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1. General introduction 

 

1.1.  Plant surface structures and their diversity 

 

The epidermis of all aerial primary tissues (e.g. leaves, fruits, stems) of vascular plants are 

covered by a continuous extracellular membrane with striking physical and chemical properties, 

the cuticle, which serves as a protective, multifunctional interface between them and the 

environment (Jeffree 1986; Bargel et al. 2006; Riederer 2006). The plant cuticle consists mainly 

of two main components: cutin (insoluble polymer) and waxes (soluble lipids), with a 

tremendous diversity in composition and structure (Jeffree 1986; Bargel et al. 2006; Jeffree 

2006; Koch et al. 2008). 

 

 

 
Figure 1. Simplified models of the stratification of the structure of plant cuticles and their major components, (a) 
(modified by Koch et al. 2008 after W. Barthlott), (b) (modified by Bargel et al. 2006 after P. J. Holloway 1994). 

 

 

From a morphological point of view, the cuticle membrane has a layered structure, which 

differs among plant species (Jeffree 1986, 2006). In general, three main layers can be noticed 

(Fig 1): (1) a thin outer layer called the cuticle proper, (2) a thick inner layer called the cuticle 

layer, and (3) a pectine-rich layer attaching the cuticle proper and the cuticle layer the to the 

periclinal cellulose walls of the epidermal cells (Fig. 1a) (Jeffree 1986; Bargel et al. 2006; Koch 

et al. 2009). However, pectine does not arrange as a layer in all plant species (Fig 1b) (Koch et 

al. 2008). In most plant species, the cuticle is covered by a complex mixture of lipids called the 

epicuticular waxes (Jeffree 1986; Barthlott et al. 1998) (Fig. 1). There are 23 epicuticular wax 

types classified according to Barthlott et al. 1998, including thin two-dimensional wax films (2-
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D waxes, up to 0.5 µm thickness), thicker layers or crusts (0.5–10 µm thickness), and 

epicuticular wax crystals. Epicuticular wax crystals are three-dimensional micro- and 

nanoprojections (3-D waxes), emerging from an underlying wax film, with characteristic shape, 

size, and orientation towards the surface (Fig. 1a, Fig. 2). Their most common types are plates, 

platelets, tubules, filaments, and rodlets (Fig. 2) (Barthlott et al. 1998). 

 

 

 
Figure 2. Schematic drawings of of the most prominent types of epicuticular wax deposits: (A) smooth layers; (B) 
fissured (cracked) layers, (C) noncosanol-tubules; (D) coiled rodlets; (E) platelets; (F) plates (modified by Al Bitar 
after Barthlott et al. 1998). 
 

 

Plant surfaces (plant cuticles and their epicuticular waxes) exhibit extraordinary diversity 

in structure and morphology, either amongst plant species, crop cultivars, organs of the same 

plant, and even during the organ ontogeny (e.g. Jeffree 1986; Barthlott et al. 1998; Koch et al. 

2008). A comprehensive overview on the diversity of plant surface microstructures and their 

morphology had been given by Koch et al. 2008. They classified plant surface structuring into 

three main cartiegories. (1) Plant surface structuring originates from the primary shape and 

curvature (i.e. flat, convex, or concave) of single epidermal cells and their surface structures, 

such as unicellular trichomes, papillae, 3-D epicuticular wax crystals, and surface foldings. (2) 

Plant surface structuring arises from hierarchical structures of single epidermal cells, such as a 

convex epidermal cell with cuticular foldings or 3-D epicuticular wax crystals on its surface. (3) 

Plant surface structuring occurs due to multicellular surface structures, such as glands and 

multicellular trichomes (i.e. glandular and non-glandular hairs). These surface microstructures 
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play crucial roles in the interaction between the plant surface and its biotic and non-biotic 

environment. Some of their main functional aspects are: surface hydrophobicity, transport 

barrier, mechanical properties, protection against harmful radiation, reduction of surface 

temperature, decreasing the adhestion of particles, pathogen spores, and insect legs and eggs, and 

many other functions (e.g. Jeffree 1986; Bargel et al. 2006; Riederer 2006; Koch et al. 2009). 

 

 

1.2.  Plant surface structures and their wetting behaviour 

 

Wetting process describes how a liquid droplet comes into contact with a solid surface in a 

surrounding medium (e.g. air). The wetting behaviour of surfaces can be determined by 

measurement of the contact angle (CA) of a liquid. A static CA of a liquid droplet on a given 

surface is determined by the interfacial surface tensions (molecular forces) at the boundaries 

between the involved liquid (L), solid surface (S) and the surrounding vapor (A), as shown by 

Young’s equation in Fig. 3 (Koch et al. 2008). Thus, wetting depends on the free surface energy 

(FSE, the ratio between the energy necessary for the enlargement of the surface and the gain of 

energy due to adsorption), in addition to other factors, such as surface roughness, and surface 

cleanliness (Bhushan and Jung 2006; Koch et al. 2008). The wetting behaviour of solid surfaces 

can be distinguished into four classes as defined by their static CA: superhydrophilic (CA < 10°-

0°), hydrophilic (CA < 90°-10°), hydrophobic (CA < 150°-90°), and superhydrophobic (CA ≥ 

150°) (Koch et al. 2008). 

 

 
Fig. 3 Wetting of a solid surface with a liquid (e.g. water droplet), with air as the surrounding medium. γLA, γLS and 
γSA are the interfacial tensions at the boundaries between liquid (L), solid (S), and air (A), which determine the CA 
of an applied water droplet and are described by Young’s equation (after Koch et al. 2008). 
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In general, the plant surface is a hydrophobic material due to its hydrophobic waxy nature. 

However, some structural, chemical, and biological modifications can cause remarkable changes 

in its wetting behaviour. Roughness of the plant surface plays a key role in the surface 

wettability (Barthlott and Neinhuis 1997; Koch et al. 2008). Thus, a considerable amplification 

of surface wettability could be induced by the shape and sculpture of epidermis cells, and their 

surface structures (such as trichomes, papillae, 3-D waxes, and surface foldings) (Neinhuis and 

Barthlott 1997; Koch et al. 2008), which is demonstrated in both Fig. 4 and Fig. 5. In other 

words, increasing the surface roughness causes a hydrophilic smooth surface getting more 

hydrophilic and a hydrophobic surface getting more hydrophobic (Fig. 4 and Fig. 5) (Koch et al. 

2008). For example, a given hydrophobic plant surface consists of convex epidermis cells and is 

structured with a low amount of 3-D waxes can become superhydrophobic by possessing a high 

dense coverage of 3-D waxes on it (Fig. 5). Conversely, the surface wettability will increase by 

any erosion of these 3-D waxes by environmental impacts or other possible causes (Neinhuis and 

Barthlott 1997). 

 

 

 
Fig. 4 A schematic demonstration of some possible surface structuring of plant surfaces, and their wetting 
behaviour, showing the four classes of surface wettability, defined by their static CA (after Koch et al. 2008). 
 

 

Wetting behaviour of the plant surface is of great biological importance. For example, 

hydrophobic and suberhydrophobic plant surfaces are dry and kept clean (self-cleaning 

mechanism) not only from contamination by particles and dust (Barthlott and Neinhuis 1997), 

but also from pathogenic microorganisms (Carver and Gurr 2006; Leveau 2006). Surface 
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hydrophobicity also affected insect-plant interaction. From one hand insect eggs and legs are 

generally less adhered on hydrophobic and suberhydrophobic waxy surfaces (e.g. Stork 1980; 

Riedel et al. 2003; Müller and Riederer 2005; Gorb and Gorb 2006, 2009; Voigt and Gorb 2010), 

but better attached on hydrophilic surfaces such as flower petals (Koch et al. 2008). From the 

other hand, water droplets on the plant surface can affect the microclimate on the plant surface 

and also could be an important source of water for some insects living on or visiting the plant 

surface (Müller and Riederer 2005).  

 

 

 
Fig. 5 A summary showing the four classes of plant surface wettability presented in Fig. 4, and the possible 
structural characteristics of epidremis cells, and their surface microstructure combinations (after Koch et al. 2008). 
 

 

1.3.  The effects of plant surfaces on insects 

 

Insects seek plant surfaces not only to feed on the tissues, but also as sites for living, 

resting, shelter, mating, and oviposition on or in them (Southwood 1986; Schoonhoven et al. 

2005; Müller 2006). Therefore, success and efficiency in their activities are seriously affected by 

the physical and chemical characteristics of plant surfaces they live on (Southwood 1986; 

Eigenbrode and Espelie 1995; Müller and Riederer 2005; Schoonhoven et al. 2005). According 

to the comprehensive review of Southwood (1986), the effects of plant surfaces on insects can be 

divided into three main headings: (1) effects at a distance, (2) direct and indirect contact effects, 
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and (3) effects when the insect penetrates the plant surface. Most important effects of plant 

surface microstructurs on insects are summarized in Fig.6. 

Effects at a distance  

Some plant surface structures, such as trichomes or 3-D epicuticular waxes, owing to their 

morphological features (e.g. shape, dimensions, density, orientation) and some volatile 

compounds emanating from them, are known to offer visual and chemical cues used by 

phytophagous insects for host detection at a certain distance from it (Prokopy and Owens 1983; 

Southwood 1986; Schoonhoven et al. 2005). 

 

Direct contact effects 

In the “contact phase”, plant surface structures (epicuticular wax crystals and trichomes) 

are considered as a direct defense strategy against many herbivorous insects, which affects 

insect-plant interactions directly in several possible ways (Schoonhoven et al. 2005; Southwood 

1986). (1) A dense coverage of epicuticular wax crystals on a given plant surface is known to 

reduce not only the attachment ability of many herbivorous insects (Stork1980; Jeffree 1986; 

Southwood 1986; Eigenbrode and Espelie 1995; Gorb and Gorb 2002, 2006b; Gaume et al. 

2004; Müller and Riederer 2005), but also the adhesion of their eggs on them (Müller 2006; 

Voigt and Gorb 2010). (2) Plant trichomes, depending on their function and features (e.g. shape, 

density, length, orientation), could impede movement of some herbivorous insects, especially 

those of small size (Smith et al. 1975; Jackson and Harwood 1980; Schoonhoven et al. 2005), 

impale their cuticle leading to wounding and death (by hooked trichomes) (Johnson 1953; 

Pillemer and Tingey 1978), or even have some physiological and behavioural effects on them 

(by exudates from some glandular trichomes) (Jeffree 1986; Southwood 1986; Romeis et al. 

1998; Schoonhoven et al. 2005).  

In addition, surface structures (3-D waxes, trichomes, folds, leaf veins, edges, cavities), 

and the chemical compounds present at their surface (e.g. epicuticular wax compounds, primary 

and secondary metabolites located on them, and also chemicals produced by insects and other 

microorganisms) are valuable cues used by herbivorous insects for host recognition and 

acceptance. They may act as repellents, deterrents or stimulants and mediate insect feeding and 

oviposition behaviours (Southwood 1986; Eigenbrode and Espelie 1995; Müller and Riederer 

2005; Schoonhoven et al. 2005; Müller 2006). 
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Indirect contact effects 

The physical and chemical nature of the plant surface could also affect herbivorous insects 

in several indirect ways: (1) positive or adverse effect on the abundance and effectiveness of 

their natural predators and parasitoids (Southwood 1986; Eigenbrode and Espelie 1995; 

Eigenbrode and Castagnola 1996; Romeis et al. 1999; Eigenbrode 2004; Schoonhoven et al. 

2005; Voigt et al. 2007), (2) effect on their pick-up of pathogens, and uptake of pesticides 

(Southwood 1986), (3) effect on the microclimate conditions around them (especially for small 

insects living on the surface), influencing significantly their physiology (such as temperature and 

water balance) (Willmer 1986; Schoonhoven et al. 2005) and many other possible indirect 

effects. 

 

Effects when penetrating the surface 

Plant trichomes and cuticle toughness could serve as a mechanical barrier, limiting the 

accessibility of some insects and first instar larvae to reach the tissues within to feed on. Some 

herbivorous insects, owing to their probing bites, get important cues for host acceptance through 

the chemicals emanating from the tissues within (Southwood 1986). 

 

 
Fig. 6 A schematic summary of the most important effects of plant surface microstructures on insects. (A) 
Microstructures affect as visual cues; (B) they affect the adhesion degree of insect eggs to the plant surface; (C) they 
give insects many important physical and chemical cues (water and other primary and secondary metabolites diffuse 
in different degrees through the cuticular layer, formed by epicuticular wax crystals) used for host recognition and 
acceptance by insects; (D) they affect attachment ability of insect legs to the plant surface and their locomotion on 
it; (a) epicuticular wax crystals; (b) the epicuticular wax film; and (c) cutin and intracuticular waxes (after Müller 
and Riederer 2005). 
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1.4.  Attachment devices of insect legs 

 

As shown previously, due to their physical and chemical characteristics, the epicuticular 

wax crystals could reduce the attachment ability of many herbivorous insects to the plant surface 

as a defense strategy before damage occurs, or for catching insects (as in carnivorous plants) 

(e.g. Stork 1980; Eigenbrode and Espelie 1995; Gorb and Gorb 2002, 2006; Gaume et al. 2004). 

However, some insects have evolved various adaptive attachment devices, enabling them to 

overcome the previous difficulty and maintain their foothold on the diverse surfaces in their 

habitat (Gorb 2001; Beutel and Gorb 2001) (Fig. 7 and Fig. 8b). 

Most insects are provided with a pair of lateral pretarsal claws (Fig. 7 and Fig. 8b), 

supporting interlocking on structured surfaces with roughness larger than the caw tip diameter 

(Dai et al. 2002). Moreover, insects possess highly specialized adhesive structures, which may be 

located on different parts of their legs, such as claws, pretarsus, tarsomeres, tarsal apex, or tibia 

(Beutel and Gorb 2001) (Fig. 7 and Fig. 8b). Despite these adhesive devices are widely diverse 

among insect species and orders in their location, ultrastructure and function, they are in general 

based on two main mechanisms: smooth flexible pads and hairy surfaces (Gorb 2001; Beutel and 

Gorb 2001). Owing to their flexible nature, both types of adhesive devices are highly adapted 

providing the maximal contact area with a given surface regardless of its microstructures (Fig 

8a) (Gorb et al. 2000; Gorb 2001; Beutel and Gorb 2001). 

 

 

Fig. 7 Main parts of a hind leg of the cockroach Periplaneta americana L. (Blattodea: Blattidae), with enlargement 
of the ventral surface of the pretarsus and the last tarsomere. The following leg attachment devices can be noticed: 
the pretarsal claws (interlocking device), the euplantulae (smooth adhesive devices) and the arolium (a smooth 
adhesive device) (modified by Al Bitar after Gullan and Cranston 2010). 
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Fig. 8 A scheme indicating the two main action mechanisms of insect adhesive devices in (a) and examples of their 
diversity (coloured areas) in (b). In both (a) and (b), green colour refers to hairy adhesive system, and pink colour 
refers to smooth adhesive system. Adhesive structures of both systems adapt well to smooth (A and C in a) and 
structured surfaces (B and D in a). In (b): (A) arolium, (B) pulvilli (smooth or hairy) (pu), (C) empodial pulvillus, 
(D) hairy adhesive soles of tarsomeres, (E) eversible pretarsal bladder, (F) eversible structure between tibia and 
tarsus, (G) fossula spongiosa, (H) euplantulae (eu); claw pad (cp), (I) tarsal thorns transformed into adhesive 
structures (th), claw pad (cp), (J) adhesive claw setae, (after Beutel and Gorb 2001, Gorb 2005). 

 

 

Hairy adhesive structures contain a lot of cuticular protuberances on their surfaces (Gorb 

2001). They are common in some insect orders such as Diptera, Dermaptera and Coleoptera, 

however they vary in their type and size among these orders (Gorb 2001; Beutel and Gorb 2001). 

Smooth adhesive pads appear smooth under the light microscope; however ultrastructural studies 

revealed that their cuticle has microfolds varying in their patterns according to the insect order 

(Beutel and Gorb 2001). The arolium as an example belongs to the smooth adhesive type of 

attachment pads. It is a median hollow lobe on pretarsi of most representatives of Hymenoptera, 

Mecoptera, Lepidoptera, Plecoptera, Caelifera, Phasmatodea, and Blattodea (Fig. 7 above and 

Fig 8bA) (Beutel and Gorb 2001). Another example is the euplantula on the ventral side of one 

or more tarsomeres, which is common in the larger species of Plecoptera, and most 

representatives of Blattodea, Mantodea, Caelifera, Phasmatodea; Notoptera (Fig. 7 and Fig 8bH) 

(Beutel and Gorb 2001). Attachment of these smooth adhesive pads to different plant surfaces 

depends to a large extent on their deformability and the softness of their pad materials (Gorb et 

al. 2000; Jiao et al. 2000). 

Many studies revealed fluid secretions in the attachment systems of both hairy (Walker et 

al. 1985; Ishii 1987), and smooth adhesive pads of many insect species (Roth and Willis, 1952; 

Lees and Hardie1988; Dixon et al. 1990; Jiao et al. 2000; Vötsch et al. 2002; Drechsler and 
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Federle 2006; Scholz et al. 2008). It has been suggested that this secretion is transported from the 

epidermis to the epicuticle surface of the adhesive pads through thin canals found in some insect 

species (e.g. in cockroaches (Arnold 1974) and in locusts (Schwarz and Gorb 2003)), whereas 

they are not detected in other insects (e.g. in the stick insect Carausius morosus (Sinéty) (Scholz 

et al. 2008)). This secretion was considered to play a crucial role in enhancing the attachment 

ability of insect pads especially on rough surfaces, by maximizing the contact area (Drechsler 

and Federle 2006). 

 

 

1.5.  The codling moth Cydia pomonella L. 

 

Cydia pomonella (L.) (Tortricidae, Olethreutinae: Grapholitini), the codling moth, is 

referred commonly in older literature to as Carpocapsa pomonella (L.) or Laspeyresia 

pomonella (L.). Recently, "Cydia" has been found to be the correct generic name for this moth 

(Brown 1979; Wearing et al. 2001; Brown 2006). The common name "codling moth" was given 

to this moth by Wilkes in 1747 in his book "The English Moths and Butterflies", referring to the 

elongated, greenish English cooking apples, which were known as "Codling" (Barnes 1991). The 

adults have brownish grey forewings with several light gray and copper stripes, whereas the hind 

wings are pale grey with fringed borders. It has a wingspan ranging from 12 to 18 mm and about 

10 mm long when wings are folded in a rest position (Fig. 9). Males are smaller than females.  

The codling moth is a key pest of domestic apples (Malus domestica Borkh.), its most fa-

vourite host plants, around the world except Japan and Korea (Barnes 1991). Although its close 

association with domestic apples, pears (Pyrus communis L.), quince (Cydonia oblonga Miller), 

and walnuts (Juglans regia L.) are also known to be additional preferred host plants (Barnes, 

1991). Occasionally, it also could be found in some stone fruits such as plums (Prunus domestica 

L. and Prunus salicina Lindl.), apricots (Prunus armeniaca L.), peaches, (Prunus persica (L.) 

Batsch), nectarines, (Prunus persica var. nucipersica (Suckow) C.K. Schneid), and soft-shelled 

varieties of almonds (Prunus amygdalus Batsch) (Yokoyama and Miller 1988; Curtis et al. 1990; 

Barnes 1991). The codling moth is well known to discriminate not only between host plant spe-

cies (e.g. Hagley et al. 1980; Curtis et al. 1990; Barnes 1991), but also between cultivars of the 

same species (e.g. Olson 1977; Hagley et al. 1980; Plourde et al. 1985; Blomefield et al. 1997; 

Marti 2001). 
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Figure 9. Scheme indicating: (a) the codling moth adult, Cydia pomonella (L.) (Lepidoptera: Tortricidae), (b) a 
damaged apple fruit due to a codling moth larva fed on its seeds, and later the mature larvae leaves the fruit and 
drops by a silken sting, searching for a proper place to either pupate or to enter diapause, (c) a codling moth pupa in 
the bark of a tree (slightly modified by Al Bitar, after a drawing by Claus Caspari 1955, and printed in Germany, for 
"Mitteleuropäische Insekten"). 
 

 

In apple orchards, the codling moth has one generation in cooler climates, two generations 

in southern Middle Europe, and even three to four generations in warmer climates (Audemard 

1991; Shel'Deshova 1967). Generally, when the orchards left without control, a severe crop 

damage of 80-100% could be expected especially where two or more generations can occur 

(Geier 1963). This damage is owing to the larvae (5 instars), which bore deep into apple fruits 
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feeding on the flesh, and the developing seeds (Fig. 9b and Fig. 10). Mature larvae leave their 

fruits (Fig.9b), searching for dry, safe places to either pupate (Fig.9c) or to enter diapause.  

Generally, most activities (such as flight, calling, mating and oviposition) of adult moths 

occur within or around sunset period, and less often shortly following sunrise, depending on sev-

eral ecological factors such as light intensity, humidity, temperature, and air movement (Borden 

1931). Mating occurs on plant surfaces, where the male first aligns parallel to the female, insert-

ing its coupling organs and then moves to an opposite position (Borden 1931). Oviposition can 

set on 6-15 hours after mating (Howell 1991). 

 

 

 
Figure 10. Samples of young apple fruits damaged by codling moth larvae of the first generation. (a) A young apple 
fruit with frass produced by a codling moth larva; (b) and (c) the inner sides of damaged young fruits, where the 
larvae can be seen boring within (Images by Al Bitar, L.). 

 

 

Codling moth neonates are vulnerable and limited in their mobility (Fig. 11), and have to locate 

and penetrate into their food source (the fruit) within a few hours (Jackson and Harwood 1980; 

Jackson 1982). Therefore, their survival depends to a large dergree on the choices made by the 

ovipositing females for the proper host plant and the proper oviposition sites (on or very close to 

the fruits, Geier 1963; Renwick and Chew 1994; Blomefield et al. 1997; Marti 2001). Here, these 
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oviposition choices are strongly affected by microclimate factors, and several signals emanating 

from the host plant foliage and fruits including visual stimuli, volatiles, surface kairomones and 

allomones, surface texture, and possibly other cues (e.g. Jackson 1979; Hagley et al. 1980; 

Plourde et al. 1985; Thiery et al. 1995; Yan et al. 1999; Marti 2001; Lombarkia and Derridj 

2002; Witzgall et al. 2005). 

 

 
Figure 11. Eggs and first instar larvae of the codling moth on the surface of an apple fruit: (a) two eggs of different 
developmental stages; (b) a neonate larva starts penetrating the fruit surface; (c) another neonate larva still exploring 
the fruit surface (image by Al Bitar, L.). 
 

 

Egg distribution in the field vary through the season depending mainly on the host plants 

species, cultivar characteristics, and the phenological plant stage corresponding with the abun-

dance of the gravid females. In apple orchards, at the beginning of the growing season, eggs are 

deposited on leaves adjoining to the trichome–covered young fruits (Hall 1929; Borden 1931; 

Geier 1963; Jackson 1979). The leaf side favoured for oviposition (upper, lower leaf surface or 

both of them) may differ considerably between apple cultivars (Wood 1965; Hagley et al. 1980; 

Plourde et al. 1985; Blomefield et al. 1997). Later in the growing season, the majority of eggs of 

the second and the third generations are laid directly on the fruits (e.g. Hall 1929; Blomefield et 

al. 1997; Borchert et al. 2004), which became larger and have lost their trichomes. 

Having selected a suitable oviposition surface, the codling moth female begins brushing 

this surface with its ovipositor, and within very few seconds the egg appears as an oval, flat 

shiny disc and turns later to a milky white colour. Then immediately, the female moth moves or 

flies away (Borden 1931). Therefore, under field conditions, the eggs are singly laid and well 

distributed, and only occasionally two or more eggs on the same leaf or fruit can be found 

(Borden 1931; Geier 1963; Wood 1965; Jackson 1979). 
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1.6.  Thesis Objectives 

 

Through one hundred years of rich researches on the codling moth, a wealth of knowledge 

has been collected focusing mainly on its behaviour, ecology, chemoecology, damage, and many 

possible control techniques. However, many aspects of insect-plant-relationship of this important 

pest, especially those mediated by the physical characteristics of the plant surface are still largely 

unknown. 

Given that codling moths live on widely different surfaces provided by their host plants, 

among them the gravid females prefer smooth and less hairy surfaces as oviposition sites 

(Westigard et al. 1976; Olson 1977; Hagley et al. 1980; Plourde et al. 1985; Curtis et al. 1990; 

Barnes 1991; Marti 2001; and own observations). The reasons for this preference are still 

uncovered. Therefore, we were motivated through the studies of this thesis to investigate the 

effect of structural and physicochemical characteristics of the surface on the attachment ability of 

legs and eggs of the codling moth, which could be responsible for the surface preference of their 

ovipositing females. Two main objectives were considered: 

(1) The attachment performance of the codling moth adults on substrates varying in their 

surface characteristics (roughness and physicochemical), combined with a morphological study 

of the pretarsal attachment devices of adults of both sexes (studies 1 and 2).  

(2) The egg adhesion of the codling moth to different leaf and fruit surfaces of the 

domestic apple (studies 3 and 4), combined with morphological and physicochemical properties 

of the tested plant surfaces to evaluate their role in the egg adhesion. 
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2. Attachment ability of the codling moth 

 

2.1.  Tarsal morphology and attachment ability to smooth surfaces1 

 

 

Abstract 

Despite several studies on the attachment ability of different insect taxa, little is known 
about this phenomenon in adult Lepidoptera. In this study we combined morphological and 
experimental analyses of tarsal adhesive devices and the attachment ability of the codling moth 
Cydia pomonella (L.) (Lepidoptera, Tortricidae) to smooth surfaces. Pretarsi of C. pomonella 
attach to smooth substrates by means of their smooth, flexible and well developed arolia. Using 
the centrifugal force measurement technique, friction forces of males and females were assessed 
on hydrophobic and hydrophilic glass surfaces. Adults of both sexes generated similar forces in 
spite of the noticeable difference in their body masses. That is why males showed significantly 
higher safety factors (attachment force divided by body weight) compared to those of females. 
Hydrophobicity of the substrate had no considerable effect on friction forces. For females, 
friction forces (sliding parallel to the substrate plane) were compared with adhesive forces 
(pulling off perpendicularly from the substrate plane) measured on Plexiglas surfaces. It can be 
concluded that the attachment system of C. pomonella is rather robust against physico-chemical 
properties of the substrate and is able to achieve a very good attachment on vertical and 
horizontal substrata. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1AL BITAR, L., VOIGT, D., ZEBITZ, C. P. W. & GORB, S. N. (2009) Tarsal morphology and attachment ability 

of the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae) to smooth surfaces. Journal of Insect Physiology 
55, 1029-1038. doi:10.1016/j.jinsphys.2009.07.008 
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2. Attachment ability of the codling moth 

 

2.2.  Attachment ability to rough surfaces2 

 

 

Abstract 

Host plant surfaces of the codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), 
vary in microtopography, which can affect its attachment, locomotion, and oviposition 
behaviour. This study was performed to investigate the effect of surface roughness on the 
attachment ability of adult insects. Using a centrifugal force device, friction forces of both sexes 
were assessed on six epoxy resin substrates differing only in the dimensions of their surface 
asperities, ranging from 0 µm to 12 µm. Surface topography significantly affected friction 
forces. Maximal force was measured on the smooth substrate whereas minimal force was 
assessed on microrough substrates with 0.3 µm and 1.0 µm size of asperities. On the remaining 
rough substrates, friction forces were significantly higher but still lower than on the smooth 
substrate. Both sexes generated similar forces on the same substrate, in spite of the considerable 
difference in their body mass. Thus, it is expected that both sexes can attach effectively to 
differently structured plant substrates in their habitat. However, since smooth surfaces have been 
reported previously to be the most favorable substrates for ovipositing females of C. pomonella, 
it is possible that they use their attachment system to sense the substrate texture and prefer those 
substrates to which their arolia attach the best. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2AL BITAR, L., VOIGT, D., ZEBITZ, C. P. W. & GORB, S. N. (2010) Attachment ability of the codling moth 

Cydia pomonella L. to rough surfaces. Journal of Insect Physiology 56(12), 1966-1972.   
doi:10.1016/j.jinsphys.2010.08.021 
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3. Egg adhesion of the codling moth 

 

3.1.  Egg adhesion to leaf surfaces of different apple cultivars 3 

 

 

Abstract 

Codling moths, Cydia pomonella L. (Lepidoptera, Tortricidae), of the first generation 
deposit eggs on apple leaves in the vicinity of small fruits. The choice of the suitable oviposition 
sites and proper fixation of eggs are expected to be crucial factors for the survival of the 
offspring. In this study, we investigated egg adhesion of the codling moth to leaf surfaces of 
different cultivars of the domestic apple, Malus domestica Borkh., by measuring the pull-off 
force required to detach the eggs from leaves. Since surface features may influence insect egg 
adhesion, morphological and physico-chemical properties (wettability, free surface energy) of 
these leaf surfaces were analyzed. Furthermore, eggs and their adhesives covering leaf surfaces 
were visualized. Eggs on the smooth upper leaf surfaces of all tested cultivars required 
significantly similar pull-off forces to be detached, at a total average of 6.0 mN. Up to 2-3 times 
stronger pull-off forces had to be applied to detach eggs from trichome-covered lower leaves, 
and these forces differed significantly between cultivars. The role of leaf surface properties is 
discussed in the context of egg adhesion, oviposition site choice, female attachment, as well as 
neonate locomotion speed and survival. The obtained results shed light on the susceptibility of 
various apple cultivars and leaf surfaces to the infestation of apple trees by first generation 
codling moths. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
3AL BITAR, L., GORB, S. N., ZEBITZ, C. P. W. & VOIGT, D. (2012) Egg adhesion of the codling moth Cydia 

pomonella L. (Lepidoptera, Tortricidae) to various substrates: I. Leaf surfaces of different apple cultivars. Arthro-
pod-Plant-Interactions 6(3), 471-488. DOI 10.1007/s11829-012-9198-z 
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3. Egg adhesion of the codling moth 

 

3.2.  Egg adhesion to fruit surfaces of different apple cultivars 4 

 

 

Abstract 

In the late growing season of apples, most eggs of the codling moth, Cydia pomonella L. 
(Lepidoptera, Tortricidae), of the second and third generations are deposited directly on fruits. 
The apple fruit surface is densely covered by three-dimensional micro- and nanoprojections, the 
epicuticular wax crystals, emerging from an underlying wax film. These epicuticular waxes 
render the apple fruit surface hydrophobic, which could affect the attachment of insect legs and 
eggs to it. A better survival of the codling moth offspring is expected to be ensured by the 
selection of suitable oviposition sites by females, as well as by a proper adhesion of deposited 
eggs to these sites. In this study, we investigated egg adhesion of the codling moth to the fruit 
surface of different cultivars of the domestic apple, Malus domestica Borkh., by measuring the 
pull-off force required to detach eggs from fruits. Since surface characteristics may influence 
insect egg adhesion, the information about morphological and physicochemical properties of the 
fruit surface is crucial for understanding oviposition site selection by females. In the present 
study, surface morphology, wettability, and free surface energy of the apple cultivars ‘Boskoop’, 
‘Elstar’, ‘Golden Delicious’, ‘Jonica’, and ‘Topaz’ were analyzed. Eggs adhered tightly to the 
fruit surface of all apple cultivars tested: pull-off forces averaged 63.9 mN. Theses forces are 
four- to tenfold stronger than those previously measured on adaxial and abaxial leaf surfaces of 
the identical apple cultivars. The mechanisms used by the moth to fix its eggs on the waxy 
surface of apple fruits, and the influence of fruit surface properties on egg glue adhesion are 
discussed. Furthermore, the results are debated in the context of the oviposition site selection by 
females, and its role in offspring survival of the second and third generations of the codling 
moth. 

 
 
 
 
 
 
 

 
4AL BITAR, L., GORB, S. N., ZEBITZ, C. P. W. & VOIGT, D. (2014) Egg adhesion of the codling moth Cydia 

pomonella L. (Lepidoptera, Tortricidae) to various substrates: II. Fruit surfaces of different apple cultivars. Arthro-
pod-Plant-Interactions 8(1), 57-77. DOI 10.1007/s11829-013-9288-6 
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4. General discussion 
 

Adults of Cydia pomonella live on host plant surfaces, which are largely variable in their 

structural, chemical, and physicochemical characteristics not only amongst plant species, but 

also amongst cultivars, plant parts (e.g. upper/lower leaf sides, fruits, flower petals, twigs, bark), 

and plant phenological stages (e.g. Bell 1937; Skene 1963; Faust and Shear 1972; Considine and 

Brown 1981; Belding et al. 1998; Verardo et al. 2003; Bringe et al. 2006; Lombarkia and Derridj 

2008; Velásquez et al. 2011; Chapter 3 of this thesis). Environmental conditions and orchard 

management practices can also affect physical or chemical plant surface traits (e.g. Faust and 

Shear 1972; Hull et al. 1975; Proctor and Lougheed 1980; Peet 1992; Opara 1993, 2000; Wojcik 

et al. 1997; Gibert et al .2007; Rinallo and Mori 1996; Creasy1980; Knoche and Grimm 2008, 

Hunsche et al. 2010). These highly variable properties of the plant surface may profoundly affect 

directly and indirectly many aspects of insect–plant interaction, such as attachment, locomotion, 

oviposition site selection, egg adhesion, and also survival of adults and their offsprings 

(Southwood 1986; Eigenbrode and Espelie 1995; Müller and Riederer 2005; Schoonhoven et al. 

2005; Müller 2006).  

More attention was drawn to volatile and non-volatile chemicals at the host plant surface 

and the behavioral response of the codling moth towards them (e.g. Yan et al. 1999; Bengtsson et 

al. 2001; Ansebo 2004; Landolt and Guedot 2008; Lombarkia and Derridj 2008). Conversely, 

physical properties of the host plant surface of the codling moth has been given only little 

attention in the literature and still has not been investigated in depth they deserve, in spite of 

their importance in many of codling moth-plant interactions (e.g. oviposition site selection 

Hagley 1980; Olson 1977, neonate speed Jackson 1982; Unruh et al. 2000). Therefore, studies 

were undertaken in thesis to investigate the effect of structural and physicochemical 

characteristics of the substrate on two main insect-plant interactions: (1) the attachment ability of 

codling moth adults (Chapter 2) and (2) the egg adhesion (Chapter 3). Moreover, some important 

behaviour observations (from previous studies and ours) of the ovipositing females and neonates 

were discussed and analyzed according to the new emerging results of our studies. 
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4.1.  Attachment ability of the codling moth  

 

A proper attachment ability of codling moth adults to various surfaces of their host plants 

is considered to be one of the key factors of the insect success not merely for maintaining their 

foothold on the plant surface during resting, mating, and oviposition, but also to assess many 

important cues provided by the plant surface (texture, all chemicals at/in the plant surface) in 

order to accept or reject the surface as a potential host plant/an oviposition site. Therefore, we 

started our investigation of their attachment ability by a study of the tarsal morphology of male 

and female moths to know more about their attachment devices and their modifications.  

 

Attachment devices of the codling moth 

No sexual dimorphism was noticed in the pretarsal morphology of C. pomonella (Paper 1), 

which can be explained by the fact that adults of both sexes have the same need for a proper 

attachment to the plant surface during their life activities. 

The pretarsus of C. pomonella is equipped with two main complementary attachment 

devices enabling the insect leg to attach to a variety of surfaces ranging from smooth to really 

rough surfaces. (1) A pair of curved claws with a tip diameter about 1.2 µm, supporting insect 

attachment to rough surfaces with projections which are larger enough than the claw tip diameter 

(Dai et al., 2002). (2) A well developed arolium (an adhesive pad belonging to the smooth type 

of the locomotory attachment devices of insects, Beutel and Gorb 2001), which is expected to be 

responsible for insect attachment not only to smooth surfaces but also to a variety of 

microsculptured surfaces (Gorb 2001; Beutel and Gorb 2001). The arolium cuticle has 

microfolds in form of grooves, running perpendicularly to the longitudinal axis of the pretarsus. 

Moreover, some secretion residues were noticed at the inflated surface of the arolium. 

 

Attachment of the codling moth to smooth substrates 

Using the centrifugal device, our friction force data revealed an excellent attachment 

ability of the codling moth adults of both sexes to all smooth artificial substrates tested, 

regardless of their materials (glass, Plexiglas®, and polymerized Spurr resin) (Papers 1 and 2), 

their wettability (hydrophobic and hydrophilic glasses) (Paper 1), and also the position 

(horizontal or vertical, tested for females) (Paper 1). This excellent attachment ability was more 
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obvious in the second study (Paper 2) when friction forces were assessed on six substrates made 

of the same material (polymerized Spurr resin) differing only in the dimensions of their surface 

asperities. Indeed, on the smooth substrate, codling moth adults of both sexes generated the 

maximal friction forces, which varied significantly from those generated on all other rough 

substrates tested (Paper 2). Similar excellent attachment abilities to a variety of smooth artificial 

and natural substrates have been also reported previously for many insect species (e.g. Stork 

1980; Edwards 1982; Eigenbrode 1996; Federle et al. 2000; Gorb and Gorb 2002; Voigt et al. 

2008). This excellent attachment ability to smooth substrates is related to the well developed 

arolia. On such smooth surfaces, there is no projection for the claws to interlock with. Therefore, 

they will slip off, letting the arolium establishing presumably the maximal contact area with the 

surface (Federle et al. 2001; Frantsevich and Gorb 2002; 2004; Federle and Endlein 2004; 

Endlein and Federle 2008), generating the maximal friction force on it. Thus, we conclude that 

the attachment system of the codling moth adults is well adapted to smooth plant surfaces. 

Keeping in mind that smooth plant surfaces are not perfectly smooth, but they are characterized 

by various degrees of surface sculpturing. Here, the pad material properties (high flexibility and 

viscoelasticity) (Gorb et al. 2000; Jiao et al. 2000, Gorb 2008), and the pad fluid secretion are 

expected to enhance the attachment ability on such surfaces (Drechsler and Federle 2006; Gorb 

2008). 

This amazing result explains why the ovipositing codling moth females prefer to oviposit 

on smooth surfaces, such as the upper leaf surface of apples, over the too hairy or rough surfaces 

(e.g. Wood 1965; Jackson 1979; Hagley et al. 1980; Plourde et al. 1985; Blomefield et al. 1997; 

Subinprasert and Svensson 1988; Borchert et al. 2004; own unpublished observations). Thus, the 

gravid females choose surfaces on which they can maintain their foothold the best. This point is 

more complicated and is discussed in more details in a following section of the general 

discussion. 

 

Attachment of the codling moth to rough substrates 

Our study demonstrated that codling moth adults of both sexes were able to attach well to 

all rough substrates tested (epoxy resin substrates with a nominal asperity size of 0.3 µm, 1 µm, 

3 µm, 9 µm, and 12 µm). However, their friction forces were significantly lower than on the 

smooth substrate (0 µm), where the maximal friction force was found (Paper 2). We think that, 

in spite of its viscoelastic material (Gorb et al. 2000, Gorb 2008) and the presence of the pad 

fluid secretion (Vötsch et al. 2002; Federle et al. 2002, Drechsler and Federle 2006; Persson 
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2007), the arolium surface is unable to adjust completely to the substrate profile as it is the case 

on the smooth substrate. Thus, a reduction occurs in both the intimate contact area between the 

arolium and the substrate, as well as in the friction forces, especially on the substrates with 

asperities of 0.3 µm and 1.0 µm. The dimension of epicuticular wax crystals and some 

microstructures on fruit and leaf surfaces of codling moth´s host plants resembles surface 

asperities of the tested substrates (Skene 1963; Faust and Shear 1972; Paper 3, Paper 4), 

suggesting that adult moth attach successfully to rough surfaces in their habitat.  

Although the friction forces of codling moth adults were reduced to a minimum on the 

roughness of 0.3-1.0 µm (critical roughness), two main points were interesting to consider. First, 

friction forces generated by females on this critical roughness did not differ significantly from 

those on other rough substrates tested, conversely to those generated by male adults. Second, 

both sexes of the codling moth attach stronger to substrates with such critical roughness, 

compared to previously studied insects with both smooth and hairy adhesive pads; such as leaf 

beetles, flies, mirid bugs, stick insects (Gorb 2001; Peressadko and Gorb 2004; Voigt 2005; 

Scholz et al. 2008; Voigt et al. 2008). These nominal asperity sizes are corresponding well to the 

dimensions of minute epicuticular wax crystals which cover some host plant surfaces of C. 

pomonella (Paper 4). Such surfaces have been repeatedly reported to reduce the attachment 

ability of many insect species in their natural environment (e.g. Stork 1980; Eigenbrode et al 

1996; Federle et al. 2000; Gorb and Gorb 2002; Eigenbrode 2004; Voigt et al. 2007; Gorb et al. 

2008). Therefore, both points indicate that C. pomonella females are well adapted to attach 

properly to plant surfaces, such as the waxy surface of apple fruits, resembling the critical 

roughness of the artificial substrate tested (Paper 4). 

On very rough substrates with asperities greater than 12 µm, such as large microcracks on 

the fruit surfaces, leaf trichomes and tree bark (Papers 3 and 4), the claws are expected to be 

responsible for attachment (Betz 2002; Dai et al. 2002; Voigt et al. 2007, 2008). Thus, owing to 

their well adaptable arolium and claws, codling moth adults are capable to attach well to variable 

smooth and rough surfaces in their habitat. 

 

Effect of physicochemical substrate properties on attachment of the codling moth 

Owing to their wide variation in the structure and the chemical composition, host plant 

surfaces of C. pomonella are considerably variable in their physicochemical characteristics (e.g. 

Holloway 1969; Leece 1976; Velásquez et al. 2011; Chapter 3 of this thesis), which may 

strongly affect their attachment ability and locomotion on these surfaces (e.g. Gorb and Gorb 
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2006, 2009). Our study showed clearly that the attachment system of adult moths of both sexes is 

rather robust against physicochemical characteristics of the substrate. Since their friction forces 

measured on the hydrophilic glass (CA of 39.2°) did not differ significantly than those found on 

the hydrophobic silanized glass (CA of 108.5°) (Paper 1). Presumably, this may be related to the 

aroliar fluid secretion (lipid nano-droplets dispersed in an aqueous liquid), with its possible 

affinity to hydrophobic and hydrophilic substrates (Vötsch et al. 2002). Previous studies have 

demonstrated that insects with smooth adhesive pads are able to attach to hydrophobic surfaces, 

such as wax (Roth and Willis 1952) and silanized glass (Dixon et al. 1990) and to hydrophilic 

substrate as well (Gorb and Gorb 2004). 

 

Attachment to horizontal and vertical substrates 

Gravid females of the codling moth are known to oviposit on both horizontal and vertical 

surfaces (leaf sides, fruit, and smooth artificial surfaces) (own observations). Moreover, surfaces 

positioned vertically or horizontally and facing upwards are sometimes much preferred for 

oviposition (own observations), especially on apple cultivars with too hairy lower leaf surface 

(as ‘Red Delicious’) (Marti 2001). Therefore females must be able to attach successfully to both 

positions. Our study demonstrated that codling moth females achieved very good attachment 

ability to the smooth Plexiglas® substrate in both positions: horizontally (friction forces were 11 

times their own body weight), and vertically (adhesion forces were 7 times their own body 

weight). Similar experiments have been done on glass with blowflies, Calliphora vomitoria L. 

(with a hairy attachment system), showing even more contrasting attachment ability (Walker et 

al. 1985). Their friction forces were 28.1 times their own body weight in the horizontal position; 

and their adhesion forces were 3.4 times their own body weight in the vertical position (Walker 

et al. 1985).  

 

4.2.  Egg adhesion of the codling moth  

 

In many insect species, such as C. pomonella and many other lepidopterans, the neonates 

are vulnerable and limited in their mobility; therefore the selection of a suitable oviposition site 

by females (on or very near to the larval food source) is a crucial issue for survival of their 

offsprings (Singer et al. 1988; Thompson 1988; Renwick 1989; Renwick and Chew 1994). 

Besides, we think that a proper egg adhesion to oviposition sites reduces the probability of egg 
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loss due to abrasion and other mechanical stresses and also ensures indirectly a better survival of 

the neonates. If the eggs are detached from the oviposition sites, the hatching neonate larvae will 

have a long, hard travel to reach the fruit where they will feed, and may suffer from high 

mortality due to starvation, desiccation, unfavorable weather conditions, or predation (Jackson 

and Harwood 1980; Jackson 1982).  

Very little is known in the literature about the mechanisms by which insect eggs adhere to 

the plant surface (Betz 2010; Voigt and Gorb 2010), and how surface characteristics can affect 

the adhesion strength of insect eggs (Fordyce and Nice 2003; Voigt and Gorb 2010). Studies of 

Chapter 3 of this thesis add new information not only about the effect of plant surface 

characteristics on the egg adhesion of the codling moth, but also in the context of oviposition site 

selection and the offspring survival. 

 

Adhesion of C. pomonella eggs to different apple leaf surfaces 

In the third study of this thesis, data on pull-off forces of C. pomonella eggs revealed that 

eggs on the upper leaf sides of the tested cultivars were easily detached, requiring significantly 

similar pull-off forces (total average of 6.0 mN). It seems that the smooth surface and the low 

FSE (21.8-28.7 mN*m-1) of this leaf side do not promote a strong adhesion, because they may 

reduce the contact area of the egg glue with the leaf surface. Since free surface energy between 

two contacting bodies could affect their adhesion by capillary interactions (Johnson et al. 1971; 

Israelachvili 1992).  

Whereas on the lower leaf side of all tested cultivars, two main points could be noticed. (1) 

Eggs were tighter adhered requiring up to three times stronger pull-off forces (total average of 

17.1 mN) than those required for eggs on upper leaf sides to detach. On this leaf side, the dense 

coverage by filamentous trichomes, combined with dispersed wax crystals (in some cultivars), 

and corrugations in form of stomata and cuticle foldings lead to an increase of the contact area 

between the egg glue and the leaf surface, enhancing attachment strength of eggs. Moreover, the 

physicochemical characteristics (CAs of water were 96°-120° and FSE values of 23.8-42.7 

mN*m-1) could also promote adhesion. (2) In contrast to the upper leaf side, pull-off forces 

assessed on the lower leaf side differed significantly between apple cultivars. Here, on the lower 

leaf side of ‘Golden Delicious’, which showed the lowest trichome density and the lowest FSE 

value of all considered lower leaf surfaces, eggs were adhered weaker than on the lower leaf 

surfaces of the other tested cultivars.  
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Adhesion of C. pomonella eggs to different apple fruit surfaces 

Our ultrastructural examination of the different apple fruit surfaces revealed that they were 

characterized by (1) microcracks varying considerably in their characteristics (length, depth, and 

distribution pattern) between cultivars and also between sections of the same fruit, and (2) an 

irregular dispersion of superimposed 3-D epicuticular wax crystals in form of plates, platelets, 

and tiny transitional crystal forms (the latter found only on ‘Jonica’ and ‘Topaz’). These 

structured, waxy surfaces were water repellent (CAs of water were 89°-113°) and exhibited low 

FSE values (19.2-30.3 mN*m-1) with low polar components. Such structural and 

physicochemical characteristics of a given substrate have been previously shown to have anti-

adhesive properties (e.g. Neinhuis and Barthlott 1997; Scholz 2009; Koch 2010; Voigt and Gorb 

2010). Therefore, apple fruit surfaces might be a challenge for insects to glue their eggs on them. 

Interestingly, our data of pull-off forces revealed that eggs of C. pomonella were indeed tightly 

cemented to apple fruit surfaces of all apple cultivars tested (total average of 63.9 mN). These 

forces are 4-10 fold stronger than those previously measured on upper and lower leaf surfaces of 

the identical apple cultivars. We explain this strong egg adhesion on the apple fruit surface in 

three essential points. (1) The egg adhesive of C. pomonella is assumed to be of a surfactant-like 

nature (Voigt and Gorb 2010) and has a high protein content (Burkhart et al. 1999; Li et al. 2008; 

Betz 2010), which helps to overcome the unwettability of the surface and to establish an intimate 

contact area with it. (2) Likely, the egg glue is specialized to waxy plant surfaces such as apple 

fruits. And (3) roughness seems to be an important parameter supporting the formation of strong 

adhesive bonds between the egg glue and plant surface (Uehara and Sakurai 2002; Santos et al. 

2005). Here, the roughness level on apple fruits, due to the presence of microcracks and 3-D 

epicuticular wax crystals, was higher than that observed on both the smooth upper surface and 

the hairy lower leaf surface of apple leaves. This will increase the contact area of the egg glue 

with the fruit surface, resulting in a strong egg adhesion to it.  

It is worth to note that C. pomonella eggs adhered stronger on the upper and middle fruit 

sections of all cultivars tested, than on the lower section. The high microcrack abundance on 

these sections in comparison with the lower section could be responsible for this better adhesion. 

Interestingly, pull-off forces measured on the lower section of ‘Golden Delicious’ (in total 

average of 28.0 mN) were significantly lower than most of those obtained on the most tested 

fruit surfaces. This may be related to the less microcracked surface and the low FSE values that 

characterize this section. However, these characteristics were found also in other fruit surfaces 

tested, and caused a higher egg adhesion. Therefore, we assume that the lower fruit section of 
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‘Golden Delicious’ must possess a particular feature that weakens the egg adhesion. This may be 

attributed to a defensive response strategy (such as neoplasm formation) of fruit cuticles against 

egg deposition, in order to get rid of the eggs before being damaged by hatched larvae (Hilker 

and Meiners 2002). A previous study of Yokoyama et al. (1990) showed that the fruit cuticle of 

different host plant species was slightly thicker in areas beneath the moth eggs compared to those 

without eggs. However, these cuticle differences were considerable only in peaches. Further 

studies on this cultivar would shed light on this assumed defense response.  

 

4.3 Plant surface characteristics and oviposition site selection  

 

Oviposition preference for smooth surfaces versus hairy ones  

In Lepidoptera, texture of the plant surface is known to be involved in the surface 

evaluation as ovipositional sites. However, this is expected to be more crucial for night active 

species (such as C. pomonella) than the diurnal ones (butterflies) (Renwick and Chew 1994). 

Some moth species oviposit preferentially on hairy or rough substrates (Ramaswamy et al. 1987; 

Ramaswamy 1988). Conversely, gravid females of C. pomonella exhibit a strong oviposition 

preference for smooth plant surfaces (e.g. the smooth upper side of apple leaves early in the 

season) and avoid oviposition on hairy surfaces of their host plants, such as in apples (young 

fruits and hairy lower leaf surfaces of some cultivars Geier 1963; Wood 1965; Jackson 1979; 

Hagley et al. 1980; Marti 2001; own observations), walnuts (hairy young nutlets Olson 1977), 

quinces (young fruits and hairy lower leaf surfaces reviewed by Barnes 1991), peach (hairy fruits 

Hagley et al. 1980; Yokoyama and Miller 1988; Curtis et al. 1990), and almonds (hairy-shelled 

fruits of most varieties reviewed by Barnes 1991). Additionally, the presence of long wax 

threads on the upper side of pear leaves was suggested by Hagley et al. (1980) to be responsible 

for egg laying avoidance on this leaf side (Westigard et al.1976; Marti 2001). Moreover, codling 

moth females, also known to oviposit preferably on smooth artificial surfaces (e.g. glass, 

cellophane or polythene sheets) and to avoid the rough ones (e.g. foam rubber), which is a main 

point in the design of oviposition arenas for rearing and experiments in the laboratory (e.g. Curtis 

et al. 1990; Bathon et al. 1991; own experience). In spite of all these previous studies and 

observations, the reason for this oviposition preference and avoidance for variable surfaces is 

still unknown.  
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This oviposition avoidance of too hairy or rough surfaces could be explained in different 

ways. (1) Ovipositing females of C. pomonella prefer surfaces on which they can maintain 

successfully their foothold during oviposition as confirmed by Chapter 2. The smooth adhesive 

devices (arolia) on pretarsi of the adults are well adapted for smooth surfaces, supporting the 

maximal attachment ability of their legs to all smooth surfaces tested. Whereas on rough 

substrates with surface asperities ranging 0.1-12 µm, their attachment ability was significantly 

reduced due to an expected decrease in the real contact area between their arolia and the surface. 

On rougher surfaces than 12 µm, such as the hairy lower leaf side of apple (whose trichome 

diameter ranged between 15 µm and 22 µm, Paper 3), the arolia cannot be used, and the claws 

are expected to be the sole responsible attachment device. Here, characteristics of trichomes and 

other surface structures (density, size, shape, orientation, exudates) largely affect the roughness 

level of the plant surface, which act as an oviposition deterrent due to the reduced ability of 

females to adhere to this surface during oviposition. This explanation is also valid for 

understanding similar oviposition preference for smooth (artificial and natural) versus rough 

surfaces which was reported for other tortricid moths such as the light brown apple moth, 

Epiphyas postvittana (Walker) (Foster et al. 1997). Interestingly, the recent comparative 

morphological study on pretarsal structures of ditrysian Lepidoptera of Fänger (2010) and the 

literature review within revealed clearly that the arolium is well developed in most taxa. 

Whereas, in several groups (all Papilionidae, some Hepialidae, certain Tineidae, some cossids, 

some Pieridae, some Nymphalidae, in a few Sphingidae, and Limoniidae), the arolium is absent 

or strongly reduced and some species have other pretarsal modifications. According to our 

explanation above and to these similarities or variation in the pretarsal structures of adults of 

different taxa of ditrysian Lepidoptera, we expect not only variable attachment abilities of these 

lepidopterans but also possible different oviposition preferences. Our study was the first which 

examined the attachment ability of a lepidopteran insect species. Therefore, similar studies on 

attachment abilities of other lepidopteran taxa to different surfaces could help to explain many of 

their behavioural features. 

(2) Codling moth females oviposit in places where their vulnerable neonates have the 

potentially best performance in attachment and crawling. Therefore, oviposition on smooth 

surfaces supports shortening the travel time of neonates from the hatching sites towards the 

fruits, in contrast to densely hairy surfaces which would impede their locomotion and 

lengthening their travel time, as confirmed by Jackson (1982). He found that the locomotion 

speed of C. pomonella neonates was greater on smooth substrates than on rough bark or 

pubescent leaf pedicels. Moreover, the crawling speed of C. pomonella neonates was 
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significantly reduced by powdery Kaolin particle coverage on apple shoots in comparison to the 

speed on intact natural shoots (Unruh et al. 2000). Similarly, hairy cotton surfaces were found to 

confuse neonates of the pink bollworm, Pectinophora gossypiella (Saunders), and greatly 

impeded their movement (Smith et al. 1975). Interestingly, larvae of the chrysomelid Altica 

subplicata LeConte were found to fall off hairy leaves more quickly than smooth ones under 

various wind conditions, making the authors to suggest that their fleshy adhesive pads are more 

effective on smooth surfaces (Gannon et al. 1994).  

And (3) Oviposition on the smooth upper leaf side could protect egg of the first generation 

from their potential predators which are abundant and efficient in this time on the hairy lower 

leaf side (Subinprasert and Svensson 1988).  

 

Oviposition preference for ridges on smooth surfaces 

Another pronounced surface texture characteristic has been observed to influence C. 

pomonella oviposition. Single ridges or grooves on a given smooth surface (such as secondary 

leaf veins on the upper leaf sides, wounds, scratches, microcracks on the fruit surfaces, and also 

ridges and grooves on artificial smooth surfaces) stimulate the gravid females to deposit her eggs 

on or very close to them (own observations). A similar behaviour was also observed by Foster et 

al. (1997) for the tortricid moth E. postvittana. They found that smooth models with a raised wax 

ridge on their surfaces stimulated more eggs to be laid on them compared to models without a 

ridge. They suggested that these wax ridges increase the oviposition probability of a landing 

gravid female on the model (within close proximity to the ridge). Likewise, Kanno and Harris 

(2000) demonstrated that grooves on the plant surface were observed to be an important physical 

feature stimulating egg laying of females of the Hessian flies, Mayetiola destructor (Say). 

Interestingly, in their study, groove depth appeared to be correlated with egg numbers on the 

plant surface. Because a positive linear relationship was found when mean groove depths for the 

six molded models (vinyl silicone molds having the physical features of the upper and lower leaf 

surfaces of the six grasses) were plotted against the mean percentages of eggs on real plants, 

however no relationship was found for the groove widths (Kanno and Harris 2000). 

A possible explanation for this behaviour is that these structures could increase egg 

attachment to the smooth surface (Müller 2006). Our observations and results of the third study 

of this thesis (Paper 3) confirm this explanation. Since C. pomonella eggs adhere 2-3 times better 

to the hairy, structured lower side of apple leaves than to the favored smooth upper side. 

Secondary leaf veins (likewise, for grooves and edges on a given smooth surface) provide certain 
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roughness leading to an increased contact area between the egg adhesive and the plant surface, 

resulting in stronger egg adhesion. Therefore for a gravid female, depositing eggs on or in the 

vicinity of secondary leaf veins of the upper leaf side will increase their adhesion and get 

simultaneously the benefits of these smooth surfaces (as shown above). Here also the flat shape 

of the C. pomonella eggs play an important role in reducing their exposure to weathering and 

increasing their survival on such smooth surfaces. 

 

Oviposition on the fruit surface 

We assume that females’ selection for apple fruit surfaces as oviposition sites lately in the 

growing season reflects in many ways a maternal care for the best survival and performance of 

their offspring of the second and third generations.  

(1) Oviposition on the fruit surface ensures that eggs are tightly fixed (Paper 4), and lessen 

their dislodgement through weathering till hatching of the larvae (ca. 4-25 days, depending on 

temperature and other weather conditions (Wood 1965; Aghdam et al. 2009; Blomefield and 

Giliomee 2009). Moreover, the preferred oviposition sites on apple fruits (both upper and middle 

sections of apple fruits) were associated also with stronger egg adhesion forces compared with 

the less preferred lower fruit section (Paper 4).  

(2) Laying C. pomonella eggs directly on apple fruits ensures maximizing the survival rate 

of the vulnerable neonate larvae, because they are already on their food source (the apple fruit) 

and do not have to travel searching for it. Moreover, the presence of microcracks, wounds, or 

other irregularities on the fruit surface could facilitate neonate penetration into the fruit, 

increasing their survival probability (Marti 2001).  

And (3) oviposition on fruits could be a mechanism to avoid predation for both eggs and 

neonate larvae, since the predation rate on C. pomonella eggs was significantly reduced lately in 

the season compared with the earlier period (Subinprasert and Svensson 1988). This could be 

related to the role of epicuticular wax crystals of the fruit skin in reducing the attachment and the 

foraging efficiency of many predatory insects (Eigenbrode et al. 1996; Eigenbrode et al. 1998; 

Eigenbrode and Kabalo 1999; Eigenbrode 2004). Whereas, we expected that C. pomonella 

females are well adapted to attach successfully while oviposition on such waxy surfaces (Paper 

2). Because female arolia are adapted to attach effectively on microrough surfaces with asperities 

of 0.3-12 µm (Paper 2), corresponding well to those of epicuticular wax crystals on the fruit skin 

(0.1-5.6 µm, for transitional crystal forms, plates and platelets, Paper 4). On rough cracked fruit 

surfaces with larger asperities, like the fruit surface of cv. ‘Boskoop’, the claws are expected to 

be used to establish the proper attachment (Paper 2). 
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In conclusion, for oviposition decisions of the codling moth females, information about the 

physical features of the plant surface can be just as important or more important as information 

about the chemical features. 
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5. Summary 
Adults of the codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), live on host 

plant surfaces, differing considerably in their structural, chemical, and physicochemical 

characteristics according to host plant species, cultivar, plant organ (e.g. upper/lower leaf sides, 

fruits), phenological stage, environmental conditions, and orchard management practices. This 

large, variable world provided by plant surfaces can profoundly affect directly and indirectly 

many aspects of insect–plant interactions, such as attachment, locomotion, oviposition site 

selection, egg adhesion, and also survival of adults and their offsprings. Despite their 

importance, little attention has been given to the structural and wetting properties of the codling 

moth’s host plant surface and their effect on insect–plant interactions of this important pest. 

Therefore, studies in this thesis were undertaken to investigate the effect of structural and 

physicochemical characteristics of the substrate on two main codling moth-plant interactions: (1) 

the attachment ability of adults, and (2) the adhesion of their eggs. 

The first part of this thesis was performed to (1) analyze tarsal morphology of male and 

female C. pomonella to know more about their pretarsal attachment devices, and (2) to 

investigate their attachment ability on a variety of smooth and rough substrates, using a 

centrifugal force device. On all smooth artificial substrates tested, both sexes of C. pomonella 

adults achieved excellent attachment ability, by means of their smooth, flexible and well 

developed arolia. Hydrophobicity of the substrate had no considerable effect on friction forces. 

Cydia pomonella females showed a very good attachment ability to the smooth Plexiglas® 

substrate in both positions: horizontally (friction forces were 11 times their own body weight), 

and vertically (adhesion forces were 7 times their own body weight). Thus, it can be concluded 

that the attachment system of C. pomonella is rather robust against physicochemical properties 

of the substrate and is able to achieve a very good attachment on vertical and horizontal plant 

surfaces.  

Results on the epoxy resin substrates (six substrates made of polymerized Spurr resin, 

differing only in surface asperity size: 0 µm, 0.3 µm, 1 µm, 3 µm, 9 µm, and 12 µm) revealed 

that the attachment ability of both sexes was significantly affected by surface roughness. 

Maximal friction force was measured on the smooth substrate whereas minimal friction force 

was assessed on microrough substrates with 0.3 µm and 1.0 µm size of asperities. On the 

remaining rough substrates, friction forces were significantly higher but still lower than on the 

smooth substrate. It is worth to note that both sexes generated similar friction forces on the same 

substrate (for all smooth or rough substrates tested), in spite of the considerable difference in 
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their body mass, suggesting that both sexes attach effectively to variable rough plant surfaces in 

their habitat. However, since smooth surfaces have been reported previously to be the most 

favorable substrates for ovipositing females of C. pomonella, it is possible that they use their 

attachment system to sense the substrate texture and prefer those substrates to which their arolia 

attach the best. 

A better survival of the codling moth offspring is assumed to be ensured by the selection of 

suitable oviposition sites by females, as well as by a proper adhesion of deposited eggs to these 

sites. In apple orchards, eggs of the first generation of the codling moth are laid on leaf surfaces 

in the vicinity to small fruits, later in the growing season, most eggs are deposited directly on 

fruits. In the second part of this thesis, egg adhesion of the codling moth to different leaf and 

fruit surfaces of the domestic apple, Malus domestica Borkh., was investigated by measuring the 

pull-off force required to detach the eggs from the plant surface. Morphological and 

physicochemical properties (wettability, free surface energy) of the tested plant surfaces were 

analyzed to evaluate their role in egg adhesion. Furthermore, eggs and their adhesives covering 

leaf or fruit surfaces were visualized. Eggs on the smooth upper leaf sides of the tested cultivars 

were easily detached, requiring similar pull-off forces (total average of 6.0 mN). Up to 2-3 times 

stronger pull-off forces had to be applied to detach eggs from the trichome-covered lower leaf 

side (total average of 17.1 mN), and these forces differed significantly between cultivars, owing 

mainly to different trichome covered areas. Whereas on the waxy fruit surface of all apple 

cultivars tested, eggs were very tightly adhered, and required 4-10 fold stronger pull-off forces 

than those previously measured on upper and lower leaf surfaces of the identical apple cultivars 

(total average of 63.9 mN). Cydia pomonella eggs adhered stronger on the upper and middle fruit 

sections of all cultivars tested, than on the lower section.  

The influence of plant surface properties on egg adhesion, as well as the mechanisms used 

by the moth to overcome the presumable anti-adhesive properties of apple fruit surfaces, were 

discussed. Additionally, the results were debated in the context of the oviposition site selection, 

female attachment, as well as offspring survival of the first, second and third generations of the 

codling moth.  

 

 

 

 



 
 
 

 

39 

6. Zusammenfassung 
Nach dem Schlupf leben die Adulten des Apfelwicklers, Cydia pomonella L. (Lepidoptera, 

Tortricidae), auf ihren Wirtspflanzen, die sich je nach Wirtspflanzenart, Sorte, Pflanzenorgan 

(Blattober- und unterseiten, Früchte) und phänologischem Stadium der Pflanzen beträchtlich in 

ihrer morphologischen, physikalischen und physikochemischen Oberflächenbeschaffenheit 

unterscheiden. Diese Oberflächeneigenschaften können ihrerseits wiederum von 

Umwelteinflüssen und der Kulturführung der Apfelanlagen beeinflußt werden. Diese durch 

Pflanzenoberflächen geschaffene heterogene Umwelt kann direkt und indirekt tiefgreifend das 

Insekt-Pflanze-Verhältnis bestimmen und sich auf die Anhaftung an Oberflächen, Fortbewegung, 

Wahl des Eiablageplatzes, Haftung der Eier am Substrat und das Überleben von Adulten und 

Larven auswirken. Trotz der wichtigen Rolle, die die Oberflächen im Leben der adulten 

Apfelwickler einnimmt, fanden sie in der wissenschaftlichen Betrachtung ihrer strukturellen und 

physikochemischen Eigenschaften und deren Einfluß auf die Insekt-Pflanze-Interaktionen wenig 

Beachtung. Daher wurden in dieser Arbeit Untersuchungen unternommen, um deren Effekt auf 

zwei Aspekte der Apfelwickler-Wirtspflanze-Beziehung näher zu beschreiben: (1) die 

Anhaftungsfähigkeit der Adulten und (2) die Haftung der Eier an unterschiedlichen Substraten. 

Der erste Abschnitt der Untersuchungen befaßt sich (1) mit der Analyse der Tarsen-

Morphologie von C. pomonella Männchen und Weibchen, um die an der Anhaftung beteiligten 

Feinstrukturen zu charakterisieren und (2) mit der Ermittlung der Haftfähigkeit der Tiere auf 

unterschiedlichen glatten und rauhen Substraten. Mit einem Zentrifugalkrafttester wurde die 

Reibungskraft von Männchen und Weibchen auf hydrophoben und hydrophilen Glasoberflächen 

gemessen. Es zeigte sich, dass Adulte beider Geschlechter, unabhängig ihres signifikant unter-

schiedlichen Körpergewichtes, durch ihre gut ausgebildeten glatten, flexiblen Aroliae ähnlich 

starke Haftkräfte generierten. Die hydrophobe Eigenschaft des Substrats hatte keinen merklichen 

Einfluss auf die Reibungskraft beider Geschlechter. Cydia pomonella-Weibchen zeigten sowohl 

in horizontaler Position (die Reibungskraft betrug das 11-fache des Körpergewichts) als auch in 

vertikaler Position (die Adhäsionskraft betrug das 7-fache des Körpergewichts) sehr gute Haf-

tungsfähigkeit. Aus den Ergebnissen kann geschlossen werden, dass C. pomonella über ein robu-

stes Haftsystem verfügt, welches den Adulten über sehr unterschiedliche physikochemische Sub-

strateigenschaften hinweg dienlich ist und ihnen ein hohes Adhäsions-Reibungsverhältnis und 

damit sicheren Halt auch in vertikaler Position bietet. 
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Die Haftungsfähigkeit auf rauhen Oberflächen wurde an Epoxidharz-Substraten (Spurr) 

mit definierter Rauhigkeit (0 µm, 0.3 µm, 1 µm, 3 µm, 9 µm, und 12 µm) ermittelt. Die Ergeb-

nisse zeigten, daß die Haftungsfähigkeit beider Geschlechter signifikant durch die Oberflächen-

rauhigkeit beeinflußt wurde. Maximale Reibungskraft ergab sich auf der glatten Fläche (0 µm), 

während auf Rauhigkeiten von 0,3 bis 12 µm nur minimale Reibungskraft erzielt wurde. Obwohl 

sich die Geschlechter in ihrem Körpergewicht deutlich unterscheiden, generierten Männchen und 

Weibchen doch gleiche Reibungskräfte auf glatten und rauhen Substraten und zeigten so, daß sie 

wirkungsvoll auf verschiedenen rauhen Substraten ihres Habitates anhaften können. Da aber von 

Weibchen für die Eiablage glatte gegenüber rauhen Oberflächen bevorzugt wurden (eigene Vor-

versuche) wird vermutet, daß eiablagebereite Weibchen die morphologischen Haftungssysteme 

(Aroliae) zur Prüfung der Oberflächenbeschaffenheit benutzt werden, um einen geeigneten Eiab-

lageplatz zu finden. 

Es darf vermutet werden, daß die bessere Anhaftung an glatten Oberflächen die 

Überlebenswahrscheinlichkeit der Eier und der daraus schlüpfenden Larven erhöht. Die Eier der 

ersten Generation des Apfelwicklers werden von den Weibchen auf den Blättern in der Nähe 

junger Apfelfrüchte abgelegt, während die Eiablage der zweiten Generation später in der 

Vegetationsperiode direkt auf der Fruchtoberfläche erfolgt. Daher wurde im zweiten 

experimentellen Abschnitt dieser Arbeit die Haftung der Apfelwicklereier auf unterschiedlichen 

Oberflächen von Blättern und Früchten von fünf verschiedenen Apfelsorten untersucht. Hierfür 

wurde die aufzuwendende Kraft (pull-off force) gemessen, um die von Weibchen auf Blattober- 

und unterseiten sowie auf drei verschiedenen Abschnitten von Apfelfrüchten abgelegten von der 

jeweiligen Oberfläche zu entfernen. 

Morphologische und physikochemische Eigenschaften, wie Benetzbarkeit und freie 

Oberflächenenergie, der getesteten Pflanzenoberflächen wurden analysiert, um ihre Bedeutung 

für die Eiadhäsion zu bewerten. Außerdem wurden die von den Eiern und ihrem Eikitt bedeckte 

Fläche erfaßt und in die Bewertung mit einbezogen. Auf der Blattoberfläche abgelegte Eier 

benötigten nur geringe Kraft, um sie von der Fläche abzuziehen wobei keine Sortenunterschiede 

zu verzeichnen waren (Mittelwert gesamt: 6,0 mN). 2-3-fach höhere Kräfte waren dagegen nötig, 

um die Eier von den trichombedeckten Blattunterseiten abzuziehen (Mittelwert gesamt: 17,1 

mN), wobei signifikante Sortenunterschiede auftraten. Diese waren durchweg auf die 

unterschiedlichen von den Trichomen bedeckte Fläche der Blattunterseiten zurückzuführen. Auf 

den mit Wachs bedeckten Fruchtoberflächen aller Apfelsorten waren die Eier wesentlich stärker 

befestigt und benötigten 4-10-fach höheren Kraftaufwand als bei den Blattoberflächen um sie 
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von der Fruchtoberfläche zu entfernen Mittelwert gesamt: 63,9 mN). Auf den einzelnen 

Fruchtabschnitten war die Haftung an den oberen und den mittleren Fruchtabschnitt stärker als 

die an dem unteren Fruchtabschnitt. 

Der Einfluß der Oberflächeneigenschaften von Apfelblättern und –früchten auf die Adulten 

und Eier des Apfelwicklers sowie die unterliegenden Mechanismen, anti-adhäsive Eigenschaften 

der Fruchtoberflächen zu überwinden werden im Kontext mit der Wahl des Eiablageplatzes und 

der Überlebenswahrscheinlichkeit der Erstlarven der ersten, zweiten und dritten 

Apfelwicklergeneration diskutiert. 
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