimed that “when a reviewer is writing a report and 

gets access to all patient data beforehand, is he then still truly objective?”. Overall, patients 

and professionals expressed concerns about a general loss of autonomy. This concern 

stemmed from a growing sense that they were no longer the only agents holding power in 
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decisions about their patient’s treatment, or from questions about their ability to make 

decisions without being manipulated. Underlying this hindering factor is a concern that 

decisions are not being made based on what practitioners feel is best for the patient but, 

instead, on what providers, health insurers, or the like dictate. This may negatively impact the 

performance and quality of digital healthcare services and may, thus, impede DT adoption in 

healthcare (Venkatesh et al., 2003). It may also negatively influence the professional-patient 

relationship as patients may lose trust in the professional’s decisions.  

Data fixation describes users’ fear of being heavily dependent on their digital healthcare 

applications and the resulting data. DTs make it possible to capture a massive amount of 

health-related data. This risks reducing professional and patient perceptions of a patient actual 

health status to what is recorded and communicated in the form of data via DTs (Gimpel & 

Schmied, 2019). Patients may be overly concerned with their health status, for example, 

Professional 6 stated that the use of DTs “can lead to a lot of focus on one’s day-to-day well-

being, which usually leads to the development of a very introspective personality that no 

longer becomes free and independent of the disease.” Likewise, professionals may be 

overloaded by their patients’ data, or focus too much on previous patient’s data. Professional 

12 argued: “Of course, it is good to learn as much as possible about the health background of 

my patient. But if a device gives me all this information, unfiltered, I will certainly be 

overloaded by all the information. I would rush through all the data and probably forget the 

most important thing: the patient and the conversation with the patient.” Patients, in 

particular, are concerned that “the professional is passing the responsibility, and follows the 

system’s decision/suggestion” (Patient 1). Behind hindering factor is the professionals’ and 

patients’ concern of being too fixated on the data and missing important details on the patient 

available only at the interpersonal level. Additionally, it comprises patients’ concerns about 

“rely[ing] too much on digital healthcare applications” (Patient 8), which, in the worst case, 

might lead to “not noticing if the system does not work correctly and delivers wrong measured 

values because you have lost your sensitivity” (Patient 8). Ultimately, some patients worried 

the result would be “that one loses one’s own body awareness or perception if one only relies 

on [digital healthcare systems]” (Patient 7), or that one “interprets too much into the data 

and the analysis” (Patient 1) without critical assessment. Both aspects might negatively 

impact the performance and quality of a digital healthcare service, for example, when patients 

lose their sensitivity, which may impede DT usage.  

Data responsibility describes users’ concerns about obtaining the data necessary for service 

provision. This relates to professionals’ and patients’ concerns about whether data from DTs 
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and patients can be collected accurately and reliably. Patients are concerned that, for example, 

data reflects “symptoms […] described inaccurately [by patients], resulting in an 

inappropriate diagnosis” (Patient 9). Other patients hold a similar perspective, emphasizing 

the aspect of the increased physical distance between patient and professional: “I am worried 

that the doctor will receive too little or unreliable information if he does not see me in person” 

(Patient 4). Likewise, professionals may question whether “data is still reliable” as it is “highly 

subjective and collected by [medically] unskilled users” (Professional 11). Underlying this 

hindering factor is the user’s responsibility for qualitative data and the fear of trusting inferior 

data, which may lead to a decrease in the quality of the healthcare service. 

2.2.4.2 Digital Technologies 

The newly introduced central agent in a digital healthcare service is the digital technology 

itself. However, users report concerns that emerge during or in response to DT usage. Hence, 

hindering factors in the category “use of digital technologies” comprise two aspects of DT 

use: a failing DT or a user that fails to use a DT correctly. These hindering factors also reflect 

current research on technostress (Ayyagari et al., 2011; Ragu-Nathan et al., 2008). 

Unreliability of DTs describes all concerns accompanying the increased effort to offset 

technical problems such as crashes, hang-ups, or bugs (Ayyagari et al., 2011). The risk of 

technical problems bothers professionals as “there is always the risk that the computer crashes 

or that there are other technical problems [and] that is a […] big problem […]. That is very 

dangerous” (Professional 2). In addition to problems that can arise during the use of DTs, 

patients are also generally concerned about whether DTs function reliably or whether they 

have been “poorly developed [...] and treatment errors occur as a result” (Patient 6). This 

led to reluctance among patients to rely on such digital healthcare services “as the only source 

of information, because a lot can go wrong” (Patient 14). Firstly, this hindering factor stems 

from a concern that healthcare services may not be available due to a failing DT that cannot 

easily be repaired. Thus, the unreliability of DT can have negative impacts on performance. 

Secondly, the factor reflects users’ concerns about the effort needed to fix a failing DT during 

the service. Thirdly, it refers to an overall concern about whether the DT has been developed 

in such a way that it can reliably deliver value for the user (e.g., assessing correct data, 

determining appropriate treatments). 

The complexity of DTs comprises all concerns about errors that occur due to the uninformed, 

or inexperienced application of DTs in healthcare services, and relates to concerns about the 

complexity of DT. Users may feel that their DT skills are inadequate (Ayyagari et al., 2011; 
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Ragu-Nathan et al., 2008). For example, patients express concern that they are “unsure 

whether professionals are genuinely competent” (Patient 14) or whether “professionals are 

flooded with daily data [...] and are then [...] overwhelmed” (Patient 8). But patients are also 

skeptical about their own abilities, and whether they are “even able to deal with the 

complexity” (Patient 1). In short, both patients and professionals may be afraid that they are 

not experienced enough to handle digital healthcare services due to the complexity of DTs. 

Yet, rather than admitting a lack of experience, some users may pretend to be “experienced in 

using a technology, however, they are not. This can lead to huge problems due to incorrect 

application” (Professional 7). Like above-mentioned concerns about unreliable DTs, the 

complexity of DTs may lead to performance-based and effort-based impacts when individuals 

use a DT in the wrong way or not as intended by the DT provider. This, in turn, may inhibit 

DT adoption in healthcare. 

2.2.4.3 Data 

The use of DTs means increases in the amount of medical information elicited and personal 

data collected. Hence, hindering factors in the category “data” comprise concerns stemming 

from the amount and variety of collected data and the integration of new stakeholders. Users 

fear that these stakeholders may (illegally) gain access to data which they may use for their 

own purposes, including to manipulate, invade privacy, or exercise power. 

Invasion of privacy refers to concerns about data privacy – in particular, illegal accessing 

and use of personal, health-related data by third parties (C. L. Anderson & Agarwal, 2011; 

Black et al., 2011; Dhagarra et al., 2020). The increasing flow of information in digital 

healthcare services enables third parties, such as the service provider of the DT, to come into 

possession of patient data, leading to an increased risk of data leakage and, hence, abuse 

leading to privacy infringements. Individuals expressed concerns about the amount of 

sensitive, personal health-related data that may be misused or disclosed. Patient 3 explained: 

“Collected data is not analyzed independently but is combined with other data from you. 

Thereby, much additional information can be generated.”. Patient 2 went further: “Health-

related data reflects much about you: how you live and what your daily routine looks like, for 

instance. You can deduce much information about people when looking at that kind of data. I 

don’t want anybody to know about my health and my daily routine.”. Professionals also 

expressed an awareness of the sensitivity of patients’ data: “The moment a global computing 

or internet concern develops […] a digital healthcare application; the question arises: Where 

are the loopholes? I am sure they are there. Even if it appears to be anonymous, I would never 
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advise my patients to implant [such] a device […] in their body as the company will get the 

power over the patient’s data” (Professional 2). Underlying this hindering factor are concerns 

about adverse exchange, social exclusion due to health-related data made publicly available, 

and the loss of one’s privacy. All may lead to negative social consequences for the patient.  

Data manipulation refers to concerns about third parties gaining illegal access to stored data 

and using it to maliciously manipulate the data’s owner or the data itself (Agrawal & Alharbe, 

2019). Medical instructions, decision-making support systems, or dosages can be manipulated 

or changed by third-party data-hacking, which can have disastrous consequences on the 

patient’s health. Particularly in future, as the amount of personal information captured in 

electronic databases continues to grow at exponential rates, data security is likely to become 

even more critical (Angst & Agarwal, 2009). Patients raised concerns that the use of DTs in 

healthcare means that “[data] manipulation becomes easier” (Patient 2). Such concerns 

become even more significant when patients “[…] imagine what would happen if a system or 

device gets hacked” (Patient 1). Behind this hindering factor lies a concern about significant, 

performance-based consequences for a patient’s health and life.  

Super-powerful health insurance describes a concern about the increasing power of health 

insurance (Gimpel & Schmied, 2019). Health insurance companies have more access to 

individual patients’ health data and other personal information, which they can use to their 

own advantage. Many of the interviewed professionals raised the concern that patients could 

be excluded from insurances or have problems being accepted by new healthcare insurance 

schemes if insurers gain access to particular health-related information. Likewise, when it 

comes to the treatment of their patients, professionals fear the increasing influence of 

insurance companies who may, for example, interfere with a patient’s treatment financing. As 

one professional asked: “Does the doctor have to justify himself to the health insurer to get 

the financing for his patient’s care”? (Professional 1). Likewise, popular programs, such as 

those that share wearable data in return for a discount on the insurance premium, let patients 

think about what would happen if they, for example, exercise less: In this case, “[Would they] 

have to pay a higher health insurance premium than others? Health insurers might interpret 

this data to [a patients’] disadvantage” (Patient 1). Although insurance companies assure 

patients that they do not have to fear adverse effects from sharing their data, patients remain 

suspicious “which other benefits can health insurers derive from that data” (Patient 4) – 

particularly in the future when data analytics provides new opportunities to handle the massive 

amounts of emerging data. Underlying this hindering factor is a fear of being dependent on 
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health insurers. Afterall, if health insurers become too powerful, it may negatively impact the 

performance of a healthcare service, e.g., if cost coverage is refused. 

2.2.4.4 Resources 

DT use requires specific resources, such as money, time, and know-how. Thus, hindering 

factors in the category “resources” comprise all concerns referring to users’ resources. In 

contrast to the other hindering factors, those in the category “resources” can directly impact a 

user’s DT use-behaviour (Hennington & Janz, 2007). 

Financial effort refers to the consequences of investing money in DTs in healthcare 

(Hennington & Janz, 2007; Jöhnk et al., 2021). Professionals and patients must invest 

financial resources to if they wish to use DTs in healthcare services. The lifecycle of DTs is 

short, and constant advancements in the field mean constant investments are necessary to 

keep-up with the newest technologies. As Professional 10 explains: “You always have to stay 

up-to-date and keep up with all the developments in the digital field. These can lead to high 

costs for practice operators, for example.” Monetary constraints and low budgets can prevent 

professionals and patients from adopting and using a DT in healthcare services. Such 

constraints can lead to difficult choices, particularly as some patients argue that, from their 

point of view, “it is unclear whether it is worth the financial effort at all and whether the 

service will be better than before” (Patient 1). Thus, the financial effort may be classified as 

a facilitating condition that can directly hinder DT use-behavior (Hennington & Janz, 2007). 

Time effort refers to the time required to familiarize oneself with and learn to use a particular 

DT, and to handle malfunctioning DTs (Hennington & Janz, 2007). However, time is a scarce 

commodity, especially for professionals in healthcare contexts. As a consequence, some 

professionals pretend to be “against the introduction [of DTs] because it takes so much time 

to set up and learn everything. I prefer to spend this time taking proper care of my patients” 

(Professional 7). Similar thoughts were also expressed by patients, who found it “difficult to 

imagine how the physician is supposed to devote time to the introduction and then deal with 

[the DT] in terms of their time” (Patient 1), and questioned “whether enough time is invested 

by [patients and professionals] to deal with the [DTs] in a meaningful way” (Patient 4). Like 

financial constraints, time constraints may be classified as a facilitating condition that can 

directly hinder DT use-behavior (Hennington & Janz, 2007). Even if professionals and 

patients are willing to adopt a DT, they cannot do so if they do not have the time.  
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 Discussion and implications 

Our study builds on earlier research on digital transformation by Vial (2019) that observes 

changes in the value creation path. Based on 26 interviews with key users of a digital 

healthcare service – namely, professionals and patients –we explored hindering factors that 

impede the adoption of DTs in healthcare. Concerns about negative impacts on 

patients/professionals arise in response to changes in the healthcare value creation path. In 

total, we identified eleven hindering factors which we assigned to the four categories users 

(discrimination, losing autonomy to act, data fixation, data responsibility), data (invasion of 

privacy, data manipulation, super-powerful health insurers), digital technologies (unreliability 

of digital technologies, complexity of digital technologies), and resources (time effort, 

financial effort). These hindering factors stem from the changes in healthcare value creation 

path and lead to concerning negative impacts. Figure 2.2-2 depicts professionals’ and patients’ 

concerns associated with the digital transformation in healthcare.  

 

Figure 2.2-2 Model of professionals’ and patients’ concerns associated with the digital 

transformation in healthcare 

 

Considering the nature of the healthcare sector, we highlight two important perspectives on 

adopting DTs in this specific field. Firstly, our results yield a holistic, unified understanding 

of factors specifically hindering DT use in healthcare that emerge as a result of including DTs 

in the healthcare value creation path. Some of these factors are not new to research on 

healthcare services and have been discussed in prior literature in the wider context of ongoing 

digitalization in healthcare (Esmaeilzadeh, 2019; Khilnani et al., 2020). These include, for 

example, the unreliability and complexity of digital technologies in terms of their implications 

on technostress (Ayyagari et al., 2011; Ragu-Nathan et al., 2008), discrimination based on 
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individual differences (L. M. Anderson et al., 2003), and concerns about privacy issues, data 

manipulation, and security breaches (Abouelmehdi et al., 2017; Appari & Johnson, 2009). 

Secondly, our study provides an opportunity to compare differences between the factors 

hindering DT use among the two main stakeholder groups in healthcare services (see 

Appendix 2.2.G for a detailed overview). One thing that becomes apparent when comparing 

professionals’ and patients’ concerns is the similarity between the way concerns are perceived. 

We did not observe substantial differences in the way professionals and patients mentioned 

specific concerns about the user, the data, the use of DTs, or resources. Each of the eleven 

hindering factors was mentioned at least once by both a patient and a professional. However, 

there are differences in the way the stakeholders are affected by the hindering factors. It is 

mainly patients who are concerned about data manipulation, data fixation, invasion of privacy, 

and discrimination. On the other hand, professionals are mainly concerned about losing the 

autonomy to act, e.g., losing objectivity or being manipulated for the benefit of a third party. 

Last, professionals and patients are both equally affected by super-powerful health insurers, 

the unreliability of DTs, the complexity of DTs, and financial and time effort, e.g., when 

training to use a new DT.  

The results of our exploratory interview study have enabled us to identify eleven factors 

providing clear reasoning for the adoption problems of DTs in healthcare. Yet, beyond 

recognition of these specific hindering factors, DT adoption in healthcare entails an 

understanding of their implications for an individual’s intention to use a DT. Thus, the fact 

that concerns about negative impacts resulting from the use of DTs can hinder the adoption of 

DTs in healthcare (Hennington & Janz, 2007) emphasizes the need to specifically consider 

DT adoption in healthcare. Based on our results, we suggest a future research model for the 

empirical validation of the relevant adoption factors. In the following, we will position the 

results of our exploratory interview study within the existing literature on technology 

adoption, as shown in Figure 2.2-3. 

2.2.5.1 Conceptualizing individual factors relating to DT adoption in healthcare 

To embed our findings in the existing literature and investigate the effects of concerns 

surrounding DT adoption, we build upon the UTAUT proposed by Venkatesh et al. (2003). 

We argue that the eleven hindering factors identified in our study impact the four main 

constructs performance expectancy, effort expectancy, social influence, and facilitating 

condition from the UTAUT. On this basis, we suggest that factors hindering individuals 
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impede the individual’s behavioral intention to use a DT, and negatively influence use-

behavior (Hennington & Janz, 2007; Venkatesh et al., 2003).  

 

Figure 2.2-3 Factors affecting the adoption of DTs in healthcare 

 

Firstly, our analysis revealed five hindering factors related to the performance expectancy of 

a digital healthcare service, which we suggest influence professionals’ and patients’ 

behavioral intention to use DTs in the context of healthcare services: losing the autonomy to 

act, data manipulation, super-powerful healthcare insurers, the unreliability of DTs, and the 

complexity of DTs. Performance expectancy is shaped by the individual’s perception of the 

outcome of a digital healthcare service, and, thus, by improvements in the quality of the 
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healthcare service (Hennington & Janz, 2007). However, professionals and patients fear that 

the adoption and use of DTs in healthcare may negatively impact the performance and 

outcome of a digital healthcare service, which may have implications on their behavioral 

intention to adopt DTs (Hennington & Janz, 2007; Venkatesh et al., 2003).  

Secondly, our study highlights two hindering factors related to the effort expectancy 

associated with a digital healthcare service, namely, the unreliability and complexity of DTs. 

Effort expectancy is shaped by the individual’s perceptions of the ease-of-use of a DT 

(Hennington & Janz, 2007). However, professionals and patients are aware of the efforts 

involved in adopting DTs. Thus, similar to performance expectancy, effort expectancy can 

hinder the individual’s behavioral intention to adopt DTs in healthcare (Hennington & Janz, 

2007; Venkatesh et al., 2003). 

Thirdly, we highlight two hindering factors that impact social influence, namely, 

discrimination and invasion of privacy. Venkatesh et al. (2003) define social influence as the 

way in which individuals believe others will view them when using a DT, and conceptualize 

it using subjective norms, social factors, and image. Hennington and Janz (2007) highlight 

relationships with others, e.g., the relationship between physician and payer can impact social 

influence, affecting an individual’s intention to use DTs. 

Lastly, we suggest two factors relate to the facilitating condition: time effort and financial 

effort (Hennington & Janz, 2007). These factors are commonly mentioned as a hindrance to 

DT adoption and directly impact an individual’s use-behavior (e.g., Bria, 2006, Leung et al., 

2003, Mutlag et al., 2019, van Ginneken, 2002). 

2.2.5.2 Implications for theory 

Prior studies have revealed a low level of acceptance of DTs in healthcare among 

professionals and patients. To date, most studies on the acceptance of DTs in healthcare have 

focused on a certain DT or a specific context to examine technology adoption. However, a 

holistic understanding of DT adoption in healthcare is still missing. At the same time, 

however, technology acceptance is essential to exploit the potential that digitalization holds 

for healthcare services. By using an interpretive approach, our study was able to capture and 

gain insights into how professionals and patients feel about structural changes in the 

deployment of healthcare services and how these concerns lead to perceived risks. The use of 

interviews allows us to explore and understand professionals’ and patients’ concerns 

associated with the digital transformation in healthcare. Against this background, our research 

makes the following three contributions. 
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First of all, we identified eleven different hindering factors that prevent patients or 

professionals from using digital healthcare services. These hindering factors are the result of 

structural changes in healthcare services. By providing a unified overview of the perceived 

concerns and their associated risks, our research will help efforts to prioritize and address 

concerns held by both patients and practitioners. These eleven hindering factors can be 

grouped into four categories, namely user, digital technologies, data, and resources, which, 

together with the hindering factors they contain, lead patients and professionals to anticipate 

negative impacts. 

Secondly, with the insights from our study, we now provide the additional empirical 

groundwork for theorizing technology adoption in healthcare and extending the digital 

transformation framework posed by Vial (2019). The four categories summarizing our 

hindering factors provide a good indication of the consequences both patients and 

professionals expect will result from changes in the healthcare value creation pathway and, 

ultimately, lead to negative impacts. This allows us to better understand how changes in the 

value creation path can lead to negative impacts and, thus, specifies the building block 

negative impacts in the framework posed by Vial (2019). Interestingly, the four categories are 

somewhat generic, meaning they can potentially be applied in other contexts related to digital 

services. 

Thirdly, our study enriches insights from previous research by integrating individual concerns 

into the UTAUT. While several prior studies have applied technology models like the UTAUT 

to the healthcare context (e.g., Kohnke et al., 2014, Phichitchaisopa & Naenna, 2013, Wills et 

al., 2008), we contribute to the current literature on technology use in healthcare by providing 

an integrated and context-independent consideration of technology acceptance and users’ 

concerns in healthcare. This allows the development of research models for the empirical 

validation of the relevant concerns accompanying the digital transformation in healthcare. 

To summarize, this study addresses the need for a holistic understanding of professionals’ and 

patients’ concerns regarding digital healthcare services, and provides new theoretical insights 

into technology acceptance in healthcare. While we have focused on the so-far 

underdeveloped understanding of digital healthcare’s dark side, future research may integrate 

the concerns and risks with standard technology acceptance models.  
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2.2.5.3 Implications for practice 

In addition to the theoretical contributions, our research provides insights into challenges and 

opportunities for DT implementation in the healthcare sector. There are two main 

stakeholders: (1) service providers and chief executive officers in healthcare planning hoping 

to integrate DTs in their services and (2) the users, namely professionals and patients. 

Firstly, DTs and digital services can offer benefits. However, there are examples of promising 

innovations that failed to diffuse because key actors were reluctant to use them (Angst & 

Agarwal, 2009). Thus, users’ acceptance is crucial, and our study provides insights into major 

concerns. Our framework can be used – either ex-ante or ex-post – to explain, anticipate, and 

evaluate problems when switching to digital healthcare services. The early investigation of 

concerns among users is of great importance. It is an opportunity to, ex-ante, take concerns 

about risks into account when digital healthcare services are developed, and users can provide 

explicitly information about these concerns. If acceptance is low, an ex-post evaluation of the 

reasons can be carried out. In this case, our framework may provide insights into 

professionals’ and patients’ perceptions and can help to address their concerns. 

Secondly, the framework can, likewise, improve the doctor-patient relationship by making 

doctors more aware of the concerns and risks that patients deal with and, hence, address these 

concerns more effectively. This also enables patients to obtain more targeted information 

about possible risks and to address or weigh up their concerns in a targeted manner regarding 

the respective digital healthcare service.  

To summarize, digital transformation in healthcare is a sensitive issue as concerns among 

users can hinder adoption. These concerns should be considered ex-ante and ex-post when 

integrating DTs in healthcare services. Secondly, addressing these concerns may help to foster 

acceptance. Providers and users can profit from our framework by building upon the proposed 

understanding of technology acceptance. 

2.2.5.4 Limitations and suggestions for future research 

Our study has some limitations, which we believe offer opportunities for future research. 

Firstly, the purpose of our study was not to achieve statistical validation. We aimed to discover 

patterns for theory building and to gain a better understanding of the main issues in this 

context. It is reasonable to assume that our framework’s insights will guide future research to 

develop a more formal theory (Orlikowski, 1993). Thus, we encourage future research to 

collect and test additional data to further clarify our findings and further incorporate the 

framework into theory. Likewise, more empirical and theoretical work is needed to more 
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closely examine relationships among the seven concerns. In particular, complementary 

methods such as surveys or experiments could be used to extend our findings. 

Secondly, this study was conducted in only one country and only with native speakers. 

Although we believe that our findings are partially transferable to other countries, healthcare 

systems worldwide vary widely. We cannot discount the possibility that users from other 

countries have different concerns than those in Germany, and researchers have already 

highlighted that there are differences in attitudes to information privacy across countries and 

cultures (Lowry et al., 2011; Posey et al., 2010). Future research should account for regional 

and cultural differences to test the generalizability of our results.  

Lastly, we have limited our study to identifying professionals’ and patients’ concerns 

regarding digital healthcare services. We encourage future research to use our study as a 

starting point for going one step further towards addressing these concerns. A next step could 

be to integrate the concerns in a technology acceptance model analogous to those developed 

by Tan et al. (2012) and Lin and Kim (2016). 

 Conclusion 

New DTs are providing more and more opportunities to tackle major problems in healthcare. 

They provide promising opportunities to realize the triple aim in healthcare – care, health, and 

cost – but only if they are accepted by users. However, users’ willingness to adopt new DTs 

is often limited due to concerns specific to the context of healthcare, not least the sensitivity 

of health-related data. Building upon the framework of digital transformation proposed by 

Vial (2019), and interviews with professionals and patients, our research provides a thorough 

conceptualization of individuals’ concerns about digital transformation in healthcare. Further, 

we discussed the integration of these concerns into the UTAUT. We believe that our study 

offers a starting point for future research on this topic and hope that it will help to fostering 

technology adoption in healthcare.  
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Appendix 

Appendix 2.2.A Overview of the professionals 

ID Gender Age Affinity for 

technology 

Profession 

Professional 1 F 50-60 average Pharmaceutical technician, 

Alternative practitioner 

Professional 2 M 20-30 high Medical student 

Professional 3 F 20-30 average Nurse, Medical student 

Professional 4 F 30-40 average Physician (vascular surgeon) 

Professional 5 F 20-30 average Nurse 

Professional 6 M 40-50 average Physician (neurology) 

Professional 7 F 50-60 average Psychologist 

Professional 8 F 30-40 Low Physiotherapist 

Professional 9 F 50-60 average Psycholinguist 

Professional 10 F 40-50 average Midwife 

Professional 11 F 30-40 average Neuroscientist 

Professional 12 F 30-40 average Assistant Physician 
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Appendix 2.2.B Overview of the patients 

ID Gender Age Affinity for 

technology 

Profession 

Patient 1 F 20-30 high 
Business and Information Systems 

Engineering 

Patient 2 M 20-30 high Computer Scientist 

Patient 3 M 20-30 high Research Assistant 

Patient 4 M 60-70 average Works Council 

Patient 5 M 50-60 high Software Developer 

Patient 6 F 60-70 low Retiree 

Patient 7 M 20-30 high Rescue Assistant 

Patient 8 F 20-30 average Children’s Nurse 

Patient 9 F 40-50 low Seller 

Patient 10 M 30-40 high Computer Scientist 

Patient 11 F 20-30 average Law student  

Patient 12 F 30-40 low Administration in a hospital 

Patient 13 F 40-50 high Project Management 

Patient 14 F 60-70 low Retiree 
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Appendix 2.2.C Overview of the digital healthcare services presented in the interviews 

(translated version) 

Digital Healthcare 

Service 

Description 

Online Consulting A platform offers alternative counseling options for specific health issues. To do this, 

the patient must fill out a questionnaire after registering and then receive an initial 

medical assessment based on the symptoms reported and medical advice on how to 

proceed afterwards.  

Self-Tracking A new smartwatch from a worldwide leading technology company is also to be used 

in diagnostics and medical IT in the long term. Initially, it will include not only a 

fitness tracker but also a sleep tracker. This will not only store fitness data, but will 

also be able to collect and document health data in the long term. 

This will enable patients to log their activity (how many kilometers they have walked) 

and their body data (e.g. weight) and evaluate them using their cell phone and other 

special tracking programs. Furthermore, the results can be shared with friends via 

social networks. 

Digital Twin The provision of all health-related data in a central location will enable physicians in 

the future to create a virtual twin of each patient on whom they can try out their 

treatment. This enables systematic therapy and prevention by testing all possible 

treatments on virtual patients. In this way, undesirable side effects can be avoided.  

In cancer therapy, very good results have already been achieved with the modeling 

of tumors. 

Telemedicine A website offers to arrange virtual consultations with doctors from all over Germany. 

This means that specialists in particular can be consulted quickly, regardless of 

geographical distance. 

Additional offers 

with the health 

insurance 

A health insurance company is considering integrating the use of fitness wristbands 

into its bonus program. As part of a major promotion, this health insurance company 

is offering to provide financial support for the purchase costs of smartwatches and 

trackers.  

As soon as the insured person's number and some other information (e.g. weight, 

height, sports activities) are provided, up to 150 euros can be saved via a bonus 

program. In addition, the health insurance company advertises a bonus of €100 if 

sports activities can be documented with the apps or data from the fitness wristband. 

Diagnostic Support A worldwide leading technology company recently presented an intelligent contact 

lens for diabetics. This continuously measures blood glucose levels and warns of 

blood glucose fluctuations. The lens measures the glucose levels in the tear fluid 

every second and can thus assist in dosing the correct amount of insulin. 

  



2 Part A: Negative consequences of digitalization for the individual 89 

 

Appendix 2.2.D Evaluation of trustworthiness (based on Lincoln and Guba (1985), 

Parks et al. (2017) and Karwatzki et al. (2017)) 

Evaluation 

criteria 

Goal Appraisal 

Credibility Assessment of 

whether the results 

are believable 

To ensure credibility, we carefully followed the established 

guidelines by Corbin & Strauss 1990 on how to conduct Grounded 

Theory Method. We gathered data from 26 interviews with 

professionals and patients who varied terms of age, affinity for 

technologies or profession, as described above. Despite their 

differences, in the end all interviewees raised similar concerns, 

indicating we had reached data saturation. In addition, our interview 

facilitators were well trained and conducted the interviews with 

great care. This provides us with further assurance that the insights 

gained in our research are reflective of reality. 

Transferability Assessment of 

whether the results 

can be applied to 

other contexts 

To maximize transferability, we conducted interviews with a 

heterogeneous group of professionals and patients ensure our 

findings are context- and person-independent. However, due to 

multiple differences in healthcare systems around the world, we 

predominantly limit our findings to healthcare contexts in Europe. 

Dependability Assessment of 

whether the findings 

are consistent 

In line with Parks et al. (2017) and Karwatzki et al. (2017), we have 

been engaged in constant scientific exchange with research 

assistants at the authors’ departments, who provided critical 

feedback on our approach and the identified concepts. 

Confirmability Assessment of 

whether the results 

are confirmable 

To ensure confirmability, we split our research process into three 

parts. While the first focuses on concerns regarding the use of 

digital healthcare services from a patient’s perspective, the second 

focuses on concerns regarding the use of digital health services 

from a professional’s perspective. Both phases were carried out 

until theoretical saturation was reached. The emerging results were 

merged into a holistic concept and, finally, in the third phase, 

evaluated by both patients and professionals and adjusted 

accordingly. Only once a round of interviews confirmed no further 

refinements were necessary was the concept finally confirmed 
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Appendix 2.2.E Empirically grounding of the study (based on Corbin and Strauss 

(2008), Parks et al. (2017) and Karwatzki et al. (2017)) 

Evaluation criteria Goal What to look for in this study? 

Criterion 1: Are 

concepts 

generated? 

Assess whether 

the concepts used 

in the research are 

grounded in the 

data 

By analyzing the interview transcripts using open and axial, and 

constantly comparing and refining the concepts, the codes 

emerged. Therefore, all presented hindering factors are grounded 

in data. Exemplary quotations supporting our concepts are 

presented in sections focusing on respective hindering factors. 

Criterion 2: Are the 

concepts generated 

systematically 

related? 

Check whether 

there is are links 

between concepts 

Our findings show how the hindering factors are related to one 

another. For example, we show that the professionals’ and 

patients’ hindering factors can be classified into eleven factors 

structured along four main categories. Furthermore, we map 

these hindering factors on the well-established UTAUT. 

Criterion 3: Are 

there many 

conceptual links 

and are the 

categories well 

developed? Do they 

have conceptual 

density? 

Check whether 

the categories and 

subcategories are 

tightly linked 

We employed open and axial coding. Throughout these 

processes, the concepts related to subjective hindrances in using 

digital healthcare technologies that emerged were linked to one 

another, and several early concepts were merged into more 

general categories. Thus, we ensured the conceptual density of 

the categories by identifying and specifying the categories in 

detail. 

Criterion 4: Is 

much variation 

built into the 

theory? 

Check for 

variations in the 

theoretical model 

and different 

conditions and 

consequences 

Our aim was to build an extensive framework indicating why 

individuals hesitate to use digital healthcare services and, 

thereby, to develop understanding of professionals’ and patients’ 

concerns. In doing so, we made sure that our framework is 

independent of the actual setting and, therefore, can be applied in 

Germany or countries with similar healthcare systems.  

Criterion 5: Are the 

broader conditions 

that affect the study 

built into its 

explanation? 

Incorporate the 

micro and macro 

conditions 

Although our study aimed to identify subjective hindrances to the 

use of digital healthcare technologies, we expect that the 

importance of adverse hindering factors will vary across contexts 

(e.g., the healthcare system of the country, advances in digital 

healthcare services). Our framework offers a deeper 

understanding of how hindering factors impact the adoption of 

digital healthcare technologies, whereby perceptions of the 

significance of these hindering factors can differ. 

Criterion 6: Has 

process been taken 

into account? 

Check if process 

has been 

considered 

We discuss conditions under which changes may occur in the 

Section 2.2.5. 

Criterion 7: Do the 

theoretical findings 

seem significant 

and, if so, to what 

extent? 

Check for 

imagination and 

insights 

Our findings are context- and person- independent and have been 

carefully developed and grounded in our data. Thus, we think that 

our framework can help to address the adoption of digital 

healthcare services in further research supporting the relevance 

of our findings. 

Criterion 8: Does 

the theory stand the 

test of time and 

become part of the 

discussions and 

ideas exchanged 

amongst relevant 

social and 

professional 

groups? 

Check whether 

theoretical 

framework is able 

to withstand 

future testing and 

research 

We are confident that our framework can be of use as a starting 

point for future research addressing the topic of technology 

adaption in healthcare. In particular, we would like to encourage 

researchers to conduct more studies in this research field and 

extend the scope of our framework. The emerging framework is 

comprehensive, and we believe that it will remain be stable over 

time. However, the rapid changes and developments in 

information technology may neccessitate extensions to our 

framework. 
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Appendix 2.2.F Research process evaluation criteria (based on Corbin and Strauss 

(2008), Parks et al. (2017) and Karwatzki et al. (2017)) 

Evaluation criteria What to look for in this study? 

Criterion 1: How was the 

original sample selected? On 

what grounds? 

The collection of interview partners aims to construct a preferably 

heterogeneous group of professionals and patients to include as many 

different perspectives as possible before reaching theoretical saturation. 

The selection of interviewees was based on criteria that the authors 

believe have an impact on concerns about the use of digital healthcare 

services, namely affinity for technology, frequency of health services use, 

and educational background. The first interviewees were questioned from 

the immediate environment of the authors, and others were acquired in a 

snowball process. 

Criterion 2: What major 

categories emerged? 

In total, eleven hindering factors structured along four main catogores, 

which are associated with the use of digital healthcare services from the 

perspective of patients and professionals emerged: users (discrimination, 

losing the autonomy to act, data fixation, data responsibility), data 

(invasion of privacy, data manipulation, superpowerful health 

insurances), digital technologies (unreliability of digital technologies, 

complexity of digital technologies) and resources (time effort, financial 

effort) 

Criterion 3: What were some of 

the events, incidents or actions 

(indicators) that pointed to some 

of these categories? 

In each interview, the interviewer encouraged the participants to share as 

many digital-healthcare-related experiences as possible and discussed 

each of them in-depth. Besides, different use cases of digital healthcare 

services in concrete contexts were presented to the interviewees and 

discussed in detail to get a broader understanding of hindrances in using 

digital healthcare services. The hindering factors that arose were then 

coded and led to the categories and linkages reported in the Section 2.2.5. 

Criterion 4: On the basis of 

what categories did theoretical 

sampling proceed? That is, how 

did theoretical formulations 

guide some of the data 

collection? After the theoretical 

sampling was done, how 

representative did the categories 

prove to be? 

hindering factors in using digital healthcare services are the fundamental 

concepts within our study. Therefore, we applied an iterative process and 

gathered additional interview data from two different stakeholders within 

the digital healthcare service as long as new insights in terms of new 

consequences, new linkages to actors, or new mitigation mechanisms 

emerged. Across all interviews, we ensured having a diverse sample to 

cover all essential concepts. At the beginning of our research, some of the 

identified concepts were rather specific. However, most were later 

combined with other concepts and thereby merged into categories on a 

higher level of abstraction. 

Criterion 5: What were some of 

the hypotheses pertaining to 

conceptual relations (i.e., 

among categories), and on what 

grounds were they formulated 

and validated? 

Based on our data and an interpretation of them, we came up with 

hypotheses early on during data analysis. As an example of those 

hypotheses, this includes that, when it comes to accessing data from 

digital healthcare services, not only the malicious use of data by third 

parties (i.e., data abuse) but also well-intended use of data by third parties, 

for example, to display allegedly adequate behavior (i.e., discrimination) 

can be problematic and is a potential hindrance in using digital healthcare 

services. 

Criterion 6: Were there 

instances in which hypotheses 

did not explain what was 

happening in the data? How 

were these discrepancies 

accounted for? Were hypotheses 

modified? 

Throughout the coding process, categories and links between these 

categories have emerged. Some of these categories and their associated 

hypotheses have been preserved while others have been discarded. For 

example, in the beginning, we had the impression that interviewees were 

mainly concerned about the short- to medium-term effects of using digital 

healthcare services. We adapted this hypothesis and extended it 

accordingly to a long-term perspective when we discovered that, for 

example, this uncertainty about what will be possible in the future with 

already collected data from digital healthcare services, is a crucial factor. 

Criterion 7: How and why was 

the core category selected? Was 

Early on during the interviews, when we investigated participants’ 

concerns regarding the usage of digital healthcare services, most of the 
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this collection sudden or 

gradual, and was it difficult or 

easy? On what grounds were the 

final analytic decisions made? 

interviewees primarily talked about concrete harmful risks (e.g., loss of 

reputation, loss of money/time) that they were afraid of rather than 

abstract hindering factors. Nevertheless, we have chosen to focus on the 

concerns, as these are usually the underlying causes of harmful risks and 

allow specific conclusions to be drawn about hindrances in using digital 

healthcare services.  
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Appendix 2.2.G Overview about the occurrences of hindering factors in the interviews 

ID Users Data Digital 

Technologies 

Resources 

Professional 1 x x  x 

Professional 2 x x x x 

Professional 3  x x  

Professional 4 x x   

Professional 5  x   

Professional 6 x x   

Professional 7  x x x 

Professional 8  x   

Professional 9 x x  x 

Professional 10 x x x x 

Professional 11 x x x  

Professional 12 x x x  

Patient 1 x x x x 

Patient 2 x x x  

Patient 3  x   

Patient 4 x x  x 

Patient 5  x x  

Patient 6   x  

Patient 7 x x   

Patient 8 x x x x 

Patient 9 x x   

Patient 10 x x  x 

Patient 11 x x  x 

Patient 12 x x x  

Patient 13  x x x 

Patient 14 x x x  
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3 Part B: Design approaches for information systems in 

organizations 

3.1 Self-Services – Do not leave your customers alone with the 

technology 

Abstract 

New arising technologies change the modes of interaction between companies and their 

customers. So-called self-service technologies (SSTs) allow integrating customers as active 

participants into companies’ business processes and thereby are expected to generate not only 

more efficient processes but also positive effects on customer satisfaction. As some customers 

do not consider their integration as an improvement and others are not able to use the SSTs, 

companies have to provide personal support offering direct response, assurance and social 

interaction. As for many companies the corresponding economic effects remain unclear, the 

aim of this paper is to develop a quantitative decision model that allows to decide on the 

integration of customers in business processes while considering of the necessary customer 

support on an economically well-grounded basis. To demonstrate the applicability of the 

model and its practical utility, we conduct a case study. 

 

Keywords: Customer integration, Self-service technologies, Customer support 

 

Authors:  

Daniela Waldmann (geb. Engel) (M.Sc.) 

Lena Utz (geb. Kryzhanivska) (M.Sc. with honors) 

Dr. Anna-Luisa Stöber (geb. Müller) 

Lea Rupprecht (M.Sc.) 

 

Status 

This article is published in the Proceedings of the 12th International Conference on 

Wirtschaftsinformatik, March 4-6 2015, Osnabrück, Germany. 

  



3 Part B: Design approaches for information systems in organizations 95 

 

 Introduction 

Customers nowadays increasingly value technology-facilitated interactions and transactions 

and hence the use and importance of SSTs is constantly growing. According to Gartner (2014), 

web self-services have grown from US $600 million in 2011 to US $1 billion in 2012 and 

annual transactions at retail self-checkout terminals are at US $250 billion and continue to 

grow (Barlyn & Carlton, 2007). There are several current trends fostering the use of self-

services, like the increase in personal costs, the emerging digitalization, and the new self-

understanding of the customers. The increase in personal costs in the developed countries 

makes an efficient use of personal resources necessary and forces employees to concentrate 

on value-generating activities (Mattheiss et al., 2011). This leads to customers taking over 

various responsibilities which formerly resided in the scope of the company. The emerging 

digitalization enables not only new technologies but also new communication channels which 

allow customers to act independently and produce value largely for themselves, on their own 

and without direct assistance from a service provider (Meuter et al., 2011). This by large meets 

with the new self-understanding of the customers (Burke, 2002). Considering the introduction 

of self-services, organizations face the challenge that not all business processes are suitable 

for the usage of SSTs and that it is uncertain how customers react to self-services.  

Hence, over recent years, researchers have studied the various effects of self-service on the 

internal organization and the customers, e.g., the direct contribution to competitive advantage 

(Goffin & New, 2001) or reduced costs (Alpar, 1992). Based on this knowledge Negash et al. 

(2003) developed a quantitative economic decision model that determines where customer 

integration via SST should take place. Further approaches deal with the diverse methods of 

supporting the customers using self-services, e.g., web-based customer support systems 

(Negash et al., 2003) or support from front-line employees (Yen et al., 2004) were suggested. 

But no integrated view on economically well-founded decisions regarding the selection of 

those parts of a process which can and should be performed by the customers considering the 

corresponding support has been evolved. As customer support has become an important factor 

for companies’ competitiveness with direct economic effects on the profit, it need to be 

considered in an economic model deciding on customers’ integration (Negash et al., 2003). 

On the one hand customer support generates additional costs for services which influence the 

cash outflows. On the other hand support has positive effects on the perceived service quality 

and thereby animates customers to use the SSTs which leads to higher customer-related cash 

inflows (Anselmsson, 2001; Reinders et al., 2008). Thus, the aim of this paper is to develop a 

quantitative decision model which extends the model of Heidemann et al. (2011) by the effects 
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of customer support and so allows for economically well-founded decisions on the integration 

of customers in business processes considering the corresponding customer support.  

The remainder of this paper is structured as follows. In the next section, we provide an 

overview of the research background related to SSTs and support. On this basis, we develop 

a quantitative economic decision model. Then, we demonstrate the practical application of the 

model using the example of a global travel solutions provider. After a critical discussion of 

the results, we conclude with a brief summary and provide an outlook on future research. 

 Theoretical background 

3.1.2.1 Customers’ use of self-service technologies 

Self-services are a constantly growing trend in Customer Relationship Management as they 

enable customers to transform from “passive audiences”, who receive services and goods, to 

“active players”, who take part in the business processes (Prahalad & Ramaswamy, 2000). 

Hence, self-services change customer-company interactions significantly (Meuter et al., 

2011). As illustrated by a number of terms, which characterize the concept of self-service 

(Lengnick‐Hall et al., 2000; Toffler, 1980), like “virtual customer integration” (Prandelli et 

al., 2006), “partial employee” (Mills & Morris, 1986) or “mass customization” (Hart, 1995; 

Piller, 2004), customers play an important role when integrating them into the companies’ 

business processes. The development of new technologies fosters this trend as it enables 

customers to participate in the organization’s work and hence, researchers have recognized 

the critical role of technology (Bitner et al., 2000; Meuter et al., 2011). These technological 

interfaces that allow customers to conduct a service independent of direct service employee 

involvement have been labelled self-service technologies (Meuter et al., 2011). These SSTs 

include for example e-commerce websites, Automated Teller Machines (ATMs), or kiosks 

(Meuter et al., 2011). Despite the growing presence of SSTs, it is still unfamiliar for many 

customers to engage as active participants in the organization’s work (Lengnick-Hall, 1996), 

and thus customers may not be able or do not want to deal with SSTs. To determine how 

organizations can react adequately to the customers’ needs and demands, it has to be examined 

if the customers are able and willing to use SSTs. 

3.1.2.2 Customer acceptance and the role of personal support 

The aim of self-services and SSTs is to provide numerous positive effects for organizations 

and customers (Payne, 2006). One of the main prerequisite for successful customer integration 

and participation is the customers’ acceptance of SSTs. Therefore, a considerable part of the 
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literature on self-services and SSTs examines determinants of customers’ acceptance with, 

e.g., the help of the technology acceptance model (TAM) (Childers et al., 2001; Curran et al., 

2016; Dabholkar & Bagozzi, 2002; Davis, 1989). According to TAM, the amount of 

technology acceptance is reflected in the strength of attitude or intention towards technology 

(Davis, 1989). The key drivers of customers’ acceptance of SSTs are perceived usefulness, 

perceived ease of use, reliability, and fun (Weijters et al., 2016). Moreover, there are various 

determinants influencing the key drivers perceived ease of use and perceived usefulness (Rose 

& Fogarty, 2006): One of the most significant determinant is the personal contact between the 

customers and the employees as it supports those customers, who do not feel comfortable with 

technology, to embrace and use the new technologies (Meuter et al., 2005). Even with 

customers, who feel comfortable with technology, missing knowledge could diminish the use 

of SSTs, and hence organizations have to provide direct response, assurance, sense of control 

and social interaction (Rose & Fogarty, 2006). Regarding customer support there are two 

different ways to assist the customers: technical support (Negash et al., 2003) and personal 

support (Yen et al., 2004). Technical support includes, e.g., web-based customer support 

systems, where customers have the option to access support directly through the Internet and 

which are open to an unlimited number of customers needing support (Negash et al., 2003). 

Personal support in contrast to that can only be realized by personnel, e.g., by front-line 

employees (Yen et al., 2004) who directly assist the customers in every activity or sub-process 

in which they engage as active participants. Hence, we focus on personal support. 

3.1.2.3 Effects of customer support 

Various researchers have investigated the different positive and negative effects of offering 

personal customer support from an organizational perspective (e.g., Curran et al., 2016, Berry, 

1999, Enkel et al., 2005, Hsieh & Yen, 2004). While there are several positive effects such as 

the expected increase of customer satisfaction or the potential reduction of costs, there are also 

negative effects like the dependence on customers’ demands and personality. These positives 

and negative effects are summed up in Table 3.1-1.  

While most of the presented studies deal with the positive and negative effects of offering 

customer support in a self-service environment from a qualitative point of view to the best of 

our knowledge, so far the existing quantitative economic models only treat the determination 

in which processes customers can and should be integrated but do not consider where and how 

much support should be offered. Hence, the following study extends the previous approaches 
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to determine in which business processes customers should be integrated while considering 

the corresponding customer support. 

Table 3.1-1 Positive and negative effects of customer support for companies 

 

 Decision model 

For the potential integration of customers into business processes via SST, companies need to 

determine in which (sub-) processes customers can and should be integrated while considering 

the corresponding support. To assess these questions, we look at the economic effects of 

establishing SST and offering supporting activities and hence develop a quantitative economic 

decision model based on Heidemann et al. (2011) that addresses the necessary investments 

and the related process and customer effects. 

3.1.3.1 Definitions 

The economic decision model presented below is based on the following definitions:  

D1: Business process and sub-process – A business process is defined as a collection of 

activities in a control flow that takes one or more kinds of input and creates an output that is 

of value to a customer (Dumas, 2013). A business process can be split into n sub-processes 𝑝𝑖 

(𝑖 = 1,… , 𝑛). These sub-processes are characterized as disjoint sub-sets of actions, which are 

connected in a control flow and form functional units. Sub-processes 𝑝𝑖 can be performed 

either by the company (𝑝𝑖 = 0) or by customers via SSTs (𝑝𝑖 = 1).  

Effect Description of effects Approach 

+ • increase success rate of new products 

• directly contribute to competitive advantage 

Goffin and New 

(2001) 

+ • reduce costs 

• increase productivity 

Alpar (1992) 

+ • improve competitiveness 

• increase market share 

Kauffman and Lally 

(1994) 

+ • rise customer satisfaction and customer loyalty Meuter and Bitner 

(1998) 

+ • increase speed of delivery 

• rise precision 

• higher customization 

Berry (1999) 

+ • avoid adversity  

• build long-term relationships 

Negash et al. (2003) 

- • satisfy customer expectations regarding the level of 

service 

Yen et al. (2004) 

- • dependence on customers’ demands and personality Enkel et al. (2005) 
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If customers are integrated into business processes via SSTs, they take on a cohesive set of 

related tasks in the form of sub-processes (Heidemann et al., 2011). For each sub-process two 

possible ways exist to be performed that imply different integration variants for executing the 

business process (Heidemann et al., 2011). 

D2: Integration variant – For each business process, there are 2𝑛 possible integration variants 

𝑑 𝑗  (𝑗 = 1,… , 2𝑛). These variants can be expressed as a vector 𝑑 𝑗  = (𝑝1, … , 𝑝𝑛) ∈ {0, 1}𝑛 and 

are characterized by which sub-processes 𝑝𝑖 are executed by the company itself or by 

customers via SSTs. 

As finally customers decide on the success of a service, the success of customer integration 

via SSTs depends not only on the adequate design of the process but also on the customers’ 

attitude toward SSTs. Therefore, companies should comprise the preferences and behavior of 

their customers or rather of the target customer group in the decision process. According to 

their general attitude towards technologies customers can be separated into three groups: a 

group of technology-friendly customers (digital natives), who intuitively and quickly use or 

adopt new technologies, a group of elderly but open-minded adopters (digital migrants) and a 

group of elderly people with many digital deniers (Buhl et al., 2012). Depending on their 

affiliation to one of these groups, customers are more or less able and willing to perform a 

sub-process on their own and different extents of support have to be provided. Hence, for 

different target groups different integration variants can be optimal. To care for this fact we 

additionally extend the model of Heidemann et al. (2011) by considering the preferences of 

the target customer group. 

D3: Target customer group – Since customers with a similar attitude towards SSTs also have 

similar requirements, e.g., regarding design and ease of use of SSTs and therefore a similar 

demand for support, this attitude can be used as a segmentation variable.  

In the following, we focus on one specific target customer group. To decide whether and, if 

so, in which sub-processes 𝑝𝑖 customers should be integrated via SSTs while considering the 

corresponding support, the following subsection presents an economic decision model that 

returns the optimal integration variant 𝑑 𝑗
∗
for a specific target customer group. 

3.1.3.2 Formulation of the decision model 

All changes in cash flows that can be attributed to customer integration via SSTs need to be 

considered in an economically well-founded decision. The change of the net present value 

∆𝑁𝑃𝑉(𝑑 𝑗) related to an integration variant 𝑑 𝑗 serves as decision criterion and can be identified 
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according to Heidemann et al. (2011) by the following three elements: The present value of 

investment outflows for establishing customer integration via SSTs (investment effect) 𝐼(𝑑 𝑗); 

the changes in cash flows for process operations (process effect) ∆𝑃𝐸(𝑑 𝑗), which represent 

the economic consequences of the changes in conditions of the process performance; and the 

indirect economic effects on customer behavior (customer effect) ∆𝐶𝐸(𝑑 𝑗), which reflect the 

effects on the customer relationships caused by customer integration via SSTs (File et al., 

1993). By this type of differential investment analysis, the change of the net present value 

∆𝑁𝑃𝑉(𝑑 𝑗) can be denoted as follows: 

∆𝑁𝑃𝑉(𝑑 𝑗) = −𝐼(𝑑 𝑗) + ∆𝑃𝐸(𝑑 𝑗) + ∆𝐶𝐸(𝑑 𝑗) (1) 

This calculation is based on the external circumstances (e.g., currently available technological 

configuration) at the time of the decision. As customers are not necessarily able to 

immediately – if ever – take over the new responsibilities that come along with the SSTs and 

to perform all tasks by themselves, companies need to support them. But supporting customers 

has direct economic effects on the cash outflows and the customer-related cash inflows and 

thereby affects all three components of the net present value (NPV). Thus we extend the 

elements identified by Heidemann et al. (2011) by considering customers’ support when 

specifying the composition of the NPV. 

Investment effect: Actions to set up SSTs are considered as investments. Generally, setting 

up SSTs requires investments for facilities as well as organizational and technical changes 

(e.g., infrastructure, hardware such as self-service terminals, or software functionalities). 

Concretely, the present value of investment outflows for establishing customer integration via 

SSTs 𝐼(𝑑 𝑗) includes overarching outflows for an integration variant 𝑑 𝑗, such as investments 

for project and business process management 𝑉𝑗
𝑡𝑜𝑡𝑎𝑙 ∈ 𝑅+ and particular investments 𝑉⃑ =

(𝑉1, 𝑉2, … , 𝑉𝑛)
𝑇 ∈ 𝑅+

𝑛 for each sub-process 𝑝𝑖, that a customer can carry out, such as hardware 

or software. Furthermore, as customers need to get used to the new mode of interaction usually 

intensive initial support is required (e.g., initial explanation of the new tasks, providing 

training and advice). This go-live support causes additional one-time expenses for each sub-

process 𝑝𝑖, which are represented by the vector 𝑔 = (𝑔1, … , 𝑔𝑛)
𝑇 ∈ 𝑅+

𝑛. In sum, 𝐼(𝑑 𝑗) can be 

described as follows:  

𝐼(𝑑 𝑗) = 𝑉𝑗
𝑡𝑜𝑡𝑎𝑙 + 𝑑 𝑗 ∙ 𝑉⃑ + 𝑑 𝑗 ∙ 𝑔  (2) 
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Process effect: Furthermore, independent of whether sub-processes are performed by the 

company or by customers, it is necessary to ensure that the process can be successfully 

completed. Depending on the integration variant, there are changes in cash flows for process 

operations for, e.g., materials, rent, personal payments, and maintenance for each sub-process 

∆𝐵⃑⃑⃑⃑  ⃑ = (∆𝐵⃑⃑⃑⃑  ⃑
1, ∆𝐵⃑⃑⃑⃑  ⃑

2, … , ∆𝐵⃑⃑⃑⃑  ⃑
𝑛) ∈ 𝑅𝑛. Besides these payments, additional expenses for customer 

support occur for each sub-process where customer integration takes place. These expenses 

for customer support can be expressed by a company-specific cost rate 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛) ∈

𝑅+
𝑛 representing the present value of the wage of staff in relevant service and support 

functions. For each sub-process 𝑝𝑖, 𝑐𝑖 corresponds to the costs if 100% support is required 

(do-it-all-for-them). How much support really needs to be provided depends on the customers’ 

ability to use SSTs which in turn is determined by their knowledge regarding the specific sub-

processes and their willingness to perform (Büttgen, 2007). Since SSTs foster learning and 

knowledge creation (Gray et al., 2013), customers’ knowledge about a specific sub-process 

develops over the time (Unterbruner & Unterbruner, 2005). Furthermore, customers’ 

knowledge is influenced by different factors such as the complexity, the frequency of the 

executions and the general awareness level of the sub-process (Bouncken, 2000; Thissen, 

1997). These influencing factors are represented in the following by a sub-process specific 

growth factor 𝑏𝑖 ∈ (0,1). Precisely, customers’ knowledge 𝑘𝑖,𝑡 about a specific sub-process 

𝑝𝑖 at the beginning of the period𝑡 ∈ (1,2, … , 𝑇) corresponds to their knowledge about 𝑝𝑖 at 

the end of the previous period 𝑡. Within a period 𝑡, 𝑘𝑖,𝑡 develops according to the sub-process 

specific growth factor 𝑏𝑖. Thereby, the first units of knowledge can be acquired more quickly 

(Unterbruner & Unterbruner, 2005) as the basics about a specific sub-process are easier to 

learn than the further expert knowledge. We then assume a phase of declining growth until an 

upper bound 𝑘𝑖
𝑚𝑎𝑥 is converged. This sub-process specific upper bound 𝑘𝑖

𝑚𝑎𝑥 represents the 

maximum of knowledge about the sub-process 𝑝𝑖 customers may have. Thereby, we exclude 

the special case that the customers already hold the maximum knowledge 𝑘𝑖
𝑚𝑎𝑥 about a sub-

process before the first execution. Hence, customers’ knowledge at a specific period can be 

described as follows: 
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𝒌𝒊,𝒕 = 𝒌𝒊
𝒎𝒂𝒙 − (𝒌𝒊

𝒎𝒂𝒙 − 𝒌𝒊,𝒕−𝟏) ∙ 𝒆−𝒃𝒊 (3) 

with 𝑘𝑖,𝑡: customers’ knowledge about sub-process 𝑝𝑖 in period 𝑡  

with 𝑘𝑖,𝑡 ∈ (𝑘𝑖,0, 𝑘𝑖
𝑚𝑎𝑥) ∀ 𝑖 = 1, . . , 𝑛  

 𝑘𝑖,0: initial knowledge about sub-process 𝑝𝑖 before the first execution  

with 𝑘𝑖,0 ∈ (0, 𝑘𝑖
𝑚𝑎𝑥) 

The total sub-process specific customers’ knowledge 𝐾𝑖 is determined as the average of these 

periodic values: 

𝐾𝑖 = (∑ 𝑘𝑖,𝑡

𝑇

𝑡=0
) ∙

1

𝑇
 (4) 

As mentioned above, the customers’ willingness is a further important influencing factor of 

customer support. Different stimulations – represented by support – can be used to motivate 

customers to execute more active work than before (Gray et al., 2013). If customers do not 

want to perform, they will need more support (do-it-all-for-them) than if they like to do it but 

require help, e.g., because of a lack of knowledge (support-on-demand). This customers’ 

willingness to use SSTs is affected by their attitude towards SSTs which in turn can be 

expressed by their technology affinity 𝑎 ∈ [0, 1] (Davis, 1989). Depending on the regarded 

target customer group, 𝑎 can range from skepticism (𝑎 = 0) to excitement (𝑎 = 1) (Karrer et 

al., 2009). Customers who like to use SSTs, so-called “digital natives” (𝑎 = 1), just need 

support depending on their knowledge about the process. Customers with a low technology 

affinity, the “digital migrants” and “digital deniers” (𝑎 < 1), in contrast need more support 

as required on the basis of their knowledge to execute the process successfully. Thus, 

depending on the integration variant 𝑑 𝑗, the level of customer support 𝑠 𝑗 can be determined by 

the following formula: 

𝑠𝑗⃑⃑ = 𝑑𝑖𝑎𝑔(𝑑 𝑗) ∙ (1𝑛
⃑⃑ ⃑⃑ − 𝐾⃑⃑ ∙ 𝑎) (5) 

with 𝐾⃑⃑ = (𝐾1,𝐾2, … , 𝐾𝑛)
𝑇 ∈ 𝑅+

𝑛, 

1𝑛
⃑⃑ ⃑⃑ = (1,1, … ,1)𝑇 ∈ {1}𝑛 as the unit vector, 

𝑑𝑖𝑎𝑔(𝑑 𝑗) =   In ∙  𝑑 𝑗 = (
𝑝1 0 0
0 ⋱ 0
0 0 𝑝𝑛

) with Ι𝑛 as the identity matrix, 
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since customers only need to be supported within those sub-processes 𝑝𝑖, where customer 

integration takes place (𝑝𝑖 = 1).  

Finally, customer support can be interpreted as the maximum of 100% support (do-it-all-for-

them) minus the percentage customers are able to perform on their own depending not only 

on their knowledge but also on their willingness (1𝑛
⃑⃑ ⃑⃑ − 𝐾⃑⃑ ∗ 𝑎). As each unit of support 

provided to a customer causes additional personnel expenses, support should be considered 

by the economic decision model for the optimal level of customer integration. Summarized, 

∆𝑃𝐸(𝑑 𝑗) can be denoted as follows: 

∆𝑃𝐸(𝑑 𝑗) =  𝑑 𝑗 ∙ ∆𝐵⃑⃑⃑⃑  ⃑ − 𝑠 𝑗 ∙ 𝑐  (6) 

Customer effect: Customers perceive a subjective total process experience (Meuter et al., 

2005) that depends on which sub-processes are executed by the customers themselves and 

thus differs for each integration variant 𝑑 𝑗. More precisely, the conformity of SSTs to the key 

drivers of customer acceptance (such as perceived usefulness, perceived ease of use, reliability 

and fun (Weijters et al., 2016)), influences the customers’ experience regarding the whole 

process. Personal support is thereby a significant determinant influencing the perceived ease 

of use and perceived usefulness. It not only provides direct response, assurance, sense of 

control and social interaction for customers who do not feel comfortable with the SST (Meuter 

et al., 2005) but also for customers who feel comfortable but are not able to use the SST alone 

because of missing knowledge and experience (Rose & Fogarty, 2006). Creating superior 

experience for the customers is of importance, as it results in higher customer satisfaction 

which in turn may lead to an increase in customer-specific sales and recommendation rates 

(Anderson, 1994) and hence generates higher expected customer cash flows. Contrary, if 

customers are dissatisfied or scared of to the SST and the provided support does not succeed 

in compensating the inconveniences on customers’ side, negative customer experience could 

also decrease the expected cash flows. The resulting changes in customer-related cash flows 

are reflected in the corresponding change in customer equity which is defined as the sum of 

the discounted cash flows of all customer relationships (Rust et al., 2018) and represents the 

amount these customer relationships contribute to corporate value. Hence, customer support 

affects ∆𝐶𝐸(𝑑 𝑗). 

Considering customer support in the economic decision model to determine the optimal 

integration variant 𝑑𝑗
⃑⃑  ⃑

∗
, which indicates in which sub-processes 𝑝𝑖 customers of a certain target 
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group should be integrated via self-service from an economic point of view, can be expressed 

on the basis of the above defined assumptions and terms as follows:  

∆𝑁𝑃𝑉(𝑑 𝑗) = −(𝑉𝑗
𝑡𝑜𝑡𝑎𝑙 + 𝑑 𝑗 ∙ 𝑉⃑ + 𝑑 𝑗 ∙ 𝑔 ) + 𝑑 𝑗 ∙ ∆𝐵⃑⃑⃑⃑  ⃑ − 𝑠 𝑗 ∙ 𝑐 + ∆𝐶𝐸(𝑑 𝑗) (7) 

with 𝑑 𝑗
∗
= 𝑎𝑟𝑔 max

𝑗
𝑁𝑃𝑉(𝑑 𝑗) (8) 

maximizing the net present value of the whole business process. 

As described in D2 a maximum of 2n integration variants 𝑑 𝑗 are possible for each business 

process. For the determination of the optimal integration variant 𝑑 𝑗
∗
, it is possible to use 

combinatorial methods or a full enumeration of all realizable integration variants 𝑑 𝑗. To 

simplify this approach it can be helpful to eliminate integration variants which are not feasible, 

as some sub-processes should not be handed over to the customers. 

 Case study 

3.1.4.1 Case setting and unit of analysis 

To test our model practically we conducted a case study with the fictional setting of a global 

travel solutions provider for business customers. The company develops customized travel 

management solutions along the entire travel booking value chain – from flight and hotel 

procurement to processing bookings and innovative payment solutions. The core process of 

the company is the booking of business travels. Figure 3.1-1 illustrates the sub-processes of 

this booking process.  

 

Figure 3.1-1 Booking process 

 

To date, customers are not integrated in the booking process but generally they could take 

over the responsibility for certain sub-processes of the whole booking process. Thereby some 

sub-processes such as providing personal data are straight forward but others such as the 

correct accounting data require expertise (either by the customers themselves or by 

employees). Hence the success of SSTs and the economic value of the customers’ integration 

cannot directly be predicted but needs to be analyzed in detail. Basically, customer integration 

via SSTs is possible in 𝑝1, 𝑝2, 𝑝3, 𝑝4. The sub-process 𝑝5 is the core service delivery of the 
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regarded company and requires internal information and authorizations (e.g., special price 

conditions). Because of its strategic relevance, the company decides not to integrate any 

customer in sub-process 𝑝5. Therefore, there are 24 = 16 possible integration variants 𝑑 𝑗 to 

be investigated.  

Genuine values for the theoretically developed model parameters were acquired via a case 

study and experienced estimation. First, a case study with 34 test users has been conducted in 

order to determine input parameters such as initial knowledge about sub-process 𝑝𝑖 before the 

first process execution 𝑘𝑖,0, sub-process specific upper bound of the maximum of knowledge 

about the sub-process 𝑝𝑖 customers may have 𝑘𝑖
𝑚𝑎𝑥, sub-process specific growth factor 𝑏𝑖 and 

technology affinity 𝑎. Thereby, the participants had to complete surveys with questions about 

their person, their technology affinity, and their experience. Additionally, they executed the 

whole process on their own (with the option to ask for personal support at any time). On the 

basis of the estimations of subject matter experts, the company specific cash-flow components 

were determined. For confidentiality reasons, the data were slightly modified, but without 

compromising the basic results. 

3.1.4.2 Determining the model parameters 

As presented in Section 3.1.3, the core parameters of the model are the present value of the 

investment outflows for establishing customer integration via SSTs 𝐼(𝑑 𝑗) (investment effect), 

the changes in cash flows in process operations ∆𝑃𝐸(𝑑 𝑗) (process effect) as well as the indirect 

economic effects on customer behavior ∆𝐶𝐸(𝑑 𝑗) (customer effect). These parameters were 

operationalized and determined for each integration variant 𝑑 𝑗 as described in the following. 

For the calculations, we assume an imputed interest rate of 2% p. a. and a calculation period 

of five years. 

Investment effect: As the interviews revealed, integrating customers in the sub-processes 

𝑝1, … , 𝑝4 requires no self-service terminals, but new software functionalities for the search 

steps and the various data entries. The experts’ estimation provided the following data: 

Designing new software or extending existing tools results in immediately effective expenses 

of € 300,000. Project management to establish customers’ integration can be assumed 

(comparing to empirical values from previous projects) to be 200 in-house person-days (200 * 

€ 500 = € 100,000). Additionally, expenses for training of employees have to be considered 

when at least one sub-process is performed by the customers. Regularly, seven employees 

perform the regarded process but taking replacements (e.g., due to vacations) into account ten 
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employees should possess the knowledge required and hence have to be trained. For the 

necessary training of three days, one training day was calculated with an average in-house per 

diem of € 500. So, the estimated training costs amount to € 15,000. Furthermore, initial 

intensive customer support (go-live support, e.g., for initial explanation of what customers 

should do or where they can find information) causes one-time additional expenses for each 

sub-process. These are for the customer integration in, e.g., sub-process 𝑝3 € 50,000.  

Process effect: Regarding the process operations, self-services result on the one hand in 

savings due to the change of personnel payments and reduced printing costs. On the other 

hand, expenses for IT systems and customer support occur. In detail, according to the 

estimations, the savings in personnel costs result from a decrease in working hours per process 

execution and the present value of the hourly wage rates of the staff working in the 

corresponding sub-process. For the customer integration in, e.g., sub-process 𝑝3 these 

potential savings are € 1,277,165. The savings of printing costs (forms of two pages for 

𝑝2, 𝑝3 and 𝑝4) are caused by the removal of the required forms as physical hard copies. 

Assuming 500,000 bookings of business travels a year and € 0.03 printing costs per page, the 

potential savings for, e.g., sub-process 𝑝3 are € 30,000 p.a. (500,000 * 2 * € 0,03). The 

additional costs for IT occur because the regarded company needs further computing capacity 

and storage volume which result in expenses of € 24,000 p.a. Furthermore, expenses for 

customer support arise for each sub-process with customer integration. Customer support 𝑠𝑗⃑⃑  

is calculated according to the terms (3)-(5). The necessary model parameters (sub-process 

specific initial knowledge 𝑘𝑖,0, growth factor 𝑏𝑖, upper bound for the customers’ knowledge 

𝑘𝑖
𝑚𝑎𝑥 and technology affinity 𝑎) were derived from the customer surveys. From the captured 

data, the expenses for customer support for, e.g., sub-process 𝑝3 amount to € 203,848.  

Customer effect: As achieving customer satisfaction is one of the central business policy 

goals, the operationalization of the customer effect of customer integration uses customer 

satisfaction as a metric. Personal contact between the customers and the employees is a 

significant determinant influencing the perceived ease of use and perceived usefulness and 

can hence increase customer satisfaction. In the context of the case study, this was captured 

via customer surveys using differentiation based on a five-step Likert scale (1 = very satisfied; 

5 = very dissatisfied). One result, for example, was that an integration in sub-processes 

𝑝1, 𝑝2, 𝑝3 improved customer satisfaction from 3.2 (status quo) to 2.9. In order to achieve a 

corresponding change in customer satisfaction in another way, experiential values indicated 
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that it would be necessary to make alternative marketing investments of approximately 

€ 180,000 p.a.  

 Results and discussion 

On the basis of the identified parameters, the optimal integration variant 𝑑 𝑗
∗
 can be determined 

corresponding to terms (7) and (8). The optimal integration variant maximizes the NPV of all 

cash flow changes attributable to customer integration via SSTs in the analysis period. Table 

3.1-2 shows the 16 possible integration variants for the booking process with their respective 

change to the net present value ∆𝑁𝑃𝑉(𝑑 𝑗). 

Table 3.1-2 Possible integration variants d⃑ j and changes in net present value ∆NPVc (in 

€) 

 

It becomes clear that integration variant 𝑑 12, which yields a NPV increase of approximately 

€ 15.34 million, is the optimal variant. Accordingly, the considered company should integrate 

its customers via SSTs in the sub-processes 𝑝1 (information search), 𝑝2 (entry of personal 

Integration variant 𝒅⃑⃑ 𝒋 

(customer integration in dark 

grey) -𝐈(𝒅⃑⃑ 𝒋) ∆𝐏𝐄(𝒅⃑⃑ 𝒋) ∆𝐂𝐄(𝒅⃑⃑ 𝒋) ∆𝐍𝐏𝐕(𝒅⃑⃑ 𝒋) 

𝑑1
⃑⃑⃑⃑  

 

0 0 0 0 

𝑑2
⃑⃑⃑⃑  

 

-165,000 2,954,305 188,538 2,977,844 

𝑑3
⃑⃑⃑⃑  

 

-465,000 6,706,678 471,346 6,713,024 

𝑑4
⃑⃑⃑⃑  

 

-465,000 5,087,316 282,808 4,905,124 

𝑑5
⃑⃑⃑⃑  

 

-465,000 -1,084,056 -235,673 -1,784,729 

𝑑6
⃑⃑⃑⃑  

 

-475,000 9,774,107 593,896 9,893,003 

𝑑7
⃑⃑⃑⃑  

 

-475,000 8,154,744 424,211 8,103,956 

𝑑8
⃑⃑⃑⃑  

 

-475,000 1,983,372 -164,971 1,343,401 

𝑑9
⃑⃑⃑⃑  

 

-475,000 11,907,118 678,738 12,110,856 

𝑑10
⃑⃑⃑⃑⃑⃑  

 

-475,000 5,735,746 117,836 5,378,582 

𝑑11
⃑⃑⃑⃑⃑⃑  

 

-475,000 4,116,383 -70,702 3,570,682 

𝑑12
⃑⃑⃑⃑⃑⃑  

 

-485,000 14,974,546 848,423 15,337,969 

𝑑13
⃑⃑⃑⃑⃑⃑  

 

-485,000 7,183,812 70,702 6,769,514 

𝑑14
⃑⃑⃑⃑⃑⃑  

 

-485,000 8,803,174 240,386 8,558,560 

𝑑15
⃑⃑⃑⃑⃑⃑  

 

-485,000 10,936,185 325,229 10,776,413 

𝑑16
⃑⃑⃑⃑⃑⃑  

 

-495,000 14,003,613 494,913 14,003,526 

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5
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data) and 𝑝3 (entry of travel data). Only the fourth sub-process “entry of accounting data” 

should be performed by the accounting assistants as knowledge is required, which the 

customers usually do not have. Analyzing the sensitivity of the model with respect to the 

estimated parameters influencing the determination of the support, we find that estimation 

errors do not change the optimal solution. 

In contrast to that, the model of Heidemann et al. (2011), which does not explicitly determine 

the corresponding customer support, would generate the following results: Integration variant 

𝑑 16 is the optimal solution and yields a NPV of € 19.18 million. Thereby, the present value of 

investment outflows 𝐼𝑚𝑜𝑑𝑒𝑙 𝑜𝑓 (Heidemann,Kamprath,& Müller,2011)(𝑑 16) amounts to 415,000 and 

is lower than 𝐼(𝑑 12) as no go-live support is provided. The changes in cash flows for process 

operations ∆𝑃𝐸𝑚𝑜𝑑𝑒𝑙 𝑜𝑓 (Heidemann,Kamprath,& Müller,2011)(𝑑 16) are 19,458,555 and so 

considerable higher then ∆𝑃𝐸(𝑑 12) as no additional expenses for customer support are 

regarded. Finally, the indirect economic effects on customer behavior 

∆𝐶𝐸𝑚𝑜𝑑𝑒𝑙 𝑜𝑓 (Heidemann,Kamprath,& Müller,2011)(𝑑 16) are 141,404 and thereby smaller then 

∆𝐶𝐸(𝑑 12). According to the integration variant 𝑑 16 the customers should additionally be 

integrated in the fourth sub-process. As mentioned above, performing this sub-process 

requires expertise and advanced knowledge on customers’ side which can vary depending on 

the target customer group. If the customers do not possess this knowledge and do not get any 

support, they may avoid using the SST or be dissatisfied. Hence, the customers’ ability and 

need for support also has to be considered in the decision model. Otherwise further expenses 

(e.g., costs for additional support or losings through customer churn), which were not taken 

into account by Heidemann et al. (2011) and which affect the calculated NPV negatively, will 

arise. Thus, not considering the target customer group and their need for support leads to false 

estimations of the related cash flows and thereby to another optimal solution. 

This case illustrates that the economic decision model can be successfully applied in practice 

and that the parameters can be operationalized and determined. Nevertheless, it should be 

noted that the application of the model and, above all, the determination of the parameters can 

involve very substantial efforts and hence cause significant expenses. There are also some 

aspects of the case study that warrant critical discussion. For example, the analysis of the 

surveys revealed that the regarded customers have a comparatively favorable attitude towards 

technologies. This could be explained by the age group of the respondents (mainly 25 to 40 

years) but does certainly not represent society. Hence, companies first have to investigate their 

customers’ attitude towards technology and then they have to decide how they can deal with 
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less technology-affine customers and how to motive them to use self-services. All the same, 

the main scientific contribution is the proposed quantitative economic decision model. This 

model allows for economically well-founded decisions when deciding on the implementation 

of SSTs by focusing on both the process perspective and the customer perspective; thus 

addressing the central dimensions of the impact of SSTs.  

 Conclusion 

Current trends such as the emerging digitalization and the new self-understanding of the 

customers lead to an increasing use of self-services and enable customers to take part in the 

service delivery independent of direct involvement of an organization’s employee (Meuter et 

al., 2011). The challenge for companies to introduce SSTs successfully is to understand the 

effects of SSTs on customers. If customers do not feel comfortable with SSTs or have too 

little knowledge about how to use it, companies can facilitate the use of SSTs by offering 

customer support. For many companies the economic effects of SSTs and offering support are 

still unclear, and so decisions made without the necessary economic grounding. Therefore, 

this paper has presented a quantitative economic decision model that enables to evaluate the 

economic effects of self-services, while considering customer support. The model shows in 

which sub-processes customers should be integrated including additionally the expenses for 

the necessary customer support of each sub-process. In addition to that, we presented a 

possibility to calculate the customer support. Hence, our research complements prior research 

in the field of SSTs that considered only singular effects such as productivity and efficiency 

(Lovelock & Young, 1979) or customer satisfaction (Chow et al., 2008; Collier & Sherrell, 

2010) as the predominant factors when deciding on customer self-service. The applicability 

of the model and its practical benefit have been illustrated by the example of a global travel 

solutions provider. Although this model pictures reality in a constrained way, it provides a 

basis for organizations to plan and improve their introduction and management of SSTs. 

Thereby, it is not only of high relevance to business practice, but also provides a theoretical 

approach to improve the quality of self-services for organizations and customers. We hope 

that our paper will stimulate further research on that fascinating topic and will serve as a 

proper starting point for future works. 
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3.2 Between death and life – a formal decision model to decide on 

customer recovery investments 

Abstract 

As digitization supports customers in gaining increased market transparency (Desai 2014), 

migrating from one organization to another (“customer migration”) is becoming easier and 

more attractive. Thus, taking measures to regain customers who terminated their relationship 

(“customer recovery”) has become increasingly important for organizations. With the growing 

importance of customer recovery in present times, organizations face even more challenges 

pertaining to risk of making wrong investment decisions. Organizations can either mistakenly 

invest in customer relations that are “alive” or irretrievably “dead.” Furthermore, it has the 

risk of not investing in inactive customer relations that have a chance to be revived (“dying”). 

Consequently, it is necessary for organizations to consider the probability that a customer 

relation is “alive,” “dying,” or “dead” when deciding on customer recovery. Based on these 

probabilities, an economically reasonable decision has to be made on whether to invest in the 

recovery of an individual customer relationship. Accordingly, based on a comprehensive 

discussion of related work, we propose a formal decision model on whether to invest in 

customer relation recovery. To demonstrate the decision model’s applicability, an illustrative 

case with sample calculation is presented and expert interviews are conducted. 
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 Introduction 

In all types of organizations, customers may come and go. As stated by Schmittlein et al. 

(1987), there are customers who are “alive” (i.e., maintain an active customer relation) and 

customers who are “dead” (i.e., left the organization for some reason). Moreover, these “dead” 

customers should be further segmented as organizations adopt different strategies in the 

customer recovery for these two kinds of customers (Griffin & Lowenstein, 2001). In this 

paper, we segment this “dead” customers into “dying” and “dead”. Thereby, “dying” 

customers are those whom the organization wants to recover (e.g., inactive customers who are 

unintentionally pulled or pushed away), whereas “dead” customers represent the ones on 

whom customer recovery is not reasonable (e.g., unprofitable customers, customers with 

changing needs due to changing demographics) (Griffin & Lowenstein, 2001). With 

digitization, which can be defined as the use of digital technologies to improve or disrupt 

business models and provide new value-producing opportunities (Gartner, 2016), as a main 

driver for the global economy, making the distinction between “alive,” “dying,” or “dead” 

customers is becoming more and more challenging. Hence, customer migration becomes 

easier and more attractive as digitization is breaking down the barriers of entry, enabling more 

transparent markets, and becoming comparatively impersonal (Desai, 2014). Therefore, the 

importance of managing customer recovery is increasing. Most organizations neglect 

customer recovery and focus on customer acquisition and retention, although an average 

organization loses 20 to 40 percent of its trade due to defecting customers (Griffin & 

Lowenstein, 2001). This challenge intensifies in settings where customers are not bound by 

contracts and have the possibility to alter between different vendors (Dwyer, 1989; Reinartz 

& Kumar, 2000). On the other hand, digitization not only amplifies customer migration, but 

also benefits organizations because of the significant increase in the availability of customer 

data (Mayer-Schönberger & Cukier, 2013). Consequently, with the increasing amount of 

available data, opportunities to identify customer insights from data continue to expand. 

Organizations have the possibility to collect, store, and analyze available customer data (Beath 

et al., 2012) and use it for making custom-designed investment decisions in the recovery of 

individual customer relations as well as other purposes.  

The related literature already provides models for deciding between different marketing 

investment alternatives (Neslin et al., 2013; Rust et al., 2004). It also develops guidelines for 

retention decisions (Blattberg et al., 2001; Blattberg & Deighton, 1996). However, although 

economic aspects such as cost-benefit-trade-offs are investigated in the extant literature, the 

customer relations for which an investment is actually required is not always clear. For 
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instance, it would not be reasonable to invest in recovering a customer relation that is active 

and is likely to realize further transactions anyway. However, as the point at which a customer 

relation becomes inactive cannot always be known for sure, it has to be estimated using 

indicators such as low number of transactions or unexpectedly long time since the last 

transaction (Schmittlein et al., 1987). Therefore, whether a customer relation is “alive” or 

“dead” can be estimated as a conditional probability, given certain purchase information 

(Schmittlein et al., 1987).  

To summarize, organizations are faced with challenges in estimating the probability of a 

customer relation being “alive,” “dying,” or “dead,” which in turn, determines the probability 

at which an investment in the recovery of an individual customer relation is economically 

reasonable. However, in extant literature there is no approach that observes the economic 

feasibility of customer recovery investments while considering these probabilities that a 

customer relation is “alive,” “dying,” or “dead.” Therefore, we address the following research 

question in the paper: How can an organization decide on investing in a customer relation on 

the basis of the probability of a customer relation “dying”? To answer this question, we 

develop a formal decision model, in which we compute a threshold, at which an investment 

in an individual customer relation is economically reasonable, considering the probability of 

a customer relation being “alive,” “dying,” or “dead.” Thereby, investing in the recovery of a 

customer relation is reasonable only when the present value of future cash flow when investing 

in the recovery of a customer relation is higher compared to when not investing.  

We start the paper with a discussion of the context of the problem with reference to related 

work to provide a theoretical background. Then, we propose the decision model and 

demonstrate its application using a sample calculation. After that, we present the current status 

of practice and evaluate its practicability and acceptability in practice by conducting expert 

interviews. Finally, we discuss the resulting decision model. 

 Theoretical background 

3.2.2.1 “Alive,” “dying,” and “dead” customers 

Digitization makes customer focus more valuable as well as a big challenge for organizations 

with customer migration becoming easier and more attractive than before (Rezabakhsh et al., 

2006). In this environment, organizations not only need to acquire new customers and build 

loyalty among existing customers, but also target migrated customers (Strauss & Friege, 1999; 

Thomas et al., 2018). Typically, customer migration arises as soon as there is a gap between 

the priorities of the customer and the activities of the organization (Kotler, 2004). From an 
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organization’s perspective, the reasons for such a gap can be manifold: the lack of success in 

identifying and using interesting market opportunities, limited information about competitors, 

no effective communication with the market, no comprehensive customer service, or missing 

knowledge about customer needs, their perceptions, preferences, and behavior (Czarniewski, 

2014). In summary, to avoid customer migration, organizations need to increase customer 

satisfaction as it affects customers’ repurchase likelihood (Auh & Johnson, 2005; Strauss & 

Friege, 1999). Customer satisfaction can, for instance, be defined as a cumulative evaluation 

of a customer’s purchase and consumption experience to date (Auh & Johnson, 2005; Johnson 

et al., 1995; Lervik & Johnson, 2003; Rust et al., 1995). Generally, customers are considered 

“alive” as long as they are maintaining an active relation with the organization, and “dead” if 

they have terminated their relation with the organization for whatever reason (Schmittlein et 

al., 1987). 

To recover “dead” customer relations, an organization needs to first identify the respective 

customers. At first glance, determining whether a customer relation is “dead” or “alive” seems 

obvious. For instance, if customers cancel their cell-phone contract and change their provider, 

the customer relation would clearly be considered “dead.” In contrast, there are situations 

wherein a customer relation transition from being “alive” to being “dead,” which is not always 

that easy for organizations to detect, as customers “may not notify the firm when they leave” 

(Schmittlein et al., 1987). This holds true for hotel stays, air travel, or large online retailers 

such as Amazon, where customers are not bound by contracts and have the possibility to 

switch between different vendors (Dwyer, 1989; Reinartz & Kumar, 2000). Hence, 

particularly in non-contractual customer relations, it is a challenge for organizations to know 

whether a customer relation is “alive” or “dead” (Schmittlein et al., 1987). One indicator for 

organizations to determine whether a customer relation is “alive” or “dead” is a customer’s 

purchasing information (e.g., an unexpectedly long time period since the last transaction) 

(Fader et al., 2005). However, a long transaction break does not necessarily imply that a 

customer relation is definitively “dead” (Fader et al., 2005). Generally, the related literature 

approaches this topic of segmenting customers by modeling customer migration. Several 

researchers use recency in models that predict customer behavior. For example, Bult and 

Wansbeek (1995), Bitran and Mondschein (1996), Fader et al. (2005), and Rhee and McIntyre 

(2008) find a negative association between recency and purchase likelihood. Dwyer (1997) 

identifies “always-a-share” customers’ purchase probability by developing a purchase 

decision-making tree based on historical buying data. The Dwyer model is used in most 

customer lifetime value (CLV) research (Qi et al., 2006). CLV, which is defined as the net 
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present value (NPV) of the customer’s profitability throughout the customer relationship, is a 

central profitability metric for analyzing customer relations (Dwyer, 1989; Thomas et al., 

2018). For instance, comprehensive explanations of CLV can be found in Kumar and Reinartz 

(2012). Blattberg et al. (2001) extend the Dwyer model and use the “recency, frequency, 

monetary index” to develop the purchase decision-making tree (Qi et al., 2006). In brief, the 

extant literature has long contributed to the understanding of customer migration and the 

factors affecting it.  

Nevertheless, not all of the “dead” customers have win back potential. Moreover, the 

organization does not want to recover them all. Hence, it is essential for organizations to 

distinguish the “dead” customers based on their win back potential to avoid wasting a lot of 

time and money on recovering lost customers with poor prospects for future business. Strauss 

and Friege (1999) provide a more detailed classification of “dead” customers. They develop 

a conceptual basis for customer recovery with the objective of winning back “dead” 

customers. Therefore, they classify “dead” customers into five categories: intentionally 

pushed-away customers, unintentionally pushed-away customers, pulled-away customers, 

bought-away customers, and moved-away customers. Organizations have no interest in 

continuing relations with intentionally pushed-away customers as these relations have a 

negative expected cash flow or a high risk of bad debt, and thus are not economical. Bought-

away customers, who switch to the competitor for better prices, and moved-away customers, 

who move away physically or have changing needs, can only be regained with high effort and 

expensive investments. As such, only the customers in the categories unintentionally pushed-

away and pulled-away should be targeted by the organizations (Strauss & Friege, 1999). 

Unintentionally pushed-away customers leave the organization due to their dissatisfaction 

with the service provided or the feeling of being taken for granted (Griffin & Lowenstein, 

2001). On the other hand, pulled-away customers migrate as they expect better personal 

service or higher product quality (Griffin & Lowenstein, 2001). To summarize, we can 

differentiate between “dead” customers, which represent the ones from whom recovery is 

unreasonable (e.g., intentionally pushed-away customers) and “dying” customers, that is, 

those whom the organization wants to recover (e.g., unintentionally pushed-away and pulled-

away customers) (Griffin & Lowenstein, 2001). 

3.2.2.2 Customer recovery investments 

Customer recovery campaigns are a specific kind of customer campaign. According to the 

campaign management process of Englbrecht (2007), campaigns are mainly characterized by 
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target group, channel, and content. Hence, investment decisions are to be made between 

different campaign alternatives comprising possible target groups, channels, or content. Here, 

the target group comprises migrated customers, or in other words “dying” customer relations. 

Channels, for instance, are categorized into offline channels, such as stores or catalogs, and 

online channels, such as mobile apps, email, or websites. They can also be differentiated on 

the basis of direct and indirect channels, that is, whether there is an intermediary responsible 

for managing the relationship between the customer and the organization (Hosseini et al., 

2015). Typically, the content of customer recovery campaigns can entail marketing 

investments, like special offers, discounts, vouchers, coupons, or other incentives for 

recovering customer relations. 

As regards deciding on competing marketing investments, the extant literature provides 

numerous approaches. For example, Rust et al. (2004) provide a framework to trade off 

competing marketing investments on the basis of financial return. Neslin et al. (2013) 

demonstrate how to target to the right customers with the right marketing at the right time 

considering the customer’s recency state to maximize CLV. Venkatesan and Kumar (2004) 

recommend CLV as a metric for selecting customers and designing marketing programs, as 

they provide empirical evidence to support the existence of a relationship between marketing 

actions and CLV. As such, Glady et al. (2009) suggest that the dependence between the 

number of transactions and their profitability can be used to increase the accuracy of the CLV. 

Venkatesan and Kumar (2004) point out that the extant literature provides guidelines for 

acquisition and retention decisions (Blattberg et al., 2001; Blattberg & Deighton, 1996). There 

are also studies on the basis of which customers are to be “eliminated.” For instance, Reinartz 

and Kumar (2003) demonstrate how to determine whether to terminate a customer relation. 

However, when addressing customer recovery, the CLV is not the metric of interest, as the 

second lifetime value (SLTV) focuses on the NPV generated by the customer after the 

recovery Strauss and Friege (1999). With regard to the development and implementation of a 

customer recovery program, the expected future value of the recovered customer should be 

the central factor that guides the decision on the customers who need to be recovered (Strauss 

& Friege, 1999). In summary, the extant literature provides various discussions and models 

concerning investments in customer relations (see Table 3.2-1). However, to the best of our 

knowledge, there is no formal decision model on the economic feasibility of customer 

recovery investments while considering the probabilities that a customer relation is “alive,” 

“dying,” or “dead.” Thereby, the consideration of this probability is crucial in order to make 
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economically reasonable customer recovery decisions, as errors in distinguishing “alive” and 

“dead” customer relations can be avoided.”  

Table 3.2-1 Summary extant literature 

Study Nature of Study 

Rust et al. (2004) Framework to trade off between competing marketing investments 

Neslin et al. (2013) Approach to target an organization’s marketing efforts, keeping in 

mind the customer’s recency state. 

Venkatesan and 

Kumar (2004) 

Framework to allocate marketing resources efficiently across 

customers and channels of communication 

Glady et al. (2009) Approach for predicting the CLV considering the dependence 

between the number of transactions and profitability 

Reinartz and 

Kumar (2003) 

Framework to measure the profitable lifetime duration 

Strauss and Friege 

(1999) 

Conceptual basis aiming at winning back customers who left an 

organization 

 

To fill this gap, we introduce a calculation to identify the most economically reasonable 

investment alternative among multiple customer recovery investments and propose a decision 

model that gives advice on whether to invest in customer recovery. Based on an existing 

decision model designed to manage data currency (Görz, 2011), we propose our model on the 

probability that a customer relation is “dying.” The detailed decision model is described in the 

subsequent chapter. 

 Decision Model 

The basic idea of the model is to make a decision for every customer on investing in customer 

recovery by comparing a threshold at which an investment is economically useful to the 

current probability of a customer relation “dying.” Moreover, the decision model considers 

that organizations should not invest in “dead” customers who have finally migrated for 

reasons like moving away, having new demands and needs, getting involved in a legal dispute 

with the organization, or physical death. The threshold depends on investment specific 

variables, such as the costs of the investment and an effectiveness factor, and customer 

specific ones, such as the present value of future cash inflows of a customer relation. Besides 

that, we make certain assumptions for our decision model. First, we assume that the decision 

model is designed to cover a single period. Second, the organization’s risk attitude is neutral 

when deciding on customer recovery investments. Third, we exclude the fact that it can be 
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advantageous for organizations to invest in “dead” customers to minimize the negative effects 

of dissatisfied customers (Stauss & Seidel, 2004). 

The decision model has four steps: Step 1 is “selection of the most economically reasonable 

investment alternative.” This describes how an organization, which has various options for 

investing in customer recovery (for instance, different channels, such as letter or email, or 

different contents, such as vouchers and special offers) can determine the most economically 

reasonable investment alternative for customer recovery. Step 2 is “measuring the 

probabilities of a customer relation being “alive,” “dying,” or “dead” is necessary. These 

probabilities, in conjunction with the threshold, which is deduced in step 3 “derivation of the 

threshold,” are the basis to make an economically reasonable investment decision for 

customer recovery. Lastly, step 4 is “making the investment decision.” This indicates how the 

organization can make this decision by comparing the probability that the customer relation 

is “dying” with the threshold. 

Step 1: Selection of the most economically reasonable investment alternative 

The organization has to decide between several investment alternatives for customer recovery. 

For each customer, a specific investment alternative 𝑗 (𝑗 = 1,… ,𝑚 𝑤𝑖𝑡ℎ 𝑚 ∈ ℕ) can be the 

most economically reasonable. The decision underlies the expected cash flow 𝐸(𝐶𝐹𝑖𝑗) ∈ ℝ0
+ 

of a customer relation 𝑖 (𝑖 = 1,… , 𝑛 𝑤𝑖𝑡ℎ 𝑛 ∈ ℕ) when successfully recovering it with a 

specific investment alternative 𝑗 (𝑗 = 1,… ,𝑚 𝑤𝑖𝑡ℎ 𝑚 ∈ ℕ). To calculate 𝐸(𝐶𝐹𝑖𝑗), the present 

value of future cash inflows of a customer relation 𝜋𝑖 ∈ ℝ+, the investment costs 𝐼𝑗  ∈ ℝ+, of 

a specific investment alternative 𝑗 and the effectiveness factor 𝜂𝑖𝑗 ∈ (0; 1], which determines 

the success probability of a recovery investment alternative 𝑗 for a customer relation 𝑖 , as they 

all influence the economic assessment of the investment alternatives. The domain of 𝜋𝑖 is 

defined as ℝ+, as only customers with positive cash flows are of interest for an organization. 

The domain of 𝜂𝑖𝑗 excludes the value 0, as we exclude investment alternatives for which 

customer recovery is impossible. Additionally, investments in customer relations with 

negative expected cash flows 𝐸(𝐶𝐹𝑖𝑗) are not economically reasonable. Therefore, 𝐸(𝐶𝐹𝑖𝑗) 

is only defined for 𝜋𝑖  ∙  𝜂𝑖𝑗  −  𝐼𝑗 ≥ 0. Hence, the calculations represented by Equation 1 lead 

to the economically optimal investment alternatives 𝐽𝑖
∗. In general * indicates the respectively 

optimal result. 
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𝐽𝑖
∗ = {𝑗 ∈ (1,… ,𝑚); ∀𝑘 ∈ (1,… ,𝑚)\{𝑗} ∶  𝐸(𝐶𝐹𝑖𝑘) ≤ 𝐸(𝐶𝐹𝑖𝑗)}, 

with 𝐸(𝐶𝐹𝑖𝑗) = 𝜋𝑖 ∙ 𝜂𝑖𝑗 − 𝐼𝑗, 

(1) 

where 𝐽𝑖
∗ represents the set of all investment alternatives with the indices 𝑗 for which the 

expected cash flow 𝐸(𝐶𝐹𝑖𝑗) of a customer relation 𝑖 for a specific investment alternative 𝑗 is 

maximal compared to the expected cash flows 𝐸(𝐶𝐹𝑖𝑘) of the other possible investment 

alternatives 𝑘 (𝑘 = 1,… , 𝑙 𝑤𝑖𝑡ℎ 𝑙 ∈ ℕ). In case of multiple resulting indices 𝑗 for 𝐽𝑖
∗, that is, 

indices 𝑗 with the same expected cash flows, 𝐸(𝐶𝐹𝑖𝑗), the one making the decision should 

choose the investment alternative 𝑗 that is cheaper after normalization for effectiveness (e.g., 

if 𝐽𝑖
∗ = {1,2} and 𝐼1 < 𝐼2 ∙

𝜂𝑖1

𝜂𝑖2
, then decide for 𝑗 = 1). Normalization is necessary for the case 

of unproportional investment costs 𝐼𝑗, compared to the effectiveness factor 𝜂𝑖𝑗. 

Step 2: Measuring the probabilities of a customer relation being “alive,” “dying,” or 

“dead” 

In the following, we use the model for assessing conditional probability of Schmittlein et al. 

(1987) as a basis for estimating the probability that a customer relation 𝑖 is “alive.” According 

to Fader and Hardie (2009), the model of Schmittlein et al. (1987) indicates an impressive 

predictive performance, its empirical validation is often presented, and there are several 

applications in different contexts, such as customer profitability, churn prediction, and 

customer base analysis (Fader et al., 2005; Hopmann & Thede, 2005; Reinartz & Kumar, 

2000, 2003; Schmittlein & Peterson, 1994; Wübben & Wangenheim, 2008; Zitzlsperger et al., 

2007). The conditional probability 𝑃𝑖("𝑎𝑙𝑖𝑣𝑒"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) ∈ [0; 1] depends on a 

customer’s individual purchasing information (Schmittlein et al., 1987). This can be 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑥, 𝑡𝑥 , 𝑇, where 𝑥 is the number of transactions observed in the time interval 

(0, 𝑇] and 𝑡𝑥(0 < 𝑡𝑥 ≤ 𝑇) is the time of the last transaction (Schmittlein et al., 1987). This 

implies that recency and frequency are sufficient statistics for an individual customer’s 

purchasing behavior (Fader et al., 2005).  

Besides discerning a customer as being “alive,” customers can also be classified as “dying,” 

which is denoted in the decision model with probability 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) ∈ [0; 1]. 

These customers are dormant, but can be made active again. Hence, the organization should 

invest in them (Griffin & Lowenstein, 2001). 

However, not all customers who are not “alive” can be recovered. There are customers who 

will never return as well as those that the organization does not want to win back (Griffin & 
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Lowenstein, 2001). Therefore, it is a prerequisite for organizations to distinguish between the 

“dying” and the “dead.” This allows them to divide those customers who are not “alive” into 

those with recovery potential and those without. In the absence of such a distinction the 

organization can lose a lot of time and money on investing in customers who are “dead” and 

have no prospects of recovery (Griffin & Lowenstein, 2001). The probability 

𝑃𝑖("𝑑𝑒𝑎𝑑"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) ∈ [0; 1] also depends on the individual purchasing information of 

every customer 𝑖, like the number of transactions or the time of the last transaction. With the 

two probabilities 𝑃𝑖("𝑎𝑙𝑖𝑣𝑒"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) and 𝑃𝑖("𝑑𝑒𝑎𝑑"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) the organization 

can determine the missing probability 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), which needs to be 

compared to the threshold to make an economically reasonable investment decision. 

𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) = 

1 − 𝑃𝑖("𝑎𝑙𝑖𝑣𝑒"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) − 𝑃𝑖("𝑑𝑒𝑎𝑑"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 
(2) 

Step 3: Threshold derivation 

As it is highly improbable to know for sure if a customer relation is “alive,” “dying,” or 

“dead,” there is always the possibility that the organization comes to a “correct” or “wrong” 

investment decision for a customer relation 𝑖. As far as the “wrong” investment decisions are 

concerned, the organization can commit two types of errors. The type I error represents the 

“wrong” decision, i.e., an organization does invest in customer relations although customer 

relation recovery would not be necessary. Accordingly, the cases Ia (the organization 

unnecessarily invests in “dead” customer relations) and Ic (the organization unnecessarily 

invests in customer relations that are “alive”), which are illustrated in Table 3.2-2, represent 

the type I errors in the decision model. As opposed to this, not investing in a customer relation 

that will end without this investment shows the type II error. In Table 3.2-2, this error type 

refers to the case Ib (the organization does not invest in “dying” customer relations although 

there would be positive expected cash flows in case of customer relation recovery). By taking 

such “wrong” decisions, the organization either incurs unnecessary costs on investment or 

loses cash inflows that might result from investment 𝑗. Accordingly, cases IIa, IIb, and IIc 

represent “correct” decisions as long as 𝜋𝑖  ∙  𝜂𝑖𝑗 ≥ 𝐼𝑗. Even if we assume for our decision 

model that the organization’s risk attitude is neutral when deciding on customer recovery 

investments, we briefly discuss the effects of the potential decisions of a risk-averse and a 

risk-aware decision-maker. A risk-averse organization tends to invest comparatively more in 

customer recovery in order to minimize the risk of migrating customers and losing expected 

payments. As a result, such an organization is more likely to invest in customer recovery than 



3 Part B: Design approaches for information systems in organizations 124 

 

a risk-tolerant one. Consequently, a risk-tolerant decision-maker will tend to invest less in 

customer recovery as he is more willing to risk the customer migration. In summary, one can 

say that a risk-averse organization is more likely to make the type I error, while a risk-tolerant 

organization commits the type II error. 

Table 3.2-2 represents all possibilities of total expected cash flows depending on the 

probabilities 𝑃𝑖("𝑑𝑒𝑎𝑑"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), and 

𝑃𝑖("𝑎𝑙𝑖𝑣𝑒"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) and the decisions to invest in customer relations or not.  

Table 3.2-2 Matrix of the total expected cash flow 

Decision “Dead” 

𝑷𝒊("𝒅𝒆𝒂𝒅"|𝑰𝒏𝒇𝒐. ) 

“Dying“ 

𝑷𝒊("𝒅𝒚𝒊𝒏𝒈"|𝑰𝒏𝒇𝒐. ) 

”Alive” 

𝑷𝒊("𝒂𝒍𝒊𝒗𝒆"|𝑰𝒏𝒇𝒐. ) 

Investment  𝐼𝑎               −𝐼𝑗 𝐼𝐼𝑏                𝜋𝑖 ∙ 𝜂𝑖𝑗 − 𝐼𝑗 𝐼𝑐                   𝜋𝑖 − 𝐼𝑗 

No investment 𝐼𝐼𝑎               0 𝐼𝑏                   −𝜋𝑖 ∙ 𝜂𝑖𝑗 𝐼𝐼𝑐                     𝜋𝑖 

 

The total expected cash flow in case Ia represents the investment cost 𝐼𝑗, which is 

unnecessarily incurred as the customer relation is “dead” with no prospects of recovery. These 

costs incurred on unnecessary investments in customer recovery are represented by 

Equation 3. Thereby, the symbol “∧,” which is the logical connective with the meaning 

“AND,” means that the expected cash flow 𝐸(𝐶𝐹𝑖𝑗) in case of Ia only occurs if the 

organization decides to implement an investment “AND” customer is “dead”. 

𝐸(𝐶𝐹𝑖𝑗)(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑑𝑒𝑎𝑑") = −𝐼𝑗. (3) 

Case Ib, which arise in case the organization decides to not invest in a “dying” customer, leads 

to lost present value of future cash inflows −𝜋𝑖 caused by the inability to recover this customer 

relation 𝑖. This lost present value of future cash inflows, which corresponds to opportunity 

costs, only comes into force to the extent to which the customer recovery investment would 

have been successful, which is represented by the effectiveness factor 𝜂𝑖𝑗 (see Equation 4). 

𝐸(𝐶𝐹𝑖𝑗)(𝑛𝑜 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑑𝑦𝑖𝑛𝑔") = −𝜋𝑖 ∙ 𝜂𝑖𝑗. (4) 

The total expected cash flow of case Ic indicates the present value of future cash inflows 𝜋𝒊 

resulting from a customer relation 𝑖 minus the investment costs 𝐼𝑗 of investment alternative 𝑗 

for investing in an “alive” customer relation (see Equation 5). Here, the investment costs 𝐼𝑗 

are unnecessarily incurred as customer recovery is ineffective. 
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𝐸(𝐶𝐹𝑖𝑗)(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑎𝑙𝑖𝑣𝑒") = 𝜋𝑖 − 𝐼𝑗 . (5) 

Case IIa indicates the correct decision of an organization to not invest in a “dead” customer. 

This decision results in a total expected cash flow equal to 0, as no investment is made and 

the customer generates no future cash inflows (see Equation 6). 

𝐸(𝐶𝐹𝑖𝑗)(𝑛𝑜 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑑𝑒𝑎𝑑") = 0. (6) 

Given 𝜋𝑖  ∙  𝜂𝑗 ≥ 𝐼𝑗, investing in a “dying” customer relation (case IIb) and not investing in a 

customer relation that is “alive” one (case IIc) are correct decisions. Hence, case IIb entails 

the present value of future cash inflows of a customer relation 𝜋𝑖 multiplied by the 

effectiveness factor 𝜂𝑖𝑗 less the costs of investment 𝐼𝑗 (see Equation 7). 

𝐸(𝐶𝐹𝑖𝑗)(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑑𝑦𝑖𝑛𝑔") = 𝜋𝒊 ∙ 𝜂𝑖𝑗 − 𝐼𝑗. (7) 

Case IIc represents not investing in a customer relation that is “alive,” which results in the 

present value of future cash inflows 𝜋𝒊 (see Equation 8). 

𝐸(𝐶𝐹𝑖𝑗)(𝑛𝑜 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑎𝑙𝑖𝑣𝑒") = 𝜋𝑖. (8) 

Based on these mathematical terms (see Equation 3-8), the threshold for an economic decision 

on whether to invest in a customer relation can be deduced. From an economic point of view, 

investing in a customer relation is only reasonable if the total expected cash flow in case of 

an investment for recovering a customer relation is higher than the total expected cash flow 

for not investing (see Inequation 9). The cases Ia, Ib, Ic, IIa, IIb and IIc arise with the 

probabilities that a customer relation 𝑖 is already “dead” 𝑃𝑖("𝑑𝑒𝑎𝑑"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), “dying” 

𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), and “alive” 𝑃𝑖("𝑎𝑙𝑖𝑣𝑒"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), as presented in Table 

3.2-2. Inequation 9 covers decisions under risk neutral preferences: 

𝐸(𝐶𝐹𝑖𝑗)(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑑𝑒𝑎𝑑") ∙ 𝑃𝑖("𝑑𝑒𝑎𝑑"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛)  + 

𝐸(𝐶𝐹𝑖𝑗)(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑑𝑦𝑖𝑛𝑔") ∙ 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛)  + 

𝐸(𝐶𝐹𝑖𝑗)(𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑎𝑙𝑖𝑣𝑒") ∙ 𝑃𝑖("𝑎𝑙𝑖𝑣𝑒"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛)  > 

𝐸(𝐶𝐹𝑖𝑗)(𝑛𝑜 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑑𝑒𝑎𝑑") ∙ 𝑃𝑖("𝑑𝑒𝑎𝑑"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) + 

𝐸(𝐶𝐹𝑖𝑗)(𝑛𝑜 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑑𝑦𝑖𝑛𝑔") ∙ 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) + 

𝐸(𝐶𝐹𝑖𝑗)(𝑛𝑜 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 ∧ "𝑎𝑙𝑖𝑣𝑒") ∙ 𝑃𝑖("𝑎𝑙𝑖𝑣𝑒"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛). 

(9) 
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After substituting the Equations 3–8 in Inequation 9, we solve the inequality for 

𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) (see Inequation 10), which results in the threshold 𝑇𝑖𝑗 ∈ [0; 1): 

𝑇𝑖𝑗 < 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), 

𝑤𝑖𝑡ℎ 𝑇𝑖𝑗 =
𝐼𝑗

2𝜋𝑖𝜂𝑖𝑗
. 

(10) 

The threshold enables organization to make investment decisions wherein the total expected 

cash flow from an investment in recovering a customer relation is higher than that from not 

investing. 

Step 4: Making the investment decision 

To make the investment decision 𝐷𝑖 for a customer relation 𝑖, the organization should now 

compare the probability that the customer relation is “dying,” 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), 

with the threshold 𝑇𝑖𝑗: 

𝐷𝑖 = {
𝑖𝑛𝑣𝑒𝑠𝑡         𝑓𝑜𝑟 𝑇𝑖𝑗 < 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 

𝑛𝑜𝑡 𝑖𝑛𝑣𝑒𝑠𝑡 𝑓𝑜𝑟 𝑇𝑖𝑗 ≥ 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 
. 

(11) 

In summary, the four proposed steps lead to an economically reasonable decision on whether 

to invest in the recovery of an individual customer relation by comparing the threshold to the 

current probability of a customer relation being “alive,” as per Inequation 11. 

 Evaluation 

To demonstrate the decision model’s practicability, we first present an illustrative case with a 

sample calculation and sensitivity analysis. Subsequently, the results of the interviews with 

experts from its practice are presented.  

Application of the decision model 

We illustrate the applicability, completeness, understandability, feasibility, and operationality 

of the decision model with an example in which an online retailer aims at recovering possibly 

“dying” customer relations. At the same time, the online retailer wants to avoid unnecessarily 

investing in customer relations that are either “dead” or “alive.” By using our decision model, 

the online retailer addresses only those customer relations for which an investment is 

reasonable on the basis of the probability that they are “dying” relative to the calculated 

threshold. As such, we demonstrate the economic benefit of the decision model. 
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Step 1: Selection of the most economically reasonable investment alternative 

At first, the online retailer has to identity different investment alternatives for customer 

recovery and then, has to select the most economically reasonable investment alternative for 

every customer relation 𝑖. In our example, the online retailer selects four possible investment 

alternatives 𝑗, that is, two different channels, letter and mail, and two different contents, 

voucher and special offer. According to the experience of the online retailer, customer 

recovery via letter is more effective than via email. Similarly, a voucher is more effective than 

a special offer. Moreover, in this example, customer recovery through vouchers requires more 

investment costs than special offers. Table 3.2-3 presents the effectiveness factor 𝜂𝑖𝑗 and the 

costs of the four investment alternatives 𝐼𝑗. 

Table 3.2-3 ηij and Ij for the investment alternatives 

 Special offer via 

letter 

(𝒋 = 𝟏) 

Voucher via 

letter 

(𝒋 = 𝟐) 

Special offer via 

email  

(𝒋 = 𝟑) 

Voucher via 

email 

(𝒋 = 𝟒) 

𝜼𝒊𝒋 

𝑖 = 1 0,15 0,17 0,10 0,15 

𝑖 = 2 0,03 0,07 0,05 0,14 

𝑖 = 3 0,08 0,10 0,06 0,03 

𝑰𝒋 USD 20 USD 30 USD 12 USD 22 

 

To select the most economically reasonable investment alternatives for different customers 

according to Formula 1, we take the present values of future cash inflows 𝜋𝑖 of three 

customers; for example, 𝜋1 =  𝑈𝑆𝐷 214, 𝜋2 = 𝑈𝑆𝐷 886, and 𝜋3 = 𝑈𝑆𝐷 780. Table 3.2-3 

presents the expected cash flows, calculated as described in Formula 1 (𝐸(𝐶𝐹𝑖𝑗) = 𝜋𝑖 ∙ 𝜂𝑖𝑗 −

𝐼𝑗), for each customer relation 𝑖 and the four different investment alternatives 𝑗. 

Table 3.2-4 E(CFij) for the customer relations and investment (USD) 

 Investment alternatives 

𝑗 = 1 𝑗 = 2 𝑗 = 3 𝑗 = 4 

C
u

st
o
m

er
 

R
el

a
ti

o
n

s 𝑖 = 1 11.69 7.01 10.25 10.23 

𝑖 = 2 5.74 36.21 29.38 100.72 

𝑖 = 3 45.92 48.42 33.83 2.41 
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The results of Table 3.2-4 indicate that the most economically reasonable investment 

alternative for the customer relation 𝑖 = 1 is 𝑗 = 1, for 𝑖 = 2 is 𝑗 = 4, and for 𝑖 = 3 is 𝑗 = 2 

(see bold marked values in Table 3.2-4), as these investment alternatives have the greatest 

expected cash flow for different customers, as per Equation 1. 

Step 2: Measuring the probability of a customer relation “dying” 

Next, the online retailer has to quantify the probability of a customer relation “dying,” that is, 

𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), according to Equation 2. For example, we assume the following 

values for the three customers: 𝑃1("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) = 0.36, 

𝑃2("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) = 0.31, and 𝑃3("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) = 0.16. 

Step 3: Threshold derivation 

Further, the online retailer has to calculate the threshold for the customers and the selected 

investment alternative by using Inequation 10.  

Table 3.2-5 Results of the threshold Tij 

 𝑱𝟏
∗ = 𝟑 𝑱𝟐

∗ = 𝟒 𝑱𝟑
∗ = 𝟐 

𝑻𝒊𝒋 31.56% 8.96% 19.13% 

 

Step 4: Making the investment decision 

The application of Inequation 11 indicates whether the online retailer should invest in the 

customer relations or not by comparing the threshold 𝑇𝑖𝑗 with the probability of the customer 

relation 𝑖 “dying,” 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛). 

Table 3.2-6 Investment decision for customer relations 𝒊 

 𝑫𝒊 

𝒊 = 𝟏 𝑇11 31.56% 
invest 

𝑃1("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 36.00% 

𝒊 = 𝟐 𝑇24 8.96% 
invest 

𝑃2("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 31.00% 

𝒊 = 𝟑 𝑇32 19.13% 
not invest 

𝑃3("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) 16.00% 

 

Table 3.2-6 indicates that the online retailer should invest in customer relation 𝑖 = 1 and 

𝑖 =  2 because the results of the threshold 𝑇11 and 𝑇24 are less than 
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𝑃1("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) and 𝑃3("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), respectively. For customer 

relation 𝑖 = 3 the investment decision is not to invest, as 𝑇32 is greater than 

𝑃3("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛). 

3.2.4.1 Evaluation of Decision Model 

Next, we explain why the evaluation criterion is fulfilled. First, applicability is indicated by 

conducting this example calculation. Further, this evaluation type demonstrates the 

completeness of the decision model’s as all input variables are quantitative measures and 

comprehensive. The evaluation criterion understandability is shown as the actual measure is 

easy to interpret and the model is easily applicable by users. Feasibility and operationality is 

given as the parameters are determinable, well defined, and indicate that the decision model 

is based on a quantitative measurement. Additionally, the data necessary for the decision 

model are accessible and affordable because the number of transactions or the time of the last 

transaction is usually known by the organizations. To evaluate the decision model from an 

economic perspective, we extend the sample calculation and instantiate the decision model 

with 10,000 customer relations that have equally distributed probabilities of “dying” in an 

interval of 0–100% and equally distributed expected cash flows in an interval of USD 0–

1,000. The effectiveness factors of the investment alternatives are equally distributed in an 

interval of 0–20%. In this sample calculation, we use the parameter setting of the four 

investment alternatives listed in Table 3.1-2. In case of a perfect estimation of the probability 

of customer relations “dying,” 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), the sample calculation reveals 

that about 20% of the individual recovery investments can be reduced by applying the decision 

model, which leads to significant cost savings. As depicted in Table 3.2-7, according to a 

sensitivity analysis, on one hand, estimation errors of one of the effectiveness factor 𝜂𝑖𝑗 only 

lead to disproportionately low changes in cost savings (e.g., an estimation error of -20% of 

the effectiveness factor 𝜂𝑖𝑗  leads to a change of 2% in the cost savings). That is, the model can 

be considered as being robust in terms of this parameter. 

Table 3.2-7 Impacts of estimation errors on cost savings 

Parameter 

estimation error 

- 

20% 

- 

15% 

- 

10% 

- 

5% 
0% 

+ 

5% 

+ 

10% 

+ 

15% 

+ 

20% 

𝜂𝑖𝑗 

𝐸(𝐶𝐹𝑖𝑗) 

𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓. ) 

2% 2% 1% 0% 0% -1% -1% -2% -3% 

7% 5% 4% 2% 0% -5% -8% -13% -17% 

29% 19% 13% 6% 0% -6% -11% -16% -22% 
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On the other hand, the sensitivity analysis exposes that 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) and the 

expected cash flows 𝐸(𝐶𝐹𝑖𝑗) need to be estimated carefully, as estimation errors lead to 

disproportionately high changes in cost savings (e.g., an estimation error of -20% of the 

expected cash flows 𝐸(𝐶𝐹𝑖𝑗) leads to a change of 7% in cost savings and an estimation error 

of -20% of 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) leads to a change of 29% in cost savings). However, 

even with poorer estimations, savings on a low percentage basis can be generated, which can 

easily be significant in monetary terms for large customer recovery investments. 

3.2.4.2 Expert Interviews 

To evaluate the practical applicability of the decision model and to give recommendations for 

action, seven experts experienced in science and business practices were interviewed. 

Therefore, we adopted the approach of theoretical sampling from the grounded theory 

methodology (Glaser & Strauss, 1967). In detail, we selected the experts stepwise in order to 

get a heterogeneous interviewees and organizations. In this way, we aim to examine and 

analyze as many aspects of the model as possible. The experts are active in different fields of 

work and their respective organizations operate in different sectors (e.g., financial service, 

automobile, IT, and tourism), have different legal forms (e.g., limited and corporation), and 

different number of employees (from less than 10 to more than 100,000) (see Table 3.2-8). 

Furthermore, two experts work with start-ups, whereas five of them work for established 

organizations. These facts show the diversity of the organizations included in our sample. The 

interviews were conducted in Germany and each interview lasted approximately 45 minutes, 

was semi-structured and guideline-based, and conducted via telephone. The interviews were 

recorded and replayed multiple times in order to strengthen the evaluation of the decision 

model. Semi-structured interviews enable the respondents to think and reflect upon the issues, 

their experiences, and new ideas and perspectives (Kramp, 2004). The interview was divided 

into two parts. First, the experts were asked for detailed explanations on the current status of 

practice, whether their organizations explicitly carry out customer recovery investments, how 

they manage customer recovery in general, the basis on which they arrange customer recovery 

investments, and whether they use decision models in their investment decisions. The second 

part of the interview contained questions on the applicability of the model in a real-world 

context, the availability of relevant data in the organizations, and the way the experts could 

make a decision with the help of the model. For evaluating the decision model, we used an 

approach sourced from the grounded theory methodology, namely constant comparison 

(Glaser & Strauss, 1967). With that, it is possible to constantly compare the findings from 



3 Part B: Design approaches for information systems in organizations 131 

 

preceding interviews with subsequent ones during the overall interview process to improve 

the validity of the findings. The goal is to detect similarities and discover patterns (Tesch, 

1990) The similarities and insights that were identified are summarized as follows. 

Table 3.2-8 Sectors, legal forms, and the number of employees in the organizations of 

the interviewed experts 

Expert Job description Sector Legal form Number of 

employees 

A Project Manager Financial service Limited 500-1000 

B CRM Expert Automobile Corporation >100.000 

C Head of Marketing 

and Operation 

IT (Startup) Limited 10-50 

D Executive assistant Financial service Corporation >100.000 

E CEO Tourism Limited 10-50 

F CEO Automobile Limited 10-50 

G Development 

manager 

Financial service 

(Startup) 

Corporation <10 

 

Expert interviews on the current status of practice 

All the experts emphasized the importance of customer recovery and its active management. 

Expert A particularly highlights this with the fact that customer recovery is significantly more 

profitable than the acquisition of new customers. Thus, it is hardly surprising that all of the 

expert interviews indicate that the involved organizations implement customer recovery 

management. However, they do not manage it in the same way. According to experts B and 

D, in long-established, large corporations, customer recovery management is conducted 

decentrally through the sales departments and agencies and is not centrally managed by the 

organizations’ headquarters. One reason for doing so is the lack of a uniform database and a 

customer relationship management (CRM) system. The customer data belong to the sales 

departments and agencies, which maintain a traditional customer relation with direct customer 

contact. From a regulatory perspective the organizations’ headquarters do not have the 

permission to contact the customers for recovery. The decentralized customer recovery 

management of the sales departments and agencies requires customer recovery to be managed 

individually and not across the organization. As a result, no control or quality assurance of the 

measures can be ensured, and thus, the success of the customer recovery management depends 

on the agencies. The aim of these organizations is to introduce centralized customer data 

management to enable uniform decision-making that combine the objectives of the 
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organizations’ headquarters with those of the sales and branch offices using predictive data 

analysis and big data. Expert D emphasizes that the awareness of the use of data analysis is in 

practice, but this is often used at a very rudimentary level. In contrast, young organizations, 

like the organizations of experts A, C, and G, whose business model is fully digitized, are able 

to use the available data for comprehensive customer recovery. Expert G reveals that such 

organizations even have accurate data on where the customers have migrated as well as what 

their last transaction was. According to expert A, they can use this defined criteria to decide 

on customer recovery investments, like the time since the last transaction of the customer with 

the organization, to address the customers individually. Additionally, they regard lists that 

exclude customers that the organizations do not want to win back when deciding on customer 

recovery investments. With regard to expert C’s organization, it uses customer data to exactly 

determine whether a customer still has an active relation with the organization. In the case of 

established, medium-sized organizations, like the organizations of experts E and F, the process 

customer recovery is not completely digitized and automatic, but it is customer-specific and 

personal. Expert E emphasizes that the smaller an organization, the lesser the likelihood of it 

being centrally managed. Thus, these organizations try to avoid customer migration by 

carrying out customer-specific offers with face-to-face contact for recovery. According to 

expert F, such organizations have a partially digital customer data base, which they can use to 

find information on the current customer status to identify the ones to invest in. There are 

several possibilities for investments in customer recovery. The expert interviews reveal that 

there are also differences in the channels that the different organizations choose for customer 

recovery. The established, medium-sized organizations and corporations, such as the 

organizations of experts E and F, use more traditional channels such as personal contact, print, 

letter, or email, while the newer fully digitized organizations make estimations using in-app 

push notifications, short message service (SMS), and instant messaging applications. Table 

3.2-9 summarizes the major findings from the interviews regarding the current status of 

practice and lists the experts who support them. 

  



3 Part B: Design approaches for information systems in organizations 133 

 

Table 3.2-9 Major findings from the interviews regarding the current status of practice 

and list of experts who support them 

Major findings from the interview Supported by expert(s)… 

Affirmation of the importance of managing customer 

recovery 

A, B, C, D, E, F, G 

Implementing customer recovery management in the 

organization 

A, B, C, D, E, F, G 

Decentrally managed customer recovery B, D 

Fully digitized customer recovery by using customer data A, C, G 

Not completely digitized and automatic, but customer-

specific and personal customer recovery 

E, F 

Use of traditional channels such as personal contact, 

print, letter, or email for customer recovery 

E, F 

Use of newer and digitized channels such as in-app push 

notifications, short message service (SMS), and instant 

messaging applications 

A, C, G 

 

In conclusion, no organization uses a quantitative decision for investments in customer 

recovery. Most of the organizations do not even consider a customer’s profitability and often 

keep customer recovery very simple (expert A, B, C, E and F). Only a few make their decisions 

on the basis of statistical estimates and an economic calculus (expert D and G). Nevertheless, 

it is essential for organizations, especially the fully digitized ones, to use a decision model 

with a well-defined logic to make automated decisions on customer recovery. To build the 

organizations a foundation for their decisions, in the following, we propose a decision model 

to decide on customer recovery investments. 

Expert Interviews on Applicability 

Expert B confirms the good comprehensibility of the decision model. Moreover, experts D 

and G emphasize that the decision model is profound and the focus on the “dying” customers 

is important as customer recovery management gets increasingly critical in the digital world. 

Expert E also supports distinguishing customers as “alive,” “dying,” and “dead” by 

emphasizing the meaningfulness of the customer status “dead.” The reason for this is that 

every organization has customers that they do not want to make active again due to them 

running to the court or dunning procedures, for instance. Consequently, it is indispensable to 

consider these customers when deciding about customer recovery investments. However, 

according to expert E, organizations should be aware of the fact that investing in customer 
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recovery also raises the risk of annoying customers, and thus, possibly reducing customer 

satisfaction. Expert A makes a similar comment, in that, he mentions that investing in 

customers who are “alive” is a wrong decision as it is very important for the organization to 

provide existing customers with the same actions and benefits as inactive customers who can 

be recovered. As such, they anticipate a decreasing likelihood of customers who are “alive” 

migrating. 

Apart from that, to make investment decisions the organizations have to collect the necessary 

data, namely the probability of the customer relation “dying” 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛), 

present value of future cash inflows of a customer relation 𝜋𝑖, the investment costs 𝐼𝑗, and the 

effectiveness factor 𝜂𝑖𝑗. Hence, we asked the experts if this necessary data is available in their 

organizations. All of the interviewed experts state that 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) is available 

due to digitized customer data. However, some of the experts mention that such a customer 

database is presently missing in their organizations (expert B, E, and G). While experts B and 

G emphasize that their organizations are working on the roll-out of an integrated CRM system 

at the moment, expert E points out that for medium-sized organizations the effort would be 

disproportionally high, which is the reason they do not implement such a database. The 

personal contact between the customers and the organizations is pronounced, which is why 

the decisions on customer recovery have not been made digitally and automatically. As 

regards the present value of future cash inflows of a customer relation 𝜋𝑖 the interviews have 

indicated that the organizations here have different approaches. In contrast, expert D’s 

organization would use the CLV for calculations, expert G explains that they would take the 

average turnover of a customer group as the basis for investment decision. Expert A would 

only calculate the model for the next period and for long-term. Hence, he would also calculate 

the present value of future cash inflows of a customer relation only for the subsequent period. 

The expert interviews indicated that no expert sees a problem in determining the investment 

costs 𝐼𝑗. Finally, experts D and G reveal that the effectiveness factor 𝜂𝑖𝑗 can be estimated 

according to an empirical value, a market research, or control groups. Only expert F indicates 

doubts regarding the effectiveness factor 𝜂𝑖𝑗 because the results of empirical values of the 

organization are very volatile. 

In addition to the relevance of the decision-making model and the availability of the input 

parameters, many of the experts regard the decision model as good decision support for their 

organization. Expert C claims that the model is quite useful as an economic decision-making 

tool. In particular, as the organization has not yet made any investment decision for customer 

http://www.linguee.de/englisch-deutsch/uebersetzung/control+group.html
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recovery according to an economic decision-making model and have only done so on 

intuition. Additionally, expert D points out that the method could complement the 

collaboration of the organizations’ headquarters and the sales departments and agencies. Thus, 

the benefits from the information obtained in the decision-making model can be combined 

with the personal impression of the sales force. Moreover, Expert G appreciates the possibility 

of customer-specific consideration offered by the decision model. Such a customer-specific 

consideration is the future goal of his organization. So far, the customers are divided into 

customer groups to help in making recovery decisions. One reason for this is that, despite 

modern information and communication systems, the exact data of each single customer is 

not available to make decisions on a customer-specific basis. This is confirmed by expert C, 

who also points out that the customers are segmented for analysis measures. Nevertheless, the 

experts consider the model to be applicable in their organization, as a formal approach to a 

decision model enables the analysis of customer groups as well. Table 3.2-10 summarizes the 

major findings from the interviews regarding the applicability of the decision model and lists 

the experts who support them. 

Table 3.2-10 Major findings from the interviews regarding the applicability of the 

decision model and list of experts who support them 

Major findings from the interview Supported by expert(s)… 

Good comprehensibility of the decision model B 

Focus on "dying" customers is important for customer 

recovery 

D, G 

Importance of the differentiation between “alive,” 

“dying,” and “dead” customers 

E 

Easy ascertainment of 𝑃𝑖("𝑑𝑦𝑖𝑛𝑔"|𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛) A, B, C, D, E, F, G 

Easy ascertainment of the present value of future cash 

inflows 𝜋𝑖 (using different approaches) 

A, D, G 

Easy ascertainment of the investment costs 𝐼𝑗. A, B, C, D, E, F, G 

Easy ascertainment of the effectiveness factor 𝜂𝑖𝑗 A, B, C, D, E, G 

Decision model is a good decision support for 

organizations 

C, D, G 

 

In summary, the expert interviews indicate that the decision model for customer recovery 

investments is meaningful, enriching, and is practically applicable. Nevertheless, it cannot be 

applied to all organizations in a generalized manner, as each organization has different 

requirements and different objectives. Although the decision model provides a profound basis 
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for making decisions regarding customer recovery investments, each organization and 

business model must separately examine how the model is compatible with their prerequisites 

and objectives and the adjustments and assumptions required for its application. 

 Summary and discussion 

In this paper, we point out that the distinction between "alive," "dying," and "dead" customer 

relations for is challenging for customer recovery because of increasing market transparency 

and impersonal nature. Hence, organizations risk wrong investment decisions when it comes 

to customer recovery. Addressing this challenge, the extant literature various discussions and 

models concerning investments in customer relations (Table 3.2-1). However, to the best of 

our knowledge, no approach considers the probabilities of a customer relation being “alive,” 

“dying,” and “dead” for such investment decisions. Therefore, we combine these ideas in a 

formal decision model to decide on customer recovery in an economically reasonable manner 

by considering these probabilities. In doing so, we strive for practical applicability and 

demonstrate the decision model’s operationalization in an illustrative example and discuss its 

applicability in interviews with experts from practical fields.  

Nevertheless, our decision model has limitations that stimulate further research. First, further 

research should examine the decision model in a real world context to evaluate its usefulness 

more precisely (Sonnenberg & Vom Brocke, 2012). However, we can evaluate the decision 

model in terms of its applicability, completeness, understandability, feasibility, and 

operationality with an example. In doing so, we follow Sonnenberg and Vom Brocke (2012), 

and argue that it is reasonable to disseminate research findings at early stages to communicate 

them to interested peers and research communities. Second, the decision model is designed to 

cover a single period. In practice, to permanently ensure maximum of customer recovery, 

periodical assessments could be a possible extension of the decision model. Third, in the 

decision model it is assumed that the organization’s decision regarding customer recovery 

investments is risk neutral. In reality, risk attitude can be context and branch specific, which 

should be examined in future research. Finally, we assume that investing in a customer relation 

that is “alive” is not reasonable in terms of the recovery effect. In reality, recovery investments 

could also increase the satisfaction of customer relations that are “alive.” 
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4 Part C: Behavior of individuals in a digital world  

4.1 The disclosure of private data: Measuring the privacy paradox in 

digital services 

Abstract 

Privacy is a current topic in the context of digital services because such services demand mass 

volumes of consumer data. Although most consumers are aware of their personal privacy, 

they frequently do not behave rationally in terms of the risk-benefit trade-off. This 

phenomenon is known as the privacy paradox. It is a common limitation in research papers 

examining consumers’ privacy intentions. Using a design science approach, we develop a 

metric that determines the extent of consumers’ privacy paradox in digital services based on 

the theoretical construct of the privacy calculus. We demonstrate a practical application of the 

metric for mobile apps. With that, we contribute to validating respective research findings. 

Moreover, among others, consumers and companies can be prevented from unwanted 

consequences regarding data privacy issues and service marketplaces can provide privacy-

customized suggestions. 

 

Keywords: Privacy paradox, Privacy calculus, Metric, Digital services 

 

Authors:  

Prof. Dr. Henner Gimpel 

Dr. Dominikus Kleindienst 

Daniela Waldmann (M.Sc.) 

 

Status 

This article is published in Electronic Markets (2018) 28 (4):475–490. 

https://doi.org/10.1007/s12525-018-0303-8. 

  



4 Part C: Behavior of individuals in a digital world 142 

 

 Introduction 

In the information age, the significant quantity of available data enables organizations to 

create detailed descriptions of individuals (Hashem et al., 2015). Enabled by information and 

communication technologies (ICT), the resulting profiles can, for example, be used for 

personalized marketing campaigns or advertising (Egelman et al., 2013; Hauff et al., 2015). 

However, this usage is not always with the knowledge of consumers. Platform and service 

operators may be regarded as unreliable actors in part using data for unauthorized or 

unintended purposes (Alt et al., 2015). Invasion of privacy can result in serious negative 

effects, for example, legal consequences may arise if a person acts on behalf of others and, 

thus, abuses their identities. Financial implications may include financial losses caused by 

third parties hacking into a personal account (Hauff et al., 2015). Massive data access 

facilitates collecting, sharing, buying, or selling of private data, and entails storing, 

manipulating, mining, and analyzing these data (Malhotra et al., 2004). Currently, most 

consumers already have a pronounced perception toward privacy and pursue the goal of 

protecting themselves from their private data being misused (Egelman et al., 2013; 

Kumaraguru & Cranor, 2005). Especially, the third-party use of data is seen with particular 

care by customers (Spiekermann et al., 2001). Put together, the easy dissemination of data 

raises the awareness of privacy and makes privacy a current topic for information hubs such 

as electronic markets (Alt et al., 2015). 

However, despite these risks, consumers are usually unable to estimate the amount and 

economic value of the personal data they provide (Buck et al., 2014). Consequently, 

consumers have a propensity to not protect themselves enough against privacy risks and 

disclose private data despite the associated imminent dangers (Acquisti, 2004). This 

phenomenon reveals the unrealistic assumption of individual rationality in the context of 

personal privacy. Despite making the statement that they want to protect their privacy, 

consumers act contrarily (Acquisti, 2004). This phenomenon is called the privacy paradox 

(Norberg et al., 2007).  

The growth of digital services in ICT amplifies the challenges concerning privacy issues. In 

general, a service is defined as “any activity or benefit that one can offer to another that is 

essentially intangible” (Kotler & Armstrong, 2010, p. 248). A digital service is a service 

provided over electronic networks (Graupner et al., 2015). Consumers’ privacy is even more 

threatened because digital services such as mobile apps or social media have enormous 

demand for consumer data (Stutzman et al., 2013; Wei et al., 2012). For example, mobile apps 
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can easily collect sensitive data, such as photos and files, contact lists, or location information, 

thus supporting the increase in data collection (Egelman et al., 2013; Wei et al., 2012; Zhou, 

2013). Consequently, consumers in particular who use smartphones and, thus, mobile apps, 

are faced with a special challenge concerning their privacy (Horbach, 2013). Yet they continue 

to download, install, and use a significant number of apps. Current download rates and 

forecasts show a booming app economy (Buck et al., 2014). In addition, consumers hardly 

pay attention to or comprehend app permissions (Felt et al., 2012), even though technical 

capabilities enable the spreading and targeted usage of this mass of personal consumer 

information. Additional factors exist that reinforce the enormous usage of apps and lead to the 

collection of consumer information. For example, by integrating smartphones into their daily 

life (Abdelzaher et al., 2007; Buck et al., 2014) and trusting them, some consumers use mobile 

apps without a clue as to how they invade privacy (Horbach, 2013). Furthermore, consumers 

expect several benefits, such as social adjustment, time savings, and pleasure, or face social 

pressure to use apps (Hui et al., 2006; Smith et al., 2011). These factors also explain the 

booming app economy with apps as a special type of digital service (Buck et al., 2014; Hui et 

al., 2006; Krasnova & Veltri, 2010; Schreiner & Hess, 2015). 

The vulnerability of consumers’ privacy in the context of digital services results in the loss of 

control over personal information and unwanted data disclosure (Bélanger & Crossler, 2011; 

Dinev & Hart, 2006). Additionally, this vulnerability supports business models for digital 

service providers whose most important type of revenue is based on information (Buck et al., 

2014). Thus, consumers gather the benefits of free digital services only in return for providing 

their personal data (Buck et al., 2014). Although the clueless handling of privacy is primarily 

a consumer problem, it also has implications for digital service providers because they 

compete for consumers (Culnan & Armstrong, 1999). Moreover, their economic success is 

determined by a strong reputation, which in turn depends on the responsible handling of 

consumers’ privacy (Culnan & Armstrong, 1999; Degirmenci et al., 2013). 

Consumer privacy is a well-known research subject. Topics such as the privacy calculus 

(Culnan & Armstrong, 1999; Min & Kim, 2015; Smith et al., 2011) and privacy concerns 

(Buchanan et al., 2007; Krasnova et al., 2009; van Slyke et al., 2006; Zukowski & Brown, 

2007) are frequently mentioned in the literature. However, many researchers focus on 

examining factors that betray consumers and induce them or keep them from disclosing 

personal information (Son & Kim, 2008). They also focus on factors that affect an individual’s 

privacy concerns, such as privacy experience, personality traits, or privacy awareness (Smith 

et al., 2011). In these cases, it is theoretically assumed that consumers behave rationally 
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according to a risk-benefit calculation — the privacy calculus. The perceived risks of 

disclosing personal information are opposed to the perceived benefits expected from doing so 

(Chellappa & Sin, 2005; Dinev et al., 2006; Dinev & Hart, 2006; Xu et al., 2009). However, 

actual consumer behavior, which is affected by bounded rationality or missing information, is 

neglected. The so-called privacy paradox, which “represents a form of irrational, or bounded-

rational decision making” (Keith et al., 2012, p. 3), is already discussed in extant literature. 

Yet, this literature only discusses and demonstrates that consumers do not keep to their stated 

privacy concerns. However, to the best of our knowledge, no research exists that has 

developed a metric to calculate the extent of the privacy paradox for either digital services or 

any other application domain. To overcome this research gap, we use a design science research 

approach following Peffers et al. (2007) to address the following objective in this paper.  

Design objective: Development of a privacy paradox metric (PPM) as a design artifact that 

aggregates consumers’ privacy intentions and behavior to a single measure and quantitatively 

assesses the extent of consumers’ paradoxical privacy behavior in the context of digital 

services.  

We focus on digital services because consumers’ privacy is even more vulnerable in this 

context given that these services require a large volume of personal data. A metric is defined 

as a standard of measurement (Merriam Webster, 2017). Such a standard is a human created 

artifact and, as such, should be accurately designed. Prior research considers metrics as 

artifacts that are objects for design science research (Offermann et al., 2010). Being the first 

quantitative measure of the extent of the privacy paradox, the PPM will have several 

advantages for researches, consumers, the companies offering digital services, ICT platform 

providers, and consumer protection organizations. Research can use the metric to validate 

empirical results towards consumers’ data privacy intentions, as the privacy paradox is a 

limitation in many data privacy research papers. To consumers, the PPM could provide 

transparency about an individual consumer’s privacy paradox to save them from careless 

disclosure of data and thus unwanted consequences. Accordingly, also companies offering 

digital services can use the PPM to identify careless consumer decisions towards data 

disclosure and manage the risk related to such decisions. ICT service providers, such as app 

stores, can use the PPM to enhance their attractiveness by providing customized warnings, 

suggestions, sorting, or filtering. Consumer protection organizations can build further 

empirical studies on the PPM that increase public awareness on the risks related to the privacy 

paradox. 
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To achieve the design objective, we follow the design science research methodology (DSRM) 

(Hevner et al., 2004; Peffers et al., 2007) and contribute a design theory (Gregor, 2006; Gregor 

& Hevner, 2013; Gregor & Jones, 2007) to measure the extent of the privacy paradox. The 

structure of this paper is similar to the publication scheme suggested by Gregor and Hevner 

(2013). First, we present the theoretical background of the topic in Section 4.1.2. Next, we 

deduce the requirements that the metric must fulfil to guarantee high quality and to declare 

the basic notion and calculation of the privacy paradox metric in Section 4.1.3 and 4.1.4. 

Subsequently, we describe an exemplary application of the PPM and its results in Section 

4.1.5. Afterwards, we evaluate the metric against the requirements in Section 4.1.6. Finally, 

we show the theoretical contribution, limitations, and managerial implications in the 

discussion and conclude in Section 4.1.7. 

 Theoretical background 

Our research contributes to a stream of literature on data privacy in information systems (IS) 

and related fields. Thus, we review this research and build our metric on it.  

A person’s privacy has evolved into one of the most important ethical topics of the information 

age (Mason, 1986). The main reason for this development is that we live in an age of 

information overload (Zhan & Rajamani, 2008). The broad dissemination of information 

enables companies to collect significant quantities of information on their consumers in order 

to meet consumer demands and to remain competitive (Culnan & Armstrong, 1999; 

Nissenbaum, 1997; Zhan & Rajamani, 2008). Companies expect even greater advantages from 

promising consumer data, such as improving consumer retention, increasing revenue, having 

a better understanding of existing and prospective consumer needs, better recommendations 

or increasing productivity (Heimbach et al., 2015; Spiekermann et al., 2001; Tene & 

Polonetsky, 2012; Zhan & Rajamani, 2008). However, as companies collect an increasing 

amount of data, they tend to forget the fundamental right to privacy (Spiekermann et al., 2001). 

The same information, which brings significant advantages for companies, also results in 

increasing privacy concerns on the consumer side (Zhan & Rajamani, 2008), such as social, 

psychological, resource-related, independence-related, legal, and physical consequences 

(Hauff et al., 2015). 

In a contemporary interpretation, privacy refers to an individual’s control over sensitive 

information about oneself (Bélanger et al., 2002; Bélanger & Crossler, 2011; Stone et al., 

1983). At the individual level, countless differences exist in the desire for privacy (Hawkey 

& Inkpen, 2006). Zukowski and Brown (2007) find that certain demographic factors, such as 
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age, education, and income level, affect the privacy concerns of individuals, whereas factors 

such as gender or Internet experience have no influence. In contrast, Cho et al. (2009) show 

that gender and Internet experience apparently influence individuals’ privacy concerns. 

Likewise, knowledge and own preferences affect the privacy attitude (Acquisti et al., 2015). 

Frequently, people cannot imagine that their data disclosure can have serious consequences 

for them. In addition to the missing knowledge, own preferences, emotions, and thoughts 

change in different situations and stages of life (Acquisti et al., 2015), which also affects 

information disclosure and privacy conditions. However, privacy is different not only on an 

individual level but also with respect to cultural- and context-related deviations (Acquisti et 

al., 2015).  

Regarding privacy concerns, several individual differences exist (Acquisti & Grossklags, 

2005). Every consumer makes decisions about his or her own privacy every day, such as when 

deciding to use or not use a digital service. A prevalent model for such decisions is the privacy 

calculus, which represents “the most useful framework for analyzing contemporary consumer 

privacy concerns” (Culnan & Bies, 2003, p. 326). In this way, it is possible to consider 

individual circumstances by weighing personal preferences for benefits and risks (Dinev & 

Hart, 2006; Laufer & Wolfe, 1977). Although risks reduce the individual’s readiness to 

disclose private data, benefits have the reverse effect (Laufer & Wolfe, 1977). To make the 

calculus more illustrative, Hui et al. (2006) list two categories of potential benefits, namely 

extrinsic (monetary saving, time saving, self-enhancement, social adjustment) and intrinsic 

(pleasure, novelty, altruism) benefits. Roeber et al. (2015) find that most customers disclose 

their personal information if the benefits fulfil their needs. The greater the benefits of a digital 

service, the more the consumer is willing to disclose data to be able to use the service. Risks 

are understood as the possible intrusion of privacy within the risk of losing personal data to a 

company and the potential danger of the data being misused (Malhotra et al., 2004; Smith et 

al., 1996; Smith et al., 2011). Hence, risks are viewed as the result of two factors: the perceived 

likelihood of a potential privacy invasion and the perceived damage it causes (Cunningham, 

1967). The higher risk of using a digital service results in a lower likelihood that the consumer 

will use the service. 

Most researchers assume that people behave rationally when they decide about their privacy 

and that they weigh the benefits and risks (Acquisti & Grossklags, 2005). Also, the privacy 

calculus is based on this assumption (Keith et al., 2012). Nevertheless, an opposite behavior 

is observed and behavioral intentions to disclose information are not a precise predictor for 

actual behavior (Norberg et al., 2007). People who claim to have strong privacy concerns and 
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no purpose for revealing their data give the information away despite that attitude. The term 

privacy paradox denotes such behaviour (Acquisti & Grossklags, 2004; Norberg et al., 2007). 

Researchers show that people behave contrarily to their reported privacy attitudes and 

concerns (Bélanger & Crossler, 2011; Norberg et al., 2007; Smith et al., 2011). Thus, in many 

cases, the stated privacy concerns do not correspond to their real behavior and consumers act 

boundedly rational or irrationally (Acquisti & Grossklags, 2004).  

Prior literature repeatedly verifies this behavior. Spiekermann et al. (2001) show that 

consumers disclose private data to online shops despite having privacy concerns. They 

conduct an experiment to measure the self-reported privacy attitudes and compare them with 

their actual disclosing behavior in an online shopping environment. They confirm that most 

consumers do not keep to their stated privacy preferences. Additionally, Norberg et al. (2007) 

investigate a study to determine whether or not people live up to their reported intentions 

toward privacy. Thereby, they reinforce the existence of the privacy paradox because they 

find that consumers provide substantially more private data than they profess. Additional 

examples exist for the examination of the privacy paradox in e-commerce scenarios, such as 

from Jensen et al. (2005) and Berendt et al. (2005). The privacy paradox cannot be 

demonstrated only in the online shopping and marketing context but also through social 

media. Acquisti and Gross (2006) point out that privacy concerned persons are members of 

Facebook and disclose a large amount of private data, thus behaving paradoxically. 

 Development of the privacy paradox metric 

A metric is a mathematical model that is able to measure aspects of systems, system designs, 

or behavior in the interaction with systems (Offermann et al., 2010). In general, measuring 

means assigning a number to an object to express some aspect of it in a quantitative manner. 

Any form of measurement is an abstraction that reduces the complexity of the object’s 

attributes to a single number (Böhme & Freiling, 2008). In this way, a metric provides 

measures that managers understand and that academics can replicate and analyse (Palmer, 

2002). In addition, practitioners and researchers use metrics to make better decisions (Hauser 

& Katz, 1998).  

To ensure a high quality for the PPM, we first present the requirements that the metric must 

fulfill. Subsequently, we introduce the metric’s basic concept and its calculation. Using a 

metric as a suitable artifact for design science research (Offermann et al., 2010), we meet the 

design science guideline that suggests that “design science research must produce a viable 

artifact” (Hevner et al., 2004, p. 83). 
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Requirements for the privacy paradox metric 

Metrics are specifically used to evaluate certain decision alternatives (Kaiser et al., 2007; 

Linkov et al., 2011). Because their requirements are context-dependent, they cannot be used 

to evaluate metrics in general. Moreover, no metric exists to measure the privacy paradox and, 

thus, no set of appropriate requirements exists to reference. Consequently, we deduce 

requirements from research on the development of a metric, on measurement instruments, and 

on requirements for data quality metrics, security metrics, and software quality metrics 

(Becker et al., 2015; Liggesmeyer, 2009; Wallmüller, 2001). As a result, we compile the 

following list of seven requirements, present definitions, and show the related requirements 

used in research (see Table 4.1-1). 

Table 4.1-1 Requirements for the PPM 

Requirement  Related requirements 

Quantifiability “The unit of measure is clearly set, 

absolute, and appropriate so that the 

metric can be based on quantitative 

measurements.” (Erl et al., 2013, p. 405)  

Quantification  

(Böhme & Freiling, 

2008; Kaiser et al., 2007) 

Precision “The degree of mutual agreement among 

individual measurements made under 

prescribed conditions […]. Precision 

captures the notion of the repeatability of 

accurate measurements under similar 

conditions.” (Herrmann, 2007, p. 29) 

Repeatability 

(Erl et al., 2013; 

Liggesmeyer, 2009), 

Reliability  

(Wallmüller, 2001) 

Comparability “The units of measure used by a metric 

need to be standardized and comparable.” 

(Erl et al., 2013, p. 405)  

Analyzability  

(Liggesmeyer, 2009) 

Normalization  

(Kaiser et al., 2007) 

Obtainability “The metric needs to be based on a non-

proprietary, common form of 

measurement that can be easily obtained 

and understood by […] consumers.” (Erl 

et al., 2013, p. 405) 

Feasibility  

(Kaiser et al., 2007) 

Reliability 

(Böhme & Freiling, 

2008) 

Interpretability “The actual measure should be easy to 

interpret by business users.” (Even & 

Shankaranarayanan, 2007, p. 83)  

Simplicity  

(Liggesmeyer, 2009) 

Usefulness “A metric is considered useful if the 

metric corresponds to the intuition of the 

measurer [and] is actively used in a 
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decision making process.” (Bouwers et 

al., 2013, p. 2) 

Economy “From an economic view, only those 

measures must be taken that are efficient 

with regard to costs and benefit.” (Kaiser 

et al., 2007, p. 2) 

 

 

In addition to the requirements listed in Table 4.1-1, accuracy (Herrmann, 2007) is an 

important requirement for evaluating the metric because accuracy is defined as “the degree of 

agreement of individual or average measurements with an accepted reference value or level” 

(Herrmann, 2007, p. 29). However, as there is no reference value for the measurement of the 

privacy paradox so far, it is not possible to apply this evaluation criterion for the PPM.  

 Basic concept and calculation 

Using the requirements previously identified, we develop the PPM. To establish the PPM, we 

use the concept of the privacy calculus, which is useful to explain consumers’ intention to 

disclose any information (Keith et al., 2014). According to the privacy calculus, consumers 

weigh the perceived risks of a decision that may involve a privacy threat against the perceived 

benefits that result from the information disclosure (Dinev & Hart, 2006; Laufer & Wolfe, 

1977; Sheng et al., 2008). Consequently, consumers accept a loss of their privacy as long as 

the benefits outweigh the imminent risks (Sheng et al., 2008). Moreover, the theory of 

reasoned action (TRA) implies that actual behavior matches the intention to disclose 

information (Fishbein & Ajzen, 1975). However, consumers do not always act rationally 

according to their privacy calculus (Acquisti & Grossklags, 2004; Norberg et al., 2007). 

Consequently, a contradiction exists between consumers’ privacy intentions and behaviors 

(Keith et al., 2012; Keith et al., 2013; Norberg et al., 2007). This phenomenon is called the 

privacy paradox (Bélanger & Crossler, 2011; Smith et al., 2011) and can be identified if 

consumers use a digital service, although their intentions imply not using it (and vice versa). 

However, the case for using a service paradoxically constitutes the privacy relevant part 

because it involves a violation of consumers' privacy, whereas a paradoxical non-usage only 

implies a loss of utility for consumers. Figure 4.1-1 depicts this difference between intention 

and actual behavior in the form of rational and paradoxical service usage and non-usage. 

Consumers are classified in one of the four segments according to their modeled privacy 

calculus. This classification shows consumers’ privacy intention with respect to the 

information disclosure. Because the perceived benefit and the perceived risk are not measured 
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on directly comparable scales, the classification in the four segments is necessary. Depending 

on the consumer’s classification, whether the consumer behaves rationally or paradoxically 

can be determined. 

 

Figure 4.1-1 Illustration of rational and paradoxical consumer privacy behavior 

 

Figure 4.1-1 shows the two different types of paradoxical and rational behavior. The top left 

of the figure indicates low perceived risk and high perceived benefit. Consequently, a service 

usage seems rational (𝑅𝑈), whereas a non-service usage is paradoxical (𝑃𝑁). In contrast, the 

segment in the bottom right is characterized with a high perceived risk and a low perceived 

benefit. Thus, 𝑃𝑈 represents consumers using a service, even if they recognize only a relatively 

small benefit and perceive the risk as relatively high. All consumers, which are classified in 

the segment 𝑅𝑁, use the digital service rationally. However, in some segments, the PPM is 

not applicable because no clear conclusions can be made about the rational respectively 

paradoxical behavior, marked by 𝑁𝐴𝑈1, 𝑁𝐴𝑈2, 𝑁𝐴𝑁1, and 𝑁𝐴𝑁2. In such cases, the weighing 

up between the consumer’s service benefit and attitude toward the service’s risk do not result 

in incontestable conclusions.  

The PPM determines the percentage of consumers who behave paradoxically according to the 

modeled privacy calculus. Therefore, we first model the 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 and the 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 for consumers 𝑖 (𝑖 = 1, … , 𝑛).  

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 ∈ [𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑖𝑛, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑎𝑥]∀𝑖, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑖𝑛 <

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑎𝑥 is composed of several dimensions (see Formula 1). 
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𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 = ∑𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 ∗ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑖𝑗

𝑚

𝑗=1

 (1) 

These benefit dimensions can, for example, be taken from technology acceptance models, 

such as hedonic motivation or perceived usefulness, because these models define constructs 

that predict the behavioral intention to use a technology (Venkatesh et al., 2003; Venkatesh et 

al., 2012). The constructs 𝑗 (𝑗 = 1,… ,𝑚) affecting the consumer’s 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 are 

service and context dependent (Venkatesh et al., 2012). Each consumer can rate the single 

constructs 𝑗 with a personal assessment 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑖𝑗 ∈

[𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑖𝑛, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑎𝑥]∀𝑖, 𝑗. To create differences in the importance of 

the chosen constructs, they are weighted with the construct and consumer-specific factor 

𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 ∈ [0,1] with ∑ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑗 = 1 ∀𝑖𝑚
𝑗=1 . 

A digital service may be required to use many different types of information, such as identity, 

credit card information, and location (Lioudakis et al., 2007). Consequently, consumers’ 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 ∈ [𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑚𝑖𝑛, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑚𝑎𝑥]∀𝑖, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑚𝑖𝑛 < 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑚𝑎𝑥 is 

also service and context dependent. The service can demand 𝑘 (𝑘 = 1,… , 𝑝) different 

permissions that are assessed for each consumer 𝑖 with an permission dependent valuation 

𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ∈ [𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑚𝑖𝑛, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑚𝑎𝑥]∀𝑖, 𝑘, and that can be weighted using the 

permission specific factor 𝑟𝑖𝑠𝑘 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑘 ∈ [0,1] 𝑤𝑖𝑡ℎ ∑ 𝑟𝑖𝑠𝑘 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑘 = 1𝑝
𝑗=1 . 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 = ∑ 𝑟𝑖𝑠𝑘 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑘 ∗ 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑘

𝑝

𝑘=1

 (2) 

Given the paradox, which states that intention to disclose private data is not necessarily a 

predictor of actual use, we need information on whether a consumer actually uses the service. 

Therefore, we introduce usage 𝑢𝑠𝑎𝑔𝑒𝑖  = {
0, 𝑓𝑜𝑟 𝑛𝑜𝑛 − 𝑢𝑠𝑎𝑔𝑒
1, 𝑓𝑜𝑟 𝑢𝑠𝑎𝑔𝑒

. 

To distinguish among the four segments illustrated in Figure 4.1-1 that stand for the different 

intentions to disclose private data, x- and y-axes 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂  and 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂  are 

required. Therefore, we denote 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 as the distribution of consumers’ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖. 

𝑓 is a function that maps distribution 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 to a scalar 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂  on the interval 

[𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑖𝑛, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑎𝑥]. 𝑓 could, for example, be the mean or any 

quantile such as the median. The same analogously applies for 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ . 
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𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ =  𝑓(𝐵𝑒𝑛𝑒𝑓𝑖𝑡) (3) 

𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ =  𝑓(𝑅𝑖𝑠𝑘) (4) 

Finally, we determine the rational (𝑅𝑈 and 𝑅𝑁) and paradoxical (𝑃𝑈 and 𝑃𝑁) behavior, as well 

as the 𝑁𝐴𝑈 and 𝑁𝐴𝑁, using the 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖 (see Formula 5). This classification relates 

the actual behavior of the consumer 𝑖 to his or her perceived benefit and risk of the service. 

Formula 5 represents the same classification that is graphically displayed as matrices in Figure 

4.1-1. As an example for this classification, a consumer, who uses a digital service and has a 

higher 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 than the 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂  and a lower attitude towards the 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 than the 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ , is segmented into 𝑅𝑈, which represents a rational 

service usage. The reason for this is that the consumer appreciates the benefit of a digital 

service more than the risk.  

𝑎𝑖 =

{
 
 
 
 

 
 
 
 

𝑅𝑈, 𝑢𝑠𝑎𝑔𝑒𝑖 = 1 ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 > 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 ≤ 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂

𝑃𝑈, 𝑢𝑠𝑎𝑔𝑒𝑖 = 1 ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 ≤ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 > 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂

𝑁𝐴𝑈1, 𝑢𝑠𝑎𝑔𝑒𝑖 = 1 ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 > 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 > 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂

𝑁𝐴𝑈2, 𝑢𝑠𝑎𝑔𝑒𝑖 = 1 ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 ≤ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 ≤ 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂

𝑃𝑁, 𝑢𝑠𝑎𝑔𝑒𝑖 = 0 ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 > 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 ≤ 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂

𝑅𝑁, 𝑢𝑠𝑎𝑔𝑒𝑖 = 0 ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 ≤ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 > 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂

𝑁𝐴𝑁1, 𝑢𝑠𝑎𝑔𝑒𝑖 = 0 ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 > 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 > 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂

𝑁𝐴𝑁2, 𝑢𝑠𝑎𝑔𝑒𝑖 = 0 ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 ≤ 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ ∧ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 ≤ 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂

 (5) 

We depict the detailed subdivision in the segments for a better understanding of the basic idea 

of the PPM, although the segments 𝑅𝑈, 𝑁𝐴𝑈1, 𝑁𝐴𝑈2, 𝑅𝑁, 𝑁𝐴𝑁1, and 𝑁𝐴𝑁2 are not 

fundamentally necessary to calculate the PPM. Because different types of R, P, and NA exist 

for service usage and non-usage, two calculation bases also exist for the PPM. 𝑃𝑃𝑀𝑈 ∈ [0,1] 

represents the percentage of service users behaving paradoxically (see Formula 6), or the 

percentage of consumers using a service, although such actual behavior is not rational. This 

phenomenon results in unwarranted data disclosure on the consumer’s side and, thus, 

represents the more important metric regarding privacy. 𝑃𝑈̃, 𝑅𝑈̃, and 𝑁𝐴𝑈̃ represent the 

number of elements of the 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖 with the attribute 𝑃𝑈, 𝑅𝑈, or 𝑁𝐴𝑈, respectively. 

𝑃𝑃𝑀𝑈 =
𝑃𝑈̃

𝑃𝑈̃ + 𝑅𝑈̃ + 𝑁𝐴𝑈1̃ + 𝑁𝐴𝑈2̃

 (6) 

𝑃𝑃𝑀𝑁 ∈ [0,1] represents the percentage of non-service users behaving paradoxically (see 

Formula 7). This metric shows the other side of paradoxical behavior, meaning the percentage 

of consumers who do not use a service even though they should according to the privacy 
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calculus. 𝑃𝑁̃, 𝑅𝑁̃, and 𝑁𝐴𝑁̃ represent the number of elements of the 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖 with the 

attribute 𝑃𝑁, 𝑅𝑁, or 𝑁𝐴𝑁, respectively. 

𝑃𝑃𝑀𝑁 =
𝑃𝑁̃

𝑃𝑁̃ + 𝑅𝑁̃ + 𝑁𝐴𝑁1̃ + 𝑁𝐴𝑁2̃

 (7) 

𝑃𝑃𝑀𝑈 and 𝑃𝑃𝑀𝑁 can both be integrated into a single number as well. 𝑃𝑃𝑀 ∈ [0,1] describes 

the share of all consumers who behave paradoxically (see Formula 8). 𝛼 ∈ [0,1] is a weighting 

factor for 𝑃𝑃𝑀𝑈 and 𝑃𝑃𝑀𝑁, which allows giving more weight to either paradoxical usage or 

non-usage in the calculation of the 𝑃𝑃𝑀. Thus, at the extreme, 𝛼 = 1 represents 𝑃𝑃𝑀𝑈, 

whereas 𝛼 = 0 signifies that only 𝑃𝑃𝑀𝑁 is regarded. 

𝑃𝑃𝑀 =
𝛼𝑃𝑈̃ + (1 − 𝛼)𝑃𝑁̃

𝛼(𝑃𝑈̃ + 𝑅𝑈̃ + 𝑁𝐴𝑈1̃ + 𝑁𝐴𝑈2̃) + (1 − 𝛼)(𝑃𝑁̃ + 𝑅𝑁̃ + 𝑁𝐴𝑁1̃ + 𝑁𝐴𝑁2̃)
 (8) 

In summary, the PPM represents the privacy paradox metric. It models individual consumers’ 

privacy calculus, classifies their service usage or non-service usage as rational or paradoxical, 

and aggregates multiple consumers’ intentions and behavior to a single measure. Thereby, 

higher values of the PPM indicate more paradoxical behavior. 

 Practical application of the privacy paradox metric 

Mobile apps are a special type of digital service that we use to illustrate the application of the 

PPM. Consumers’ intention to use a service can be determined by querying them on the 

service’s perceived benefits and risk. The usage or non-usage of the service and, with that, the 

disclosure of private data enable conclusions about real behavior. The application context of 

mobile apps is particularly suitable for determining the PPM because the installation of a 

specific app is an indicator of consumers’ willingness or lack thereof to release their data. App 

permissions, which provide access to private data on a smartphone (Egelman et al., 2013), 

need to be approved by consumers in the app store when installing the app (Keith et al., 2013). 

Thus, consumers can typically avoid the privacy invasion only by not installing the app 

(Egelman et al., 2013). With that knowledge, it is possible to draw conclusions about the gap 

between consumers’ intention to disclose private data and their real behavior. Because 

perceived benefits and perceived risk are not readily available, consumers need to be asked 

for these measures in a survey. In August 2015, we conducted a survey with 715 participants 

from the 150 largest universities in Germany. In the following section, we first present a 

concrete ascertainment of the variables necessary for the PPM in the context of mobile apps. 

Subsequently, the results of the survey and the PPM are presented. 
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4.1.5.1 Determination of the privacy paradox metric in mobile apps 

The survey questionnaire consists of four parts: app benefit and installation, app risk, and 

demographic data. The full German questionnaire is available from the authors upon request. 

The determination of the PPM in mobile apps abides by the formulas in Section 4.1.4. Before 

we discuss the operationalization of the PPM constructs in the context of mobile apps, we 

define requirements on the app selection process. 

For this practical application of the PPM, the aim is to survey app users on their perceived 

benefits and risks associated with apps and compare this perception with actual installation 

behavior. To gain comparability across participants and limit the length of the questionnaire, 

we focus on five app categories. Further, to limit length of the questionnaire, we decided to 

not query benefits on the app level but the app category level. This requires app categories in 

which the benefits of different apps can reasonably be assumed rather homogenous and 

replaceable. Thus, we avoid app categories subject to network effects, such as present for 

online social networks or communication apps, for example, as this would violate the 

homogeneity assumption. Additionally, the consumers’ usage decision depends on the 

monetary costs of an app. To keep the survey simple and to preserve the homogeneity of the 

apps, we consider only free apps and, thus only app categories where these are common. To 

ensure some degree of representativeness of the app category selection, we recruited 20 test 

subjects and analyzed their installed apps. As a result, the following five app categories are 

selected for the survey: navigation, note, radio, picture editor, and running. The questionnaire 

contains about ten popular examples for each app category and the option to enter additional 

apps.  

To determine the consumer’s 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 in a non-organizational context, we use 𝑚 =

2 constructs of the extended unified theory of acceptance and use of technology (UTAUT2), 

namely, hedonic motivation and performance expectancy. “Hedonic motivation is defined as 

the fun or pleasure derived from using a technology” (Venkatesh et al., 2012, p. 161). It plays 

an important role and is a clear predictor of the intention to use it (Venkatesh et al., 2012). 

“Performance expectancy is defined as the degree to which using a technology will provide 

benefits to consumers in performing in certain activities” (Venkatesh et al., 2012, p. 159). 

Prior research found that performance expectancy is the main driver for the intention to use a 

technology (Venkatesh et al., 2012). In summary, both constructs are important drivers in 

explaining the intentions of consumers (Venkatesh et al., 2012). We operationalize hedonic 

motivation and performance expectancy with survey items adapted from the UTAUT2 
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(Venkatesh et al., 2012). Table 4.1-2 lists how items of the UTAUT2 are adjusted to measure 

the 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 for each consumer 𝑖. Similar to the UTAUT2, all items are measured 

using a seven-point Likert scale, with anchors being 1 (“strongly disagree”) and 7 (“strongly 

agree”). 

Table 4.1-2 Example for determining the benefit of a service using survey items 

(Venkatesh et al., 2012) 

Hedonic Motivation Performance Expectancy 

Using mobile apps is fun. I find mobile apps useful in my daily life. 

Using mobile apps is enjoyable. Using mobile apps helps me accomplish 

things more quickly. 

Using mobile apps is very entertaining. Using mobile apps increases my 

productivity. 

 

We capture the hedonic motivation and performance expectancy items of the UTAUT2 to 

detect consumers’ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 for each of the five app categories. Each participant was 

asked each question for each of the five app categories. We query a consumer’s 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖 at the level of app categories and not for single app, due to the practical 

reason that the complexity and length of the survey would arise otherwise. To assure 

equivalence between the questionnaire in German and the original English version, we 

conduct a standard translation and back-translation procedure (Brislin, 1970). To 

operationalize the two constructs and consumers’ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖, we use the average of 

the 7-point Likert scale of the three questions for each construct. Thus, the minimum app 

benefit value 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑖𝑛 = 1 and the maximum value 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑎𝑥 = 7. 

For reasons of simplicity, we use equal weights for both benefits for all participants. Although 

the basic idea of the model enables differing weights as well. The weights can vary, as they 

can be different depending on whether they are utilitarian or hedonic apps and on what users 

expect from them. For example, some respondents give some of the apps more hedonic values 

or greater usefulness than others do. Formula 1 can be adapted to our survey context as 

follows: 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡𝑖

= 
1

2
∗ 𝑠𝑒𝑟𝑣𝑖𝑐 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑖1 +

1

2

∗ 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑖2 

(9) 
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To calculate the privacy paradox, we also need consumers’ attitude toward the 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖. 

Therefore, it is necessary to identify the types of private data that consumers must disclose 

when they want to use the service. The questionnaire queried which apps a respondent has 

installed (yes/no question for about ten popular examples for each app category, option to list 

further installed apps). For each of these apps, the Google Play Store publicly provides the 

information on the permissions the respective app requests. Thus, for each of the five app 

categories under investigation, we know which apps an individual respondent has installed 

and which permissions each of these apps requests. Every claimed permission 𝑘 must be asked 

about in the survey to determine the respective consumers’ privacy concerns. Table 4.1-3 

presents the corresponding permissions for the mobile app context (𝑝 = 12). The permission 

groups listed in the Google Play Store are taken as a basis for ascertaining the claimed 

permissions of the mobile apps. We have used the permissions of the apps to determine the 

risk, as the question whether a particular app has been installed can accurately and 

unambiguously determine whether the consumer is taking the risk or not. With other scales 

for privacy concerns (e.g., based on self-reported perceived risk), the risk would not be that 

clearly observable, and the data for the determination of the PPM would be diluted with the 

statements of consumers who are subject to paradoxical behavior. Analyzing the permissions 

requested by apps that the participant really installed anchors the calculation in observed 

behavior, not reported perception. 

Table 4.1-3 Example for determining the risk of a service based on survey items 

I think it is critical when mobile apps access my … 

Device and app history 

(Read sensitive log data, retrieve system 

internal state, retrieve running apps) 

Phone 

(Directly call phone numbers, write call 

log, read call log, reroute outgoing calls) 

Identity 

(Find accounts on the device, add or 

remove accounts) 

Photos/Media/Files 

(Read the contents of your USB storage, 

modify or delete the contents of your USB 

storage) 

Contacts 

(read and modify your contacts) 

Wi-Fi connection information 

(view Wi-Fi connections) 

Calendar 

(Read calendar events plus confidential 

information, add or modify calendar 

events, and send email to guests without 

owners' knowledge) 

Location 

(Approximate location (network-based), 

precise location (GPS and network-based), 

access extra location provider commands) 

Microphone Camera 
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(record audio) (Take pictures and videos) 

SMS 

(Receive text messages, send text 

messages) 

Device ID and call information 

(read phone status and identity) 

 

Given the seven-point Likert scale, 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑚𝑖𝑛 is 1 and 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑚𝑎𝑥 is 7. We also 

use equal weights for all permissions for all participants for reasons of simplicity in this 

exemplary application, although permitting the collection of certain information can carry 

more weight in influencing one’s use decision than others. To determine the risk of an app, 

only the permissions requested by the app and not required for the function of the app are 

considered. With that, we ensure that apps, which request more app permissions than others, 

are considered as more critical. This is implemented in the following calculation by 

considering app permissions that are not required with the value 0. 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 = ∑
1

12
∗ 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑖𝑘

12

𝑘=1

 (10) 

Further, to make the result comparable 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 is scaled to the domain between 1 and 

7. 

To determine consumers’ real behavior, the consumer’s service usage 𝑢𝑠𝑎𝑔𝑒𝑖 needs to be 

collected through questions on the mobile apps that each consumer 𝑖 installed. Thus, the 

formula of the usage can be detailed 𝑢𝑠𝑎𝑔𝑒𝑖 = {
0, 𝑓𝑜𝑟 𝑛𝑜 𝑎𝑝𝑝 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛
1, 𝑓𝑜𝑟 𝑎𝑝𝑝 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛

. 

Subsequently, we calculate the 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂  and 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ . We use the median 

to transform distributions 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 and 𝑅𝑖𝑠𝑘 to scalars 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂  and 

𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ . In doing so, we separate the higher half from the lower half of the data and 

divide the survey results into two parts of approximatively the same size. For the app category 

navigation, the outcome of our survey results are, for example, 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ = 4.17 

and 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ = 3.75. 

By knowing all input parameters and the 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑖, it is possible to categorize 

consumers into different types of paradoxical (𝑃𝑈 and 𝑃𝑁) and rational (𝑅𝑈 and 𝑅𝑁) behavior 

on the one side and the 𝑁𝐴𝑠 on the other side. Finally, we can calculate 𝑃𝑃𝑀𝑈, 𝑃𝑃𝑀𝑁, and 

𝑃𝑃𝑀. In our practical application, we use 𝛼 = 0.5 as a weighting factor as we consider both 

𝑃𝑃𝑀𝑈 and 𝑃𝑃𝑀𝑁 equally. 
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4.1.5.2 Results of the survey on mobile apps 

4.1.5.2.1. Characterization of the sample 

By distributing the questionnaire to students and university employees at the 150 largest 

universities in Germany, we were able to recruit 715 participants. Because our participants 

are on average 24 years old (ranging from 18 to 65 of age), we cannot claim that the results 

are representative of the entire population. However, the point is not to obtain representative 

measures of the PPM but to demonstrate the application of the metric. Our population is highly 

educated (57% higher education entrance qualification, 26% bachelor's degree, 8% master’s 

degree, 9% other) and is predominantly female (60%). Most of the participants (60%) are 

familiar with a smartphone and has used one for two years or longer. Out of these, 23% used 

smartphones for longer than five years. The frequency of new app installations is distributed 

in descending order: 45% of participants install less than one new app a month, 31% install 

one app a month, and 24% install more apps a month. Only 8% of participants have no 

navigation app installed and 63% have no radio app. The maximum average number of 

installed apps within the app categories is 1.12 for navigation, and the minimum is 0.48 for 

radio apps. With that the app categories navigation and radio represent the two extremes of 

most and least apps within an app category. 

4.1.5.2.2. Assessment of app benefit 

Table 4.1-4 shows the mean benefit values and the standard deviation for the five app 

categories distinguished between the two factors and in total. However, we calculate factor 

scores as the arithmetic mean of responses to assure comparability across the app categories. 

Based on the mean values of performance expectancy and hedonic motivation, the five app 

categories can be divided in three groups: predominant performance apps (navigation and 

note), predominant hedonic apps (radio and picture editing), and balanced apps (running). 
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Table 4.1-4 Results of the EFA for the app benefits of the app categories 

App category 

Performance 

expectancy 
Hedonic motivation Total 

Mean SD Mean SD Mean SD 

Navigation 5.17 1.31 3.13 1.42 4.15 1.10 

Note 4.13 1.77 2.59 2.59 3.36 1.42 

Radio 2.40 1.42 3.47 1.95 2.93 1.57 

Picture editing 2.78 1.63 3.92 1.99 3.35 1.65 

Running 2.98 1.88 2.90 1.85 2.94 1.78 

 

4.1.5.2.3. Assessment of app risk 

In our survey, we asked all 715 respondents about their attitude toward app permissions (see 

Table 4.1-3). Thus, we can draw conclusions about their risk ranking subject to their risk on 

a scale from 1 (lowest) to 7 (highest). Data shows that respondents perceive the app 

permissions Phone (mean= 6.13, SD= 1.34), Contacts (mean= 6.07, SD= 1.39), and Identity 

(mean= 6.02, SD= 1.37) as being particularly critical, while Location (mean= 5.36, SD= 1.76), 

Device and app history (mean= 5.32, SD= 1.70), and Wi-Fi connection information (mean= 

4.93, SD= 1.88) are the least critical. 

Table 4.1-5 shows the mean, standard deviation, as well as the minimum and maximum value 

of 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑟𝑖𝑠𝑘𝑖 by app category, which consider the permissions required by an app (see 

Formula 10). This result illustrates that navigation has the highest mean value regarding both 

risk and benefit. Further uni-dimensional results of the app benefit as well as the app risk can 

be found in Appendix 4.1.B. 

Table 4.1-5 Distribution characteristics of app risk by app category 

App category Minimum Mean Maximum SD 

Navigation 1.14 3.66 5.48 0.95 

Note 1.14 2.34 4.98 0.84 

Radio 1.00 2.50 3.96 0.69 

Picture editing 1.00 2.35 4.98 1.11 

Running 1.00 3.18 5.48 1.10 
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4.1.5.2.4. Results of the privacy paradox metric in mobile apps 

Although consumers not using a beneficial service only miss the added value, the usage of 

critical services is privacy relevant (𝑃𝑈̃) because private data are disclosed. Consequently, we 

focus on the more privacy important case of service usage (𝑢𝑠𝑎𝑔𝑒𝑖 = 1) in the following 

section. Using the surveyed data, we can instantiate the metric presented in Section 4.1.4 

Figure 4.1-2 presents an exemplary distribution of consumers for navigation apps in the case 

of service usage (𝑢𝑠𝑎𝑔𝑒𝑖 = 1).  

 

Figure 4.1-2 Distribution of participants (n=658) in segments for navigation apps in 

the case of service usage (usage
i
=1) 

 

These values represent the basis for the calculation of the PPM in the case of service usage 

(𝑃𝑃𝑀𝑈). For instance, the 𝑃𝑃𝑀𝑈 for navigation apps can be calculated as presented in 

Formula 11: 

𝑃𝑃𝑀𝑈 =
𝑃𝑈̃

𝑃𝑈̃ + 𝑅𝑈̃ + 𝑁𝐴𝑈1̃ + 𝑁𝐴𝑈2̃

=
289

289 + 58 + 261 + 50
= 43.92% (11) 

The analogous results of 𝑃𝑃𝑀𝑈 for all app categories are shown in Figure 4.1-3. Thereby, 𝑛 

represents the subsample of participants who have installed an app of the respective app 

category. 
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Figure 4.1-3 Distribution of participants in segments and results of PPMU for all app 

categories 

 

Table 4.1-6 additionally shows the results of the PPM in the case of non-service usage, 𝑃𝑃𝑀𝑁, 

and the integrated metric 𝑃𝑃𝑀 for 𝛼 = 0.5, i.e., an equal weighting of service usage and non-

usage.  

Table 4.1-6 Results of PPMU, PPMN, and PPM for all app categories 

App category 𝑷𝑷𝑴𝑼 𝑷𝑷𝑴𝑵 𝑷𝑷𝑴 

Navigation 43.92% 38.84% 43.36% 

Note 38.58% 31.40% 36.50% 

Radio 18.73% 32.81% 27.55% 

Picture editing 14.16% 29.24% 22.24% 

Running 11.55% 24.27% 18.88% 

 

As is seen in Figure 4.1-3, in this example the sum of 𝑁𝐴𝑈1̃ and 𝑁𝐴𝑈2̃ has a similar magnitude 

across all app categories. In contrast, the gap between rational and paradoxical behavior shows 

significant differences. Consumers using the radio and picture editing apps (hedonic apps) 

have a relatively weak 𝑃𝑃𝑀𝑈 compared with the navigation and note apps (performance 

apps). That is, many consumers use an app even though they perceive a minor benefit and 

significant risk. This insight can be relevant for different interest groups, such as app 

providers, app stores, consumer protection organizations, and app users. App providers can 

use the results of the 𝑃𝑃𝑀𝑈 to prevent serious consequences such as image damage or 

consumer migration. These consequences can arise when privacy concerned consumers 

become aware of their paradoxical privacy behavior because of incidents, such as leaked data 
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misuse. App stores might use privacy as a competitive factor by applying the 𝑃𝑃𝑀𝑈 to create 

consumer awareness for their paradoxical behavior. Consumer protection organizations can 

apply the 𝑃𝑃𝑀𝑈 to draw attention to the privacy paradox to protect consumers. Finally, the 

𝑃𝑃𝑀𝑈 reminds consumers themselves of their possible misconduct regarding privacy. With 

this knowledge, consumers can scrutinize their behavior and protect themselves from 

unwanted data disclosure. 

 Evaluation of the privacy paradox metric 

The evaluation of design artifacts and design theories is a central part of design science 

research (Hevner et al., 2004; Peffers et al., 2007). In this paper, the evaluation demonstrates 

the utility, quality, and efficacy of the PPM using an elaborated evaluation method (Hevner 

et al., 2004). We evaluate the PPM against the requirements compiled in Section 4.1.3 

(“Requirements for the Privacy Paradox Mectic”) to ensure the rigor of the research and to 

prove the utility of the metrics in real situations.  

Quantifiability: To calculate the PPM, consumer data are required. In Section 4.1.5.1, we 

present the possibility of quantifying the input parameters and demonstrate how the variables 

can be calculated in detail in the context of mobile apps. Additionally, we define the 

calculation rules to determine the PPM resulting in a percentage. Thus, the PPM meets the 

requirement by quantifying the input parameters and the result. 

Precision: By specifying the components of the PPM and defining its calculation rules (see 

Section 3.1.4), we ensure its precision during determination and that the measurements are 

taken under prescribed conditions. This situation also ensures the repeatability of the PPM 

calculation (see Section 4.1.5.2).  

Comparability: The result of the PPM is a standardized percentage value, which is easy to 

compare. A “percentage simply converts a proportion to terms of per-hundred units” 

(Herrmann, 2007, p. 33). 

Obtainability: The obtainability of the data depends on the digital service and the context. In 

the case of mobile apps, all data can be simply collected by conducting a consumer survey. 

Real consumer behavior concerning data disclosure can also be identified because consumers 

are only able to install the mobile apps if they accept the permissions and, consequently, 

release their data.  

Interpretability: Because the PPM is a percentage, the metric can be interpreted. 𝑃𝑃𝑀𝑈 

represents the percentage of service users behaving paradoxically, 𝑃𝑃𝑀𝑁 represents the 
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percentage of non-service users behaving paradoxically, and the integrated 𝑃𝑃𝑀 describes the 

share of all consumers who behave paradoxically. 

Usefulness: The information provided by the PPM brings along several advantages for 

consumers, companies offering digital services, ICT platform providers, and organizations for 

consumer protection, such as raising awareness for data privacy, more sensitive data 

disclosure, and improvement in consumer services. In the context of mobile apps, the interest 

groups are app users, app providers, app stores, and consumer protection organizations. The 

usefulness of the PPM is discussed in detail in Section 4.1.1. The implications of the PPM 

results are presented in Section 4.1.7. 

Economy: Economic value is strongly application-dependent because varying costs and 

benefits can result from the data collection. The PPM is the only metric measuring consumers’ 

privacy paradox, which means that it is currently the best metric that considers the economic 

aspects of cost and benefit. Therefore, future research should consider these economic aspects 

when extending the PPM or defining new metrics that measure the privacy paradox. 

To summarize, we emphasize that the PPM meets all requirements in the context of mobile 

apps. However, we cannot generalize that the PPM fulfills all requirements in the context of 

other digital services. Some requirements are context-sensitive and must be examined before 

adapting the PPM to other fields of application. Given that the metric presented in this study 

is the first quantification of the privacy paradox, no other privacy paradox metric exists that 

would outperform the PPM on the requirements. 

 Discussion and conclusion 

The privacy paradox is well known in the literature; however, to date, no other approach has 

measured its extent. To better support the investigation of the privacy paradox, we design the 

PPM. This metric uses the theoretical basis of the privacy calculus and the observation of real 

consumer behavior to determine whether a consumer behaves paradoxically.  

A metric is a human created artifact. We chose a design science research approach and present 

the metric in terms of a design science artefact to clearly highlight this artificial nature, 

explicitly specify the general requirements we see for such a metric and present it for both 

usage and as a benchmark reference for metrics to potentially be designed in the future. We 

posit that the PPM is a generalizable metric applied to mobile apps as an example of digital 

services. As such, it contributes to a nascent design theory on quantifying the privacy paradox. 
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Appendix 4.1.A further details this perspective by discussing the PPM in terms of the 

components of a design theory as suggested by Gregor and Jones (2007). 

The PPM provides several important insights and implications for research and different 

interest groups, including service consumers, companies offering digital services, ICT 

platform providers such as app stores, and consumer protection organizations. For research, 

the privacy paradox often represents a major limitation in empirical research towards 

consumers’ privacy intentions. Accordingly, the PPM is a tool that may be validating 

respective research findings and is thereby the first approach to identify and quantify 

deviations between consumers’ privacy intention and behavior. In practice, service consumers 

could benefit from the PPM when being implemented, for instance, as a smartphone 

application that monitors installations and use of other apps. In this way, the PPM could 

provide transparency about an individual consumer’s privacy paradox, which might save 

consumers from careless disclosure of data and thus unwanted consequences regarding data 

privacy. Customers typically do not realize privacy invasions at the point of data disclosure 

but rather as soon as its consequences become apparent. However, at the latter point, not only 

consumers sustain damage, but also the company offering the respective service, as consumers 

might be dissatisfied, leave the company, or generate negative word-of-mouth for instance. 

That is, companies offering digital services can use the PPM to identify careless consumer 

decisions towards data disclosure and manage the risk related to such decisions. More 

concrete, based on the PPM, companies might decide to provide warnings at the point of 

possible data disclosure and make suggestions of alternative digital services that better fit the 

consumer’s privacy intentions. The data to identify the privacy intention can, for example, be 

collected during a field study to identify the PPM in general, to make a statement for specific 

customer groups, or while using the digital service. With the help of the privacy intention, the 

PPM can be detected if the behavior does not fit to it. Accordingly, ICT service providers, 

such as app stores, might use the PPM to enhance their attractiveness by providing privacy-

customized warnings, suggestions, sorting, or filtering based on the PPM. E.g., they can ask 

the privacy intention of every customer at the first time of using the ICT platform to be able 

to detect the gap between intention and behavior before it comes to the data disclosure. 

Consumer protection organizations might, for instance, take the PPM as a basis for further 

empirical studies that increase public awareness on the risks related to the privacy paradox. 

Beside these stakeholders, society itself can benefit from being aware of the privacy paradox 

when aiming at “understanding, anticipating, and proposing solutions for potential future 

negative consequences of ICT” (Lynne & Mentzer, 2014). 
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Our research is beset with limitations that require further investigation. First, the PPM is based 

on the binary segmentation of consumers in non-service usage (𝑢𝑠𝑎𝑔𝑒𝑖 = 0) and service 

usage (𝑢𝑠𝑎𝑔𝑒𝑖 = 1) on the one hand and on their classification into the four quadrants formed 

by the divisions 𝑏̂ and 𝑐̂ on the other hand. Therefore, consumers classified at the edges of 

these segments could already belong to adjacent ones if they provided slightly different survey 

responses. Thus, the result from calculating the PPM depends on the specifications of the 

exact boundary values. In this paper, we provide examples, such as using the median for 

𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂  and 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑̂ , but there are no definite guidelines. Future research 

might explore more fine-grained classifications and identify and evaluate alternative 

divisions. Second, we showed that the evaluation of the PPM regarding the seven 

requirements is particularly based on a single expository instantiation for mobile apps. Future 

research might apply the PPM for other digital services. Thereby, its evaluation might be 

strengthened and its boundaries tested. Third, the expository instantiation of the PPM uses a 

few simplifications. These simplifications include the aggregation of the apps in categories 

and assume homogeneity within a category. Further, for simplicity we used equal weights for 

both benefits and the twelve app permissions for all participants, although the basic idea of 

the model enables differing weights as well. Additionally, survey participants were not 

representative of the entire population. Finally, we applied the PPM in a research project and, 

to date, there was no application in an industry situation. For further evaluation, particularly 

regarding usefulness, a practical application in an industry context would be beneficial. 

Overall, we presented the PPM, a privacy paradox metric for digital services, as a design 

artifact that enables the assessment of consumers’ privacy paradox for digital services. We 

followed the design science research methodology of Peffers et al. (2007) to develop the 

metric. Based on the context of the problem and the theoretical background, we identified 

metric requirements and presented the basic idea, form, and functions of the PPM. 

Furthermore, we demonstrated the practical applicability in the context of mobile apps as an 

example for digital services and evaluate the metric in terms of quantifiability, precision, 

comparability, obtainability, interpretability, usefulness, and economy. We hope that this 

quantitative perspective on the privacy paradox contributes to improvements in the disclosure 

and the use of private data.  
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Appendix 

Appendix 4.1.A Components of a decision theory and implementation in the present 

research 

Theory 

component  

Description 

Purpose and scope The theory aims to assess the extent of consumers’ privacy 

paradox in the use or non-use of digital services.  

Justificatory 

knowledge  

The metric is based on the privacy calculus, which is “the most 

useful framework for analyzing contemporary consumer privacy 

concerns” (Culnan & Bies, 2003).  

Core constructs The core constructs of the PPM are “digital service,” “service 

benefit,” “service risk,” and “service usage.” 

Principles of form 

and function 

The metric fulfills both the design objective and the metric 

requirements.  

Based on the theoretical privacy calculus and the observable real 

usage behavior, the PPM assesses the share of all consumers who 

behave paradoxically. We propose this assessment as the abstract 

design for assessing the extent of the privacy paradox. 

Principles of 

implementation 

To apply the PPM in the mobile app context and to determine the 

service benefit, we use the constructs included in UTAUT2, 

namely, hedonic motivation and performance expectancy. 

Additionally, we utilize the app permissions of the Google Play 

Store for the service risk calculation. We used the median of the 

benefit and the risk to classify consumers into segments and 

calculate the privacy paradox in our practical implementation. 

Expository 

instantiation 

We conducted a survey with 715 participants and calculated the 

PPM for five app categories as examples of digital services. 

Therefore, we present the implementation of the PPM, which 

shows the metric’s feasibility. 

Testable 

propositions 

The claim has been made that the PPM is also applicable to other 

services. Although the metric is defined for general application, 

the requirements of the PPM must be proven in individual cases.  

Artifact mutability In this paper, we present a general approach for calculating the 

PPM by using several previously fixed parameters, such as 

consumer classification or service usage realization. The 

adaptation and evaluation of these parameters are given for further 

work. 
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Appendix 4.1.B Uni-dimensional results of the survey 

Mean and median of the survey items for determining the benefit of using a specific 

app type 

n=715 Naviga-

tion 

apps 

Note 

apps 

Radio 

apps 

Picture 

editing 

apps 

Runnin

g apps 

Hedonic Motivation 

Using [app type] is fun. 5.74 / 6 4.74 / 5 3.18 / 3 3.57 / 4 3.28 / 3 

Using [app type] is enjoyable. 5.71 / 6 3.54 / 4 1.90 / 1 2.31 / 2 2.63 / 2 

Using [app type] is very 

entertaining. 

4.07 / 4 4.12 / 4 2.11 / 1 2.46 / 2 3.01 / 2 

Performance Expectancy 

I find [app type] useful in my daily 

life. 

3.66 / 4 2.98 / 3 3.50 / 4 4.02 / 4 3.22 / 3 

Using [app type] helps me 

accomplish things more quickly. 

2.95 / 3 2.46 / 2 3.25 / 3 3.89 / 4 2.74 / 2 

Using [app type] increases my 

productivity. 

2.78 / 3 2.33 / 2 3.66 / 4 3.86 / 4 2.75 / 2 

 

Distribution of respondents’ perceived risk by permission 

 Perceived risk 

strongly 

disagree 

     strongly 

agree 

Permission 1 2 3 4 5 6 7 

Device and app history 25 34 61 80 122 154 239 

Identity 12 12 21 49 94 149 378 

Contacts 15 11 20 48 69 156 396 

Calendar 28 34 37 76 96 125 319 

Microphone 26 38 55 95 95 132 274 

SMS 18 17 26 63 94 140 357 

Phone 10 12 21 38 89 129 416 

Photos/Media/Files 17 28 36 81 83 128 342 

Wi-Fi connection 

information 

28 43 52 82 82 106 322 

Location 29 32 51 89 84 99 331 

Camera 41 58 68 115 106 115 212 

Device ID and call 

information 

16 20 38 83 87 141 330 
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5 General discussion and conclusion 

The following chapter presents the results of this dissertation in Section 5.1, an outlook on 

future research in Section 5.2, and a brief conclusion in Section 5.3. 

5.1 Results 

This dissertation focuses on the digitalization of the individual. In detail, the consequences 

thereof as perceived by individuals, the design options available to organizations to address 

these consequences, and the question as to how all of the above influences the behavior of the 

digitized individual. After motivating the topic and giving an overview of the applied 

framework of Matt et al. (2019), the five research papers provide new models and approaches 

for the research objectives outlined in Table 1-1. These research papers are divided into three 

parts: consequences, designs, and behaviors. The subsequent sections cover the key findings 

of the respective research papers. 

 Results of part A: Negative consequences of digitalization for the individual 

Part A discusses the consequences of the digitalization of the individual. The research articles 

P1 and P2 focus chiefly on the negative consequences. They show in two different domains 

what concerns individuals about using digital technologies and what prevents individuals from 

using them. 

P1 (Section 2.1) identifies 10 major concerns about the underlying technology, data, or the 

decision-making and 14 concerns about consequences that individuals perceive when using 

ADM in their daily lives. After introducing the theoretical background of algorithmic 

decision-making and concerns, P1 gives a detailed insight into the research methodology and 

approach. A structured literature review was first conducted to identify the concerns towards 

ADM in prior literature. Therefore, we defined a search string with the respective terms and 

examined five databases. 18 research articles were deemed to be relevant. Next, 13 semi-

structured interviews were conducted, which are based on five ADM use cases, to confirm the 

concerns from the literature review and discover further concerns about ADM. All interviews 

were transcripted and subjected to qualitative content analysis. The overall results of P1 are 

24 concerns, divided into two categories: concerns that are inherent to the technology, data, 

or decisions, and concerns that do not necessarily have a direct impact but can lead to specific 

concerns about consequences. All of these concerns and how they affect one another were 

discussed in detail. The interviews further revealed several aspects that mitigate individual 

concerns about ADM, such as transparency and trust. The interviewees also mentioned 
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potential positive aspects of ADM, including time savings, reduced effort, diminished 

subjectivity, increased fairness in decisions, greater variety and pleasant surprises through 

ADM, and a lower error rate in decision-making. In short, this framework facilitates the 

development of responsible and transparent ADM-related offers and services that take account 

of the fears and concerns of the individuals and contributes to the literature on the dark side 

of IS.  

P2 (Section 2.2) takes a qualitative research approach to examine the inhibiting factors of 

individuals when adopting digital technologies. 26 interviews were conducted with healthcare 

professionals and patients to identify those factors. This research paper presents 11 hindrance 

factors structured in four categories: user, digital technologies, data, and resources. P2 

provides new insights into the technology adoption in healthcare and expands the digital 

transformation framework created by Vial (2019). Some of the hindering factors discussed in 

the interviews are not new and were already discussed in prior literature in the context of the 

increasing digitalization of healthcare, such as the unreliability and complexity of digital 

technologies, discrimination, invasion of privacy, or data manipulation. Further, this study 

goes beyond the prior literature and compares the hindering factors that beset healthcare 

professionals as opposed to those affecting patients. However, the results show that the 

healthcare professionals’ and patients’ perceived concerns do not differ, there are differences 

in who is influenced by the hindrance factors. Whereas patients are more affected by data 

manipulation, data fixation, invasion of privacy, and discrimination, healthcare professionals 

tend to be impacted by the factor “losing autonomy to act.” The concerns about the 

superpowerful health insurances, the unreliability of DTs, the complexity of DTs, and 

financial and time effort have a bearing on healthcare professionals as well as on patients. 

Another result of P2 is the discussion on integrating the hindering factors perceived by 

individuals into the Unified Theory of Technology Acceptance (UTAUT) by Venkatesh et al. 

(2003). After all, the 11 hindering factors identified in P2 influence the four main constructs 

of the UTAUT. Consequently, each of the hindering factor inhibits an individual’s behavioral 

intention to use digital technologies and negatively impacts the usage behavior. In summary, 

the results of P2 offer guidelines to service providers and managers in the healthcare sector. 

Digital transformation in this sector is a sensitive topic as multiple user concerns can 

complicate or inhibit its adoption. Considering the framework developed in P2 will help to 

address these hindering factors and promote digital transformation. 
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 Results of part B: Design approaches for information systems in 

organizations 

Part B presents design approaches for information systems that organizations can use to 

address individuals’ perceived consequences and change their behavior using digital 

technologies. Both papers in part B present quantitative decision models as decision support 

for organizations. 

P3 (Section 3.1) develops a quantitative decision model to help decide whether to integrate 

customers into business processes by considering the necessary customer support. In addition, 

a way to calculate customer support was presented. This is essential, as for many organizations 

the economic effect of SSTs and the associated necessary customer support is still unclear. 

Thus, decisions were made without an economic basis. By considering the customer group 

(which depends on the customer’s process knowledge and technology affinity) and their need 

for support, organizations can avoid further expenses, such as costs for additional support or 

financial losses due to customer churn. Further, the practical application is demonstrated by a 

case study. With that, P3 complements prior research in SSTs that had merely considered 

single effects such as productivity, efficiency, or customer satisfaction when making decisions 

about customer self-service. The model developed in P3 allows making economically well-

founded decisions when introducing SSTs by considering both perspectives, the process and 

the customer perspective. In other words, it addresses the critical dimensions of the impact of 

SSTs.  

P4 (Section 3.2) develops a formal decision model which decides with the help of an economic 

basis on customer recovery investments. To calculate the threshold at which it becomes 

economically reasonable to invest in an individual customer relationship, the probability of 

whether a customer relationship is “alive,” “dying,” or “dead” has to be considered. 

Accordingly, “dying” customers are those whom the organization wants to recover, whereas 

“dead” customers are beyond recovery as the effort involved would make the relationship 

unprofitable. A customer relationship is economically reasonable when the present value of 

future cash flow when investing in the recovery of a customer relationship is higher than not 

investing. The quantitative decision model was evaluated by way of an exemplary case, a 

sample calculation, and a sensitivity analysis. This latter shows that the probability of a 

customer relationship being “alive” has to be estimated carefully as an estimation error causes 

disproportionately large changes in cost savings. However, even with less well calculated 

estimates, cost savings with a lower percentage can be achieved. The practical use is born out 
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in expert interviews. In the first part of the interviews, the interviewees reveal that, at present, 

no organizations are using a quantitative decision process for investments in customer 

recovery. Most keep customer recovery very simple and only a few make their decisions based 

on statistical estimates and economic calculus. In the second part of the interviews, it is 

apparent that organizations consider it important to distinguish between “alive,” “dying,” and 

“dead” customers, and that the probabilities of these customer statuses ought to be calculated. 

Using the model developed in P4 allowed them to easily determine the relevant calculation 

variables, and experts stated that the model provides good decision support for organizations. 

 Results of part C: Behavior of individuals in a digital world 

Part C investigates the behavior of individuals when using digital technologies. Research 

paper P5 (Section 4.1) uses a newly developed metric to better explore the privacy paradox – 

the irrational inconsistency between the actual behavior of individuals and their theoretical 

concerns about the disclosure of their private data when using digital technologies. The metric 

is derived from the design science research methodology. The PPM uses the theoretical basis 

of the privacy calculus – the rational risk-benefit trade-off for deciding whether or not to 

disclose personal information – and the observation of actual consumer behavior to determine 

if a consumer behaves paradoxically. As such, it is the first quantitative measure of the extent 

of the privacy paradox. To develop this metric further, P5 establishes requirements it must 

fulfill to guarantee high quality, in particular quantifiability, precision, comparability, 

obtainability, interpretability, usefulness, and economy. Additionally, with the data from a 

survey conducted with 715 participants from the largest universities in Germany, it was 

possible to test an exemplary application of the PPM that uses mobile apps in a use case of 

digital services. The application reveals that many individuals use a mobile app even though 

they perceive only minor benefits as opposed to significant risks. There is, however, a 

difference between hedonic apps and performance apps as the latter are used more often when 

a significant risk outweighs a minor benefit. As this example shows, the PPM offers 

considerable advantages to researchers and individuals as well as organizations that provide 

digital services, ICT platform providers, and consumer protection organizations. Seeing as it 

makes the privacy paradox transparent, it also allows consumers to prevent careless data 

disclosure and unwanted consequences. At the same time, organizations can use the PPM to 

identify irresponsible consumer decisions regarding data disclosure and manage the associated 

risks. Consumer protection organizations can increase public awareness of these risks, and 

ICT service providers can use the PPM to enhance their attractiveness by providing 

customized warnings, suggestions, sorting, or filtering. In summary, the PPM offers a 
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quantitative perspective on the privacy paradox and in so doing contributes to improvements 

in disclosure and private data use. 

5.2 Future research 

The following sections present starting points for future research in the areas explored in the 

five research articles contained in this dissertation. These starting points also throw into relief 

the limitations of each article and how to go beyond them. 

 Future research regarding part A: Negative consequences of digitalization 

for the individual 

The two articles in part A focus on the identification of the concerns that individuals have 

about ADM (P1) and technology adoption in healthcare (P2). This covers two important 

domains of digitalization, yet future research may do well to examine further, and also more 

concrete, use cases and research areas. Furthermore, while identifying the concerns in 

different application domains is crucial to increasing the adoption of digital technologies 

among individuals, future research may develop countermeasures to mitigate or indeed 

eliminate the concerns. Another point worth noting is that both studies were conducted in a 

single country, Germany. Future research may apply the framework with samples 

characterized by different geographic attributes. 

In Section 2.1, research paper P1 has certain limitations. First, although we included open-

ended questions regarding the concerns that individuals may have about ADM at the 

beginning of each interview, future research may pursue this further to achieve higher 

generalizability or test the concerns for specific use cases. Second, future research may build 

on this study by developing appropriate countermeasures that address the concerns of 

individuals. Those concerns can then be better managed to further reduce reservations about 

ADM and improve its acceptance. Already, there are attenuating and positive aspects to the 

concerns, as the results of P1 indicate. Future research in the development of ADM systems 

may find it helpful to investigate which other concerns might be dealt with by further 

developing their mitigating aspects. 

In Section 2.2, research paper P2 presents a framework with some limitations that may 

stimulate further research. First, it was not the purpose of P2 to achieve statistical validation 

but to discover patterns to develop a theory and better understand the hindering factors that 

individuals perceive when thinking about the adoption of digital technologies in healthcare. 

Future research may collect quantitative data to test and clarify the findings and analyze the 
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interplay among the concerns in greater detail. Furthermore, although we addressed concerns 

about integration into the UTAUT, we focused on identifying those concerns. Future 

researchers would do well to treat this UTAUT integration as a good starting point for efforts 

to foster technology adoption in healthcare. 

 Future research regarding part B: Design approaches for information 

systems in organizations 

Part B presents two design approaches in P3 and P4 that organizations can implement to deal 

with the concerns and behaviors of individuals digitalization. Future research may treat these 

two approaches as starting points to develop further design approaches, for example, to 

address specific concerns about digital technologies, for which part A already provides 

numerous pointers. Another possible avenue for future research may be the evaluation of 

design approaches in terms of their impact on the behaviors and concerns of individuals. 

P3 (Section 3.1) offers the following opportunities for future research, mainly due to the 

elicitation of data for the quantitative decision model. First, the determination of the 

parameters can involve extensive effort and thus high costs. Future research may focus on 

finding an easier way to determine those parameters, especially for large companies with 

many customers. Second, to test the practicability of the decision model, P3 provides a case 

study of a fictional global travel solutions provider for business customers. Future research 

may employ the model in real-world contexts and refer to empirical data. Third, customer 

support is highly dependent on the customer’s technology acceptance, and the survey data 

presented in P3 shows that the interviewed customers have a comparatively favorable attitude 

to technologies. This does not, however, represent society at large. Therefore, organizations 

first have to examine their customers’ attitudes to technology and then decide how to deal 

with less technology-affine customers and how to motivate them to use self-service. 

P4 (Section 3.2) presents a decision model with certain limitations that stimulate further 

research. The model has already been evaluated by way of expert interviews and an example 

calculation. However, future research may apply the decision model in a real-world context 

to assess its usefulness more precisely. It is also worth noting that the decision model is 

designed to cover a single period. To ensure maximum customer recovery on a permanent 

basis, future research may extend the decision model to multi-period assessments. Another 

issue to address is that P4 is based on an organization’s risk neutrality. In reality, an 

organization’s decisions are subject to different risk attitudes. Future research may deal with 

this difference by considering context or branch-specific risk attitudes when deciding on 
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customer recovery investments. Finally, there is an issue with the assumption that investing 

in a customer relationship deemed to be “alive” is not reasonable in terms of the recovery 

effect. However, recovery investments could also increase customer satisfaction for “alive” 

relations. Future research may examine this effect. 

 Future research regarding part C: Behavior of individuals in a digital world 

P5 (Section 4.1) has certain limitations, starting with the issue of model definition. Customers 

are classified into defined segments based on their service usage and their perception of the 

benefits and risks associated with a digital service. This classification is done by way of binary 

segmentation of customers who use the digital service and customers who do not. Meanwhile, 

the median is used to divide customers according to how they perceive benefits and risks. This 

method of using the median is, however, merely an example and not a definite guideline. 

Consequently, the calculation of the PPM depends on the choice of the boundary values. 

Depending on the segmentation, customers may be classified into one of these segments, 

albeit at the edge, and yet if they provided only slightly different survey responses they would 

belong to the adjacent segment. Future research may identify and evaluate alternative 

divisions or evolve more detailed classifications to measure the PPM. Further, the practical 

application is based on mobile apps as a single example of digital services. Future researchers 

may apply the PPM to other digital services. In doing so, they would extend the PPM’s 

evaluation and test its boundaries. Another point worth noting is that the practical application 

aggregates the mobile apps into categories that simplify the implementation. This requires 

homogeneity within an app category. Future research may seek ways to account for this 

simplification. The following limitation also refers to the implementation of the practical 

application. As it stands, the model allows different weights for the benefits and concerns, but, 

in the exemplary application of the PPM, equal weight was given to the twelve app 

permissions for all participants, if only for the sake of simplicity. Future research may expand 

the application in another real-world example. Furthermore, since the online survey was 

conducted in Germany, it should be noted that the results may vary in different countries and 

that the demographic attributes of our sample may have influenced the results, as the data 

collected from 715 participants is not representative of the entire population. Future research 

may repeat the survey in other countries or with more individuals. Finally, the PPM was tested 

in a research project. To date, it has not been tested in an industry setting. For further 

evaluation, especially in terms of usefulness, a practical application in an industrial context 

may be beneficial. 
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5.3 Conclusion 

In summary, this dissertation contributes to scientific knowledge in research on the 

digitalization of the individual and thus addresses a subject of fundamental importance in this 

digital age. The five research papers address questions about consequences, design, and 

behavior. To do so in a cogent and comprehensive manner, it was necessary to look at the 

various roles a digitized individual can play, as such a holistic view is essential in researching 

the digitalization of the individual (Matt et al., 2019). The models and approaches developed 

in these pages have explored ways in which to improve conditions for the digitized individual 

at all three levels – consequences, design, and behavior – with equal regard for the individual 

as itself and the individual as a customer. By focusing on these two roles at the exclusion of 

three others (the individual as a social being, the individual as an employee, and the individual 

as a citizen) as differentiated in the framework of Matt et al. (2019), this dissertation makes a 

contribution to previous work in this area. With this, this dissertation will hopefully play a 

small part in making organizations and individuals better prepared to adapt to the changed 

circumstances created by the digitalization of the individual. As this will likely continue apace 

for years to come, this dissertation will hopefully provide valuable theoretical and practical 

insights for digitized individuals and organizations. 
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