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1 General Introduction 

1.1 Population dynamics and food security challenges  

1.1.1 Population dynamics  

The Food and Agriculture Organization of the United Nations (FAO) estimated the global human 

population will reach 9.27 billion by 2050 and 11.2 by the year 2100 (FAO, 2017). According to 

this projection, even though the absolute population is increasing, the average world population 

growth rate is anticipated to decrease. However, the population growth rate will continue until 

mid to end of the 21st century in Asia and Sub-Saharan Africa (SSA), respectively (FAO, 2017). 

The average annual growth rate for the world population is 1.1 percent; for low and high income 

countries, it is 2.6 and 0.5, respectively (UN, 2019). Considering this decreasing trend in growth 

rate, surprisingly there was an absolute annual human population increment of 80 million in the 

past five years. With a slight decrease per year, this annual population increment will reach 55 

million in 2050 as compared to 2015 (FAO, 2017). The population of SSA is expected to reach 2 

billion and will grow by 119% in 2050 (Bjørndal et al., 2016). Ethiopia, among the most 

populous countries in Africa, is expected to reach 205 million people in 2050 with a growth rate 

of 2.7% per year (UN, 2019). Comparably, the population of the Democratic Republic of Congo 

(DRC) was 77 million in 2014 and is projected to double in the next 20-25 years (WBG, 2018). 

The projected annual growth rate for the DRC is 3.2%, becoming 194 million people by 2050 

(UN, 2019).  

1.1.2 Food security challenges  

The concept of food security is directly related to hunger, poverty and humanitarian aspects. 

Maggio et al. (2015) explained that food security is a multi-layered concept that encompasses 

availability, physical and economic access to food, utilization based on cultural and dietary 

requirements and the stability of its provision. The aim of the second Sustainable Development 

Goal (SDG 2) was designed to end hunger, achieve food security, improve nutrition and promote 

sustainable agriculture simultaneously by 2030 (FAO, 2017). Based on the medium growth rate, 

it is expected that the world should feed 9.7 billion people in 2050, i.e. 2.0 billion extra people 

compared to the current population, while sustaining the natural resources for the next generation 
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(UN, 2019; Maggio et al., 2015). Maggio et al. (2015) further argued that the world will need 

50% more food in 2030 and 80-100% in 2050 as of today, to achieve the Sustainable 

Development Goal 2 (SDG2). Furthermore, FAO (2017) forecasted that food production should 

be increased by 70% from 2005/07 to 2050 to create a world “free of hunger and malnutrition”. 

Researchers reported that SSA is the greatest food security risk region, because of its population 

growth with 2.5 fold, which would approximately demand three fold cereal crops in 2050 (Van 

Ittersum et al., 2016). In the Sub-Saharan region, even though there is an increased projection of 

food production in the future, the gap between demand and supply remains a challenge 

(Onyutha, 2018). Ethiopian food production failed to fulfill the food demand of the country, 

because population growth outpaces agricultural production (Degife et al., 2019). Degife et al. 

(2019) further stated that about 96% of the agricultural production in Ethiopia was subsistence 

small scale crop-livestock mixed farming. The crop production of the country was dominated by 

cereals, which covered about 81% of the total cultivated area owned by a total of 15.2 million 

farmers (CSA, 2019). According to the International Food Security Assessment report (Meade & 

Thome, 2017), Ethiopia needs to fulfill the food gap of 903, 000 tons (t) food by 2027. 

Comparably, DRC has over 120 million ha of land suitable for crop production even though only 

10 percent is currently used (Kane et al., 2004). Due to the low area coverage of the cultivated 

land and productivity, there existed a huge difference between the food demand and supply in 

DRC with a projection gap of approximately 2.6 million tons foods in 2027 (Meade & Thome, 

2017). 

To fill the gaps between food demand and supply, 90 and 80% of the expected crop production 

in developed and developing countries, respectively, is anticipated from improved productivity 

per unit area per unit time and increased cropping intensity (FAO, 2009), while the remainder 

comes from land expansion. Recent studies indicate that this might be achieved if the gaps 

between the current farm yield and potential yield are closed (van Ittersum et al., 2016). To 

achieve the yield potential, crop production constraints, such as soil fertility depletion, stress due 

to water limitations, pests (such as plant hopper), disease and weed prevalence, and lack of 

proper crop management have to be controlled. However, among the constraints, soil fertility 

depletion has been a challenge for SSA smallholder farmers due to the inherently low soil 

fertility on the one hand, and on the other hand continuous mining of plant nutrients due to crop 

harvest without replenishment. 
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1.2 Soil fertility management for food security  

1.2.1 The state of soil fertility management for food security 

Soil is a physico-chemical entity and composed of solids, liquids and gases; soluble and 

insoluble and organic as well as inorganic substances (Osman, 2013b), which makes it an 

important source of food and energy for plants, and for the growth of soil microorganisms. In 

soils, there are ions and compounds, salts, acids, bases, minerals and rock fragments. Soils also 

have very fine soil particles called colloids, which consist of humus, fine silicate clays, and 

oxides and hydroxides of iron and aluminum (Osman, 2013b). Furthermore, colloids carry both 

positive and negative electro-chemical charges and are important sites of soil reactions, which 

determine soil pH and fertility. Decline in soil fertility is, among other factors, a major constraint 

to the productivity of major crops. Soil fertility used interchangeably here with soil quality, is not 

only a concept but also a phenomenon (Bünemann et al., 2016). The term originated from the 

German word “Bodenfruchtbarkeit”. At this point, it was predominantly aligned to yields (Patzel 

et al., 2000; Bünemann et al., 2016). However, soil fertility is a complex term, which illustrates 

the physical, chemical, and biological soil parameters and processes, as well as environmental 

conditions and crop yield (Patzel et al., 2000). Therefore, not only yield, but also other soil 

functions such as biomass production and human and environmental services are important 

considerations for soil fertility (Bahr, 2015).  

Important soil provisions are food, wood, fiber, raw materials, and physical support for 

infrastructure. Furthermore, soils provide regulating services, such as flood mitigation, filtering 

of nutrients and contaminants, carbon storage and greenhouse gas regulation, detoxification and 

the recycling of wastes, and regulation of pests and disease populations (Dominati et al., 2010; 

Kopittke et al., 2019). More specifically, according to Mäder et al. (2002), a fertile soil is defined 

as a soil that provides not only essential nutrients for crop growth, supports a diverse and active 

biotic community, exhibits a typical soil structure, but also allows for an undisturbed 

decomposition. On the contrary, degraded soil is primarily characterized by depletion of soil 

organic matter (SOM) and plant nutrients, reduced water holding capacity, and also reduced 

activity of soil microbial biomass (Lal, 2001; Scherr, 1999). In the tropics, this phenomenon is 

associated with the inherent poor fertility of soils (Koning & Smaling, 2005). Furthermore, soils 
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in the tropics are associated with high rates of erosion, leaching, removal of crop residues and 

animal manure, continuous cultivation of the land without adequate fertilization or fallowing 

(Tadesse, 2001; Lal, 2001).  

1.2.2 Soil fertility in Sub-Saharan Africa (SSA) 

The number of smallholder farmers owning less than 1 ha on average in SSA was about 60 

million, and are responsible for supplying most foods on the continent (Donovan & Casey, 

1998). In SSA, the status of soil fertility is considered to be more depleted over time, as a result 

of the inherent poor fertility and population pressure (Drechsel et al., 2001; Sanchez et al., 1997). 

In the Soil Atlas of Africa, soil degradation was reported as a threat to about one-quarter of 

productive lands of the continent (Stoorvogel & Smaling, 1990; Jones et al., 2013). Soil nutrient 

mining through crop residue removal for fuel and animal feed and very little replenishment of 

organic and inorganic resources were the recurrent problems that resulted in soil nutrient 

depletion in SSA (Stewart et al., 2020). For example, Stoorvogel & Smaling (1990) reported 

negative balances of 20 N, 10 P2O5 and 20 K2O kg ha-1 up to a maximum of 40 N, 20 P2O5 and 

40 K2O kg ha-1 in SSA smallholder cropping systems. Nutrient capital reserves of 40% of SSA 

soils are low, aluminum toxicity covers 25% of soils, and 18% of soils have a high leaching 

potential (Tully et al., 2015; Sanchez et al., 2003). The above mentioned situations have resulted 

in lower productivity of irrigated, rain-fed and pasture lands to below 7, 14 and 45% of their 

potential productivity respectively (Donovan & Casey, 1998).  

1.2.3 Soil fertility status in Ethiopia 

Ethiopia faces a wide set of soil fertility challenges, because of diverse agro-ecological 

(elevation, topography, climate, vegetation), socio-cultural (market access, indigenous 

knowledge) and biophysical variants (slope, aspect, land use, land cover). SOM depletion, severe 

topsoil loss through erosion, soil nutrient mining, lack of site-specific and locally tailored soil 

fertility management options are among the most important limitations. For example, reports 

from Soil Conservation Plots indicated that Ethiopia has experienced alarming rates of soil 

erosion, averaging (and sometimes exceeding) 137 t ha-1 per annum (IFPRI, 2010). This means 

that the country has one of the highest nutrient depletion rates in Africa, i.e. -41, -6, and -26 kg 

ha-1 yr-1 of nitrogen (N), phosphorus (P), and potassium (K), respectively (Stoorvogel & 

Smaling, 1990). Soil nutrient balance assessments in central Ethiopia showed that nutrient losses 
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have even worsened and reached an amount of 122 kg N, 13 kg P and 82 kg K ha-1 year-1 

(Haileslassie et al., 2005).  The status of SOM in Ethiopian cultivated lands ranged from 2.34 to 

4.44 due to harvesting of crop residues for animal feed and manure for fuel (Agumas et al., 2014; 

Endalew et al., 2014; Zeleke et al., 2010). Reduced organic matter resulted in poor soil porosity 

and infiltration, which in turn affects water and nutrient cycling (Tully et al., 2015). In addition 

to the poor nutrient and organic matter status, aluminum toxicity and phosphorous fixation are 

other constraints in Ethiopian soils. Aluminum toxicity and phosphorous fixation are apparent in 

soils with a pH of less than 5.5, which enhance nutrient limitations and toxicity (Agegnehu & 

Amede, 2017; Agegnehu et al., 2006). As an attempt to reverse this situation and to improve the 

productivity of major crops in Ethiopia, a nation-wide soil nutrient map and the Ethiopian Soil 

Information System (EthioSIS) was developed to provide policy advice on the use of fertilizer at 

smallholder scale (Amare et al., 2018). These pioneering mapping approaches could initialize 

site-specific integrated soil fertility management (ISFM) adaptations; a combined use of 

fertilizers and organic inputs as well as improved germplasm with the full knowledge on how to 

adapt these practices to local conditions (Vanlauwe et al., 2010). However, they did not address 

essential drivers of soil fertility like agro-ecology (i.e topography, elevation, climatic conditions, 

vegetation types), farmers’ resource endowment and indigenous knowledge. Out of these drivers, 

agro-ecological factors can be the most dominant influencing soil fertility variability (1) as 

elevation in Ethiopia ranges from below 500 meters above see level (m.a.s.l) in the Denakl 

depression to 4620 m.a.s.l in the mount Ras Deshen (Mengistu, 2003), (2) the climatic conditions 

range from very cool moist highlands conditions to very hot dry lowlands (Hurni,1998).  

1.2.4 Soil fertility status in Democratic Republic Congo 

The rural population increase in DRC is among the highest in SSA with an annual rate of 3.2% 

(UN, 2019). This demographic pressure caused the soil to become depleted without any renewal 

measures. In DR-C, the common agricultural practice by smallholder farmers is a slash-and-burn 

method, in which the immediate uptake of nutrients due to burning of biomass for ash 

fertilization enhances crop growth (Hauser & Norgrove, 2013). After 3 to 4 years of cultivation, 

the farmers fallow the land for the next 10-20 years (Wasseige et al., 2012). However, due to 

rapid population growth, the fallow period is shortened and continuous cropping without renewal 

measures on the one hand, and increased use of marginal lands for agricultural purpose on the 
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other hand resulted in serious soil fertility depletion (Thienpondt, 2016; Giller & Palm, 2004; 

Sanchez and Logan,1992). In addition, the fertilizer application rate in DRC is the lowest, which 

was approximately 10 kg ha-1 or nonexistent compared to the global rate of 110 kg ha-1 (Henao 

& Baanante, 2006; Munyahali et al., 2017). Thus, the nutrient balance for DRC is reported as the 

most negative in nutrient balance in the world (IFDC, 2010). According to the Catalyzed 

Accelerated Agricultural Intensification for Social and Environmental Stability (CATALIST) 

project of the International Fertilizer Development Center (IFDC, 2010) survey, agricultural land 

has lost around 100 kg of soil nutrients ha-1 year-1 in this region. Furthermore, the soil in this 

region has a low cation exchange capacity (CEC) and SOM, high acidity and aluminum toxicity, 

and low phosphorous availability due to high fixation (Ngongo et al., 2009; Thienpondt, 2016). 

This is aggravated by an extremely steep relief, making it highly susceptible to soil erosion 

(IFDC, 2010).  

1.2.5 Implications of soil fertility status on food security 

According to Kopittke et al. (2019), agricultural land productivity has doubled in the last five 

decades and about 98.8 % of the daily calories consumed by humans comes from soils and only 

1.2% from aquatic sources. However, Tan et al. (2005) stated that soil fertility degradation is a 

crucial concern directly linked with food insecurity. This is because the worlds’ one-third soils as 

compared to the total cultivated land soil have lost agricultural production capacity since the 

1970s owing to unwise soil fertility management, which resulted in severe soil fertility depletion 

(Rojas et al., 2016). Persistent lack of nutrient renewal and organic matter management of 

depleted soils, as well as loss of nutrients through wind and water erosion not only aggravated 

soil degradation, but also hampered agricultural sustainability in these regions (Tan et al., 2005; 

Sheldrick et al., 2002).  

The biggest challenge to soil nutrient and organic matter depletion is soil erosion. Topographical 

variables such as elevation, slope as well as climatic factors such as temperature and rainfall 

conditions are biophysical factors responsible for soil erosion; hence soil fertility depletion 

(Rodrigues et al.,2021). The estimated amount of productivity loss due to soil erosion in Europe 

was reported to be 0.43% of annual crop productivity, equivalent to a cost of €1.25 billion 

(Panagos et al., 2018). Similarly, the estimated productivity loss due to soil erosion in Africa 

ranges from 2-40%, equivalent to 15 million USD (Lal, 2004; ELD & UNEP, 2015).However, 
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the impact of soil nutrient depletion on food security varied depending on geographical location, 

due to the inherent poor soil fertility coupled with lack of appropriate soil management (Mugwe 

et al., 2019; FAO, 2015). Moreover, the average yield gap of cereals was 3.5 and 6.5 Mg ha-1 in 

SSA compared to Asia and Latin America, respectively. For the last 40 years, soils in most 

African countries are depleted  and were considered as a crisis to the region and continued until 

today (AGRA, 2016; Mugwe et al., 2019).  

In many parts of Africa, Asia and Latin America, long term declines in crop yields were evident 

as a result of low input and unbalanced fertilization (Tan et al., 2005). In Ethiopia, the estimated 

wheat yield loss is 3 t ha-1, due to soil nutrient depletion (Abdulkadir et al., 2017; Tadessse, 

2001; Zeleke et al., 2010). On the other hand, studies showed that if proper soil fertility 

management is undertaken there is a huge potential to fill the gaps between food demand and 

supply in Ethiopia (Abdulkadir et al., 2017). According to Kihara et al. (2017), the country has 

the potential to achieve food security by using both organic such as farmyard manure, compost 

and mulch/crop residues and synthetic fertilizers. The positive response of cereals to N, P and S 

in Ethiopia showed that closing the gap of these nutrients leads a step closer to food security 

(Kihara et al., 2017). In DRC, poor soil fertility and lack of proper soil management resulted in 

41-50 % of the potential yield loss of cassava, which is equivalent to 4.5-6.5 t ha-1 (Kintché et 

al., 2017). Cassava is considered as one of the drought-resistant crops and moves from subsistent 

food to one of the major commercial crops (Kintché et al., 2017). In this context, by overcoming 

these constraints it is possible to achieve food security in DRC. Therefore, present and future 

food security challenges depend on how soil fertility management problems concerning crop 

productivity are addressed in these regions. One highly acknowledged strategy to reverse the 

food security challenge under smallholder crop livestock farming systems is the integrated soil 

fertility management (ISFM) approach (Vanlauwe et al., 2010). Nevertheless, its adoption across 

different regions of SSA is limited (Vanlauwe et al., 2015), as a result of diverse soil fertility 

variability. 
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1.3 Factors responsible for soil fertility variation 

1.3.1 Agro-ecological factors   

Spatial and temporal variability of soil fertility are common phenomena in agricultural fields. 

Agricultural fields could be low responsive fertile, highly responsive infertile and poorly 

responsive degraded fields (Chikowo et al., 2014). Spatial and temporal soil fertility variability 

can occur due to natural or anthropogenic (human made) factors. Natural soil fertility variability 

may come as a result of complex interactions between geology, topography, climate, vegetation 

as well as soil use (Yasrebi et al., 2008; Ayoubi et al., 2007). The geology of the soil determines 

mainly soil physical properties such as texture, structure, water holding capacity and clay content 

while the topography of an area affects the storage of SOM and nutrients, due to microclimate, 

runoff, evaporation and transpiration (Yoo et al., 2006). Furthermore, clay and sand content and 

pH were highly correlated with topographic position; higher contents of clay and soil pH were 

found in the terrace than back slope (Karaca et al., 2018). The process of soil formation and 

development is guided by changes in climatic conditions (e.g. temperature and rainfall), through 

energy consumption and water balance, which can affect soil fertility status positively or 

negatively (Pareek, 2017). According to Pareek (2017), topography with climate-induced 

changes in vegetation types, plant growth rates, rate of soil water extraction by plants and effects 

on CO2 consumption level could also control soil fertility status. The effect of climate change on 

soils are expected mainly through alteration in soil moisture conditions and increase in soil 

temperature and CO2 levels (Pareek, 2017). These conditions resulted in alteration of soil 

functional process such as biomass production and soil microbial activities which has a direct 

impact on soil fertility. Changes in vegetation types and soil nutrient concentrations have often 

been found along the altitudinal gradient in crop-livestock mixed agricultural systems (He et al., 

2016). Collectively all these factors can be considered as agro-ecological factors responsible for 

soil fertility variability. Deressa et al. (2018) noted that in Ethiopia soil fertility status varied due 

to agro-ecological differences (i.e differences in altitude (for example below 500 m.a.s.l in the 

Danakil Depression to 4200 m.a.s.l in mount Ras Dashen) of the country which determines 

moisture regime and temperature). As a result, soils can have marked spatial or temporal 

variability at macro or micro-scale and therefore, understanding soil fertility variability is of 

paramount importance to devise site-specific soil management strategies. Site-specific soil 
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fertility management approaches became recognized as the best fit strategy for (1) enhancing 

input efficiency; (2) increasing the economic returns of crop production; and (3) reducing 

environmental risks (Yasrebi et al., 2008). However, lack of clear understanding of site specific 

and agro-ecologically based soil fertility problems that led to niche-based soil fertility 

management strategies was considered as one of the research limitations that need investigation 

to improve soil health in general and fertility status in particular in Ethiopia and DR-C. 

Therefore, to fill this research gap, agro-ecologically based soil fertility assessment was 

conducted in this study.  

1.3.2 Socio-Economic factors 

Socio-economic factors are responsible for the variability in soil fertility including, but not 

limited to, farm typology and farmers’ indigenous knowledge (Chikowo et al., 2014; Tittonell et 

al., 2005a; 2010). One source of soil fertility variability is farmers’ wealth status. This is because 

farmers’ management decisions are mostly dependent on their economic capacity to invest in soil 

fertility (Tittonell et al., 2005a; 2005b; Agumas et al., 2021; Balume et al., 2020). Those farmers, 

who can invest in labor and input, can manage their soil resources better and earn more benefits 

from their field, than those farmers who do not follow this approach. The variability in 

management decisions on soil fertility due to resource endowment differences of farmers has 

created soil fertility variability. Farmers with high number of livestock, livestock density 

(expressed in TLU ha-1) and value (USD), have positive nutrient balances on their fields and 

positively correlated with nutrient balance (Onduru & Preez, 2007), due to high production of 

animal manure used for soil fertility improvement. However, farmers’ land holding has negative 

effect on nutrient balance. Onduru & Preez (2007) reported that farmers with large farm sizes 

negatively affected nutrient balance for they could not provide adequate organic and/or inorganic 

fertilizer to their farm.   

The other socio-economic source of soil fertility variability is farmers’ indigenous knowledge. 

Farmers’ indigenous knowledge is a traditional, local and native knowledge adapted to the local 

environment to create unique indigenous farming practices (David et al., 2014). Farmers are well 

aware of their soil fertility status (Laekemariam et al., 2017). Recognizing the farmers’ 

knowledge who have been interacting for a long time with their soil and environment, might lead 
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to a better understanding of the status of soil fertility (Kuldip et al., 2011). Farmers’ perception 

of soil fertility based on farmers’ local knowledge guided farmers’ soil management decisions. 

Hence, based on the indigenous knowledge and farmers’ resources, farmers can decide on how to 

manage their soil. In general, a higher priority is given to homestead fields than out-fields to 

apply both organic and inorganic inputs to soils (Haileslassie et al., 2007; Tittonell et al., 2005b). 

Even though, farmers’ knowledge on soil fertility is acknowledged, synchronizing objectively 

based scientific knowledge with subjectively based farmers’ indigenous knowledge, is lacking in 

smallholder SSA countries necessitating further investigation.   

Furthermore, lack of clear evidence on the interrelated effect of the main drivers of soil fertility 

variability, such as biophysical (agro-ecology, site) and socio-economic factors (market distance, 

farmers’ resources endowment, indigenous knowledge), on the heterogeneity of soil fertility 

were critical knowledge gaps that demand further research. 

1.4 Assessment of soil fertility status 

1.4.1 Parameters to be considered for soil fertility assessment  

Chemical soil properties 

The concept of soil fertility is ambiguous and cannot be measured directly, as it is manifested by 

the functions and services it delivers (Guillaume et al., 2016). Hence, it is typically assessed by 

selecting and interpreting changes of properties or processes recognized as important indicators 

of soil fertility (Guillaume et al., 2016). Among the indicators of soil fertility status, ion 

exchange capacity, solubility of chemical substances, availability and uptake of nutrients and 

tendency of the soil to be reduced or oxidized (Osman, 2013b), are described as chemical 

properties. More specifically, the most important and frequently measured chemical indicators in 

relation to soil fertility status are plant nutrients, ion exchange capacity and soil reactions. Plant 

essential nutrients, which include calcium (Ca), magnesium (Mg), nitrogen (N), potassium (K), 

phosphorus (P), sulfur (S), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), molybdenum 

(Mo), boron (B), and nickel (Ni) are present in the minerals and the soil solution. Soil chemical 

reactions influence solubility, mobility, and exchange of plant nutrients in the soil ecosystem 

(Osman, 2013b). These processes affect the plant nutrients availability of the soil, which 
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determines the extent of soil fertility. The presence of these nutrients in the soil below the critical 

level and/ thresholds leads to lower soil productivity due to nutrient deficiency. Excess 

availability of micronutrients, such as Fe, Mn, Zn, Cu, Mo, and B can become toxic to plants 

(Osman, 2013b). A calculated single value, such as soil fertility index (SFI), can be used to 

express the fertility status. Based on SFI (depending on the summerized concentration or 

availability of plant nutrients in the soils), the state of fertility can be either fertile (110-200), 

medium fertile (80-110) or poor (0-80) (FAO, 1980). 

     Physical soil properties 

Physical soil fertility indicators are soil texture, bulk density, soil structure, porosity, field 

capacity and soil color. The extent of bulk density, texture, soil structure, porosity and field 

capacity describes the level of soil fertility. For agricultural soils, each of the above physical 

properties has critical values (thresholds) to categorize the soil as fertile, medium fertile or poor 

even though some of these properties depend on local conditions. For example, soils dominated 

by sandy particles have lower water and nutrient holding and soil buffering capacity compared to 

clay textured soils. Depending on the local climatic conditions, sand textured soils can be fertile 

or poor; in moisture deficient areas this type of soil is poor while in moisture sufficient areas it 

may be fertile.  

Depending on the extent and disturbance of soil aggregation, soil structure can affect aeration, 

water relations, plant root growth, soil temperature, soil compaction and resistance to erosion 

(Tueche, 2014). The extent of soil compaction can be described by bulk density; it affects soil 

productivity and key process. Bulk density shapes infiltration, rooting depth/restrictions, 

available water capacity, soil porosity, plant nutrient availability, and soil microorganism activity 

(Chaudhari et al., 2013). Bulk density mostly depends on soil texture, structure and SOM; its 

critical value for plant growth depends on soil texture. For clay and sandy soils, a normal value 

of bulk density ranges from 1-1.6 g/cm3 and 1.2-1.8 g/cm3, respectively while potential root 

restriction occurred at ≥ 1.4 g/cm3 for clay and ≥1.6 g/cm3 for sand textured soils (Chaudhari et 

al., 2013). 

Similarly, soil color can also be taken as an indicator for soil fertility depending on local 

conditions (Belachew & Abera, 2010; Corbeels et al., 2000; Yeshaneh, 2015). Farmers use soil 



12 

color as easily observable physical horizons to distinguish the state of soil fertility (Kuldip et al., 

2011). In this regard, many authors argue that based on farmers classification black soils are 

considered fertile, while red soils are poor (Yeshaneh, 2015). Furthermore, soil color can often 

reflect the soils hidden parent material properties, which determines specific soil characteristics 

(Corbeels et al., 2000). Hence, it was of paramount importance to link soil color with spectral 

data, such as Diffuse Reflectance Infrared Fourier-Transform Spectroscopy (midDRIFTS). This 

is because, spectral data has been used to calculate the colour of the soil (Barouchas & 

Moustakas, 2004) which can be manifested by its soil organic carbon (SOC) and phsphorous 

content. 

   Biological soil properties 

Since soils are regarded as living entities, the third group of soil fertility indicators are soil 

biological properties. A large number of organisms including all plants and animals, as well as 

microorganisms are living in the soil. Therefore, soils do not only provide food for soil flora and 

fauna, but also provide habitats to a large group of organisms on earth (Osman, 2013a; Bölter & 

Blume, 2002). Different organisms (e.g higher plants, protists and bacteria) in soil 

photosynthesize, respire, reproduce, produce organic matter, consume organic matter and 

decompose it (Osman, 2013a). The most sensitive soil fertility indicators are biological soil 

properties and labile SOC pools. For example, biological biomass, soil respiration, and 

extracellular enzymatic activities changed immediately with any land use or soil management 

changes (Demyan et al., 2012; Guillaume et al., 2016; Heitkamp et al., 2009). The most 

commonly used parameters for soil microflora studies to assess the status of soil fertility are soil 

respiration (mineralization of soil organic carbon) and microbial biomass (Valsecchi et al., 

1995). Furthermore, the activities of extracellular enzymes are also taken as indicators of soil 

fertility status, as extracellular enzymes gauge the potential of the soil to support the biochemical 

processes that are essential for the maintenance of soil fertility (Długosz, 2014). To better 

understand the environmental drivers of soil microorganisms, scientists derived other parameters 

to assess the status of soil fertility; amongst others CO2-C respiration per biomass C and time 

(Długosz, 2014). The other derived parameter that can be used as a biological indicator for soil 

fertility depiction is specific enzymatic activity (the activity of extracellular enzymes per unit 

biomass production per time) (Lashermes et al., 2016). 
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1.4.2   Soil organic carbon (SOC) as a soil fertility indicator  

Through the positive effect on soil physical, chemical and biological properties of soils, SOC has 

a beneficial effect on soil fertility (Panakoulia et al., 2017). Degradation of SOC pools affects 

biomass productivity, microbial activity, soil structure and water holding capacity (Lal, 2004). 

SOC can be considered as a benefial pool to enhance nutrient retention capacity and water 

avialablity of the soil (Lal, 2006); it also decreases the loss of essential plant nutrients, and 

increases nutrient use efficeny of soils. In general, the quality of the soil is affected through 

severe depletion of SOC. Therefore, an increase of SOC contents increases soil fertility in 

general and crop productivity and production in particular (Bauer & Black, 1994). The net 

increase of SOC in the soil ecosystem (SOC stabilization) occurred when an input of carbon is 

more than the output of carbon in the decomposition process of organic residues. However, SOC 

stabilization of plant and animal-derived organic matter depends on different factors, such as 

organic matter protection (Kleber et al., 2007; Manzoni et al., 2012; Sollins et al., 1996) and how 

effectively the decomposer community converts carbon (C) to biomass, relative to how much C 

is lost in gaseous (CO2 and CH4) or soluble form (Six et al., 2006). The biological process 

regulating this conversion depends on several factors such as quality and quantity of organic 

residues, climatic conditions, nutrient status of the soil and abundance, as well as structure of soil 

microorganisms (Manzoni et al., 2012). A key parameter used to quantify how C is partitioned 

between microbial growth and respiration is called carbon use efficiency (CUE).  

 SOC functional group determination  

Different methods such as physical and chemical fractionation, thermal and nuclear magnetic 

resonance have been employed to determine SOC functional groups (Demyan, 2013; Margenot 

et al., 2015). Size and density separation has been used as the most suitable physical 

fractionation method of SOM depending on the size and density of soil particles (Virto et al., 

2008; von Lützow et al., 2007). Chemical oxidation methods, such as permanganate oxidation 

and chloroform fumigation extraction, are amongst the chemical extraction methods of labile 

SOC functional groups consisting of permanganate-oxidizable C (POXC), microbial biomass C 

(MBC) and N (MBN). Furthermore, hot and cold water extractions are used to characterize 

different fractions of SOM (Demyan et al., 2012). All the above methods are quantifications of 

SOC contents. However, not only SOC quantities (e.g., SOC, microbial biomass C and N, POM) 
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but also SOC qualities (e.g., aliphatics, aromatics, amides, phenols, carboxylates, 

polysaccharides) have signifficant contribution for the status of soil fertility; because SOC 

qualities depend on the local climatic conditions, the type of vegetation and cropping systems. 

Both physical and chemical fractionation methods are time-consuming, poorly reproducable in 

different laboratories and the accuracy depends on the methods used (Demyan et al., 2012). 

Diffuse reflectance infrared Fourier transform spectroscopy (midDRIFTS) spectral analysis is not 

only considered as a robust, time and cost-effective method (Shepherd & Walsh, 2002), but also 

as a useful tool to quantify more sensitive SOC quality indicators subjected to small changes in 

quality and quantity of organic inputs as well as management effects on SOM (Margenot et al., 

2015; Essington, 2004).   

MidDRIFTS measures the diffuse reflectance of bending and stretching vibrations of different 

functional groups in the mid-infrared range from 4000 to 400 cm−1 (Demyan et al., 2012; 

Margenot et al., 2015). Relative peak area integration among the different approaches was used 

to assess the potential SOM quality or composition indicators (aliphatics, aromatics, amides, 

phenols, carboxylates, polysaccharides) in midDRIFTS spectral vibrations (Demyan et al., 

2012). Furthermore, the ratio of the functional groups aromatic and C-O poly-alcoholic and ether 

groups versus aliphatic groups are commonly calculated as an SOC stability index, which is used 

as soil quality indicator (Demyan et al., 2012; Inbar et al., 1989). Due to a lack of direct 

translation of size and density, as well as chemical oxidation fractions of SOC to spectral 

vibrations, relationships were developed by scientists to associate SOC fractions with SOC 

functional groups (Demyan et al., 2012; Margenot et al., 2015). Hence, positive and highly 

significant correlations between aliphatic C-H SOC functional groups versus light fraction C 

content (<1.8 g cm−3), hot water extractable C, permanganate-oxidizable C (POXC), microbial 

biomass C (MBC) and N (MBN) indicated that C-H SOC functional groups are interpreted as 

active and most labile pools (Demyan et al., 2012; Margenot et al., 2015).  Negative and 

significant correlations between these fractions and aromatic C=C SOC functional groups led to 

interpret this functional groups as stable and recalcitrant SOC pool (Demyan et al., 2012; 

Margenot et al., 2015).   
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1.4.3 Methodological consideration for soil fertility assessment 

Achieving and maintaining a higher level of soil fertility is crucial for crop production. To 

successfully assess soil fertility status, the determination of quantitative and qualitative soil 

fertility indicators is necessary. To quantify and assess the extent of these indicators, different 

methods are employed, including laboratory analysis of soil chemical, physical and biological 

properties using wet chemistry and soil spectral analysis, crop responses in field conditions and 

visual assessments using some key observable indicators. Soil analysis using wet chemistry has 

been used as a key tool to assess the status of plant nutrients, physical soil conditions and 

microbial activities in the soils for decades (Motsara & Roy, 2008). In addition to soil analysis 

using wet chemistry, currently spectroscopic analysis using different spectral frequencies have 

become popular (Gourlay et al., 2017; Shepherd & Walsh, 2002). Even though model calibration 

is necessary, different spectroscopic (mid, near and visible infrared) analyses are robust and used 

frequently (Shepherd & Walsh, 2002; Wetterlind et al., 2013). Coupling of spectral analysis with 

wet chemistry has led to prepare different soil fertility maps, for example in Africa (Soil Atlas of 

Africa) and Ethiopia (Ethiopian Soil Atlas) (Gelaw et al., 2018; Vågen et al., 2013). The third 

type of soil fertility assessment is using farmers’ indigenous knowledge based on observable and 

subjective judgments (Belachew and Abera, 2010). However, there is a big challenge to 

synchronize objective soil fertility assessment methods e.g., laboratory analysis (both wet 

chemistry and spectroscopic) with farmers’ indigenous knowledge. This is because, there are no 

methodologies developed to link objectively measured soil chemical and physical properties 

such as SOC, available P and soil texture with observable soil fertility indicators such as soil 

color and depth. 

1.5 Carbon use efficiency as determinant of soil fertility status 

Carbon use efficiency (CUE), the ratio of C allocated to biosynthesis and the amount of C 

accumulated and respired, is a key determinant of SOM dynamics and terrestrial C fluxes, with 

strong implications for soil C cycles (Geyer et al., 2016). The capacity of soil to store C and 

enhance long term stabilization depends on CUE, with a strong role for soil C sequestration 

potential. In most models, CUE was considered as an indicator of the C sequestration potential 

and related to climate change concepts (Qiao et al., 2019). Accumulation of C in the soil, 

however, was not only used to sequester C, but also to improve soil fertility. Soils with a high C 
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content increase cation exchange capacity, improves soil aggregate formation and stabilization, 

water holding capacity, aeration, and plant nutrient content (Bationo et al., 2007). The positive 

relationships between soil nutrients and CUE can be used as a determinant of soil fertility status 

(Manzoni et al., 2012).  

The sufficiency or deficiencies of soil nutrients regulate CUE; for example, in the time of greater 

nutrient availability higher ecosystem CUE was observed, while under nutrient-deficient 

conditions a lower CUE was observed (Zhang et al., 2019). This is because, in nutrient-deficient 

conditions, C would be in excess, and there would be less fruitful respiration cycle that lost a 

proportion of C (Chambers et al., 2004; Zhang et al., 2019). This can lead to lower CUE. In 

lower CUE, the conversion of plant and animal-derived C to soil microbial growth will be low. 

This leads to less C storage in the soil ecosystem, which might again affect soil structure, water 

holding capacity, nutrient provision and soil fertility in general. A lower CUE increases C system 

losses, and reduces C storage. Thus, CUE is an essential trait influencing community assembly 

dynamics (i.e species diversity through trait modification and filtering in ecological 

communities, Hernawati et al., 2015) and nutrient cycling (Kallenbach et al., 2019); hence, CUE 

can be considered as soil fertility indicator. Higher soil respiration, but lower microbial activity, 

was observed in poor soils, than fertile soils indicating lower CUE in poor soils than its 

counterparts (Warembourg & Estelrich, 2001). Therefore, quantification of CUE as a more 

sensitive indicator for soil fertility status in agricultural fields might be per amount important. 

However, further evidence showing the linkage of CUE as indicator for soil fertility status in 

small holder agricultural systems are missing. Hence, to fully understand the relationship 

between the extent of C dynamics and the status of soil fertility with CUE in soils of SSA, 

further research is suggested. 

1.5.1 Factors responsible for CUE variability  

 Environmental factors  

Temperature and moisture are the two most important environmental factors shaping CUE 

among others (Manzoni et al., 2012; Herron et al., 2009; Apple et al., 2006). An increase in 

temperature above a certain level could lead to not only depletion of available substrates and 

nutrient limitation (Kirschbaum, 2004), but also increase the rate of biomass turnover (Hagerty et 
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al., 2014), which in turn affects microbial growth and CUE (Zhang et al., 2019). Similarly, 

alteration of soil moisture condition from normal to either dry or very moist conditions could 

shift microbial CUE (Manzoni et al., 2012). Change in soil water content could lead to either a 

shift in the composition of the active soil microbial community, nutrient limitation and/or change 

in the physiology of the microorganisms (Herron et al., 2009).  

The other environmental factor responsible for controlling CUE in soil microbial process is soil 

pH. At lower soil pH, especially at pH<4.5 microbial growth and activity could be affected, 

which leads to lower CUE. This could be due to two major reasons: (1) shift in microbial 

structure and trait modification because of aluminum toxicity; and (2) nutrient limitations as a 

result of lower pH (Rousk et al., 2009; Jones et al., 2019). The third environmental factor 

affecting microbial CUE is the source of substrates for microorganisms, where the quality of the 

substrates affects CUE in two key different ways (Manzoni et al., 2012): (1) lower quality 

substrates require a large number of enzymatic steps to decompose the substrates and convert it 

into new biomass (Agren & Bosatta, 1987), (2) different qualities of substrates require different 

metabolic pathways to be completely assimilated, therefore requiring a high respiration rate per 

unit of C biomass (van Hees et al., 2005). Both of these mechanisms undertaken by 

microorganisms to degrade substrates could lead to a higher energy investment, which in turn 

lowers CUE. Lower quality substrates also provide a small amount of nutrients, which could be 

responsible for nutrient limitation and lowering CUE. However, there is no clear evidence 

showing the effect of the interacted effect of different environmental factors in general, and the 

effect of residue quality and soil pH in particular on CUE in soils of the tropics. Therefore, 

detailed understanding of the interacting effects of more complex residue quality with soil pH 

provides a clearer insight on microbial CUE in soils of the tropics. 

 

Methodological variability for CUE 

Quantification of CUE for soil microorganisms is difficult, therefore, currently different 

methodological approaches are used (Agumas et al., 2021; Geyer et al., 2019). Both direct and 

indirect approaches are used to estimate microbial CUE, including the C balance approach that 

considers increments in microbial biomass and in respired carbon dioxide (CO2) (Blagodatskaya 

et al., 2014; Herron et al., 2009). The C balance approach uses the microbial yield coefficient as 

equivalent to CUE during the growth period (Blagodatsky et al., 2002). If microorganisms are in 



18 

a state of maintenance and no distinct biomass increase is recorded, the metabolic quotient 

(qCO2, the rate of CO2-C evolution per microbial biomass C) is used to evaluate microbial 

metabolic efficiency (Blagodatskaya et al., 2014; Puttaso et al., 2011). The basic assumption of 

this method is that C gain in the microbial biomass originates solely from the substrate. This 

assumption excludes the possible reuse of microbial biomass C without explicit microbial growth 

(Hagerty et al., 2014). Uncertainty about this approach exists when biochemically complex 

organic residues are considered as substrates during decomposition, as the turnover of microbial 

biomass may distort C balance calculations. 

Stoichiometric modeling of decomposition has been introduced as an alternative method 

(Sinsabaugh et al., 2016). In this case, CUE of the soil microbial community is considered as a 

function of the difference between nutrient requirements for growth and nutrient composition of 

the substrate, whereby extracellular enzyme activities (EEA), C:N (C:P) ratio of microbial 

biomass, and bioavailable organic matter are considered to calculate CUE. The main principle of 

using extracellular enzyme activities (EEA) to calculate CUE is that extracellular enzyme 

activities connect the stoichiometric theory of ecology. It reflects the equilibrium between the 

elemental composition of microbial biomass and detrital organic matter on the one hand and the 

efficiencies of nutrient assimilation and growth on the other hand (Sinsabaugh & Follstad Shah, 

2011). The principal advantage of this approach is that the required parameters for CUE 

calculation can be obtained easily, and that it can be applied at various spatio-temporal 

resolutions (Sinsabaugh et al., 2016). However, it was not clear so far whether single enzymatic 

or multi-enzymatic stoichiometry (modified from single enzymatic) is an appropriate approach to 

quantify CUE with regard to different stages of plant residue decomposition. Furthermore, 

comparisons of different CUE estimation methods in acidic soils amended with organic residues 

remained elusive, leaving a critical knowledge gap necessitating further investigation. This 

included a modification of the single stoichiometric modeling approach.   

1.6 Problem statement and justification of the study 

Adoption of integrated soil fertility management approaches (ISFM) across different regions of 

SSA including Central and Eastern Africa remains a major challenge (Vanlauwe et al., 2015). 

Heterogeneity of soil fertility does not allow uniform soil management strategies in larger areas; 

hence there is a need to unravel the complex dynamics of soil fertility gradients to develop ISFM 
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strategies adjusted to local contexts. To tailor demand-oriented ISFM interventions for 

smallholder conditions under different local contexts, it is critical to understand the main drivers 

of soil fertility variability and to use this knowledge to develop explicit ISFM strategies. Socio-

economic factors such as farmers’ resource endowment as well as their indigenous knowledge of 

soil fertility status could also be speculated amongst the main drivers of soil fertility variability 

(Tittonell et al., 2005b; Vanlauwe et al., 2015). Not only socio-economic factors but also 

biophysical variations such as agro-ecology and site (geographical location) are key drivers of 

soil fertility variability. Furthermore, the interrelated effect of biophysical with socio-economic 

factors such as market access, farm typology and farmers’ indigenous knowledge to soil fertility 

status is missing. This is because not only the individual drivers but also the synchronization of 

both biophysical and socio-economic factors may contribute for soil fertility variability beyond 

the individual factors. Nevertheless, earlier studies relied solely on interviews on farmers’ 

perception about soil fertility status, which were not validated by laboratory analysis (Corbeels et 

al., 2000). Others were based on spatially less representative soil chemical surveys (Belachew & 

Abera, 2010; Pypers et al., 2011; Yeshaneh, 2015). To tackle these gaps and understand the 

extent of soil fertility status across different geographical locations, socio-economic factors and 

design tailor made soil fertility management strategies, as well as develop appropriate natural 

resources management policies, cost and time efficient soil analysis methods are of paramount 

importance. Hence, midDRIFTS analysis, among others, has been approved as a suitable tool to 

assess and map soil fertility variability in and among African agricultural farming systems  

(Cobo et al., 2010; Shepherd & Walsh, 2007; Vågen et al., 2006). Furthermore, midDRIFTS 

does not only allow the quantitative prediction of soil chemical properties (e.g., total soil N and 

C content as conventional soil fertility indicators) across large spatial scales. It also enables the 

spectroscopic assessment of SOC quality indicators (e.g., functional groups of SOC (i.e., 

aliphatic (labile) and aromatic (recalcitrant) compounds) as a function of soil fertility (Baes & 

Bloom, 1989; Demyan et al., 2012). Hence, the use of midDRIFTS spectral frequencies of SOC 

functional groups as soil fertility indicators during soil fertility assessment might provide further 

insights. This is due to (1) different SOC functional pools (aliphatic versus aromatic) provide the 

extent of decomposition and mineralization of SOC. Moreover, these functional groups influence 

the capacity of soils to provide nutrients to plants and energy to microorganisms (Demyan et al., 

2012; Margenot et al., 2015; Haynes, 2005). The ratio of aromatic to aliphatic SOC functional 
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pools (SOC stability index) has been regarded as indicators for the extent of decomposition and 

mineralization process; hence, they display important features of the soil fertility status (Demyan 

et al., 2012; Margenot et al., 2015; Hsu and Lo, 1999). On top of the midDRIFTS, integrating 

subjectively based farmers’ indigenous knowledge with objectively based detailed laboratory 

analysis and characterization of soil fertility status using farmers’ indigenous knowledge is also 

important. Likewise, not only the analytical approaches, but also the use of more sensitive 

parameters such as CUE is missing and has to be considered for soil fertility assessment. CUE is 

a critical parameter to give insights about whether the soil C stabilized or mineralized and was 

lost as CO2 to the atmosphere. Even though, CUE is a very useful parameter, however, a wide 

range of CUE estimates found in literature necessitates an investigation into the sources of this 

variability, which is critical for quantification of C dynamics in agricultural ecosystems 

(Manzoni et al., 2012; Geyer et al., 2016;  2019). The source of CUE variability can be 

categorized as genetic, environmental and methodological; genetically diverse microorganisms 

have different CUE (Pfeiffer et al., 2001; Molenaar et al., 2009). Genetically diverse soil 

microorganisms are also influenced by environmental factors, such as substrate quality and soil 

pH, with respective effects on microbial CUE (Manzoni et al., 2008; Jones et al., 2019). 

However, the interrelated effect of environmental factors, such as complex plant residues with 

soil pH on microbial CUE is less understood and/or nonexistent in agricultural soils of the 

tropics. Therefore, understanding the interrelated effect of biochemical quality of complex plant 

residues with soil pH on CUE provides a good insight into C dynamics in agricultural soils. 

Quantification of CUE for soil microorganisms is difficult. Therefore, different methodological 

approaches as a third source of variability were discussed recently (Geyer et al., 2019). The 

effect of methodological difference in CUE becomes even more challenging when an interrelated 

effect of complex plant residues with soil pH is considered. To better explore the complex 

interaction effects of different biochemical qualities of plant residues and soil pH, we used both 

the direct C-balance method, the indirect single enzymatic stoichiometric and multi-enzymatic 

stoichiometric methods to quantify CUE. Therefore, in this study we provided suitable methods 

for CUE when complex plant residue interacted with soil pH.  
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1.7 Objectives 

The goal of this study was to explore the interrelated effect of biophysical and socio-economic 

factors on soil fertility variability and understand the effect of environmental and methodological 

variations on CUE in crop-livestock mixed agricultural systems of smallholder farmers in 

Ethiopia and DRC. Therefore, the main objectives of this study were to:  

i. explore the interrelated effect of biophysical and socio-economic factors on soil fertility 

variability in crop-livestock mixed agricultural systems in Ethiopia and to verify that 

farmers’ indigenous knowledge would be also driven by inter-related effects of these 

factors, considering the continuous knowledge transfer among farmers within and across 

agro-ecological zones. 

ii. understand the interrelated effect of market distance and farm typology on soil fertility 

variability in DRC and to verify whether farmers’ indigenous knowledge is a valuable 

proxy to assess soil fertility status. 

iii. compare the different CUE estimating methods and evaluate the influence of 

environmental factors on CUE as well as to test whether CUE can be used as soil fertility 

indicator. 

1.8 Hypothesis 

The following hypotheses were addressed in this study: 

i. For the assessment of soil fertility status across a regional scale, not only individual 

factors, but also interrelated effects of agro-ecology and farmers’ resource endowments 

on soil fertility variability have to be considered, while farmers’ indigenous knowledge 

on soil fertility status would be guided by the inter-related effects of these factors. This 

assumption was based on the continuous knowledge transfer among farmers within and 

across agro-ecologies (Leta et al, 2018). 

ii. Specific market access would be suggested as a determinant of agricultural development; 

it was hypothesized that with increasing market distance, the soil fertility status of 

smallholder farming systems would decrease since farms in remote areas, irrespective of 
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their wealth status, do not have the opportunity to invest in soil fertility management 

strategies. 

iii. By using multi-C cycling enzymes stoichiometry modeling (MCE-STM) in the 

estimation of CUE, a more accurate insight would be provided on microbial CUE in soils 

amended with complex plant residues as compared to the use of single C-cycling 

enzymes (BGL) and the conventional C balance approach. Furthermore, higher microbial 

CUE would occur in less acidic soil amended with high-quality plant residues than in 

more acidic soils amended with lower quality plant residues. 

1.9 Outline of the thesis 

This doctoral thesis comprises six chapters. Chapter 1 presents the general introduction, followed 

by three chapters detailing the research outputs of this PhD study. Chapter 2 of this thesis has 

been published in the journal “Soil Use and Management” entitled ‘Agro-ecology, resource 

endowment and indigenous knowledge interactions modulate soil fertility in mixed farming 

systems in Central and Western Ethiopia. The main focus of this chapter was to assess the 

interrelated effect of agro-ecology and farm typology on soil fertility status in smallholder 

farmers in Central and Western Ethiopia. Besides, it also verifies that farmers indigenous 

knowledge on soil fertility status was not varied due to both agro-ecology and farm typology. 

The consecutive chapter 3 “Market access and resource endowment define the soil fertility status 

of smallholder farming systems of South-Kivu, DR Congo’’ has been published in the journal 

“Soil Use and Management”. The aim of this chapter was to explore the interrelated effect of 

market distance and farm typology on soil fertility status. It also verified under contrasting socio-

economic and agro-ecological conditions the concept of chapter 2 that farmers’ indigenous 

knowledge is a valuable proxy to assess the soil fertility status. Hence, farmers’ indigenous 

knowledge can be implemented into a generic sampling strategy to further validate the soil 

fertility variability across study sites assessed by a science-based approach. Chapter 4 of this 

thesis entitled “Microbial carbon use efficiency during plant residue decomposition: comparison 

of multi-enzyme stoichiometry and C balance approach” has been published in the journal of 

“Applied Soil Ecology”. This chapter emphasized the development of a multi-enzyme 

stoichiometry model to estimate and verify soil microbial CUE influenced by environmental 

factors as additional proxies to understand soil fertility variability. In a final step, the three 
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research chapters are discussed (Chapter 5) and concluding remarks along with suggestions for 

prospective research are provided in Chapter 6. 
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2.1 Abstract 

Site-specific soil fertility management requires a fundamental understanding of factors that 

modulate soil fertility variability in the local context. To verify this assumption, this study 

hypothesized that soil fertility variability across two regions in Central and Western Ethiopia is 

determined by inter-related effects of agro-ecological zones and farmers’ resource endowment 

(“wealthy” versus “poor” farmers). Mid-infrared spectroscopy coupled to partial least squares 

regression (midDRIFTS-PLSR) and wet-lab analyses were used to assess the soil fertility (i.e., 

soil pH, total soil carbon (TC), total soil nitrogen (TN), plant-available phosphorous (Pav) and 

potassium (Kav)) across four agro-ecological zones: “High-Dega” (HD), “Dega” (D), “Weina-

Dega” (WD) and “Kola” (K). MidDRIFTS peak area analysis of spectral frequencies (2930 

(aliphatic C-H), 1620 (aromatic C=C), 1159 (C-O poly-alcoholic and ether groups) cm-1) was 

applied to characterize soil organic carbon (SOC) quality and to calculate the SOC stability index 

(1620:2930). Higher TC in HD, as well as higher TN and Kav contents in K were found in fields 

of wealthy compared with poor farmers. Resource endowment dependent soil fertility 

management options revealed SOC of higher quality in wealthy compared with poor farms in D. 

Agro-ecological zones distinctions contributed to these soil fertility differences. Farmers 

distinguished visually fertile and less fertile fields based on soil color. Higher pH in K and WD 

as well as Pav in K and HD were found in fertile (brown/black) than less fertile (red) soils. To 

conclude, tailor-made soil fertility management in the local context must consider agro-

ecological zones and resource endowment interactions along with farmers’ indigenous 

knowledge. 

 

Keywords: midDRIFTS; soil fertility variability; resource endowment; farmers’ indigenous 

knowledge; SOC stability index; agro-ecological zones 
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2.2 Introduction 

Integrated soil fertility management (ISFM) is an intervention strategy to counteract the problem 

of soil fertility depletion of smallholder farming systems in sub-Saharan Africa (SSA) 

(Vanlauwe et al., 2010). Its adoption across different regions of SSA remains, however, 

challenging (Vanlauwe et al., 2015). This is mainly due to resource shortcomings (e.g., land size, 

capital) that force resource-constrained farmers to expand into marginal lands, while wealthy 

farmers continue investing in fertile lands. This situation is aggravated by insecure tenure 

systems, prohibiting farmers from investing in their land, along with limited access to fertilizer 

inputs (Stevenson et al., 2019). These features have led to highly variable soil fertility levels 

across and within regions, magnified by inherent heterogeneity of agro-ecological zones and a 

wide range in socio-economic status among smallholder farmers (Tittonell et al., 2005a). 

Heterogeneity of soil fertility does not allow uniform soil management strategies in larger areas, 

making ISFM adjusted to local contexts more essential. To tailor demand-oriented ISFM 

interventions to smallholder conditions under different local contexts, factors modulating soil 

fertility variability must be understood, considering farmers’ resource endowment (i.e. their 

wealth) and indigenous knowledge (Vanlauwe et al., 2015; Tittonell et al., 2005b). 

Previous soil fertility assessments in Eastern (e.g., Kenya) and Southern (e.g., Zimbabwe) Africa 

revealed the influence of densely populated landscapes, biophysical factors, farmers’ resource 

endowment and distance of cultivated fields from homesteads on soil fertility management 

options (Nyamangara et al., 2011; Tittonell et al., 2010; Tittonell et al., 2005a). These studies 

were, however, not based on generic and harmonized soil surveying procedures, making direct 

comparisons across different agro-ecological zones and smallholder farming systems difficult. 

Africa Soil Information Service (AfSIS) (Vågen et al., 2010) and Ethiopian Soil Information 

System (EthioSIS) (Amare et al., 2018) have made important progress in consolidating existing 

soil fertility survey protocols for several African countries, including Ethiopia. Nevertheless, (1) 

the inter-related effects of agro-ecological zones and farmers’ resource endowments, along with 

(2) farmers’ indigenous knowledge as additional proxies for soil fertility assessment have so far 

been neglected and thus need further investigation. This is justified as it could be suggested that 

continuous knowledge transfer among farmers within and across agro-ecological zones (Leta et 

al., 2018), as well as contrasting agro-ecological and geological contexts (Mengistu, 2003) 

modulate soil fertility variability. Hence, it was our first objective to perform a local soil fertility 



43 

survey to test the hypothesis that not only individual but also inter-related effects of agro-

ecological zones and farmers’ resource endowments affect soil fertility variability in a local 

context. Our second objective was to verify that farmers’ indigenous knowledge on soil fertility 

status is not driven by inter-related effects of agro-ecology and farm typology. This assumption 

was based on the continuous transfer of knowledge among farmers within and across agro-

ecological zones (Leta et al., 2018). 

 

2.3 Material and methods  

2.3.1 Site selection and farm typology characterization 

The soil fertility survey was conducted in four contrasting agro-ecological zones of Central and 

Western Ethiopia, which were defined according to Mengistu (2003) and Hurni (1998): (i) 

“Kola” (K) (<1500 m a.s.l., average temperatures of 15 to 27°C, average rainfall of 2037 mm), 

and (ii) “Weina-Dega” (WD) (1500-2500 m a.s.l., 15 to 27°C, 1376 mm), (iii) “Dega” (D) 

(2500-3200 m a.s.l., ≤9°C, 938 mm) and (iv) “High-Dega” (HD) (3200-3500 m a.s.l., ≤9°C, 938 

mm). Agro-ecological zones of K (Lelisadimtu (36°24’E; 9°02’N)) and WD (Fromsa (36°45’E; 

9°03’N)), are subsistence maize dominated crop-livestock farming systems and Nitisols with 

clay texture ( FAO, 2015), while D (Kolugelan (38°9’E; 9°22’N)) and HD (Chilanko (38°11’E; 

9°20’N)) are dominated by market-oriented potato/barley systems as well as Luvisols and 

Alisols with clay texture (FAO, 2015). Lelisadimtu and Fromsa were located in Diga District 

(Western Ethiopia), while Kolugelan and Chilanko were located in Jeldu district (Central 

Ethiopia) (Table 1; Fig. S1). 

Farm typologies (resource endowment) at the target sites (villages) were defined during village 

meetings and focus group discussions. Two to three focus group discussions with a total of 16-18 

household heads with an equal share of females and males as well as young and old farmers were 

held in each agro-ecological zone. The main farm typology indicators were farm size 

(landholdings (LH)), livestock ownership and level of agricultural inputs (i.e., chemical 

fertilizer) (Haileslassie et al., 2006; Kebede et al., 2019). Thresholds set by farmers in all villages 

were <2 ha farm size, <6 tropical livestock units (TLU), and relatively low chemical fertilizer 

rates to categorize farmers as “Eyeessaa (poor)”, while a LH of ≥4 ha, ≥ 8 TLU and use of full 
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fertilizer rates (100 kg urea and 100 kg DAP) were defined as “Ditta (wealthy)”. This is because 

wealthy farmers frequently intend to maximize crop productivity by applying fertilizer, whereas 

poor farmers cannot follow a similar strategy due to a lack of cash to purchase fertilizer. To 

confirm the agreed farm typology thresholds, detailed data on farm typology indicators were 

collected on 90 predefined wealthy and poor  households (10% of the total population) (Table 1). 

 

Table 1. Average values of socio-economic indicators (farm size, number of livestock and 

amount of fertilizer used) for the different farm typologies in the selected study regions (Lelisa 

Dimtu (Kola (K)), Fromsa (Weina-Dega (WD)), Kolu-Gelan (Dega (D)) and Chilanko (High-

Dega (HD)); Number of households = 90. 

Agro-ecology Typology Farm size [ha] Livestock 

holding [TLU1] 

Fertilizer 

(DAP + Urea) 

rate [kg ha-1] 

Kola (K) Wealthy (Ditta) 5.7 (1.0)ab 11.7 (1.8)a 117 (25)bc 

 Poor (Eyeessaa) 0.8 (1.0)d 3.2 (1.8)d 64 (35)c 

Weina-Dega (WD) Wealthy (Ditta) 4.4 (0.9)abc 8.6 (1.59)abc 121 (35)abc 

 Poor (Eyeessaa) 1.1 (1.0)d 4.5 (1.8)cd 72 (35)c 

Dega (D) Wealthy (Ditta) 4.9 (0.9)ab  9.02 (1.5)abc 192 (46)ab 

 Poor (Eyeessaa) 1.8 (1.1)cd  5.9 (2.0)bcd 180 (30)ab  

High-Dega (HD) Wealthy (Ditta) 

Poor (Eyeessaa) 

7.0 (1.0)a 

1.8 (1.0)cd 

9.5 (1.7)ab 

5.4 (1.70)bcd 

198 (27)a  

135 (20)abc 

P-level (agro-ecology)  Ns Ns *** 

P-level (typology)  *** ** ns 

P-level (agro-ecology × 

typology) 

 Ns Ns ns 

 

Significance levels: ns, not significant at P < 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001. 

1TLU = Tropical livestock unit. 
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2.3.2 Soil sampling 

In each agro-ecological zone  (n = 4), 14 individual households (7 wealthy, 7 poor) per farm 

typology were selected (Dawoe et al., 2012; Nyamangara et al., 2011). On each farm, the head of 

the household was requested to indicate the most and least fertile field plots based on their 

individual indigenous knowledge about soil fertility status. Hence, two field plots per household 

(fertile and poor) were selected for soil sample collection (Vågen et al., 2012). According to 

Yeshaneh (2015), farmers use soil color as the most important indicator of soil fertility, where 

black and brown soils were considered as fertile and red soils as less fertile. 

During soil sampling, the household head indicated the color of the specified soil of the field 

plot. According to the sampling procedure, a total number of 224 geo-referenced soil samples 

were collected (4 agro-ecological zones (K, WD, D, HD) × 2 farm typologies (wealthy, poor) × 7 

farms per typology × 2 fields per farm (fertile and less fertile) × 2 soil depths (0-20 cm, 21-50 

cm)). Soil samples were air-dried and passed through 2 mm sieve prior shipping to the 

University of Hohenheim (Stuttgart, Germany) for further analysis. 

 

2.3.3 Soil analysis 

Soil pH (CaCl2) was measured according to Houba et al. (2000). Total carbon (TC) and nitrogen 

(TN) were analyzed by dry combustion. Available phosphorus (Pav) was measured 

colorimetrically at 720 nm using Bray1 method (Bray & Kurtz (1945). Available potassium (Kav) 

was analyzed using ICP-OES (Agilent 5100) (Schüller, 1969). Calcium-acetate-lactate was used 

as an extractant for both phosphorous and potassium. 

MidDRFIFTS-based analyses were performed according to Mirzaeitalarposhti et al. (2015), 

Rasche et al. (2013), and Demyan et al. (2012). MidDRIFTS-PLSR-based prediction models for 

each soil chemical property (i.e., TC, TN, pH, Pav, Kav) were constructed with the OPUS-

QUANT2 package of OPUS v7.5 (Bruker Optik GmbH) (Rasche et al., 2013). Similarly, peak 

area integration by midDRIFTS using OPUS 7.5 software (Bruker Optik GmbH) (Demyan et al., 

2012) was  conducted to provide an additional measure of the soil fertility status. Three 

prominent peaks (i.e., 2930, 1620 and 1159 cm-1) with their respective integration limits (3000-

2800, 1770-1496, 1180-1126 cm-1) representing different organic functional groups of SOC were 
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used as additional soil fertility indicators (Baes & Bloom, 1989; Demyan et al., 2012; Senesi et 

al., 2003). Peak 2930 cm-1 represents less stable aliphatic C-H groups, components of the active 

SOC pool (Demyan et al., 2012; Laub et al., 2019). Peak 1620 cm-1 represents more stable 

aromatic C=C bonds as part of the recalcitrant SOC pool (Demyan et al., 2012; Laub et al., 

2019). The third peak at 1159 cm-1 represents C-O poly-alcoholic and ether groups, commonly 

regarded as very stable C compounds (Demyan et al., 2012; Senesi et al., 2003). The ratio of the 

functional groups 1620 and 1159 versus 2930 cm-1 are commonly calculated as the SOC stability 

index, which is used as a soil quality indicator. Further methodological details are given in the 

supplementary materials of this paper. 

2.3.4 Statistical analysis 

Univariate analysis using Kolmogorov-Smirnov tests was conducted to determine if the data met 

the assumptions of normality. Except for Pav and Kav, all soil chemical properties met the 

assumption. For Pav and Kav, logarithmic and square root transformations were performed 

respectively. Factorial analysis of variance (ANOVA) was conducted to assess the effect of agro-

ecology, farm typology (resource endowment class), farmers’ indigenous knowledge and their 

interaction on soil fertility status, using a mixed model with restricted maximum likelihood 

(REML) (Piepho et al., 2003) (SAS statistical software, version 9.4, SAS Institute, North 

Carolina, USA). Agro-ecology, farm typology and soil fertility status as defined by farmers were 

considered as fixed effects, while each field and the interaction between individual factors were 

included as random effects (Piepho et al., 2004). Means separation (P < 0.05) was done using 

pdiff LINES command in GLIMMIX (SAS Institute). 

2. 4 Results 

2.4.1 Interrelated effect of agro-ecological zones and farmers’ resource endowment on soil 

fertility 

Analysis of variance showed that not only agro-ecological zone but also farmers’ resource 

endowment had a significant effect on soil fertility indicators (i.e., TC, TN, Kav; P < 0.01) (Fig. 

1). However, pH and Pav were only influenced by agro-ecological zone (P < 0.01). An interaction 

effect between agro-ecological zone and resource endowment was observed for Kav (P < 0.01) 

(Fig. 1D). The higher Kav values (234 mg kg-1) were noted for fields of wealthy farmers in 

“Kola” (K), while the lowest Kav values (62 mg kg-1) were recorded on wealthy farms in “Dega” 
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(D) (P < 0.01) (Fig. 1D). The highest values of TC and TN were observed in “Weina-Dega” 

(WD) in both farm typologies, while the lowest TC was found in fields of D (P < 0.01) (Fig. 1A). 

In “High-Dega” (HD), higher TC and higher TN contents were found in fields of wealthy 

compared with less wealthy farmers (P < 0.01) (Fig. 1A & 1B). Agro-ecological zone influenced 

soil pH and Pav (P < 0.001) (Fig. 1C & 1E), where lowest values were observed in WD. No effect 

of farm typology was found for pH and Pav (P > 0.05) (Fig. 1C & 1E). 

Three dominant relative peak areas representing SOC functional groups were identified and used 

as proxies for SOC quality: (i) 2930 cm-1 (C-H- aliphatic groups), (ii) 1620 cm-1 (C=C- aromatic 

groups), (iii) 1159 cm-1 (C-O poly-alcoholic and ether group) (Fig. 2A to 2C). The relative peak 

areas of these SOC functional groups and the SOC stability index, calculated as the ratio of 

aromatic to aliphatic area (peak 1620 cm-1 to 2930 cm-1), varied across agro-ecological zones and 

farmers resource endowment with respective interaction effects (P < 0.05) (Fig. 2A to 2D). The 

highest (5.5%) and lowest (3.1%) peaks at 2930 cm-1 were noted on fields of poor farmers in K 

and D, respectively. Similarly, fields of wealthy farmers revealed a larger peak area at 2930 cm-1 

than those of poor farmers in D (P < 0.05) (Fig. 2A). In contrast, the highest (95.2%) and lowest 

(91.9%) values of relative peak area at 1620 cm-1 peak were found in fields of poor farmers in D 

and K, respectively (P < 0.05) (Fig. 2B). The highest relative peak area of 1159 cm-1 was 

observed in K fields of both farm typologies, while the lowest were found in HD (P < 0.01) (Fig. 

2C). The highest and lowest SOC stability indice were calculated for fields of poor farmers in D 

and K, respectively (P < 0.001) (Fig. 2D). In D, a larger index was noted in fields of poor than 

wealthy farmers (P < 0.05). Furthermore, significant positive correlations of pH and TOC with 

C-H aliphatic SOC (pH: r2= 0.39; TOC: r2= 0.51) were found, while negative relationships were 

calculated for C=C aromatic SOC (pH: r2=-0.39; TOC: r2= -0.47) (P<0.001) (data not shown). 

Correlation between the stability index and TOC (r2= -0.45) and TN (r2= -0.24) (P<0.001) were 

negative, while no correlation was found for soil pH. 

 

 



48 

 

 

Figure 1. Soil chemical properties (A = total carbon (TC) (%); B = total nitrogen (TN) (%); C = 

available phosphorus (Pav) (mg kg-1), D = available potassium (Kav) (mg kg-1); E = soil pH) 

obtained from soils of fields of wealthy and poor farmers’ fields across the four agro-ecological 

zones (K (Kola), WD (Weina-Dega), D (Dega), HD (High-Dega)). N = 215 for TC, TN and pH 

while 96 for (Pav) and (Kav). Bars with different letters on top of standard error indicate 

significant differences at P < 0.05. 
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Figure 2 MidDRIFTS relative peak areas ((A) 2930 cm-1, (B) 1620 cm-1, (C) 1159 cm-1)) and 

ratio of 1620:2930 (D) obtained from soils of fields of wealthy and poor farmers’ fields across 

the four agro-ecological zones (K (Kola), WD (Weina-Dega), D (Dega), HD (High-Dega)). N = 

107; Bars with different letters on top of standard error indicate significant differences at P < 

0.05. 

 

2.4.2 Farmers’ indigenous knowledge 

Farmers’ indigenous knowledge on soil fertility agreed with 75% (8 out of 12 soil fertility 

indicators) of scientifically generated soil fertility indicators across agro-ecological zones 

(Tables 2 & 3). Soil color as a soil fertility indicator for farmers suggested that black and brown 

soils were considered as fertile, while red soils were assessed to less fertile soils. This was 

confirmed by laboratory analysis, i.e. black and brown soils had generally higher TC, TN, Pav 
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and pH than the red soils, except soil pH at HD (Table 2). The capability of farmers’ indigenous 

knowledge to identify fertile and less fertile soils was further verified by a higher relative peak 

area of 1159 cm-1 in less fertile fields; a similar trend was noted for the SOC stability index (P < 

0.01) (Table 3). 

Table 2. Selected soil fertility indicators (TC, total carbon; TN, total nitrogen; Pav, available 

phosphorus, pH, soil pH) in relation to different soil colors (red, less fertile; black and brown; 

fertile) across agro-ecological zones. Stand errors are given in brackets. N = 24. 

Agro-ecological zone Soil color TC [%] TN [%] Pav [mg kg-1] Soil pH 

Kola (K) Red 2.89 (0.08) 0.21 (0.01) 4.19b (1.25) 4.75b (0.07) 

Black 2.72 (0.25) 0.18 (0.03) 15.83a (5.64) 5.13a (0.09) 

P-level Ns Ns * * 

Weina-Dega (WD) Red 3.00b (0.05) 0.25 (0.03) 1.09b (0.32) 4.12b (0.16) 

Black 3.17a (0.08) 0.28 (0.02) 5.65a (0.91) 4.21ab (0.13 

Brown 3.21a (0.28) 0.28 (0.04) 5.18a (2.8) 4.51a (0.41) 

P-level * Ns ** * 

High-Dega (HD) Red 2.60b (0.45) 0.23b (0.01) 10.33 (6.98) 4.74a (0.29) 

Brown 2.97a (0.41) 0.27a(0.01) 9.44 (7.28) 4.46b (0.37) 

P-level * * ns * 

 

Significance levels: ns, not significant at P < 0.05; *, P < 0.05; **, P < 0.01. 

 

Table 3. Relative peak areas and stability index as indicators of soil organic carbon (SOC) 

quality with regard to farmers’ perception of fertile and less fertile fields. Standard errors are 

given in brackets, N = 107. 

SOC quality indicators Fertile Less fertile P level 

Peak 2930 cm-1 4.95 (0.22) 4.55 (0.22) ns 

Peak 1620 cm-1 92.88 (0.26) 93.18 (0.26) ns 

Peak 1159 cm-1 2.03 (0.03) 2.15 (0.03) ** 

SOC stability index (1620:2930) 19.68 (1.57) 24.72 (1.57) ** 
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SOC quality indicators: Peak 2930 cm-1, aliphatic C-H; Peak 1620 cm-1, aromatic C=C; Peak 

1159 cm-1, C-O poly-alcoholic and ether groups of SOC functional groups. 

Significance levels: ns, not significant at P < 0.05; *, P<0.05; **, P < 0.01. 

 

2.5 Discussion 

2.5.1 Inter-related effect of agro-ecological zones and farmers’ resource endowment on soil 

fertility 

It was a key finding that the soil fertility status in the study region was determined by an inter-

related effect of farmers’ resource endowment (farm typology) and agro-ecological zone. This 

effect was most pronounced between the wealthy and poor farms located in the lowland (K) and 

highland (HD) agro-ecological zones, as explained by higher TN, SOC and Kav in fields of 

wealthy farms. The farm typologies in the midlands (WD) took an intermediate position, with no 

clear distinction of the soil fertility status with respect to agro-ecological zone. This finding is in 

line with Nyamangara et al. (2011) and Masvaya et al. (2010) those who observed higher TN, 

SOC, Pav and cation exchange capacity (CEC) in wealthy than poor farmers’ fields in two 

different agro-ecological zones in Zimbabwe.  

The effect of resource endowment in the lowlands was explained by the better soil nutrient status 

(e.g., TN, Kav) in the fields of wealthy compared with poor farmers. It is a main advantage of 

wealthy farms to have a higher soil fertility status, a result of extended fallowing, organic residue 

burning and higher livestock numbers (Corbeels et al., 2000; Tian et al., 2005; Haileslassie et al., 

2006). These interventions provide sufficient resources to replenish the soil nutrient pool 

(Haileslassie et al., 2007; Cobo et al, 2010). With this, wealthy farmers also compensate the 

accelerated decomposition of organic resources by higher temperatures in the lowlands that 

generally increases the soil nutrient pool (Coûteaux et al., 2002). Even though poor farmers have 

a higher livestock density and may potentially provide more manure per area of land; these 

farmers commonly use livestock manure for cooking fuel rather than applying it to fields for 

fertilization purpose. The use of manure as fuel is essential for poor farmers as they do not have 

extra land to cultivate biomass for firewood production, unlike for wealthy farmers. 
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Apart from the obvious differences in the soil nutrient status in the lowlands, no clear effect of 

resource endowment on TC content and SOC quality was observed. This was explained with the 

fast decomposition of active SOC pools, which was, irrespective of the soil fertility management 

strategy of wealthy farmers, responsible for the pronounced nutrient release. Even though there 

was no difference between both farm typologies, a higher TC content was found in the warmer 

lowlands and mild midlands than in the colder highlands (Coûteaux et al., 2001; Du et al., 2014; 

Tian et al., 2016). This increased TC content might have resulted from maize-dominated 

cropping practices in the lowlands and midlands, where the low biochemical quality (high C/N 

ratio, lignin and polyphenol content) of respective crop residues enhanced the SOC pool (Wang 

et al., 2015b). Irrespective of the typology classes in the low and medium altitude agro-

ecological zones, it has been shown that the conversion of C derived from crop residues, such as 

maize, to SOC is generally lower in fields of poor farmers than those wealthy farmers due to 

higher fertilization (Wang et al., 2015b). This high potential of C stabilization was corroborated 

by the presence of recalcitrant SOC pools (i.e., C-O poly-alcoholic and ether groups). In the 

highlands, in contrast to low- and midlands, there was a distinct difference of TC content, which 

was higher in the fields of wealthier farmers. This was substantiated by the option of wealthy 

farmers to combine organic and inorganic fertilizer inputs, leading to an increase of C-H 

aliphatic SOC functional groups, but a decrease of C=C aromatic SOC functional groups. 

Accordingly, this management option created a higher SOC stability index (i.e., peak area ratio 

of 1620:2930) in the fields of poor farmers.  

The application of inorganic fertilizer resulted most likely in greater plant biomass production, 

providing additional inputs to accelerate the decomposition rate of roots and plant residues to 

produce more labile SOC pools (Blair et al., 2006). In contrast to the findings in the fields of 

wealthy farmers, pronounced C=C aromatic SOC functional groups along with a higher SOC 

stability index were found in the soils of poor farmers in the highland agro-ecological zone, 

indicating fewer organic inputs. Similar results were given by Demyan et al. (2012), who found 

in plots of the Bad Lauchstädt long-term field experiment (Germany) treated with both chemical 

and organic fertilizers for more than 100 years higher C-H aliphatic SOC groups than in plots 

receiving only farmyard manure. The higher labile SOC pool with a lower SOC stability index 

may be an indicator for high soil fertility as compared to higher C=C aromatic and high stability 

index. In contrast, C=C aromatic pools were shown to increase soil C stabilization (Haynes, 
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2005). It is acknowledged that the labile SOC pool can benefit important soil functions; 

including soil aggregate formation and nutrient supply as well as serve as essential microbial 

energy source (Kunlanit et al., 2020; Maia et al., 2007; Haynes, 2005; Ghani et al., 2003). 

 

2.5.2 Farmers’ perception of soil fertility across agro-ecological zones and farm typologies 

This study confirmed the capability of farmers’ indigenous knowledge to define the soil fertility 

status, a capacity influenced by neither agro-ecological zone nor farm typology. The 

identification of soil fertility status based on farmers’ indigenous knowledge is often in close 

agreement with soil chemical properties analyzed in the laboratory (Huynh et al., 2020). 

Irrespective of their wealth status and geographic location, farmers confirmed their capacity to 

assess soil fertility variability using indigenous knowledge accumulated through generations of 

experience and consistent exchange through socio-cultural events (e.g., weddings, funerals) 

between lowland and highlands (Leta et al., 2018). Such knowledge transfer across agro-

ecological zones may have been responsible for the common farmer perception that red soils are 

less fertile than black and brown soils. Farmers describe and classify their soils using a holistic 

approach and use relatively homogeneous soil classification indicators across agro-ecologies 

(Laekemariam et al., 2017). Accordingly, farmers have been using soil color, soil texture, soil 

depth, topography and drainage, as well as crop performance as criteria to categorize their land 

into fertile and less fertile fields (Belachew & Abera, 2010; Corbeels et al., 2000; Yeshaneh, 

2015; Karltun et al., 2013). In the low and midlands, a higher variability between fertile and less 

fertile fields was observed for soil pH and Pav. Farmers considered red soils as less fertile and 

used this as an indicator for soil acidity (soil pH) (Laekemariam et al., 2017). The low Pav values 

might have been a result of P fixation in acidic soils (Agumas et al., 2014). On the contrary, 

black soils were interpreted as fertile with high SOC and Pav contents (Moody et al., 2008). 

Similarly, we detected higher TC and Pav values in black than in red soils in the midlands and 

lowlands, respectively. Higher Pav values in black than in red soils may have resulted from 

higher organic P cycling favored by higher SOC and soil moisture content (Corbeels et al., 2000; 

Moritsuka et al., 2014). This might indicate that organic matter and soil mineralogy are the most 

important soil properties that govern soil color (Poppiel et al., 2020). 

https://sciprofiles.com/profile/410003
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No difference between farm typologies was observed with respect to the identification of fertile 

and less fertile fields based on indigenous knowledge (Table S2), a likely result of the informal 

communication channels among social institutions: e.g. ‘iddir’ (indigenous and local self-help 

association), ‘debo’ (collective labor support group), and ‘dado’ (reciprocal labor sharing 

arrangement among farmers) (Leta et al., 2018). Even though farmers are generally limited to 

explain on a scientific basis why such differences in soil fertility exist, both wealthy and poor 

farmers have comparable indigenous knowledge to identify fertile and less fertile fields. 

Indigenous knowledge is generally used by farmers to design management strategies for site-

specific soil fertility problems. Farmers in the lowlands, for example, fallow, burn organic 

residues and apply higher farmyard manure on fields perceived as fertile. Similarly, farmers in 

the highlands invest more inorganic fertilizer on their fertile fields than on those with lower 

fertility. This corroborates the fact that farmers are aware of the soil fertility status, whereby their 

indigenous knowledge can guide site-adapted ISFM interventions (Tittonell et al., 2005b). 

2.6 Conclusions 

This study verified that inter-related rather than individual effects of agro-ecological zones and 

farmers’ resource endowment (farm typology) must be considered to explain soil fertility 

variability of smallholder farms across regions and wealth classes. Accordingly, it was inferred 

that prospective ISFM strategies must be niche-based, considering such contrasting but inter-

related agro-ecological zones and farm typologies to reduce the inherent depletion of soil fertility 

across smallholder farms in the study region of Ethiopia. Moreover, across agro-ecological 

zones, farmers identified fertile and less fertile fields based on their indigenous knowledge, 

which was corroborated by the laboratory-based soil fertility survey. Hence, farmers’ indigenous 

knowledge was verified as a valuable proxy for this local soil fertility survey. 
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2.9 Supplementary materials 

 

2.9.1 Site location and soil sampling 

 Site location 

 

 

Figure S1. Study regions with respective 

sampling points located in Central (Dega 

(D), High-Dega (HD)) and Western (Kola 

(K), Weina-Dega (WD)) Ethiopia. 
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 Soil sampling 

The soil fertility survey was conducted in four contrasting agro-ecologies of Central and Western 

Ethiopia, which were defined according to Mengistu (2003) and Hurni (1998): (i) “Kola” (K) 

(<1500 meters above sea level (m a.s.l.), moist hot to warm climate with temperatures of 15 to 

27°C and average rainfall of 2037 mm), and (ii) “Weina-Dega” (WD) (1500-2500 m a.s.l., sub-

humid climate with temperatures of 15 to 27°C and average annual rainfall of 1376 mm). In both 

sites of K (Lelisadimtu (36°24’E; 9°02’N)) and WD (Fromsa (36°45’E; 9°03’N)), subsistence 

maize dominated crop livestock farming systems and clayey Nitisols (WRB classification; FAO, 

2014) are predominant. Agro-ecology (iii) “Dega” (D) (cold) and (iv) “High-Dega” (HD) (moist 

cold) (2500-3500 (m a.s.l.)) show average temperatures of ≤9°C and average annual rainfall of 

938 mm, whereby representative sites of D (Kolugelan (38°9’E; 9°22’N)) and HD (Chilanko 

(38°11’E; 9°20’N)) soils are dominated by clayey Luvisols and Alisols (WRB classification; 

FAO, 2014). The dominant cropping systems in D and HD are market-oriented potato/barley 

systems. Lelisadimtu and Fromsa were located in Diga District (Western Ethiopia), while 

Kolugelan and Chilanko were located in Jeldu district (Central Ethiopia) (Fig. S1). 

From an official farmer list provided by the local agricultural development agent, farmers were 

categorized into three wealth groups. These were based on the agreed thresholds set by the focus 

group discussions. Farm typologies (resource endowment) at the target sites (villages) were 

defined during village meetings and focus group discussions, with an equal share of female and 

male as well as young and old farmers. Main farm typology indicators were farm size (land 

holdings (LH)), livestock ownership and level of agricultural inputs (i.e., chemical fertilizer). 

Thresholds set by farmers in all villages were <2 ha farm size, <6 tropical livestock units (TLU), 

and relatively low chemical fertilizer rates to categorize farmers as “Eyeessaa (poor)”, while a 

LH of ≥4 ha, ≥ 8 TLU and use of full fertilizer rates were defined as “Ditta (wealthy)”. To 

confirm the agreed farm typology thresholds during focus group discussions, detailed data on 

farm typology indicators were collected using a quick baseline survey on predefined wealthy and 

most poor 90 households (10% of the total population). Due to the fact that the study area is 

characterized by subsistence smallholder farmers and that the entire population is generally poor, 

we referred purposely only to the two contrasting typology classes better off and the most poor. 

On each farm, the head of the household was requested to indicate the most and least fertile field 

plots based on their indigenous knowledge about soil fertility status. Farmers used soil color as 
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the main indicator for soil fertility, where black and brown soils were considered as fertile and 

red soils as less fertile. 

Soil samples were obtained using the Y-shaped scheme (Vågen et al., 2012). The Y-frame with 

12.2 meters in diameter was placed in the center of each field and extended 5.64 meters to each 

sub-plot within the field. Top (0-20 cm) and sub- (20-50 cm) soil samples were collected using a 

soil auger with 5.3 cm inner diameter. Four sub-samples from each soil depth were mixed to 

make one composite sample. Information on elevation, coordinates and soil color were recorded 

for each field. According to the sampling procedure, a total number of 608 geo-referenced soil 

samples were collected: (i) Ethiopia (n = 224; 4 agro-ecologies (K, WD, D, HD) × 2 farm 

typologies (wealthy, poor) × 7 farms per typology × 2 fields per farm (fertile and less fertile) × 2 

soil depths (0-20 cm, 21-50 cm)), and (ii) a parallel study in the Democratic Republic of Congo 

(DRC) (n = 384; 2 study sites × 2 villages per site × 3 farm typologies × 8 farms per typology × 

2 plots per farm × 2 soil depths) (Balume et al., 2021 published in journal of soil use amd 

managment). We have considered 2 countries to increase the overall sample number, a 

prerequisite to increase the accuracy of the prediction model development explained below (i.e. 

MidDRIFTS analysis and PLSR-based prediction of soil chemical properties). Out of 224 

(Ethiopia) and 384 (DRC) soil samples collected, 9 and 24 soil samples, respectively, were 

excluded from the sample list due to mislabeling during soil sample collection, thus remaining 

with 215 samples for Ethiopia and 360 for DRC. Soil samples were air-dried, 2 mm sieved, and 

shipped to University of Hohenheim (Stuttgart, Germany) for further analysis. 

 

2.9.2 Soil sample analysis 

Soil chemical analysis 

Keeping a recommended 30% of the total sample set as training data set, for a reliable 

midDRIFTS-PLSR-based model development (Brown et al., 2005; Rasche et al., 2013), 183 soil 

samples (Ethiopia (n = 96), DRC (n = 87)) representative for the considered categories (agro-

ecology, farm typology, farmers indigenous knowledge) were randomly selected from the entire 

sample set (n = 575). The soil properties of the remaining samples (n = 392) were predicted 

using the developed midDRIFTS-PLSR-based prediction models. The 183 soil samples were 

subjected to wet chemistry analysis of selected soil fertility indicators. Soil pH was measured 



65 

(inoLab1 Labor-pH-Meter, WTW GmbH, Weilheim, Germany) with 0.01 M calcium chloride 

(CaCl2) extracting solution with a soil-to-solution ratio of 1:2.5 (Houba et al., 2000). Soil pH 

results showed values of <7.4, so that total carbon estimation was regarded as equivalent to total 

SOC (Wang et al., 2015a; Schumacher, 2002). Total carbon (TC) and nitrogen (TN) were 

analyzed by dry combustion (vario MAX CN analyzer, Elementar Analysensysteme GmbH, 

Hanau, Germany). Plant available phosphorus (Pav) was analyzed using the Bray1 method (Bray 

& Kurtz, 1945), and plant available potassium (Kav) was analyzed using the method of Schüller 

(1969).  

 

2.9.3 MidDRIFTS analysis and PLSR-based prediction of soil chemical properties 

For midDRIFTS analysis, we used the combined data set of both countries (Ethiopia n = 215; 

DRC = 360) to assess the robustness of a harmonized survey protocol applicable across regions. 

Soil samples were ball-milled and soil spectra were recorded on a Tensor-27 Fourier transform 

spectrometer (Bruker Optik GmbH, Ettlingen, Germany) (Rasche et al., 2013). Each soil sample 

was analyzed in triplicate from wavelengths 3950 to 650 cm-1. MidDRIFTS-PLSR-based 

prediction models for each soil chemical property (i.e., TC, TN, pH, Pav, Kav) were constructed 

with OPUS-QUANT2 package of OPUS v7.5 (Bruker Optik GmbH) (Rasche et al., 2013). For 

this, the spectral range was set to exclude the background carbon dioxide region (2300-2400 cm-

1) and edges of detection limits of the spectrometer (<700 and >3900 cm-1) to reduce noise. 

Test set validation was preferred for the combined spectral data set (Ethiopia, DRC) over the 

commonly used leave-one-out cross-validation as the latter generally provides overoptimistic 

estimates of model predictive accuracy in larger data sets (Mirzaeitalarposhti et al., 2015). For all 

chemically analyzed soil samples, we used 70:30 sample ratios for calibration and validation of 

developed PLSR prediction models for selected chemical properties assessed in the soils 

obtained in Ethiopia and DRC (Brown et al., 2005; Rasche et al., 2013). Therefore, out of 183 

chemically analyzed samples, through random selection, 70% (n = 123) of samples were selected 

for model calibration, while the remaining 30% (n = 60) were used for prediction model 

validation (Brown et al., 2005; Rasche et al., 2013). Accuracy of each midDRIFTS-PLSR-based 

prediction model developed for each individual soil chemical property was evaluated by 

considering the residual prediction deviation (RPD) value (Pirie et al., 2005), the coefficient of 
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determination (R2) and the root mean square error of the prediction (RMSEP) (Rasche et al., 

2013). Several rankings of RPD values exist to judge midDRIFTS-PLSR-based prediction 

accuracy. For agricultural applications, RPD values higher than 5 indicate that prediction models 

are commonly qualified as ‘excellent’, while RPD values 3 to 5 are considered as ‘acceptable’ 

and RPD values smaller than 3 greater than 1.4 indicate a ‘moderately successful’ prediction 

power (Pirie et al., 2005). RPD values less than 1.4 denote ‘unsuccessful’ predictions (Chang et 

al., 2001). Besides, R2 values show the percentage of variance present in the measured values as 

reproduced in the regression (Rasche et al., 2013; Saeys et al., 2005). RMSEP displays the 

prediction error and was calculated as root mean squared difference between predictions and 

reference values in the respective measurement unit of the soil property; the lower the RMSEP 

value the better the prediction accuracy (Pirie et al., 2005). 

The ‘developed’ midDRIFTS-PLSR based prediction models were optimized using the 

‘optimization’ function of the OPUS-QUANT2 package (Bruker Optik GmbH) (Rasche et al., 

2013). For each generated prediction model, the pre-processing method was selected based on 

the highest R2 and RPD values and lowest RMSEP. The ‘optimization’ mode of OPUS-

QUANT2 makes use of various mathematical pre-processing methods to improve midDRIFTS-

PLSR-based prediction models by consideration of vital spectral frequencies in the assayed 

spectra. For each generic prediction model developed for each individual soil chemical property, 

the pre-processing method was selected so that PLSR analysis established the best correlation 

between spectral and chemical property data. The following mathematical pre-processing 

treatments were used: 1stD, first derivative; VN, vector normalization; SLS, straight line 

subtraction and COE, constant offset elimination. The ‘optimization’ of midDRIFTS-PLSR-

based prediction models (Table S1) across both countries was performed and optimized 

prediction models were later referred as ‘ComCount’-prediction models. Accuracy of 

‘ComCount’-prediction models was assessed as described above. Finally, chemical soil 

properties of 119 soil samples from Ethiopia were predicted. 

Based on PLSR predictions from the combined data set (‘ComCount’ model) (Ethiopia, DRC), 

midDRIFTS-based PLSR values for TC (R2 = 0.92, RPD = 3.46) and pH (R2 = 0.89, RPD = 

3.02) gave acceptable predictions, while that of TN (R2 = 0.86, RPD = 2.71) was moderately 

acceptable (Table S1). Predictions for Pav (R
2 = 0.14, RPD = 1.08, RMSEP = 11.5) and Kav (R

2 = 

0.05, RPD = 1.03, RMSEP = 710) were not successful. For Pav and Kav wet chemistry data were 
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used for further data analysis. Figure S2 shows the relations between measured and predicted 

values based on the ‘ComCount’ prediction models described in Table S1. The quality of the 

‘ComCount’ prediction models for TC, TN and pH were further confirmed by significant 

Pearson’s correlation coefficients, which ranged from r = 0.921 to r = 0.956 (P < 0.001) (Fig. 

S2). Although the ‘ComCount’ prediction models for Pav and Kav showed limited performance, 

they provided a significant goodness of fit between measured and predicted values (r = 0.28 to r 

= 0.34; P < 0.001). All generic ‘ComCount’ prediction models were developed on basis of 

comparable spectral frequencies (Table S1). 
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Table S1. Calibration results of midDRIFTS spectra of bulk soils across both countries (Ethiopia, DR Congo), based on independent 

test validation (n = 183). 

Soil chemical 

properties1 

Model name Number of 

calibrated/

validated 

samples 

Pre-processing 

method2 

Spectral frequencies Model accuracy 

parameters3 

 R2 RPD RMSEP 

pH pH ComCount 123/61 1stD +VN 2980-2399,1959-1279 0.89 3.02  0.14 

TC [%] TC ComCount 123/61 SLS 2980-2399,1959-1279 0.92 3.46  2.58 

TN [%] TN ComCount 123/61 1stD 2980-2399,1959-1279, 941-698 0.86 2.71  0.03 

Pav [mg kg-1]  pav ComCount 123/61 COE 3658-3317,2980-2399,2301-

1957 

0.14 1.08 11.5 

Kav [mg kg-1 ] Kav ComCount 123/61 VN 1620-939 0.05 1.03 710 

 

1Soil chemical properties: pH, soil pH; TC, total carbon; TN, total nitrogen, Pav, plant-available phosphorous; Kav, plant-available 

potassium. 

2Pre-processing methods (optimization): 1stD, first derivative; VN, vector normalization; SLS, straight line subtraction; COE, constant 

offset elimination. 

3Model accuracy parameters: R2, coefficient of determination; RPD, residual prediction deviation; RMSEP, root mean square error of 

prediction.
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Figure S2. Measured and predicted values of the midDRIFTS-PLSR-based predictions of the 

selected soil chemical properties (A = total carbon (TC) (%)); B = total nitrogen (TN) (%); C = 

soil pH; D = available phosphorus (Pav) (mg kg-1), E = available potassium (Kav) (mg kg-1)), 

using respective ‘ComCount’ prediction model described in Table S1. 
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 Peak area integration in midDRIFTS spectra 

 

Peak area integration by midDRIFTS using OPUS 7.5 software (Bruker Optik GmbH) (Demyan 

et al., 2012) provided an additional measure of the soil fertility status of smallholder farms of 

Ethiopia. Three prominent peaks (i.e., 2930, 1620 and 1159 cm-1) with their respective 

integration limits (3000-2800, 1770-1496, 1180-1126 cm-1) representing different organic 

functional groups of SOC were used as additional soil fertility indicators (Baes & Bloom, 1989; 

Demyan et al., 2012; Senesi et al., 2003). Peak 2930 cm-1 represents less stable aliphatic C-H 

groups, components of the active SOC pool (Demyan et al., 2012; Laub et al., 2019). Peak 1620 

cm-1 represents more stable aromatic C=C bonds as part of the recalcitrant SOC pool (Demyan et 

al., 2012; Laub et al., 2019). The third peak at 1159 cm-1 represents C-O poly-alcoholic and ether 

groups, commonly regarded as very stable C compounds (Demyan et al., 2012; Senesi et al., 

2003). The ratio of the functional groups 1620 and 1159 versus 2930 cm-1 are commonly 

calculated as SOC stability index, which is used as soil quality indicator; the higher 1620:2930 

and 1159: 2930 ratio is the higher SOC stability index (Demyan et al., 2012; Inbar et al., 1989; 

Laub et al., 2019). 

 

Table S2 Selected soil fertility indicators (TC, total carbon; TN, total nitrogen; Pav, available 

phosphorus, pH, soil pH) in different wealth groups and farmer defined soil fertility groups Stand 

errors are given in brackets. 

 

Wealth status (WS) Fertility class (FC) TC (%) TN (%) Pav (kg-1) pH 

Wealthy Less fertile 2.56a(0.06) 0.23a(0.01) 2.99b(1.2) 4.5ab(0.07) 

Fertile 2.60a(0.06) 0.26a(0.01) 7.89a(1.2) 4.64a(0.07) 

Poor Less fertile 2.38b(0.06) 0.26a(0.01) 4.23a(1.2) 4.44b(0.07) 

Fertile 2.55ab(0.06) 0.26a(0.01) 6.08a(1.2) 4.59a(0.07) 

P level (WS × FC)   Ns Ns * Ns 

P value (FC)  Ns Ns ** ** 

P value (WS)  Ns Ns ns Ns 
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3.1 Abstract 

This study verified the inter-related effect of “market distance”, defined as walking time, “farm 

typology”, defined as resource endowment, and “site”, defined as geographic location with 

contrasting agro-ecologies, as well as farmers’ indigenous knowledge on soil fertility variability 

in smallholder farming systems in two distinct regions (Bushumba, Mushinga) of South-Kivu, 

DR Congo. A total of 384 soil samples were selected from representative farmers’ fields and 

analyzed for soil pH, soil organic carbon (SOC) content and quality, as well as nutrient contents, 

using midDRIFTS (mid-infrared diffuse reflectance Fourier transform spectroscopy) and wet 

chemistry analyses. MidDRIFTS was also used to calculate SOC stability indexes as SOC 

quality proxies. “Market distance” and “farm typology” were key determinants of soil fertility 

variability, both with contrasting trends in Bushumba and Mushinga. Decreasing soil fertility 

with increasing market distance was noted across all farm typologies. “Farm typology” was 

related to exchangeable calcium and magnesium, while “site” resulted in a difference of plant 

available phosphorus. SOC quality indexes were related to “site”, interacting with “market 

distance”. A “market distance” effect became obvious in the medium wealthy and poor farms of 

Mushinga, where a lower SOC quality in remote fields plots was noted with increasing market 

distance. In agreement with farmers’ indigenous knowledge, soil fertility levels were higher in 

deep than shallow soils, which were reflected in higher nutrient stocks in deep soils receiving 

organic amendments. Our results inferred that soil fertility variability across smallholder farms 

must consider various inter-related determinants as basis for site-specific fertility management 

interventions. 

 

Keywords: market distance, soil fertility variability, midDRIFTS, farm typology, farmers’ 

indigenous knowledge. 
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3.2 Introduction 

In the South-Kivu region of the Democratic Republic of Congo (DRC), the rural population 

currently has approximately 3.8 million people (250 inhabitants per km2) (World Bank, 2018; 

Mbadu Muanda et al., 2018). More than 80% of this population are smallholders relying on 

subsistence agriculture as their main activity for income generation (Ministère du Plan 

RDC/DSRP, 2005). Due to the annual growth rate of the rural population of 3.3% (UNPD, 

2017), the region of South-Kivu has been facing low agricultural productivity, a consequence of 

extraordinarily high levels of soil fertility depletion resulting from intensive cultivation without 

adequate nutrient replenishment ( Vanlauwe et al., 2017; Pypers et al., 2011). A similar trend has 

been noted in many other regions of sub-Saharan Africa (SSA) (Tadele, 2017; Tully et al., 2015). 

As a consequence, food insecurity has become a major societal challenge putting people in 

South-Kivu at severe risk (FAO et al., 2018; Murphy et al., 2015). There is a central demand for 

intensified food production in the region, while building up and maintaining soil fertility through 

integrated soil fertility management (ISFM) interventions, including both organic and mineral 

fertilizers, remains challenging (Vanlauwe et al., 2010; Sanginga & Woomer, 2009). 

Inadequate infrastructure, such as the bad status of roads and transportation systems, affects 

market access, a prerequisite for agricultural development in smallholder farming systems of 

South-Kivu (Ulimwengu & Funes, 2009). A study in Uganda performed by Yamano and Kijima 

(2010) revealed positive correlations between household income and soil fertility with adequate 

road infrastructure. Availability and accessibility of appropriate infrastructure supported the 

economic development with access to cash and fertilizer inputs that enhance overall soil fertility 

status. It could be proposed that income of farmers is determined by market access, yet there is 

no knowledge on how market access (Birachi et al., 2013; Crawford et al., 2003; Minten & Kyle, 

1999), especially the distance from the field plots to the market, sets the baseline for smallholder 

farmers to optimize soil fertility to the extent of their socio-economic capabilities and 

biophysical contexts. Therefore, prioritization of appropriate ISFM technologies for smallholder 

farmers remains challenging, as further aggravated by the huge agro-ecological variability across 

landscapes and the generally limited information on the soil fertility status along market 

gradients in Central and Eastern Africa (Rahn et al., 2018). Besides, in South-Kivu, rural 

communities are heterogeneous (Cox, 2012), reflected in highly variable resource endowments 
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for individual households, a similar circumstance reported for Western Kenya (Tittonell et al., 

2010; Ojiem et al., 2006). This has resulted in a large variation in soil fertility levels between 

farms and even between field plots within a farm, affecting decisions of farmers regarding on-

farm soil fertility investment (Tittonell et al., 2005). 

There is still a considerable barrier to soil fertility management prioritization as previous 

assessments of soil fertility in DRC (Dontsop-Nguezet et al., 2016) did not consider the 

integration of socio-economic and biophysical factors. Socio-economic factors including 

resource endowment, farmers’ decision (i.e. perception), market distance and biophysical factors 

(e.g., agroecology, landscape heterogeneity) influence soil fertility levels of smallholder farming 

systems across spatial scales (Vanlauwe et al., 2016; Tittonell & Giller, 2013; Crawford et al., 

2003). Assessment of interactions between socio-economic and biophysical factors is difficult 

since soil type heterogeneity between and within farms, which is further associated with land use 

and management practices, resulted in obvious soil fertility distinctions at farm level and across 

farms (Vanlauwe et al., 2006). Currently, both scientists and farmers collaborate intensely to 

develop applicable solutions through participatory research (Vanlauwe et al., 2017). However, 

for soil fertility management strategies, it remains vague as to how farmers’ soil fertility 

assessment aligns with that of scientifically verified quantitative methods, although smallholder 

farmers have developed the ability to perceive heterogeneity of soil fertility across landscapes 

(Yeshaneh, 2015). It would be useful to accompany such process with scientific evidence since 

incorrect farmers’ perception of soil fertility (e.g knowledge to distinguish fertile and less fertile 

soils based on local indicators such as soil depth, color or texture) may lead to inappropriate 

ISFM interventions (Kuria et al., 2019). Science-based approaches, on the other hand, generate a 

rather general understanding of soil fertility that may not present realistically local conditions 

with their complex socio-economic characteristics. Indigenous knowledge of smallholder 

farmers could be a critical aid to guiding agricultural interventions to sustain farm productivity 

and provide support tools for quantitative soil fertility surveys (Dawoe et al., 2012). 

To estimate soil fertility levels across spatial scales, midDRIFTS (mid-infrared diffuse 

reflectance Fourier transform spectroscopy) has been evaluated as a suitable tool to assess soil 

fertility variability in and among African agricultural farming systems (Cobo et al., 2010; 

Shepherd & Walsh, 2007; Vågen et al., 2006). Basically, midDRIFTS employs a non-destructive 
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estimation of physico-chemical soil properties allowing the analysis of spatial variability of soil 

properties across agro-ecologies (Shepherd & Walsh, 2014; McCarty et al., 2002). Coupled with 

partial least squares regression (PLSR)-based prediction, midDRIFTS is suited to process large 

batches of soil samples (Rasche et al., 2013; Cobo et al., 2010). MidDRIFTS also enables the 

spectroscopic assessment of soil organic carbon (SOC) quality (e.g., functional groups of SOC 

(such as aliphatic and aromatic compounds), providing a measure of SOC stabilization in 

agricultural soils (Mirzaeittalarposhti et al., 2015; Demyan et al., 2012). 

The first objective of this study was to assess the inter-related influence of market distance and 

resource endowment classes on soil fertility status of smallholder farming systems of South-Kivu 

in DRC, as a case study for Central Africa. The second objective was to verify, under contrasting 

socio-economic and agro-ecological contexts, that farmers’ indigenous knowledge is a valuable 

proxy to assess soil fertility status across landscapes complementing a science-based approach. 

As market access was suggested as a determinant of agricultural development in DRC, it was 

hypothesized that with increasing market distance, the soil fertility statuses of smallholder 

farming systems decreases since field plots from remote areas, irrespective of the smallholder 

wealth status, do not have the opportunity to benefit from improved soil fertility management. It 

was further hypothesized that both farmers’ indigenous knowledge and a science-based approach 

result in a similar reflection of on-farm soil fertility across agro-ecologies. 

3.3 Material and methods 

3.3.1 Study site description 

The soil fertility survey was conducted in the “Territoire de Kabare”, “groupement” of 

Bushumba (Site #1, 2º 21’S and 28º 49’E, 1740 m above sea level (m a.s.l.)), and “Territoire de 

Walungu”, “groupement” of Mushinga (Site #2, 2º 46’S and 28º 41’E, 1604 m a.s.l.) in South-

Kivu in DRC (Fig. 1). At Bushumba, the soil fertility survey was performed in the villages of 

Mulengeza and Bushumba, while in Mushinga, it was conducted in Madaka and Luduha (Fig. 1). 

This survey strategy enabled a random distribution of sampling locations to test the effects of the 

main research factors “market distance”, “farm typology”, and “site” on the soil fertility status of 

assayed smallholder farms. Mushinga (1200-1800 mm annual rainfall) is characterized by a 

slightly drier climate than Bushumba (1500-1800 mm). Soils in Bushumba are classified as 
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Nitisols (IUSS Working Group WRB, 2014) and characterized by a dominant textural fraction of 

clay (48-69%) and 25-27% sand. Total carbon ranged from 1.6 to 5.2%, pH (CaCl2) was 5.1, and 

total nitrogen was approximately 0.45% (Muliele et al., 2015, Lunze et al., 2012). Soils in 

Mushinga (Ferrasols; (IUSS Working Group WRB, 2014) are characterized by a wide variation 

in textural fractions of clay (17-70%), a sand content of 20-29%, pH (CaCl2) of 4.8, low base 

saturation (6.6 cmol(+) kg-1) and a low total carbon ranging from 1.2 to 3.0% (Pypers et al., 

2011). Overall, soils in Bushumba are considered as medium fertile soils since they are 

developed from recent rejuvenation by volcanic ash depositions (Baert et al., 2012; Moeyersons 

et al., 2004). Highly weathered soils from Mushinga are characterized as less fertile with low 

available phosphorus and high aluminum saturation since they developed during Pleistocene 

eruptions (Pypers et al., 2011). 

 

Figure 1. Maps of the two study sites Bushumba (bottom left) and Mushinga (bottom right) in 

South-Kivu (DR Congo). The soil samples were collected on smallholder farms (red dots) in the 

four villages Bushumba and Mulengeza (site Bushumba) as well as Madaka and Luduha (site 

Mushinga) with different distances to the market centers (green squares). 
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3.3.2 Farm characterization 

Villages and households included in this study were selected based on socio-economic 

indicators, such as market access and population density (Cox, 2012; Barrett, 2008). For 

population density, villages with more than 500 households and a population density greater than 

or equal to 100 inhabitants km-2
 were considered. Walking distance from the field plots to the 

closest regional market was measured in minutes and ranged from 15 to 200 min. For socio-

economic indicators, village meetings and focus group discussions with farmers were conducted 

to define farm typology classes based on resource endowment. From these discussions, total land 

area (ha) owned by a household was considered as the prevailing typology indicator (Chikowo et 

al., 2014; Rusinamhodzi et al., 2012; Tittonell et al., 2005). No additional wealth indicators such 

as livestock numbers and rates of mineral fertilizer application were used due to their absence or 

lack of use, respectively. Finally, a total of 96 households (farms) were selected with regard to 

land holding size: (i) “wealthy” (>2 ha), (ii) “medium wealthy” (1-2 ha), and (iii) “poor” (<1 ha). 

To assess farmers’ indigenous knowledge on soil fertility, household heads from selected farms 

were separated into male and female groups and interviewed. Focus group discussions and 

participatory rural appraisals were used through semi-structured interviews (Chambers, 1992). 

Key information on criteria and indicators used to distinguish “fertile” from “less fertile” field 

plots was recorded. Interviews were performed with the same farmers invited for the soil fertility 

survey. In total, 93 farmers were interviewed, while the remaining 3 farmers were not available. 

To validate farmers’ indigenous knowledge on the fertility status, each household was requested 

to indicate their most and less fertile field plots to allow a representative survey of soil fertility 

variability across each farm. Household heads were also interviewed for information regarding 

the most relevant soil fertility indicators (e.g., soil color, soil depth, soil texture, soil drainage). 

 

3.3.3 Soil sampling and soil analysis 

Soil samples were obtained using the Y-shaped scheme technique (Vågen et al., 2012). The Y-

frame with 12.2 meters in diameter was placed in the center of each field to avoid any edge 

effects and extended 5.64 meters to each sub-plot. During the sampling campaign, samples from 

the top layer (0-20 cm) and a deeper layer (20-50 cm) of the soils were collected in 4 sub-plots of 

0.01 ha. Finally, a total of 384 geo-referenced soil samples on 96 farms for the entire study area 
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were obtained (2 study sites × 2 villages per site × 3 farm typologies per village × 8 farms per 

typology × 2 plots per farm × 2 soil depths per plot). Out of 384 soil samples collected, 24 soil 

samples were excluded due to mislabeling during soil sample collection. Remaining soil samples 

(n = 360) were air-dried, passed through a 2 mm sieve, and shipped for further analysis to 

University of Hohenheim, Stuttgart (Germany). 

The midDRIFTS analysis of soil samples was performed according to Rasche et al. (2013), while 

midDRIFTS coupled with partial least square regression (PLSR)-based prediction of soil 

chemical properties (i.e., SOC, TN, soil pH, Pav, Kav) was done according to Mirzaeitalarposhti et 

al. (2015). As prerequisite for property prediction, a defined proportion of the entire sample set 

was subjected to wet chemistry (see supplementary materials of this manuscript). Briefly, soil 

organic carbon (SOC) and total soil nitrogen (TN) contents were analyzed by dry combustion. 

Soil pH (CaCl2) was determined according to Houba et al. (2000). Available phosphorus (Pav) 

was measured based on Bray1 extraction (Bray & Kurtz, 1945), and plant available potassium 

(Kav) according to Schüller (1969). Since predictions of exchangeable calcium (Caex) and 

magnesium (Mgex) were not successful, all soil samples were processed by wet chemistry 

according to Mehlich (1984). 

The midDRIFTS-based soil organic carbon (SOC) stability indexes (ratios of aromatic to 

aliphatic functional groups (1620:2930, 1530:2930, 1159:2930)) were calculated based on the 

relative peak area of 4 selected midDRIFTS peaks (2930 cm-1 (aliphatic C-H stretching), 1620 

cm-1 (aromatic C=C, COO- stretching), 1530 cm-1 (aromatic C=C stretching), 1159 cm-1 (C-O 

bonds of poly-alcoholic and ether groups)) (Table 1) (Demyan et al., 2012).  
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Table 1 MidDRIFTS peaks representing organic functional groups considered for SOC quality 

analysis 

Peak 

name 

Integration limit 

[cm-1] 

Assignment of functional 

group 

Hypothesized 

stability 

2930 3010-2800 Aliphatic C-H stretchinga Labile 

1620 1754-1559 Aromatic C=C, COO- 

stretchinga 

Intermediate 

1530 1546-1520 Aromatic C=C stretchinga Intermediate 

1159 1172-1148 C-O bonds of poly-alcoholic 

and ether groupsb 

Recalcitrant  

aBaes and Bloom, 1989; bDemyan et al., 2012. 

3.3.4 Statistical data analysis 

The data set was analyzed in a mixed model procedure (Piepho et al., 2003) implemented in R 

statistical software version 3.6.0 (R Core Team, 2019). Analysis of variance (ANOVA) was 

performed for market distance, farm typology (resource endowment class), site, and farmers’ 

knowledge as fixed factors, while farm sampling plots entered as random terms for prediction of 

soil chemical properties using lmerTest package (Kuznetsova et al., 2017). Model selection was 

based on Akaike information criterion (AIC). Means comparison and their separation between 

factors and their interactions were performed according to Searle et al. (1980). Linear regressions 

were applied to reveal relationships between soil chemical properties and hypothesized soil 

fertility determinants (i.e., market distance, farm typology, farmers’ indigenous knowledge and 

site). Linear Pearson correlations were calculated to validate links between SOC and 

midDFRIFTS peak data (i.e., relative peak area, SOC stability indexes). The chi-squared test for 

independence was applied to determine significant differences within local soil fertility 

indicators used by smallholder farmers. 
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3.4 Results 

3.4.1 Inter-related effects of market distance, farm typology, and sites on soil fertility 

properties 

There was no clear inter-related effect of market distance and farm typology (i.e., resource 

endowment) on soil fertility properties, which was only significant for Caex (P <0.05) and Mgex 

(P < 0.001) (Table 2, Fig. 2). The inter-related effect of market distance and sites showed a 

significant effect for TN (P < 0.001) (Table 2, Fig. 2). As a single factor, however, market 

distance revealed a significant effect for SOC (P < 0.01), TN (P < 0.001), and Mgex (P < 0.05) 

(Table 2, Fig. 2). This was corroborated by linear regression analyses showing negative relations 

between market distance and SOC (“wealthy” (R2 = 0.20, P < 0.01), ”medium wealthy” (R2 = 

0.42, P < 0.001), “poor” (R2 = 0.30, P < 0.001)), and TN (“wealthy” (R2 = 0.20, P < 0.01), 

“medium wealthy” (R2 = 0.38, P < 0.001), “poor” (R2 = 0.27, P < 0.001)) (Fig. 2 a-b). A 

significant positive influence of farm typology was found for Caex and Mgex in Bushumba, while 

a negative correlation was noticed in Mushinga with increasing market distance (P < 0.01). 

Considering factor site only, a significant difference of TN, Pav, Caex and Mgex contents was 

observed (P < 0.05) (Table 2). 

 

Table 2 Effects of market distance, farm typology and sites with their interactions on soil 

fertility properties (for data values see Fig. 3 and 4) 

Properties Factors and interactions 

Market 

distance 

Farm 

typology 

Site Market distance × 

Farm typology 

Market distance 

× Site 

SOC [g kg-1] ** ns ns Ns * 

TN [g kg-1] *** ns *** Ns *** 

Soil pH [CaCl2] ns ns ns Ns * 

Pav [mg kg-1] ns ns * Ns Ns 

Kav [mg kg-1] ns ns ns Ns Ns 

Caex [cmol(+) kg-1] ns ** *** * Ns 

Mgex [cmol(+) kg-1] * *** * *** Ns 

Peak 2930 [cm-1] ns ns *** Ns ** 

Peak 1620 [cm-1] *** ns ** ** Ns 

Peak 1530 [cm-1] *** ns ns Ns *** 

Peak 1159 [cm-1] ** ns *** Ns Ns 

Ratio of 1620:2930 ns ns *** Ns Ns 
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Ratio of 1530:2930 ns ns *** Ns ** 

Ratio of 1159: 2930 ns ns *** Ns Ns 

Clay (%) * ns * Ns Ns 

Sand (%) ** ns * Ns Ns 

Silt (%) ns ns ns Ns Ns 

 

Significance levels: P<0.001 ‘***’, P<0.01 ‘**’, P<0.05 ‘*’, P>0.05 ‘not significant (ns)’. 

Farm typology (wealthy, medium wealthy and poor) refers to farmers’ wealth class based on 

farm size. 

Sites (Bushumba and Mushinga) located in the region, where the soil fertility survey was 

conducted.
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Figure 2 Contents of total carbon (SOC, P<0.05; a) and total nitrogen (TN, P<0.05; b), as well 

as exchangeable calcium (Caex, P>0.01; c) and magnesium (Mgex, P<0.01; d) in soils of surveyed 

smallholder households in the two sites Bushumba and Mushinga considering the two factors 

“farm typology” and “market distance”. Gray color in scatter plots representings the confidence 

interval. 
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The relative peak areas of 4 representative peaks at 2930 (aliphatic C-H stretching), 1620 

(aromatic C=C and COO- stretching), 1530 (aromatic C=C stretching), 1159 (C-O bonds of poly-

alcoholic and ether groups) cm-1 and respective SOC stability indexes (i.e., 1620:2930, 

1530:2930, 1159:2930) were considered as SOC quality indicators (Table 1). Market distance 

exposed a significant effect on relative areas of peaks 1620, 1530 and 1159 cm-1 (P < 0.01) 

(Table 2, Fig. 3). Its interaction with farm typology was significant for peak 1620, which 

increased in farm typology “wealthy” with increasing market distance (P < 0.01) (Table 2). 

Factor “site” had the strongest effect on SOC quality proxies, which was significant for all peak 

areas, except 1530 cm-1 (P < 0.01) (Table 2, Fig. 3). Peaks 2930 and 1530 cm-1 revealed a 

significant interaction between market distance and site (P < 0.01); as market distance increases, 

peaks 2930 and 1530 cm-1 in Bushumba increased, while they were reduced in Mushinga for the 

medium wealthy class (Table 2, Fig. 3). Similar results were noticed for 1530 cm-1 in Mushinga. 

Moreover, site had a significant effect on all 3 SOC stability indexes (P < 0.001), and for the 

ratio 1530:2930 showing also a significant interaction with market distance and site (P < 0.01) 

(Table 2, Fig. 3). Except for the ratio of 1620:2930, all midDRIFTS-derived SOC quality 

indicators revealed a significant positive correlation with SOC content (Table 3). 

Table 3 Pearson correlation (r) between organic carbon (Org. C) content and midDRIFTS peak 

area analysis derived SOC quality indicators 

Variables R F test 

Peak 2930 [cm-1] 0.24 ** 

Peak 1620 [cm-1] 0.48 *** 

Peak 1530 [cm-1] -0.27 *** 

Peak 1159 [cm-1] -0.31 *** 

Ratio 1620:2930 -0.11 Ns 

Ratio 1530:2930 -0.26 *** 

Ratio 1159:2930 -0.22 ** 

Significance levels: P<0.001 ‘***’, P<0.01 ‘**’, P>0.05 ‘ns’. 
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Figure 3 Ratios of midDRIFTS peaks 1620:2930 (a), 1520:2930 (b), and 1159:2930 (c) displaying the 

SOC quality of soils of surveyed smallholder households in the two sites Bushumba and Mushinga 

considering the two factors “farm typology” and “market distance”. Gray color in scatter plots represents 

confidence intervals.  
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3.4.2 Farmers’ indigenous knowledge across sites to predict soil fertility variability 

Smallholder farmers used different indicators to assess soil fertility, whereby soil depth (“deep” 

as representative for fertile and “shallow” for less fertile soils) and soil color (“black” as 

representative for fertile and “red” for less fertile soils) were the main indicators (Table 4).  

Table 4 Proportional contribution (%) of farmers to the ranking (Chi2) of selected soil fertility 

indicators across sites 

Indicators for soil fertility Chi2 Proportion (%) 

Soil depth 22.1 *** 49 

Soil color 9.5 * 22 

Soil texture 6.9 ns 16 

Soil drainage 4.9 ns 11 

Distance from homestead 1.0 ns 2 

Significance levels: P<0.001 ‘***’, P<0.05 ‘*’, P>0.05 ‘ns: not significant’. 

Complementary, laboratory analysis revealed higher concentrations of SOC and Pav in “deep” 

than “shallow” soils (P < 0.05) (Fig. 4 a-b), with similar trends for TN, Kav, Caex, and Mgex 

(Table 5). In agreement with farmers’ indigenous knowledge, wet chemistry analyses revealed 

higher concentrations of Pav in “dark” than “red” soils (P < 0.05) (Table 5, Fig. 4 d). SOC, on the 

other hand, disagreed with farmers’ indigenous knowledge, revealing higher values in the “red” 

than “dark” soils (P < 0.05) (Table 5, Fig. 4 c). The same trend was true for TN, while remaining 

soil chemical properties did not reveal a significant effect between “dark” and “red” soils (P > 

0.05) (Table 4). 
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Table 5 Averages of selected local soil fertility indicators in soil chemical properties measured across the two sites from top- and 

subsoil (SOC, TN, soil pH, Caex, Mgex, n = 360), and (Pav, Kav, n = 96)  

Selected indicator  Site

s 

Soil chemical properties 

SOC  

[g kg-1] 

TN  

[g kg-1] 

Soil 

 pH 

Pav  

[mg kg-1] 

Kav  

 [mg kg-1] 

Caex 

[cmol(+)kg_1] 

Mgex 

[cmol(+)kg-1] 

Soil depth  

[0-50 cm] 

Deep B 3.05 (1.20)ab 0.24 (0.11)ab 4.87 (0.52)b 12.54 (8.53)c 222.07 (208.40)ab 5.20 (2.40)b 1.04 (0.43)b 

Shallow B 2.80 (1.12)a 0.22 (0.10)a 4.53 (0.49)a 9.16 (7.99)b 186.77 (169.85)a 4.38 (2.11)b 0.81 (0.36)a 

Deep M 3.45 (1.22)b 0.27 (0.11)b 4.70 (0.54)ab 8.75 (6.20)ab 273.9 (191.07)b 2.63 (2.36)a 0.77 (0.40)a 

Shallow M 2.98 (1.22)a  0.24 (0.11)ab 4.60 (0.45)a 5.67 (8.63)a 223.64 (200.03)ab 2.32 (2.36)a 0.71 (0.42)a 

 

** * *** *** * * * 

Soil color Black B 2.90 (1.03)a 0.23 (0.09)a 4.75 (0.45)a 11.26 (7.33)b 194.56 (174.83)a 4.98 (2.03)b 0.94 (0.37)c 

Red B 2.95 (1.01)a 0.23 (0.09)a 4.65 (0.44)a 10.44 (7.21)b 214.28 (156.89)a 4.60 (1.93)b 0.91 (0.34)bc 

Black M 2.60 (1.05)a 0.20 (0.10)a 4.63 (0.47)a 9.32 (7.54)b 242.78 (170.12)a 2.68 (2.05)a 0.77 (0..37)ab 

Red M 3.84 (1.05)b 0.31 (0.10)b 4.67 (048)a 5.10 (7.76)a 254.76 (175.59)a 2.27 (2.09)a 0.71 (0.34)a 

   

** *** Ns *** Ns * * 

  

Site: B = Bushumba, M = Mushinga. 

Standard deviation is given in parentheses. 

Superscript letters display statistical differences from the interaction indicator with site.  

Significance levels: P<0.001 ‘***’, P<0.01 ‘** 
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3.5 Discussion 

3.5.1 Market distance, farm typology and sites as key determinants of soil fertility variability  

Smallholder farming systems in South-Kivu (DR Congo) are influenced by various socio-

economic and agro-ecological factors. Our study demonstrated that not only the distance of 

farmers to markets, but also farm typology were key determinants of soil fertility, both with 

contrasting trends in the two study regions Mushinga and Bushumba. Specifically, decreasing 

soil fertility, as exemplified by SOC and TN, with increasing market distance was noted across 

all farm typologies, and was most pronounced in Mushinga. This trend was explained by 

farmers’ opportunities to access external inputs available in close proximity to the markets 

(Soule & Shepherd, 2000). However, Pav and Kav were more related to site specificity, probably 

due to the influence of both soil mineralogy and pH levels that differed between sites. Farmers 

close to markets purchase and transport mineral and organic fertilizers at lower costs than 

farmers in remote areas exposed to unfavorable road infrastructure and transportation 

opportunities. Moreover, the proximity to markets provides farmers with the opportunity to sell 

surplus yields of crops. This generates extra income to support increased access to organic 

fertilizers, irrespective of the wealth status of the farmers. These benefits translate into soil 

fertility improvement masking partially the hypothesized effect of farm typology. This 

assumption was corroborated by earlier studies conducted in Kenya and Uganda, observing that 

the proximity of farms to markets influenced strongly the amount of applied fertilizers across 

farms regardless of the wealth status (Yamano & Kijima, 2010; Tittonell et al., 2005). 

The survey of the SOC content as a proxy of soil fertility was complemented with SOC stability 

indexes, as calculated from relative areas of selected midDRIFTS peaks (i.e., 1620:2930, 

1530:2930, 1159:2930; Demyan et al., 2012). However, neither distance to market nor farm 

typology alone had a significant effect on the three SOC stability indexes, which was explained 

by the lack of both, inorganic and organic fertilizers, leading to lower SOC quality. Only the 

factor site revealed a clear distinction, which was also reflected in its significant interaction with 

factor market distance (i.e., 1530:2930). A comparable, but non-significant interaction was found 

for the ratio 1620:2930. The effect of market distance became most obvious in the medium 

wealthy and poor farms surveyed in Mushinga. For these farm typologies, an increasing ratio of 
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1530:2930 with increasing market distance was noted, implying a lower SOC quality due to 

limited or absent organic inputs. This assumption was corroborated by the negative correlation 

between the ratio of 1530:2930 and SOC content. A comparable trend was found on the field 

plots of the poor farmers with remote distance to markets in Bushumba for peaks at 1530 and 

1159 cm-1. This corroborated the former argument that primarily wealthy farmers were able to 

purchase farm yard manure as the only locally available fertilizer (Soule & Shepherd, 2000). 

However, contrasting trends of respective SOC stability indexes were obtained with increasing 

market distance. Even though Veum et al. (2013) and Ding et al. (2002) have suggested that the 

high ratio of poly-alcoholic and ether groups over that of aliphatic compounds (1159:2930) may 

be related to a lower SOC quality, further research is needed to understand the underlying 

mechanism of the results obtained in this study. Due to detection limit, no clear effect of tested 

factors was revealed for peak 2930 cm-1, representing the labile SOC pool (Baes & Bloom, 

1989), which was explained by generally low inputs of organic materials (e.g., farm yard 

manure, crop residues) exposed to high turnover (Demyan et al., 2012). 

In contrast to SOC and TN, contents of exchangeable Ca and Mg were driven by the interaction 

of both market distance and farm typology. The two sites revealed reverse trends for these 

cations with increasing market distance. While decreasing soil nutrient stocks with increasing 

market distance were expected, as noted in Mushinga, Bushumba revealed the opposite for 

wealthy and medium wealthy farmers. It was assumed that these farmers with market proximity 

had favorable economic opportunities, exerting considerable production pressure on their land to 

maximize yield and income (Kansiime et al., 2018; Bationo et al., 2006). Due to such 

continuously high cultivation pressure, the poor farmers in Mushinga depleted their soils in Ca 

and Mg. Meanwhile in Bushumba, wood ash derived from kitchen waste (Bekunda & Woomer, 

1996) is broadcasted on farm plots close to the market increasing soil nutrient contents. The 

positive effect of this fertilization strategy is more pronounced on farms with less land (<1 ha) 

than on wealthy and medium wealthy farms that have more land (>2 ha), as observed by Place et 

al. (2003). In contrast to farm plots near to markets, remote field plots are less depleted of 

nutrients because of lower cultivation pressure. Consequently, adequate levels of Ca and Mg 

stocks are maintained in the soil. 
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3.5.2 Indigenous knowledge to validate soil fertility status across market gradients  

Existing farmers’ knowledge to assess soil fertility has been based mainly on local indicators, 

including soil color and soil depth (Dawoe et al., 2012; Desbiez et al., 2004). This study has 

evaluated correspondence and discrepancies between farmers’ indigenous and scientific 

knowledge about the soil fertility status of contrasting farm typologies, by testing whether soils 

considered fertile or less fertile by farmers show a similar fertility status according to science-

based measurements using the midDRIFTS approach. The laboratory analysis conducted in this 

study was in agreement with the assessment of soil fertility by smallholder farmers, except for 

soil color, a finding in line with Yeshaneh (2015) and Murage et al. (2000). A range of soil 

fertility indicators, such as soil depth, soil color, soil texture and soil drainage, have been 

developed by smallholder farmers to distinguish between productive (fertile) and non-productive 

(less fertile) farm plots. Our study found soil depth and soil color are the most common 

indicators used by the farmers across sites. In agreement with farmers’ knowledge, soil fertility 

levels were higher in deep than shallow soils, which were reflected in generally higher nutrient 

concentrations in deep soils across surveyed field plots receiving organic amendments. Although 

soil color was the second most important indicator, a clear correlation to our laboratory 

measurements was not found. Additionally, SOC and TN contents were higher in red than black 

soils. We assumed that soil color was more related to soil physical properties such as soil texture.  

Dawoe et al. (2012) as well as Gray & Morant (2003), also found a red soil color to indicate a 

sandy soil texture, while a grey color was related to a loamy soil texture. In this respect, the 

Madaka site with a generally high agricultural potential, was dominated by a sandy soil texture 

with the typical reddish color originating from basaltic rocks (van Engelen et al., 2006). 

3.6 Conclusions 

This study has found that the inter-related effect of market distance and farm typology are a main 

driver of soil fertility variability across the study sites. Soil fertility, as displayed by SOC and TN 

concentrations, decreased with increasing market distance, with exception of the wealthy farm 

class of Bushumba. This implied that within the market distance gradients (i.e. close, medium, 

remote), site effects including soil type and climate played a significant role in shaping the soil 

fertility variability across surveyed farms. It was also evident that farmers’ management 
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practices and resource endowment contributed to soil fertility variability, particularly in farms 

plots remote to markets. 

Laboratory measurements of soil chemical parameters agreed with farmers’ assessment on soil 

fertility status. This suggested that farmers’ indigenous knowledge is a valuable proxy for soil 

fertility surveys and may be integrated in prospective science-based soil fertility assessments. 

However, care should be taken as some indicators used by farmers, such as soil color, may not 

only relate to soil fertility status, but also reflect soil mineralogy and soil texture. 

Our results further inferred that ISFM interventions in smallholder farms must consider various 

inter-related features to determine soil fertility variability across smallholder farmers. We have 

complemented these features by the variable market distance to distinguish soil fertility levels 

across spatial scales. Our assumptions were based primarily on land size, used as key feature to 

define the wealth status (farm typology) of targeted smallholder farms in the study area. In this 

regard, prospective soil fertility surveys should not only consider resource endowment (land 

size) to characterize the wealth status of farmers, but also other socio-economic indicators, 

including, but not limited to, livestock holding (limited in the discussed study area), availability 

of labor and use of mineral and organic fertilizers. Such advanced knowledge will contribute 

essentially to the development of niche-based ISFM intervention strategies in soil fertility 

constrained smallholder farming systems across sub-Saharan Africa. 
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4.1 Abstract 

Accurate estimation of microbial carbon use efficiency (CUE) in soil is challenged by a high 

degree of genetic and environmental variability. Different methods vary in their estimates of soil 

microbial CUE giving the room to select the optimal method for a specific research task, while 

integrating different methods could improve our understanding of processes controlling CUE 

variability. Aiming to estimate CUE during plant residue decomposition in different soils, we 

applied the conventional C-balance method, single C-cycling enzymatic stoichiometry (SCE-

STM) and newly proposed “multi”-C-cycling enzymatic stoichiometry (MCE-STM) methods. 

The STM approach derives CUE from elemental ratios of microbial biomass, substrate, and 

activities of C and nutrient (e.g. N) acquiring exoenzymes. The extended MCE-STM is a 

modification of the SCE-STM method, where we used the sum of three C-cycling enzymatic 

activities (β-glucosidase (BGL), β-D-cellobiohydrolase (BCL), β-xylosidase (BXL)) as proxy for 

CUE calculation, instead of using a single C-acquiring enzyme (BGL). We hypothesized that 

MCE-STM provides a more reliable estimation of microbial CUE in soils amended with 

complex plant residues than the SCE-STM or the C balance approach. The comparison of 

methods was done in a laboratory incubation experiment, using two soils differing mainly in 

acidity level mixed with two specimen of plant residues differing in lignin (L) and polyphenol 

(PP) content. We anticipated a higher microbial CUE in less acidic (pH 5.1) soil amended with 

higher quality (lower (L+PP)/N) ratio)) plant residues than in more acidic (pH 4.3) soils 

amended with medium quality (higher (L+PP)/N ratio) plant residues, due to less energy 

investment in microbial metabolism the former case. Microbial CUE estimations were completed 

at 7, 15, 30, 45 and 60 days. Lower CUE values (0.09-0.18) were recorded by MCE-STM as 

compare to those (0.24-0.47) obtained by C-balance and SCE-STM methods. Irrespective of 

applied CUE estimation methods, higher CUE was recorded in less acidic (pH 5.1) soil amended 

with residues of higher quality than the other three combinations. Microorganisms invested more 

energy to support growth in low pH soil in order to tolerate soil acidity, which, in turn, 

suppressed N-acquiring enzymatic activity and further decreased CUE. The modification of the 

MCE-STM method for CUE determination proposed in this work was capable to quantify the 

combined effect of soil pH and plant residue quality on efficiency of microbial metabolism. It, 
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therefore, improved the original stoichiometric modelling approach (SCE-STM), which relies 

only on the nutrient availability concept. 

Keywords extracellular enzymes, residue quality, soil acidity, qCO2, microbial resource 

acquisition. 
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• Carbon use efficiency (CUE) was estimated by 3 methods during plant residues 

decomposition 
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• MCE-STM was comparable with single-C enzyme CUE estimates 

• Both soil pH and residue quality shaped microbial CUE estimated by MCE-STM 
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4.2 Introduction 

Microorganisms control carbon (C) decomposition and sequestration in soils, with strong effects 

on terrestrial C cycle (Singh et al., 2010). The ratio between C sequestration and decomposition 

in soil is determined inter alia by carbon use efficiency (CUE) of soil microorganisms. CUE is 

equal to the microbial biomass C increment during growth per amount of organic C used, or 

more generally, as the ratio of C allocated to biosynthesis and the amount of accumulated C. 

CUE is thus an important ecological characteristic of microbial metabolism and soil C cycling 

(Manzoni et al., 2018); Spohn et al., 2016). CUE is commonly calculated in the range of 0.2 – 

0.8 (Manzoni et al., 2012), making quantification of soil C budgets uncertain. The source of this 

variability can be categorized into three groups: genetic, environmental and methodological. 

Genetic variability of soil microbial communities on CUE has been documented by pure culture 

studies of individual bacterial taxa ( Keiblinger et al., 2010; Molenaar et al., 2009; Pfeiffer et al., 

2001). A genetically diverse soil microbiome with its CUE potential is influenced by 

environmental factors, including plant residue quality and soil pH ( Jones et al., 2019; Puttaso et 

al., 2011). Despite the fact that the individual effect of these factors on microbial metabolism and 

CUE has been documented (Malik et al., 2019; Rousk et al., 2009, their interrelated effects on 

CUE during the course of decomposition of complex plant residues in agricultural soils remain 

elusive. 

 

Generally, quantification of soil microbial CUE is difficult, whereby different methods as 

another source of variability have been acknowledged (Geyer et al., 2019). Both direct and 

indirect approaches were used to estimate microbial CUE. The C balance approach considers 

increments in microbial biomass and respired carbon dioxide (CO2) (Blagodatskaya et al., 2014; 

Herron et al., 2009), and uses the microbial yield coefficient as equivalent to CUE during growth 

(Blagodatsky et al., 2002). If microorganisms are in state of maintenance and no distinct biomass 

increase is recorded, the metabolic quotient (qCO2, the rate of CO2-C evolution per microbial 

biomass C) is used to evaluate microbial metabolic efficiency (Blagodatskaya et al., 2014; 

Puttaso et al., 2011). The basic assumption of this method is that C gain in microbial biomass 

originates solely from the substrate. This assumption excludes the possible recycling of 

microbial biomass C without explicit microbial growth (Hagerty et al., 2014). Uncertainty exists 
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when biochemically complex organic residues are considered as substrates during gradual 

decomposition, because the turnover of microbial biomass may distort C balance calculations. 

 

Alternatively, stoichiometric modeling of decomposition can be used for CUE estimation 

(Sinsabaugh et al., 2016). In this case, CUE of the soil microbial community is considered as a 

function of the difference between nutrient requirements for growth and nutrient composition of 

the substrate, whereby extracellular enzyme activities (EEA), C/N (C/P) ratio of microbial 

biomass, and available organic matter are considered to calculate CUE. The main principle of 

using EEA reflects the equilibrium between the elemental composition of microbial biomass and 

detrital organic matter in the one hand and the efficiencies of nutrient assimilation and growth in 

the other (Sinsabaugh & Follstad Shah, 2012) . The advantage of this approach is that it utilizes 

common soil analysis for CUE calculation, and can be applied at various spatio-temporal scales 

(Sinsabaugh et al., 2016). 

 

The indicator enzymes most commonly used to quantify CUE by stoichiometric modeling are β-

1,4-glucosidase (BGL), leucine aminopeptidase (LAP), β-1,4-N- acetylglucosaminidase (NAG), 

and acid (alkaline) phosphatase (APH) ( Sinsabaugh & Follstad Shah, 2012; Sinsabaugh et al., 

2013; 2016). However, this enzyme combination may not be applicable for accurate 

characterization of microbial CUE in complex soil ecosystems (Hu et al., 2011; Voříšková et al., 

2011). This is justified since plant residue degrading, C-cycling enzymes other than BGL may 

also control the rate of decomposition, hence microbial CUE. Thus, it may be a limitation to use 

BGL as a sole proxy to estimate CUE ( Sinsabaugh & Follstad Shah, 2012; Sinsabaugh et al., 

2013;  2016). Moreover, NAG, as a chitin degrading enzyme (Allison & Vitousek, 2004; 

Baldrian, 2009), was used as input parameter for nitrogen (N) acquisition (Sinsabaugh & 

Follstad Shah, 2012; Sinsabaugh et al., 2013; 2016). The ecological function of NAG remains 

uncertain, as it is also considered as a C-acquiring enzyme ( Gooday, 1990; Kramer et al., 2013; 

Wieczorek et al., 2014). This duality of the NAG effect complicates its applicability to calculate 

microbial CUE. According to Jan et al. (2009), a main limiting step in the breakdown of organic 

N in the plant residues is protein degradation. This step includes, among others, the enzymes 

Leucine-aminopeptidase (LAP), Succinyl-Alanyl-Alanyl-phenyl (SAA) and Alanyl-Alanyl-

phenyl aminopeptidase (AAP) (Enowashu et al., 2009; Obayashi et al., 2017). It could be 
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deduced that consideration of such N-acquiring enzymes as alternatives to NAG may provide a 

clearer picture of nutrient assimilation efficiency, which finally drives microbial CUE. 

 

Decomposition of plant residues requires a suite of enzymatic steps. Substrates differing in the 

availability of C and N require different metabolic pathways to be completely decomposed and 

assimilated. This leads to a wide range of respired C-CO2 per unit C assimilated, namely 

microbial CUE (Manzoni et al., 2012; van Hees et al., 2005). The main determinant of 

biochemical quality reflecting C and N availability and hence CUE during decomposition is the 

ratio of lignin (L) and polyphenol (PP) to N ((L+PP)/N). It could be suggested that 

stoichiometric modeling for CUE estimation using multiple extracellular C and N cycling 

enzymes provide a more coherent insight into the ecology and efficiency of microbial 

decomposition of biochemically contrasting plant residues in soils. In this respect, we propose 

that not only BGL, but also other plant residue degrading and rate limiting (Hu et al., 2011; 

Voříšková et al., 2011) C-cycling enzymes (e.g., β-D-cellobiohydrolase (BCL), β-xylosidase 

(BXL)) should be implemented in CUE estimation models. We therefore hypothesized that the 

integration of multi-C cycling enzymes stoichiometry modeling (MCE-STM) with single C-

cycling enzyme (BGL) stoichiometry modeling (SCE-STM) and the conventional C balance 

approach reveals a more accurate estimation of microbial CUE in soils amended with complex 

plant residues. Besides the differences in substrate (plant residues) quality, the soil environment 

in general, including specifically soil pH, would affect the CUE (e.g. Jones et al., 2019;  Rousk 

et al., 2009). Both factors determine in an interrelated manner the energy investment by soil 

microorganisms during growth. We anticipated a higher microbial CUE in less acidic soil 

amended with high quality (low (L+PP)/N)) plant residues than in more acidic soils amended 

with lower quality (high (L+PP)/N)) plant residues, due to less energy investment in the former 

case. 
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4.3 Materials and methods 

4.3.1 Soil and plant analysis 

Soil samples of S4.3 (pH of 4.3) and S5.1 (pH of 5.1) were collected from farmers’ fields at a 

depth of 0-20 cm in Lelissa Dimtu Kebele, an administrative unit of Diga district, Ethiopia 

(36°24’E; 9°02’N). The dominant soil type was a Nitisol according to WRB classification 

(Berhanu et al., 2013; Deressa et al., 2013; FAO, 2014). Soils were air dried, sieved through <2 

mm sieve, and transported to the University of Hohenheim, Stuttgart, Germany. Soil pH was 

measured in 0.01 M CaCl2 extracts with a soil-to-solution ratio of 1:2.5 (Houba et al., 2000). 

Total carbon (TC) and nitrogen (TN) were analyzed by dry combustion (vario MAX CN 

analyzer, Elementar Analysensysteme GmbH, Hanau, Germany) (Nelson & Sommers, 1996). 

Soil pH results showed values of <7.4 so that carbonate content was considered as negligible and 

total carbon was regarded as equivalent to total soil organic C (SOC) (Schumacher, 2002; Wang 

et al., 2015). S4.3 had 23.2 g kg-1 SOC, 1.5 g kg-1 TN, a C/N ratio of 15.75, and a pH 4.3. S5.1 

had 26.0 g kg-1 SOC, 1.8g kg-1 TN, a C/N ratio of 14.73, and a pH 5.1. S4.3 and S5.1 described 

further as a “very strongly” and “moderately” acidic soils, respectively (Ahem et al., 1995; 

Hazelton & Murphy, 2007). 

Above-ground residues (leaves, twigs) of the tropical shrub Calliandra calothyrsus were 

collected in Kenya (medium quality residue (MQR)) and Democratic Republic of Congo (high 

quality residue (HQR)) and analyzed individually for dry matter content, TC, TN, total 

extractable polyphenol (PP), neutral detergent fiber, acid detergent fiber, and acid detergent 

lignin (VDLUFA, 2012). Hemicelluloses and cellulose were calculated by subtracting acid from 

neutral detergent fiber and acid detergent lignin from acid detergent fiber, respectively. TC and 

TN were measured using a Euro EA 3000 elemental analyzer (Hekatech, Wegberg, Germany). 

Dry matter content was determined according to AOAC (1990). Polyphenol was determined 

according to Makkar et al. (1993). Biochemical quality, thus decomposability of plant residues, 

was mainly defined by their (L+PP)/N ratios (Rasche et al., 2014), which was 8.1 for MQR and 

5.1 for HQR. Detailed biochemical data of plant residues are displayed in Table 1. 
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Table 1 Biochemical composition of Calliandra plant (Anneslia calothyrsus (Meissn)) residues 

collected from Kenya (medium quality (MQR)) and Democratic Republic of Congo (high quality 

(HQR)) 

RT 

 

C 

g kg-1 

N 

g kg-

1 

C/N 

ratio 

PP  

g kg-1 

Hem  

g kg-1 

Cell  

g kg-1 

L  

g kg-1 

PP/

N 

L/

N 

(L+

PP)/

N 

MQR 429.7 19.9 21.6 63.4±5.4 101±10.3 208±3.9 102±8.7 3.18 4.9 8.1 

HQR 408.8 22.5 18.2 46.2±1.5 143±11.7 197±10.2 68±0.8 2.05 3.0 5.1 

RT= residue type, C=Carbon, N=Nitrogen, C/N=carbon to nitrogen ratio, PP=polyphenol, 

Hem=Hemicelluloses, Cell=Cellulose, L=lignin, PP/N=ratio of polyphenol to nitrogen, L/N= 

ratio of lignin to nitrogen, (L+PP)/N=ratio of the sum of polyphenol and lignin to nitrogen. 

 

4.3.2 Microcosm experimental set up 

Leaves and twigs of air-dried residues of C. calothyrsus were chopped to 5 to 8 mm length. A 

total of 1500 g dried composite sample of each soil was pre-incubated for 4 days at 60% water 

holding capacity (WHC) and 25°C. After pre-incubation, 33 g sub-samples of the soils were 

mixed each with 0.33 g of each MQR and HQR. Mixtures were transferred into cylindrical jars. 

In total, 90 samples were arranged in an incubation chamber (60% WHC, 25°C, no light), using 

a randomized complete block design with 6 treatments (S4.3-MQR, S4.3-HQR, S5.1-MQR, 

S5.1-HQR, 2 control soils without plant residues) × 5 sampling dates (7, 15, 30, 45, 60 days of 

incubation) × 3 replications. The soil samples were stored at -28°C until further analysis.  

4.3.3 Microbial activities 

4.3.3.1 Respiration 

To trap the evolving carbon dioxide (CO2), a small plastic vessel containing 1 M NaOH solution 

was placed inside jars. The jar was sealed tightly, while the small cylinder was left open. NaOH 

solution was changed regularly after every sampling of alkali for titration. CO2-C production was 

measured every 1 to 2 days during the first 2 weeks, followed by every 6 to 7 days for the 

remaining incubation period (15 to 60 days). The amount of non-used NaOH was determined 

titrimetrically in an aliquot of 0.5 ml with 0.1 M HCl (Anderson, 1982). 
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4.3.3.2 Potential enzymatic activities 

The potential activities of C-cycling enzymes, including β-D-glucosidase (BGL), β-D-

cellobiohydrolase (BCL) and β-xylosidase (BXL) were determined using hydrolysable substrates 

containing the fluorescent 4-methylumbelliferone (MUF) (i.e., MUF-β-D-Glucoside (BGL); 

MUF-β-D-Cellobioside (BCL), MUF-β-D-Xylopyranoside (BXL) (Sigma-Aldrich, St. Louis, 

MO, USA) (Marx et al.,2001).  Potential activities of leucine-aminopeptidases (LAP), Alanyl-

Alanyl-phenyl aminopeptidase (AAP) and thermolysin-like neutral metalloproteases (SAA) were 

determined as the rates of fluorescence of an enzymatically hydrolyzed substrate containing the 

highly fluorescent compound 7-amino-4-methyl coumarin (AMC) (i.e., L-Leucine-AMC 

hydrochloride (LAP) and Ala-Ala-Phe-AMC hydrochloride (AAP) (Sigma-Aldrich), Suc-Ala-

Ala-Phe-AMC hydrochloride for SAA (Bachem AG, Bubendorf, Switzerland)), with slight 

modifications according to Marx et al. (2001) and Rasche et al. (2017). One g of each soil was 

weighed into a 100 ml beaker and suspended with 50 ml of deionized H2O. Each sample 

(including negative control) was dispersed by an ultrasound bar for 2 min at 35 J s-1.  

After sonication, an aliquot of each sample (50 µl) along with 50 µl (MES) and TRIZMA buffer 

(Sigma-Aldrich) and 100 µl substrate working solution were pipetted into each well of 

microplate. 4-Morpholineethanesulfonic acid sodium salt (MES) and TRIZMA-Base (Tris 

(hydroxymethyl) aminomethane) reagent as well as TRIZMA-HCl (Tris (hydroxymethyl) 

aminomethan-hydrochlorid (TRIZMA) buffers were used for C and N- cycling enzymes, 

respectively. Substrates, standard stock and working solutions were prepared according to 

Rasche et al. (2017). For each analysis, a negative control (without soil, only H2O) was used. A 

standard plate of 4-MUF and 7-AMC for C-cycling and N-cycling, respectively, was prepared in 

the concentration range of 0 to 120 mM as detailed in Rasche et al., (2017). Plates were 

incubated at 30°C over a period of 3 hours and substrate hydrolysis were measured after 30, 60, 

120 and 180 min. However, for SAA and AAP, the incubation period was extended up to 5 hours 

and measurements were taken after 90, 120, 180, 240, 300 min.  Then, fluorescence recording on 

a microplate reader (FLX 800, Microplate Fluorescence Reader, Bio-Tek Instruments, Inc., 

Winooski, VT, USA) was done at 360/460 nm wavelength. Finally, calculation of enzymatic 

activity kinetics was performed according to Marx et al. (2001). 
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4.3.4 Ammonium and nitrate content in soil 

Ammonium (NH4
+-N) and nitrate (NO3

--N) were extracted with 0.05 M K2SO4 (soil to extractant 

ratio (w/v) of 1:4), shaken on a horizontal shaker for 30 min at 250 rpm, centrifuged for 30 min 

at 4400 g and filtered (Rotilabo-Rundfilter AP55.1, Carl Roth GmbH). Concentrations of NH4
+-

N and NO3
--N were measured colorimetrically on an auto-analyzer (Bran & Luebbe, 

Autoanalyzer 3, SEAL Analytical, Hamburg, Germany) (Bamminger et al., 2014). 

 

4.3.5 Microbial biomass and dissolved organic C and N  

Determination of microbial biomass C (MBC) and N (MBN) was done by chloroform-

fumigation-extraction (Vance et al., 1987), using conversion factors of KEC 0.45 (Joergensen, 

1996) and KEN 0.54 (Joergensen and Mueller, 1996), respectively. Ten grams of non-fumigated 

and fumigated soil subsamples were mixed with 40 ml of a 0.5 M K2SO4 –solution (1:2, w/v, 

soil/extractant ratio) followed by shaking for 30 min at 250 rev min-1 on a horizontal shaker and 

centrifuged for 30 min at 4400 g. Dissolved organic C (DOC) and total N (TN) were measured in 

the supernatants of both fumigated and non-fumigated samples, using a DOC/TN-analyzer (multi 

N/C 2100S from Analytik Jena, Jena, Germany). DOC was calculated from total C 

concentrations in the supernatants of non-fumigated samples ((Müller et al., 2016), while DON 

was calculated by subtracting mineral N (sum of NH4
+-N and NO3

--N) from total N 

concentration obtained from DOC/TN-analyzer. 

 

4.3.6 Microbial carbon use efficiency (CUE) and metabolic quotient (qCO2) 

Microbial CUE was determined either by the C-balance based method (direct method) or by the 

enzymatic stoichiometry modeling (STM) approach. For the latter, we proposed and validated 

the extended “multi-C” enzymes stoichiometry modeling approach (MCE-STM), which 

represented a modification of the single C-enzyme (SCE-STM) method applied earlier (Geyer et 

al., 2019; Sinsabaugh & Follstad Shah, 2012; Sinsabaugh et al., 2013; 2016). Because the C-

balance approach could not be used during the whole period of our incubation study due to 
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microbial recycling of C and N, we used the data of the first 7 days of incubation to compare the 

conventional method (C-balance based approach) with STM approach. CUE values in C-balance 

based method were calculated according to Blagodatsky et al (2002), using MBC increment per 

amount of consumed C-substrate, which was assumed in turn to be equal to biomass C increment 

plus CO2 evolved (Manzoni et al., 2012). 

 

CUE = ΔMBC/(ΔMBC+ΔCumCO2-C) (Eq. 1), 

 

where ∆MBC is the net increase in MBC calculated according to Eq.2 and ∆CumCO2-C is the 

net increase in cumulative respiration for day 7 after subtraction of respiration of unamended soil 

(µg CO2-C g-1 of amended soil – µg CO2-C g-1 control soil).  

 

∆MBC = MBC_amended –MBC_control (Eq. 2), 

where  MBC-amended and MBC-control are values of microbial biomass C in soil amended with 

residues and in control (unamended) soil, respectively, measured at the same date, e.g. day 7. We 

considered only period with distinct biomass increase and assumed in our calculations that 

priming effect was negligible. 

Since CUE was estimated by C-balance method only for the first 7 days, qCO2 was used to 

quantify the microbial metabolic efficiency (Puttaso et al., 2011)  for the rest of the incubation 

period. 

 

qCO2 = daily CO2-C/MBC (Eq. 3) 

Stoichiometry modeling CUE calculations were based on an assumption that the imbalance of 

microbial C/N and labile pool substrate C/N ratio, as well as ratio between C and N (P) acquiring 

enzymes are a direct control of microbial CUE. For MCE-STM and SCE-STM (BGL-STM, 

BCL-STM and BXL-STM) stoichiometry, CUE was calculated based on the scalar ratio (Sc:x) 

fitted to the Michealis-Menten model (Geyer et al., 2019; Sinsabaugh et al., 2016). 

 

CUEc:x = CUEmax * (Sc:x/(Sc:x+Kx)) (Eq. 4) 

Sc:x = (Bc:x/Lc:x) * (1/EEAc:x) (Eq. 5) 
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where CUEmax is set at 0.6 based on thermodynamic constraints and following the original 

publication of (Sinsabaugh et al., 2016); Kx is the half saturation constant set at 0.5 (Roels, 

1980). Bc:x is the elemental c/x ratio of microbial biomass; in our study it was the ratio of 

MBC/MBN (x = N). Lc:x is the elemental c/x ratio of substrate; in our case it was C/N of plant 

residues for the first 7 days (Table 1). However, after 7 days, we recalculated the remaining C/N 

ratio of the applied substrates using the following formulas: 

TCt = TC0 – ΔMBCt – ΔCumCO2-C (Eq. 6) 

TNt = TN0 – ΔMBNt – ΔDON – ΔNO3
-N – ΔNH4

+  N (Eq. 7) 

 

where TCt and TNt are the remaining TC and TN in substrate after decomposition at specific time 

t (days 7, 15, 30, 45 and 60). TC0 and TN0 is the amount of initial TC and TN applied to the soil, 

respectively. ∆MBCt and ΔMBNt are the changes in microbial biomass C (N) during the specific 

incubation period (t = 7, 15, 30 and 45 days) calculated similarly (as exemplified for C in Eq. 8). 

 

∆MBCt = MBC_amended - MBC0     (Eq.8), 

where MBC_amended is microbial biomass in amended soil at specific date and MBC0 is 

microbial biomass in soil before experiment. ΔDON, ΔNO3
--N, ΔNH4+-N are the net increase in 

DON, NO3
--N, and NH4

+-N, respectively, and was calculated after subtraction of respective N 

concentration in unamended soil (e.g. µg MBN g-1 of amended soil – µg MBN g-1 of control 

soil). 

Extracellular enzymatic activity (EEAc:x) is the ratio of extracellular enzymatic activities 

directed toward acquiring C and x (x = N in our study) from the environment. For the multi-

enzymes approach (MCE-STM), we used the ratio of the summarized activities of 3 C-cycling 

enzymes to the summarized activities of 3 N-cycling enzymes, i.e. 

(BGL+BCL+BXL)/(LAP+SAA+AAP), while for the single C-enzyme approach (SCE-STM), 

EEAc:x are BGL/(LAP +SAA+ AAP), BCL/(LAP +SAA+ AAP) and BXL/(LAP+SAA + AAP) 

for BGL, BCL and BXL, respectively.  The approach applied in this study differs from the 

original method described earlier by the selected set of N-acquiring enzymes: we used 

combination of three enzymes (LAP+SAA + AAP) instead of two (LAP+NAG), this 

modification will be justified in discussion section. 
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Data used for CUE calculation in both direct and indirect methods are provided in supplementary 

tables S1 and S2. 

 

4.3.7 Statistical analysis 

Factorial analysis of variance (ANOVA) was performed as per the requirement of the 

randomized complete block designed (RCBD) (n = 90), using the PROC mixed model with 

restricted maximum likelihood (REML) (Piepho et al., 2003). Factors “plant residue quality” and 

“soil pH”, as well as their interaction were considered as fixed, while replications as random 

effects (Piepho et al., 2003). ANOVA for all parameters considered in this study was conducted 

using SAS statistical software (version 9.4, SAS Institute, Cary, North Carolina, USA). Means 

separation (P<0.05) and calculation of standard error (SE) were done using pdiff command in 

SAS macro %MULT (Piepho, 2012). In addition, Pearson linear correlations were conducted 

using SAS to assess the relationship between CUE and qCO2 values of tested methods. 

Furthermore, multiple linear regressions were undertaken to examine the relationship between 

MCE-CUE and the ratio of the sum of potential activities of C and N cycling enzymatic activities 

in R package, using MCE-CUE as dependent and soil pH, residue quality and the sum of 

potential activities of C and N cycling enzymatic activities as independent variables.  

4.4. Results 

4.4.1 CUE and qCO2 based on C-balance method 

The highest CUE was calculated for S5.1-HQR (0.48), followed by S5.1-MQR (0.39) and S4.3 

amended with both residues of S4.3-HQR - 0.37 and S4.3-MQR - 0.34 (Fig. 1). CUE values for 

S5.1-HQR were significantly (P<0.01) different from the values for other three treatments (S5.1-

MQR, S4.3-HQR and S4.3-MQR). Factors “soil pH” and “plant residue quality” also had a 

distinct effect on qCO2 (P<0.01) with the lowest qCO2 value of 0.02 in S5.1-HQR from days 30 

to 60, and the highest qCO2 value of 0.06 for S4.3-MQR on day 30, followed by qCO2 value of 

0.03 for S5.1-MQR on day 60 (Fig. 2). Intermediate qCO2 was recorded in S5.1-MQR (0.02-

0.04) and S4.3-HQR (0.02-0.03) from days 15 to 45. In S4.3-MQR and S4.3-HQR, a steady 

decline of qCO2 was observed between days 15 and 45, while inconsistent qCO2 values were 

recorded for S4.3-MQR (P<0.05) (Fig. 2). After 45 days, qCO2 measurements in both soils 
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amended with HQR became constant (0.02) up to 60 days of incubation. Analysis of variance 

showed that an interrelated significant (P<0.01) effect of soil pH and residue quality on CUE and 

qCO2 (Table 2). 
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Figure 1  Estimated CUE values with standard error (SE) based on direct (C-balance) method 

for both soils with different pH levels (S4.3, S5.1) amended by medium quality (MQR) and high 

quality (HQR) residues for the first seven days of incubation experiment (N=9); P<0.001. 

Different letters show significant differences between soil pH levels and residue qualities (MQR, 

HQR) at p< 0.01 

 

Table 2 Significance of single and interacted factors influencing CUE as evaluated by different 

methods (3-way ANOVA). Multi-enzymatic approach (MCE-STM), BGL, BCL and BXL 

enzymatic activities and direct C-balance methods were compared. 
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Effect  MCE-STM BGL-STM BCL-STM BXL-STM C-balance  

Soil pH *** *** *** *** *** 

Residue quality *** *** *** *** *** 

Sampling date *** *** *** *** - 

Soil pH*residue quality ** ** NS NS * 

Soil pH*residue 

quality*sampling date 

*** *** *** * - 

Significant at ***p<0.001, **p<0.01 and *p<0.05; NS: Not significant; CUE using C-balance 

method was calculated only for the first date (7 days after incubation) 
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Figure 2 Estimated qCO2 values during 15-60 days of incubation for S4.3 (pH 4.3) and S5.1 (pH 

5.1) amended by medium quality (MQR) and high quality (HQR) residues. Standard error (SE) 

bars represent ±1SE. 

 

4.4.2 Single C-cycling enzymatic stoichiometric model (SCE-STM) 

For SCE-STM, activities of individual C-cycling enzymes (BGL, BCL, BXL) were used as 

proxies for CUE calculation. For all 3 models, the interrelated effect of soil pH and residue 

quality had a significant (P<0.01) effect on CUE across the incubation, except the first 7 days 

(Fig. 3 B-D). In all SCE-STM, the highest CUE was recorded for S5.1-HQR, followed by S5.1-

MQR, except BXL-STM at day 60. CUE for S4.3-HQR had intermediate values across the 

incubation, except at day 45 (Fig. 3 B-D). From all models, the lowest CUE was noted for S4.3-

MQR. 
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Figure 3 Estimated carbon use efficiency (CUE) values across the incubation period based on 

stoichiometry modeling (A) using Multi C-cycling enzymes (Multi-enzymes); (B) β-D-

glycosidase; (C) β-D xylanase and (D) β-D-cellobiohydrolase as an indicator for C-cycling 

enzymatic activities) for S4.3 (pH 4.3) and S5.1 (pH 5.1) amended with medium quality (MQR) 

and high quality (HQR) residues. Standard error (SE) bars represent ±1SE. 

 

4.4.3 Multi enzymatic stoichiometric model (MCE-STM) 

For MCE-STM, the sum of the activities of 3 C-cycling enzymes (BGL, BCL, BXL) was used to 

calculate CUE. Similar to the direct method (C-balance approach) and SCE-STM, an interrelated 

significant (P<0.01) effect of soil pH by residue quality interaction was noticed for MCE-STM 
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(Table 3). Accordingly, the highest CUE of 0.12-0.33 was calculated for S5.1-HQR, followed by 

0.09-0.20 for S5.1-MQR across the incubation period (Fig. 3A). In S5.1, the CUE values 

increased steadily from day 7 to 30 and then declined slowly when amended by HQR. The 

lowest CUE of 0.05-0.18 was found for S4.3-MQR across the incubation period. Intermediate 

CUE value of 0.08-0.18 was recorded in S4.3-HQR. The CUE decreased in the course of 

incubation in S5.1-MQR and S4.3 amended with both residue types. 

 

4.4.4 Correlation and differences between approaches for CUE estimation 

Generally, MCE-STM revealed significantly (P<0.0001) lower CUE than the direct C-balance 

method and SCE-STM across the incubation period (Fig. 4). For the latter (SCE-STM), CUE in 

both soils amended with both residue types as calculated by BXL-STM (0.46) and BCL-STM 

(0.46) were higher than BGL-STM (0.21) and the C-balance method (0.40) (Fig. 4). Strong and 

positive significant (P<0.001) correlations were found between the different indirect methods of 

CUE estimation (Table 3): MCE-STM versus BGL-STM (r2 = 0.99), BXL-STM (r2 = 0.90), and 

BCL-STM (r2 = 0.84). A strong positive and significant (P<0.001) relationship was noted 

between the BGL-STM and the other two SCE-STM (BCL-STM, BXL-STM) (Table 3). The 

correlation between the C-balance and the indirect methods, which was only calculable at day 7 

of incubation, was not significant (P>0.05) (data not shown). Nevertheless, soil pH and residue 

quality revealed similar effects on CUE, according to both direct and indirect methods (Fig. 1 

and 3). There was no statistically significant (P>0.05) correlation between qCO2 and all indirect 

CUE estimation methods (Table 3). 
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Figure 4 Estimated Carbon use efficiency (CUE) values by different methods for all treatments.  

Capital letters indicate mean comparison for all methods at day 7; C-balance method, Multi-

enzyme (using sum of three C-cycling enzymes), β-D-glycosidase, β-D-cellobiohydrolase and β-

D xylanase as C-cycling indicator enzymes in stoichiometry modeling. Small letters indicate 

stoichiometry modelling methods comparison in dynamics from day 15 to day 60. Different 

letters show significant differences between methods at P<0.001. Standard error (SE) bars 

represent ±1SE. 

 

Table 3 Pearson correlation of CUE estimation approaches and qCO2 (N=60) across the 

incubation period following addition of high (L+PP)/N; 5.1) and medium quality (L+PP)/N; 8.1) 

residues in moderately (S5.1) and very strongly (S4.3) acidic soils; Mult-enzyme = multi-C 

cycling enzymes Stiochoimetry, using β-D-glycosidase, β-D xylanase and β-D-cellobiohydrolase 

activity as a proxy for CUE calculation, qCO2 (Metabolic quotient). 
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CUE quantification methods Multi-

enzymes 

β-D-

glycosidase 

β-D 

xylanase 

β-D-

cellobiohydrolase 

qCO2 

Multi-enzymes 1.00     

β-D-glycosidase 0.99*** 1.00    

β-D xylanase 0.90*** 0.86*** 1.00   

β-D-cellobiohydrolase 0.84*** 0.79*** 0.91 1.00  

qCO2 0.01NS -0.08NS 0.13NS 0.18 1.00 

 

 ***<0.001; NS: Not significant  

 

4.4.5 Interactive effect of soil pH and residue quality on microbial CUE 

CUE values estimated by indirect MCE-STM and SCE-STM as well as direct C-balance method 

were significantly affected by the soil pH, residue quality, and incubation duration, including the 

interaction of the factors (Table 2). For the C-balance method, the effect of residue quality on 

CUE was more pronounced in the less acidic than more acidic soil (Fig. 1). Despite the recorded 

differences in N content between medium and high quality residues (MQR versus HQR, Table 

S1), the amount of mineralized N during incubation depended more on soil pH level rather than 

on residue quality (Fig. 5A). During the 45 days of incubation, soil mineral N content was lower 

in S4.3 than in S5.1, while the respective differences between plant residues were moderate (Fig. 

5A). Relative prevalence of C- versus N-acquiring enzymatic activities in S4.3 were noted in the 

mid phase of incubation (Fig. 5B). The interrelated effect of soil pH level and plant residue 

quality on CUE was substantiated by the clustering of the two soils with different pH, masking 

the plant residue quality effect (Fig. 6 A & B). The relatively higher contribution of N-acquiring 

enzymes (lower values on X axes) promoted a balanced microbial growth and higher CUE in the 

less acidic soils. There was also statistical equivalence of MCE-STM and BGL-STM methods of 

calculation (Fig. 6A versus 6B), though MCE-STM revealed a broader values distribution due to 

greater values of C-acquiring enzymatic activities, and, thus, a more distinct vision on the 

presented relationship. 
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Figure 5 Estimated mean values for mineral nitrogen content in soil (µg g-1) (A); CN ratio 

(EEAC/EEAN)) of enzymatic activity (unit less) (B) for S4.3 (pH 4.3) and S5.1 (pH 5.1) amended 
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by medium quality (MQR), high quality (HQR) and without (S4.3-control and S5.1-control) 

residues across the incubation periods. Standard error (SE) bars represent ±1SE. 
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Figure 6 Relationships between carbon use efficiency (CUE) estimated by two methods and 

ratio between C and N-acquiring enzymatic activity. (A) - CUE is evaluated using multi-

enzymatic approach and (B) CUE is evaluated using BGL as indicator enzymes. Soils with pH 

4.3 (S4.3) are marked with red triangles and soils with pH 5.1 (S5.1) with blue circles; samples 

amended by medium quality (MQR) plant residues are presented as unfilled symbols and those 

amended with high quality (HQR) plant residues as filled symbols.  
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4.5 Discussion 

4.5.1 Microbial CUE influenced by the choice of calculation method 

In the presented study, indirect, stoichiometric modelling (STM) approaches, in addition to the 

direct C-balance method, were used to evaluate soil microbial carbon use efficiency (CUE) 

during microbial growth on decomposing plant residues. The usefulness of STM was specifically 

reflected by the MCE-STM approach, followed by BGL-STM, showing both the more realistic 

lowest CUE values in all treatments. The C-balance method could overestimate the CUE, 

because MBC determination by fumigation extraction method does not account for any C lost 

through microbial enzyme and metabolite excretion (Manzoni et al., 2012; Sinsabaugh et al., 

2013; Hagerty et al., 2018).  

The principal difference between direct calculation of CUE by C-balance method and STM 

approaches is that the latter considers the effect of nutrient limitation on CUE. As detailed in the 

section 4.3.6, enzymatic STM considers the C to nutrient (N, P) ratios of microbial biomass and 

detrital organic matter and the ratio between C- and N acquiring enzymatic activities 

(Sinsabaugh & Shah, 2012; Cleveland & Liptzin, 2007). Although BGL was proportionally 

about 50-75% (Table S2) a major contributor of MCE-STM, the reliability of the STM-based 

approach benefitted greatly from the addition of complementary BCL and BXL. BCL and BXL 

activities are rate limiting in plant residue decomposition (Voříšková et al., 2011). These 

enzymes cleave the reducing or non-reducing ends of cellulose polysaccharide chains and 

complex structures of hemicelluloses (xylan) liberating either glucose (glucanohydrolases) or 

cellobiose (cellobiohydrolase) (Lynd et al., 2002; Yun et al., 2015). In this respect, it must be 

emphasized that both BCL and BXL cannot be regarded in isolation (Fig. S1), because cellulose 

and xylan hydrolysis during litter decomposition occurs simultaneously (Hu et al., 2011; 

Voříšková et al., 2011); Fig. S1). It could be thus deduced that the lower CUE values calculated 

by MCE-STM, including three C-cycling enzymes, provided a more realistic picture of plant 

residue decomposition, reflecting the synergism of microbial extracellular enzymes involved in 

the hydrolysis of complex (BXL, BCL) and simple (BGL) substrates (Amin et al., 2014; 

Eriksson et al., 1990; Lashermes et al., 2016). 
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4.5.2 Use of versatile proteolytic enzymes in MCE-STM modelling 

The STM approach is based on the relative activity of both C- and nutrient (N or P)-acquiring 

enzymes. Thus, the first step was to suggest and verify the extended MCE-STM approach, where 

the sum of three C-acquiring enzymatic activities (BGL + BCL + BXL) were considered instead 

of BGL as single enzyme. The next logical step was to increase the accuracy of the CUE 

calculation by implementing, in addition to LAP, a suite of N-acquiring enzymes covering a 

range of enzymatic reactions into the model. Therefore, SAA and AAP rather than NAG were 

used as essential N-acquiring enzymes. This choice was worthwhile because these enzymes are 

rate limiting in the protein degradation of plant residues (Enowashu et al., 2009; Jan et al., 2009; 

Obayashi et al., 2017). Fujita et al. (2018) concluded that the synthesis of NAG is not controlled 

by N availability and that the NAG/BGL ratio did not show a significant negative relationship 

with available N concentration in arable soils. These authors suggested the use of other enzymes 

(urease and L-asparaginase) to estimate N-acquiring enzymatic activity in resource allocation 

models. This finding corroborated the presented approach of including SAA and AAP in MCE-

STM, but not NAG. The potential activity of the above-mentioned proteolytic enzymes 

(specifically the proportion of SAA and AAP activities in total N-acquiring EEA) increased 

during incubation, a trend in line with the increase of C-acquiring enzymatic activities and 

changes in the C/N ratio of microbial biomass and substrate (Table S2). During residue 

decomposition, organic resources released nitrogenous nutrients (Fig. 5A). Therefore, the 

inclusion of rate limiting protein-degrading enzymes was crucial for the calculation of CUE.  

 

4.5.3 Interactive effect of soil pH and organic residue quality 

In our study, we were able to evaluate an integrative effect of environmental factors (soil pH and 

residues quality) shaping microbial CUE in soil. The lowest CUE was calculated for the soil with 

a pH of 4.3 amended with medium quality residue (MQR, (PP+L)/N = 8.1). This indicated a 

higher energy investment to tolerate both soil acidity (Rousk et al., 2009) and accessibility of 

less decomposable residues (Johnson et al., 2007). Likewise, the highest CUE was recorded in 

the soil with a pH of 5.1 amended with less lignified residues (HQR, (PP+L)/N = 5.1), a finding 

in line with earlier studies (Jones et al., 2019; Lashermes et al., 2016; Puttaso et al., 2011). In this 

particular treatment (S5.1-HQR), soil microorganisms were not N-limited (Table S1), prompting 
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the utilization of available C for growth rather than increasing respiration as stress response in 

the contrasting treatment (S4.3-MQR). Schimel et al. (2007) observed similar effects, revealing 

low soil microbial CUE under drought stress. The experimental design of this study and 

application of the MCE-STM approach with consideration of activities of several protein-

degrading enzymes (LAP, AAP, SAA) provided a precise insight into the mechanism of CUE 

change under the combined influence of soil acidity and biochemical quality of plant residues. 

Lower soil pH level (4.3 versus 5.1) suppressed N-acquiring enzymatic activities more than C-

acquiring EEA (Table S2, Fig 5B). This suppression of proteolytic EEA was followed by a less 

intensive N mineralization in the soil with lower pH (Fig. 5A) that in turn may have induced N 

limitation for decomposing soil microorganisms. This led to the lower CUE efficiency, which 

was depended on the ratio between EEAC and EEAN (Fig. 6). 

The observed interrelated effects of soil pH and organic residue quality suggested a treatment 

explicit modification of the microbial decomposer community. This is in line with recent theories 

by Kallenbach et al. (2019) proposing soil microbial CUE as the result of either “moderating” 

(prompting all community members) or “filtering” (selecting community members) microbial 

traits to enable the functional accommodation to a given environmental context. Accordingly, 

under S4.3-MQR with lowest microbial CUE, the soil microbial decomposer community might 

have faced a trait modification by selecting specifically resource use efficient community 

members to maintain decomposition and growth. The negative synergetic effect of both 

environmental parameters (pH and residue quality) induced a less efficient utilization of complex 

organic residues to acquire a unit of biomass C, as further verified by a higher metabolic quotient 

(qCO2) and stimulated activities of individual enzymes in S4.3-MQR. This finding was in line 

with Puttaso et al. (2011) who reported a higher microbial qCO2 in more lignified (high 

L+PP)/N; dipterocarp) than less lignified (low L+PP/N; tamarind) residues in a long-term field 

experiment. 

 

The intermediate values of CUE in the strongly acidic soil amended with high quality residues 

and in less acidic soils amended with medium quality residues were not significantly different 

from each other. Hence, caution must be taken in interpretation of the results as different 

environmental factors can have opposite effects on resource acquisition. Under natural 

conditions, where a combination of complex environmental factors control microbial 
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metabolism, it is necessary to consider different factors (e.g., residue quality, soil pH) in CUE 

estimation models (Manzoni et al., 2012), rather than taking only individual factors (Amin et al., 

2014; Lashermes et al., 2016; Puttaso et al., 2011). 

4.6 Conclusions 

The extent of the estimation of microbial CUE depended on the selected method (MCE-STM, 

SCE-STM, C-balance method). We could deduce that the multi-C cycling enzymatic 

stoichiometric modeling (MCE-STM) approach, rather than the C-balance, was more appropriate 

for investigating the combined effects of soil pH and residue quality in the initial stage of 

decomposition. On the other hand, MCE-STM did not increase the accuracy of CUE estimation 

in comparison to SCE-STM. Expanding the number of various C- and N-acquiring enzymes for 

CUE evaluation (MCE-STM), provided, however, CUE estimates with a higher reliability, 

because cellulose and hemicellulose degrading enzymes in conjunction with protein degrading 

enzymes are all rate limiting in litter decomposition. This conclusion was especially relevant for 

the given environmental set-up that deduced explicitly the interrelated effects of soil pH and 

organic residue quality on soil microbial CUE. 
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4. 9 Supplementary materials  

Cell wall DegradationPlant cell wall 
Absorbable 

end products

1
Cellulose

Β-D -Cellobiosidase β-glucosidase
Glucose

Intermediates

• Cellobiose

• Cellulodextrin

Hemicellulose

Β-D -xylosidase • Arabinose

• Galactose

• Glucose

• Mannose

• Xylose

2

 

 

Figure S1 Schematic illustration of plant residues (cell wall) degradation by enzymatic 

hydrolysis; 1, cellulose degradation and 2, hemicelluloses degradation 
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Table S1 Mean soil chemical values (N=18 per sampling date) in S_4.3 (pH; 4.3) and S_5.1 (pH; 5.1) soils amended with medium 

quality (MQR) and high quality (HQR) residues in each sampling date (days 7, 15, 30, 45 &60): MBC; microbial biomass carbon, 

dCO2; daily CO2-C, CumCO2; cumulative CO2-C, DOC; dissolved organic carbon, MBN; microbial biomass nitrogen, DON; 

dissolved organic nitrogen , Min N; mineral nitrogen (sum of NH4
+ and NO3

-), trt; treatment, LSD; least significant difference,  SD 

sampling date. 

Treatments MBC 

 µg g-1 

dCO2  

µg g-1 

CumCO2  

µg g-1 

DOC  

µg g-1 

MBN  

µg g-1 

DON  

µg g-1 

Min N  

µg g-1 

MBC/MBN DOC/DON 

 Day 7 

S4.3-MQR 942.2b 56.0b 934.1b 482.5b 226.9ab 285.0ab 63.5d 4.2a 1.7a 

S4.3–HQR 1071.0b 45.7c 926.9b 416.1c 240.7ab 302.2ab 102.7c 4.4a 1.4b 

S5.1-MQR 1013.9b 62.6a 1049.0a 592.1a 284.7a 357.6a 125.0b 3.6ab 1.7a 

S5.1–HQR 1274.7a 56.6b 1073.8a 481.2b 300.2a 377.0a 126.4b 4.2a 1.3b 

S4.3 557.0c 9.04d 150.5c 324.5d 193.9b 243.5b 108.3bc 2.9bc 1.3b 

S5.1 633.7c 11.1d 189.45c 300.4d 264.2ab 331.7ab 165.1a 2.4c 0.9c 

P-level (trt) *** *** *** *** *** *** *** NS *** 

P-level (SD) *** *** *** *** *** *** *** *** *** 

P-level (trt*SD) *** *** *** *** *** *** *** ** *** 

LSD value 124.25 3.15 108.8 57.4 80.0 100.3 19.72 1.1 0.25 

 Day 15          

S4.3-MQR 898.7b 34.2b 1189.4b 401.7a 255.0bc 320.2bc 78.7cd 3.5a 1.3a 

S4.3-HQR 928.6b 28.6c 1163.9b 364.9ab 277.0abc 347.6ab

c 

95.7bc 3.4a 1.0ab 

S5.1-MQR 1177.9a 41.1a 1362.5a 362.2ab 308.0ab 386.5ab 100.1b 3.8a 0.9bc 
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S5.1-HQR 1214.9a 35.2b 1407.8a 316.6bc 349.1a 438.4a 120.8a 3.5a 0.7c 

S4.3 675.0c 8.3d 193.7c 268.7c 218.4c 274.2c 64.1d 3.2a 1.0ab 

S5.1 683.8c 11.2d 250.1c 282.4c 253.0bc 317.7bc 90.6bc 2.7a 0.9bc 

P-level (trt) *** *** *** *** *** *** *** NS *** 

P-level (SD) *** *** *** *** *** *** *** *** *** 

P-level (trt*SD) *** *** *** *** *** *** *** ** *** 

LSD value 124.25 3.15 108.8 57.4 80.0 100.3 19.72 1.1 0.25 

 Day 30         

S4.3-MQR 824.4bc 45.6a 2028.0b 347.1a 354.0b 444.5b 104.6bc 2.3c 0.8ab 

S4.3-HQR 924.9b 23.7c 1540.8d 315.0ab 293.8b 369.0b 113.6b 3.1bc 0.9ab 

S5.1-MQR 1186.6a 34.4b 2222.8a 275.8bc 498.9a 626.5a 147.3a 2.4bc 0.4c 

S5.1-HQR 1173.4a 24.6c 1865.1c 226.4cd 322.4b 404.9b 158.2a 4.7a 0.6bc 

S4.3 635.6d 8.6d 358.9e 207.4d 184.4c 231.5c 88.3cd 3.5b 0.9a 

S5.1 720.5cd 10.3d 462.9e 170.5d 291.8b 366.4b 75.1d 2.5bc 0.5c 

P-level (trt) *** *** *** *** *** *** *** ** *** 

P-level (SD) *** *** *** *** *** *** *** *** *** 

P-level (trt*SD) *** *** *** *** *** *** *** ** *** 

LSD value 124.25 3.15 108.8 57.4 80.0 100.3 19.72 1.1 0.25 

 Day 45         

S4.3-MQR 923.5b 19.5b 2259.2a 266.04ab 307.0b 385.5b 119.3b 3.1a 0.7ab 

S4.3-HQR 848.4bc 15.8c 1755.8c 290a 310.5b 389.9b 119.4b 2.7a 0.7a 

S5.1-MQR 1079.5a 23.0a 2313.0a 223.2bcd 401.0a 503.5a 150.3a 2.7a 0.4c 
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S5.1-HQR 1113.2a 18.4bc 1948.9b 230.4bc 372.3ab 467.6ab 155.2a 3.0a 0.5bc 

S4.3 634.7d 10.8d 460.3d 193.3cd 212.9c 267.4c 95.1c 3..0a 0.7ab 

S5.1 767.5c 9.0d 547.6d 168.7d 305.1b 383.1b 126.1d 2.5a 0.4c 

P-level (trt) *** *** *** *** *** *** *** NS *** 

P-level (SD) *** *** *** *** *** *** *** *** *** 

P-level (trt*SD) *** *** *** *** *** *** *** *** *** 

LSD value 124.25 3.15 108.8 57.4 80.0 100.3 19.72 1.1 0.25 

 Day 60         

S4.3-MQR 939.3a 16.2b 2578.7b 230.2ab 784.5a 985.2a 332.1a 1.2b 0.2b 

S4.3-HQR 860.8ab 16.0b 2225.9d 206.7bc 624.5b 784.2b 273.9b 1.4b 0.3b 

S5.1-MQR 815.0bc 24.1a 2794.2a 264.3a 758.7a 952.8a 268.7b 1.1b 0.3b 

S5.1-HQR 934.9ab 18.9b 2461.8c 199.1bc 666.8b 837.4b 262.2b 1.4b 0.2b 

S4.3 586.5d 8.2d 561.7f 193.1bc 212.3c 266.6d 120.7d 3.1a 0.8a 

S5.1 713.8c 9.4d 730.4e 162.6c 393.9d 494.7c 173.9c 1.8b 0.4b 

P-level (trt) *** *** *** *** *** *** *** ** *** 

P-level (SD) *** *** *** *** *** *** *** *** *** 

P-level (trt*SD) *** *** *** *** *** *** *** *** *** 

LSD value 124.25 3.15 108.8 57.4 80.0 100.3 19.72 1.1 0.25 

 P < 0.05; **, P < 0.01; ***, P < 0.001; Different letters show significant differences between means at P<.0001 
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Table S2 Mean potential enzymatic activities (nmol g DM-1 h-1) (N=18 per sampling date) in S4.3 (pH; 4.3) and S5.1 (pH; 5.1) soils 

amended with medium quality (MQR) and high quality (HQR) residues in each sampling date (days 7, 15, 30, 45 &60) and respective 

ratios: BGL; β-glucosidase, BCL; β-D-cellobiohydrolase, BXL; β-xylosidase, LAP; Leucine-aminopeptidase, SAA; Succinyl-Alanyl-

Alanyl-phenyl,  AAP; Alanyl-Alanyl-phenyl aminopeptidase, EEAC; extracellular enzyme activities of C-cycling enzymes, 

(BGL+BCL+BXL) and EEAN; extracellular enzyme activities of N-cycling enzymes (LAP+AAP+SAA), trt; treatment, LSD; least 

significant difference, soil SD sampling date. 

Treatments BGL 

  

BCL 

 

BXL 

  

LAP 

  

AAP 

  

SAA 

  

EEAC/ 

EEAN 

LAP/EE

AN 

AAP/ 

EEAN 

SAA/ 

EEAN 

BGL/ 

EEAC 

BCL/ 

EEAC 

BXL/ 

EEAC 

 Day 7     

S4.3-MQR 322.91d 60.24b 83.04c 213.98b 129.7b 36.24bc 1.23a 0.57bc 0.34cd 0.1 0.69b 0.13b 0.18b 

S4.3-HQR 402.1c 62.78b 68.40cd 229.35b 179.37b 44.44bc 1.21a 0.52cd 0.38bc 0.1 0.75a 0.12b 0.13c 

S5.1-MQR 812.41a 132.66a 129.96a 493.36a 585.68a 93.54a 0.93b 0.42e 0.50a 0.08 0.76a 0.12b 0.13c 

S5.1-HQR 618.4b 145.73a 106.53b 519.24a 476.15a 102.42a 0.81b 0.49de 0.42ab 0.09 0.71ab 0.17a 0.12c 

S4.3 134.59e 32.55c 52.48d 198.93c 100.94b 26.00c 0.68bc 0.61ab 0.31cd 0.08 0.61c 0.15ab 0.24a 

S5.1 259.72d 71.85b 77.85c 525.64a 207.82b 57.90b 0.52c 0.66a 0.26d 0.07 0.63c 0.178a 0.19b 

P-level (trt) *** *** *** *** *** *** *** *** *** NS *** *** *** 

P-level (SD) *** *** * *** ** ** * *** *** *** *** *** *** 

P-level 

(trt*SD) 

*** *** *** *** *** ** *** *** *** *** *** *** *** 

LSD value 78.28 17.08 17.52 44.31 117.47 22.81 0.27 0.08 0.08 0.03 0.06 0.03 0.04 

 Day 15              

S4.3-MQR 356.72cd 67.25c 85.15c 158.96bc 100.38d 52.54c 1.63a 0.51a 0.32d 0.17a 0.7ab 0.13bc 0.17bc 
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Table S2 (continued) 

S4.3-HQR 403.62bc 57.33c 78.92c 135.95bc 161.15d 49.78c 1.63a 0.40bc 0.46c 0.14ab 0.74a 0.11c 0.15c 

S5.1-MQR 638.29a 119.25a 151.56a 364.30a 422.16b 93.20b 1.05b 0.42b 0.47c 0.10c 0.7ab 0.13bc 0.17bc 

S5.1-HQR 475.49b 109.30a 117.03b 363.45a 638.42a 138.04a 0.62cd 0.32cd 0.56b 0.12bc 0.68bc 0.16ab 0.17bc 

S4.3 122.01e 28.06d 40.38d 131.39c 285.87c 22.44d 0.44d 0.29d 0.66a 0.05d 0.64c 0.15ab 0.21a 

S5.1 313.74d 86.33b 96.23c 178.85b 392.75b

c 

106.55b 0.74c 0.26d 0.58ab 0.16a 0.63c 0.17a 0.19ab 

P-level (trt) *** *** *** *** *** *** *** *** *** *** *** *** *** 

P-level (SD) *** *** *** *** *** *** * *** *** *** *** *** *** 

P-level 

(trt*SD) 

*** *** *** *** *** *** *** *** *** *** *** *** *** 

LSD value 78.28 17.08 17.52 44.31 117.47 22.81 0.27 0.08 0.08 0.03 0.06 0.03 0.04 

Treatments BGL 

  

BCL 

 

BXL 

  

LAP 

  

AAP 

  

SAA 

  

EEAC/E

EAN 

LAP/ 

EEAN 

AAP/ 

EEAN 

SAA/ 

EEAN 

BGL/

EEAC 

BCL/E

EAC 

BXL/

EEAC 

 Day 30             

S4.3-MQR 320.77a 94.73ab 85.96bc 116.28c 123.67c 43.49c 1.80a 0.42ab 0.43de 0.15ab 0.63a 0.19b 0.17c 

S4.3-HQR 248.97ab 69.53c 78.61c 126.82c 168.94c 53.81bc 1.14b 0.36b 0.48cd 0.16ab 0.62ab 0.18b 0.2bc 

S5.1-MQR 320.20a 85.49bc 96.77ab 217.24b 515.10b 102.63a 0.60cd 0.26c 0.62ab 0.12bc 0.64a 0.17b 0.19bc 

S5.1-HQR 241.39b 110.71a 112.61a 248.69ab 740.70a 125.40a 0.42d 0.23c 0.66a 0.11c 0.52c 0.24a 0.24a 

S4.3 105.85c 36.25d 40.84d 126.64c 87.60c 40.48c 0.73c 0.49a 0.34e 0.16a 0.58b 0.20b 0.22ab 

S5.1 290.03ab 74.75c 82.16bc 271.22a 398.80b 74.87b 0.61cd 0.36b 0.54bc 0.1c 0.65a 0.17b 0.18c 

P-level (trt) *** *** *** *** *** *** *** *** *** *** *** *** *** 

P-level (SD) *** *** *** *** *** *** * *** *** *** *** *** *** 
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P-level 

(trt*SD) 

*** *** *** *** *** *** *** *** *** *** *** *** *** 

LSD value 78.28 17.08 17.52 44.31 117.47 22.81 0.27 0.08 0.08 0.03 0.06 0.03 0.04 

 Day 45             

S4.3-MQR 341.35a 76.67c 92.85abc 190.86b 159.11d 47.25c 1.29a 0.48a 0.40c 0.12bc 0.66a 0.15b 0.18a 

S4.3-HQR 238.06b 92.62c 85.82bc 114.69c 180.43d 49.90c 1.21a 0.33b 0.52b 0.15ab 0.57b 0.22a 0.21a 

S5.1-MQR 329.24a 112.21b 100.69ab 197.45b 586.68b 104.45ab 0.61bc 0.22c 0.66a 0.12bc 0.60b 0.21a 0.19a 

S5.1-HQR 363.10a 141.40a 107.12a 255.18a 739.40a 121.69a 0.55c 0.23c 0.66a 0.11c 0.59b 0.23a 0.18a 

S4.3 119.96c 52.63d 43.56d 119.41c 85.58d 43.29c 0.87b 0.48a 0.35c 0.17a 0.56b 0.24a 0.20a 

S5.1 241.27b 86.01c 79.65c 230.50ab 370.06c 89.28b 0.59c 0.33b 0.54b 0.13bc 0.59b 0.21a 0.20a 

P-level (trt) *** *** *** *** *** *** *** *** *** *** *** *** NS 

P-level (SD) *** *** *** *** *** *** * *** *** *** *** *** *** 

P-level 

(trt*SD) 

*** *** *** *** *** *** *** *** *** *** *** *** *** 

LSD value 78.28 17.08 17.52 44.31 117.47 22.81 0.27 0.08 0.08 0.03 0.06 0.03 0.04 
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Table S2 (continued) 

 

 P < 0.05; **, P < 0.01; ***, P < 0.001; Different letters show significant differences between means at P<.0001 

Treatments BGL 

  

BCL 

 

BXL 

  

LAP 

  

AAP 

  

SAA 

  

EEAC/E

EAN 

LAP/ 

EEAN 

AAP/ 

EEAN 

SAA/ 

EEAN 

BGL/

EEAC 

BCL/E

EAC 

BXL/

EEAC 

 Day 60             

S4.3-MQR 303.55ab 110.18a 81.79bc 142.77bc 255.32b 55.65bc 1.09b 0.31abc 0.56a 0.12c 0.61bc 0.23a 0.17c 

S4.3-HQR 256.25bc 98.20ab 71.30cd 143.78b 187.15bc 61.57abc 1.13b 0.37a 0.46b 0.17b 0.60bc 0.23a 0.17c 

S5.1-MQR 290.89ab 56.29cd 104.06a 225.82a 407.64a 79.788a 0.63c 0.32abc 0.57a 0.11c 0.65ab 0.13c 0.23ab 

S5.1-HQR 345.82a 62.11c 98.77ab 200.54a 485.40a 78.72a 0.68c 0.27bc 0.63b 0.11c 0.68a 0.13c 0.20bc 

S4.3 138.75d 40.36d 62.91d 56.43d 73.24c 38.99c 1.44a 0.34ab 0.43b 0.23c 0.57cd 0.17b 0.26a 

S5.1 196.89cd 81.24b 86.62abc 98.77cd 239.31b 78.40ab 0.88bc 0.24c 0.57a 0.19b 0.54d 0.22a 0.24ab 

P-level (trt) *** *** *** *** *** *** *** *** *** *** *** *** *** 

P-level (SD) *** *** *** *** *** *** * *** *** *** *** *** *** 

P-level 

(trt*SD) 

*** *** *** *** *** *** *** *** *** *** *** *** *** 

LSD value 78.28 17.08 17.52 44.31 117.47 22.81 0.27 0.08 0.08 0.03 0.06 0.03 0.04 
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Chapter 5 

 

General discussion 
 

 

 

This chapter discusses the most important findings of the chapters 2 to 4 whether our results 

confirm and/or against the findings in the literature. 
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5 General Discussions 

Soil fertility variability is a profound problem hindering the successful implementation of 

integrated soil fertility management (ISFM) in smallholder farmers of Eastern and Central Africa 

(Chikowo et al., 2014). The most noticeable biophysical factors responsible for soil fertility 

variability in sub-Saharan African (SSA) are topographical factors (e.g. soil type, elevation, 

slope and aspect as well as climatic characteristics) (Tittonell et al., 2005a). Furthermore, 

Stewart et al. (2020) identified a lack of quality soil testing and site-specific fertilizer 

recommendations, limited opportunities to increase soil organic matter (SOM), and unequal 

opportunity of smallholder farmers to access inorganic fertilizer and retention of crop residues in 

the soil are other sources of soil fertility variability. To address these bottleneckes, for example 

in Ethiopia, the Ethiopian Soil Information System (EthioSIS) under Agricultural 

Transformation Agency (ATA) has developed a nation-wide soil nutrient mapping. This is an 

initiative to provide policy advice on the use of fertilizer for smallholder farmers (Amare et al., 

2018). In addition to biophysical factors and socioeconomic drivers, farmers resource 

endowments are other sources of soil fertility variability in East and Central Africa (Haileslassie 

et al., 2006; Nyamangara et al., 2011; Tittonell et al., 2005a). Moreover, there is only limited 

data available yet that considered the inter-related effects of both biophysical (e.g., agro-ecology 

defined based on elevation, climate conditions, and cropping system) and socio-economic factors 

(e.g., farmers’ resource endowments, market access and farmers’ indigenous knowledge) on soil 

fertility variability on a detailed farm scale. This is because not only the individual drivers but 

also the synchronization of both biophysical and socio-economic factors contributed for soil 

fertility variability beyond the individual factors (Balume et al.,2020; Agumas et al.,2021). To 

address these issues, generic and harmonized soil surveying procedures have to be developed, 

allowing direct comparisons of different agro-ecologies and associated farming systems across 

regions or countries. Among the different soil survey approaches, the use of midDRIFTS is a 

robust and more efficient survey approach with minimum cost and time investment. MidDRIFTS 

is not only analyzing quantitative soil physical and chemical properties but it is also used to 

quantify the soil organic carbon (SOC) qualitative groups (soil organic carbon functional 

groups). Therefore, this study developed different models for predicting selected soil physi-

cochemical properties in the two countries (Ethiopia and DRC) as a case study using 

midDRIFTS-partial least square regression (PLSR). Furthermore, the study also considered SOC 
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functional groups as additional soil fertility indicators as well as carbon use efficiency (CUE) as 

the most important sensitive soil fertility indicative parameters considered in this PhD study. 

Based on the generated predicted data sets of the two countries, country-specific research 

hypotheses were tested. Chapter 2 assessed the inter-related effect of different agro-ecology, 

farm typology classes and farmers’ indigenous knowledge on soil fertility status while chapter 3 

assessed the interacted impact of market distance, farm typology classes and farmers’ indigenous 

knowledge on soil fertility status. Chapter 4 dealt with the contributing factors for microbial 

CUE to enhance soil fertility status taking organic residue quality and soil pH as factors.  

 5.1 Inter-related effect of agro-ecology, farm typology and market access 

present heterogeneous soil fertility status in smallholder farming systems 

Heterogeneity in soil fertility status presents a major challenge to the successful implementation 

of ISFM strategies in SSA, including, but not limited to, Ethiopia and DRC (Vanlauwe et al., 

2015). This is because soil fertility status across different locations varied not because of isolated 

factor such as agro-ecology (defined based on geological, climatic and farming system 

variations), farm typology and market access (distance from the nearest market) but also the 

combination of inter-related factors (chapters 2 & 3).  

In both studies (chapters 2 & 3), the effect of site specificity was more pronounced in available 

phosphorus (Pav) and total nitrogen (TN). The differences in Pav due to the factors site and agro-

ecology may be attributed to the influence of soil mineralogy, which originated from the geology 

of the soils. The Ethiopian case study sites showed higher pH and Pav values recorded in the 

limestone bedrock in the highlands contrary to the basaltic bedrock found in the low and 

midlands (Ali & Goshu, 2017; Hamza & Raghuvanshi, 2017) (chapter 2). Similarly, the case 

study in the DRC indicated that differences between soil texture, Pav, Caex and Mgex in the two 

study sites (Bushumba versus Mushinga) were due to geological variations (chapter 3). In this 

respect, the Madoka sub-site (Mushinga site) was dominated by a sandy soil texture with the 

typical reddish color originating from basaltic rocks (van Engelen et al., 2006). On the other 

hand, there were no clear differences in available potasium Kav values between DRC case study 

sites contrary to that of Ethiopia. This may be due to variation in elevation, climatic conditions 

and the agricultural farming systems between the two country study sites. The average elevation 

of the Ethiopian study sites varied from 1,281 meters above sea level (m.a.s.l) in the lowland 
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agro-ecological study site where fallowing, burning of organic residues and application of 

farmyard manure is taken as major soil fertility management option to an elevation of 2,911 

m.a.s.l in the highland agro-ecological sites where a combination of organic and inorganic 

fertilizer is taken as a viable option to soil management. On the contrary, elevation between the 

DRC case study sites did not vary widely (1,604-1,740 m. a.s.l.) which might not lead to 

diversified cropping systems. These diversified elevation ranges in the Ethiopian study sites 

shapes the climatic conditions that control the farming system types of smallholder farmers. For 

example, the average annual rain fall amount range from 2,037 mm (lowland kola agro-ecology 

study site) to 938 mm (high land dega agro-ecological study sites). Furthermore, the farming 

systems in the Ethiopian study sites is dominated by integrated mixed crop livestock farming. 

Therefore, these differences may be responsible for the pronounced variations in soil fertility 

indicators between the Ethiopian sites. The farming system in DRC is dominated by slash and 

burn crop cultivation (Kane et al., 2004), and this may be responsible for the absence of clear 

variations in most of the soil fertility indicators (Kav, pH and total organic carbon (TOC) between 

the different case study sites.  

The effect of resource endowment in the Ethiopian case study sites was visible compared to the 

DRC sites. In the kola agro-ecological case study sites of Ethiopia for instance, higher values for 

Kav were found on wealthy farmers’ fields as compared to poor farmers’ fields. In addition, there 

were distinct differences of TOC content and labile SOC functional groups, being higher in the 

fields of the wealthy than less wealthy farmers (chapter 2). There was also a higher SOC stability 

index (ratio of peak 1620 to 2930) in poor than wealthy farmers’ fields in Ethiopian case study 

farm typologies (wealthy versus poor). On the contrary, there were no differences in TOC and 

SOC functional groups as well as their stability indexes between farm typology groups in DRC. 

This might be attributed to the differences in soil management decisions between Ethiopian farm 

typology case study groups (wealthy versus poor). For example, in the lowland case study sites, 

wealthy farmers fallow their field, burn organic residue and apply farmyard manure obtained 

from higher livestock numbers, while the management differences in the highlands might be 

explained by the option of wealthy farmers to combine organic and inorganic fertilizer inputs as 

compared to using only inorganic fertilizer by poor farmers. On the contrary, there were no 

differences in TOC and SOC functional groups as well as their stability indexes between farm 

typology groups in DRC. Contrary to the high variability in the management decisions between 
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the different farm typology in the Ethiopian case study farmers, there was no clear soil 

management differences between the different farm typology groups in DRC except that farmers 

with <1 ha and >2 ha near to the market buy and apply farmyard manure and household waste 

such as ash. This might be on the one hand due to farmers’ practice of only slash and burn 

cultivation system (Kane et al., 2004). On the other hand, the use of inorganic fertilizer by all 

farm typology groups in DRC was very small and sometimes nonexistent (Kane et al., 2004) 

compared to the Ethiopian wealthy farmers (chapters 2 & 3).  

It must be noted that all these results and conclusions were from the use of similar and 

harmonized science-based research methodology in the two case studies (chapters 2 & 3). Most 

importantly, both studies used more robust, time and cost efficient midDRIFTS spectral analysis 

to analyze bulk soil samples collected from spatially different sites of Ethiopia and DRC.The 

midDRIFTS-PLSR models were developed to predict selected soil physico-chemical properties 

that were used to tackle different research questions and objectives in the two countries. 

Furthermore, the study approach in both case studies used similar and harmonized research 

methodology such as focused group discussion and semi-structure questioner to categorize farm 

typologies. Similarly, in the field of both countries study sites, a Y-shaped scheme was used for 

soil sample collection in the field. Therefore, it is evident that midDRIFTS as well as the use of 

similar and harmonized research methodology enables the evaluation of soil fertility status across 

a large spatial scale which ranges from east Africa (Ethiopia) to central Africa (DRC). Hence, 

these findings confirmed the claim raised by Shephered and Walsh (2007) and Seybold et al. 

(2019) that infrared spectroscopy is a rapid, low cost and highly reproducible soil survey tool 

that can be used in large spatial scale. Furthermore, midDRIFTS provides various physical, 

chemical, and biological soil properties (such as enzymatic activities, microbial biomass and 

microbial abundance) from a single spectrum (Seybold et al., 2019; Rasche et al., 2014).  

A study used to assess the influence of market access on soil fertility status conducted in the 

DRC case study sites showed that, soil fertility, as displayed by TOC and TN concentrations, 

decreased with increasing market distance. This showed an innovative approach revealing the 

impact of poor market access on recurrent soil fertility problems in SSA. Further study on this 

need to be extended to other SSA countries such as Ethiopia. This is because Ethiopia is 

endowed with a wide range of agro-ecologies and farming systems (e.g. integrated crop livestock 

mixed farming) which might be difficult to translate directly the findings of market access on 



156 

soil fertility found in DRC. The type and cost of inputs needed for soil fertility improvement as 

well as the type of crops produced in highland agro-ecology is different from the lowland agro-

ecology in Ethiopia. For example, lime and acid free synthetic fertilizers are more important in 

the highlands where soil acidity is high than in the low land agro-ecology. Furthermore, the 

agricultural extension systems and extent of infrastructure development (road construction) of 

Ethiopia might be different from DR-C. Hence, further understanding of how market accesses 

affect soil fertility status across the different agro-ecologically distinct sites in Ethiopia is 

required.  

5.2 SOC functional groups and stability indexes as indicators of soil fertility 

assessment 

To assess soil fertility status, sensitive indicators such as SOC functional groups and stability 

indexes calculated from relative peak areas of selected midDRIFTS peaks are important in 

addition to soil nutrients and TOC. This is based on the premise that labile SOC functional 

groups may change more easily due to tillage, manuring, fertilization, crop rotation and other 

interventions than total organic matter (Bongiovanni & Lobartini, 2006; Duval et al., 2018 

Heitkamp et al., 2009). A larger pool of labile SOC along with a lower SOC stability index (i.e., 

peak area ratio of 1620:2930, 1530:2930 and 1159:2930) indicated higher soil fertility as 

compared to higher C=C aromatic and a higher SOC stability index (chapter 2), because the 

labile SOC pool is acknowledged to increase important soil functions, such as soil aggregate 

formation, nutrient supply and can serve as a microbial energy source (Gmach et al., 2020; 

Haynes, 2005; Strosser, 2010). On the contrary, C=C aromatic pools are known to increase soil 

C stabilization (Haynes, 2005). Thus, claims that soils with higher labile SOC functional groups 

are fertile than those with higher C=C aromatic groups were confirmed with higher Pav and soil 

pH in the fertile than less fertile soils in our case study (chapter 2). Similar results were reported 

by Demyan et al. (2012), who also found higher C-H aliphatic SOC groups in plots of the Bad 

Lauchstädt long-term field experiment (Germany) treated with both chemical and organic 

fertilizers for more than 100 years (suggested as fertile) than in plots receiving only farm yard 

manure (less fertile). In contrast, the higher 1159 cm-1 relative peak area and stability index (i.e., 

peak area ratio of 1620:2930) in the less fertile as compared to fertile soils (chapter 2) may be 

indicative that more stabilized SOC functional groups were found in less fertile soils due to the 
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absence of regular organic resources amendments. Furthermore, we found an increasing ratio of 

1530:2930 with increasing market distance in medium and poor farmers’ field plots, implying a 

lower SOC quality due to limited or absence of organic inputs. The assumption “SOC functional 

groups can be used as soil fertility indicators” was confirmed with the existence of relationships 

with other soil physico-chemical properties in our studies. For example, in the Ethiopian case 

study, significant positive correlations of pH and TOC with C-H aliphatic SOC (r2=0.39, 

r2=0.51) (P<0.001) were noted, while negative relationships were found for C=C aromatic SOC 

(r2=0.39, r2=0.47) (P<0.001), indicating that fertile soils had more labile SOC functional groups 

and less stabilized SOC functional counterparts. Furthermore, this assumption was corroborated 

by the negative correlation between the ratio of 1530:2930 and organic C content in the DR-C 

case study (chapter 3). Therefore, in addition to application of inorganic fertilizers, SOC 

management and application of organic resources such as plant residues and farmyard manure or 

compost is a useful strategy to enhance SOC labile functional groups (Demyan et al., 2012). This 

is because the addition of organic inputs to soils increases the labile pools in the short term and 

accumulates SOC in the long term due to mineralization (Margenot et al., 2015). Hence, 

understanding the extent of labile and aromatic SOC functional groups can be used as key 

indicator to guide short and/or long-term soil fertility management strategies. 

However, the extent of labile SOC pools and accumulation of more stable aromatic SOC pools is 

controlled by two factors, namely organic C input and SOC degradation rates (Deng et al., 2019). 

Organic input degradation rates are closely related to the quality of C inputs, environmental 

constraints and the efficiency of microbial decomposers called CUE. However, future work may 

be extended to include additional more sensitive soil microbiological properties (e.g. soil 

enzymatic activities, microbial biomass and microbial abundance) as indicators for soil fertility 

assessment. This is because, these properties are more sensitive and can mediate the biochemical 

transformations of organic matter that reinforces essential ecosystem functions, including 

decomposition, mineralization of plant available nutrients and nutrient retentions (Bowles et al., 

2014). Therefore, understanding the relationship between soil chemical properties specifically 

SOC functional groups and soil microbial processes can provide better insight into understanding 

the extent of soil fertility status in small holder farming systems.  
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5.3 Could microbiome CUE be an indicator for soil fertility status?  

To assess the extent of soil fertility status, researchers and agricultural experts used different 

indicators such as plant nutrients and TOC. Even though CUE is an important ecological 

characteristic of microbial metabolism and soil C cycling (Manzoni et al., 2008; Spohn et al., 

2016), however, its use as indicator for soil fertility assessment is not common. To test whether 

CUE could be used as one of the soil fertility indicators, we conducted a microcosm experiment 

under laboratory conditions (chapter 4), considering that infertile soils have either stress 

problems (soil acidity) or nutrient limitations. To address this issue, we used strongly (described 

as less fertile) and medium acidic (described as fertile) soils amended with medium quality 

(resource-limited) and high-quality residue (resource unlimited) soils as a case study (chapter 4). 

This is because, CUE is increasingly gaining attention as an important factor governing the fate 

of metabolized C, and thus SOM formation, nutrient dynamics, and release of C to the 

atmosphere (Arcand et al., 2017; Blagodatskaya et al., 2014; Manzoni et al., 2012). Hence, 

understanding CUE in different soils could provide a better insight not only about the extent of 

soil fertility status but also linking soil biochemical process (e.g. soil mineralization, organic 

matter decompositions) with ecological soil functions (such as nutrient cycling, soil C storage 

and soil aggregate stabilization). This is due to the fact that the efficiency of the soil microbiome 

(i.e communities of soil microorganisms consisting of bacteria, fungi and protozoa associated 

with various soils habitats (Lakshmanan et al., 2014)) controls soil C decomposition and 

sequestration potential which is a responsible parameter to guide major soil ecological functions 

such as nutrient cycling (Spohn et al., 2016). Based on these premises, we found lower CUE in 

the more acidic soils amended with medium quality residues in which mineralization process has 

been hampered than less acidic soils amended by high-quality residues (chapter 4). A similar 

finding by Schimel et al. (2007) revealed that lower soil microbial CUE was observed in drought 

stressed soils than non-stressed soils. This was probably due to  higher energy investment to 

tolerate both soil acidity as well as drought stress (Rousk et al., 2009) and the accessibility of 

less decomposable residues (Johnson et al., 2007). This inefficient CUE, in more acidic soils 

amended with relatively more recalcitrant residues (less fertile), may exacerbate CO2 emission 

than returning C to the soil via soil microbial biomass (Janzen, 2015). Furthermore, in less fertile 

soils, the stoichiometry requirement of microbial biomass for nutrients may further decrease the 
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CUE of microorganisms (Rui et al., 2016), because of the limited amount of nutrients in these 

type of soils. The existence of lower CUE in the less fertile soils thus, indicated that the soil is 

limited in nutrient provision to plants as well as nutrients and energy to soil microorganisms. On 

the contrary, fertile soil possess higher CUE values (chapter 4; Schimel et al., 2007) due to the 

availability of  C for microorganisms growth and to increase microbial biomass. This in turn 

enhanced the labile soil pools such as microbial biomass carbon (MBC), microbial biomass 

nitrogen (MBN) and fastens the turnover of the SOC which might also increase the availability 

of soil nutrients (chapter 4). According to Rui et al. (2016) soils with low labile C (e.g. MBC) 

displayed lower CUE of soil microorganisms, because the limited available C is used to satisfy 

the energy demands for cell maintenance with little left for cell growth and division. Thus, the 

high value of CUE in fertile than less fertile soils is indicative that CUE could be used as an 

important indicator to monitor the extent of soil fertility status in agricultural soils. However, 

these findings were based on laboratory incubation studies and may not be directly translated to 

field conditions to assess soil fertility status. Therefore, I recommend further research to unravel 

the effect of different soil fertility level on CUE in more heterogeneous soil conditions 

considering not only soil pH but also different levels of nutrients (e.g. Pav, Kav) and SOC 

contents as factors. This is because our study was constrained by a very narrow difference in soil 

pH and further evidence might be required to understand how soils with different status of macro 

nutreints and SOC content affect microbial CUE. This could be done using midDRIFTS, because 

it is confirmed that most important soil microbiological data important for CUE calculations (e.g. 

microbial biomass, enzymatic activities and microbial DNA) could be predicted in cost and time 

efficient way (Rasche et al., 2014). This approach will permit easier estimation of CUE and to be 

used as an important soil fertility indicator under a larger spatial regional scale in smallholder 

farming systems of SSA. 

5.4 Could multi-enzymatic stoichiometry be a better approach for microbial 

CUE? 

Accurate quantification of CUE in terrestrial ecosystems has become one of the challenges in 

soil ecology. Different assumptions are employed for different methods and to capture different 

aspects of microbial metabolism. CUE calculation based on direct C-balance method assumed 

net increase in microbial biomass while enzymatic stoichiometry modeling (STM) assumes that 
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the imbalance of microbial C/N and labile pool substrate C/N ratio, as well as a ratio between C 

and N (P) acquiring enzymes, are a direct control of microbial CUE. To understand the different 

principles and hence CUE estimation approaches, a controlled experiment was conducted 

(chapter 4) using plant residue contrary to Geyer et al. (2019) who used only glucose as a 

substrate.  

In this experiment, we tested the direct C-balance method and the indirect stoichiometry (multi-

enzymes and single enzymes) approaches (chapter 4). We found different CUE values using the 

direct C-balance, multi-enzymes, β-D-glucosidase (BGL), β-D-cellobiohydrolase (BCL) and β-

D-xylosidase (BXL) enzymatic activities as a proxy for C-cycling enzymes, confirming that 

CUE values are shaped by applied methods (chapter 4). The lowest CUE values were recorded in 

multi-enzymes followed by BGL enzymatic activities; this might be due to nutrient and 

microbial biomass strict stoichiometry principles. On the other hand, the higher CUE in direct C-

balance method, which might be due to MBC estimation by fumigation extraction method, did 

not account for any C lost through microbial enzyme and metabolite excretion (Hagerty et al., 

2018; Manzoni et al., 2012; Sinsabaugh et al., 2013). Similar results were earlier reported, 

confirming that the direct method gave higher CUE values as compared to the STM method 

(Blagodatskaya et al., 2014; Geyer et al., 2019; Spohn et al., 2016).  

We could not calculate CUE using the C-balance method after the first seven days of incubation 

because of microbial turn over effects. Instead, we calculated qCO2 for longer incubation periods 

creating difficulty for direct comparison between qCO2 and CUE values. This was one of the 

limitations of this method as compared to the stoichiometry approaches. Also, this method 

demands monitoring of CO2-C to calculate CUE during the whole incubation period.  

The main advantage of stoichiometry modeling approaches as compared to C-balance method is 

that it utilizes common soil analysis for CUE calculation, and can be applied at various spatio-

temporal scales (Sinsabaugh et al., 2016). The principal difference between the direct calculation 

of CUE by C-balance method and STM approaches is that the latter considers the effect of 

nutrient limitation on CUE. As detailed in chapter 4, enzymatic STM considers the C to nutrient 

(N, P) ratios of microbial biomass and detrital organic matter and the ratio between C and 

nutrient (N) acquiring enzymatic activities (Sinsabaugh & Follstad Shah, 2012; Spohn et al., 

2016). However, it was not clear so far whether single enzymatic or multi-enzymatic 

stoichiometry is an appropriate approach to quantify CUE for long term plant residue 
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decomposition. Again, in this study we compared single versus multi-enzymatic stoichiometry 

and found lower CUE using multi-enzymes as compared to single STM. Since BCL and BXL 

activities are rate limiting in plant residue decomposition (Voříšková et al., 2011), involvement 

of these enzymatic activities in addition to BGL will give better insight for CUE estimation in 

multi-enzymes approach. Even though, multi-enzymatic stoichiometry approach could be 

suggested as an alternative option for CUE estimation, it must be noted that involvement of 

lignin degrading enzymes activities in to the calculation of CUE might be beneficial. This is 

because; lignin constitutes 15-25% of the total dry matter of plant residues and farmyard manure 

(Palm et al., 2001). This could be even more important in small-holder farming systems where 

the use of organic resources for soil fertility replenishment is common.  

5.5 Future research work 

Over all, this PhD study provides evidence-based drivers of soil fertility variability in SSA using 

more efficient and robust approaches in case studies in Ethiopia and DRC. A harmonized 

midDRIFTS-PLSR model development and peak area integration analysis were employed for the 

two countries. Even though, the applied approach is robust and efficient to analyze large data 

sets, this study covered only major plant nutrients (NPK), total C, pH and SOC pools. Thus, it 

would be a further advantage to use midDRIFTS to develop a model that predicts other macro 

(e.g., Sulphur, calcium and magnesium) and soil texture for soil fertility assessment in the study 

areas. This is because, these macro nutrients as well as soil texture are important soil fertility 

indicators and determination of these parameters using conventional method (e.g. wet chemistry) 

demands more time and cost. However, accurate predictions on available phosphorous and 

exchangeable potassium using midDRIFTS were not succsufful because of midDRIFTs 

prediction depends on soil minerology wheras availability of these nutreints depend not only on 

the inherent soil minerology but also environmental conditions such as soil pH. 

As shown in this study, more sensitive SOC pools are used as indicator for soil fertility 

assessment, although this is a good start, further studies would be required to use soil microbial 

communities and their functional diversity (e.g. microbial enzymatic activities and soil 

respiration) as indicators of soil fertility assessment. This is because microbial functions (i.e 

enzymatic activities) play a key role in decomposing organic matter and provision of plant 

nutreints. Furthermore, microbial functional diversity has been found very sensitive to 
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environmental changes and affect nutrient cycling process in the soil (Neiendam and Winding, 

2002). Similarly, microbial aboundance and diversity controls the actual microbial functions 

(enzymatic activities, respirations) and influnces soil fertility status. This could help to 

understand how soil microbial activities would shape soil biochemical process (mineralization 

and decomposition) to give a deeper insight on soil ecological functions (nutrient cycling, C 

storage, aggregate stability).  

Interestingly, this work explained the linkage between CUE and soil fertility status and showed 

how to use it as a proxy for soil fertility. This study also addressed the impact of estimation 

methods and environmental variability on CUE. However, evaluating of the entire available CUE 

estimation methods including 13C and 18O isotope labeling approaches using organic residues as 

substrate in terrestrial ecosystems needs to be considered for future research. 13C isotope labeling 

could help to trace the amount of C partitioned in to different C pools from the applied substrate 

(e.g. MBC, DOC, CO2) that could be useful for accurate estimations of CUE (Muller et al., 2016; 

Geyer et al., 2019). By doing this, it could be possible to disentangle the CUE of bacteria 

community from fungi. This might be a useful approach to confirm the claim that the efficiency 

of fungi community in degrading organic inputs in general and lignin in particular is suspected to 

be higher than bacterial community. To address this critical research gaps, linking fungal and 

bacterial gene abundance with microbial biomass carbon (MBC) and nitrogen (MBN) on the one 

hand and quantification of CO2-C from the individual community on the other hand in soil 

ecological study should be considered for future research. Quantification of CO2-C could be 

done using selective inhibition technique to measure the contribution of the bacterial and fungal 

community to CO2-C production.Thus, the quantification of individual communities’ abundance 

(e.g bacteria; gram positive and gram negative and saprotrophic fungi) can be done using stable 

isotopes in combination with biomarker molecule analyses such as the phospholipid fatty acids 

(PLFA) technique (Müller et al., 2016). By doing this, it might be possible to quantify C gain 

and loss in each individual community (bacteria and fungi) that will provide important steps for 

estimation of CUE for fungal and bacterial individual community in terrestrial ecosystems. On 

the other hand, 18O isotope labelling uses the incorporation of 18O-labeled and unllabled natural 

water into soil to measure DNA gross growth (Gerey et al., 2019). Thus, combining molecular 

and biochemical techniques may be necessary for the estimation of CUE in individual fungal and 

bacterial community and to better understand carbon dynamics in terrestrial ecosystems. Lack of 



163 

lignin degrading enzymes in the multi-enzymes model in this study is also another limitation 

which demands further investigation because of 15-25% of the compositions in plant residues 

and farmyard manure are lignin (Palm et al., 2001), and these organic resources are the main 

sources of fertilization for small holder farmers.  
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6 Summary 

The main drivers of soil fertility variability across Sub-Saharan Africa (SAA) must be 

understood to develop tailor-made integrated soil fertility management (ISFM) strategies, 

considering agro-ecological zones, smallholder farmers’ resource endowment and their 

indigenous knowledge of soil fertility. Moreover, most soil fertility indicators including, but not 

limited to total soil organic carbon (SOC) content, lack in sensitivity and accuracy. The 

insensitivity and inaccuracy of these indicators impedes their application for soil fertility surveys 

in smallholder farming systems across larger spatial scales. Hence, the verification of novel soil 

fertility indicators, such as SOC functional groups and microbial carbon use efficiency (CUE) as 

influenced by environmental factors (e.g. soil pH, organic input quality), become paramount 

important to overcome this constraint. The implementation of such methodological innovation 

would help to better understand the extent of regional soil fertility variability and subsequently 

design niche-based ISFM strategies for smallholder farming systems in SSA. 

Therefore, the first aim of this study was to explore the interrelated effects of biophysical and 

socio-economic factors on soil fertility variability, as reflected by soil nutrient contents as well as 

SOC content and quality parameters (i.e., SOC functional groups). The second aim was to 

evaluate soil microbial CUE as an additional proxy to assess soil fertility considering the 

influence of environmental and methodological variations on CUE calculation. 

The specific objectives of this PhD study were to:  

• verify that soil fertility variability across two model regions in Central and Western Ethiopia 

with four distinct agro-ecological zones could be determined by the inter-related effects of agro-

ecology and farmers’ resource endowment (“wealthy” versus “poor” farmers).  

• confirm this approach of local soil fertility assessment in Ethiopia by including “market 

distance” as an additional factor for soil fertility variability, as exemplified in the Democratic 

Republic of Congo (DRC).  

• test whether farmers’ indigenous knowledge on soil fertility status is driven by inter-related 

effects of agro-ecology, market distance and farm typology, considering the continuous 

knowledge transfer among farmers within and across agro-ecological zones. 
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• evaluate the potential of SOC functional groups and soil microbial CUE as promising 

indicators of soil fertility status influenced by physico-chemical soil properties and organic input 

management. 

• to modify the exsiting single C-cycling enzymatic stoichiometry (SCE-STM) through 

proposing novel “multi”-C-cycling enzymatic stoichiometry (MCE-STM) methods for soil 

microbial CUE estimation. 

To tackle objectives 1-3 of the presented PhD study, two local field-based soil fertility surveys 

were conducted in Ethiopia and DRC. A lab-based incubation study was implemented for 

objectives 4 and 5. For the soil fertility surveys, mid-infrared spectroscopy coupled to partial 

least squares regression (midDRIFTS-PLSR) and wet-lab analyses were used to assess the soil 

fertility (i.e., soil pH, total soil carbon (TC), total soil nitrogen (TN), plant-available phosphorous 

(Pav) and potassium (Kav), exchangeable calcium (Caex) and magnesium (Mgex)) across four agro-

ecological zones in Ethiopia. MidDRIFTS peak area analysis of spectral frequencies (2930 

(aliphatic C-H), 1620 (aromatic C=C), 1159 (C-O poly-alcoholic and ether groups) cm-1) were 

applied to characterize SOC quality and to calculate the SOC stability index (1620:2930, 

1530:2930). While in DRC, both techniques were employed to assess soil fertility proxies across 

market distances (defined as walking time) in distinct regions. For the lab-based incubation study 

(60 days), two soils differing mainly in acidity level mixed with two specimens of plant residues 

differing mainly in lignin (L) and polyphenol (PP) content were used. For estimating soil 

microbial CUE during plant residue decomposition in the different soils, single C-cycling 

enzymatic stoichiometry (SCE-STM) and the newly proposed “multi”-C-cycling enzymatic 

stoichiometry (MCE-STM) methods were validated against the conventional C-balance method. 

MidDRIFTS-PLSR and peak area analysis results of the Ethiopian case study showed that the 

inter-related effects of agroecology and farmers’ resource endowment determined the observed 

soil fertility variability across four agro-ecological zones. Resource endowment dependent soil 

fertility management options revealed higher TC in the high altitude agro-ecological zone, while 

higher TN and Kav was found in the lower agro-ecological zones in the fields of wealthy farmers. 

Similarly, SOC of higher quality was found in soils of wealthy than poor farms in higher altitude 

zones. Thus, agro-ecological zone distinctions contributed to these differences in soil fertility 

variability. It was dedeuced that this difference in soil fertility status between wealthy and poor 
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farmers’ fields across agro-ecological zones has been due to the high variability in landholding 

size per capita, livestock population and amount of fertilizer used per unit area.  

Complementary, the results of the DRC case study revealed that “market distance” and “farm 

typology” were key determinants of soil fertility variability, both with contrasting trends in the 

study sites. Decreasing soil fertility status was noted across all farm typologies with increasing 

market distance. A significant influence of “farm typology” was found for Caex and Mgex, while 

factor “site” resulted in a significant difference of Pav. For SOC quality indices (i.e., ratio 

1530:2930), factor “site” was decisive, as reflected in its interaction with “market distance”. 

However, the effect of market distance became obvious in the medium wealthy and poor farmers 

fields, where an increasing SOC quality index of 1530:2930 with increasing market distance 

implied a lower SOC quality in remote farms. 

Soil depth and soil color were the most frequently used soil fertility indicators by farmers across 

agro-ecologies, market distances, and farm typologies. Concerning farmers’ indigenous 

knowledge across the study regions in Ethiopia and DRC, fertile and less fertile fields were 

distinguished visually by soil color. Higher pH and Pav were found in fertile (brown/black) than 

less fertile (red) soils in most agro-ecological zones of the Ethiopian case study. Furthermore, 

higher peak areas of 1159 cm-1 and SOC stability indices were observed in less fertile compared 

to fertile soils in Ethiopia. In close agreement with farmers’ indigenous knowledge in the DRC 

study region, soil fertility levels were higher in deep than shallow soils, which was reflected in 

higher nutrient stocks in deep soils receiving organic amendments. Accordingly, site-specific soil 

management strategies with the integration of farmers’ indigenous knowledge will be a feasible 

option to overcome the low adoption of ISFM. 

This PhD study suggested the use of more sensitive indicators, such as soil microbial CUE, to 

accurately assess soil fertility status for the design of niche-based soil fertility management 

decisions. Furthermore, the PhD study showed that higher CUE was recorded in more fertile and 

less acidic (pH 5.1) soils amended with residues of higher quality than the other three 

combinations. It was deduced that microorganisms invested more energy to support growth in 

more acidic (pH 4.3) soil to tolerate soil acidity, which, in turn, suppressed N-acquiring 

enzymatic activities and further decreased CUE. Lower CUE values were recorded from multi-C 

cycling enzymatic stoichiometry modeling (MCE-STM) as compared to the CUE values 
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obtained from C-balance and single-C cycling enzymatic stoichiometry modeling (SCE-STM) 

methods. The modification of the MCE-STM method for CUE determination proposed in this 

dissertation work was capable to quantify the combined effect of soil pH and plant residue 

quality on the efficiency of microbial metabolism. As a result, it improved the original 

stoichiometric modeling approach (SCE-STM), which relied only on the concept of nutrient 

availability.  

In conclusion, for regional soil fertility assessment, midDRIFTS-PLSR predictions along with 

midDRIFTS peaks representing SOC functional groups proved to be a sensitive as well as more 

efficient and robust approach as compared to the existing aproaches relying on classical soil 

properties (e.g., SOC content) assessed by wet lab analyses. Based on the generated data using 

midDRIFTS, the main drivers of soil fertility variability have been revealed, considering 

specifically the interrelated effects of agro-ecology, resource endowment, market distance and 

farmers’ indigenous knowledge. Furthermore, integration of soil microbial CUE (e.g. MCE-

STM) in soil fertility assessments does not only provide a clearer picture of soil fertility statuts. 

It also serves for better understanding of ecologcical processes in soils in general. With his, this 

PhD study fostered the knowledge of soil fertility drivers across spatial scales and laid the 

scientific basis for the furthering of novel soil fertility indicators based on soil microbial CUE. 

This outcome will benefit the design of niche-based soil fertility management strategies, which 

are of paramount importance to secure the livelihoods of SSA smallholder farming systems. 
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7. Zusammenfassung 

Die Hauptfaktoren für die Variabilität der Bodenfruchtbarkeit in Subsahara-Afrika (SAA) 

müssen verstanden werden, um maßgeschneiderte Strategien für ein integriertes 

Bodenfruchtbarkeitsmanagement (ISFM) zu entwickeln, die die agro-ökologischen Zonen, die 

Ressourcenausstattung der Kleinbauern und ihr indigenes Wissen über die Bodenfruchtbarkeit 

berücksichtigen. Darüber hinaus mangelt es den meisten Bodenfruchtbarkeitsindikatoren, 

einschließlich, aber nicht beschränkt auf den Gesamtgehalt an organischem Kohlenstoff (SOC) 

im Boden, an Empfindlichkeit und Genauigkeit. Die Unempfindlichkeit und Ungenauigkeit 

dieser Indikatoren erschwert ihre Anwendung für die Erfassung der Bodenfruchtbarkeit in 

kleinbäuerlichen Systemen auf größeren räumlichen Skalen. Daher ist die Überprüfung 

neuartiger Bodenfruchtbarkeitsindikatoren, wie z.B. funktionelle SOC-Gruppen und mikrobielle 

Kohlenstoffnutzungseffizienz (CUE), die von Umweltfaktoren (z.B. pH-Wert des Bodens, 

Qualität des organischen Inputs) beeinflusst werden, von größter Bedeutung, um diese 

Einschränkung zu überwinden. Die Umsetzung einer solchen methodischen Innovation würde 

helfen, das Ausmaß der regionalen Bodenfruchtbarkeitsvariabilität besser zu verstehen und 

anschließend nischenbasierte ISFM-Strategien für kleinbäuerliche Anbausysteme in SSA zu 

entwickeln. Daher war das erste Ziel dieser Studie, die wechselseitigen Auswirkungen 

biophysikalischer und sozioökonomischer Faktoren auf die Variabilität der Bodenfruchtbarkeit 

zu untersuchen, wie sie sich in den Nährstoffgehalten des Bodens sowie im SOC-Gehalt und den 

Qualitätsparametern (d.h. den SOC-Funktionsgruppen) widerspiegelt. Das zweite Ziel war die 

Bewertung des CUE als zusätzlicher Proxy zur Beurteilung der Bodenfruchtbarkeit unter 

Berücksichtigung des Einflusses von Umwelt- und methodischen Variationen auf die CUE-

Berechnung. 

Die spezifischen Ziele dieser PhD-Studie waren,:  

- zu verifizieren, dass die Variabilität der Bodenfruchtbarkeit in zwei Modellregionen in Zentral- 

und West-Äthiopien mit vier unterschiedlichen agro-ökologischen Zonen durch die miteinander 

verbundenen Effekte der Agrarökologie und der Ressourcenausstattung der Landwirte ("reiche" 

versus "arme" Landwirte) bestimmt werden kann.  
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- diesen Ansatz der lokalen Bewertung der Bodenfruchtbarkeit in Äthiopien zu bestätigen, indem 

die "Marktdistanz" als zusätzlicher Faktor für die Variabilität der Bodenfruchtbarkeit einbezogen 

wird, wie es in der Demokratischen Republik Kongo (DRC) vorgemacht wurde.  

- zu testen, ob das indigene Wissen der Landwirte über den Zustand der Bodenfruchtbarkeit 

durch interdependente Effekte der Agrarökologie, der Marktdistanz und der Betriebstypologie 

bestimmt wird, unter Berücksichtigung des kontinuierlichen Wissenstransfers zwischen den 

Landwirten innerhalb und zwischen den agro-ökologischen Zonen. 

- das Potenzial der funktionellen SOC-Gruppen und des mikrobiellen CUE im Boden als 

vielversprechende Indikatoren für den Zustand der Bodenfruchtbarkeit zu bewerten, die von den 

physikalisch-chemischen Bodeneigenschaften und dem Management organischer Inputs 

beeinflusst werden. 

- die bestehende Single-C-Cycling-Enzym-Stöchiometrie (SCE-STM) zu modifizieren, indem 

neuartige "Multi"-C-Cycling-Enzym-Stöchiometrie (MCE-STM) Methoden zur CUE-

Abschätzung vorgeschlagen werden. 

 

Um die Ziele 1-3 der vorgestellten PhD-Studie anzugehen, wurden zwei lokale feldbasierte 

Bodenfruchtbarkeitsuntersuchungen in Äthiopien und der DRC durchgeführt. Für die Ziele 4 und 

5 wurde eine laborbasierte Inkubationsstudie durchgeführt. Für die Erhebungen der 

Bodenfruchtbarkeit wurden die Mid-Infrarot-Spektroskopie gekoppelt mit der Partial Least 

Squares Regression (midDRIFTS-PLSR) und Nasslaboranalysen verwendet, um die 

Bodenfruchtbarkeit (d.h. pH-Wert des Bodens, Gesamtkohlenstoff (TC), Gesamtstickstoff (TN), 

pflanzenverfügbarer Phosphor (Pav) und Kalium (Kav), austauschbares Kalzium (Caex) und 

Magnesium (Mgex)) in vier agro-ökologischen Zonen in Äthiopien zu bewerten. Die 

MidDRIFTS-Peakflächenanalyse der Spektralfrequenzen (2930 (aliphatische C-H), 1620 

(aromatische C=C), 1159 (C-O polyalkoholische und Ether-Gruppen) cm-1) wurde zur 

Charakterisierung der SOC-Qualität und zur Berechnung des SOC-Stabilitätsindex angewendet. 

In der DRC wurden beide Techniken eingesetzt, um die Bodenfruchtbarkeit über 

Marktentfernungen (definiert als Gehzeit) in verschiedenen Regionen zu bewerten. Für die 

laborbasierte Inkubationsstudie (60 Tage) wurden zwei Böden, die sich hauptsächlich im 
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Säuregrad unterscheiden, mit zwei Proben von Pflanzenresten gemischt, die sich im Lignin- (L) 

und Polyphenolgehalt (PP) unterscheiden. Zur Abschätzung der mikrobiellen CUE im Boden 

während des Abbaus von Pflanzenresten in den verschiedenen Böden wurden die Methoden der 

Single-C-Cycling-Enzym-Stöchiometrie (SCE-STM) und der neu vorgeschlagenen "Multi"-C-

Cycling-Enzym-Stöchiometrie (MCE-STM) gegenüber der herkömmlichen C-Bilanz-Methode 

validiert. 

 

Die Ergebnisse der MidDRIFTS-PLSR- und Peak-Flächen-Analyse der äthiopischen Fallstudie 

zeigten, dass die miteinander verbundenen Effekte der Agrarökologie und der 

Ressourcenausstattung der Landwirte die beobachtete Variabilität der Bodenfruchtbarkeit in vier 

agroökologischen Zonen bestimmten. Von der Ressourcenausstattung abhängige Optionen des 

Bodenfruchtbarkeitsmanagements zeigten eine höhere TZ in der hochgelegenen 

agroökologischen Zone, während in den niedrigeren agroökologischen Zonen auf den Feldern 

der wohlhabenden Landwirte eine höhere TN und Kav gefunden wurde. In ähnlicher Weise 

wurde eine höhere SOC-Qualität in den Böden von wohlhabenden als von armen Betrieben in 

den höher gelegenen Zonen gefunden. Somit trugen agro-ökologische Zonenunterschiede zu 

diesen Unterschieden in der Variabilität der Bodenfruchtbarkeit bei. Es wurde abgeleitet, dass 

dieser Unterschied im Bodenfruchtbarkeitsstatus zwischen den Feldern wohlhabender und armer 

Landwirte in den verschiedenen agro-ökologischen Zonen auf die hohe Variabilität in der Pro-

Kopf-Größe des Landbesitzes, des Viehbestandes und der Menge des pro Flächeneinheit 

verwendeten Düngers zurückzuführen ist. So legen wohlhabende Landwirte im Tiefland ihr Land 

brach und bringen organische Reststoffe aus, während die Landwirte im Hochland den Einsatz 

von chemischen Düngemitteln und Hofdünger in größerem Umfang in Betracht ziehen.  

Ergänzend zeigten die Ergebnisse der DRC-Fallstudie, dass die "Marktdistanz" und die 

"Betriebstypologie" wichtige Determinanten für die Variabilität der Bodenfruchtbarkeit sind, 

beide mit gegensätzlichen Trends in den Untersuchungsgebieten. Ein abnehmender 

Bodenfruchtbarkeitsstatus wurde bei allen Betriebstypologien mit zunehmender Marktentfernung 

festgestellt. Ein signifikanter Einfluss der "Betriebstypologie" wurde für Caex und Mgex 

gefunden, während der Faktor "Standort" zu einem signifikanten Unterschied von Pav führte. Für 

die SOC-Qualitätsindizes (d.h. das Verhältnis 1530:2930) war der Faktor "Standort" 
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entscheidend, was sich in seiner Interaktion mit der "Marktdistanz" widerspiegelte. Der Effekt 

der Marktdistanz wurde jedoch auf den Feldern der mittelreichen und armen Landwirte deutlich, 

wo ein steigender SOC-Qualitätsindex von 1530:2930 mit zunehmender Marktdistanz eine 

geringere SOC-Qualität in den abgelegenen Betrieben implizierte. 

 

Bodentiefe und Bodenfarbe waren die von den Landwirten am häufigsten verwendeten 

Indikatoren für die Bodenfruchtbarkeit, unabhängig von der Agrarökologie, der Marktentfernung 

und der Betriebstypologie. Was das indigene Wissen der Landwirte in den 

Untersuchungsregionen in Äthiopien und der Demokratischen Republik Kongo betrifft, wurden 

fruchtbare und weniger fruchtbare Felder visuell durch die Bodenfarbe unterschieden. In den 

meisten agro-ökologischen Zonen der äthiopischen Fallstudie wurden höhere pH-Werte und Pav-

Werte in fruchtbaren (braun/schwarz) als in weniger fruchtbaren (rot) Böden gefunden. 

Außerdem wurden höhere Peakflächen von 1159 cm-1 und SOC-Stabilitätsindizes in weniger 

fruchtbaren im Vergleich zu fruchtbaren Böden in Äthiopien beobachtet. In enger 

Übereinstimmung mit dem einheimischen Wissen der Landwirte in der DRC-Studienregion war 

die Bodenfruchtbarkeit in tiefen Böden höher als in flachen Böden, was sich in höheren 

Nährstoffvorräten in tiefen Böden widerspiegelte, die organische Ergänzungen erhielten. 

Dementsprechend sind standortspezifische Bodenbewirtschaftungsstrategien mit der Integration 

des indigenen Wissens der Landwirte eine machbare Option, um die geringe Akzeptanz von 

ISFM zu überwinden. 

Diese PhD-Studie schlug vor, empfindlichere Indikatoren, wie z.B. den mikrobiellen CUE-Wert 

des Bodens, zu verwenden, um den Zustand der Bodenfruchtbarkeit genau zu beurteilen und 

Entscheidungen für ein nischenbasiertes Bodenfruchtbarkeitsmanagement zu treffen. Darüber 

hinaus zeigte die PhD-Studie, dass in fruchtbareren und weniger sauren (pH 5,1) Böden, die mit 

Rückständen höherer Qualität ergänzt wurden, ein höherer CUE-Wert gemessen wurde als in den 

anderen drei Kombinationen. Daraus wurde gefolgert, dass die Mikroorganismen mehr Energie 

zur Unterstützung des Wachstums in saureren (pH 4,3) Böden investierten, um die Bodensäure 

zu tolerieren, was wiederum die N-akquirierenden enzymatischen Aktivitäten unterdrückte und 

den CUE weiter reduzierte. Niedrigere CUE-Werte wurden von der Multi-C-Cycling-Enzym-

Stöchiometrie-Modellierung (MCE-STM) im Vergleich zu den CUE-Werten aufgezeichnet, die 
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von den C-Balance- und Single-C-Cycling-Enzym-Stöchiometrie-Modellierungsmethoden 

(SCE-STM) erhalten wurden. Die in dieser Dissertationsarbeit vorgeschlagene Modifikation der 

MCE-STM-Methode zur CUE-Bestimmung war in der Lage, den kombinierten Effekt von 

Boden-pH und Pflanzenrückstandsqualität auf die Effizienz des mikrobiellen Stoffwechsels zu 

quantifizieren. Dadurch verbesserte sie den ursprünglichen stöchiometrischen 

Modellierungsansatz (SCE-STM), der sich nur auf das Konzept der Nährstoffverfügbarkeit 

stützte. 

Zusammenfassend lässt sich sagen, dass sich die midDRIFTS-PLSR-Vorhersagen zusammen mit 

den midDRIFTS-Peaks, die die funktionalen SOC-Gruppen repräsentieren, für die regionale 

Bewertung der Bodenfruchtbarkeit als sensibler sowie effizienter und robuster Ansatz erwiesen 

haben, verglichen mit den bestehenden Ansätzen, die sich auf klassische Bodeneigenschaften (z. 

B. den SOC-Gehalt) stützen, die durch Nasslaboranalysen ermittelt werden. Basierend auf den 

mit midDRIFTS generierten Daten wurden die Haupttreiber für die Variabilität der 

Bodenfruchtbarkeit aufgedeckt, wobei insbesondere die zusammenhängenden Effekte von 

Agrarökologie, Ressourcenausstattung, Marktdistanz und indigenem Wissen der Landwirte 

berücksichtigt wurden. Darüber hinaus liefert die Integration der mikrobiellen CUE (z.B. MCE-

STM) in die Bewertung der Bodenfruchtbarkeit nicht nur ein klareres Bild des Zustands der 

Bodenfruchtbarkeit. Sie dient auch dem besseren Verständnis ökologischer Prozesse in Böden im 

Allgemeinen. Damit förderte diese Doktorandenstudie das Wissen über 

Bodenfruchtbarkeitstreiber über räumliche Skalen hinweg und legte die wissenschaftliche Basis 

für die Förderung neuartiger Bodenfruchtbarkeitsindikatoren, die auf mikrobiellen CUE im 

Boden basieren. Dieses Ergebnis wird der Entwicklung von Nischen-basierten 

Bodenfruchtbarkeits-Management-Strategien zugute kommen, die von größter Bedeutung für die 

Sicherung der Lebensgrundlage von kleinbäuerlichen Systemen in SSA sind. 
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