
Universität Hohenheim

Institut für Volkswirtschaftslehre

Fachgebiet Statistik und Ökonometrie I
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Moll, Dr. Wolf-Dieter Heinbach, Dr. Ulrike Berberich, Dr. Stephanie Schröpfer und
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Promotion nach besten Kräften unterstützt haben.

Stuttgart, Dezember 2016 Harald Weiß





Contents III

Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI

List of Important Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . XV

1. Introduction 1

1.1. Motivation and Purpose of the Study . . . . . . . . . . . . . . . . . . 1

1.2. Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. The Concept of Implied Volatility 11

2.1. The Basic Concept of Using Implied Volatilities to Forecast Volatility 11

2.2. The Black-Scholes Model . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. Calculation Methodology of Black-Scholes Implied Volatilities . . . . 17

2.4. A Critical Review of Using Implied Volatilities as Volatility Forecasts 20

2.5. Stylised Facts of Implied Volatilities . . . . . . . . . . . . . . . . . . . 21

2.5.1. The Smile Effect . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2. The Volatility Term Structure . . . . . . . . . . . . . . . . . . 28

2.5.3. Dynamic Behaviour of Implied Volatilities . . . . . . . . . . . 35

2.6. Potential Explanations for the Stylised Facts of Implied Volatility . . 45

2.6.1. Stochastic Volatility . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.2. Jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6.3. Market Microstructure Effects . . . . . . . . . . . . . . . . . . 50

2.6.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



IV Contents

3. Analysis of DAX Implied Volatilities 57

3.1. Methods for Smoothing the IVS . . . . . . . . . . . . . . . . . . . . . 58

3.1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.2. Parametric Methods . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.3. Nonparametric Methods . . . . . . . . . . . . . . . . . . . . . 65

3.1.4. Comparison of Parametric and Nonparametric Smoothing Meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2. Introduction to the Data . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.1. Market Structure and Products of the EUREX . . . . . . . . 72

3.2.2. Description and Preparation of the Data . . . . . . . . . . . . 74

3.2.3. Calculation of Arbitrage-Free Implied Volatilities . . . . . . . 77

3.2.4. Volatility Regimes . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3. Stylised Empirical Facts of the DAX IVS . . . . . . . . . . . . . . . . 82

3.3.1. DAX Volatility Smiles . . . . . . . . . . . . . . . . . . . . . . 83

3.3.2. DAX Volatility Term Structures . . . . . . . . . . . . . . . . . 91

3.3.3. DAX IVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.3.4. Similarities and Differences between DAX and S&P 500 Index

Implied Volatility Before and After Stock Market Crashes . . 100

3.4. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4. Volatility Forecasting Models 105

4.1. Option Pricing Models . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.1.1. Local Volatility Models . . . . . . . . . . . . . . . . . . . . . . 106

4.1.2. The Concept of Model-Free Implied Volatility . . . . . . . . . 113

4.1.3. Stochastic Volatility Models . . . . . . . . . . . . . . . . . . . 120

4.1.4. Mixed Jump-Diffusion Models and Pure Jump Models . . . . 126

4.2. Time Series Models for Forecasting Volatility . . . . . . . . . . . . . . 131

4.2.1. GARCH Models . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.2.2. Long Memory Models . . . . . . . . . . . . . . . . . . . . . . 136



Contents V

5. Forecasting Performance of Volatility Models: A Literature Review 141

5.1. Volatility Forecast Evaluation Based on Encompassing Regressions . . 142

5.1.1. The Definition of Information Efficiency . . . . . . . . . . . . 142

5.1.2. Encompassing Regressions . . . . . . . . . . . . . . . . . . . . 143

5.2. Empirical Studies Forecasting US Stock Market Volatility . . . . . . . 145

5.2.1. The Initial Debate over the Predictive Ability of Implied Volatil-

ity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2.2. The Errors-in-Variables Problem Due to Measurement Errors

in Implied Volatility . . . . . . . . . . . . . . . . . . . . . . . 150

5.2.3. Effects of Using Intraday Returns as an Ex-Post Volatility

Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.2.4. Implications of the Choice of Option Pricing Model . . . . . . 155

5.2.5. Volatility Forecasts from Long Memory Models . . . . . . . . 159

5.2.6. Empirical Studies Evaluating Volatility Forecasting Perfor-

mance Based on Loss Functions . . . . . . . . . . . . . . . . . 163

5.2.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.3. Empirical Results for the DAX Options Market . . . . . . . . . . . . 171

5.4. Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6. Forecasting DAX Volatility 181

6.1. Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.2. Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.3. Tests Results for Unit Roots, Long Memory, and ARCH Effects . . . 186

6.4. Identification, Estimation, and Selection of Volatility Time Series

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.4.1. GARCH Models . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.4.2. ARFIMA and HAR Models . . . . . . . . . . . . . . . . . . . 202

6.5. Structural Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.5.1. Testing for Structural Breaks . . . . . . . . . . . . . . . . . . 206

6.5.2. Testing for Long Memory Effects in the Presence of Structural

Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208



VI Contents

6.5.3. Testing for Structural Breaks: Results for the HAR model and

the GARCH Models . . . . . . . . . . . . . . . . . . . . . . . 212

6.6. Volatility Proxy, Evaluation Approach, and Forecasting Methodology 213

6.6.1. Volatility Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.6.2. Forecast Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 219

6.6.3. Forecasting Methodology . . . . . . . . . . . . . . . . . . . . . 232

6.7. Evaluation of the Forecasting Results . . . . . . . . . . . . . . . . . . 233

6.7.1. One-day-ahead Forecasts . . . . . . . . . . . . . . . . . . . . . 235

6.7.2. Two-weeks-ahead Forecasts . . . . . . . . . . . . . . . . . . . 241

6.7.3. One-month-ahead Forecasts . . . . . . . . . . . . . . . . . . . 246

7. Conclusion 253

A. Appendix of Chapter 3 263

B. Appendix of Chapter 6 265

Bibliography 277



List of Tables VII

List of Tables

3.1. Studies based on parametric volatility functions . . . . . . . . . . . . 61

6.1. Descriptive statistics of volatility and return series from 2002 to 2009 183

6.2. Correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

6.3. Results of stationarity, long memory, and ARCH LM tests . . . . . . 189

6.4. Estimation results for GARCH models . . . . . . . . . . . . . . . . . 196

6.5. Diagnostic test results for GARCH models . . . . . . . . . . . . . . . 198

6.6. Estimation results for long memory models . . . . . . . . . . . . . . . 205

6.7. Results of the Bai and Perron (1998) test . . . . . . . . . . . . . . . . 210

6.8. Estimation results of the ARFIMA model before and after removing

structural breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.9. Results of the Andrews (1993) test . . . . . . . . . . . . . . . . . . . 213

6.10. MCS results for one-day-ahead forecasts (loss function: MSE) . . . . 237

6.11. MCS results for one-day-ahead forecasts (loss function: QLIKE) . . . 239

6.12. MCS results for two-weeks-ahead forecasts (loss function: MSE) . . . 242

6.13. MCS results for two-weeks-ahead forecasts (loss function: QLIKE) . . 244

6.14. MCS results for one-month-ahead forecasts (loss function: MSE) . . . 247

6.15. MCS results for one-month-ahead forecasts (loss function: QLIKE) . 249

B.1. ADF test results for the null hypothesis “random walk with drift” . . 265

B.2. Information criteria for GARCH model selection . . . . . . . . . . . . 266

B.3. Information criteria for ARFIMA model selection . . . . . . . . . . . 267

B.4. Estimation results for an MA(2) model fitted to DAX returns . . . . 268



VIII List of Tables

B.5. ADF test results for one-day loss differentials . . . . . . . . . . . . . . 269

B.6. ADF test results for two-weeks loss differentials . . . . . . . . . . . . 270

B.7. ADF test results for one-month loss differentials . . . . . . . . . . . . 271

B.8. Estimation results for AR(p) processes of one-day loss differentials

(1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

B.9. Estimation results for AR(p) processes of one-day loss differentials

(2/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

B.10.Estimation results for AR(p) processes of two-weeks loss differentials 274

B.11.Estimation results for AR(p) processes of one-month loss differentials 275



List of Figures IX

List of Figures

2.1. Types of volatility smiles . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2. Typical S&P 500 post-crash volatility smile . . . . . . . . . . . . . . . 23

2.3. Basic volatility term structure . . . . . . . . . . . . . . . . . . . . . . 29

3.1. Transactions of DAX options across maturity from 2002 to 2009 . . . 75

3.2. Transactions of DAX options across moneyness from 2002 to 2009 . . 75

3.3. DAX index level and DAX implied volatilities from 2002 to 2009 . . . 80

3.4. DAX implied volatility smiles . . . . . . . . . . . . . . . . . . . . . . 84

3.5. DAX volatility smiles for different maturities . . . . . . . . . . . . . . 84

3.6. Average DAX volatility smiles from 2002 to 2009 . . . . . . . . . . . 86

3.7. Average DAX volatility smiles for different volatility regimes . . . . . 86

3.8. DAX implied volatilities for different moneyness levels . . . . . . . . . 88

3.9. DAX implied volatility and volatility spreads . . . . . . . . . . . . . . 88

3.10. DAX implied volatility and volatility spreads for different maturities . 90

3.11. DAX term structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.12. Average DAX term structures for different moneyness levels . . . . . 92

3.13. Average DAX term structures for different volatility regimes . . . . . 94

3.14. DAX implied volatilities for different maturities . . . . . . . . . . . . 94

3.15. DAX implied volatility and volatility term structure spreads . . . . . 96

3.16. DAX implied volatility and volatility term structure spreads for dif-

ferent moneyness levels . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.17. Average DAX IVS for the sample period from 2002 to 2009 . . . . . . 98



X List of Figures

3.18. Standard deviation of the DAX IVS for the sample period from 2002

to 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.19. Average DAX IVS for the 1st volatility regime . . . . . . . . . . . . . 99

3.20. Average DAX IVS for the 2nd volatility regime . . . . . . . . . . . . 99

3.21. Average DAX IVS for the 3rd volatility regime . . . . . . . . . . . . . 99

3.22. Time series of DAX implied volatilities . . . . . . . . . . . . . . . . . 100

6.1. DAX level and DAX return series . . . . . . . . . . . . . . . . . . . . 185

6.2. DAX volatility series . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.3. Correlograms of DAX volatilities and return series . . . . . . . . . . . 186

6.4. Correlogram of squared DAX return residuals . . . . . . . . . . . . . 191

6.5. Correlogram of the DAX return series . . . . . . . . . . . . . . . . . . 193

6.6. p-values for Diebold’s ARCH-robust Q*-statistic . . . . . . . . . . . . 194

6.7. DAX log realised volatility with structural breaks in the mean . . . . 209

A.1. DAX implied volatility surface on May, 2nd 2007. . . . . . . . . . . . 263

A.2. DAX implied volatility surface on October, 16th 2008. . . . . . . . . 263

B.1. Partial autocorrelation function for DAX return series . . . . . . . . . 266

B.2. Correlograms of HAR model residuals . . . . . . . . . . . . . . . . . . 267

B.3. Correlogram of DAX 5-minute returns . . . . . . . . . . . . . . . . . 268



List of Abbreviations XI

List of Abbreviations

AC autocorrelation

ACF autocorrelation function

ADF augmented Dickey-Fuller

AGARCH Asymmetric GARCH

AIC Akaike information criterion

AJD affine jump-diffusion

AR Autoregressive

ARCH Autoregressive Conditional Heteroskedasticity

ARCH LM Autoregressive Conditional Heteroskedasticity Lagrange

multiplier

ARFIMA Autoregressive Fractionally Integrated Moving Average

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

ATM at-the-money

BS Black-Scholes

BS PDE Black-Scholes partial differential equation

CBOE Chicago Board Options Exchange

CEV constant elasticity of variance

CME Chicago Mercantile Exchange

DAX Deutscher Aktienindex

DFGLS Dickey-Fuller generalised least-squares

DJIA Dow Jones Industrial Average



XII List of Abbreviations

DM Diebold-Mariano

DTB Deutsche Terminbörse

EGARCH Exponential GARCH

EIV errors-in-variables

EONIA Euro OverNight Index Average

EPA equal predictive ability

EUREX European Exchange

EURIBOR Euro InterBank Offered Rate

EWMA Exponentially Weighted Moving Average

Exc. Kurt. excess kurtosis

FIEGARCH Fractionally Integrated Exponential GARCH

FTSE Financial Times Stock Exchange

GARCH Generalised Autoregressive Conditional Heteroscedasticity

GED generalised error distribution

GJR-GARCH Glosten-Jagannathan-Runkle GARCH

GPH Geweke-Porter-Hudak

HAR Heterogeneous Autoregressive

HMAE mean absolute error adjusted for heteroskedasticity

HMSE mean square error adjusted for heteroskedasticity

HSIC heteroskedastic Schwartz information criterion

IGARCH Integrated GARCH

i.i.d. independent and identically distributed

ITM in-the-money

IVAR integrated variance

IVF implied volatility function

IVS implied volatility surface

IVSP implied volatility spread

IVTSP implied volatility term structure spread

JB Jarque-Bera

KKMDB Karlsruher Kapitalmarktdatenbank



List of Abbreviations XIII

KPSS Kwiatkowski-Phillips-Schmidt-Shin

LB Ljung-Box

LHS left hand side

LIFFE London International Financial Futures Exchange

LINEX linear-exponential

LVS local volatility surface

MA Moving Average

MAE mean absolute error

MAPE mean absolute per cent error

MCS model confidence set

ME mean error

MSE mean square error

NASDAQ National Association of Securities Dealers Automated Quations

OTC over-the-counter

OTM out-of-the-money

PACF partial autocorrelation function

PDE partial differential equation

QLIKE quasi-likelihood

QV quadratic variation

RMSE root mean square error

ROB modified version of the GPH test developed by Robinson (1995b)

RV realised variance

RVOLA realised volatility

SD standard deviation

SIC Schwartz information criterion

SOFFEX Swiss Options and Financial Futures Exchange

SPA superior predictive ability

SV stochastic volatility

TAR Threshold Autoregressive

TGARCH Threshold GARCH



XIV List of Abbreviations

TVSP total volatility spread

VAR Vector Autoregressive

VDAX DAX-Volatilitätsindex
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1. Introduction 1

1. Introduction

1.1. Motivation and Purpose of the Study

Volatility forecasting plays a key role in financial markets. Investors, risk managers,

policy makers, regulators, and researchers need volatility forecasts for investment

management, security valuation, risk management, and monetary policy. In the

following, volatility is defined as the standard deviation of asset returns.

In the field of investment management, volatility is interpreted as a risk measure and

used as an input variable for making investment decisions. In a typical investment

process, investors define their risk appetite by the level of risk, or volatility, that they

are willing to accept. Then, portfolio managers construct portfolios that take these

risk preferences into account. Thus, accurate volatility forecasts enable investors to

select investment portfolios, that ideally fit their risk-return profiles.

In addition to asset allocation, volatility forecasting is crucial for option pricing. The

on-going growth of the global listed derivatives markets, which in 2013 reached 21.64

billion futures and options contracts, emphasises the importance of this area of appli-

cation.1 In modern option pricing theory, beginning with Black and Scholes (1973),

volatility forecasts are directly plugged into the option pricing formula. Moreover,

volatility predictions are needed to hedge portfolios of options. Recently, variance

1See Acworth (2014), p. 15.
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and volatility swaps have been issued, which allow one to directly invest in volatility

as an asset class.2

In risk management, the computation of potential portfolio losses, e.g., the value-

at-risk, plays a central role. Regulatory authorities, e.g., the European Banking

Authority, impose capital requirements that force banks to hold a certain amount of

capital to absorb potential future losses. To estimate these potential losses, volatili-

ties and correlations have to be predicted. As many risk models failed in the global

financial crisis of 2008, practitioners and academics began to revalidate and revise

their risk models, including volatility forecasts. Thus, determining the adequacy of

volatility predictions, particularly during episodes of turmoil, is crucial for financial

institutions.

Further, governments, central banks, and regulatory authorities also monitor finan-

cial market volatility. In particular, they consider implied volatility indices that are

regarded as market-based measures of economic uncertainty because studies indi-

cate that volatility can negatively affect the real economy.3 For example, Bloom

(2014) provides evidence that an increase in uncertainty can reduce employment

and economic output.4 Moreover, an empirical paper published by Bekaert et al.

(2013) shows that monetary policy affects risk aversion and uncertainty, which both

are potentially related to the business cycle.5 For these reasons, policy makers are

interested in the movement of implied volatility indices.

Therefore, a comprehensive overview of volatility prediction models, and a deep

understanding of their ability to produce accurate volatility forecasts is an important

task in financial market research. This has been subject of a vast number of empirical

and theoretical studies over the past few decades.

2The pay-out of a volatility swap is equal to the difference between the actual volatility and the
predefined contract volatility. See Javaheri et al. (2004), p. 589.

3For example, Poon and Granger (2003) refer to the September 11 terrorist attacks and a series of
corporate accounting scandals at the beginning of the 21st century.

4See Bloom (2014), p. 171.
5See Bekaert et al. (2013), p. 771.
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The simplest volatility prediction model is to calculate the standard deviation of

returns over some historical period. The historical standard deviation is then used

as a volatility forecast. While in the past, historical volatility was often used to

predict volatility, it has been increasingly replaced by more sophisticated time series

models that are able to capture the so-called stylised facts of volatility.

These stylised facts are well documented in the literature. The following features

are common to many univariate financial time series:6� Fat tails. An important finding is that the distribution of financial returns

exhibits fatter tails than the normal distribution.� Volatility clustering. The volatility clustering effect describes the tendency of

financial volatility to cluster. This means that a large (small) price change

tends to be followed by another large (small) price change.� Leverage effect. An unexpected price drop increases volatility more than an

unexpected price increase of equal magnitude.� Long memory effect. Financial market volatility is characterised by long-range

dependencies.

Engle (1982) and Bollerslev (1986) developed a new class of volatility models, the

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models that

are able to capture the volatility clustering effect. In the basic GARCH model,

the conditional variance depends only on own lags and lags of squared innovations.

The concept of Engle (1982) and Bollerslev (1986) was extended by Nelson (1991),

Glosten et al. (1993), and Zakoian (1994), among others, to model additional empir-

ical characteristics of volatility.7 Because standard GARCH models fail to capture

long memory effects of realised volatilities, Granger and Joyeux (1980) and Hosking

(1981) suggested Autoregressive Fractionally Integrated Moving Average (ARFIMA)

6See, for example, Brooks (2008), p. 380 and Poon and Granger (2003), p. 482.
7In particular, these models capture non-symmetrical dependencies.
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processes to parsimoniously model long memory effects.8 In addition to ARFIMA

models, Corsi (2009) suggests a simple AR-type model for realised volatility that is

also able to mimic long memory effects.

These time-series models are complemented by implied volatility, which is derived

from options prices by applying a particular option pricing model. In this context,

implied volatility is interpreted as the market’s expectation of the underlying asset’s

volatility over the remaining lifetime of the option.9 This interpretation of implied

volatility as a market’s expectation of future volatility has been criticised because

it requires that the assumptions of the applied option pricing model hold.10 While

most early studies used the Black-Scholes (BS) option pricing model to compute

implied volatility, alternative models have since been suggested in the literature. In

particular, Poteshman (2000), Shu and Zhang (2003), and Chernov (2007) propose

stochastic volatility models, whereas Jiang and Tian (2005) recommend model-free

implied volatility to forecast US stock market volatility.

However, despite the restrictive and (often) refuted BS assumptions, many studies

demonstrate that BS implied volatility provides better volatility forecasts compared

with historical volatility models. For example, Poon and Granger (2005) provide a

comprehensive literature review and summarise that implied volatility tends to be

more appropriate for predicting volatility than historical volatility models, includ-

ing GARCH models.11 Thus, some empirical studies show that BS implied volatility

provides superior forecasting results, although its model assumptions are violated.

In this case, the above-cited theoretical foundation for the use of implied volatility

to forecast stock market volatility can no longer be maintained, and the predic-

tion of financial volatility based on BS implied volatility is nothing more than the

application of a heuristic rule.

8Realised volatility is an ex-post measure for return variation in lieu of the true integrated volatility
(see Andersen et al. (2011), p. 221). A detailed definition of realised volatility is given in Section
6.6.1.

9See Canina and Figlewski (1993), Mayhew (1995), and Poon and Granger (2003), among many
others.

10Campbell et al. (1997) note that if the option pricing model does not hold, then the computed
implied volatilities are difficult to interpret. See Campbell et al. (1997), p. 378.

11See Poon and Granger (2003), pp. 506-507.
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Besides the development and application of more suitable option pricing models, pa-

pers by Martens and Zein (2004) and Becker et al. (2006) report that long memory

models using realised volatility provide good volatility forecasts that can improve

implied volatility forecasts by incorporating incremental information. As a conse-

quence, they suggest combined volatility forecasts based on implied volatility and

long memory models. Koopman et al. (2005) and Martin et al. (2009) find that long

memory models occasionally provide even better prediction results than historical

volatility models. In accordance with Martens and Zein (2004), and Becker et al.

(2006), they suggest that a combination of individual volatility forecasts from dif-

ferent prediction approaches can improve the performance of volatility forecasts.

In addition to extending the set of forecasting models, studies published by Becker

and Clements (2008), Martin et al. (2009), and Martens et al. (2009) use more so-

phisticated forecast evaluation approaches. Because encompassing regressions only

consider individual forecast comparisons, this evaluation approach neglects the com-

parison of individual forecasts with the complete set of alternative forecasts.12 By

employing the superior predictive ability (SPA) test suggested by Hansen (2005), or

the model confidence set (MCS) approach proposed by Hansen et al. (2003), which

both allow for a simultaneous comparison of multiple forecasts, the forecast evalua-

tion results of the above studies are not affected by data snooping effects13.14

For the German stock market, the literature presents evidence that DAX implied

volatility contains useful information for the prediction of DAX volatility. While

Raunig (2006) reports mixed results regarding the relative forecasting performance,

recent studies by Muzzioli (2010) and Tallau (2011) suggest that DAX implied

volatility provides better volatility forecasts than time series models based on histor-

12See Becker et al. (2007), p. 2536.
13White (2000) describes data snooping as follows (see White (2000), p. 1097):

Data snooping occurs when a given set of data is used more than once for purposes
of inference or model selection. When such data reuse occurs, there is always the
possibility that any satisfactory results obtained may simply be due to chance rather
than to any merit inherent in the method yielding the results.

14See Hansen et al. (2003), pp. 839-843.
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ical returns. Further, Claessen and Mittnik (2002) indicate that combined volatility

forecasts using the information from implied volatility and historical returns are a

reasonable complement to individual forecasts. In addition, Lazarov (2004) presents

the interesting result that the forecasting performance of ARFIMA models is similar

to that of DAX implied volatility. In summary, all these studies of the German stock

market examine a subset of forecasting models, but do not provide a comprehen-

sive comparison of volatility prediction models. Further, because the above studies

concerning the performance of DAX volatility prediction models employ encompass-

ing regressions, this is to my knowledge the first study to evaluate DAX volatility

forecasts based on the MCS method and DAX realised volatility.15

While a variety of extensive studies on the forecasting performance of implied volatil-

ity computed from various option pricing models, time series models, and combina-

tions thereof have been published for the US stock market, a similar study for the

German stock market that considers all these forecasting models does not exist. In

addition, a forecast evaluation approach that controls for data snooping effects has

not been applied to compare the prediction results of these models for the German

stock market. The intent of this study is to close these research gaps and to provide

information to investment and risk managers regarding which forecasting method

delivers superior DAX volatility forecasts.

The empirical analysis is based on data that contain all recorded transactions of

DAX options and DAX futures traded on the EUREX from January 2002 to De-

cember 2009. To select an appropriate time series model for the prediction of DAX

volatility, the time series features of DAX returns and realised volatilities are in-

vestigated in this thesis. Further, this study presents a detailed analysis of the

characteristics of the DAX implied volatility surface (IVS) because the results will

provide information for selecting an adequate option pricing model. In particular,

the DAX IVS is investigated for three different subsamples because different volatil-

15Further, the MCS approach allows to select the best forecasting models from a range of models,
and it is not necessary to define any specific benchmark model to determine the MCS. Addition-
ally, predictions can be compared based on different loss functions.
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ity regimes occurred during the sample period. If the DAX IVS exhibits certain

regularities during silent and/or turbulent market periods, the selected option pric-

ing model should be flexible enough to capture these effects. To my knowledge, this

is the first comprehensive analysis of the impact of the financial crisis of 2008 on the

DAX IVS.

Due to the discrepancies between the observed patterns of the DAX IVS and the

assumptions of the BS model, which provide evidence against the suitability of the

BS model for pricing DAX options, the methodologies of alternative option pricing

models are presented. In addition, given the time series features of the DAX returns

and realised volatilities documented by this study, the methodology of appropriate

time series models is described.

After the introduction of the theory underlying the forecasting approaches, a lit-

erature review presents the empirical results of selected studies that compare these

approaches’ forecasting performance for the US stock market. As such a broad and

deep discussion does not exist for the German stock market, the findings of these

papers provide useful information for the empirical analysis performed for German

stock market volatility.

The volatility prediction models employed in this study to forecast DAX volatility

are selected based on the results of these empirical studies, the general features of

the forecasting models, and the analysis of the considered DAX time series. Within

the class of time series models, the GARCH, the Exponential GARCH (EGARCH),

the ARFIMA, and the Heterogeneous Autoregressive (HAR) model are chosen to fit

the DAX return and realised volatility series. Additionally, the Britten-Jones and

Neuberger (2000) approach is applied to produce DAX implied volatility forecasts

because it is based on a broader information set than the BS model. Moreover,

recent studies report promising empirical results with respect to the forecasting

performance of this approach. Finally, the BS model is employed as a benchmark

model in this study.
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As the empirical analysis in this study demonstrates that DAX volatility changes

considerably over the long sample period, it investigates whether structural breaks

induce long memory effects. The effects are separately analysed by performing dif-

ferent structural break tests for the prediction models. A discussion of the impact on

the applied forecasting methodology, and how it is accounted for, is also presented.

Based on the MCS approach, the DAX volatility forecasts are separately evaluated

for the full sample and the subperiod that excludes the two most volatile months of

the financial crisis. Because the objective of this work is to provide information to

investment and risk managers regarding which forecasting method delivers superior

DAX volatility forecasts, the volatilities are predicted for one day, two weeks, and

one month. Finally, the evaluation results are compared with previous findings in

the literature for each forecast horizon.

Overall, this study provides a comprehensive comparison of different forecasting

approaches for the German stock market, which yet does not exist. Additionally,

this thesis presents the first application of the MCS approach to evaluate DAX

volatility forecasts based on high-frequency data. Furthermore, the effects of the

2008 financial crisis on the prediction of DAX volatility, that are not considered in

the literature, are analysed.

1.2. Overview of the Thesis

After defining the purpose of the study, Chapter 2 outlines the basic concept of

using implied volatilities to predict volatility. Because the BS option pricing model

is considered a cornerstone in the history of pricing contingent claims and is often

applied as a reference model in empirical studies, it is introduced in this Chapter.

Subsequently, a critical review of the use of BS implied volatilities as volatility fore-

casts is presented. Further, some stylised facts of BS implied volatilities documented

in the literature are described. Finally, selected potential explanatory approaches

for the observed BS implied volatility patterns are discussed.
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Having presented the pricing biases of the BS model that are documented in the lit-

erature, the aim of Chapter 3 is to investigate the (mis)pricing behaviour of the BS

model for the German stock market. In particular, this study considers DAX options

traded on the EUREX from January 2002 to December 2009. To analyse BS implied

volatilities across moneyness and maturity, it is necessary to construct a smooth IVS.

Thus, the basic concepts of two general smoothing approaches are discussed, and the

choice of the approach employed in this study is explained. Thereafter, the charac-

teristics of the DAX BS IVS are described and compared to the existing literature.

Moreover, Chapter 3 presents the underlying data set and its preparation.

Because the empirical analysis of the DAX BS IVS demonstrates that some of the

BS model assumptions are violated, a range of alternative option pricing models is

presented in Chapter 4. To capture the stylised features of the IVS, these models

relax some of the BS assumptions. In addition to stochastic volatility and mixed

jump-diffusion models, the concept of model-free implied volatility developed by

Britten-Jones and Neuberger (2000) is presented. The introduction of this concept is

completed by a critical review that considers some additional assumptions necessary

for its implementation. The ability of each model class to reproduce the observed

DAX IVS is discussed at the end of each Section. In addition to the option pricing

models, selected time series models are described that are used in this study to

predict DAX volatility.

Chapter 5 presents a literature review of empirical studies comparing the volatility

forecasting performance of implied volatility and time series models. Because most

early studies use encompassing regressions to evaluate volatility forecasts, the first

Section of Chapter 5 introduces this evaluation method. The second Section reviews

selected papers on predicting US stock market volatility, as these articles contain

broad and intensive discussions of the US stock market. The following Section intro-

duces empirical studies on the predictive ability of implied volatility and time series

models for German stock market volatility. The final Section explains the choice of

the volatility prediction models used in this study to forecast DAX volatility.



10 1. Introduction

Chapter 6 focuses on the generation and evaluation of the DAX volatility forecasts.

Due to the characteristics of the DAX return and volatility series, the GARCH, the

EGARCH, the ARFIMA, and the HAR models are estimated. Then, information

criteria are used to select the most appropriate models. Subsequently, the effects

of structural breaks on long memory effects are analysed. Afterwards Section 6.6

explains the choice of the employed volatility proxy, realised volatility, and describes

its calculation for the DAX return series. Further, this Chapter contains a brief

overview of forecast evaluation techniques and arguments for the selection of the

MCS approach applied in this thesis. In the following, the DAX volatility predictions

based on the above models are presented for different forecast horizons. In addition

to the individual forecasts, this study also considers combined forecasts because some

forecast combinations have been found to outperform individual forecasts. Finally,

the prediction results are evaluated by using the MCS approach and compared with

the previous findings in the literature.

The final Chapter summarises the results, provides recommendations for predict-

ing German stock market volatility, and presents an outlook on future research,

including possible extensions of this thesis.
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2. The Concept of Implied Volatility

Two approaches for predicting financial volatility have been suggested in the litera-

ture. The first of these involves the generation of volatility forecasts based on time

series models. In the second approach, implied volatilities, which are derived from

option prices, can be used to forecast financial volatility.1 First, this Chapter out-

lines the basic concept of using implied volatilities to predict volatility.2 Next, the

BS option pricing model is introduced3, which is applied in this study to calculate

implied volatilities from DAX option prices. Finally, the stylised facts of implied

volatilities that have been documented in the literature are presented and several

corresponding explanatory approaches are discussed.

2.1. The Basic Concept of Using Implied Volatilities

to Forecast Volatility

An option is a derivative security, the price of which depends on the future devel-

opment of the underlying asset price. Therefore, option pricing models generally

specify a stochastic process to model the price of the underlying asset. Asset volatil-

ity is typically one of the main parameters in this process. To compute an option

price based on an option pricing model, the volatility parameter has to estimated

and plugged into an option pricing formula. Conversely, using an option pricing

1See Poon and Granger (2003), p. 482.
2See Chapter 4 for an introduction to time series models.
3See Black and Scholes (1973).
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model, e.g., the BS model, volatility can also be deduced from the option price.

This volatility is called implied volatility.4

Implied volatility is widely interpreted as a market’s expectation of the underlying

asset’s volatility over the remaining lifetime of the option, as it is derived from the

market price.5 Thus, it is regarded as a “forward-looking” volatility estimate of the

return on the underlying asset,6 which should provide the market’s best volatility

forecast over the option’s maturity.7 Moreover, under the assumption of market

efficiency, implied volatility should provide an informationally efficient forecast of

volatility that also contains information on the historical returns of the underlying

asset.8,9

Latané and Rendleman (1976) provide the first study on the forecasting ability of

implied volatilities. They investigate individual stock options traded on the Chicago

Board Options Exchange (CBOE) in 1974 and report that a weighted average of

implied volatilities is a better predictor of volatility than the standard deviation

based on historical returns.10 Although numerous articles have been published on

the forecasting performance of implied volatilities and time series models, the debate

over which approach delivers better volatility forecasts persists. A comprehensive

literature overview of this discussion is provided in Chapter 6.

However, Campbell et al. (1997) criticise the interpretation of implied volatility as a

market’s expectation of future volatility. They argue that implied volatility, which

is calculated based on a specific option pricing model, is inseparably related to the

model-implicit dynamics of the underlying asset price. Thus, interpreting implied

volatility as a market’s prediction of future volatility requires that the option pricing

model holds. If the option pricing model does not hold, then the computed implied

4See Rouah and Vainberg (2007), p. 322.
5See Canina and Figlewski (1993), Mayhew (1995), and Poon and Granger (2003) among others.
6See Rouah and Vainberg (2007), p. 304.
7See Ederington and Guan (2005), p. 1429.
8See for example Christensen and Prabhala (1998).
9The literature on the informational content of option prices is discussed in Chapter 5.
10See Latané and Rendleman (1976), p. 381.
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volatilities are difficult to interpret.11 Thus, predictive ability tests evaluating im-

plied volatility forecasts are joint tests of predictive ability and the applied option

pricing model.12

However, as many studies have demonstrated that implied volatilities exhibit su-

perior predictive ability for various options markets, this study investigates their

forecasting performance. To account for the argument advanced by Campbell et al.

(1997), two different approaches are used to derive implied volatility from option

prices. In particular, the approach developed by Britten-Jones and Neuberger (2000)

is used to calculate mode-free implied volatility, which does not require the specifi-

cation of a particular process for the price of the underlying asset.13 Nonetheless,

the above critique must be kept in mind when the results of the predictive ability

tests for implied volatilities are discussed. In the following the most popular option

pricing model is presented, namely the BS model, which is used in this study to

calculate implied volatilities from option prices.

2.2. The Black-Scholes Model

The development of the BS option pricing model by Black and Scholes (1973) and

further by Merton (1973) marks a breakthrough in financial theory. They show that

under certain conditions, markets are complete and contingent claim valuation is

preference-free. As different studies demonstrate that its assumptions are rather

restrictive, the model has been extended in the subsequent literature, and there are

currently a large number of refined models available.14 Despite the extensions, the

BS model is considered a cornerstone of pricing contingent claims and is used as

a reference model in empirical studies.15 For this reason, the Black-Scholes par-

11See Campbell et al. (1997), p. 378.
12See Jiang and Tian (2005), p. 1306.
13Alternatively, they derive a condition that characterises all continuous price processes that are
consistent with current option prices. See Britten-Jones and Neuberger (2000), p. 839.

14See Fengler (2004), p. 9.
15See Rebonato (2004), p. 168.
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tial differential equation (BS PDE), which under certain assumptions describes the

option’s equilibrium price path is derived in the following. The BS option pricing

formula is presented on the BS PDE.

To develop the BS option pricing model, Black and Scholes (1973) rely on several

assumptions. First, they assume that market participants can trade continuously

in a frictionless market where no arbitrage possibilities exist.16 Further, the under-

lying asset pays no dividends, assets are divisible, and short selling is allowed. In

addition, investors can lend or borrow without restrictions at the same riskless rate

of interest. Moreover, the risk-free interest rate is known and constant over time.

While some of the assumptions are not necessary to derive the option pricing model,

the following assumption regarding the dynamics of the asset price is essential.17

Black and Scholes (1973) assume that the asset price follows a geometric Brownian

motion

dS = µSdt+ σSdz (2.1)

where S denotes the underlying asset price, µ the instantaneous drift, σ the instan-

taneous volatility, and dz a Wiener process.18

Suppose that V represents the price of an option or other derivative security, the

price of which exclusively depends on S and time t. From Itô’s lemma, it follows

that V can be written as

dV =

(
∂V

∂S
µS +

∂V

∂t
+

1

2

∂2V

∂S2
σ2S2

)
dt+

∂V

∂S
σSdz. (2.2)

For a brief time interval ∆t the discrete versions of (2.1) and (2.2) are given by19

∆S = µS∆t+ σS∆z (2.3)

16In a frictionless market no transaction costs and or taxes exist.
17Black and Scholes (1973) formulate certain assumptions for expositional convenience.
18See ibid., p. 640.
19See Hull (2006), p. 291.
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and

∆V =

(
∂V

∂S
µS +

∂V

∂t
+

1

2

∂2V

∂S2
σ2S2

)
∆t+

∂V

∂S
σS∆z. (2.4)

Based on the underlying asset and the derivative, a portfolio with the value

Π = −V +
∂V

∂S
S (2.5)

is constructed.20 In a brief time interval ∆t, the portfolio value changes by

∆Π = −∆V +
∂V

∂S
∆S. (2.6)

Replacing ∆V and ∆S in (2.6) with (2.3) and (2.4) yields:21

∆Π = −∂V
∂t

∆t− 1

2

∂2V

∂S2
σ2S2∆t. (2.7)

Because the Wiener processes in (2.3) and (2.4) are identical, they are eliminated

in (2.7). It follows that the portfolio in the time interval ∆t is riskless. Thus, the

portfolio return must be equal to the risk-free rate, which can be expressed by

∆Π = Πr∆t (2.8)

where r is the risk-free rate.22 It should be noted that the portfolio is only riskless

over an infinitesimal time interval. To ensure that the portfolio is riskless over time,

a dynamic hedging strategy is necessary (e.g., delta hedging).23

Substituting equations (2.5) and (2.7) into (2.8) yields the BS PDE

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
= rV. (2.9)

20The portfolio consists of a short position in the derivative and a long position in the amount of
∂V/∂S in the underlying asset.

21See Wilmott et al. (1993), p. 43.
22Otherwise riskless arbitrage opportunities would exist which is ruled out by the above assump-
tions. See Wilmott et al. (1993), pp. 43-44.

23See Hull (2006), p. 292.
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Under the above assumptions the price of any derivative security must satisfy the

BS PDE.24 The solution of the BS PDE depends on the considered derivative which

is specified by its boundary conditions. For instance, for a European call option the

boundary condition is

V = max(S −K, 0) when t = T (2.10)

where K represents the strike price and T the time to maturity. Based on this

final condition, a unique solution for the BS PDE can be derived.25 In the following

the solution of the BS PDE for a European call option is presented. For a detailed

derivation see, for instance, Ekstrand (2011).

The solution of the BS PDE for a European call option, which is also called the BS

formula is given by

C(S, t) = SN(d1)−Ke−r(T−t)N(d2) (2.11)

with

d1 =
ln(S/K) + (r + σ2/2)(T − t)

σ
√
T − t

(2.12)

d2 =
ln(S/K) + (r − σ2/2)(T − t)

σ
√
T − t

= d1 − σ
√
T − t (2.13)

where C(·) denotes the price of a European call option and N(·) is the standard

normal cumulative distribution function.26 The price of a European put option P (·)
can be calculated based on the put-call parity by27

P (S, t) = C(S, t) +Ke−r(T−t) − S. (2.14)

24See Wilmott et al. (1993), p. 44.
25See Joshi (2003), p. 105.
26See Wilmott et al. (1993), p. 49.
27See Hull (2006), p. 212.
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The assumptions of the BS model have been intensively criticised in the literature.28

In practice, a frictionless market does not exist, a continuous hedge without trans-

action costs is impossible, and the asset price does not follow a geometric Brownian

motion. Deviations from these assumptions affect the option price and therefore

the implied volatility. Thus, whether and in particular to what extent these viola-

tions of the BS assumptions occur can be investigated based on implied volatilities.

For this reason, the next Section presents the methodology for deriving BS implied

volatilities from option prices.

2.3. Calculation Methodology of Black-Scholes

Implied Volatilities

According to the BS formula, the option price depends on the current time, the level

and volatility of the underlying asset price, the interest rate, the strike price, and the

maturity date. Except for volatility, all parameters are determined by the contract

specification or can be directly observed in the market. As these parameters are

fixed, the BS formula defines a one-to-one relationship between the option price and

volatility. This, the volatility implied by the market price can be determined by the

inverse of the BS formula.29

Formally, given an observed market price Vobs(K, T ) of an European option with

strike price K and time to maturity T , the BS implied volatility σIV is defined as

the value of volatility in the BS formula for which the BS option price VBS is equal

to the market price:30

Vobs(K, T ) = VBS(σIV , K, T ). (2.15)

28See, for instance, Gourieroux and Jasiak (2001a), pp. 321-323, Musiela and Rutkowski (2005),
p. 113, and Chriss (1997), pp. 200-204.

29See Ekstrand (2011), p. 30.
30See Rouah and Vainberg (2007), p. 305.
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The existence of a unique solution is ensured, as the BS formula is monotonically

increasing in volatility.31

The implied volatility cannot be extracted from the BS formula analytically.32 In-

stead, it can be computed numerically by finding the root of the objective function

f(σ) = VBS(σ,K, T )− Vobs(K, T ) (2.16)

such that f(σIV ) = 0.33 The optimisation problem can be solved for instance by

the Newton-Raphson method or the bisection method. It is well known that the

Newton-Raphson algorithm is quite sensitive to the initial volatility value, which

can lead to unfavourable solutions.34 Further, it requires that the derivative of

the option price with respect to the volatility parameter (vega) is known or can

be approximated numerically. In contrast, the bisection method avoids the need

for knowledge of vega, as it is based on a simple interpolation method.35 Due to

the Intermediate Value Theorem, the algorithm always finds one root of the above

objective function for volatility intervals in which the objective function changes

its sign.36 A disadvantage of the bisection method is that it is not as fast as the

Newton-Raphson method. As the Newton-Raphson algorithm can diverge from the

root and the speed of the bisection algorithm for the computation of DAX implied

volatilities is acceptable, this study employs the bisection algorithm to find the roots

of the above objective function.37

While, in theory, the BS implied volatilities of all options on the same underly-

ing asset should be identical, in practice, they are not. It is well documented in

31See Cont and da Fonseca (2002), p. 47.
32For the special case of at-the-money (ATM) options, Brenner and Subrahmanyan (1988) demon-
strated that implied volatility can be calculated by a simple approximation formula derived from
the BS model.

33See Rouah and Vainberg (2007), p. 305.
34See ibid., p. 307.
35See Haug (2007), p. 455.
36See Rouah and Vainberg (2007), p. 9.
37To assess the effect of the selected algorithm on the resulting implied volatilities, the DAX implied
volatilities are calculated for a subsample based on both algorithms. The results indicated that
the differences between the implied volatilities obtained by the Newton-Raphson and the bisection
algorithm are very small.
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the literature that BS implied volatilities are not constant across strike prices and

maturities. Rather, for many options markets, systematic patterns of BS implied

volatilities across strike prices and across maturities have been observed. The plot of

implied volatilities of options with the same maturity but different strike prices (or

moneyness levels) is typically U-shaped. This well-known phenomenon is referred to

as the volatility smile. If the shape of the volatility smile is asymmetric, it is called

volatility skew. Figure 2.1 depicts two types of volatility smiles. The functional

relationship between implied volatility and strike price/moneyness is also called the

implied volatility function (IVF).38

(a) Smile (b) Skew

Figure 2.1.: Types of volatility smiles
Source: own illustration.

Alternatively, if the implied volatilities of options of the same strike price (or mon-

eyness level) but different maturities are considered, the implied volatility moves

with increasing maturity towards long-term implied volatility. This is called the

volatility term structure.39 The combined analysis of the relationship between im-

plied volatilities and strike prices (volatility smile) and maturities (volatility term

structure) is based on the so-called implied volatility surface (or volatility surface).

38The term volatility smile is synonymously used for the implied volatility function and its plot.
39See Alexander (2008), p. 227.
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An IVS depicts the implied volatilities for different strike prices and maturities.40

The BS IVS41 at time t is defined as

σiv : (t,K, T ) → σiv(K, T ). (2.17)

Thus, when the IVS can be fully identified at time t, this means that all (vanilla) call

and put option prices are known at t.42 Before presenting findings from the empirical

literature on the volatility smile and term structure, the next Section discusses the

use of implied volatilities as volatility forecasts.

2.4. A Critical Review of Using Implied Volatilities as

Volatility Forecasts

The interpretation of BS implied volatility as the market’s expectation of the (con-

stant) volatility of the underlying asset over the lifetime of the option is based on

the validity of the BS model. In particular, the BS model has been criticised for

its unrealistic assumption of constant volatility.43 Feinstein (1989) shows that this

assumption can be relaxed. He demonstrates that the BS implied volatility from a

near-expiration ATM call option yields an unbiased forecast of the average volatility

over the remaining life of the option when volatility is stochastic and uncorrelated

with aggregate consumption.44 The assumption of zero correlation between volatility

changes and aggregate consumption changes ensures that volatility risk is unpriced

in the market. However, the empirical results of Lamoureux and Lastrapes (1993)

call this assumption into question, as they report that the market price of volatility

risk for individual US stocks is nonzero and time varying. Thus, Feinstein’ s (1989)

finding cannot be used as a general argument in favour of the BS model. For this

40See Hull (2006), p. 382.
41The term volatility surface is used for the preceding function and its graphical representation.
42See Cont and da Fonseca (2002), p. 45.
43See, for instance, Gourieroux and Jasiak (2001a), p. 279.
44The Hull and White (1987) option pricing model provides the theoretical framework for this
argument.
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reason, advanced option pricing models, e.g., the stochastic volatility model sug-

gested by Heston (1993), have been developed to take time-varying volatility into

account.

Despite the unrealistic assumptions of the BS model and the availability of stochas-

tic volatility models, option traders typically quote prices in terms of BS implied

volatilities. By expressing option prices as BS implied volatilities, traders seek to

control for different strike prices and maturities.45 Campbell et al. (1997) argue

that this only reflects the popularity of the BS formula as a heuristic, but has no

economic implications. Further, they note that option traders quoting prices using

BS implied volatilities does not necessarily imply that they calculate their prices

based on the BS formula. They conclude that due to the one-to-one relationship

between BS implied volatilities and option prices, both pricing measures cover the

same information.46 Thus, if the BS model does not hold, the use of BS implied

volatilities as volatility forecasts corresponds to the application of a heuristic rule.

However, even if one agrees with this interpretation of BS implied volatility, it is an

interesting research topic to compare its forecasting ability with those of alternative

prediction approaches. The next Section reports some well-known stylised facts of

implied volatilities, including the volatility smile and the volatility term structure,

which have been documented in the literature.

2.5. Stylised Facts of Implied Volatilities

This Section begins with a review of the discussion on the volatility smile effect.

The discussion covers two basic forms of the volatility smile and presents some

important empirical results for different options markets. Subsequently, the term

structure of implied volatility is described. Finally, the time series properties of

implied volatilities that have been observed for some selected options markets are

presented.

45See Hafner (2004), p. 37.
46See Campbell et al. (1997), p. 379.
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2.5.1. The Smile Effect

From Smiles and Skews

The first two articles documenting the systematic pattern of BS pricing errors across

strike prices and maturities are Black (1975) and MacBeth and Merville (1979).

Using CBOE prices for the period from 1973 to 1975, Black (1975) reports that the

actual market prices of out-of-the-money (in-the-money) options tend to be higher

(lower) than the values given by the BS formula. He suggests different explanations

for this pattern including time-varying volatility, tax factors, speculative profits,

and leverage restrictions.47 In contrast, MacBeth and Merville (1979) find that

implied volatilities of CBOE options tend to increase with decreasing strike prices

for the period from 1975 to 1976. Rubinstein (1985) analyses trades and quotes on

the 30 most active option classes for individual stocks in the CBOE from August

1976 to August 1978 and finds that the implied volatilities of short-term out-of-

the-money (OTM) calls are higher than for other calls.48 By considering different

time periods, he demonstrates that the sign of the price differences between market

prices and BS values changes over time. However, he notes that while the option

price differences are indeed statistically significant, their economic significance is

questionable.49 Moreover, Mixon (2009), who investigates empirical regularities of

implied volatilities in the 19th century and the 21st century, provides early evidence

in favour of the existence of an implied volatility skew in the 19th century.50 Thus,

the findings of Black (1975), Rubinstein (1985), Mixon (2009), and others show

that the volatility smile phenomenon already existed at least in a weak form in

some options markets before the stock market crash in 1987, which marks a decisive

turning point for volatility smiles.51

47See Black (1975), pp. 64-65.
48See Rubinstein (1985), p. 474.
49See ibid., p. 478.
50See Mixon (2009), p. 172.
51The dramatic decline in the stock market on October 19th and 20th, 1987 of more than 20% was
the greatest decline since 1929. The crash of 1987 was preceded by an extraordinary increase of
42% in 1987.
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Figure 2.2.: Typical S&P 500 post-crash volatility smile

Prior the crash of 1987, implied volatilities in stock options markets typically formed

a symmetric smile pattern when plotted against strike price or moneyness. After

the crash of 1987, the shape of implied volatilities for most stock index options mar-

kets more resembles a skew, where implied volatilities decrease monotonically as the

strike price rises.52,53 Figure 2.2 depicts a typical downward sloping post-crash smile

for S&P 500 index options. The change in the form of the volatility smile towards

a skew shape implies that after the crash of 1987, market participants have paid

higher prices for OTM put and in-the-money (ITM) call options relative to other

options. Rubinstein (1994) argues that the overpricing of put options is induced

by an excess demand for put options, which provide portfolio insurance against

market downturns. The excess demand for put options reflects investors’ concerns

regarding another stock market crash. Rubinstein (1994) terms this phenomenon

“crash-o-phobia”.54 The volatility skew phenomenon did not disappear following the

crash. This also implies that the implicit distribution of option prices has shifted

52See, for example, Poon and Granger (2003), p. 487 and Cont and Tankov (2004), p. 10.
53In addition to this permanent effect, implied volatility remained at a high level for several months
after the crash (implied volatility more than doubled), but had returned to a pre-crash level by
March 1988.

54See Rubinstein (1994), p. 775.
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from a widely symmetric and positively skewed distribution to a substantially neg-

atively skewed distribution.55 As Rubinstein (1994) highlights, the crash of 1987

permanently changed market participants’ perceptions and pricing mechanisms for

stock index options. For this reason, in the next Chapter, this study also investigates

whether the 2008 financial crisis affects the volatility smile of DAX options. The

following Section provides an overview of the empirical results concerning volatility

smiles across different options markets.

Empirical Evidence for Volatility Smiles Across Different Options Markets

The volatility smile effect has been observed for many options markets.56 Analysing

daily over-the-counter (OTC) implied volatility quotes on 12 major equity indices

(i.e., CAC (France), DAX (Germany), FTSE (United Kingdom), HSI (Hong Kong),

NKY (Japan), and SPX (United States)) from June 1995 to May 2005, Foresi and

Wu (2005) confirm the existence of a heavily skewed implied volatility pattern for

all indices examined. Interestingly, they find that the markets differ more in the

level of implied volatility than in the skewness of the volatility smile. Overall, they

conclude that the volatility skew is not a local observation, but rather a worldwide

phenomenon.57

In a broad study, Tompkins (2001) considers 16 options markets with respect to

stock indices, bonds, exchange rates, and forward deposits over long time periods

and compares the regularities of the IVS across the different markets. His sample

comprises, for most markets, option closing prices over ten years beginning in the

mid-1980s and ending in the mid-1990s.58 Overall, he finds that the shapes of the

implied volatilities, which are smoothed based on a quadratic regression, exhibit

55See Bates (2000), p. 182.
56For a comprehensive overview of stock, bond and exchange rate markets, see, e.g., Rebonato
(2004).

57See Foresi and Wu (2005), pp. 11-13.
58To avoid the problem of non-synchronous trading, Tompkins (2001) only examines OTM put
and call options with maturities up to 90 days. To control for level effects, which according to
Dumas et al. (1998) contain no exploitable information on future levels of implied volatility, he
uses standardised implied volatilities.
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similar patterns for options within the same asset class. First, the smoothed implied

volatilities of short-term stock options on the S&P 500, the FTSE, the Nikkei, and

the DAX index are “U-shaped” across moneyness. Second, the volatility smiles for

options with 90 days to maturity generally exhibit a comparatively linear skewed

form.59 Moreover, the regression results support the findings of Rubinstein (1994)

and others that the negative volatility skew of S&P 500 options is related to the 1987

stock market crash. However, he reports that a second shock in 1989 also contributes

to the negative skewness of the S&P 500 volatility smile.60 Furthermore, he mentions

that the IVS in all considered stock index options markets becomes flatter when the

level of implied volatility of ATM options increases in the markets.61

In addition to the above basic facts regarding stock volatility smiles, Rebonato

(2004) adds that the smile is generally much more pronounced at short maturities

and flattens out at longer maturities. Furthermore, the smile of OTM puts is typ-

ically steeper than the smile of OTM calls. In some cases, the smile completely

disappears for OTM calls. Moreover, during periods of high volatility, Rebonato

(2004) notes that the asymmetry of the smile usually tends to increase.62 Next, the

empirical results concerning the volatility smile for the German options market are

presented.

Empirical Studies of the DAX Volatility Smile

Few empirical findings regarding the existence of a volatility smile in the German

options market before the 1987 crash are provided in the literature. For instance,

Trautmann (1990) describes systematic pricing biases in the BS model. He considers

pricing differences between market prices and BS values of individual stock options

59Tompkins (2001) reports comparable findings for interest rate options (US Treasury Bonds, UK
Gilts, German Bundesanleihen, and Italian Government Bonds). The volatility smiles of foreign
exchange rate options (US Dollar/Deutsche Mark, US Dollar/British Pound, US Dollar/Japanese
Yen and US Dollar/Swiss Franc) exhibit the most similarities. See Tompkins (2001), p. 204.

60While both shocks also change the smile of FTSE 100 index options, the DAX volatility smile is
unaffected.

61See Tompkins (2001), pp. 200-218.
62See Rebonato (2004), p. 206.
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traded on the Frankfurter Optionsbörse from 1983 to 1987. Based on these data, he

demonstrates that the BS model underprices deep OTM call options on individual

stocks with maturities beyond four weeks.63 Thus, the results indicate that the

BS assumption of constant volatility had been violated for individual stock options

traded on the Frankfurter Optionsbörse before the stock market crash of 1987.64

Evidence for the existence of a post-crash DAX volatility smile is reported by Beinert

and Trautmann (1995), Ripper and Günzel (1997), Herrmann (1999), and Bolek

(1999), among others. Beinert and Trautmann (1995) use transaction prices for the

most liquid call options on individual stocks traded on the Deutsche Terminbörse

(DTB) from 1990 to 1991. In particular, they demonstrate the volatility smile

of short-term options has a U-shaped form. In summary, they conclude that the

smile pattern is typical of options traded on the DTB, but did not hold in every

case.65 Ripper and Günzel (1997) estimate the IVS based on a regression using

daily settlement prices on DAX options for the years 1995 to 1996 listed on the

DTB. The results indicate a volatility smile for short-term options and a skew for

long-term options (with maturities beginning at three months).66 Herrmann (1999)

confirms the results of Ripper and Günzel (1997) with respect to the existence of

a volatility smile for short-term options. His analysis is based on transaction data

of DAX options traded on the DTB from 1992 to 1997. Additionally, he finds

that the implied volatilities of ITM and OTM options in the same moneyness class

typically decline with increasing maturity. In contrast, he reports increasing implied

volatilities for ATM options if the time to maturity is extended. Further, the highest

implied volatilities are recorded for deep ITM calls and deep ITM puts. Moreover,

he reports that DAX puts have higher implied volatilities than DAX calls of the

same moneyness/maturity class.67 Bolek’s (1999) study is based on the closing

prices of DAX options traded on the DTB in the 2nd half of 1995. His findings also

63See Trautmann (1990), p. 95.
64As was the case for the US stock market, the DAX declined dramatically in 1987 (approximately
22% from September 1987 to October 1987).

65See Beinert and Trautmann (1995), p. 13.
66See Ripper and Günzel (1997), p. 475.
67See Herrmann (1999), p. 185.
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support the existence of a DAX volatility smile, especially for short-term options.68

The minimum of the smile of short-term DAX options is located ATM. For long-

term DAX calls, the minimum of the smile is OTM. In this case, the smile nearly

disappears. In contrast, the minimum of the DAX volatility smile for long-term put

options is ITM and the smile is less pronounced. By plotting the volatility smile

implied by DAX calls and puts for successive trading days, he finds evidence that

the smile changes over time.69

Subsequently, Tompkins (2001) and Wallmeier (2003) also examine the systematic

pattern of DAX implied volatilities.70 Tompkins (2001) analyses DAX option closing

prices for the time period from January 1992 to December 1996. Using the quadratic

regression approach suggested by Shimko (1993), he finds that the volatility smile

is negatively skewed. Further, the IVF was more skewed for short-term options

than for options with longer maturities.71 Wallmeier (2003) investigates transaction

prices of DAX options for the period from 1995 to 2000. His results also reveal the

existence of a DAX volatility skew rather than a smile. Moreover, he reports that the

magnitude of the skew tends to decrease as the level of ATM implied volatility rises.

He concludes that in the sample period, DAX implied volatilities differ considerably

across strike prices and maturities. Therefore, he notes that the BS assumption of

constant volatility is seriously violated.72

More recent evidence concerning DAX implied volatility smiles is provided by Brun-

ner and Hafner (2003), Fengler et al. (2003), Hafner (2004), Fengler et al. (2007),

Detlefsen (2007), Schnellen (2007), and Brüggemann et al. (2008).73 Walter (2008)

considers the volatility smile of individual German stocks. The next Section de-

scribes empirical regularities of the volatility term structure

68Bolek (1999) defines short-term options as options with maturities of up to 15 trading days.
69See ibid., pp. 122-128.
70In particular, both studies consider the factors influencing the IVS. The results are presented in
the last Section of this Chapter.

71See Tompkins (2001), p. 204.
72See Wallmeier (2003), pp. 190-208.
73The studies typically investigate the time series behaviour of the IVS.
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2.5.2. The Volatility Term Structure

Basic Volatility Term Structures

In addition to providing extensive evidence of the volatility smile, the term structure

of implied volatility is intensively discussed in literature. In Chapter 2.3, the term

structure of volatility was defined as the relationship between implied volatility

and time to maturity for a given strike price (or moneyness level).74 The constant

volatility assumption of the BS model implies a flat term structure. Therefore,

the implied volatilities of short-term and long-term options should be identical.

In contrast, various authors report empirical evidence of a non-flat volatility term

structure for many options markets. Similar to the yield curve, the volatility term

structure is interpreted as the market expectation of future volatility changes. Figure

2.3 depicts the two basic profiles of the volatility term structure. A downward

(upward) sloping volatility term structure indicates that market participants expect

decreasing (increasing) future short-term implied volatilities.75,76 As in interest rate

markets, an upward sloping volatility term structure is called normal. Alternatively,

if the term structure takes a negative slope, it is referred to as inverse.77 Fengler

(2012) adds that a humped-shaped term structure has also been observed. Next,

the results of Black (1975) and Rubinstein (1985) are presented, which represent the

initial empirical findings regarding the systematic pricing biases of the BS model

across maturities.

Empirical Regularities of the Volatility Term Structure

Black (1975) reports that the BS model tends to overprice options with less than

three months to maturity. He suggests several possible explanations for this pricing

bias, but concludes that the observed price differences between market prices and BS

74The expression volatility term structure refers to the functional relationship and its plot.
75See Äijö (2008), p. 291.
76As mentioned in Chapter 2.1, this interpretation requires that the option pricing models hold.
77See Hafner (2004), pp. 39-40.
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(a) Increasing term structure (b) Decreasing term structure

Figure 2.3.: Basic volatility term structure
Source: own illustration.

values cannot be fully explained. Thus, he remarks that Black and Scholes (1973)

may have excluded something from the formula.78 Rubinstein (1985) obtains strong

evidence that the implied volatility of OTM calls increases if maturity declines.

He finds mixed results for ATM calls. At the beginning of the sample period, the

implied volatility of ATM calls increases for rising maturities, while at the end the

opposite is observed.79 Further evidence regarding the existence of volatility term

structures in various options markets is provided by Franks and Schwartz (1991),

Derman and Kani (1994a), Campa and Chang (1995), Backus et al. (2004), and Zhu

and Avellaneda (1997), among others.

In addition to the existence of the volatility term structure, numerous studies have

examined its time series behaviour. Notably, the response of the volatility term

structure to current volatility changes has received some attention. Poterba and

Summers (1986) analyse S&P 500 index options and report that long-term implied

volatilities do not substantially react to volatility shocks. In contrast, Stein (1989),

who examines whether the term structure is consistent with rational expectations,

finds that the implied volatility of long-term options overreacts to short-term implied

volatility changes.80 He considers daily closing prices of ATM S&P 100 index options

78See Black (1975), p. 64.
79See Rubinstein (1985), p. 474.
80The analytical approach adopted by Stein (1989) is based on the notion that implied volatility
should equal the average expected volatility over the remaining life-time of the option, if volatility
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for the period from December 1983 to September 1987 and assumes that volatility

follows a mean-reverting AR(1) process.81 In summary, he concludes that investors

overemphasise the effect of recent short-term implied volatility changes on long-term

implied volatilities and neglect the low persistence of volatility shocks.82

Diz and Finucane (1993) reject the results of Stein (1989) by applying an alterna-

tive approach. As the residuals of the volatility model estimated by Stein (1989) are

autocorrelated, they argue that the volatility model is misspecified. Using a sample

that overlaps the time period investigated by Stein (1989), they report, contrary to

Stein (1989), evidence for market underreaction. Additionally, the analysis of the

non-overlapping sample provides no evidence for market under- or overreaction.83

Furthermore, Heynen et al. (1994) question Stein’s (1989) findings. Similar to Diz

and Finucane (1993), they argue that the rejection of the hypothesis that implied

volatility reflects rational expectations regarding future average volatility is due to

the misspecification of the volatility process. They demonstrate that the hypoth-

esis is not rejected if an EGARCH model is used to describe the dynamics of the

underlying stock price. Overall, they suggest that the term structure is primarily

determined by the level of unconditional volatility, which in their study is driven by

an asymmetric GARCH process.84

While Stein (1989) and Heynen et al. (1994) perform joint tests of the expectation

hypothesis and the option pricing model, Jiang and Tian (2010) use a model-free ap-

proach that does not require the specification of a particular option pricing model.

They consider S&P 500 index options from June 1988 to December 2007. Their

results call the previous findings of Stein (1989) and Diz and Finucane (1993) into

is unknown and options are non-redundant securities. Thus, his findings also require that the
BS model hold.

81Stein (1989) performs so-called term structure tests which can be motivated by the following
example. Assume that volatility oscillates around its mean (e.g. 20%) due to a strongly mean-
reverting process. If the implied volatility of an option that expires in month is currently 30%,
then the implied volatility of a three-month option should be on average lower than 30%, due to
the mean-reversion effect. See Stein (1989), p. 1012.

82An alternative test that does not rely on the specification of a stochastic process for volatility
confirms these results. See ibid., p. 1021.

83See Diz and Finucane (1993), p. 312
84See Heynen et al. (1994), pp. 50-51.
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question, as they find no evidence for market misreaction. In particular, they demon-

strate that the long-horizon overreaction in options markets documented by Stein

(1989) and Poteshman (2000) is due to model misspecification.85

Stein (1989), Diz and Finucane (1993), and Heynen et al. (1994) analyse the volatility

term structure based on options with two different maturities (in simplified terms,

short- and long-term options). The approach proposed by Xu and Taylor (1994)

allows the analysis of all traded options with arbitrary maturities.86 They spec-

ify a two-factor model for the volatility term structure that takes short-term and

long-term volatility into account. Their sample comprises daily data for four spot

currency options that had been traded on the Philadelphia Stock Exchange from

January 1985 to November 1989.87 They report that volatility expectations move

from short-term levels towards their long-term levels. By demonstrating that volatil-

ity expectations exhibit a half-life period of approximately four weeks, they provide

evidence that the market does not expect volatility shocks to persist over longer

horizons. Further, they find significant differences between short-term and long-

term volatility expectations and hence evidence for the existence of a volatility term

structure. Their findings also suggest that long-term expectations are time-varying.

However, they note that short-term expectations change more rapidly. Moreover,

they mention that the slope of the term structure changes frequently. In summary,

they confirm the hypothesis that volatility expectations are formed rationally.88

Whereas the papers of Stein (1989), Heynen et al. (1994), and Xu and Taylor (1994)

analyse the empirical regularities of the term structure for a given volatility model,

Das and Sundaram (1999) use the reverse approach. They investigate the impli-

cations of different asset price processes for the form of the term structure. In

particular, they employ jump-diffusion and stochastic volatility models. Their main

result is that although each model class captures several empirical aspects of implied

85See Jiang and Tian (2010), p. 2359.
86However, as they estimate the term structure for nearest-the-money options, they do not consider
the complete IVS.

87See Xu and Taylor (1994), p. 58.
88See ibid., p. 73.
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volatilities quite well, both model classes fail to address all (important) empirical

patterns in the data. Overall, they report that stochastic volatility models are better

suited to replicating the typical shapes of the term structure of volatility smiles than

jump-diffusions.89

In summary, Alexander (2008) notes that an upward sloping term structure is typi-

cally observed during calm market periods, while a downward sloping curve is gen-

erally found in volatile periods.90 For instance, Äijö (2008) reports an extremely

downward sloping term structure for the DAX, SMI, and Euro Stoxx 50 options

markets after the September 11th attack. He highlights that the change in the

shape of the term structure is due to short-term implied volatilities that increased

dramatically. In contrast, long-term implied volatilities remained relatively stable.91

Furthermore, the above-presented studies demonstrate that the volatility term struc-

ture varies over time. In the following, the empirical findings for the DAX options

market are reviewed.

The DAX Volatility Term Structure

The above-cited study by Trautmann (1990) documents that the market prices of

deep OTM call options with different maturities differ from corresponding BS val-

ues. This indicates a not-flat term structure for individual German stock options.92

Further, Beinert and Trautmann (1995) demonstrate that the implied volatilities of

individual stock options decrease if maturity rises. This relationship is more pro-

nounced for ITM than for OTM options. For ATM call options, they report that

the implied volatilities of short-term options are relatively low, increase for longer

maturities, but decrease for options with the longest maturities.93

89See Das and Sundaram (1999), pp. 231-232.
90See Alexander (2008), p. 238.
91See Äijö (2008), p. 294.
92See Trautmann (1990), p. 99.
93See Beinert and Trautmann (1995), p. 14.
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The results of Ripper and Günzel (1997) reveal that the implied volatilities of short-

term deep ITM and OTM options (with maturities of up to ten days) are systemati-

cally higher than those for corresponding long-term options (with maturities from 18

to 95 days).94 Fengler et al. (2002) analyse changes in the volatility term structure

for DAX ATM options from March 1996 to December 1997. The DAX volatility

term structure is derived from closing prices of eight VDAX subindices.95 They find

that the DAX term structure is downward sloping and changes over time during the

sample period. In particular, they observe a temporary upward term structure shift

and some clear term structural changes during the market downturn in the fall of

1997.96

Bolek (1999) considers the average DAX volatility term structure across all strike

price classes, which is derived from DAX call options from the second half of 1995.

He also provides evidence that DAX implied volatilities decrease if maturity rises.

Similar to Fengler et al. (2002), he suggests that the DAX volatility term structure

varies over time.97 Wallmeier (2003) investigates transaction prices of DAX options

and futures from 1995 to 2000 and reports contradictory results. He observes that

the DAX volatility term structure for options with maturities from 30 to 120 days

has a positive slope. Foresi and Wu (2005), who consider a longer sample period

than Wallmeier (2003) ranging from June 1995 to May 2005, indicate that the im-

plied volatilities of OTM put options increase at longer maturities. They observe

the inverse pattern for OTM call options. The mixed results of Bolek (1999), Fen-

gler et al. (2002), Wallmeier (2003), and Foresi and Wu (2005) are to some extent

surprising, as their sample periods partially overlap. However, while all four studies

investigate the DAX volatility term structure, their findings are based on partly dif-

ferent types of DAX options data. For instance, Bolek (1999) and Wallmeier (2003)

use transactions data, Fengler et al. (2002) examine daily closing prices of volatility

94See Ripper and Günzel (1997), p. 475.
95The VDAX index family comprises volatility indices that reflect information on the implied
volatility of DAX ATM options with different maturities. The implied volatilities used to calcu-
late the VDAX indices are obtained from traded DAX options by inverting the BS formula.

96See Fengler et al. (2002), p. 18.
97See Bolek (1999), pp. 129-132.
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indices, and Foresi and Wu (2005) analyse daily OTC volatility quotes. Addition-

ally, Bolek (1999) investigates options with maturities of up to 12 months, Fengler

et al. (2002) study subindices with maturities of 1, 2, 3, 6, 9, 12, 18 and 24 months,

Wallmeier (2003) considers expiries of 30, 60, 90, and 120 days, and the sample in

Foresi and Wu (2005) contains implied volatilities on options with maturities from 1

month to 5 years. However, the different shapes of the DAX volatility term structure

demonstrate that it varies over time.

While the above studies are based on the BS model, Äijö (2008) examines the

DAX volatility term structures based on the VDAX-NEW. The VDAX-NEW was

introduced by the Deutsche Börse to make pure volatility tradable. While the VDAX

is constructed from BS implied volatilities of DAX ATM options with a maturity of

45 days, the VDAX-NEW is not calculated using a particular option pricing model.

The VDAX-NEW is derived from the market prices of traded DAX options. By this

it can be replicated using a portfolio of DAX options. In addition to the VDAX,

the VDAX-NEW not only considers the implied volatilities of ATM options, but

also uses the implied volatilities of OTM options. Äijö (2008) reports on average

a downward-sloping term structure for the period from January 2000 to December

2004. Further, the term structures exhibit considerable changes over time, as the

slope ranges from negative to positive values during the sample period. Äijö (2008)

also examines the relationship between term structure changes and market phases

(see also the above result regarding the September 11th attack). He describes that at

the end of the bear market in the second quarter of 2003, the slope changed (slowly)

from a negative to a positive sign. Bearing these findings in mind, the contradictory

results of Wallmeier (2003) highlighted above may be due to a long and extraordinary

positive market upturn period during his observed sample period.98

98This possible explanation is qualified by the fact that the samples of Bolek (1999) and Fengler
et al. (2002) also fell into periods of rising market prices, which however, were not as long as
observed by Wallmeier (2003).
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2.5.3. Dynamic Behaviour of Implied Volatilities

In the above Sections, it is often noted that the volatility smile and volatility term

structure change over time. This Subsection picks up this finding and presents

studies that address the time series behaviour of smiles and term structures. Similar

to the organisation of prior passages, this Section first presents empirical studies on

international options markets. The dynamic behaviour of DAX implied volatilities

is described further below. The presentation of the selected international studies is

organised as follows.

First, studies describing the dynamic features of individual implied volatility series

with fixed moneyness and maturity are considered in chronological order. In par-

ticular, empirical results with respect to serial correlation, mean-reversion and the

stationarity of implied volatilities are provided. Next, a study by Foresi and Wu

(2005) analysing the time series behaviour of volatility smiles is presented. There-

after, the results of Mixon (2007) and Äijö (2008), which examine the dynamics

of the volatility term structure, are provided. In addition, the studies of Brooks

and Oozeer (2002) and Christoffersen and Jacobs (2002) regarding volatility cluster-

ing of implied volatilities are briefly introduced. Finally, the findings of Gonçalves

and Guidolin (2006), which investigate the dynamics of the complete IVS, are pre-

sented.

The Time Series Behaviour of the IVS in International Options Markets

Schmalensee and Trippi (1978) contributed an early study of time-varying implied

volatilities and analyse weekly closing prices of six common stocks that had been

traded on the CBOE from April 1974 to May 1975. Their time series analysis uses

equally weighted-averages of implied volatilities, which compress the IVS to a single

number. To describe the changes in the average implied volatilities, they calculate

corrected first-order autocorrelation coefficients99 and report (weak) evidence for

99They account for measurement errors induced by transaction costs and rounding errors. See
Schmalensee and Trippi (1978), pp. 134-136.
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negative serial correlation.100 However, the validity of their study is limited by the

fact that the performance of the BS option pricing model depends on moneyness

and maturity.101,102 Poterba and Summers (1986) avoid problems that are induced

by determining weights. They use the CBOE Call Option Index for the period from

January 1976 to June 1984.103 By estimating weekly sample autocorrelations and

sample partial autocorrelations for different lags, they suggest an AR(1) model to

describe the (standardised) implied volatility series.104 Based on the Dicky-Fuller

test, they find that the implied volatility series is stationary.105

Harvey and Whaley (1991) study the time series properties of implied volatilities

derived from transaction prices of short-term ATM S&P 100 index options. Their

sample comprises the period from August 1988 to July 1989.106 In particular, they

investigate the effect of nonsimultaneous prices, the bid/ask spread, and infrequent

trading on the time series behaviour of implied volatilities. They demonstrate that

nonsimultaneous prices induce negative first-order autocorrelation in implied volatil-

ity changes. However, negative first-order sample autocorrelation is not completely

eliminated after controlling for this effect. This problem is relevant for numerous

studies using closing prices.107 Furthermore, they show that the bid/ask price effect

100See Schmalensee and Trippi (1978), p. 135.
101The calculation of average weighted implied volatilities is based on equally weighted option

prices.
102See Mayhew (1995), p. 9.
103The CBOE Call Option Index is calculated based on standardised stock option prices. For each

CBOE stock, the option price is estimated for a hypothetical six-month ATM option using actual
market prices. The option prices are standardised by dividing them by the underlying stock
price. The index implicitly assumes a particular option with fixed moneyness and maturity. In
so doing, the index captures the information of one point of the IVS. See Poterba and Summers
(1986), p. 1148.

104The estimated first-order autocorrelation coefficient of weekly implied volatilities is 0.97. This
implies that one year after a shock occurred 0.96552 ≈ 16% of the initial shock will be expected
to be present in the data.

105See Poterba and Summers (1986), p. 1149.
106They use short-term options with a minimum of 15 days to maturity.
107For example, if the stock market closes before the options market, negative serial correlation

can be induced by new information that is immediately incorporated into options market prices,
but enter stock market prices with a time-lag of one night. Under the assumption that the
information represents good market news, the implied volatility from call options, which is
calculated based on stock closing prices for the previous day, is higher than it should be. On
the next day, positive information is incorporated into the stock price and implied volatilities
drop to normal levels. See Harvey and Whaley (1991), pp. 1553-1555.
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leads to higher negative first-order serial correlation.108 Again, negative serial cor-

relation is not fully removed after taking bid/ask prices into account. In contrast to

bid/ask spreads and nonsimultaneous prices, infrequent trading does not influence

the serial correlation of implied volatilities. Drawing on these results, they argue

that volatility levels should be stationary and mean-reverting.109 As numerous early

studies use closing prices, these studies are subject to these effects and their findings

must be interpreted with caution.

In a subsequent study, Harvey and Whaley (1992) examine a larger sample of S&P

100 index options data that cover the period from October 1985 to July 1989. By

calculating separate summary statistics for put and call options, they report that

the implied volatility levels of both series are positively autocorrelated, which sug-

gests persistence in the volatility level. The sample autocorrelations drop to zero

at higher lags fairly quickly. This might indicates that the time series is stationary.

Taking the differences of the implied volatilities, they find significantly negative au-

tocorrelations at lags 1 and 2, which provides evidence against the hypothesis that

volatility changes are unpredictable.110 They use a linear model to predict volatil-

ity changes where implied volatility changes are regressed on certain informational

variables. They observe that the coefficients of lagged implied volatility changes are

significantly negative.111 In combination with the observed first-order sample auto-

correlation, the regression results provide evidence that the implied volatility level

follows a mean-reverting process. Interestingly, they find that the changes in the

implied volatility of call options are more predictable than those of put options. In

summary, while their findings reveal that implied volatility changes are predictable

108Roll (1984) explains how the bid/ask spread can cause negative serial correlation in returns.
See Roll (1984), pp. 1128-1130.

109See Harvey and Whaley (1991), p. 1558.
110See Harvey and Whaley (1992), p. 56.
111They estimate a regression model for the full period and for a second sample where the turbulent

period from October 16th to October 30th, 1987 is excluded. The regression results show that
the October 1987 market crash has a strong influence on the estimated coefficients. Therefore,
Harvey and Whaley (1992) present an interpretation for the sample that excluded the crash.
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in a statistical sense, an economic analysis proposes that arbitrage profits disappear

when transaction costs are taken into account.112

Fleming et al. (1995) investigate changes in the CBOE Volatility Index (VIX) from

January 1986 to December 1992.113,114 They report that the changes in the average

daily implied volatility are relatively low during the sample period. The sample au-

tocorrelation structure of the daily volatility index changes are calculated for each

year of the sample and vary substantially in the sample. In particular, they find

positive and negative values for the first autocorrelation coefficient. For the com-

plete sample period, they report a significantly negative first-order autocorrelation

coefficient. Furthermore, when considering weekly implied volatility changes, they

find a higher negative first-order autocorrelation coefficient, which indicates mean

reversion behaviour in the index. Similar to Poterba and Summers (1986), they re-

port that the first-order autocorrelation coefficient of the VIX series is approximately

97%.

The time series behaviour of volatility smiles is studied in the above-mentioned study

by Foresi and Wu (2005), who consider daily OTC option quotes for 8 different

maturities on 12 major equity indices. To examine the dynamic pattern of volatility

smiles, for each index they estimate for each maturity and each day a second-order

polynomial function of the form

σ(M ; t, T ) = β0 + β1M + β2M
2 + ε (2.18)

where σ(M ; t, T ) represents the implied volatility at time t and for maturity T as a

function of moneyness M and ε denotes the error term.115 The parameter β0 covers

the level, β1 the slope, and β2 the curvature of the volatility smile. The daily estima-

112See Harvey and Whaley (1992), pp. 58-71.
113They use VIX changes, as VIX levels seem to follow a near-random walk.
114The VIX was constructed from the implied volatilities of eight OEX S&P 100 index options and

had a constant 30-calendar day time to maturity. Note that in 2003, the CBOE changed the
underlying index to the S&P 500 Index.

115Foresi and Wu (2005) define moneyness M as the ratio of the strike price K to the index level
S.
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tion of (2.18) yields a series of coefficients (β0, β1, β2) that is analysed with respect

to its serial correlation structure. The estimated first-order sample autocorrelations

of β0 provide evidence that the implied volatility levels of the considered equity in-

dices are persistent. Moreover, they find that the implied volatilities of short-term

options (with maturities up to half a year) are less persistent than the volatilities

of long-term options (with maturities up to 5 years). Further, the standard devia-

tion of β0 decreases if maturity rises. This demonstrates that the implied volatility

level of short-term options varies to a greater extent over time than the level of

long-term options. They report that all estimated slope coefficients are negative,

which indicates a downward sloping volatility smile for all indices. In contrast to

the time-variability of the volatility level, the standard deviation of β1 increases for

options with longer maturities. Thus, the slope of the volatility smile for long-term

options shows more pronounced changes over time than the slope for short-term

options. Additionally, with one exception, they find small values of β2, implying

that the shape of the volatility smile is similar to a straight line. Considering the

standard deviation of β2, the curvature of the volatility smile for long-term options

moves to a greater extent than that for short-term options.116

Mixon (2007) investigates the dynamic behaviour of the volatility term structure for

different equity indices. He analyses OTC data of ATM call options for the S&P 500,

FTSE, DAX 30, CAC 40, and Nikkei 225 from May 1994 to October 2001. He finds

that the slope of the average term structure is positive for 4 of the 5 indices.117,118

However, he demonstrates that the slope of the term structure of the S&P 500 index

changes several times during the sample period. For instance, the term structure

was generally upward sloping during the period of low volatility levels from 1994 to

1996. However, with the increase in volatility levels at the end of 1997, the slope

changed its sign and the term structure became downward sloping.119 Therefore,

116See Foresi and Wu (2005), pp. 15-17.
117The exception is the Nikkei 225.
118The slope of the term structure is measured by the difference between the implied volatility of

options with 1 and 12 months to maturity.
119Moreover, the slope changed from positive to negative values during the turbulent market period

in Autumn 1998. It remained positive for most of the period from 1999 to 2000. After the
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these findings provide further evidence that the slope of the term structure tends to

be positive (negative) during phases of low (high) volatility.120 Similar to Foresi and

Wu (2005), he reports that the implied volatility level of short-term options (one

month to maturity) varies to a greater extent over time than options with longer

maturities (12 months to maturity).121

Äijö (2008) also presents evidence regarding the time series pattern of the volatility

term structure for several popular equity indices. He considers daily index levels

of the VDAX, VSMI and VSTOXX from January 2000 to December 2004. He

reports that the sample autocorrelation coefficients are significantly positive up to

five lags, which suggests mean-reverting behaviour in the implied volatilities.122 To

compare the persistence of a shock across the indices, he proposes the persistence

measure ln 0.5/ln(ρ1), where ρ1 denotes the sample autocorrelation coefficient of

lag one. Based on this measure, he finds that the half-life of a shock is between

31 and 38 days. Further, the results of the Dickey-Fuller and the Phillips-Perron

tests confirm the stationary assumption for implied volatility levels and differenced

implied volatilities.123

Gonçalves and Guidolin (2006) suggest a two-stage approach that makes it possible

to model the dynamics of the complete IVS. They use a sample of daily closing

prices for options on the S&P 500 index traded on the CBOE from January 1992

to June 1996. In a first step, similar to Dumas et al. (1998) they estimate daily

cross-sectional models in which log implied volatilities are regressed on moneyness,

squared moneyness, maturity, and an interaction term of moneyness and maturity.

This regression yields a series of coefficients. In the second step, they fit a Vector Au-

toregressive (VAR) model to the multivariate time series of coefficients. With respect

to the cross-sectional model, they find that the models typically provide an excellent

September 11 attacks the shape of the term structure was again downward sloping. See Mixon
(2007), p. 340.

120See also the above-noted findings of Alexander (2008).
121See Mixon (2007), p. 340.
122See Äijö (2008), pp. 292.
123See ibid., pp. 293-295.
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fit to the daily IVS.124 However, the explanatory power of the cross-sectional models

changed considerably over time. In contrast, the proposed cross-sectional model is

able to reproduce the different observed IVS shapes. In accordance with Dumas et al.

(1998), they demonstrate that the daily coefficients of the cross-sectional regressions

are highly unstable over time. The results of the Ljung-Box (LB) test applied to

the coefficient series confirm this finding. Furthermore, cross-correlograms indicate

strong contemporaneous and lead and lag relationships among the estimated coef-

ficients. For this reason, they fit a VAR model to the time series of coefficients.125

Overall, they find that the two-stage model captures these relationships and the

observed static and dynamic patterns of the IVS quite well. Although the two-stage

model provides accurate forecasts from a statistical perspective, its economic per-

formance is mixed.126 In summary, these results suggest the existence of a regular

dynamic structure of the IVS.127 Having described the time series behaviour of the

volatility smile, the term structure, and the IVS, the volatility clustering property

of implied volatilities is described briefly in the following.

Volatility clustering property is well documented for numerous financial time series.

While most studies consider the volatility clustering behaviour of stock returns,

few articles address the volatility pattern of implied volatilities. One such study

is Brooks and Oozeer (2002). They analyse the implied volatilities of options on

Long Gilt Futures that were traded on the London International Financial Futures

Exchange (LIFFE) from March 1986 to March 1996. They report that the implied

volatility levels and the differenced series exhibit ARCH-effects. For this reason,

they recommend the White-estimator to estimate the IVS based on a linear regres-

sion model. Another empirical study providing evidence for volatility clustering of

implied volatility levels is Christoffersen and Jacobs (2002). They study weekly data

on S&P 500 call options from June 1988 to May 1992. Their results also indicate

that the volatility of implied volatility tends to cluster. Therefore, both studies indi-

124They report that the average adjusted R2 is approximately 81%.
125See Gonçalves and Guidolin (2006), pp. 1598-1608.
126The simulation results concerning the economic performance of the approach are highly depen-

dent on the assumptions regarding transaction costs and the definition of trading rules.
127See Gonçalves and Guidolin (2006), pp. 1628-1631.
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cate that the volatility clustering effect also exists for implied volatilities. However,

future research is necessary to support this hypothesis for a broader range of options

markets.

Dynamic Pattern of DAX Implied Volatilities

This Section presents empirical findings on the dynamics of DAX implied volatilities.

In particular, the study results of Hafner and Wallmeier (2000), Fengler et al. (2002),

Wallmeier (2003), and Fengler (2012) are discussed.

Hafner and Wallmeier (2000) examine the time series pattern of DAX volatility

smiles based on the transaction prices of DAX options. The DAX options were

traded on the DTB/Eurex from January 1995 to October 1999. They estimate a

spline regression model of the form

σ(M,D; t, T ) = β0 + β1M + β2M
2 +Dγ2(1− 2M +M2) + ε (2.19)

which is conditional on a fixed maturity for each day. The dummy variable D takes

the value one for M > 1 and zero otherwise.128 It controls for the asymmetric

strike pattern of implied volatilities. The regression is run for every day and for

the two maturities.129 They find that the estimated slope parameter β̂1 is negative

on average, the curvature coefficient β̂2 is positive, and the asymmetry parameter

γ̂2 is positive. Based on these findings, they conclude that the shape of the DAX

volatility smile more closely resembles a skew during most of the sample period.

Moreover, the regression results demonstrate that the volatility smile function is

steeper and more convex for options with shorter maturities than for options with

longer maturities.130 This implies a more pronounced skew for short-term options.

Further, the standard deviations of the estimated parameters exhibit substantial

128Here moneyness is defined as M = K
F (t,T ) where F (t, T ) denotes the DAX futures price at time

t with maturity at time T .
129See Hafner and Wallmeier (2000), p. 14.
130Here, short-term (long-term) options are characterised by maturities which are lower equal

(higher) than 45 days.



2.5. Stylised Facts of Implied Volatilities 43

time-variation. According to Hafner and Wallmeier (2000), this does not indicate

that the smile pattern changes distinctly during the sample period, as nearly identi-

cal smile patterns for ATM options can be generated by different parameters of the

above smile function.131 Furthermore, they report that the estimated parameters are

highly correlated. Therefore, they do not investigate the dynamics of the regression

coefficients as other studies do, but rather calculate two slope measures to analyse

the time series behaviour of the DAX implied volatility smile.132

They consider the slope of the volatility smile for options from two moneyness re-

gions.133 First, both slope measures are positive over the complete sample period.

This indicates that the shape of the DAX volatility smile more closely resembles a

skew than a symmetric smile. Second, the upward movement of the slopes during

the sample period implies that the DAX volatility skew became steeper. Third, as

the values of the slope measure for options with a moneyness equal to 0.95 generally

lie above the second slope measure (for options with moneyness equal to 1.05), the

implied volatility skew is steeper for options within the moneyness boundaries of

0.95 and 1 than in the region from 1.0 to 1.05. In addition, they find that the sum

of the two slope measures (called total span), which captures information regarding

the smile profile, follows a stationary AR(1) process. As the estimated autocorre-

lation coefficient is near 0.98 for the complete sample period, they conclude that

shocks to the volatility smile persist and die out slowly.134

In addition to the dynamic analysis of the slope of the volatility smile, Wallmeier

(2003) measures and analyses the curvature of the volatility smile. He suggests a

curvature measure based on the above two slope measures.135 By calculating the

131For an example, see Hafner and Wallmeier (2000), p. 19.
132See ibid., pp. 19-20.
133The slope of the smile is calculated based on the difference between the implied volatility of

a DAX option with a moneyness equal to 0.95 (or 1.05) and the implied volatility of a DAX
ATM option. The slope measures reflect the average slope of the smile in the corresponding
moneyness region.

134See Hafner and Wallmeier (2000), p. 32.
135The curvature measure is defined as the difference between the above two slope measures divided

by the sum of both slope measures. See Wallmeier (2003), p. 190.
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correlations between the changes in β0
136 from (2.19), the relative total span137,

and the curvature measure, he finds that increasing ATM implied volatilities are

accompanied by a decline in the relative total span and a reduction in the curva-

ture. Therefore, the dynamics of the volatility smile are not fully captured by a

proportional drift in the implied volatility level of ATM options.138,139

To identify common factors that govern the dynamics of implied volatilities, the

above-mentioned study by Fengler et al. (2002) investigates 8 VDAX subindices

from March 1996 to December 1997. The VDAX subindices are based on ATM

DAX options with different maturities. Their analysis is based on differenced series

of the VDAX subindices, as the nonstationarity hypothesis is only rejected for the

differenced series and not for the VDAX subindex levels.140 They report that the

level and slope of the volatility term structure changed considerably during the

market turmoil in 1997. Furthermore, using principal component analysis, they

show that the total variation in the term structure of ATM DAX options can be

primarily attributed to two risk factors.141

Fengler (2012) employs an alternative measure (called skew measure) for the slope

of the volatility smile to that used by Hafner and Wallmeier (2000).142 He applies

the skew measure to DAX 1M and 1Y index option data from 2000 to 2008. He also

identifies a volatility skew for the DAX options considered, as the skew measure is

negative during the whole sample period. In particular, he reports that the skew

measure increases during turbulent market periods for 1M options, which implies

136The intercept represents the general level of ATM implied volatility.
137They divide the total span by β0 which reflects the absolute level of ATM implied volatility.
138See Wallmeier (2003), p. 193.
139Further, Wallmeier (2003) analyses the autocorrelation structure of β0 and the total span. He

finds that both variables can be modelled by an AR(1) process. As the curvature measure
exhibits positive partial autocorrelations up to lag 4, he refrains from specifying an AR(1)
model for the curvature. See Wallmeier (2003), p. 195.

140According to Fengler (2012), the data generating process for implied volatilities was often found
to be nearly integrated. This characteristic makes it difficult to verify mean reversion in a
statistical sense. See Fengler (2012), p. 123.

141See Fengler et al. (2002), p. 19.
142The measure is defined as ∂σ̂2

∂M

∣∣
M=0

where M is given by M = log(K/S).
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a steeper volatility smile.143 Furthermore, he observes that the level of and the

variation in the volatility smile of 1Y options are generally lower than in the case

of the smile of 1M options. The co-movement of the DAX implied volatility level,

the skew measure, and the term structure demonstrates that shocks across the IVS

are highly correlated. Therefore, he concludes that the dynamics of the IVS can be

adequately described by a small number of factors.144

Overall, the studies show that the volatility smile, the volatility term structure, and

the IVS exhibits a systematic dynamic pattern that should be taken into account

when predicting implied volatility. In the following, some potential explanations for

the implied volatility patterns are presented.

2.6. Potential Explanations for the Stylised Facts of

Implied Volatility

The literature suggests a series of explanations for the stylised facts of implied volatil-

ities across moneyness and maturity presented above. As the existence of volatility

smiles and term structures demonstrates that the assumptions of the BS model are

violated, the explanatory approaches build on relaxing the BS assumptions. On

the one hand, studies suggest that market microstructure effects, such as transac-

tion costs, liquidity constraints, and information asymmetries, induce differences

between observed market option prices and their corresponding BS values. On the

other hand, a recent body of research proposes alternative stochastic processes for

the underlying asset price, which differ from the geometric Brownian motion as-

sumed by the BS model, to explain the observed volatility patterns, e.g., stochastic

volatility or Lévy-processes.145 First, this Section presents the explanation that

attributes the volatility smile to stochastic volatility.

143The sample comprises the following volatile market periods: the September 11, 2001 attacks,
the crash and aftermath of the dot-com bubble from 2001 to 2003, and the financial crisis 2008.

144See Fengler (2012), p. 120-123.
145See Hafner (2004), p. 56.
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2.6.1. Stochastic Volatility

Stochastic volatility option pricing models (or in brief: stochastic volatility models)

allow volatility to evolve stochastically over time via the introduction of an addi-

tional stochastic process. By relaxing the constant volatility assumption of the BS

model, stochastic volatility models provide a flexible approach to capture the volatil-

ity smile phenomenon.146 The first formal proof that a stochastic volatility model

(the Hull and White (1987) option pricing model) produces a symmetric smile is

given in Renault and Touzi (1996). They show that the volatility smile is a natu-

ral consequence of stochastic volatility. In particular, the resulting volatility smile

is U-shaped and reaches its minimum for ATM options.147 Hull (2006) briefly de-

scribes the relationship between stochastic volatility and volatility smiles as follows:

stochastic volatility induces heavier tails in the implied distribution of asset prices

than the corresponding lognormal distribution with the same mean and standard

deviation.148 First, a deep-out-of-the-money call option with strike price Kcall
deep−OTM

is considered. Because of the heavier tails of the implied distribution, the probability

that the asset price exceeds Kcall
deep−OTM is greater than for the lognormal distribution.

Thus, the option price is higher given a leptokurtic distribution, which equates to

higher implied volatility. The same argumentation can be employed to explain the

higher price or, equivalently, the higher implied volatility of an OTM put option.149

Thus, the implied volatility derived from model option prices based on a stochastic

volatility model will exhibit a smile.150 In addition to stochastic volatility models,

GARCH-type option pricing models, e.g., Duan (1999), can also produce volatility

smiles.151

146Alternatively, local volatility models relax the constant volatility assumption by modelling (local)
volatility as a deterministic function of the asset price and/or time. See for instance Derman
and Kani (1994a), Derman and Kani (1994b), Dupire (1994), and Rubinstein (1994).

147See Renault and Touzi (1996), p. 280.
148The implied distribution refers to the risk-neutral probability distribution of an asset price at

future time t. It is determined by the volatility smile of options expiring at t.
149See Hull (2006), p. 378.
150See Alexander (2008), p. 271.
151See Duan (1999), p. 15.
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While asset prices and volatility are by assumption uncorrelated in the Hull and

White (1987) model, the Heston (1993) model allows for positive or negative corre-

lation between the two processes. The non-zero price-volatility correlation influences

the return distribution and produces a non-symmetric volatility skew. If the cor-

relation is negative, the return distribution is left tailed and the volatility skew is

negative. Alternatively, a positive price-volatility correlation generates a positive

skew.152 The magnitude of the smile is determined by the other parameters of the

stochastic volatility model. In particular, the volatility of the volatility parameter

affects the curvature of the smile.153,154 However, Das and Sundaram (1999) demon-

strate that stochastic volatility models require unrealistically high parameter values

to produce the pronounced volatility smiles that are often observed for short-term

options.155 This theoretical finding is supported by an empirical study by Bates

(1996b), who argues that jump-diffusion models are better suited to fit volatility

smiles than stochastic volatility models. Thus, the class of jump-diffusion models

and their appropriateness for capturing implied volatility patterns is described in

the next Section.

2.6.2. Jumps

In addition to stochastic volatility, heavy-tailed return distributions can also be ex-

plained by jumps. Jumps interrupt the continuous asset price process and make it

impossible to replicate the option pay off using a complete, riskless hedge portfolio.

In this case, the principle of preference-free option valuation is no longer appli-

cable.156 As the shape of the volatility smile in the U.S. market has more closely

resembled a skew or a sneer since the 1987 crash, Andersen and Brotherton-Ratcliffe

152See Alexander (2008), pp. 271-272 for a detailed description.
153See Hafner (2004), p. 57.
154Backus et al. (2004) argue that the increasing volatility term structure of ATM options can

be explained by skewness and excess kurtosis. Their approach suggests that under certain
assumptions, excess kurtosis pushes the implied volatility of ATM options downwards. Given
increasing maturity, this effect declines and the implied volatility of ATM options increases. See
Backus et al. (2004), p. 17.

155See Das and Sundaram (1999), p. 213.
156See Merton (1976), p. 132.
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(2000) and others argue that this event caused market participants to increase their

expected likelihood of a large downward movement.157,158

Merton (1976) proposed the first option pricing model to account for jumps. By

combining a continuous price process with a discontinuous jump term, the stochastic

differential equation for the asset price is given by

dSt

St
= (µ− λje)dt+ σdzt + (Jt − 1)dqt(λ) (2.20)

where dzt is a Wiener process and dqt represents an independent Poisson process

that generates the jumps. The parameter λ denotes the average number of jumps

per unit time, J is an independent identically distributed random variable for the

relative change in the asset price in the event of a jump, and je = E(J − 1) is the

expected percentage change in the asset price. By imposing the assumption that

the jump component of an asset’s return is unsystematic, Merton (1976) implicitly

assumes that jump risk can be diversified away, and thus the risk premium for jumps

is zero.159 This can be used to write the price of a European option determined by

the Merton (1976) model as a weighted sum of BS prices.160 Based on the jump-

diffusion model and the assumption that je = 0, Merton (1976) shows that the

pronounced volatility smiles of short-term options can be explained by jumps. In

particular, he reports that the prices of deep-ITM and deep-OTM given by the

Merton (1976) model exceed the BS value, while the Merton (1976) prices of ATM

option are lower.161 Furthermore, he finds that if investors expect a negative jump,

the shape of the volatility smile becomes asymmetric.162

Das and Sundaram (1999) extend the results of Merton (1976) using the Bates

(1996b) option pricing model in which jump and volatility risk are systematic and

157See Andersen and Brotherton-Ratcliffe (2000), p. 6.
158See also Bates (1991), pp. 1036-1037 and Pena et al. (1999), p. 1159.
159In this way, the Merton (1976) model represents an exception to the above rule that risk-neutral

valuation is not possible in the presence of discontinuous jumps.
160See ibid., p. 135.
161See ibid., p. 140.
162See Wallmeier (2003), p. 62.
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non-diversifiable. In particular, they show that jump-diffusion models are able to

produce volatility smiles at short maturities under reasonable parameterisations.

Unfortunately, jump-diffusions fail to generate realistic volatility smiles at long ma-

turities, as the smile flattens out more rapidly than suggested by the empirical data.

Finally, Das and Sundaram (1999) report that the term structure of ATM options

from jump-diffusion models always exhibits an increasing shape, which contradicts

the partly observed decreasing or humped term structure profiles. Therefore, jump-

diffusion models make it possible to reproduce the skew pattern of short-term op-

tions but fail to explain skews at longer maturities or non-increasing volatility term

structures. Thus, an option pricing model that combines stochastic volatility with

jumps would provide sufficient flexibility to accurately match empirical skew and

smile patterns.163 However, combined models, e.g., Bates (1996b), contain more pa-

rameters than pure stochastic volatility or jump-diffusion models which negatively

affects model parsimony.164

However, whether and to what extent jumps should be taken into account remains an

ongoing question. Based on high-frequency data, Christensen et al. (2014) demon-

strate that the effect of jumps on volatility is much lower than documented in the

related literature. They argue that the relatively high attribution of jumps to asset

price variability documented in the literature is often spurious, as these studies use

low-frequency data. To my knowledge the consequences of this finding for option

pricing have yet to be analysed. As the empirical Section of this thesis does not

employ a jump-diffusion model, this argument is only mentioned here and will not

be investigated further.

163See Das and Sundaram (1999), pp. 213-214.
164However, using S&P 500 index options data Bakshi et al. (1997) recommend option pricing

models that account for stochastic volatility and jumps, because of their superior empirical
performance and practicability.
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2.6.3. Market Microstructure Effects

In addition to the consideration of alternative stochastic processes to explain volatil-

ity smiles and term structures, the literature also suggests that market microstruc-

ture effects influence the shape of implied volatilities across moneyness and maturity.

First, the effect of market frictions is described. Then, the role of information asym-

metries is examined.

Market Frictions

According to Whaley (2003), a frictionless market is characterised by the absence of

trading costs and differential tax rates, unlimited borrowing and lending opportu-

nities at the risk-free rate, no short selling restrictions, and the possibility to trade

at any time and in any quantity.165 If any of these market assumptions is violated,

then the arbitrage mechanism ensuring that, in the BS world, the option price is

equal to the price of the hedging portfolio is affected.166 As a result, the value of

the BS hedging portfolio is influenced and continuous, dynamic re-hedging becomes

more complicated or even impossible.

The effect of transaction costs on option pricing is analysed in Gilster and Lee

(1984), Leland (1985), Boyle and Vorst (1992), and Longstaff (2005), among others.

Wallmeier (2003) notes that transaction costs can contribute to explaining volatil-

ity smiles if option traders only perform dynamic hedging strategies for certain

options.167 Studies investigating whether transaction costs are one of the determi-

nants of the volatility smile provide mixed results. While Longstaff (1995) reports

empirical evidence that pricing biases in S&P 100 index options can be induced by

market frictions, Constantinides (1996) provides a theoretical analysis and argues

that transaction costs cannot account for volatility smiles. Furthermore, Pena et al.

165See Whaley (2003), p. 1140.
166Black and Scholes (1973) assume that the payoff of an option contract can be replicated by a

hedging portfolio with the same payoff. Based on a dynamic hedging argument, they are able
to transform an option into a risk-free instrument.

167See Wallmeier (2003), p. 145.
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(1999) consider Spanish IBEX-35 index options from January 1994 to April 1996

and find that transaction costs play a major role in explaining the curvature of the

volatility smile.168

Market liquidity is an additional facet of market friction used in literature to explain

volatility smiles. As option contracts with high implied volatilities are often less

liquid, it is reasonable to conclude that the implied volatility patterns are caused

by liquidity effects. As mentioned above, some authors suggest that the pronounced

volatility smiles that have occurred since the 1987 stock crash are induced by excess

demand for OTM puts. The excess demand for OTM puts is driven by (institutional)

investors’ need for portfolio insurance.169 Because investors are faced with position

limits and hedging costs, the supply of OTM puts is restricted, and as a result the

excess demand cannot be satisfied. This leads to higher option prices and therefore

implied volatilities.

This explanation is supported by the results of Bollen and Whaley (2004), who in-

vestigate the relationship between net buying pressure and the shape of the volatility

smile.170 They analyse S&P 500 index options data from June 1988 to December

2000 and confirm that implied volatility changes depend on the net buying pres-

sure from public order flows. In particular, they report that the shape of the S&P

500 index smile can be related to the buying pressure for index puts. Although

arbitrage profits should induce traders to sell OTM put options and replicate them

synthetically, Isaenko (2007) argues that short-sale constraints on trading stocks and

derivatives hamper this mechanism. Further, the results of Foresi and Wu (2005)

support the portfolio insurance argument as an explanation for volatility smiles.

They report that downside movements in major equity indices appear to be highly

globally correlated due to worldwide market linkages. As a consequence, this global

168They measure transaction costs based on the bid-ask spread.
169See for instance Boyle and Vorst (1992), p. 285.
170They define net buying pressure as the difference between the number of buyer-motivated con-

tracts and the number of seller-motivated contracts that are traded each day. A buyer-motivated
(seller-motivated) trade is characterised by an execution price above (below) the prevailing
bid/ask midpoint.
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downside risk cannot be easily diversified. Thus, the price of OTM puts that protect

against downside movements contains a corresponding risk premium.171

The relationship between volatility smiles and market liquidity is also addressed in

Grossman and Zhou (1996), Platen and Schweizer (1998), and Frey and Patie (2002).

In particular, these studies suggest that volatility smiles are related to feedback ef-

fects from dynamic hedging strategies. In an equilibrium framework, Grossman and

Zhou (1996) assume that the demand for portfolio insurance is exogenously driven

by a group of investors. In the context of their model, they explain why OTM

put options exhibit higher implied volatilities than ITM puts. They conclude that

volatility smiles reflect the equilibrium price impact of portfolio insurance. Platen

and Schweizer (1998) develop a model in which the stock price incorporates the

(demand) effect of hedging strategies into account. By using this model they pro-

vide numerical evidence that implied volatilities are due to feedback effects from

hedging strategies. Frey and Patie (2002) criticise the approach of Platen and

Schweizer (1998), as the latter employ an implausible model parameterisation to

explain volatility smiles. However, in a related model, Frey and Patie (2002) pro-

pose that the volatility smile pattern is induced by market illiquidity. In particular,

based on their model, they demonstrate that the lack of market liquidity due to a

large market downturn leads to volatility skews. The assumption that large down-

ward or upward asset price movements reduce the level of market liquidity is quite

plausible.172 In the next Section, the effect of information asymmetry on implied

volatility is described.

Information Asymmetry

Prior research by Back (1993) and Nandi (2000) established a relationship between

information quality and option prices.173 Back (1993) develops an equilibrium model

in which an informed agent can trade an option and the underlying asset, e.g.,

171See Foresi and Wu (2005), p. 11.
172See Fengler (2004), p. 45.
173See also Easley et al. (1998) and Shefrin (1999).
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a stock. As option trades convey different information than stock trades in this

model, issuing options affects the underlying stock price. Due to the change in the

information flow, the volatility of the underlying assets becomes stochastic.174 To

ensure that trading takes place in both markets, he introduces so-called noise or

liquidity traders that trade for non-informational reasons and thereby this provide

liquidity to the market. In particular, he assumes that liquidity trades in the option

and stock markets are not fully correlated. Based on Back’s (1992) finding that the

volatility pattern of the underlying asset depends on the structure of the liquidity

trades, he suggests that the option price (or implied volatility) is influenced by the

pattern of liquidity trades in the option.175

Nandi (2000) proposes a multiperiod model of asymmetric information that postu-

lates a relationship between the level and curvature of the volatility smile and net

options order flows. This model assumes that an agent has private information on

the future volatility of the asset price but does not know the future level of the asset

price. In particular, he finds that higher net options order flows lead to higher levels

of implied volatility, which reflects an increasing pricing bias in the BS model. In

addition, the options order flow also affects the curvature of the smile. The model’s

mechanics can be described as follows: because options order flows provide infor-

mation on future volatility, increasing net options order flows reflect an increase in

future volatility. Thus, the market maker who tracks options order flows to obtain

information on future volatility posts higher option prices to avoid losses from trad-

ing with informed investors. This induces a greater degree of mispricing in the BS

model, as the BS model does not take order flows into account.176

Buraschi and Jiltsov (2006) and Vanden (2008) extend the analysis of the relation-

ship between information quality and option prices. They investigate how implied

volatilities are related to changes in information quality. While Buraschi and Jiltsov

(2006) consider the impact of public information, Vanden (2008) analyses how costly

174See Back (1993), pp. 450-454 for a detailed description.
175See ibid., pp. 435-438.
176See Nandi (2000), pp. 216-217.
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private information can affect option prices. Buraschi and Jiltsov (2006) suggest

that heterogeneous information can explain the volatility smile. They develop an

equilibrium model in which they assume that agents are rational, have identical

preferences and initial wealth, but incomplete and heterogeneous information. In

the model, the agents are forced to form expectations regarding future dividends,

as Buraschi and Jiltsov (2006) assume that the dividend growth rate is stochastic.

The heterogeneous information assumption implies that the agents select different

optimal portfolios due to their different expectations. In equilibrium, the agents

who expected low dividend growth rates ask for portfolio insurance in form of OTM

puts from the agents with higher dividend growth rate estimates. In contrast, agents

with high dividend growth rate estimates demand OTM call options from the other

agents. Because the agents are risk averse, their marginal utility is higher (lower) in

bad (good) states of the economy. It follows that the cost of an OTM put exceeds

the cost of an OTM call option, and thus a volatility smile occurs.177

Vanden (2008) proposes a multiperiod model in which agents can purchase pri-

vate information regarding the underlying asset during multiple trading rounds. He

shows that the change of information quality is the main driver of the risk-neutral

distribution of asset returns. Therefore, variations in information quality and infor-

mation acquisition costs over time affect the dynamics of implied volatilities. This

provides an explanation for the puzzle wherein option prices occasionally change

even though the price of the underlying asset remains constant.178 Furthermore, he

argues that shifts in information quality can also explain changes in the volatility

term structure that have previously been attributed to market overreaction (e.g.,

Stein (1989)). Moreover, he suggests that investor overconfidence drives the shape

and dynamics of the volatility term structure.179

177See Buraschi and Jiltsov (2006), pp. 2841-2846.
178See Vanden (2008), p. 2664.
179See ibid., p. 2637.
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2.6.4. Conclusion

While the literature on potential explanatory approaches is enormous, no solution

appears sufficient to fully explain the implied volatility patterns.180 Bertsch (2008)

notes that the explanation could differ across markets. For instance, relative to

individual stocks, it is less likely that a stock index smile is induced by jumps, as a

stock index represents an aggregation of individual stocks that generates a smoothing

effect due to averaging.181,182 Moreover, it is reasonable to imagine that a specific

smile/skew pattern could be explained by a combination of several approaches. As

it is difficult to separate the effects of different explanatory factors, this will present

a challenge for future research.183

180See Jackwerth (2004), p. 8.
181See Saunders (1997), p. 66.
182Branger and Schlag (2004) investigate the effect of individual stock characteristics on the index

smile. They demonstrate that the steepness of the volatility smile can be fully explained by the
dependence structure of the stocks that constitute the index.

183See Fengler (2004), p. 44.
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3. Analysis of DAX Implied

Volatilities

Having presented the BS model and research findings regarding its pricing biases,

the aim of this Chapter is to analyse mispricing in DAX options based on the BS

model. Depending on the results, it will be clear whether and to what extent the BS

model represents an accurate model of DAX option prices. If the BS model works

well, this will provide an argument in favour of the use of BS implied volatilities as

volatility forecasts. If the BS model performs poorly, the theoretical basis for the

predictive ability of BS implied volatilities would be reduced to a heuristic rule.

To analyse BS implied volatilities across moneyness and maturity, it is necessary to

construct a smooth IVS on a prespecified grid. Smoothing the IVS ensures that one

only receives a single implied volatility for each given strike and maturity combi-

nation. Further, the effects of recording errors are reduced. A smooth IVS can be

obtained by parametric or non-parametric approaches.1 The basic concepts of the

two approaches are presented in the next Section. Thereafter, the stylised facts of the

DAX IVS that reflects the mispricing behaviour of the BS model are documented.

1See Fengler (2004), p. 97.
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3.1. Methods for Smoothing the IVS

3.1.1. Introduction

Several smoothing methods have been developed for implied volatilities to derive the

risk-neutral distribution from option prices. If the risk-neutral distribution of the

underlying asset price is known, the price of any derivative written on the asset with

the same time to maturity can be determined. Breeden and Litzenberger (1978)

demonstrate that the risk-neutral distribution can be recovered from option prices.2

Calculating the risk-neutral distribution based on Breeden and Litzenberger’s (1978)

result requires that call options with the same maturity and a continuum of strike

prices from zero to infinity are available.3 However, in practice, option contracts only

exist at discretely spaced strike levels. Therefore, several inter- and extrapolation

techniques have been suggested to complete the call price range (or equivalently

implied volatilities).4 The smoothing methods described below are taken from these

fields of research.

Fengler (2004) categorises the smoothing techniques into parametric and non-para-

metric methods. Parametric approaches often employ polynomial specifications to fit

the IVS. Some selected specifications, such as Shimko (1993) and Dumas et al. (1998)

are presented in this Section. In addition, cubic splines, which provide greater flex-

ibility, are introduced (e.g., Campa et al. (1997) and Hafner and Wallmeier (2000)).

While parametric methods require the specification of a certain regression equation,

non-parametric methods are based on locally averaging the data. Of the class of

non-parametric methods, the Nadaraya-Watson estimator and higher order local

polynomial smoothing, which are often applied to estimate the IVS, are presented

below.5

2In particular, the second partial derivative of the call option pricing formula is used to derive the
risk-neutral distribution.

3See Saunders (1997), p. 74.
4See Jackwerth (2004).
5In addition, Fengler (2004) proposes a semiparametric factor model to estimate the IVS that takes
the degenerated string structure of the IVS data into account.
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3.1.2. Parametric Methods

Regression models have been widely used to fit the implied volatility function. Nu-

merous specifications have been suggested in the literature. This Section provides

an overview of selected regression equations that haven been applied in the previous

empirical literature.6

Shimko (1993) developed the first approach to smooth implied volatilities via a

polynomial regression equation. He suggests a simple quadratic polynomial of the

form

σ(K) = α0 + α1K + α2K
2 (3.1)

to fit the implied volatilities.7 Brunner and Hafner (2003) apply Shimko’s (1993)

method to DAX option contracts traded on the DTB/Eurex in the year 2000 and find

that the method provides a good fit.8 In an earlier study, Ripper and Günzel (1997)

regress DAX implied volatilities on moneyness and squared moneyness for different

maturities. Their sample comprises settlement prices for DAX options from 1995 to

1996. They report that the model parameters are significant and the coefficient of

determination is high.9

Dumas et al. (1998) extend Shimko’s (1993) approach by adding maturity and an

interactive term to the quadratic polynomial. Dumas et al. (1998) examine different

6As some of the regression models were introduced in Section 2.5.3, they are only briefly addressed
in this Section.

7A complete description of Shimko’s (1993) method to extract the risk-neutral distribution from
option prices or implied volatilities can be found in Walter (2008), p. 25.

8See Brunner and Hafner (2003), p. 95.
9See Ripper and Günzel (1997), p. 474.
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structural forms of the volatility function and find that the following models deliver

the best results10:

Model 1 : σ = α0 + α1K + α2K
2 (3.2)

Model 2 : σ = α0 + α1K + α2K
2 + α3T + α5KT (3.3)

Model 3 : σ = α0 + α1K + α2K
2 + α3T + α4T

2 + α5KT. (3.4)

Moreover, Tompkins (2001), Äıt-Sahalia (2002), and Brunner and Hafner (2003)

use third-order polynomials to estimate the implied volatility function. Brunner

and Hafner (2003) compare the performance of Shimko’s (1993) quadratic model to

that of a cubic form for DAX options. They find that the cubic form is better suited

to model DAX implied volatilities.11 The following table presents, selected empirical

studies using the above smoothing technique. The table also contains studies that

employ spline methods, as spline-based methods have some desirable characteristics

that are described below.

10These volatility functions belong to an option pricing model suggested by Dumas et al. (1998).
They are determined by minimising the sum of squared errors between model option prices and
actual, observed option prices.

11See Brunner and Hafner (2003), p. 95.
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study volatility function data

Ncube
(1996)

ln(σ) = β0 + β1T + β2T
2 + β3K + β4D + ε

where D = 1 for puts and D = 0 for calls
daily data, FTSE 100 in-
dex options, Nov 1989 to
Mar 1990

Ripper and σ = β0 + β1M + β2M
2 + ε daily data, DAX index

Günzel options, Jan 1995 to
(1997) Dec 1996
Pena et al. σ = β0 + ε transaction data,
(1999) σ = β0 + β1M + ε IBEX35 index options,

σ = β0 + β1M + β2M
2 + ε Jan 1994 to Apr 1996

σ = β0 + β1U + β2D
2 + ε

σ = β0 + β1U + β2M
2 + ε

σ̂ = β0 + β1U + β2M
2 + β3D + ε

where D = 0 if K < 1 and D = K if K ≥ 1,
U = K ifK < 1 and U = 0 ifK ≥ 1.

Hafner and σ = β0+β1M+β2M
2+Dγ2(1−2M+M2)+ε transaction data, DAX

Wallmeier where D = 1 for M > 1 and D = 0 for M ≤ 1 index options, Jan 1995 to
(2000) Dec 1999

Brunner and σ = β0 + β1M + β2M
2 +Dβ3M

3 + β4

√
T+ transaction data, DAX

Hafner β5M
√
T + ε where D = 1 for M > 0 and index options, Jan to

(2003) D = 0 for M ≤ 0 Dec 2000
Christoffersen σ = β0+β1K+β2K

2+β3T+β4T
2+β5KT+ε daily data, S&P 500 index

and Jacobs call options, Jun 1988 to
(2004) May 1991
Hafner
(2004)

σ = β0 + β1M + β2M
2 + β3 ln(1 + T ) +

β4M ln(1 + T ) + β5M
2 ln(1 + T ) + ε

transaction data, DAX in-
dex options, Jan 1995 to
Dec 2002

Gonçalves
and Guidolin
(2006)

ln(σ) = β0 + β1M + β2M
2 + β3T + β4MT + ε daily data, S&P500 index

options, Jan 1992 to Jun
1996

Berkowitz
(2010)

σ = β0+β1K+β2T+β3K
2+β4T

2+β5KT+ε daily data, S&P 100 index
options, different samples

Note: Due to readability it is refrained from using the index IV in σIV for implied volatility.

Table 3.1.: Studies based on parametric volatility functions

Despite its use in several studies, Brunner and Hafner (2003) argue that a simple

quadratic polynomial cannot adequately capture the structure of implied volatilities.

However, Jackwerth (2004) notes that using higher order polynomials can introduce

oscillatory effects. Therefore, he recommends employing splines, as they are able

to produce smooth implied volatility functions and avoid oscillatory behaviour.12

Additionally, Campa et al. (1997) argue that splines also provide greater flexibility

to match the shape of the implied volatility function. This ability is described

below.

12To produce smooth, risk-neutral probability distributions, splines need to be of an order higher
than three. See Jackwerth (2004), p. 24.
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Splines consist of polynomial segments that are allowed to change their shape over

each segment. The polynomial segments are spliced at the knot points under certain

conditions. For instance, cubic splines are based on cubic segments that are matched

together at the knots under the condition that the function is twice differentiable at

these points.13 The cubic spline function for a given set of knot points {(xi, σi)}ni=1

is

CSj(x) = σj + βj(x− xj) + γj(x− xj)
2 + δj(x− xj)

3 (3.5)

where CSj(x) represents a smooth implied volatility function of x (e.g., a strike price)

that is twice differentiable at the knots and defined for the subinterval [xj , xj+1].

Natural cubic splines are obtained under the boundary conditions

CS ′′(x1) = · · · = CS ′′(xn) = 0 (3.6)

and clamped cubic splines require

CS ′(x1) = f ′(x1), . . . , CS
′(xn) = f ′(xn) (3.7)

where σi = f(xi) for a given set of points xi (i = 1, ..., n).14 Jackwerth (2004)

highlights that a careful determination of the knots is necessary. While the use of

additional knots improves the fit, an excessive number of knots will lead to overfitting

and instable results.15

In the literature, splines have been applied by Bates (1991), Campa et al. (1997),

Campa et al. (1998), Bliss and Panigirtzoglou (2002), Andersen and Wagener (2002),

Hafner and Wallmeier (2000), Jiang and Tian (2005), and Fengler (2009), among

others, to options on stock indices, stock index futures, exchange rates, and interest

rate futures.16 Bates (1991) fits constrained cubic splines to the ratio of the options

price to the futures price as a function of the ratio of strike price to the futures

13See Andersen and Wagener (2002), p. 16.
14See Rouah and Vainberg (2007), pp. 28-31 for illustrations.
15See Jackwerth (2004), p. 24.
16To ensure the absence of arbitrage in the IVS, Fengler (2009) proposes an approach for arbitrage-
free smoothing of implied volatilities.
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price. By estimating separate cubic splines for calls and puts on S&P 500 futures

for the period from 1985 to 1987, he reports an excellent fit before the 1987 crash,

but enormous standard errors after the crash.17 Whereas Bates (1991) applies cubic

splines to the ratio of option prices and futures prices, Campa et al. (1997) fit splines

to implied volatilities. Their sample contains OTC options data on eight European

exchange rates from April 1996 to December 1996. They report that splines are able

to produce asymmetrical smiles.18 The contribution of Campa et al. (1997) lies in

the modification of Shimko’s (1993) method to derive the risk-neutral distribution,

as they replace quadratic polynomials with cubic splines.

In a subsequent paper, Campa et al. (1998) apply a natural cubic spline to liquid

OTC currency options on dollar-mark, dollar-yen, and several European cross rates

from April 1996 to March 1997. They find that it successfully replicates the volatility

smile.19 In addition to the advantages of the approach, Campa et al. (1998) men-

tion that the extrapolated implied volatilities outside the range of the observed strike

prices can increase dramatically when splines are used.20 Bliss and Panigirtzoglou

(2002) also use a natural spline method but assume that implied volatility is a func-

tion of the options’ deltas. They consider FTSE 100 index options and short sterling

futures options during 1997. They find that natural splines provide an excellent fit

to the data. Andersen and Wagener (2002) investigate Euribor futures option prices

from March 2001 to June 2001. They propose higher order polynomials with sparse

knot sets, as cubic splines can lead to non-differentiable risk-neutral distributions.21

While the previous studies implement spline methods to derive the risk-neutral dis-

tribution from option prices (or implied volatilities), the primary objective of the

following papers is to smooth implied volatilities. The smoothed implied volatilities

17See Bates (1991), p. 1020.
18The robustness of their results has been questioned, as they use five observations to derive the
smile.

19See Campa et al. (1998), p. 131.
20See ibid., p. 128.
21Andersen and Wagener (2002) argue that this is an undesirable feature that should be avoided,
as it is induced by the method selected to extract the risk-neutral distribution. See Andersen
and Wagener (2002), p. 4.
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are used to calculate model-free volatility (Jiang and Tian (2005)), local volatility

Fengler (2009)), or to directly analyse the IVS (Hafner and Wallmeier (2000)).

Jiang and Tian (2005) is closely related to this study. To calculate model-free implied

volatility, they assume that option prices from a continuous strike price range are

available. As this is not realistic in practice, Jiang and Tian (2005) apply cubic

splines to interpolate between the available strike prices of S&P 500 index options

from June 1988 to December 1994. While the above studies on stock index options

consider foreign stock markets, Hafner and Wallmeier (2000) and Fengler (2009) use

DAX options data, which is of particular interest for this study.

Hafner and Wallmeier (2000) analyse DAX implied volatilities for the period from

1995 to 199922 and apply a spline function of the form

σ(M,D) = β0 + β1M + β2M
2 +D(γ0 + γ1M + γ2M

2) + ε (3.8)

where D is a dummy variable with

D =




0, M ≤ 1

1, M > 1.

(3.9)

To control for heteroscedasticity, they estimate the regression equation using a

weighted least squares estimator. To guarantee a continuous, differentiable, and

smooth function, they impose certain additional restrictions.23 They find that the

above model is able to capture the asymmetric strike pattern of DAX implied volatili-

ties. In addition, they report that the regression explains, on average, approximately

95% of the cross-sectional variation in implied volatilities.24

Similar to Bates (1991), Fengler (2009) suggests an approach that uses natural cubic

splines to smooth call prices for a single time-to-maturity due to their computational

22They consider DAX options with a (hypothetical) remaining lifetime of 45 days.
23See Hafner and Wallmeier (2000), pp. 13-17.
24See ibid., pp. 31-33.
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advantages. In particular, his approach ensures that the estimated IVS is arbitrage-

free.25 However, while parametric methods are used in several studies, Fengler (2004)

argues that they seem to exhibit weaknesses when capturing the typical features of

the IVS. Therefore, nonparametric methods have recently been suggested to over-

come these shortcomings.26 They are presented in the next Section.

3.1.3. Nonparametric Methods

Motivation

Economic theory often suggests the direction of influence between two related vari-

ables, but does not specify the functional form of the relationship. Parametric

methods, such as the above described regression models, impose assumptions re-

garding the form of the functional relationship. In particular, they assume a specific

model for the conditional expectation. In this manner, parametric models make it

possible to extrapolate the data or to test restrictions that are postulated by theory.

However, the advantages of parametric models come at the cost of specification er-

rors, which induce inconsistent estimates. Further, hypothesis tests of the model are

joint tests of the theory and the assumed functional form of the relationship. For

this reason, nonparametric methods have been proposed to overcome these draw-

backs.27 Recently, nonparametric methods have been applied by Äıt-Sahalia and

Lo (1998), Rosenberg (1999), Cont and da Fonseca (2002), Fengler et al. (2003),

Detlefsen (2007), Benko et al. (2009), and Birke and Pilz (2009).

Nonparametric methods make it possible to examine how the dependent variable

reacts to changes in the independent variables without assuming a particular model

for the conditional expectation. In the following, the basic concept of the stan-

dard Nadaraya-Watson kernel regression estimator is described, which has been

25He notes that arbitrage violations can lead to negative transition probabilities, which induce
pricing biases.

26See Fengler (2004), p. 97.
27See Aı̈t-Sahalia and Duarte (2003), p. 9.
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used in numerous studies to estimate the IVS. Thereafter, a more general family,

local polynomial kernel estimators, which nests the Nadaraya-Watson estimator, are

presented.

The Nadaraya-Watson Estimator

To approximate the unknown functional relationshipm between an explanatory vari-

able X (e.g., moneyness and/or maturity) and a response variable Y (e.g., implied

volatility), the model

Y = m(X) + ε (3.10)

is assumed, where X is stochastic, the strict exogeneity assumption holds, and ε is

i.i.d. with zero expectation and variance σ2(X). Therefore, the conditional expec-

tation of Y given X = x is

E[Y |X = x] = m(x) =

∫
yf(y, x)dy

fx(x)
(3.11)

where f(y, x) denotes the joint density of (Y,X) and fx(x) represents the marginal

density of X . Thus, the unknown regression function can be estimated using the

kernel density estimates of the joint and marginal densities. The resulting estimator

was independently developed by Nadaraya (1964) and Watson (1964) and has the

formula

m̂(x) =
1

n

n∑

i=1

Kh(x− xi)
1
n

∑n
j=1Kh(x− xj)

yi =
1

n

n∑

i=1

wi,n(x)yi (3.12)

where Kh(·) is a kernel function that weights the data.28

Equation (3.12) shows that kernel smoothing is based on the notion of locally aver-

aging the data.29 The response variable yi is locally averaged with the weights

wi,n(x) =
Kh(x− xi)

1
n

∑n
j=1Kh(x− xj)

. (3.13)

28See Schnellen (2007), pp. 10-11.
29See Jackwerth (2004), p. 22.
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Different kernel functions have been proposed to implement different weighting

schemes. Usually, the kernel functions are continuous, positive, bounded, symmet-

ric and integrate to one. Typical kernel functions are the Gaussian kernel, which is

given by

Kh(u) =
1√
2π
e−u2/2, (3.14)

the Epanechnikov kernel

Kh(u) =
3

4
(1− u2) 1(|u| ≤ 1), (3.15)

and the quartic kernel

Kh(u) =
15

16
(1− u2)2 1(|u| ≤ 1).30 (3.16)

The estimation of the IVS requires a multidimensional kernel function. A multidi-

mensional kernel can be constructed by taking the products of multiple univariate

kernels

Kh(u1, . . . , ud) =

d∏

j=1

K
(j)
h (uj).

31 (3.17)

For instance, Äıt-Sahalia and Lo (2000), Härdle et al. (2002), and Cont and da Fon-

seca (2002) use a two-dimensional Nadaraya-Watson estimator that takes the form

σ̂t(M,T ) =

∑n
i=1Kh(M −Mi, T − Ti)σt(Mi, Ti)∑n

i=1Kh(M −Mi, T − Ti)
(3.18)

where

Kh(x, y) = (2π)−1 exp(−x2/2h1) exp(−y2/2h2) (3.19)

denotes a Gaussian kernel with bandwidth parameters h1 and h2.
32 Alternatively,

Fengler et al. (2003) apply a two-dimensional Nadaraya Watson estimator with a

quartic kernel.

30See Fengler (2004), pp. 99-100.
31See ibid., p. 100.
32See Cont and da Fonseca (2002), p. 49.
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While the coefficients of a correctly specified parametric model are unbiased, non-

parametric estimators are biased. The bias is defined as Bias{m̂(x)} = E{m̂(x) −
m(x)}. Asymptotically, the bias of the Nadaraya-Watson estimator is

Bias{m̂(x)} =
h2

2
µ2(Kh)

{
m′′(x) + 2

m′(x)f ′
x(x)

fx(x)

}
+O(n−1h−1) + o(h2) (3.20)

with µ2(Kh) =
∫
u2Kh(u)du and the variance is

Var{m̂(x)} =
1

nh

σ2(x)

fx(x)

∫
K2

h(u)du+O(n−1h−1). (3.21)

Equations (3.20) and (3.21) show that a reduction in the bandwidth h leads to

decreasing bias, but increasing variance. Therefore, determining the optimal band-

width represents a trade-off between estimation bias and variance.33,34

Bandwidth selection is an important step in nonparametric estimation. Bandwidth

selection rules are typically based on distance measures such as the mean integrated

squared error. The calculation of distance measures is often not straightforward,

since they are based on unknown quantities. In practice, cross validation and pe-

nalising techniques have been developed to replace or to estimate the unknown

quantities.35

Fengler et al. (2003) suggest to determine the optimal bandwidths by minimising

the penalisation function

pf(h1, h2) = n−1

n∑

i=1

{σi − σ̂h1,h2(Mi, Ti)
2 × Ξ(n−1h−1

1 h−1
2 Kh1(0)Kh2(0))} (3.22)

where Ξ(u) = exp(2u) denotes the Akaike function.36 Based on this approach,

they calculate the optimal bandwidths for each day in their sample. According

to Härdle (1990) alternative penalising functions asymptotically deliver the same

33Furthermore, the Nadaraya-Watson estimator is consistent, provided that certain regularity con-
ditions are fulfilled. See Fengler (2004), p. 101.

34See Schnellen (2007), pp. 11-12.
35See Fengler (2004), pp. 104-106.
36See Fengler et al. (2003), p. 198.
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optimal smoothing parameters, as they share the same first order expansion. In

addition, Härdle (1990) demonstrates that the above approach is well suited for

bandwidths selection.37

The next Section introduces the family of local polynomial kernel estimators, which

includes the Nadaraya-Watson estimator as a special case.

Local Polynomial Smoothing

While the Nadaraya-Watson estimator locally fits a constant to the data, local poly-

nomial kernel estimators extend this approach to fitting polynomials in the local

neighbourhood. The principle of local polynomial smoothing is to locally approxi-

mate the unknown function m using a Taylor series of order p.38 The local polyno-

mial can be estimated by solving the quadratic optimisation problem

min
β∈Rp+1

n∑

i=1

{yi − β0 − β1(x− xi)− . . .− βp(x− xi)
p}2Kh(x− xi) (3.23)

where β = (β0, . . . , βp)
⊤. The solution of this optimisation problem is given by

the usual weighted least squares estimator, where the weighting matrix is equal to

Kh(x− xi).
39

In practice, local polynomials of lower order (typically p is 0,1,2, or 3) have been

used.40 Ruppert and Wand (1994) demonstrate that the order of local polynomial

estimators should be odd, as they outperform even order polynomials.41 In particu-

lar, the local linear estimator obtained for order p = 1 is frequently applied, as its

asymptotic bias disappears for a linear function m.42 Local polynomial smoothing

37See Härdle (1990), pp. 165-173.
38It is assumed that the function m has continuous derivatives up to order p.
39See Schnellen (2007), p. 10.
40See Hurvich et al. (1998), p. 272.
41See Ruppert and Wand (1994).
42The asymptotic bias of the local linear estimator is given by

Bias{m̂(x)} = h2

2 µ2(K)m′′(x) + o(h2). See Fengler (2004), p. 103.
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is, for instance, used by Äıt-Sahalia and Duarte (2003) and Corradi et al. (2012).43,44

Having described the parametric and nonparametric methods suggested for smooth-

ing implied volatilities, the next Section compares the two approaches.

3.1.4. Comparison of Parametric and Nonparametric Smoothing

Methods

The results of the empirical studies regarding the stylised facts of implied volatilities

presented in Chapter 2 show that the IVS is not flat across moneyness and matu-

rity. Moreover, the findings provide strong evidence that the IVS changes over time.

Therefore, functional flexibility is necessary to account for these features. In par-

ticular, this is important when the sample period contains turbulent market periods

(e.g., the financial crisis 2008), which may change economic structures.

The recommendations provided in the literature regarding which smoothing method

delivers the most appropriate depiction of the IVS are mixed. Walter (2008) argues

that most smoothing methods deliver similar results with respect to capturing the

characteristic features of the IVS. However, as polynomial smoothing is stable, easy

to implement and allows for parsimonious modelling (e.g., by quadratic polynomial

smoothing), he prefers this parametric approach.45 In contrast, Fengler (2004) ap-

plies different nonparametric estimators, such as the Nadaraya-Watson estimator

and local polynomial smoothing, to DAX options data and suggests that local poly-

nomial smoothing is superior. His perspective of view is that the Nadaraya-Watson

estimator can lead to biases at the ends of the implied volatility function because

of the unequal distribution of implied volatilities. According to Fengler (2004), this

effect does not occur in the same manner if local polynomial smoothing is used.46

43In addition, semiparametric methods, which combine parametric and nonparametric terms, have
also been proposed. Based on a general specification test, Aı̈t-Sahalia et al. (2001) find that a
semiparametric model provides a statistically satisfactory description of S&P 500 implied volatil-
ities. See Aı̈t-Sahalia et al. (2001), pp. 385-389.

44Schönbucher (1999) and Ledoit et al. (2002) derive such conditions for a single implied volatility
and an implied volatility surface.

45See Walter (2008), p. 32.
46See Fengler (2004), p. 123.
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As no method is clearly preferred in the literature, the choice of smoothing method

in this study is based on the following argumentation.

The nonparametric approach is employed in this study to smooth DAX implied

volatilities, as it provides more flexibility than parametric methods. In addition,

there is no financial model capable of fully explaining the observed pricing biases

that can be used as reference for a parametric model. As DAX options and futures

are liquid instruments, a large sample size is available, which is a prerequisite for

the use of nonparametric methods.47 Of the class of nonparametric estimators, the

Nadaraya-Watson estimator is selected in this study.48 While local polynomial esti-

mators should generally be preferred to the Nadaraya-Watson estimator,49 I argue,

in line with Äıt-Sahalia et al. (2001), that the existing sample size in this study is

sufficient to deliver similar results.50 Furthermore, the Nadaraya-Watson estimator

has the advantage that it can be easily extended to multidimensional smoothing

tasks, which is necessary to smooth the IVS across moneyness and maturity.51

After the technical introduction of the Nadaraya-Watson estimator, the next Section

contains a description of the underlying data and their preparation. Moreover, the

calculation of arbitrage-free DAX implied volatilities based on the BS model and

the application of the Nadaraya-Watson estimator to construct the DAX IVS are

presented.

47See Garcia et al. (2010), p. 531.
48Following Fengler et al. (2003) the Nadaraya-Watson estimator with a quartic kernel is used.
Note, that the smoothing results are usually more influenced by the selection of the bandwidth
parameters than the choice of the kernel. See Behr (2005), p. 61.

49See the previous Section.
50See Aı̈t-Sahalia et al. (2001), p. 75.
51Note, that Horn (2012) also applies the Nadaraya-Watson estimator to smooth DAX implied
volatilities.
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3.2. Introduction to the Data

3.2.1. Market Structure and Products of the EUREX

The European Exchange (EUREX) was established in September 1998 by the merger

of the DTB and the Swiss Options and Financial Futures Exchange (SOFFEX). In

2013, with 2,191 billion traded contracts, the EUREX was the third largest deriva-

tives exchange in the world.52 The EUREX provides a broad range of products,

such as derivatives on interest rates, equities, equity indices, exchange-traded-funds,

volatility indices, and credit indices. The most frequently traded options on the

EUREX in the year 2012 were options on the EURO STOXX 50 index, at nearly

280.6 million contracts. The second most frequently traded options in 2012 were

Deutscher Aktienindex (DAX) options at approximately 51.6 million contracts.53

The underlying asset for DAX options, the DAX, was introduced on June 23rd,

1988 and contains the 30 largest and most actively traded German stocks. The

base date for the index is December 30th, 1987 where the starting point of the

index was set at 1000 points. The stocks are listed in the Prime Standard of the

Frankfurter Wertpapierbörse. The DAX is constructed as a price index and a capital-

weighted performance index where dividends are reinvested. The underlying stock

price index for DAX options and DAX futures is the DAX performance index. The

index is updated every second using prices from the electronic trading system of

the Deutsche Börse AG for the spot market that is called Exchange Electronic

Trading (Xetra).54

52Only the Chicago Mercantile Exchange Group and the Intercontinental Exchange Group reported
a higher contract volume. The Futures Industry Association provides the ranking. It is based on
the number of futures and options traded and/or cleared in the markets. See Acworth (2014),
p. 22.

53See EUREX (2013), pp. 65-67.
54See Hafner (2004), pp. 73-74



3.2. Introduction to the Data 73

Trading on the EUREX takes place on a completely electronic trading and clearing

platform.55 The trading phase starts at 8:50 a.m. and ends at 5:30 p.m.56 Options

on the DAX are European-style options that can only be exercised on the third

Friday of the contract month or on the day before in case of holidays. DAX options

are always settled in cash and payable on the first exchange day after the final

settlement day. The minimum tick size is 0.1 index points. As DAX options have

a contract value of 5 EUR per index point, this corresponds to 0.50 EUR. DAX

options are available for the three nearest calendar months, the next three months

of the quarterly cycle March-June-September-December, the following four months

of the semiannual cycle June-December, and the next two December months of the

following two years.57 The minimum number of exercise prices depends on maturity.

For DAX options with maturities up to 24 months, a minimum set of seven different

strike prices is provided whereby three ITM strikes, one ATM strike, and three OTM

strikes are available. At least five strike prices can be traded for DAX options that

expire in more than 24 months. The minimum sets of strike prices are prescribed for

the point of issuance. If the DAX moves such that the minimum set of strike prices

is no longer available, new strike prices for existing options series are introduced by

the EUREX. In addition, the strike price interval varies with maturity. The strike

price interval for options with maturities of up to 12 months is 50 index points, 100

index points for maturities from 13 to 24 months, and 200 index points for maturities

greater than 24 months.

In addition to DAX options data, this study also uses DAX futures data. After

EURO STOXX 50 index futures, DAX futures are the second most heavily traded

futures on the EUREX. The contract value of a DAX future is 25 EUR per index

point, and the minimum price change is 0.5 index points, which reflects a value

of 12.50 EUR. The contract is available for the three nearest quarterly months of

the cycle March-June-September-December. As with DAX options, DAX futures

55The following details regarding the contract specifications and trading conditions are taken from
EUREX (2011) and EUREX (2012).

56In addition, pre-trading begins at 7:30 a.m., and the restricted trading phase ends at 8:30 p.m.
57In April 2006 the EUREX introduced DAX options with weekly expiration dates.
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expire on the third Friday of the contract month and the (final) cash settlement is

determined on the last trading day.

3.2.2. Description and Preparation of the Data

The data set used in this empirical analysis contains all recorded transactions of DAX

options and DAX futures traded on the EUREX from January 2002 to December

2009.58 For each traded contract, the sample comprises its type, price, trading

volume, time of settlement, maturity, and strike price. The total sample contains

2034 trading days and 6,904,933 transactions.

Figure 3.1 presents the number of options transactions across different maturity

classes. It shows that short-term DAX options are the most liquid options. Further,

option liquidity tends to decrease for options with longer maturities. Approximately

56% of the transactions account for options with maturities of less than 30 calendar

days, and more than 93% have maturities of less than 180 calendar days.

The distribution of options transactions for different moneyness classes is plotted in

Figure 3.2, where moneyness is defined as ln(K/S). It illustrates that option trading

is primarily concentrated on ATM options. Moreover, OTM put (ITM call) options

are more frequently traded than ITM put (OTM call) options. In addition to the

contract data, calculating implied volatilities based on the BS model requires the

price of the underlying asset, here the DAX, and the risk-free interest rate. Thus,

in the following, the derivation of both input factors is described.

The interest rate data used to compute the implied volatilities cover daily series of

the overnight rate Euro OverNight Index Average (EONIA), the Euro InterBank

Offered Rate (EURIBOR) for 1 week and 1, 3, 6, 9, 12 months, and the German

government bond rates for 2, 3, 4, 5, and 6 years.59 To ensure that the maturities

58With one exception, the options and futures data for the sample period from 2002 and 2009 were
provided by the Karlsruher Kapitalmarktdatenbank (KKMDB). The exception is options data
for the year 2008, which are obtained directly from the EUREX.

59The interest rate data are taken from http://www.bundesbank.de/Navigation/DE/Statistiken/
Zeitreihen.
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Figure 3.1.: Transactions of DAX options across maturity from 2002 to 2009
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of the interest rate and the option are matched, each interest rate is linearly inter-

polated from the existing rates enclosing an option’s maturity. In the subsequent

analysis, continuously compounded interest rates are derived from the nominal rates.

Maturity is measured in calendar days and expressed as a fraction of 360 days per

year.

The price of the underlying index, DAX, is calculated based on the price of the

most liquid DAX futures contract on each day.60 During the sample period, the

most actively traded DAX future on all days was the contract with the shortest

maturity. The DAX index level is derived from the current DAX futures price using

the cost-of-carry approach

St = Fte
rT (3.24)

where from now on St represents the DAX index level at time t, Ft the DAX futures

price, r the risk-free interest rate, and T the maturity.61 To ensure that simultaneous

data enter the BS formula, DAX options and futures contracts are matched on each

day and hour on a minute-to-minute basis. Therefore, the DAX index level for an

option traded on certain day, hour, and minute is computed as the average of all

implied St obtained from DAX futures that are traded in the corresponding minute.

Option transactions are deleted from the data set if no DAX future was traded in

the same minute. Implementing a correction scheme for taxes and dividends such

as that in Hafner (2004) is not necessary, as income taxation changed in the year

2000.62 Thus, given the interpolated interest rates and the implied DAX index levels,

all information necessary to calculate the implied volatility for each option contract

based on the BS model exists.63

60Liquidity is measured by the number of traded contracts per day.
61See Hull (2006), p. 118.
62The corresponding Tax Reform Act is the so-called Steuersenkungsgesetz, BGBI. Teil I, Nr. 46.
See Fengler (2004), p. 189.

63As noted above, the bisection method is used to compute the BS implied volatilities.
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3.2.3. Calculation of Arbitrage-Free Implied Volatilities

A necessary step prior to estimating the IVS is to determine whether the option

prices satisfy certain no-arbitrage conditions. Cassese and Guidolin (2006) demon-

strate that option prices that do not meet the arbitrage conditions can influence the

estimation of the IVS and thereby the option pricing mechanism. Thus, many stud-

ies employ a filter to eliminate option prices that are incompatible with the absence

of arbitrage opportunities. Therefore, similar to Hafner (2004), Fengler (2004), and

Gonçalves and Guidolin (2006), among others, this study excludes option prices

from the data set that do not fulfil certain arbitrage conditions.

In the literature, the following two no-arbitrage conditions are typically employed:

the upper and the lower bound of the option’s price. They are defined as follows:64

1. Upper bounds: The purchaser of an American or European call option has the

right to buy one share of a stock at strike price K. Thus, the option price ct

can never exceed the current stock price St. As the holder of an American or

European put option has the right to sell one share of a stock for price K, the

price of the option pt cannot be higher than Ke−rT . The formal conditions

are:

ct ≤ St and pt ≤ Ke−rT

2. Lower bounds: The value of a European call or put option on a non-dividend-

paying asset is never less than its intrinsic value:65

ct ≥ max[St −Ke−rT , 0] and pt ≥ max[Ke−rT − St, 0]

The detection of observations that violate one of the above no-arbitrage conditions

can be affected by the amount of transaction costs. However, transaction costs

are difficult to estimate due to different components, variation across time, and

64In addition to these standard no-arbitrage conditions, Cassese and Guidolin (2006) test for a list
of further rational pricing bounds, e.g., put/call parity, box spreads, maturity spreads, etc. (see
Cassese and Guidolin (2006), p. 155). These more advanced boundaries are not examined, as
they require further information on transaction costs.

65See Hull (2006), pp. 209-211.
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transaction size. Furthermore, they differ among option traders.66 Therefore, they

are not considered.67

In total, 34,709 observations are eliminated from the data set due to violations of the

above arbitrage bounds. Most of these observations that fail to satisfy the boundary

conditions are associated with short-maturity options (with up to 30 days to matu-

rity). Moreover, if options that violate the lower bound condition are considered, the

deviation between the option price and the intrinsic value is often low and less than

the typical bid-ask spread. This supposes that many violations are generated by

transaction costs. In addition, a further 489 observations are excluded because the

implied volatilities computed by the bisection-method are not reasonable. After the

exclusions, the data set contains 6.87 million option contracts, respectively 99.5% of

the total observations.

As the sample period covers volatile market periods, it is reasonable to examine

whether the number of violations of the arbitrage bounds is related to the market

phase. This question is investigated by Evnine and Rudd (1985), who consider

American options on the S&P 100 index traded on the CBOE and options on the

Major Market Index traded on the American Stock Exchange between June 26th

and August 30th, 1984. They find that all call quotations that do not satisfy the

intrinsic-value bound occurred under volatile market conditions in early August

1984. However, while on average, the DAX index options used in this study recorded

more violations for the turbulent years 2002, 2003, and 2008, the arbitrage bounds

were also violated in more quiet market periods. Furthermore, the violations of the

boundaries in the year 2008 were divided nearly evenly between the first and the

second half of the year. Thus, the collapse of Lehman Brothers, which occurred in

the second half of 2008 and represents a major event of the financial crisis, does not

seem to considerably influence the number of arbitrage violations. However, overall

this indicates that the number of violations is driven by market phases.

66See Mittnik and Rieken (2000), p. 264.
67This procedure agrees with Brunner and Hafner (2003), Hafner (2004), and others.
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In addition to the validation of the arbitrage bounds, several data filters are used

to derive the final data sample. In a first step, DAX options with maturities of less

than 5 days are deleted from the data set, as the time premium of these options

is very low and this complicates the calculation of implied volatilities.68 Second,

due to liquidity concerns, DAX options with a remaining time to maturity of more

than 450 days are not considered.69 Third, the high number of intraday transac-

tions, misprints, non-synchronous data, data recording problems, and other market

imperfections could lead to extreme outliers.70 Therefore, referring to the related lit-

erature, option contracts with implied volatilities below 5% and larger than 120% are

deleted.71 Having applied these filters, the sample is reduced to approximately 5.97

million contracts. Based on the above described two-dimensional Nadaraya-Watson

estimator, the IVS is constructed for each day in the sample.72

3.2.4. Volatility Regimes

Before analysing the stylised facts of the DAX IVS, the volatility regimes that oc-

curred during the sample period are discussed. Figure 3.3 depicts the time series

plots of DAX daily closing prices and DAX implied volatilities from 2002 to 2009.

It reveals two extremely volatile market periods at the start (mid-2002 to mid-2003)

and at the end of the sample period (the 2008 financial crisis). During both periods,

the DAX declined dramatically and DAX implied volatility increased considerably.

68In this case, the computation of implied volatilities is highly sensitive to measurement errors.
See Hafner (2004), p. 90.

69This restriction also follows from the following analysis of the IVS, which concentrates on DAX
implied volatilities for maturities of up to 12 months.

70For instance, a transaction that is erroneously entered by an option trader, a mistrade, can be
annulled by the EUREX under certain conditions.

71In comparison to the related literature the implemented filter is mild. For instance, Fengler
(2004) deletes observations with implied volatilities below 4% and above 80% and Herrmann
(1999) only uses implied volatilities below 40%.

72In order to reduce computational burden, the bandwidth in the moneyness dimension, h1, is set
to 0.05 and the bandwidth in the maturity dimension, h2, to 0.25 for each day. Both values
are determined based on visual examination of the resulting observations and are close to the
average optimal bandwidths (h1 = 0.03 and h2 = 0.23).



80 3. Analysis of DAX Implied Volatilities

1st regime 2nd regime 3rd regime

0
.2

.4
.6

.8
 

D
A

X
 im

pl
ie

d 
vo

la
til

ity

20
00

40
00

60
00

80
00

D
A

X
 in

de
x 

le
ve

l
 

02jan2002 17may2003 28sep2004 10feb2006 25jun2007 06nov2008

Time

Source:  EUREX, own calculations.

Note: DAX implied volatilities based on DAX 1M ATM options.

Figure 3.3.: DAX index level and DAX implied volatilities from 2002 to 2009

In the following, certain major events that influenced the largest changes in the DAX

during the sample period are presented.

The extreme decline in the DAX in 2002 was attributed to increasing investor con-

cerns regarding an upcoming recession in the US economy. The further decline in

the DAX index in 2003 was caused by resurfacing doubts concerning the duration of

the Iraq war. Following this turbulent market phase, in March 2003 the DAX began

a long, relatively stable upturn that ended in August 2007 with the beginning of the

financial crisis. In the literature, August 9th, 2007 is often cited as the starting point

of the financial crisis. On this day, the French bank BNP Paribas temporarily halted

redemptions from three investment funds that were invested in subprime mortgage

debt, as a reliable valuation of the funds was no longer possible. Thereafter, financial

institutions worldwide questioned the values of a variety of collaterals. Faced with

growing market uncertainty, financial institutions hoarded cash, inter-bank lending

dried up, and many market players were faced with severe liquidity constraints.

Therefore, the supply of short-term funds diminished and the overnight interest

rates in Europe shot up. To provide liquidity, the European Central Bank decided

to arrange the largest short-term liquidity injection in its nine-year history. Distress
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in the credit market also influenced the stock and derivatives markets, which can

be observed in the increased DAX implied volatilities in August 2007 (see Figure

3.3).

These initial disturbances persisted until the middle to end of September 2007. The

next volatility peak was on January 21st, 2008 when the DAX-Volatilitätsindex

(VDAX) increased to nearly 30% and the DAX lost temporarily more than 7% of

its value. This was the largest loss since September 11th, 2001.73 The financial

crisis peaked between September and November 2008. On September 15th, 2008

Lehman Brothers filed for bankruptcy protection, and in the following days the

VDAX approached the 30% level. On October 16th, 2008, the VDAX reached its

highest level in the past ten years at 74%. The DAX lost more than 40% of its value

between September 15th and November 21st, 2008. At the end of year 2008, the

VDAX level returned to lower levels and fell below 40%.

In the following, different subsamples are defined to analyse the behaviour of the

DAX IVS during different volatility regimes (see also Figure 3.3 for the definitions

of the volatility regimes). Given the above mentioned events and course of DAX

implied volatility over the full sample period, the sample is divided into three sub-

samples. The first sample (or first regime) considers the turbulent market phase at

the beginning of the sample period from January 2nd, 2002, to May 2nd, 2003. As

no clear external event marks the start of the long, stable market upturn from the

spring of 2003 to mid-2007, May 2nd, 2003, when the DAX returned to an index

value of 3000 is selected. The end of the second subsample (or second regime) is

August 8th, 2007, which is the day before the above-cited starting point of the fi-

nancial crisis. Thus, the second subsample comprises the time period from May 5th,

2003, to August 8th, 2007 and the last subsample (third regime) the period from

August 9th, 2007 to December 30th, 2009.

73The explanation of Black Monday is unclear. First, market participants feared an upcoming
US recession, which induced panic in the markets (see Landler and Timmons (2008)). Further,
it become known after a few days that the French bank Société Generale closed out high posi-
tions between January 21st and January 23rd, 2008, which were created by a trader employed
at the company. According to the bank, these positions were fraudulent and led to a loss of
approximately 4.9 billion EUR. See Viscusi and Chassany (2008).
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3.3. Stylised Empirical Facts of the DAX IVS

As major stock markets crashed in October 1987, the volatility smile is typically

more pronounced and downward sloping. In particular, short-term OTM options

exhibited higher implied volatilities than ATM options.74 Therefore, an extreme

market downturn can permanently change the option pricing behaviour of market

participants.75 Empirical studies that consider the effect of a stock market crash

on implied volatilities include Schwert (1990), Bates (1991), Bates (2000), Constan-

tinides et al. (2009), and Schwert (2011). All of these studies primarily consider the

US options market by using options on the S&P 500 index and/or S&P 500 futures.

In contrast, relatively little is known about the German options market.

While there are several studies in the literature on the characteristics of DAX implied

volatilities during normal market conditions, 76, few empirical studies compare the

behaviours of DAX implied volatilities before, during, and after financial crises.77

Therefore, the following Section analyses whether the crises in 2002/2003 and 2008

influenced DAX implied volatilities. The results are relevant for the prediction of

DAX volatility. Because DAX volatility forecasts in this study are constructed

based on DAX implied volatilities for a sample period that includes two dramatic

stock market declines, it is of particular interest whether the pattern of implied

volatilities changed due to these financial crises. If systematic structural changes

occurred, the option pricing model should explicitly account for these changes or

provide sufficient flexibility to rapidly adapt to these changes. Unsurprisingly, the

inclusion of observations around a market crash affects the estimation of the IVS. For

instance, Harvey and Whaley (1992) report that these observations can considerably

influence the estimation of a regression model in which implied volatility changes

74See Chapter 2.5.1.
75See Benzoni et al. (2011), p. 552.
76See Chapter 2.5.
77An exception is Trautmann and Beinert (1995), who report that the inferred risk neutral skewness
from German stock options increased after the 1987 crash.
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are explained by different factors.78 In the following, the empirical regularities of

the IVS and their variations are described for the above-defined subsamples.

3.3.1. DAX Volatility Smiles

A typical picture of the DAX volatility smile is provided in Figure 3.4. In the left

panel of Figure 3.4, implied volatilities are plotted against the strike price dimension

for DAX options with 44 days to maturity that were traded on May 2nd, 2007. It

can be observed that the implied volatilities are not constant across strike prices, but

rather form a downward-sloping skew. This implies that DAX OTM puts and DAX

ITM calls trade at higher prices than DAX ATM options with the same maturity.

The volatility smile appears as a black line in Figure 3.4, as implied volatilities

are not available for all strike prices due to standardised contract specifications

and trading activity. To analyse volatility smiles over longer time periods, implied

volatilities are typically plotted against moneyness. In so doing, the smile is not

influenced by large changes in the underlying asset price. Another advantage of

using moneyness is that it acts as a quasi smoothing method.79 A smoothed volatility

smile where the implied volatilities are estimated by the Nadaraya-Watson estimator

is depicted in the right panel of Figure 3.4.

Next, it is investigated whether the DAX volatility smile varies across maturity.

The left panel of Figure 3.5 presents DAX volatility smiles for different maturities

that were observed on May 2nd, 2007. It demonstrates the smile pattern exists

for all considered maturities and that the smile tends to flatten out for long-term

options. Moreover, considering OTM puts/ITM calls, the implied volatilities of

short-term options seem to be higher than those of long-term options with the same

moneyness level. The right panel of Figure 3.5 contains DAX volatility smiles for

selected maturities on October 16th, 2008, when implied volatility reached its highest

78See Harvey and Whaley (1992), pp. 60-61.
79See Fengler (2004), p. 24.
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level in ten years. It suggests that while the smile pattern was still present for all

maturities, the smiles shifted to higher levels.

Figure 3.6 shows that, on average, a DAX volatility smile, respectively skew, ex-

isted throughout the sample period. In particular, it demonstrates that on average,

a volatility smile can be observed for short-term options (with maturities of up to

3 months) and a volatility skew for long-term options (with a maturity equal to

6 months). Moreover, the figure indicates that average implied volatility takes its

minimum above the ATM level. Further, the average volatility smile of DAX short-

term options lies above the average volatility skew of DAX options with 6 months

to expiry. Hafner (2004) provides similar results regarding the shape of the DAX

volatility smile for a sample period from 1995 to 2002. First, he also finds that the

average implied volatilities of DAX OTM puts/ITM calls with 1 month to expiry

were higher than those of DAX options with the same moneyness level but 3 or 5

months to expiration. Nevertheless, his findings differ from the results of this study

in some respects. Whereas he reports that the volatility smiles of DAX options with

1, 3, and 5 months to maturity intersect slightly below the ATM level, this study

finds that the average estimated smile of short-term DAX options resembles a tan-

gent to the smile curves of long-term DAX options. As a consequence, he finds that

the implied volatilities of DAX ITM puts/OTM calls with longer maturities (more

than 3 or 5 months to maturity) exceeded the implied volatilities of DAX short-term

options (1 month to maturity) with the same moneyness level. Furthermore, in con-

trast to the findings of this work presented above, he reports that a volatility skew

can generally be observed for DAX short-term options during the period from 1995

to 2002.80,81

The average DAX volatility smile for the above-defined volatility regimes and differ-

ent maturities is presented in Figure 3.7. While a DAX volatility smile was generally

documented for short-term options in the total sample, a skew pattern occurred dur-

80See Hafner (2004), p. 96.
81He also observes volatility smiles in the sample but mentions that this is not the typical smile
pattern throughout the sample. See ibid., p. 95.
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Figure 3.6.: Average DAX volatility smiles from 2002 to 2009
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ing the first subsample. Further, the smile pattern of the DAX implied volatility

curve during the third subsample is also not particularly pronounced. Therefore, the

different findings obtained by Hafner (2004) and this study concerning the shape of

the DAX volatility smile for short-term options may be due to the long, stable mar-

ket upturn included in the period considered in this study. Additionally, Figure 3.7

confirms the above assumption that DAX implied volatilities move upwards (down-

wards) during turbulent (stable) market periods. This behaviour can be observed

for all DAX implied volatilities across all maturities and moneyness levels. However,

although the DAX level increased in 2009 and DAX implied volatilities decreased,

they did not revert back to their pre-crash levels.82 Therefore, market participants

traded DAX short-term options after the financial crisis at higher prices than before.

However, the post-crash sample period is too brief to ultimately conclude whether

this is a temporary or permanent effect. This time series variation in short-term

DAX implied volatilities for different degrees of moneyness can be observed in Fig-

ure 3.8. Further, the figure demonstrates that DAX implied volatilities for different

moneyness levels typically moved parallel to one another during the sample period.83

In the following, the skewness of the DAX volatility smile is examined. For this

purpose, three skewness measures are introduced that are similar to the statistics

suggested by Wallmeier (2003).84 The first two skewness measures are defined as

the difference between the implied volatilities of two DAX options (with the same

maturity but different moneyness levels) divided by the implied volatility of a DAX

82This observation refers to DAX short-term options.
83The changes in the implied volatilities are highly correlated. For instance, the correlation between
the implied volatilities of DAX 1M ATM options and DAX 1M options with a moneyness level
of 95% is 95.2%.

84See Wallmeier (2003), p. 190.
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Figure 3.8.: DAX implied volatilities for different moneyness levels
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ATM option. They are called implied volatility spreads (IVSP). Formally, their

calculation is based on

IV SP95% =
σ̂t(M1, T )− σ̂t(M0, T )

σ̂t(M0, T )
(3.25)

IV SP105% =
σ̂t(M0, T )− σ̂t(M2, T )

σ̂t(M0, T )
(3.26)

where the moneyness levels are M0 = 1, M1 = 0.95 and M2 = 1.05. An additional

skewness measure that covers the sum of both implied volatility spreads is referred

to as the total volatility spread (TVSP) and is given by

TV SP =
σ̂t(M1, T )− σ̂t(M2, T )

σ̂t(M0, T )
. (3.27)

Positive values of the implied volatility spreads indicate a downward sloping smile

curve. Thus, the positive values of the implied volatility spreads in Figure 3.9 re-

flect that the DAX smile was generally negatively skewed during the sample period.85

Similar results are reported by Wallmeier (2003) for DAX options traded between

1995 and 2000.86 He finds that both implied volatility spreads were fully positive

and therefore an asymmetric DAX volatility skew existed in the sample period.87

Moreover, Hafner (2004) finds for the time period from 1995 to 2002 that the slope

of the DAX volatility smile was generally negative and steeper for short-term op-

tions.88 These empirical observations agree with the theoretical findings of Rogers

and Tehranchi (2010), who show that the implied volatility surface flattens out if

maturity goes to infinity.89

Interestingly, the average difference between the two implied volatility spreads dur-

ing the second subsample, which comprises a long, stable market upturn, was higher

than in the two other, more volatile subsamples. This can be attributed to a higher

85For instance, one exception was observed on October 10th, 2008, where the smile was positively
skewed for one day.

86Wallmeier (2003) considers DAX options with 45 days to maturity.
87See ibid., p. 191.
88See Hafner (2004), p. 96.
89See Rogers and Tehranchi (2010), pp. 243-247.
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Figure 3.10.: DAX implied volatility and volatility spreads for different maturities

increase in IV SP95% relative to IV SP105% in the second subsample.90 Thus, while

the level of DAX implied volatility declined to lower, more normal values, the im-

plied volatility spreads increased. Therefore, although the market was comparatively

stable during May 2003 and August 2007, market participants paid higher relative

prices for DAX OTM puts providing portfolio insurance. Moreover, according to

Figure 3.9, the two implied volatility spreads were more similar in turbulent market

periods. When considering the total volatility spread, this study confirms the find-

ings of Wallmeier (2003), who documents that an increase in the implied volatility

of DAX ATM options generally leads to a reduction in the total volatility spread.91

Figure 3.10 depicts the time series of the implied volatility spreads IV SP95% for DAX

options with 1, 3, and 6 months to maturity. It shows that the implied volatility

spread series of DAX options with 1 month, respectively 3 months, seem to be more

90A correlation analysis of the changes in DAX ATM implied volatilities and implied volatility
spreads reveals the following pattern: whereas a decrease in DAX implied volatility tends to
increase the volatility spread IV SP95%, the opposite can be observed for the IV SP105%.

91See Wallmeier (2003), p. 193.
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closely related than either series is to the implied volatility spread of DAX options

that expire in 6 months. Moreover, the figure illustrates that the slope of the DAX

volatility smile changes during the sample period, particularly during volatile market

periods. This behaviour can be observed for each of the three considered implied

volatility spread series.

Having described the DAX volatility smile, the next Section examines the DAX

volatility term structure.

3.3.2. DAX Volatility Term Structures

A typical DAX volatility term structure during the second volatility regime is de-

picted in the left panel of Figure 3.11. The figure presents the DAX volatility term

structure for different moneyness levels that were observed on January 16th, 2006.

It indicates that the term structure changes its shape across different moneyness

levels. While the volatility term structure for DAX options with moneyness levels

of 85% and 90% is U-shaped, it shows an increasing pattern for DAX options with

a moneyness level above 95%. In contrast, the right panel of Figure 3.11 illustrates

that each DAX volatility term structure for a given moneyness level became down-

ward sloping in an extremely volatile market setting. The figure also demonstrates

for both days that, given the same maturity, the DAX implied volatilities seem to

increase if the moneyness level decreases.

In the following, the average DAX volatility term structure for the total sample

across different moneyness levels is examined. Figure 3.12 shows that from 2002 to

2009, a decreasing volatility term structure generally existed for DAX options with a

moneyness level below 100%. The term structures for DAX ATM options and DAX

OTM call/ITM put options were decreasing for maturities of up to 4 months. For

higher maturities, the term structure was nearly flat (in the case of ATM options) or

marginally increasing (for options with a moneyness level above 100%). In general,

the average term structures of DAX options with lower moneyness levels lie above
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the curves of options with higher moneyness. Hafner (2004) reports that the average

term structure of DAX options with a low moneyness level (e.g., 85%) was decreasing

between 1995 and 2002. In contrast, he finds an increasing average term structure

for DAX ATM options and options with higher moneyness levels. In addition, he

observes frequent changes between increasing and decreasing DAX volatility term

structures.92 Wallmeier (2003) confirms the findings of Hafner (2004) by reporting an

increasing term structure for DAX ATM options for the period from 1995 to 2000.

Fengler (2004) also provides similar results. Moreover, he finds that the average

yearly DAX ATM volatility term structures are increasing from 1995 to 2001.93

However, Figure 3.13 shows that different DAX volatility term structures can be ob-

served for the volatility regimes. In addition the overall upward shift in DAX implied

volatilities, the slope and the curvature of the volatility term structure changed dur-

ing volatile market phases. Whereas Figure 3.12 depicts a nearly flat term structure

of DAX ATM options (with maturities above 4 months), Figure 3.13 provides evi-

dence that this is due to taking the average of an increasing term structure during the

second subsample and a decreasing shape in the first and third subsamples (see also

the term structures for DAX options with higher moneyness levels). Furthermore,

the figure indicates that the curvature of DAX options with higher moneyness levels

is more affected by extreme market movements than those of options with money-

ness levels below 95%. In addition, Figure 3.14, which depicts the times series of

implied volatilities for DAX ATM options with 1, 3, and 6 months to maturity, also

indicates that the term structure changed considerably during the sample period

and the movements of the implied volatilities series were closely related.94

Next, the slope of the DAX volatility term structure is analysed. Similar to the

above skewness measures for the volatility smile, three slope measures for the term

structure are defined. The first two slope measures of the term structure are equal

92While the volatility term structure for DAX ATM options exhibited an increasing shape on 1316
days, the inverse shape could be documented for 623 days in the sample. See Hafner (2004),
pp. 95-96.

93See Fengler (2004), p. 31.
94The correlations of the changes in the DAX implied volatilities series are between 0.82 and 0.95.
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to the difference between the implied volatilities of two DAX options (with the same

moneyness level but different maturities) divided by the implied volatility of a DAX

3M ATM option. Both measures are called implied volatility term structure spreads

(IVTSP) and are computed by

IV TSP1−3m =
σ̂t(M,T2)− σ̂t(M,T1)

σ̂t(M,T2)
(3.28)

IV TSP3−6m =
σ̂t(M,T3)− σ̂t(M,T2)

σ̂t(M,T2)
(3.29)

where the maturities are T1 = 1month, T2 = 3months, and T3 = 6months. The

third slope measure is defined as the sum of IV TSP1−3m and IV TSP3−6m and is

given by

IV TSP1−6m =
σ̂t(M,T3)− σ̂t(M,T1)

σ̂t(M,T2)
. (3.30)

Positive (negative) values of the implied volatility term structure spreads reflect an

increasing (decreasing) volatility term structure. Figure 3.15 indicates that the slope

of the term structure is time-varying. After accounting for the volatility regimes, it

seems that the slope of the term structure tends to be positive during market periods

with normal volatility levels. In contrast, in turbulent market phases, a negative

slope is generally observed. The change in the slope during volatile periods has not

been previously documented in the literature for DAX options. For instance, Fengler

(2004) reports a more or less flat average term structure for DAX ATM options in

2001 when the dot-com crisis affected stock markets. However, this finding may

be the result of averaging the daily term structures over the year 2001.95 Finally,

Figure 3.16 illustrates the time series of IV TSP1−6m for different moneyness levels.

It is worth noting that in the second subsample period, the behaviour of the slope

measure series differs considerably more across the three moneyness levels than in

the other subsamples.

95See Fengler (2004), p. 31.
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Figure 3.15.: DAX implied volatility and volatility term structure spreads
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3.3.3. DAX IVS

Having analysed DAX volatility smiles and volatility term structures, this Section

presents the DAX IVS, which combines both effects. Despite the in-depth discus-

sion of these effects presented above, a graphical illustration of the IVS is helpful

for understanding the simultaneous variation in the implied volatility across both

dimensions. As volatility smiles and term structures have been analysed in depth in

the previous Sections, the shape of the DAX IVS is only briefly described here.

Figure 3.17 depicts the average DAX IVS for the complete sample period from 2002

to 2009. It shows that the DAX volatility smile is steepest for short-term options and

flattens out with increasing maturity. Moreover, as mentioned above, a decreasing

DAX term structure can be observed for DAX options with a moneyness level below

100% (see Chapter 3.3.2 for a description of the DAX term structure for options with

higher moneyness). As a DAX volatility smile was generally identified for short-term

options in the total sample (see Chapter 3.3.1), the average DAX IVS differs from

the findings of Hafner (2004) and Fengler (2004).96 The volatility of DAX implied

volatilities is depicted in Figure 3.18. It can be observed that the implied volatilities

of DAX short-term options were more volatile than those of options with longer

maturities. Fengler (2004) provides similar results.

The shape of the average DAX IVS for the different volatility regimes is presented

in Figures 3.19, 3.20, and 3.21. A comparison of the IVS shapes across the regimes

emphasises the finding presented above that the DAX volatility smile of short-term

options is more pronounced in the second subsample than in the two other subsam-

ples. Finally, Figure 3.22 presents the times series of DAX implied volatilities with

different maturities and moneyness levels. It suggests that the series of DAX implied

volatilities across maturity and moneyness are highly correlated.

96The appendix contains two additional IVS. Figure A.1 illustrates a typical DAX IVS for the
second subsample that was observed on May 2nd, 2007. A DAX IVS that occurred on an
extremely volatile day, October 16th, 2008, is depicted in Figure A.2.
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Figure 3.17.: Average DAX IVS for the sample period from 2002 to 2009
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Figure 3.18.: Standard deviation of the DAX IVS for the sample period from 2002
to 2009
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Figure 3.19.: Average DAX IVS for the 1st volatility regime
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Figure 3.20.: Average DAX IVS for the 2nd volatility regime
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Figure 3.21.: Average DAX IVS for the 3rd volatility regime
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Figure 3.22.: Time series of DAX implied volatilities

3.3.4. Similarities and Differences between DAX and S&P 500

Index Implied Volatility Before and After Stock Market

Crashes

In the following, the above results concerning the behaviour of DAX implied volatil-

ities during high volatility market periods are compared to the findings in the lit-

erature on the S&P 500 index options market. The aim of the comparison is to

examine whether the IVS exhibits certain regularities during turbulent periods (the

sample contains two periods which high market fluctuations) that should be ac-

counted when selecting an option pricing model. First, the reversion of implied

volatility towards its pre-crash level is discussed. Next, the movements in the im-

plied volatility spreads before and after a stock market crash are considered. Third,

the changes in the S&P 500 and DAX volatility term structures during the financial
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crisis are analysed. Finally, the question of whether implied volatilities before stock

market crashes indicated an impending crisis is addressed.

In an analysis of changes in stock market volatility during the financial crisis, Schwert

(2011) notes that the implied volatility of S&P index options returned comparatively

quickly to normal levels in 2009.97,98 Based on a long time series of S&P implied

volatilities from 1983 to 2010, he argues that the general level of market volatility

did not increase after the financial crisis. While a higher implied volatility can be

observed after the crisis relative to the pre-crash period, the degree of post-crash

implied volatility did not rise relative to the complete sample period. This can be

explained by the very low level of market volatility in the period before the financial

crisis.99 Thus, the above finding that DAX implied volatility did not revert back

to its pre-crisis level should be qualified by considering not only a longer post-crash

period but also a longer pre-crash period.

In a study on the implications of the 1987 crash, Bates (2000) considers the effect of

stock market shocks on the magnitude of implied volatility spreads using S&P 500

futures option prices from 1983 to 1993. He illustrates the fundamental change in the

implied volatility smile towards the typical post-crash volatility skew based on time

series plots of implied volatility spreads for OTM puts and calls.100,101 Although

DAX implied volatility spreads were affected by stock market shocks in 2002 and

2008, a similar, permanent change in the implied volatility spread structure (still)

cannot be observed in Figure 3.9.

Next, the changes in the S&P 500 and DAX volatility term structures due to the

financial crisis are compared. Schwert (2011) reports that the implied volatilities

97For instance, during the Great Depression, stock market volatility remained high for several
years. See Schwert (2011), p. 796.

98Schwert (1990) reports similar results for the stock market crash of 1987.
99See Schwert (2011), p. 796.
100See Bates (2000), pp. 187-188.
101Bates (2000) uses implied volatility spreads that are closely related to the volatility spreads

applied in this study. He defines implied volatility spreads as the difference between the implied
volatility of an OTM option with a moneyness level of 4% and the implied volatility of an ATM
option. Here, moneyness is calculated as K/FSP500 − 1, where FSP500 denotes the S&P 500
futures price. See Bates (2000), p. 187.
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of long-term S&P 500 options (with maturities longer than 12 months) were less

influenced by the 2008 crisis than those of short-term options (with expiries of less

than 6 months). He finds that the implied volatilities of short-term S&P 500 options

shifted to a considerably higher level in November 2008. As a consequence, the S&P

500 volatility term structure changed from a relatively flat profile in July 2008 to a

downward-sloping shape during the turbulent market period in the fall of 2008.102

The DAX volatility term structure behaved in a similar fashion. For instance, the

right panel of Figure 3.11 depicts a decreasing DAX volatility term structure that

was observed in fall 2008. Furthermore, the DAX implied volatility term structure

spreads contained in Figure 3.15 imply a downward-sloping term structure during the

volatile market period in October/November 2008. With respect to the reversion

of the term structure, Schwert (2011) remarks that the S&P 500 volatility term

structure returned to its pre-crash shape in April 2010. The positive values of

the DAX implied volatility term structure spreads at the end of the sample period

(see Figure 3.15) also indicate that the shape of the DAX volatility term structure

normalised to its pre-crash pattern by the second half of 2009 (although the level of

DAX implied volatility remained above its pre-crisis level).

Bates (1991) also provides a study of the crash of 1987. In the article, Bates (1991)

investigates whether market participants expected the crash. He analyses S&P 500

futures options data from 1985 to 1987 and reports evidence that market participants

exhibited an increased awareness of downside risk in the year prior to the crash.

However, he finds no strong fears of a crash in the two months before the 1987

crash.103 Similarly, Schwert (1990), using S&P 500 index options, documents that

implied volatility did not rise until October 19th, 1987, when the S&P index lost

more than 20% of its value.104 Figure 3.3 indicates that an increased DAX implied

volatility level was present from January 2008 to March 2008.105 However, the DAX

implied volatility returned to its previous level at the end of March 2008. In the

102Bates (2000) also mentions an inversion of term structure of S&P 500 futures options due to
Iraq’s invasion of Kuwait in August 1990.

103See Bates (1991), pp. 1036-1037.
104See Schwert (1990), p. 96.
105The decline of the DAX in January 2008 was due to increasing fears of a US recession.
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months immediately preceding the financial crisis, no strong increase in volatility

could be observed (see Figure 3.3). Therefore, it seems that, similar to the findings

of Schwert (1990) regarding the crash of 1987, market participants did not expect

the dramatic decline in the DAX generated by the financial crisis.

3.4. Concluding Remarks

In summary, most of the stylised facts concerning DAX implied volatilities that

have been documented in the literature for other samples can be confirmed using

the options data set employed in this study. However, some important differences

were observed, such as the volatility skew for short-term DAX options. Moreover,

there are certain similarities with respect to the behaviours of implied volatilities

from DAX and S&P 500 index options before and after stock market crashes. Ad-

ditionally, the analysis demonstrates that the shape of the DAX volatility smile and

volatility term structure changed considerably between stable and highly volatile

market periods.

Overall, these results demonstrate that the constant volatility assumption of the

BS model is violated. Therefore, from the above-described changes in the DAX

IVS, it follows that an option pricing model that is sufficiently flexible to allow for

these variations is necessary. Therefore, the next Chapter presents some alternative

option pricing models and describes their theoretical ability to match the above IVS

shapes.
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4. Volatility Forecasting Models

In this Chapter, alternative option pricing models are presented that relax some

of the BS assumptions. These option pricing models were developed to match the

previously described implied volatility patterns. They built on the potential expla-

nations suggested in Chapter 2 for the empirical regularities of the IVS: time-varying

volatility of the underlying asset (either deterministically or stochastically) and the

occurrence of jumps.1 As the vast number of option pricing models is overwhelming,

the basic concepts of the models are provided in the following Sections. The ability

of each model class to reproduce the observed DAX IVS is discussed at the end of

each Section. The choice of a particular model from the presented model classes

to derive volatility forecasts is explained following the literature review on the fore-

casting performance of the models in Chapter 5. In addition to the option pricing

models, this Chapter also describes time series models that this study applies to

forecast DAX volatility.

1Additional option pricing models and adjustments to the BS model have been proposed with
respect to market frictions. For instance, Leland (1985) suggests an extension of the BS model
that allows for transaction costs. However, Constantinides (1996) finds that the volatility smile
effect can only be partly attributed to transaction costs. Therefore, this Chapter concentrates on
stochastic volatility and jump models.
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4.1. Option Pricing Models

4.1.1. Local Volatility Models

Chapter 3.3.2 demonstrated that DAX implied volatilities exhibit certain empirical

regularities across maturities, which are called term structure effects. Merton (1973)

suggests that these term structure effects can be captured by a time-dependent

volatility function.2 As implied volatility is also affected by the strike price, little

additional effort is required to account for this relationship by extending Merton’s

time-dependent volatility function and allow volatility to also depend on the asset

price. Based on this assumption, the stochastic differential equation is given by

dSt

St
= µ(St, t)dt+ σ(St, t)dzt. (4.1)

The application of this model requires the specification of a parametric form of the

volatility function or, alternatively, the application of non-parametric methods.3 A

parametric volatility model was, for example, suggested by Cox and Ross (1976),

who were inspired by Fischer Black to develop a general option pricing model in re-

sponse to the observed negative correlation between stock price changes and volatil-

ity changes. Based on the works of John C. Cox and Stephen A. Ross, Fischer Black

suggests that this relationship implies the volatility smile.4 According to Jackwerth

and Rubinstein (2001), the negative correlation between stock price and volatility

changes is a key contributor to the performance of option pricing models.5

More specifically, Cox and Ross (1976) propose a parametric model of the form

dSt

St

= µdt+ σSβ−1
t dzt (4.2)

2See Merton (1973), pp. 162-163.
3See Detlefsen (2007), p. 54.
4See Cox (1996), p. 15.
5See Jackwerth and Rubinstein (2001), p. 1.
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where β > 0 is a constant. The model is called a constant elasticity of variance

(CEV) model, as the elasticity of variance does not depend on the asset price.6 For

β = 1, the CEV model corresponds to the classical BS model. In practice, the

CEV model exhibits some weaknesses in generating the empirically observed IVS.

Detlefsen (2007) argues that this limitation can be explained by the limited number

of model parameters.7,8 To overcome this shortcoming, Beaglehole and Chebanier

(2002), Coleman et al. (1999), and Brigo and Mercurio (2001) suggest more flexible

models.9 As a number of parameterisations have been proposed, the best parametric

form for the respective application must be selected. Further, except for the mixture

diffusions approach of Brigo and Mercurio (2001), these models provide no closed-

form solutions. Therefore, option prices have to be calculated based on the BS PDE,

in which constant volatility is replaced with the parametric volatility function.10

A non-parametric framework to determine the volatility function σ(St, t) of equation

(4.2) was developed by Derman and Kani (1994b), Dupire (1994), and Rubinstein

(1994). In this framework, called local volatility, it can be shown that a unique local

volatility function σ(St, t) that is consistent with a given IVS exists.11,12 Tree-based

algorithms are suggested to extract the local volatility function from current option

prices. Although local volatility depends on a stochastic variable, the asset price, it

is considered as a deterministic function, as it is uniquely determined by the asset

price St at time t.13 For this reason, local volatility models are also called restricted

stochastic volatility models.14 Dupire (1994) developed the continuous time theory of

the local volatility approach. Derman and Kani (1994b) introduced a discrete-time

6See Cox and Ross (1976).
7See Detlefsen (2007), p. 55.
8See also Rubinstein (1985), who finds that the CEV model does not adequately capture the term
structure of US options.

9Beaglehole and Chebanier (2002) introduce piecewise quadratic functions, Coleman et al. (1999)
apply splines, and Brigo and Mercurio (2001) use mixture diffusions.

10See Alexander (2008), p. 248.
11See Detlefsen (2007), p. 55.
12The graph of the local volatility function is called the local volatility surface (LVS). The term
local means that the local volatility surface predicts volatility for a certain strike price and time
to maturity.

13See Hafner (2004), p. 45.
14See Brenner (1996), p. 307.
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version.15 To present the general foundation of the approach, the continuous-time

version of Dupire (1994) is presented in the following. However, first, local volatility

is defined more formally.

In local volatility models, the stochastic evolution of the asset price is driven by

a process of the form (4.1). The instantaneous volatility σ is assumed to follow a

stochastic process that depends on the asset price St. Moreover, the no-arbitrage

assumption ensures that a risk-neutral measure exists under which the discounted

asset price is a martingale. Finally, the European call option prices Ct(K, T ) are

given for any strike price K and time to maturity T .16

The local variance is defined as the risk-neutral expectation of the squared instan-

taneous volatility at a future time T conditional on ST = K

σ2
K,T (St, t) = EQ{σ2(ST , T )|ST = K} (4.3)

and local volatility is given by

σK,T =
√
σ2
K,T .

17 (4.4)

In other words, the local volatility approach is based on the assumption that the

evolution of instantaneous volatility follows current market expectations, which are

captured by the local volatility function. Thus, local volatility can be regarded as

the market’s consensus perception of instantaneous volatility for a market level K

at some future point in time T . In contrast, implied volatility represents the market

expectation of the average volatility during the remaining lifetime of the option.18

Next, Dupire’s famous equation that relates unique local volatilities to a cross section

of European option prices is derived.

15See Gatheral (2006), p. 8.
16See Dupire (1994), pp. 18.
17See Fengler (2004), pp. 50-51.
18See ibid., pp. 49-51.
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Assume that the asset price follows the above stochastic process (see equation (4.1));

then, the undiscounted, risk-neutral price of a European call option is

C(S0, K, T ) =

∫ ∞

K

dSTφ(ST , T ;S0)(ST −K) (4.5)

where φ(ST , T ;S0) denotes the risk-neutral probability density function of the final

asset price at time T .19 The partial derivatives of (4.5) with respect to K are

∂C

∂K
= −

∫ ∞

K

dSTφ(ST , T ;S0) (4.6)

and
∂2C

∂K2
= φ(K, T ;S0). (4.7)

Further, the density φ satisfies the Fokker-Planck equation

1

2

∂2

∂S2
T

(σ2S2
Tφ)− S

∂

∂ST
(µSTφ) =

∂φ

∂T
. (4.8)

The first derivative of (4.5) with respect to time is obtained from

∂C

∂T
=

∫ ∞

K

dST

{
∂

∂T
φ(ST , T ;S0)

}
(ST −K). (4.9)

Next, replacing the term ∂C
∂T

in (4.9) with the left hand side (LHS) of (4.8) yields

∂C

∂T
=

∫ ∞

K

dST

{
1

2

∂2

∂S2
T

(σ2S2
Tφ)−

∂

∂ST

(µSTφ)

}
(ST −K). (4.10)

Partial integration yields

∂C

∂T
=
σ2K2

2
φ+

∫ ∞

K

dSTµSTφ. (4.11)

Substituting (4.6) and (4.7) into (4.11) yields the Dupire equation

∂C

∂T
=
σ2K2

2

∂2C

∂K2
+ µ(T )

(
−K ∂C

∂K

)
. (4.12)

19The following derivation of Dupire’s equation is taken from Gatheral (2006), pp. 9-11.



110 4. Volatility Forecasting Models

If the option price is expressed as a function of the forward price C(F ∗
T , K, T ), the

Dupire function becomes
∂C

∂T
=
σ2K2

2

∂2C

∂K2
(4.13)

where

F ∗
T = S0 exp

{∫ T

0

dtµt

}
. (4.14)

Rearranging provides the local volatility

σ2(K, T, S0) =
∂C
∂T

1
2
K2 ∂2C

∂K2

. (4.15)

Therefore, based on equation (4.15), local volatilities can be calculated from a set

of European option prices.20 For practical purposes, it should be noted that lo-

cal volatilities that are directly computed from market option prices using Dupire’s

equation are highly sensitive to small changes in option prices.21,22 The computation

of local volatilities requires knowledge of the partial derivatives in (4.15). Because

discrete sets of options data are typically available, smoothing and extrapolation

methods are necessary to obtain continuous data for the calculation of the deriva-

tives.23 Having received a continuous set of options data, partial derivatives can be

approximated using finite differences.24 The choice of interpolation method should

be made carefully, as it can influence the calculation of local volatilities.25

While incorporating stochastic volatility and/or jumps into the stochastic process

leads to incomplete models, local volatility models impose no additional source of

randomness. As a result, the model remains complete and provides a consistent

pricing and hedging scheme.26 Despite the convenient feature of precisely reproduc-

ing a set of market option prices, local volatility models exhibit certain drawbacks.

20See Gatheral (2006), p. 9.
21See Alexander (2008), p. 248.
22Avellaneda et al. (1997) suggest a framework for calibrating volatility surfaces via relative-entropy
minimisation that is able to produce a smooth volatility surface.

23See Chapter 3.1 for a description of smoothing methods.
24See Alexander (2008), p. 245.
25See Mitra (2009), p. 22.
26See ibid., p. 19.
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Whereas the one-factor diffusion process inherent to local volatility models permits

a complete market model, it does not adequately capture the evolution of the IVS.27

Empirical studies demonstrate that the assumption of constant local volatilities is

incompatible with the observed changes in the IVS. For instance, Alexander and

Nogueira (2004a) remark that ignoring other sources of uncertainty in the volatility

process leads to unstable local volatility surfaces. In particular, recalibration induces

considerable changes in the local volatility surface.28 Moreover, local volatility mod-

els predict that an increasing (decreasing) price of the underlying asset moves the

volatility smile to the left (right). This proposed behaviour of the volatility smile

contradicts observed market dynamics in which the price of the underlying asset

and the volatility smile move in the same direction. This contradiction between

the model and the market can induce dynamic hedging problems via unstable delta

hedges.29,30 However, according to Gatheral (2006), the focus of Dupire (1994) and

Derman and Kani (1994b) was to develop a model to price exotic options in a manner

consistent with the existing volatility smile of vanilla options, rather than a model

for volatility dynamics.31

Moreover, Fengler (2004) notes that the shape of the observed local volatility surface

is typically very ”spiky” and counterintuitive.32 Alexander (2008) argues that the

direct calibration of local volatilities to market data can induce spiky local volatility

surfaces, as local volatilities are highly sensitive to the input data.33 Javaheri (2005)

notes that this problem can generate arbitrage opportunities and, occasionally, neg-

ative variances or probabilities.34 To avoid this problem, Coleman et al. (1999),

Brigo and Mercurio (2001), Beaglehole and Chebanier (2002), and others suggest

reconstructing the local volatility surface based on parametric approaches.

27See Hafner (2004), pp. 46-47.
28See Alexander and Nogueira (2004a), p. 2.
29See Hagan et al. (2002), p. 87.
30Further, Hagan et al. (2002) show that the delta calculated from local volatility models is incorrect
or at least misleading, due to this contradiction. See ibid., p. 84.

31See Gatheral (2006), p. 8.
32See Fengler (2004), p. 96.
33See Alexander (2008), p. 248.
34See Javaheri (2005), p. 18.
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After a discussion of the general ability of local volatility models to reproduce the

IVS, the results of two studies that fit local volatility models to DAX option prices

are presented. The first study is by Neumann (1999) and comprises daily DAX

option prices from January 1997 to December 1997. He implements the implied

binomial tree approach developed by Rubinstein (1994) from the set of local volatility

models, the binomial model of Cox et al. (1979), and the BS model to calculate

option prices. To evaluate the performance of these models, he computes pricing

errors between model and market option prices. He finds that the implied tree

approach produces lower pricing errors relative to the BS model and the binomial

model.35 This is not surprising, as the implied tree approach offers greater flexibility

than the other two models for matching the observed market prices. Wallmeier

(2003) highlights that the essential question, rather, is whether the excellent fit

provided by the implied tree approach correctly reflects the possible sample paths

under risk-neutrality.36

Wallmeier (2003) investigates this question by fitting the implied trinomial trees

suggested by Derman et al. (1996) to DAX option prices from 1995 to 2000. Sim-

ilar to Neumann (1999), he analyses the in-sample fit of an implied tree to the

observed market option prices. Further, he compares the future option price at

time t + 7, which is determined by the implied trinomial tree at t for a certain

future asset price level using the market option price at time t + 7.37 His findings

agree with those of Skiadopoulos (2001), who summarises some empirical studies

providing evidence against the deterministic volatility assumption. In particular,

Wallmeier (2003) argues that the empirically observed negative correlation between

asset returns and volatility that underlies implied trees cannot completely explain

the volatility smile. Thus, the stochastic evolution of the asset price process should

incorporate additional factors such as jumps and stochastic volatility.38 Combining

the above-described general features of local volatility models and the findings of

35See Neumann (1999), pp. 144-152.
36See Wallmeier (2003), pp. 213-214.
37See ibid., pp. 226-227.
38See ibid., pp. 238-240.
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Neumann (1999) and Wallmeier (2003), local volatility models should, in principle,

be able to replicate the DAX volatility smiles documented by this study. However,

the results of Wallmeier (2003) indicate that local volatility models are problematic

when they are used to generate the dynamics of the existing DAX IVS.

Recently, stochastic local volatility models have been developed to overcome these

shortcomings.39 They represent a more general, redefined approach and nested local

volatility models.40 For instance, the Derman and Kani (1998) model allows the local

volatility surface to behave stochastically where restrictions ensure the absence of

arbitrage.41 Additional stochastic local volatility models have been developed by

Dupire (1996), Britten-Jones and Neuberger (2000), and Alexander and Nogueira

(2004b). The following Section represents the Britten-Jones and Neuberger (2000)

model.

4.1.2. The Concept of Model-Free Implied Volatility

As the assumption of deterministic volatility is comparatively restrictive, Britten-

Jones and Neuberger (2000) extend the local volatility concept developed by Derman

and Kani (1994b), Dupire (1994), and Rubinstein (1994). While local volatility mod-

els are based on a unique process that allows them to precisely reproduce a complete

set of option prices, Britten-Jones and Neuberger (2000) describe a set of continuous

processes that are consistent with current option prices. In particular, they derive

a condition that must be satisfied by all consistent processes.42,43 This condition

implies the same volatility forecast for all consistent processes. For this reason, the

implied volatility calculated based on Britten-Jones and Neuberger (2000) is also

called model-free implied volatility.44 Similar to local volatility models, the Britten-

39See Fengler (2004), p. 48.
40See Skiadopoulos (2001), p. 404.
41See Schönbucher (1999), p. 4.
42Britten-Jones and Neuberger (2000) note that their approach allows for the application of a
variety of stochastic volatility models.

43Subsequently, Jiang and Tian (2005) generalised the Britten-Jones and Neuberger (2000) ap-
proach to processes with (small) jumps. See Jiang and Tian (2005), p. 1308.

44See Britten-Jones and Neuberger (2000), pp. 839-841.
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Jones and Neuberger (2000) approach can be used for option pricing. As the focus

of this study is to investigate the forecasting performance of implied volatilities, this

Section presents the model-free implied volatility forecast and discusses its imple-

mentation.45

Assume that the underlying asset pays no dividends and the risk-free rate is zero,

then the risk-neutral expectation of the integrated variance between T1 and T2 is

EQ

[∫ T2

T1

(
dSt

St

)2
]
= 2

∫ ∞

0

C(T2, K)− C(T1, K)

K2
dK. (4.16)

Based on this equation, the computation of the integrated return variance requires

two sets of call option prices with varying K (one set with time to maturity T1 and

the other with T2). The model-free implied volatility is calculated by taking the

square root of (4.16), which yields

EQ



√∫ T2

T1

(
dSt

St

)2

 ≤

√
2

∫ ∞

0

C(T2, K)− C(T1, K)

K2
dK. (4.17)

From Jensen’s inequality, it follows that this is an upward-biased estimator.46 Next,

the implementation of model-free implied volatility as in Jiang and Tian (2005) is

described.47

The implementation proposed by Jiang and Tian (2005) allows the researcher to

relax two assumptions of the Britten-Jones and Neuberger (2000) model. Jiang and

Tian (2005) remove the present value of dividend payments from the current stock

45Due to the focus of the study, the construction of stochastic volatility processes that are consistent
with the initial option prices and can be used to price (exotic) options is not described. A
description of this application can be found in Britten-Jones and Neuberger (2000), pp. 848-857.

46See ibid., pp. 846-847.
47In addition, some citations are taken from Rouah and Vainberg (2007), pp. 322-336.
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price to control for dividends. To permit non-zero risk-free rates, they consider call

options on forward asset prices. The forward asset price is given by

F ∗
t = Ste

−r(T−t).48 (4.18)

As the call option prices C(F ∗
t , K) and C(St, Ke

rT ) are identical, the strike price K

of the call option in (4.16) is replaced by KerT such that

EQ

[∫ T2

T1

(
dSt

St

)2
]
= 2

∫ ∞

0

C(T2, Ke
rT2)− C(T1, Ke

rT1)

K2
dK. (4.19)

The integrated variance between the current time and time T is obtained from

EQ

[∫ T

0

(
dSt

St

)2
]
= 2

∫ ∞

0

C(T,KerT )−max(S0 −K, 0)

K2
dK. (4.20)

Applying the trapezoidal rule to approximate the integral yields

2

∫ ∞

0

C(T,KerT )−max(S0 −K, 0)

K2
dK ≈

m∑

i=1

[g(T,Ki) + g(T,Ki−1)]∆K (4.21)

where Ki = Kmin + i∆K and Kmin(Kmax) denote the lowest (highest) available

strike price. Further, ∆K = (Kmax−Kmin)/m represents the difference between two

adjacent strike prices where m is equal to the number of strike prices. The function

g is defined as g(T,Ki) = [C(T,Kie
rT )−max(S0 −Ki, 0)]/K

2
i .

49

Two implementation issues are encountered if model-free volatility is calculated ac-

cording to (4.21). First, in equation (4.21), model-free volatility is computed by

integrating over a complete set of strike prices from zero to infinity. However, in

practice, market option prices are only available for a limited strike price interval

[Kmin, Kmax]. Thus, by neglecting the tails of the distribution, truncation errors

arise. To quantify the extent of these truncation errors, Jiang and Tian (2005)

48Here, St denotes the stock price after the present value of the dividends to be paid prior to option
maturity is removed.

49See Jiang and Tian (2005), pp. 1308-1313.
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derive upper bounds for right and left truncation errors.50 Based on a simulation

experiment, Rouah and Vainberg (2007) report that the truncation error is smaller

than 5%, provided that the strike price range covers the interval Kmin = 0.9K and

Kmax = 1.1K.51 Thus, Taylor et al. (2010) note that the truncation problem is more

relevant for stock options, which are traded at fewer strike prices than stock index

options.52 Second, the calculation of the integral requires a continuum of strike

prices, which is not available in practice. For instance, the strike price intervals of

DAX options are 50, 100, and 200 index points, depending on the remaining lifetime

of the option. Jiang and Tian (2005) illustrate the discretisation problem based on

the stochastic volatility and random jump model. They report that the discretisation

errors of one-month and six-month options are marginal, if ∆K ≤ 0.35 SD, where

SD denotes the standard deviation.53 In addition, Rouah and Vainberg (2007) find

that the error is below 4%, if the discrete strike price interval is lower than $5.00.54

Despite the particular case of the Heston (1993) model considered by Rouah and

Vainberg (2007), Jiang and Tian (2005) present a method to mostly overcome the

truncation and discretisation error problems.

They suggest an interpolation-extrapolation method comprising the following steps:

1. In the first step, implied volatilities are calculated based on the observed mar-

ket options prices via the BS formula.55,56

50They reported that the truncation errors become very small if the truncation points Kmin and
Kmax, which are expressed as multiples of the standard deviation (SD) from the forward price
F0, are more than two 2 SDs away from F0.

51In the experiment, they assume that the volatility of the stock price (which is taken as the
reference level for model-free volatility) evolves according to the Heston (1993) model. See
Rouah and Vainberg (2007), p. 326.

52See Taylor et al. (2010), p. 873.
53See Jiang and Tian (2005), p. 1313.
54Again, they use the continuous-time variance process of the Heston (1993) model.
55Thus, the calculation of model-free volatility is based on all observed option prices, both calls
and puts.

56While the theoretical concept of Britten-Jones and Neuberger (2000) yields a mostly model-free
implied volatility, the implementation developed by Jiang and Tian (2005) uses the BS model
to obtain BS-implied volatilities for the smoothing procedure. The question of whether the
application of the BS model contradicts the basic concept of model-free volatility is discussed at
the end of this Section.
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2. To mitigate the truncation problem, the implied volatility surface is extrap-

olated by setting the implied volatility of options with strike prices below

(above) the lowest (highest) available strike price equal to the implied volatil-

ity of the lowest (highest) available strike price.57 Then, a smoothing method

is applied to interpolate between the available strike price and thereby increase

the discreteness of the strike prices.

3. Call option prices are calculated from the interpolated-extrapolated IVS based

on the BS model.

4. The model-free volatility is obtained from (4.21) by plugging the smoothed

call option prices into the equation.

The effectiveness of the interpolation-extrapolation method suggested by Jiang and

Tian (2005) with respect to mitigating the above mentioned implementation prob-

lems is also analysed by Rouah and Vainberg (2007). They demonstrate that the

method considerably reduces the truncation and discretisation errors and conclude

that, even with a small strike price range, the method delivers a very good ap-

proximation result.58,59 Next, the advantages and disadvantages of the model-free

volatility concept are discussed.

The use of BS-implied volatilities to forecast volatility changes has been criticised

by many authors, as the BS model is based on constant volatility. Replacing the BS

model with a stochastic volatility model to derive implied volatilities resolves this

inconsistency (see Section 4.1.3 for a description of stochastic volatility models).

However, the application of a stochastic volatility model requires the specification

of a stochastic process for the instantaneous volatility. Thus, studies examining

options market efficiency based on implied volatilities represent joint tests of market

57Jiang and Tian (2005) suggest applying this extrapolation method, as they argue that the ap-
proximation error induced by this method is smaller than the truncation error (the truncation
error occurs if options with strike prices below (above) Kmin (Kmax) are ignored). See Jiang and
Tian (2005), pp. 1316-1318.

58See Rouah and Vainberg (2007), p. 332.
59The implementation procedure suggested by Jiang and Tian (2005) is, for instance, also used by
Muzzioli (2010) and Cheng and Fung (2012).
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efficiency and the applied option pricing model. The joint hypothesis problem makes

the analysis of options market efficiency difficult, as the misspecification of a given

option pricing model can induce systematic errors in option prices and volatility

forecasts.60 Poteshman (2000) argues that these errors can explain why certain

studies find that volatility forecasts based on implied volatilities are biased and

inefficient.61 The concept of model-free volatility proposed by Britten-Jones and

Neuberger (2000) avoids this problem. In theory, it provides an alternative approach

that allows the researcher to test for options market efficiency without relying on a

specific option pricing model. However, the use of model-free volatility qualifies this

statement, as further assumptions and transformations are necessary.

The above suggested implementation of model-free volatility developed by Jiang

and Tian (2005) requires a smoothing method to interpolate between the available

strike prices. Principally, the smoothing method can be applied to market option

prices and implied volatilities. To avoid numerical difficulties, most studies apply

the smoothing method to the implied volatilities.62 For instance, Martin et al.

(2009), Muzzioli (2010), Jiang and Tian (2010), Taylor et al. (2010), and Cheng and

Fung (2012) compute model-free volatility by fitting the implied volatility function

across strike prices. Smoothing implied volatilities is also widely employed to ex-

tract the risk-neutral probability distribution from option prices. Jackwerth (2004)

recommends this method, as the magnitude of implied volatilities across strike prices

differs less than those for call option prices.63,64

However, as the calculation of implied volatilities for the smoothing procedure re-

quires the use of the BS model, the question is whether volatility forecasts based on

the Britten-Jones and Neuberger (2000) approach can be still considered model-free.

While the use of the BS model to derive volatility forecasts is subject to controversy

60See Britten-Jones and Neuberger (2000), pp. 839-840.
61See Poteshman (2000), pp. 9-14.
62See Jiang and Tian (2005), p. 1315.
63See Jackwerth (2004), pp. 20-21.
64A comprehensive list of studies on option-implied, risk-neutral distributions that directly apply
nonparametric methods to implied volatilities is provided in Jackwerth (2004), p. 22.
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in the literature65, the use of the BS model for the conversion of option prices into

implied volatilities (and vice versa) is widely accepted. This transformation adapts

the common market practice among option traders of quoting the prices of stan-

dard options in terms of implied volatility. Market actors prefer implied volatility

to prices when quoting options, as implied volatilities change less in response to

movements in the underlying asset price than option prices.66

Because, in this context, the BS model resembles a computational tool that deliv-

ers a one-to-one mapping between option prices and implied volatilities, Jiang and

Tian (2005) argue that it is not necessary for market participants to believe in the

assumptions of the BS model.67 An additional field of research that also considers

the application of the BS model as a computational device that does not require

accepting the BS assumptions are stochastic implied volatility models.68 Moreover,

Hafner (2004) remarks that if the assumptions of the BS model do not hold, then

the BS formula is “just a convenient and well-known mapping” function and other

bijective transformation functions of the option price are applicable.69 Because, to

my knowledge, the above question regarding the application of the BS model as a

simple transformation rule has not been discussed in the literature and is not within

the scope of this study, this issue is left for further research.

In addition to the independence of model-free volatility from any option pricing

model, the Britten-Jones and Neuberger (2000) approach has further advantages.

First, model-free volatility does not require the selection of a particular moneyness

level.70 Second, while BS-implied volatility is based on the information of a single

65See, for instance, Campbell et al. (1997), pp. 377-379.
66See Schönbucher (1999), p. 2072.
67Rebonato (2004), Franke et al. (2004), Fengler (2004), Alexander (2008), and Birru and Figlewski
(2012), among others, also note that this practice does not imply that the market actors accept
the assumptions of the BS model.

68While stochastic volatility models are based on an additional stochastic process for the instanta-
neous volatility, stochastic implied volatility models directly model the dynamics of the IVS. See
the initial work by Schönbucher (1999) and further developments by Brace et al. (2002), Cont
and da Fonseca (2002), and Hafner (2004).

69See Hafner (2004), p. 37.
70Typically, the BS implied volatility of ATM options is used to forecast volatility, as the effects of
market frictions on option pricing should be lower for highly liquid ATM options. Further, some
studies considering BS implied volatilities at different moneyness levels demonstrate that the BS
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option, model-free volatility considers information across all available strike prices.

Thus, Bollerslev et al. (2011) argue that using cross-sectional option prices aggre-

gates out pricing errors in individual options.71 Additionally, by using a broader

information set model-free implied volatility should be informationally more effi-

cient than BS-implied volatility.72

Because the focus of this study is the forecasting performance of implied volatilities

and not information efficiency, the final outcome of the above discussion regarding

employing the BS model to obtain implied volatilities does not preclude the use of

model-free implied volatility as a volatility forecast.73 Even if one does not agree

with the above-cited papers arguing for the use of the BS model as a transformation

rule without accepting the BS assumptions, the use of model-free implied volatility

as a volatility forecast can be justified by the larger information set it provides

relative to individual BS implied volatilities.74 In addition, if one completely rejects

the use of the BS model in the procedure suggested by Jiang and Tian (2005), it is

possible to directly apply the smoothing methods to option prices. An alternative

model that is also defined in a stochastic setting is presented in the next Section.75

4.1.3. Stochastic Volatility Models

Similar to GARCH models, stochastic volatility models are based on the assumption

that volatility follows a stochastic process. Allowing for stochastic volatility intro-

duces a second source of randomness and, as a consequence, market completeness

implied volatility of ATM options provides the most information on future volatility. See, for
instance, Fleming (1998) and Christensen and Prabhala (1998).

71See Bollerslev et al. (2011), p. 236.
72See Jiang and Tian (2005), p. 1337.
73However, studies considering the information efficiency of the options market are affected by this
discussion due to the above mentioned joint hypothesis problem.

74Of course, the argument that model-free implied volatility is not based on a certain option pricing
formula is no longer valid.

75As the aim of this study is to examine the forecasting performance of implied volatilities, the
volatility forecast based on model-free volatility is presented in this Section. The other option
pricing models do not provide such a direct volatility forecast. Consequently, the general ability
of the Britten-Jones and Neuberger (2000) approach to reproduce the DAX IVS is not considered.
A literature review on the forecasting ability of model-free volatility is provided in Chapter 5.
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is lost. It follows that a perfect hedge of the option is no longer possible. This

hedging problem can be solved by taking a market price for volatility risk into ac-

count.76 Alternatively, other hedging concepts such as super-replication or local risk

minimisation can be applied.77

The stochastic volatility model of Heston (1993) is currently the most popular

stochastic volatility model.78 The dynamics of the underlying asset price St and

the variance σ2
t are described by

dSt = µtStdt+ σtStdz1,t (4.22)

dσ2
t = κ(σ2 − σ2

t )dt+ ησtdz2,t (4.23)

where κ represents the rate of mean reversion of σ2
t to its long-run mean σ2, η is the

constant volatility of volatility, and dz1,t and dz2,t are Wiener processes. Thus, the

Heston (1993) model assumes that variance is driven by a mean-reverting square-

root process that has its own constant volatility. Further, the source of randomness

in the volatility process dz2,t is correlated with the randomness of the underlying

price process dz1,t, the correlation coefficient of which is ρ.79,80

To derive Heston’s (1993) option valuation equation, the market price of volatility

risk must be determined, as the market is incomplete and volatility is, by assump-

tion, not tradable. For this reason, Heston (1993) suggests that the price of volatility

risk is proportional to the instantaneous variance in the asset price. This assump-

tion is motivated by asset pricing model developed by Cox et al. (1985), where in

equilibrium the consumption process is given by

dCt = µCσ
2
tCtdt+ σCσtCtdz3,t. (4.24)

76See Rebonato (2004), p. 237.
77See Javaheri (2005), p. 27.
78See Gatheral (2006), p. 15.
79See Heston (1993), pp. 328-329.
80The Heston (1993) model was extended by Bates (1996b), Scott (1997), and Pan (2002). Bates
(1996b) includes jumps to overcome certain shortcomings of the stochastic volatility model.
While Scott (1997) incorporates stochastic interest rates, Pan (2002) adds stochastic dividend
payments to the model.
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Because the consumption rate Ct is correlated with the asset price, the risk premium

(or price of volatility risk) ζ is proportional to the variance, such that ζ(S, σ2, t) =

ζσ2. The resulting partial differential equation (PDE) is given by

∂V

∂t
+
1

2
σ2S2∂

2V

∂S2
+ρησ2S

∂2V

∂S∂σ2
+
1

2
η2σ2∂

2V

∂σ4
+rS

∂V

∂S
−rV = −[κ(σ2−σ2)−ζV ] ∂V

∂σ2
.81

(4.25)

According to Duffie et al. (2000) this equation has a solution of the form

C(S, σ2, t) = SP1 −Ke−r(T−t)P0 (4.26)

where the probabilities P1 and P0 must satisfy the above PDE (4.25).82,83 As the

PDE (4.25) must hold for both probabilities P1 and P0, the equation (4.26) is substi-

tuted into the above PDE. In the following, the PDE is simplified by the introduction

of a new variable, which is defined as x := ln[S]. After the substitution, the PDEs

can be written as

1

2
σ2∂

2Pj

∂x2
+ρησ2 ∂

2Pj

∂x∂σ2
+
1

2
ησ2∂

2Pj

∂σ4
+(r+ujσ

2)
∂Pj

∂x
+(a−bjσ2)

∂Pj

∂σ2
+
∂Pj

∂t
= 0 (4.27)

for j = 1, 0 where

u1 =
1

2
, u0 = −1

2
, a = κσ2, bj = κ− jρη. (4.28)

Both PDEs are subject to the terminal condition84

Pj(x, σ
2, T ; ln[K]) =





1 if x ≥ ln[K]

0 if x < ln[K]
(4.29)

81See Heston (1993), p. 329.
82See Duffie et al. (2000), pp. 1346-1348.
83By analogy with the BS formula, P1 represents the delta of a European call option and P0 is
equal to the conditional probability that the option is ITM in a risk-neutral world.

84See Heston (1993), p. 330.
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The stochastic process that drives volatility is a special case of an affine jump-

diffusion (AJD) process. Duffie et al. (2000) demonstrate that AJD processes can

be solved analytically by calculating an extended transform. In the case of the Heston

(1993) model, this is a Fourier transform. Thus, based on the Fourier transformation,

it can be shown that the desired probabilities Pj are given by the integral of a real-

valued function

Pj(x, σ
2, T ; ln[K]) =

1

2
+

1

π

∫ ∞

0

Re

[
e−iφ ln[K]fj(x, σ

2, T ;φ)

iφ

]
dφ (4.30)

where fj(x, σ
2, T ;φ) denotes a characteristic function.85

In the following, the properties of the Heston (1993) model are considered. First,

the effect of stochastic volatility on implied volatility is investigated. Next, the

implications of the mean-reversion behaviour of volatility are discussed. Finally, the

consequences of the volatility of volatility parameter are analysed.

The effect of stochastic volatility on implied volatility depends on the price-volatility

correlation ρ. In general, stochastic volatility generates fat tails in the log price

distribution. Thus, implied volatilities calculated based on the option prices from

the Heston model will exhibit a volatility smile. The shape of the smile pattern

is dictated by the correlation coefficient ρ. If volatility and the asset price are not

correlated, then the volatility smile is symmetric. A negative (positive) skew occurs

when the price-volatility correlation is negative (positive).86,87

Next, the effect of mean reversion in volatility on implied volatilities is considered.

Mean reversion in volatility is based on the notion that a normal level of volatility

exists and volatility tends to revert back towards this level.88 Therefore, mean

reversion governs the behaviour of the volatility term structure. In the Heston (1993)

model, mean reversion in volatility is captured by the term κ(σ2 − σ2
t )dt, where σ

2

85See Gatheral (2006), pp. 16-19.
86See Alexander (2008), p. 271.
87The negative price-volatility correlation that is often observed in equity markets can be explained
by the leverage effect. The leverage effect states that lower stock prices lead to higher firm leverage
ratios, which increase stock return volatility. See Hafner (2004), p. 46.

88See Engle and Patton (2001), p. 239.
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denotes the long-term average of volatility (or normal level) and κ represents the

rate of mean reversion.89 To ensure that the volatility process does not explode,

the rate of mean reversion must be positive. Further, higher reversion rates imply

that volatility more rapidly converges back to its long-term average level.90 As

Cox et al. (1985) demonstrate that, for positive κ, the variance has a steady-state

distribution with mean σ2, long-term stock returns are asymptotically normally

distributed, where the variance per time unit is determined by σ2.91

Finally, the effect of the parameter η, which governs the volatility of volatility, is

examined. Simply, if the parameter η is zero, the volatility is deterministic and the

stock returns are normally distributed. Heston (1993) demonstrates that a higher

volatility of volatility increases the kurtosis and creates heavier tails in the return

distribution. This influences the shape of the volatility smile (e.g., a symmetric smile

becomes more pronounced for higher η). This means that the Heston (1993) model

provides higher far ITM and far OTM option prices than the BS model.92

Despite these desirable features, Alexander (2008) notes that the volatility smiles im-

plied by stochastic volatility models for equities and market volatility smiles exhibit

different dynamics. For instance, if the underlying stock price changes the model

smile, the model and market smiles move in different directions.93 Another prob-

lem associated with the stochastic volatility model is noted by, among others, Bates

(1996b) and Das and Sundaram (1999) and refers to the choice of coefficients. They

find that unreasonably high parameters are necessary to reproduce the pronounced

volatility smiles of short-term options.94 In addition, as described above, stochastic

volatility models are not complete, meaning that the market price of volatility risk

must be specified and estimated. This makes the model vulnerable to specification

errors.95 Having discussed the characteristics of stochastic volatility models, the

89See Heston (1993), p. 329.
90See Alexander (2008), p. 273.
91Therefore, the BS model should deliver reasonable results for long-term options. See Heston
(1993), p. 335.

92See ibid., p. 338.
93See Alexander (2008), p. 276.
94This problem only occurs for short-term options.
95See Hafner (2004), p. 48.
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following describes the approaches of Nagel (2001) and Ender (2008), who apply

stochastic volatility models to DAX option prices. The intention is to determine

whether stochastic volatility models are able to capture the features of the DAX

IVS that are outlined in this empirical study (see Chapter 3). First, Nagel’s (2001)

thesis is considered.

Nagel (2001) compares the option prices calculated from the Heston (1993) model

and the BS model with the observed DAX market option prices for the period from

February 1992 to December 1994. His out-of-sample results for different moneyness

levels and maturities indicate that in most cases the Heston (1993) model exhibits

lower pricing errors than the BS model.96 Thus, the Heston (1993) model provides

a better fit for the DAX volatility smile than the BS model.97

In a comprehensive study, Ender (2008) extends these findings by investigating the

pricing performance of 11 option pricing models, which include the BS model, a

stochastic volatility model, a jump-diffusion model, and a stochastic volatility jump-

diffusion model.98 Her sample comprises DAX closing prices for the period from

January 2002 to September 2005. Based on an out-of-sample analysis, she reports

that the Heston (1993) model can better explain recorded market option prices than

the BS model.99

The plot of the average DAX volatility smiles in Figure 3.6 demonstrates that

DAX options with fewer than 3 months to maturity generally exhibit U-shaped

volatility smiles. Further, the DAX volatility smiles of short-term options are more

pronounced than those of options with longer maturities. With respect to these

patterns, Nagel (2001) finds that the Heston (1993) model is able to capture the

U-shaped smile of DAX options, but it is less effective with respect to providing an

acceptable fit to the smile for DAX short-term options.100 Thus, as the patterns of

DAX volatility smiles in this study relate to those in Nagel (2001), the application

96See Nagel (2001), p. 164.
97See ibid., p. 137.
98In particular, she employs the Heston (1993), Merton (1976), and Bates (1996b) models.
99See Ender (2008), pp. 95-98.
100See Nagel (2001), pp. 137-139.



126 4. Volatility Forecasting Models

of the Heston (1993) model to fit the existing DAX volatility smile seems suitable

for mid-term/long-term options.

Another empirical finding regarding DAX volatility smiles that is considered in Sec-

tion 3.3.1 is the remarkable time series variation of the smiles. Figure 3.9 and Figure

3.10 show that the levels and skewness of DAX volatility smiles clearly change dur-

ing the sample period. Note that these variations in the smiles reflect option price

changes. Ender (2008) also analyses the ability of the Heston (1993) model to

capture such price movements and reports that the model exhibits a better out-of-

sample performance than the BS model.101 Thus, as the data used by Ender (2008)

partly overlap the sample of this study, this suggests that the Heston (1993) model

is maybe a better choice than the BS model for the present DAX IVS. Whether the

introduction of jumps can help to improve these findings is examined in the next

Section.

4.1.4. Mixed Jump-Diffusion Models and Pure Jump Models

In addition to stochastic volatility models, mixed jump-diffusion models and pure

jump models (also called Levy models) have been suggested to capture the volatility

smile and dynamics of the IVS. While mixed jump-diffusion models assume that

continuous asset price changes are combined with jumps, pure jump models are based

on the assumption that all asset price changes are due to jumps.102,103 An example

of a mixed jump-diffusion model is the Merton (1976) model, which was introduced

in Section 2.6.2. As mentioned above, Merton (1976) proposes an extension of the

101See Ender (2008), pp. 97-98.
102See Hull (2006), p. 562.
103As the focus of this Section is to describe the basic principals of jump models, the initial

mixed jump-diffusion model developed by Merton (1976) is presented. In addition, a more
general jump-diffusion model developed by Bates (1991) is proposed, as it overcomes certain
shortcomings of the Merton (1976) model. For a discussion of a pure jump model, e.g., the
variance-gamma model, see Hull (2006), pp. 564-566.
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BS model in which the asset price follows a continuous diffusion process that is

overlaid with jumps. He suggests that the process is given by

dS

S
= (b− λk)dt+ σdz + kdq (4.31)

where b denotes the cost-of-carry, λ is the frequency of Poisson events, k represents

the average jump size expressed as a percentage of the asset price, and dq is the

jump component. Further, he assumes that the two stochastic processes dz and dq

are independent.104

For the special case that jump sizes are lognormally distributed with variance s2, a

closed-form solution for the price of a European call option is given by

∞∑

n=0

e−λ′T (λ′T )n

n!
Cn(S,K, T, rn, σ

2
n) (4.32)

where λ′ = λ(1 + k).105 The BS call option price Cn is determined by

σ2
n = σ2 +

ns2

T
(4.33)

and

rn = r − λk +
nγ

T
(4.34)

where γ = ln(1+k).106 By imposing the assumption that jump risk is nonsystematic,

jump risk can be fully diversified and is thus not priced into the economy. As

highlighted in Section 2.6.2, the Merton (1976) model is able to produce pronounced

smiles for short-term options that, unfortunately, flatten out too rapidly at longer

maturities.107 The reason is that the effect of jumps decreases at longer maturities,

as positive and negative jumps cancel out over long time periods.108

104See Merton (1976), pp. 132-138.
105The parameter k denotes the average jump size, which is expressed as a percentage of the asset

price.
106See Hull (2006), pp. 563-564.
107See Das and Sundaram (1999), p. 213.
108See Hafner (2004), p. 49.
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Because Merton’s simplifying assumption regarding idiosyncratic jump risk is not

plausible for index options, Bates (1991) suggests a more general jump-diffusion

model that considers the jump component of the asset return as systematic risk. In

addition, the Bates (1991) model allows for asymmetric jumps that are consistent

with asymmetric volatility skews. Moreover, he assumes that the underlying asset

price is, under a risk-neutral probability measure, generated by the following mixed

jump-diffusion process:

dS

S
= (b− λk)dt+ σdz + kdq. (4.35)

Further, the logarithm of 1 + k is normally distributed

ln(1 + k) ∼ N(γ − 1/2 δ2, δ2) (4.36)

and the expected jump size is E(k) ≡ k = eγ − 1.109

As Bates (1991) allows for nonsystematic jump risk, some restrictions on preferences

and technologies must be imposed.110 Thus, he assumes that optimally invested

wealth follows a jump-diffusion process and consumers have a time-separable power

utility function.111 The risk-neutral jump-diffusion process that describes the asset

price changes in the Bates (1991) model is subject to these restrictions.112

In the Bates (1991) model, the price of a European call option is given by

C =

∞∑

n=0

e−λT (λT )n

n!
Cn(S,K, T, r, bn, σn) (4.37)

with

bn = b− λk +
nγ

T
σn =

√
σ2 + δ2(n/T ) (4.38)

109See Bates (1991), pp. 1023-1025.
110See Bates (1996a), p. 68.
111In addition, he makes the assumption that markets are frictionless. See Bates (1991), p. 1024.
112See ibid., p. 1024.
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where γ = ln(1 + k).113 The effects of the model parameters on the smile shape are

considered below. First, the impact of the jump size is described.

A general feature of jump-diffusion models is that jumps induce fatter tails than

would be observed under the normal distribution.114 As the Bates (1991) model

allows for asymmetric jumps, the expected jump size has nonzero mean and can in-

fluence the shape of the volatility smile. According to Bates (1991), they are related

as follows: if the expected jump size k is positive (negative), then the implied dis-

tribution is positively (negatively) skewed.115 As a consequence, negative skewness

and excess kurtosis induce an asymmetric volatility smile.116

Next, the effect of the jump frequency λ on the smile shape is outlined. In an analysis

of the qualitative features of jump-diffusion smiles, Rebonato (2004) demonstrates

that an increased jump frequency leads to an (overall) upward shift of implied volatil-

ities and a steeper volatility smile for short-term options. He argues that the overall

increase in implied volatilities can be explained by the occurrence of additional

jumps, which lead to fatter tails and a higher variance.117 Despite these attractive

features, the application of jump-diffusion models suffers from difficulties in param-

eter estimation and solution finding for the pricing PDE, as well as the impossibility

of perfect hedging.118 In addition, Das and Sundaram (1999) demonstrate that

jump-diffusion models are not consistent with decreasing or U-shaped term struc-

tures of ATM forward options.119 To resolve the question of whether jump models

can be employed to replicate the DAX IVS considered in this study, the findings

of Detlefsen and Härdle (2007) and Ender (2008) that apply jump models to DAX

option prices are considered.

The above-cited study by Ender (2008) also examines the pricing performance of

jump models and compares their performance to that of stochastic volatility models

113See Haug (2007), pp. 256-257.
114See Hafner (2004), p. 49.
115See Bates (1991), p. 1024.
116See Jarrow (1998), p. 389.
117See Rebonato (2004), pp. 494-499.
118See Wilmott (1998), p. 333.
119See Das and Sundaram (1999), p. 215.
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and the BS model for DAX options. While the Merton (1976) model outperforms the

BS model, the Merton (1976) model is, in turn, outperformed by the Heston (1993)

model.120 In addition to the Merton (1976) and Heston (1993) models, she also

fits the Bates (1996b) model and a variant of Zhu’s (2000) modular approach that

combines stochastic volatility and jumps. She reports that the use of more complex

option pricing models does not result in clearly reduced pricing errors.121,122

In a study on calibration risk, Detlefsen and Härdle (2007) fit the Heston (1993) and

Bates (1996b) models to DAX options for the period from April 2003 to March 2004.

They confirm Ender’s (2008) finding that the Heston (1993) and Bates (1996b) mod-

els provide a good fit for the DAX IVS.123,124 As neither of these studies identifies

clear differences between the performance of the Heston (1993) and Bates (1996b)

models, the use of a simpler model (here: the Heston (1993) model), which is less

prone to overfitting, is advisable.

Because the samples used in Ender (2008) and the present overlap, Ender’s (2008)

findings are relevant for the above question regarding fitting the DAX IVS analysed

in this study using jump models. Thus, drawing on the evidence presented by

Ender (2008), the Merton (1976) model should better support the characteristics of

the existing DAX IVS than the BS model. However, comparing jump models with

stochastic volatility models, the above results suggest the use of the Heston (1993)

model to fit the DAX IVS considered in this study.

In addition to these considerations, the abovementioned inconsistency of jump-

diffusion models with certain patterns of the volatility term structure, which is

documented by Das and Sundaram (1999), is essential for reproducing the DAX

IVS. Figure 3.12 illustrates that the average term structure is decreasing for short-

120These results are based on an out-of-sample analysis.
121See Ender (2008), pp. 95-98.
122With respect to the comparison of jump models and the BS model, she finds that the Merton

(1976) and Bates (1996b) models generate lower pricing errors than the BS model. See Ender
(2008), pp. 97-98.

123See Detlefsen and Härdle (2007), p. 52.
124Detlefsen and Härdle (2007) investigate the pricing performance of the models using in-sample

tests. See ibid., p. 51.
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term DAX ATM options. Further, the term structure spreads presented in Figure

3.15 indicate that the slope of the DAX term structure changes during the sample

period. For this reason, jump-diffusion models do not seem to be a reasonable choice

to fit the DAX IVS considered in this study. Besides forecasting financial volatility

based on implied volatility, time series models can be used to predict volatility. The

following Section presents a brief introduction into some time series models that are

applied in this study to forecast DAX volatility.

4.2. Time Series Models for Forecasting Volatility

In their comprehensive review on forecasting financial volatility, Poon and Granger

(2003) present the most commonly used time series volatility models. They classify

time series volatility models into three groups. The first group is called Predictions

Based on Past Standard Deviations and covers the Historical Average, the Moving

Average, the Exponential Smoothing and the Exponentially Weighted Moving Aver-

age (EWMA) methods.125 Further, they include the class of Autoregressive (AR)

models such as the Autoregressive Integrated Moving Average (ARIMA), ARFIMA,

and Threshold Autoregressive (TAR) models, which relate volatility to its lagged

values and past error terms, in this group. In addition, the HAR model developed

by Corsi (2009) also belongs to this group.126 The second group of time series

volatility models comprises the ell-known family of Autoregressive Conditional Het-

eroskedasticity (ARCH) and GARCH models, which focus on conditional variance.

The last group contains stochastic volatility (SV)models that describe instantaneous

125Poon and Granger (2003) do not cover nonparametric methods to predict volatility, as some
studies find that these methods have low forecasting power. They refer to Pagan and Schwert
(1990) and West and Cho (1995).

126Poon and Granger (2003) do not mention the HAR model, as it had yet to be published.
However, the models belonging to this group follow its model structure.
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volatility using an own stochastic process. The GARCH model family, the ARFIMA

model, and the HAR model are presented in the following.127,128

4.2.1. GARCH Models

Financial time series exhibit certain stylised facts that are well-documented in the

literature. An important finding is that the distribution of financial returns exhibits

fatter tails than the normal distribution. The fatter tails are induced by an increased

number of outliers and volatility clustering. The volatility clustering effect describes

the tendency of financial volatility to cluster. This means that a large (small) price

change is followed by another large (small) price change. Engle (1982) and Bollerslev

(1986) developed a volatility class of models, the ARCH and GARCH models, to

capture these stylised facts. As many excellent introductions to GARCH models

exist129, the following Section concentrates on providing an introduction to the basic

model structure, the stationarity condition, and the forecast equation. First, the

standard GARCH model is presented.

The GARCH Model

Suppose that the asset return at is explained by

at = µ+ εt (4.39)

εt =
√
htut (4.40)

127See Bauwens et al. (2012) as well as Xiao and Aydemir (2011) for a comprehensive description
of recent volatility models.

128As the estimation of SV models is more complex than for GARCH models (see Martino et al.
(2011), p. 487), this study does not use SV models. Moreover, more simplistic approaches (e.g.,
the EWMA method) are not employed, as some of them can be attributed to more sophisticated
models (in case of the EWMA method, this is the so-called Integrated GARCH (1,1) model),
and their DAX forecasting performance is documented by other studies.

129See, for instance, Franke et al. (2004), Teräsvirta (2009), and Francq and Zakoian (2010).
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where ut ∼ D(0, 1) denotes a white noise process.130,131 A process (εt) is called a

GARCH(p,q) process if it satisfies

1. E(εt|It−1) = 0, t ∈ Z

2. V ar(εt|It−1) = ht = ω +
∑q

i=1 αiε
2
t−i +

∑p
j=1 βjht−j , t ∈ Z

where It−1 denotes the information set that contains all information up to time

t − 1.132 To ensure that the conditional variance is always positive, the sufficient,

but not necessary, conditions are ω > 0, αi ≥ 0 for i = 1, . . . , q and βj ≥ 0 for

j = 1, . . . , p. Although the GARCH model is parsimoniously parameterised, it

allows the researcher to capture persistent volatility clusters.133

The covariance stationarity of a GARCH(p,q) process requires that

q∑

i=1

αi +

p∑

j=1

βj < 1. (4.41)

In this case the unconditional variance is given by

σ2 =
ω

1−
∑q

i=1 αi −
∑p

j=1 βj
.134 (4.42)

In empirical applications, a GARCH (1,1) is often sufficient to describe the data.

The conditional variance of a GARCH(1,1) has the form

ht = ω + α1ε
2
t−1 + β1ht−1 (4.43)

with ω > 0, α1 > 0, and β1 > 0. The process exhibits weak-stationarity for

α1 + β1 < 1. The kurtosis of a GARCH(1,1) process exists if 3α2
1 + 2α1β1 + β2

1 < 1

and is given by

K[εt] = 3 +
6α2

1

1− β2
1 − 2α1β1 − 3α2

1

. (4.44)

130See Poon (2005), p. 37.
131It is frequently assumed that the distribution D is normal.
132See Francq and Zakoian (2010), p. 19.
133See Kirchgässner and Wolters (2007), pp. 252-254.
134See Poon (2005), p. 38.
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It is always greater than three because α1 > 0. This implies that the distribution of

εt is leptokurtic.
135

Further, it can be shown that the equation for the GARCH(1,1) model can be written

as

ht =
ω

1− β1
+ α1

∞∑

j=1

βj−1
1 ε2t−j . (4.45)

This transformation demonstrates that the GARCH(1,1) has an ARCH(∞) repre-

sentation that is characterised by geometrically declining weights.136

Finally, this Section presents the construction of (multi-)period volatility forecasts

based on the GARCH(1,1). The one-step-ahead volatility forecast based on the

information set It is given by

ĥt+1|t = E[ε2t+1|It] = ω + α1ε
2
t + β1ht. (4.46)

Similarly, the two-step forecast at time t is

ĥt+2|t = ω + α1ε
2
t+1 + β1ht+1. (4.47)

Based on E[ε2t+1|It] = ht+1
137, which follows from (4.40), the forecast of ht+2 can be

expressed as

ĥt+2|t = ω + (α1 + β1)ht+1. (4.48)

Repeated substitution for the τ -step-ahead forecast yields

ĥt+τ |t = ω
1− (α1 + β1)

τ−1

1− α1 − β1
+ (α1 + β1)

τ−1ht+1|t. (4.49)

For large τ , the forecast of the conditional variance converges towards its uncondi-

tional variance.138

135See Franke et al. (2004), pp. 218-220.
136See Francq and Zakoian (2010), p. 42.
137Note that E[ε2t ] = ht.
138See Kirchgässner and Wolters (2007), pp. 255-256.
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The Exponential GARCH model

Standard GARCH models are based on the assumption that positive and negative

shocks have the same effect on conditional volatility. However, empirical studies typ-

ically find that bad news (negative shocks) tends to increase volatility to a greater

extent than good news (positive shocks).139 To extend the GARCH model to rep-

resent such asymmetric effects, Nelson (1991) suggests the Exponential GARCH

(EGARCH) model.140 The EGARCH(p,q) models specifies a logarithmic formula-

tion for the conditional variance, which can be written as

ln ht = ω +

p∑

j=1

βj ln ht−j +

q∑

k=1

[
θkǫt−k + γk

(
|ǫt−k| −

√
2/π

)]
(4.50)

where ǫt = εt/
√
ht.

141 Because this formulation ensures that the conditional variance

is always positive, no further non-negativity conditions are necessary. The ARCH

effect in equation (4.50) is produced by the term θkǫt−k, and the asymmetric effect

is captured by γk

(
|ǫt−k| −

√
2/π

)
. The covariance stationarity of the process is

guaranteed by
∑q

j=1 βj < 1.

Due to the logarithmic formulation of the EGARCH model, the calculation of the

forecasts is more sophisticated than those of the standard GARCH model. For

instance, according to Tsay (2005), the one-step-ahead volatility forecast based on

the EGARCH(1,0) is given by

ĥt+1 = h2α1t e(1−α1)ωeg(ǫ) (4.51)

g(ǫ) = θǫt−1 + γ
(
|ǫt−1| −

√
2/π

)
. (4.52)

139Black (1976) was the first to describe this effect. He attributes it to the following mechanism:
bad news tends to reduce the price of an asset, which implies a higher debt-to-equity ratio and
thus higher volatility. Therefore, this effect is also called the Leverage Effect.

140In addition to the EGARCH model, Glosten et al. (1993) and Zakoian (1994), among others,
have also proposed asymmetric models. As numerous GARCH specifications exist, it is necessary
to select the relevant GARCH models. An explanation of why this Section of this study employs
particular GARCH models is provided in Section 6.4.

141In addition, it is assumed that E(ǫ) ∼ N(0, 1).
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The multi-step forecast has the form

ĥt+τ = h2α1t (τ − 1)eη[e0.5(θ−γ)2Φ(θ + γ) + e0.5(θ−γ)2Φ(θ − γ)] (4.53)

where

η = (1− α1)ω − γ
√

2/π (4.54)

and Φ denotes the standard normal cumulative distribution.

4.2.2. Long Memory Models

Empirical studies have demonstrated that a number of financial time series, such as

nominal and real interest rates, real exchange rates, and realised volatility, are often

highly persistent.142,143 Principally, time series can exhibit persistence in the first

and higher order moments. While GARCH models are typically able to capture

persistence in the volatility of a time series, stationary ARMA models typically

cannot adequately capture the persistence in the first moment.144 Further, the

common practice of taking the first differences to analyse a stationary time series

may be overly extreme and misleading.145 For this reason, long memory models have

been suggested to describe (highly) persistent financial time series. In the following,

the ARFIMA models developed by Granger and Joyeux (1980) and Hosking (1981)

are presented.

ARFIMA models

Long memory time series are characterised by a very slowly decaying autocorrela-

tion function. To address this long-range dependence using an ARMA process, a

142See, for instance, Andersen et al. (2001a) and Baillie et al. (1996).
143Here, realised volatility is defined as the square root of the sum of squared intraday returns.

See Section 6.6.1 for a formal definition of realised volatility and an introduction to the concept
of realised volatility.

144See Zivot and Wang (2008), p. 271.
145See Box et al. (2008), p. 429.
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large number of autoregressive terms are necessary.146 Granger and Joyeux (1980)

and Hosking (1981) demonstrate that a long memory process can be described by

fractionally integrated processes in a more parsimonious way. In ARFIMA models,

the integration order is no longer restricted to integer values. They allow researchers

to model persistence or long memory using a fractionally integrated I(d) process in

which the fractional integration parameter d is restricted to 0 < d < 1.147 Thus,

ARFIMA processes close the gap between short- and long-run memory models by

allowing for short-run and long-run dependencies.148

A time series yt is called an ARFIMA(p, d, q) process if

A(L)(1− L)d(yt − µ) = B(L)εt, εt ∼ iid(0, σ2) (4.55)

where A(L) = 1 − α1L − . . . − αpL
p and B(L) = 1 − β1L − . . . − βqL

q are lag

polynomials with roots outside the unit circle.149,150 The characteristics of the time

series depend on the value of d. For 0 < d < 0.5, the process is covariance stationary

and has long memory. When 0.5 < d < 1 the process still captures long memory

effects, but the series is no longer stationary.151 The long memory parameter is typ-

ically estimated using the log periodogram estimator of Geweke and Porter-Hudak

(1983).152 The following addresses producing forecasts using an ARFIMA(p, d, q)

model with external regressors.153

146See Zivot and Wang (2008), pp. 272-273.
147See Granger and Joyeux (1980), pp. 15-16.
148See Franke et al. (2011), p. 357.
149See Granger and Joyeux (1980), pp. 16-21.
150While Li (2002) fits an ARFIMA model to the linear realised volatility series yt = σ2

t , Martens
and Zein (2004) and Pong et al. (2004) use an ARFIMA model for the log-realised volatility
series yt = ln(σ2

t ).
151See Franke et al. (2011) who present a summary of time series long memory characteristics for

different fractional integration parameters d. See Franke et al. (2011), p. 347.
152Alternatively, Robinson (1995a) suggests a Gaussian semiparametric estimator.
153This more general model comprises the ARFIMA model given by (4.55). For instance, Martens

et al. (2009) use an extended ARFIMA model that allows for a gradual level shift, day-of-the-
week effects, and nonlinear effects of lagged returns to fit realised S&P 500 volatilities. They
report that the extended ARFIMA model provides better one-day forecasts than the linear
ARFIMA model. See Martens et al. (2009), pp. 291.
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An ARFIMA(p, d, q) model with k regressors is given by

A(L)(1 − L)d(wt) = B(L)εt, εt ∼ iid(0, σ2) (4.56)

where wt = yt − xtβ. The best linear prediction of wt+τ is

ŵt+τ |t = (γt−1+τ . . . γτ )(Σt)
−1w = q′

τw (4.57)

where γτ , τ = 1, . . . , t denotes the autocovariance function of the ARFIMA(p, d, q)

process. This procedure is equivalent to a regression of wt+τ on w, where (Σ)−1
t w

can be determined by the Durbin-Levinson algorithm.154,155

The HAR Model

In addition to ARFIMA models, Corsi (2009) suggests a simple AR-type model for

realised volatility that is also able to reproduce long memory and fat tails. Due

to its additive structure, which consists of the sum of three volatility components,

it is called a heterogeneous autoregressive (HAR) model.156 The model is moti-

vated by the Heterogeneous Market Hypothesis advanced by Müller et al. (1995),

which states that market participants differ with respect to risk aversion, institu-

tional constraints, degrees of information, prior beliefs, transaction costs and other

characteristics.157 This heterogeneity implies “that different market agent types or

components perceive, react to, and cause different types of volatility”158. In particu-

lar, as heterogeneous market agents are sensitive to different time horizons, they are

active in the market at different frequencies (e.g., fund managers versus day traders)

and cause different volatility components.159 Further, the HAR model accounts for

the asymmetric reactions of agents with different investment horizons to volatility

154See Doornik and Ooms (2006), p. 6.
155For a more comprehensive description, see Beran (1994).
156Empirical applications of the HAR model and its extensions are provided by Andersen et al.

(2007), Martens et al. (2009), and Busch et al. (2011).
157See Müller et al. (1995), p. 12.
158See Müller et al. (1997), p. 214.
159See Müller et al. (1995), p. 12.
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changes. While short-term traders also consider long-term volatility, investors with

longer holding periods will not generally revise their trading strategies when the

level of short-term volatility changes.160,161 To capture these dependencies, Corsi

(2009) suggests a cascade model that specifies current volatility as the sum of past

volatility components over different horizons.

The HAR model is defined as

RVt = α+ βdRVt−1 + βwRVt−5:t−1 + βmRVt−22:t−1 + εt (4.58)

where RVt+1−k:t = 1
k

∑k
j=1RVt−j denotes multiperiod volatility components and

εt ∼ N(0, σ2
ε ).

162 Several extensions have been proposed to capture other stylised

facts such as jumps and the leverage effect.163 Corsi (2009) demonstrates that while

the HAR model does not formally belong to the class of long memory models, the

model is able to reproduce hyperbolic decaying sample autocorrelations.164,165

In practice, the forecasting performance of the HAR model is typically compara-

ble to that of ARFIMA models. This is an important result, as the HAR model

has a simple structure.166 Wang et al. (2013) consider autoregressive models to

forecast long memory processes that are subject to structural breaks and provide

an explanation for this remarkable performance. They argue that the HAR model

160See Aı̈t-Sahalia and Mancini (2008), p. 23.
161Short-term traders consider changes in long-term volatility, as these changes reflect potential

effects on expected trends and riskiness (see Aı̈t-Sahalia and Mancini (2008), p. 23). In contrast,
short-term volatility is irrelevant for market agents with a long-term investment horizon. See
Louzis et al. (2012), p. 3535.

162Alternatively, the model can be formulated for log-volatility. Corsi et al. (2008) find that the
log-volatility specification of the HAR model yields better forecasting performance. See Corsi
et al. (2008), pp. 69-74.

163See, for instance, Andersen et al. (2007), who separate the jump and continuous volatility
components.

164See Corsi (2009), pp. 176-186.
165This behaviour is not surprising, as Granger (1980) demonstrates that aggregating a large

number of AR(1) processes where the autoregressive parameters are taken from a particular
Beta distribution on (0, 1) yields a long memory process. See Granger (1980), pp. 230-234 and
Granger and Ding (1996), p. 71.

166See Hansen and Lunde (2011), p. 542.
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avoids inaccurate parameter estimation and spurious breaks.167 However, despite

their successful forecasting performance, Gregoriou (2009) argues that HAR models

are difficult to further justify.168

Finally, the HAR forecasting equation for log-realised volatility is given by

lnRVt+τ |t = α + βd lnRVt + βw lnRVt−4:t + βm lnRVt−21:t + εt (4.59)

where RVt+τ |t denotes the average log-realised volatility between t and t + τ for

τ ≥ 1.

167They attribute the weak forecasting performance of ARFIMA models relative to AR models in
finite samples to estimation problems. In particular, they note that if the fractional integration
parameter is close to 0.5, d is difficult to estimate (see Aı̈t-Sahalia and Mancini (2008), p. 176).
Moreover, structural break tests often experience difficulty in distinguishing between actual and
spurious breaks when the data generating process is fractionally integrated. See Kuan and Hsu
(1998), pp. 705-706.

168See Gregoriou (2009), p. 427.
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5. Forecasting Performance of

Volatility Models: A Literature

Review

This Chapter presents a literature review of empirical studies comparing the volatil-

ity forecasting performance of implied volatility and time series models. Because

most early studies use encompassing regressions to evaluate volatility forecasts, the

first Section introduces this evaluation method. The second Section reviews, with

one exception, selected papers on predicting US stock market volatility, as these ar-

ticles contain broad and intensive discussions of the US stock market while there is

no analogous discussion of the German stock market.1 The findings of these papers

concerning the applied forecasting models and evaluation methods provide useful in-

formation for the empirical analysis performed in this thesis. While chapters 5.2.1 to

5.2.5 present studies using encompassing regressions to evaluate volatility forecasts,

the last Section of Chapter 5.2 discusses the forecasting performance of volatility

models based on statistical loss functions.2 The following Section introduces empir-

ical studies on the predictive ability of implied volatility and time series models for

German stock market volatility. Based on the results of these studies, the model

1The exception is the study by Li (2002) that considers foreign exchange rates. The results of this
study are presented in Chapter 5.2, because it is the first study comparing the forecasting ability
of implied volatility and long memory models based on realised volatility.

2As a alternative to encompassing regressions, relative model performance can also be measured by
ratios or differences in mean, mean-squared, or mean-absolute prediction errors. For a description
of this forecast evaluation technique see Chapter 6.6.2.
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characteristics described in Chapter 4, and the analysis of DAX (implied) volatil-

ity presented in Chapter 3, the final Section explains the choice of the volatility

prediction models used in this study to forecast DAX volatility. Because the focus

of this thesis is on volatility prediction, the following discussion generally presents

out-of-sample results.

5.1. Volatility Forecast Evaluation Based on

Encompassing Regressions

5.1.1. The Definition of Information Efficiency

Numerous papers apply encompassing regressions to investigate the correlation be-

tween predicted and realised volatility (also called ex-post volatility).3 Most studies

using encompassing regressions to examine the forecasting performance of implied

volatilities and historical volatility consider the so-called informational efficiency of

the options market. According to Malkiel (1992), an information efficient market is

defined as follows:

A capital market is said to be efficient if it fully and correctly reflects

all relevant information in determining security prices. Formally, the

market is said to be efficient with respect to some information set, φ, if

security prices would be unaffected by revealing that information to all

participants. Moreover, efficiency with respect to an information set, φ,

implies that it is impossible to make economic profits by trading on the

basis of φ.4

3See West (2006), p. 101
4See Malkiel (1992). p. 739.
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Various papers investigate the information efficiency of options markets.5 To derive

a testable market efficiency hypothesis, empirical studies typically characterise the

informational efficiency of the options market as follows:

If markets are efficient and the option pricing model is correct, the im-

plied volatility calculated from option prices should represent the mar-

ket’s best forecast of the underlying asset’s future volatility over the

remaining life of the option. As such, it should be both unbiased and

informationally efficient — that is, it should correctly impound all avail-

able information, including the asset’s price history.6

Therefore, encompassing regressions are often applied to investigate the informa-

tion efficiency of options markets. Specifically, such papers examine whether im-

plied volatilities reflect (all) relevant available information to forecast stock market

volatility. To test this hypothesis, the realised volatility of the underlying asset is

regressed on implied volatility and historical volatility (in early studies, typically

the lagged standard deviation, while recent volatility forecasts are based on more

sophisticated time series models). The regression tests are presented below.

5.1.2. Encompassing Regressions

Most studies investigating the forecasting performance of implied volatility and time

series models are based on estimations of the following regressions:

σr
t = α0 + α1σ

iv
t + εt, (5.1)

σr
t = β0 + β1σ

ts
t + εt, (5.2)

and

σr
t = γ0 + γ1σ

iv
t + γ2σ

ts
t + εt (5.3)

5See, for example, the studies cited in this Chapter.
6See Ederington and Guan (2002), p. 29.
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where σr
t denotes the realised volatility of the underlying asset, σiv

t is the implied

volatility, and σts
t represents a volatility forecast (also referred to as historical volatil-

ity) from a time series model.

Because the volatility of the underlying asset returns is unobservable, a volatility

proxy using realised volatility measures is needed. Up to the availability of intraday

returns, ex-post volatility has typically been measured using the sample standard

deviation of the underlying asset returns over a fixed horizon or the remaining life

of the option. In more recent studies, high-frequency returns have become an in-

creasingly common method to estimate ex-post volatility.7

The sample standard deviation of past returns has also been employed to produce

volatility forecasts. Recently, more sophisticated time series models, e.g., GARCH

models, are applied to generate volatility predictions. Similarly, more recent studies

employ broader set of option pricing models to calculate implied volatility. While

initially the BS option pricing model was widely used to compute implied volatility,

the most recent studies also apply alternative option pricing models, e.g., model-free

implied volatility or stochastic volatility models.

Various hypotheses are tested using the regression equations presented above. In par-

ticular, the univariate regressions can be used to examine the following hypotheses.

First, if implied or historical volatility contains information about future volatility,

then the estimated slope coefficients α1 and β1, respectively, should be significantly

different from zero. Second, the unbiasedness of the volatility forecasts is verified by

α0 = 0 and α1 = 1 or β0 = 0 and β1 = 1. Further, the relative information content

of the volatility forecasts is analysed by comparing the R2 values of the univariate

regression equations.

Encompassing regressions allow the researcher to investigate the following three hy-

potheses. The first hypothesis states that implied volatility subsumes all information

that is contained in historical volatility regarding future volatility and is examined

7See Chapter 6.6.1 for a discussion of volatility proxies.
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by testing whether γ2 = 0. The second hypothesis further requires that the coeffi-

cient γ1 is equal to one. The most restrictive hypothesis states that implied volatility

is unbiased and efficient and is tested by verifying that γ0 = 0, γ1 = 1, and γ2 = 0.

The empirical studies presented in the next Section consider forecasting approaches

for US stock market volatility and are based on this forecast evaluation technique.

5.2. Empirical Studies Forecasting US Stock Market

Volatility

5.2.1. The Initial Debate over the Predictive Ability of Implied

Volatility

The first studies concerning the predictive power of implied volatility for US stock

market volatility are presented by Latané and Rendleman (1976), Schmalensee and

Trippi (1978), Chiras and Manaster (1978), and Beckers (1981). These papers pro-

vide evidence that implied volatility exhibits better predictive ability than the lagged

standard deviation.8,9

Day and Lewis (1992) extend these findings and compare weekly volatility forecasts

based on BS ATM implied volatility, the GARCH model, and the EGARCH model.

They consider S&P 100 index call options from March 1983 to December 1989. The

forecasts are evaluated by estimating the above regressions where ex-post volatility

is measured by two volatility proxies.10 Drawing on the above univariate regressions

they demonstrate that the estimated coefficients of the volatility forecasts, α1 and

β1, are, with one exception, significantly different from zero.11 The estimation re-

sults show that the intercepts of the volatility forecasts based on the GARCH model,

8See Mayhew (1995) for a brief review of the articles.
9The results provided by these early studies must be interpreted with care, as they suffer from
several shortcomings. See, e.g., Canina and Figlewski (1993) and Ederington and Guan (2002).

10They use the square of the weekly return and the variance of the week’s daily returns.
11Additionally, they report that the R2 values for the regressions are rather low.
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β0, are not significantly different from zero and that the β1 coefficients are not dif-

ferent from one. This implies that the GARCH forecasts of conditional volatility are

unbiased. In contrast, the results for BS ATM implied volatility and the EGARCH

model are mixed, such that no clear conclusion regarding their forecasting bias is

possible. Further, the findings for the encompassing regressions indicate that the

volatility forecasts based on BS ATM implied volatility and the GARCH models

are unbiased. Despite these findings, Day and Lewis (1992) report that their out-

of-sample results do not allow them to draw additional conclusions regarding the

relative predictive power of implied volatility relative to GARCH models.12 The

controversy surrounding the results of Canina and Figlewski (1993) and Christensen

and Prabhala (1998) is discussed below.

Similar to Day and Lewis (1992), Canina and Figlewski (1993) also examine the

information content of implied volatility using S&P 100 index options.13 However,

while the analysis of Day and Lewis (1992) is based on BS ATM implied volatilities

from short-term S&P 100 index options, Canina and Figlewski (1993) analyse the

forecasting performance of implied volatility for different maturities and intrinsic

value groups. They argue that taking the average implied volatility from options

with different intrinsic values and maturities is misleading, because the existence of

the volatility smile and the volatility term structure indicate systematic differences

across implied volatilities. By estimating the univariate regression equation (5.1) for

each maturity/intrinsic value group separately, they find that all intercepts are sig-

nificantly different from zero and that the estimated coefficients on implied volatility

do not differ significantly from zero in most subsamples.14 Further, they estimate

encompassing regressions for each group and document that the coefficients on his-

torical volatility are generally significantly positive. In contrast, the coefficients on

12See Day and Lewis (1992), pp. 281-286.
13Their sample comprises the period from March 1983 to March 1987.
14To capture serial correlation due to overlapping samples, they estimate the above regressions
using GMM estimator. Yu et al. (2010) note that serial correlation in overlapping samples yields
an underestimated standard error for the coefficient on historical volatility. Thus, empirical
studies that ignore serial correlation from overlapping samples are biased towards confirming the
result that “historical volatility provides an efficient forecast of future volatility”. See Yu et al.
(2010), p. 3.
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implied volatility are typically not significantly different from zero. Overall, Canina

and Figlewski (1993) conclude that implied volatility has no explanatory power for

future volatility and does not include the information contained in historical volatil-

ity. In contrast, their results provide evidence that historical volatility contains

information about future volatility. As an explanation for their results, they suggest

that implied volatility is affected by additional factors that are not included in tra-

ditional option pricing theory (e.g., market frictions, liquidity constraints, investor

preference for certain option payoffs etc.).15

Because the findings of Canina and Figlewski (1993) do not agree with those of

most previous studies (e.g., Day and Lewis (1992) and Lamoureux and Lastrapes

(1993)), subsequent studies have critically analysed Canina and Figlewski’s (1993)

results. For instance, in an oft-cited article, Christensen and Prabhala (1998) re-

examine the results obtained Canina and Figlewski (1993) by estimating regression

(5.3) using instrumental variables. By applying instrumental variables to estimate

the regression they correct for the errors-in-variables problem in implied volatility

that can be induced by dividend payments, non-synchronous data, bid-ask spreads,

and misspecification of the option pricing model employed. After the correction,

they report that BS ATM implied volatility exhibits lower prediction bias than that

documented by Canina and Figlewski (1993). In addition to addressing the errors-

in-variables problem, Christensen and Prabhala (1998) contend that the downward

bias can be explained by the longer time series that they consider, which includes

a regime shift near the October 1987 crash.16 In particular, they observe a reduced

forecasting bias for implied volatility following the crash.17,18 Further, they attribute

the divergent results obtained in their study and Canina and Figlewski (1993) to

different sampling frequencies. Specifically, they adopt a lower (monthly) sampling

frequency than Canina and Figlewski (1993), which allows them to construct non-

15See Canina and Figlewski (1993), pp. 670-768.
16Their sample contains monthly S&P 100 index options data from November 1983 to May 1995.
17See Christensen and Prabhala (1998), p. 127.
18Ederington and Guan (2002) also argue that the discrepancies between Christensen and Prabhala
(1998) and Canina and Figlewski (1993) are due to the former’s inclusion of the October crash
1987 while the latter include it. See Ederington and Guan (2002), p. 37.
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overlapping samples.19 Overall, they find that BS ATM implied volatility provides

better volatility forecasts than historical volatility and, in some cases, subsumes all

information contained in historical volatility.20

Similar to Canina and Figlewski (1993), Ederington and Guan (2005) also examines

the information content of implied volatility for options with different strike prices.

Their sample contains daily settlement prices for short-term S&P 500 futures op-

tions from January 1988 to March 2003. Before performing the analysis for different

strike groups, they estimate regression models (5.1) and (5.3) based on the complete

(pooled) data set.21 They report that the estimated intercepts and coefficients of

implied and historical volatility are significantly different from zero at the 1% level.

Thus, this finding does not confirm the hypothesis that implied volatility is an un-

biased and efficient estimator of future volatility.22 To investigate the predictive

ability of implied volatility across different strike prices and option types (put and

call options), they separately estimate the regressions presented above for different

moneyness levels and option types. The estimation results of the univariate regres-

sions (5.1) indicate that implied volatility from options with moderately high strike

prices is an unbiased predictor of future volatility. Further, the estimated coefficients

of the implied volatility variables for these options are not significantly different from

one.23 In contrast, they reject the hypothesis that volatility forecasts based on im-

plied volatility are unbiased for options with low strikes, ATM strikes, and high

strikes. Thus, they conclude that the information content of implied volatility is re-

lated to the strike price, whereby moderately OTM calls and ITM puts provide the

most information concerning future volatility. Their findings from the encompass-

ing regressions provide evidence that for most moneyness classes, implied volatility

19According to Christensen and Prabhala (1998) overlapping samples produce autocorrelated errors
that lead to imprecise and inconsistent regression estimates. See Christensen and Prabhala
(1998), p. 129.

20See ibid., p. 148.
21They use the sample standard deviation or, alternatively, the GARCH(1,1) model to forecast
volatility based on past returns.

22See Ederington and Guan (2005), p. 1438.
23Moreover, they obtain the highest relative explanatory power for options with moderately high
moneyness levels.
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subsumes the information contained in historical volatility. Thus, the above results

based on the pooled data set change substantially when the regression analysis is

performed separately for each moneyness/option type group.24

In a related study, Fleming et al. (1995) investigate the statistical properties and

predictive power of S&P 100 implied volatility for stock market volatility.25 Because

their analysis of the statistical properties suggests that implied and historical volatil-

ity follow near random walk processes, they subtract lagged implied volatility from

both sides of regression equation (5.1) to avoid the spurious regression problem.26

Based on the adjusted regression, they report that the implied volatility forecasts

are biased. They suggest that the forecasting bias is due to the misspecification

of the option pricing model, neglecting the wildcard option embedded in the S&P

100 index option contract, and infrequent trading. Further, they perform additional

orthogonality tests and find that historical volatility does not provide additional

information relative to S&P 100 implied volatility for the prediction of volatility.27

In summary, their results support the prior findings of Christensen and Prabhala

(1998).

Most of the above-cited studies indicate that implied volatility is a biased predictor

of future volatility. This finding suggests that implied volatility may not contain all

information on future volatility or that the information is not processed correctly by

the option pricing model considered. Because determining the source of the error is

essential for generating improved volatility forecasts based on implied volatility, the

following Section presents selected studies that investigate whether this forecasting

bias can be attributed to measurement errors in implied volatility.

24See Ederington and Guan (2005), pp. 1442-1450.
25They consider the sample period from January 1986 to December 1992.
26Their methodology follows Fleming (1998). In addition to adjusting the regression equation, they
use the GMM estimator to account for potential residual heteroskedasticity and autocorrelation.

27See Fleming et al. (1995), pp. 290-300.
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5.2.2. The Errors-in-Variables Problem Due to Measurement

Errors in Implied Volatility

In general, measurement errors in the independent variables affect OLS coefficient

estimates. Implied volatility can differ from the market’s true volatility expectation

for several reasons. This Section considers the effects of measurement errors in

implied volatility that are induced by market imperfections (e.g., non-synchronous

data, and bid-ask spreads). Other error sources, e.g., misspecification of the option

pricing model, are discussed in Chapter 5.2.4.

Christensen and Prabhala (1998) as well as Figlewski (1997) describe the potential

effects of measurement errors on the forecasting performance of implied volatility.

According to Christensen and Prabhala (1998), the implied volatility derived from

an option pricing model contains the true implied volatility plus measurement er-

ror.28 Thus, using implied volatility to forecast volatility without accounting for

measurement errors is misleading, because this volatility forecast does not reflect

the correct market information concerning future volatility.29 Figlewski (1997) pro-

vides a further explanation. According to Figlewski (1997), arbitrage trades between

stock index options and the underlying stock index are expensive and risky. There-

fore, arbitrage trading that exploits the difference between current market implied

volatility and traders’ expectations of future volatility becomes increasingly difficult.

As a consequence, some of these expectations are not incorporated into option prices

and the hypothesis that implied volatility contains information on future volatility is

rejected.30 Ultimately, both explanations lead to the same result: implied volatility

does not contain the correct market information concerning future volatility.

Technically, the errors-in-variables (EIV) problem causes the slope coefficient of

implied volatility to be downward biased in the above regressions (see equations

(5.1) and (5.3)). Further, if implied and ex-post volatility are positively correlated

28This hypothesis requires that the applied option pricing model holds.
29See Christensen and Prabhala (1998), pp. 136-137.
30See Figlewski (1997), p. 64.
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and the slope parameter of implied volatility is positive, the slope coefficient of ex-

post volatility is upward biased. Thus, the OLS estimates of regression equations

(5.1) and (5.3) are inconsistent and the conclusion that implied volatility is biased

and inefficient is misleading.31

Christensen and Prabhala (1998) contend that the OLS estimation results in their

study from regressions (5.1) and (5.3) are subject to the EIV problem, as the implied

volatility of S&P 100 index options is affected by measurement errors. To obtain

consistent estimates in the presence of the EIV problem, they employ the instru-

mental variables method. Applying instrumental variables, they provide evidence

that forecasts based on implied volatility are unbiased and efficient. Drawing from

these results, they conclude that the forecast bias of implied volatility obtained via

OLS estimation can be attributed to the EIV problem. However, as several sources

of measurement error (e.g., early exercise, dividends, non-synchronous data, bid-ask

spread, the wild-card option, and the misspecification of the BS model) can generate

the EIV problem in S&P 100 implied volatility, Christensen and Prabhala (1998)

fail to identify the key source(s) of error.32

In addition, Ederington and Guan (2002) note that Canina and Figlewski (1993)

consider the implied volatility for each strike price separately and do not average

out measurement errors across different strike prices as is done in most other stud-

ies. Further, they point out that S&P 100 index options are affected by the non-

synchronous data problem33 and that existing transaction costs hamper arbitrage

trading between markets. They suggest that this can explain the relatively low co-

efficient values of implied volatility in the encompassing regressions documented by

Canina and Figlewski (1993).34 To reduce the effects of measurement errors, Eder-

31See Christensen and Prabhala (1998), p. 137.
32See ibid., pp. 136-140.
33This problem is caused by the different closing times of the options market and the New York
Stock Exchange.

34See Ederington and Guan (2002), pp. 33-34.
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ington and Guan (2002) consider S&P 500 futures options, which are less affected

by measurement errors than S&P 100 index options.35

Similar to Christensen and Prabhala (1998), they apply the instrumental variables

method to estimate the encompassing regressions. They observe smaller differences

between the OLS and instrumental variable coefficients than those documented by

Christensen and Prabhala (1998).36 Their results for the full sample provide evidence

that implied volatility is an unbiased and efficient predictor of future volatility.37

Because Ederington and Guan (2002) report smaller differences between the OLS

and instrumental variable coefficients for S&P 500 futures options, their findings

support the above results of Christensen and Prabhala (1998).38 This discussion

regarding the impact of measurement errors in implied volatility demonstrates that a

comparison of different volatility forecasting models should be based on synchronous

data that are taken from liquid markets with low transaction costs. Otherwise, the

forecast evaluation results are influenced by the effects outlined above.

Having analysed the impact of measurement errors on the regression results, the

next Section considers the effects of using intraday returns to estimate daily spot

volatility.

5.2.3. Effects of Using Intraday Returns as an Ex-Post Volatility

Measure

The increasing availability of high-frequency data stimulated the development of new

volatility proxies, called realised volatility measures, which are based on intraday

data.39 The idea of using high-frequency data dates back to Merton (1980), who

35S&P 500 futures options and corresponding futures are traded in tandem, such that synchronous
quotes are available and arbitrage is straightforward.

36Their analysis is based on S&P 500 ATM futures options from January 1983 to September 1995.
37However, when the 1987 crash is excluded from the data set, the hypothesis that implied volatility
is unbiased and efficient is rejected.

38See Ederington and Guan (2002), pp. 41-45.
39Following the underlying literature, the expression “realised volatility” is used in the following
to denote daily return volatility that is based on high-frequency returns to avoid confusion in
comparisons with the literature.
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demonstrates that if the variance is estimated by the sum of squared returns over a

fixed period and the sampling frequency can be increased arbitrarily, the estimator

converges towards the true volatility.40 However, market microstructure noise can

induce severe bias in the estimated daily volatility when the sampling frequency is

too high.41

Andersen and Bollerslev (1998) examine the effect of ex-post volatility measures on

the evaluation of forecasts from standard volatility models. They exhibit that tradi-

tional forecast evaluation criteria indicate poor forecasting performance for standard

volatility models when volatility is measured based on daily squared returns.42 This

poor predictive power can be explained by the use of daily squared returns as an ex-

post volatility measure, which provides a noisy estimate of latent volatility. For this

reason, Andersen and Bollerslev (1998) suggest an alternative measure of ex-post

volatility based on intraday returns.43

While Andersen and Bollerslev (1998) focus on evaluating of the general predictive

power of standard volatility models, Poteshman (2000) uses realised volatility to

compare the forecasting performance of implied and historical volatility for S&P

500 index options.44 In particular, he analyses the influence of three different ex-

post volatility measures on the forecast bias and informational efficiency of implied

volatility. Two of the three volatility measures are calculated based on daily squared

returns using daily closing prices, respectively the daily 3:00 PM index level.45 The

third volatility measure is defined as the daily sum of squared five-minute S&P 500

returns. By estimating regression equation (5.1) for each ex-post volatility measure,

he reports that the estimated intercepts decrease towards zero and the slope coef-

40Additionally, he assumes that the market returns follow a diffusion-type stochastic process, the
mean and variance of which are constant or at least change slowly over time. See Merton (1980),
pp. 355-359.

41See McAleer and Medeiros (2008), p. 12.
42They report low R2 values, despite that the volatility models are correctly specified.
43See Andersen and Bollerslev (1998), p. 886.
44Here, historical volatility is calculated from five-minute S&P 500 returns for different fixed time
periods (e.g., one month) up to the present. The implied volatility is computed using the BS
model from near ATM call options.

45The index level is derived from S&P 500 futures transaction data.
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ficients of implied volatility increase towards one when moving from daily squared

returns to realised volatility.46 Similar to the results of Andersen and Bollerslev

(1998), he finds that the predictive power of implied volatility is higher when using

realised volatility as a volatility measure.47 Furthermore, he demonstrates that in

the full sample from June 1988 to August 1997, nearly half of the forecasting bias

of S&P 500 implied volatility disappears if ex-post volatility is measured based on

squared five-minute returns.48

Similar to Poteshman (2000), Blair et al. (2001) also compare the information con-

tent of implied and historical volatility for forecasting volatility using different ex-

post volatility measures.49 In particular, they calculate ex-post volatility based on

squared excess returns and the sum of squared five-minute returns. The implied

volatilities are obtained from implied volatility index.50 In addition to the VIX,

they investigate the forecast information contained in the volatility forecasts ob-

tained from the GJR-GARCH model, the lagged sample standard deviation, and

lagged realised volatility. They find that the VIX is more informative than the indi-

vidual forecasts based on historical volatility.51 This result does not depend on the

forecast horizon and the ex-post volatility measure considered.52,53 Moreover, they

conclude that historical volatility provides little additional information beyond the

VIX for one-day-ahead forecasts and that the VIX contains all relevant information

for longer forecasting periods.54

46While the intercepts are not significantly different from zero regardless of the volatility measure,
the slope coefficient of implied volatility is only significantly different from one when measuring
ex-post volatility based on daily closing prices.

47These results refer to the sample period from June 1993 to August 1997.
48See Poteshman (2000), pp. 18-29.
49Their sample comprises the period from January 1987 to December 1999.
50In particular, they use VIX data computed by the CBOE. The implied volatilities entering the
VIX are calculated from a binomial model.

51Their comparison is based on the ranked R2 value for equation (5.1) or (5.2).
52They evaluate the performance of one-, five-, ten-, or twenty-days-ahead volatility predictions.
53As in Andersen and Bollerslev (1998) they report higher R2 values for the regressions when
realised volatility is applied to measure ex-post volatility instead of using daily squared returns.

54This finding is based on the comparison of R2 values between univariate and multivariate regres-
sion models. Note that the coefficient of determination always increases if an additional regressor
with an associated t-statistic greater (less) than one (negative one) is added to the regression
equation. Thus, this conclusion for one-day-ahead forecasts reported by Blair et al. (2001) is
questionable.
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The following Section examines the effect of the option pricing model used to com-

pute implied volatility on forecasting performance.

5.2.4. Implications of the Choice of Option Pricing Model

In addition to investigating the effect of alternative ex-post volatility measures on

the evaluation of volatility forecasts, Poteshman (2000) examines whether the fore-

casting bias of implied volatility documented by several studies55 is due to the mis-

specification of the applied option pricing model. In particular, he compares the

forecasting results from using the standard BS model and the Heston (1993) model,

which allows for a non-zero price of volatility risk and non-zero correlation between

innovations and the level as well as volatility of the underlying asset. The estima-

tion results for equation (5.3) indicate that the volatility forecasts for the S&P 500

index based on Heston implied volatility are unbiased and efficient.56 In addition, he

conducts a simulation experiment that supports this finding.57 Overall, Poteshman

(2000) demonstrates that the forecasting bias of implied volatility diminishes when

ex-post volatility is measured based on five-minute returns and an option pricing

model that allows for a volatility risk premium is used to derive implied volatility.

Similar to Poteshman (2000), Shu and Zhang (2003) also employ the BS and Heston

(1993) models to investigate the effect of model misspecification on the forecasting

ability of implied and historical volatility.58 In their analysis, they calibrate both

option pricing models to daily S&P 500 index option prices from January 1995 to

December 1999. Estimating univariate regressions of type (5.1), they find that Hes-

ton implied volatility has lower explanatory power and greater forecasting bias than

55See, for example, Fleming et al. (1995), among others.
56This finding is obtained by using five-minute futures data to measure ex-post volatility. Because
similar results are presented for the BS model, this finding alone is not sufficient to draw the
conclusion that the forecasting bias of BS implied volatility is due to misspecification errors.

57See Poteshman (2000), p. 18.
58As in Poteshman (2000), they also use different ex-post volatility measures to examine whether
measurement errors in ex-post volatility affect the forecasting performance of implied and his-
torical volatility.
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BS implied volatility.59 Further, encompassing regressions provide evidence that

volatility forecasts based on Heston and BS implied volatility subsume all informa-

tion contained in historical returns. The multivariate regressions also demonstrate

that the implied volatility calculated from the Heston (1993) model has less ex-

planatory power in forecasting S&P 500 index volatility than BS implied volatility.

Shu and Zhang (2003) suppose that the inferior forecasting performance of the He-

ston (1993) model is due to a mismatch between the model’s underlying stochastic

process and the true data-generating process. While Shu and Zhang (2003) concur

with Poteshman (2000) that implied volatility outperforms historical volatility when

forecasting S&P 500 index volatility, Shu and Zhang’s (2003) findings with respect

to the forecasting bias of implied volatility contradict those of Poteshman (2000).

Although Shu and Zhang (2003) cite Poteshman (2000) and both articles use S&P

500 index options data, the former do not provide an explanation for the divergent

findings. Comparing the structures of the two studies suggests that the contradict-

ing results are may be due to different sample periods, different calibration methods

for the Heston model, and/or different underlyings assets used to derive the implied

volatilities from S&P 500 index options.60

Whereas Poteshman (2000) and Shu and Zhang (2003) present empirical results re-

garding whether volatility forecasts based on implied volatility are biased, the analy-

sis of Chernov (2007) provides theoretical arguments regarding this “(un)biasedness

puzzle”. By using affine jump-diffusion models that allow for stochastic volatility

with independent jumps in returns and volatility, he shows that the forecasting bias

of implied volatility can be explained by volatility and jump risk.61 In particular,

he demonstrates that the decomposition of the volatility forecast into BS implied

volatility and the volatility risk premium implies the standard encompassing regres-

sion presented above (see Section 5.1) that includes an additional term to capture

volatility risk premia. Chernov (2007) demonstrates that this additional term is

59This finding holds for various ex-post volatility measures. See Shu and Zhang (2003), pp. 88-89.
60While Poteshman (2000) considers SPX futures data, Shu and Zhang (2003) base their study on
daily S&P 500 index closing prices.

61He assumes that these additional risk factors are not diversifiable, such that investors demand
related risk premia.



5.2. Empirical Studies Forecasting US Stock Market Volatility 157

a linear function of spot volatility and suggests estimating it by using the high-

low range-based estimator. If this additional term is not included in the regression

equation, then the slope coefficient of implied volatility is downward biased, as spot

volatility and implied volatility are correlated.62 Further, because the estimation of

the additional regressor introduces an errors-in-variables problem, he recommends

a GMM framework to address this.63

To test his theoretical results, he estimates the standard regressions described above

with and without the inclusion of spot volatility, which is estimated by the high-low

range-based estimator as an additional predictive variable. He analyses options data

on the S&P 100 index, the National Association of Securities Dealers Automated

Quations (NASDAQ) 100 index, and three foreign exchange rate series.64 The OLS

estimation results of the regressions indicate that implied volatility is generally a

biased predictor of realised volatility. This finding agrees with the majority of the

literature. In contrast, the GMM results provide evidence that the implied volatility

bias disappears after volatility risk premia are accounted for in the regression equa-

tion.65 Overall, Chernov (2007) provides theoretical and empirical arguments that

support the above mentioned results of Poteshman (2000).

Because the above studies using ATM options do not consider the information pro-

vided by OTM and ITM options, Jiang and Tian (2005) suggest the use of model-free

implied volatility to capture this additional information. This approach is based on

cross-sectional options prices and is described in detail in Chapter 4.66 They compare

the forecasting performance and information content of model-free implied volatility

62See Chernov (2007), pp. 412-414.
63See ibid., p. 420.
64The S&P 100 (NASDAQ 100) index data refer to the period from January 1986 (January 1995)
to June 2001 (June 2001). The three foreign exchange rate series cover the period from October
1984 to June 2001.

65See Chernov (2007), pp. 417-420.
66In addition, they argue that model-free implied volatility does not depend on a particular option
pricing model. This implies the following advantage: while tests based on BS implied volatility
are joint tests of market efficiency and the applied option pricing model, model-free implied
volatility represents a direct test of market efficiency. See Jiang and Tian (2005), pp. 1305-1308.
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with BS ATM implied volatility and historical volatility. Their sample contains S&P

500 index options data from June 1988 to December 1994.67

In accordance with previous studies, using univariate regressions, they demonstrate

that BS implied volatility explains more of the variation in future realised volatil-

ity than lagged realised volatility. However, they find no evidence that BS im-

plied volatility is an efficient forecast of future volatility. In contrast, when using

model-free volatility to forecast volatility, they demonstrate that model-free volatil-

ity subsumes all information provided by BS ATM implied volatility and historical

volatility.68 Thus, they argue that model-free volatility represents a more efficient

forecast of future volatility. They conclude that their results support the informa-

tional efficiency of the options market. Further, they find that model-free volatility

provides better forecasting results than BS ATM and historical volatility.69 Their

results are robust to alternative estimation methods, different samples, and different

measures of realised volatility.70

While most empirical studies examine volatility forecasts extracted from stock index

options, Taylor et al. (2010) analyse the information on volatility contained in the

stock options of individual firms. They use daily closing option quotes and stock

prices for 149 US firms from January 1996 to December 1999 to compare volatility

forecasts based on BS ATM implied volatility, model-free volatility, and historical

volatility.71 Similar to studies cited above, they consider option-life forecasts (non-

overlapping monthly periods) and estimate univariate regressions for each volatility

forecast and individual firm.72

They report that implied volatility forecasts provide more information on future

volatility than historical volatility for more than 85% of the firms considered. With

67Specifically, they use tick-by-tick data to reduce measurement errors. See Jiang and Tian (2005),
pp. 1318-1319.

68They use encompassing regressions to examine the information content of model-free volatility.
69See ibid., pp. 1323-1329.
70See ibid., pp. 1329-1336.
71In particular, they estimate a GJR(1,1)-MA(1,1) model to capture the asymmetric volatility
effects of historical stock returns.

72See Taylor et al. (2010), pp. 871-873.
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respect to the predictive power of BS ATM implied volatility and model-free volatil-

ity, they find that volatility forecasts based on BS ATM implied volatility are more

informative than using model-free volatility for more than 50% of the firms in their

sample. Further, the estimation results of the encompassing regressions indicate

that historical volatility typically contains additional information not conveyed by

implied volatility. Additionally, neither implied volatility variable subsumes all of

the information covered by the other variable. A cross-sectional analysis indicates

that the forecasting performance of implied volatility forecasts that is observed for

individual firms depends on firm-specific option liquidity. Greater predictive power

is observed for firms with more liquid options.73

The findings of Taylor et al. (2010) contrast with the above mentioned results of

Jiang and Tian (2005). Thus, although model-free volatility is based on a larger

information set than BS ATM implied volatility, the higher measurement errors of

OTM options and relatively low trading volumes of individual stock options mean

that model-free volatility exhibits worse performance. Taylor et al. (2010) conclude

that although model-free volatility represents a theoretically appealing approach,

the cross-sectional information content of individual option prices is outweighed by

the illiquidity of OTM options.

Having presented empirical results concerning the predictive ability of alternative

option pricing models, the next Section considers whether time series models that ac-

count for long memory effects provide volatility forecasts superior to those obtained

using implied volatility.

5.2.5. Volatility Forecasts from Long Memory Models

Most of the previously cited studies compare the forecasting power of implied volatil-

ity with volatility forecasts based on lagged standard deviations or GARCH models.

As intraday data have become increasingly available, new volatility measures have

73See ibid., pp. 875-880.
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been developed and suitable time series models have been suggested to produce

volatility forecasts.74 The studies of Li (2002), Martens and Zein (2004), and Becker

et al. (2006) compare the forecasting performance of implied volatility and ARFIMA

models (or combinations thereof) and are described in the following.

Li (2002) presents the first study that provides an analysis of the forecasting ability

of long memory models using realised volatility and implied volatility. He examines

high-frequency returns on the German Deutsche Mark, the Japanese yen, the British

pound, and the US dollar from December 1986 to December 1998.75 Further, he

considers daily BS ATM implied volatilities for OTC forward currency options with

fixed maturities for different sample periods that are directly observed in the market.

Similar to the findings of Andersen et al. (2001b) for the realised volatilities of the

30 stocks in the Dow Jones Industrial Average, Li (2002) documents long memory

effects in the realised volatility series and fits an ARFIMA process to each series.

He reports that volatility forecasts based on long memory models provide additional

information relative to option-implied volatility forecasts at horizons of from one

month to six months. In addition, long memory models provide better volatility

predictions than option-implied volatility at longer forecast horizons. In summary,

he concludes that volatility forecasts can be improved by combining forecasts based

on long memory models and option-implied volatility.76

While Li (2002) studies different exchange rate series, Martens and Zein (2004)

compare the forecasting performance of long memory models and option-implied

volatility for different asset classes.77 Specifically, they provide results for the S&P

74As mentioned above, Andersen and Bollerslev (1998) introduced the realised volatility measure,
which is based on the sum of squared intraday returns. Subsequently, Andersen et al. (2003)
suggested the ARFIMA process to model the long memory of realised volatility.

75He constructs realised volatility series based on the daily sum of squared five-minute returns.
76See Li (2002), pp. 9-25.
77Another notable difference between the studies of Martens and Zein (2004) and Li (2002) concerns
the overlapping data problem. Whereas Li (2002) corrects for downward-biased OLS standard
errors in the forecast evaluation regressions that are induced by overlapping data using the
Hansen (1982) variance-covariance matrix, Martens and Zein (2004) use non-overlapping data.
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500 index, YEN/USE exchange rate, and Light, Sweet Crude Oil.78 Their sample

comprises transaction data for S&P 500 futures and daily data for S&P 500 index

futures options from the beginning of 1996 to the end of 2000.79 They also compute

realised volatility based on the sum of squared five-minute returns.80

With respect to the S&P 500 volatility forecasts, they report that implied volatilities

outperform the GARCH(1,1) model, which agrees with the findings of Christensen

and Prabhala (1998) and Fleming (1998). However, the use of time series models

that account for long memory effects affects the relative performance results of time

series models and implied volatilities. Martens and Zein (2004) demonstrate that

volatility forecasts based on long memory models provide similar and in some cases

better prediction results than implied volatility. Furthermore, they report that S&P

500 volatility forecasts based on long memory models and implied volatility contain

additional information on future volatility beyond the information covered by the

other approach. Thus, according to Martens and Zein (2004), a combined forecast

approach using implied volatility and the ARFIMA forecast should improve predic-

tions of S&P 500 volatility.81 In this respect, the study of Martens and Zein (2004)

confirms the results of Li (2002) for the S&P 500.

Similar to Martens and Zein (2004) and Li (2002), Becker et al. (2006) investigate

whether implied volatility reflects all information provided by alternative model-

based volatility forecasts. They extend the analysis of the previous studies by using

a wider set of conditioning information.82 To adapt the findings of Jiang and Tian

(2005), they apply a publicly available implied volatility index, the VIX, which is

78Because the existing thesis investigates DAX volatility forecasts, the results for the S&P 500 are
presented in the following. See Martens and Zein (2004) for further results regarding the other
asset classes.

79Martens and Zein (2004) apply the quadratic approximation method for American options de-
veloped by Barone-Adesi and Whaley (1987) that uses the generalised BS formula.

80See Martens and Zein (2004), pp. 1005-1008.
81See ibid., pp. 1019-1027.
82While the studies above compare the forecasting power of implied volatility using either GARCH
or ARFIMA models, Becker et al. (2006) apply a range of alternative volatility forecasts including
GARCH, ARFIMA, and stochastic volatility models.
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based on the concept of Britten-Jones and Neuberger (2000).83 Further, Becker

et al. (2006) use high-frequency returns to measure realised volatility and follow

Chernov’s (2007) suggestion concerning the consideration of volatility risk.84 Their

testing strategy is based on two approaches: first, they apply the framework sug-

gested by Fleming (1998) that allows the researcher to examine the orthogonality

of implied volatility forecast errors with respect to a particular information set.

Second, they implement the forecast-encompassing tests developed by Harvey and

Newbold (2000) that can be used to test whether implied volatility encompasses

one or more alternative volatility forecasts.85 The set of alternative prediction mod-

els contains, among others, the GARCH(1,1) model, an asymmetric GJR-GARCH

model, a stochastic volatility model, ARMA and ARFIMA models based on realised

volatility, and exponentially weighted moving averages of squared returns.

Their sample contains daily VIX data and high-frequency S&P 500 index returns

from January 1990 to October 2003. In general, the forecast-encompassing tests

provide evidence that the alternative prediction models provide information that is

correlated with the VIX forecast errors. While the orthogonality tests for the daily

sampling scheme generally reject the hypothesis that implied volatility subsumes all

information, the test results when using monthly sampling confirm the hypothesis.

Becker et al. (2006) suggest that these contradictory findings with respect to sam-

pling frequency can be explained by size distortions in the tests and different sample

sizes.86 Becker et al. (2006) summarise that volatility forecasts based on the VIX

83To provide a more practical standard for trading and hedging, the CBOE revised the methodology
of the VIX in 2003. Thereafter, the VIX is calculated based on the concept of Britten-Jones and
Neuberger (2000) by using options on the S&P 500 index with strike prices near the current
index level and maturities close to 22 trading days. See Becker et al. (2006), p. 140.

84To capture the impact of the volatility risk premium, Chernov (2007) suggests the inclusion of
an additional term in the encompassing regression used to evaluate the volatility forecasts. See
the previous Section.

85These tests allow the researcher to examine whether the forecast error of implied volatility can
be explained by the forecast errors of alternative prediction models. To answer this research
question, the forecast errors of implied volatility are regressed on the forecast errors of alternative
models (see Becker et al. (2006) for a more detailed description of the test concept). Becker
et al. (2006) implement the orthogonality tests as a supplement to the encompassing regressions,
because these tests support a more general analysis.

86In principle, overlapping data can induce size distortions. However, Becker et al. (2006) employ
specific techniques to address the overlapping data problem.
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can be improved by using additional information, e.g., volatility forecasts from time

series models.87

Overall, the studies of Li (2002), Martens and Zein (2004), and Becker et al. (2006)

suggest combining implied volatility and model-based forecasts, e.g., long memory

models.

5.2.6. Empirical Studies Evaluating Volatility Forecasting

Performance Based on Loss Functions

The review of the literature provided above considers the evaluation of volatility

forecasts based on encompassing regressions. This Section provides an overview of

studies using loss functions to assess the performance of different volatility forecast-

ing methods.

Fung and Hsieh (1991) present an early paper comparing the forecasting performance

of implied volatility and standard volatility forecasts based on historical prices and

use high-frequency data to measure realised volatility. In their study, they evaluate

S&P index volatility forecasts using two loss functions, the root mean square er-

ror and the mean absolute error, where realised volatility is calculated as the daily

standard deviation of 15-minute returns. Their samples contain tick-by-tick data for

S&P futures and options contracts for the period from March 1983 to July 1989.88

The one-day-ahead volatility forecasts are generated using the rolling standard de-

viation based on daily closing prices, the standard deviation based on the extreme

value method suggested by Parkinson (1980), and two implied volatility series for

S&P ATM calls and puts.89 In addition, they construct two volatility forecast series

by defining a random walk model and fitting an autoregressive model to the realised

volatility series. They find that the prediction errors of the volatility forecasts based

on implied volatility are similar to the errors of the volatility forecasts based on the

87See Becker et al. (2006), pp. 145-152.
88In addition to analysing the stock market, they also consider the bond and currency markets.
89The implied volatilities are computed using the Barone-Adesi and Whaley (1987) approximation.
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historical volatility series. Thus, they conclude that implied volatility from options

on S&P futures does not contain additional information on future S&P volatility

relative to the standard volatility forecasts based on historical prices.90

While Fung and Hsieh (1991) compare option-implied volatility forecasts and sim-

ple volatility forecasts based on historical prices, Gospodinov et al. (2006) inves-

tigate an extended set of alternative volatility forecasting models. By perform-

ing an analysis of the time series properties of S&P 100 volatility, they find evi-

dence of slow mean-reverting behaviour and long memory effects.91 To reproduce

these characteristics, they fit an ARFIMA model, a near-integrated autoregressive

model developed by Gospodinov (2002), and a Fractionally Integrated Exponential

GARCH (FIEGARCH) model to the data.92 The predictive ability of the different

volatility forecasting methods is examined across different loss functions where daily

returns on the S&P 100 index are used to proxy for the latent volatility process.93

Their evaluation results for one-step-ahead volatility forecasts reveal that implied

volatility contains useful information on future volatility. Moreover, they report that

forecast combinations based on alternative volatility models tend to provide lower

prediction errors than using the individual models. However, their forecast evalua-

tion approach does not provide information concerning whether the prediction errors

from the combined forecasts are significantly lower than those from the individual

models.94

By using the SPA test developed by Hansen (2001), Koopman et al. (2005) inves-

tigate the relative forecasting performance of various volatility models for the S&P

100 index. The SPA test permits a formal examination of whether a benchmark

model is significantly outperformed by a set of alternative models. The relative

forecasting performance used to compare the volatility models is measured by tak-

90See Fung and Hsieh (1991), pp. 1-18.
91Their data set contains daily data for the VIX and the S&P 100 index from June 1988 to May
2002.

92In addition, they estimate an EGARCH model, a stochastic volatility model, and combined
forecasts.

93See Gospodinov et al. (2006), pp. 381-387.
94See ibid., pp. 393-397.
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ing the differences of the forecast error series for each model combination. Similar to

Li (2002), Martens and Zein (2004), and Becker et al. (2006), Koopman et al. (2005)

also estimate daily or realised volatility as the sum of squared five-minute returns

on the S&P 100. The forecast errors are calculated for different loss functions (mean

square error (MSE), mean absolute error (MAE), mean square error adjusted for

heteroskedasticity (HMSE), and mean absolute error adjusted for heteroskedastic-

ity (HMAE)) based on this realised volatility measure. They compare the forecasting

performance of unobserved Autoregressive Moving Average (ARMA) components

models, ARFIMA models, stochastic volatility models, and GARCH models. To

account for recent research findings, they add realised and implied volatilities as ex-

planatory variables to the stochastic volatility and GARCH models.95 The empirical

investigation is performed for one-step-ahead forecasts for the period from January

1997 to November 2003.96

Comparing the forecasting performance of the volatility models based on the loss

functions, they find that the volatility forecasts provided by the unobserved ARMA

components and the ARFIMAmodels outperform the predictions from the stochastic

volatility and GARCH models. They identify two reasons for the relatively poor

prediction results of the GARCH and stochastic volatility models: first, they refer to

volatility measurement errors in daily squared returns, and second, they argue that

stochastic volatility and GARCH models react slowly to volatility changes. Within

the class of volatility models using daily returns, they report that the stochastic

volatility model extended by either lagged realised or implied volatility provides the

best forecasting results. Among the volatility models based on realised volatility,

the ARFIMA model produces the most accurate volatility forecasts. These results

are supported by the evidence provided by the SPA test.97

Similar to Koopman et al. (2005), Martin et al. (2009) also compare the predictive

ability of options-based and return-based volatility forecasts by performing the SPA

95The option-implied volatility is measured by the VIX.
96See Koopman et al. (2005), pp. 445-448.
97See ibid., pp. 465-472.
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test. However, the latter paper places greater emphasis on the influence of different

noise-corrected volatility measures on the forecast evaluation results. While most

empirical studies employ the sum of squared returns over small, regular intervals to

proxy for unobserved volatility, they calculate a range of realised volatility measures

that differently account for empirical regularities of microstructure noise.98 Another

focus of their study is the robustness of the relative performance of options-based ver-

sus return-based volatility forecasts with respect to the choice of the option pricing

model. Therefore, they use ATM implied volatility and model-free implied volatility

to derive options-based volatility forecasts.99 The performance of the options-based

forecasts is compared to selected return-based volatility forecasts for three DJIA

stocks and the S&P 500 index. To capture the empirical features of the stocks and

the index, they fit an ARFIMA model, various GARCH models, and, for complete-

ness, an ARMA model to the data.100 By using the SPA test, where option-implied

volatility represents the benchmark model (respectively, ATM implied volatility or

model-free implied volatility), they investigate whether options-based forecasts are

outperformed by a set of alternative models.101

With respect to a one-day-ahead and a 22-day-ahead forecast horizon, they docu-

ment that the model-free implied volatility exhibits poor prediction results for the

three individual stocks and the S&P 500 index.102 In contrast, the SPA test re-

veals that ATM implied volatility provides superior volatility forecasts for the three

DJIA stocks.103 However, volatility forecasts based on ATM implied volatility do

not outperform return-based models with respect to the S&P 500 index. These find-

98Specifically, they use the two-scale realised volatility estimator suggested by Zhang et al. (2005)
and Aı̈t-Sahalia et al. (2011), the realised kernel estimator developed by Barndorff-Nielsen et al.
(2008), the optimal sampled realised volatility estimator proposed by Bandi and Russell (2006),
the bi-power variation measure of Barndorff-Nielsen and Shephard (2004), the modified alterna-
tion estimator developed by Barndorff-Nielsen and Shephard (2007), and the standard realised
volatility measure based on squared five-minute returns.

99The implied volatilities for the European-style index options are computed via the BS option
pricing model and for the three Dow Jones Industrial Average (DJIA) stocks using a binomial
tree method.

100Their sample contains intraday spot and options prices from June 1996 to June 2006.
101See Martin et al. (2009), pp. 77-79.
102The SPA test indicates that at least one model in the set of alternative models significantly

outperforms model-free implied volatility.
103This particularly holds for the 22-day-ahead forecasts.
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ings hold regardless of the realised volatility measure considered and, thus, do not

depend on the method applied to correct for microstructure noise.104 Finally, they

report that ARFIMA models also produce useful 22-day-ahead volatility forecasts

in low volatility periods. However, due to the focus and test methodology of their

study, they provide no answer to the question of which prediction approach provides

the best volatility forecast.105

Although the SPA test allows for a simultaneous comparison of multiple forecasts, it

provides little information on which particular model is superior to the benchmark

model. Further, the SPA test requires the specification of a benchmark model and

thus cannot be applied when no natural benchmark exists.106 Becker and Clements

(2008) close this gap by applying the MCS approach developed by Hansen et al.

(2003). The objective of this approach is to identify a final set of optimal volatility

forecasting models that do not significantly differ with respect to their predictive

ability.107,108

Becker and Clements (2008) analyse different approaches for the prediction of S&P

500 index volatility. In their analysis, they compare the forecasting performance of

implied volatility, time series models, and combined forecasts. They measure the

implied volatility of S&P 500 index options using the VIX. Due to the time series

characteristics of the series, they fit models from the GARCH, stochastic volatility,

ARMA and ARFIMA classes to the data. Their sample comprises the period from

January 1990 to October 2003.109,110

Their evaluation results for the individual forecasts indicate that volatility fore-

casts based on time series models using realised volatility outperform option-implied

104They suggest that the poor relative performance of model-free implied volatility can be explained
by the existence of a volatility risk premium.

105See Martin et al. (2009), pp. 89-101.
106See Hansen et al. (2003), p. 841.
107See Becker and Clements (2008), p. 123.
108The criterion to determine the optimal models is user-specified, e.g., the MSE. See Chapter

6.6.2 for a detailed presentation of the MCS approach.
109Actual volatility is estimated based on the sum of squared 30-minute S&P 500 index returns.
110See Becker and Clements (2008), pp. 122-124.
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volatility forecasts.111 If the forecast set is extended by combined forecasts, then the

combination of an ARMA and an ARFIMA model provides the most accurate pre-

dictions when using the MSE as the loss function. Applying the QLIKE loss func-

tion, they report that the combination of an ARMA model, an ARFIMA model, a

stochastic volatility model and the VIX exhibits the lowest forecast errors.112

The results of the MCS approach demonstrate that the individual forecasts of the

VIX, the GARCH models (with one exception), and the stochastic volatility mod-

els are significantly outperformed by combined forecasts. Moreover, the outcome

demonstrates that volatility forecasts produced by the ARMA and ARFIMA models

provide essential information for the prediction of S&P 500 index volatility, because

the MCS contains no other individual forecasts. Overall, the combination of volatil-

ity forecasts from short and long memory models using realised volatility provide

the best forecasting results.113

5.2.7. Summary

The above-described initial debate in the literature concerning the predictive power

of implied volatility for US stock market volatility largely presents evidence that

BS implied volatility provides better volatility forecasts than historical volatility

models.114,115 Further, these studies typically indicate that implied volatility is a

biased predictor of stock market volatility.116 Because this finding suggests that

implied volatility might not contain all information on future volatility or that the

111This result holds for the MSE and quasi-likelihood (QLIKE) loss functions.
112See Becker and Clements (2008), pp. 129-131.
113See ibid., p. 132.
114See Latané and Rendleman (1976), Schmalensee and Trippi (1978), Chiras and Manaster (1978),

Beckers (1981), Christensen and Prabhala (1998), Ederington and Guan (2005), and Fleming
et al. (1995).

115Poon and Granger (2003) provide a comprehensive literature review and summary that implied
volatility tends to be more appropriate for predicting volatility than historical volatility models.
See Poon and Granger (2003), pp. 506-507.

116Additionally, Szakmary et al. (2003), who examine futures options data for different asset classes
over a wide range of 35 markets, also report that implied volatility is a biased estimator of
realised volatility. See Szakmary et al. (2003), p. 2173.
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information is not processed correctly by the option pricing model employed,117

chapters 5.2.2 and 5.2.3 cover studies that investigate whether this can be attributed

to measurement errors in implied volatility and/or realised volatility.

With respect to measurement errors in implied volatility due to market imperfec-

tions, research published by Christensen and Prabhala (1998) and Ederington and

Guan (2002) suggests that the EIV problem can at least partially explain the fore-

casting bias of implied volatility. By accounting for the EIV problem, these papers

provide evidence that implied volatility principally has strong predictive power and

generally subsumes the information contained in historical volatility.

Considering the effects of using intraday returns to measure ex-post volatility, Potesh-

man (2000) demonstrates that the forecasting bias of implied volatility is reduced

and its forecasting performance improves when realised volatility is computed based

on intraday returns. Blair et al. (2001) also report that intraday returns are bet-

ter measures of ex-post volatility and provide better volatility forecasts than daily

returns. Despite these findings, they document that implied volatility is more infor-

mative than historical volatility including intraday returns.

Analysing whether the misspecification of an option pricing model induces forecast-

ing bias for implied volatility, the empirical studies by Poteshman (2000), Shu and

Zhang (2003), and Chernov (2007) described in Chapter 5.2.4 do not permit draw-

ing a clear conclusion. While Poteshman (2000) and Chernov (2007) report that

replacing the BS model with the Heston model to derive implied volatility reduces

forecasting bias, Shu and Zhang (2003) present contradictory results. Moreover, Shu

and Zhang (2003) do not report significant differences in the forecasting performance

of implied volatility from the BS model and the Heston model. Additionally, they

demonstrate that implied volatility outperforms historical volatility and subsumes

the information contained in historical volatility models.

117As mentioned in Chapter 4.1.2, a test of the information efficiency of options markets cannot be
separated from testing the hypothesis of whether the employed option pricing model is correct.
Thus, a rejection of the hypothesis can also imply that the option pricing models employed do
not hold.
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This finding is confirmed by Jiang and Tian (2005) and Taylor et al. (2010), who in

addition to BS implied volatility, use model-free implied volatility to forecast stock

market volatility. With respect to the relative forecasting performance of model-

free implied volatility and BS implied volatility, Jiang and Tian (2005) document

that model-free implied volatility provides better prediction results than BS implied

volatility. In contrast, Taylor et al. (2010) find that BS ATM implied volatility

generally outperforms model-free volatility.

In addition to the development and application of more suitable option pricing mod-

els, the papers by Li (2002), Martens and Zein (2004), and Becker et al. (2006)

presented in Chapter 5.2.5 report that long memory models provide good volatility

forecasts that can improve implied volatility forecasts by incorporating incremental

information. As a consequence, they suggest combined volatility forecasts based on

implied volatility and long memory models.

The evidence provided by the above papers using encompassing regressions is sup-

plemented in Chapter 5.2.6 by the results of studies that employ loss functions to

assess the performance of different volatility forecasting methods. While Fung and

Hsieh (1991) report that implied volatility contributes little additional information

on future volatility relative to simple rolling volatility forecasts, Gospodinov (2002)

finds that implied volatility contains valuable information on future volatility and

suggests combining individual forecasts from implied volatility and historical volatil-

ity to improve forecasting performance. By extending the set of time series models

to ARFIMA models based on realised volatility, Koopman et al. (2005), Becker and

Clements (2008), and Martin et al. (2009) find that long memory models provide

useful and occasionally better prediction results than historical volatility models.

In accordance with Li (2002), Martens and Zein (2004), and Becker et al. (2006),

they suggest that combining individual volatility forecasts from different prediction

approaches can improve the performance of volatility forecasts. Having presented

a literature overview of empirical studies on the prediction of US stock market
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volatility, the following Section addresses the empirical results for the German stock

market.

5.3. Empirical Results for the DAX Options Market

Relative to the US stock market, there is less empirical research on the forecasting

performance of implied-volatility and return-based models for the German stock

market. Bluhm and Yu (2001) represent an early contribution and compare the

predictive power of BS implied volatility with the historical mean, the exponentially

weighted average, four ARCH-type models, and a stochastic volatility model using

DAX returns and DAX options data from July 1996 to June 1999.118 These models

are applied to compute one-trading-day-ahead, ten-trading-days-ahead, 45-calendar-

days-ahead, and 180-trading-days-ahead DAX volatility forecasts. Thereafter, they

employ different error measures to evaluate the prediction results.119 Using the

mean absolute per cent error (MAPE) to evaluate 45-calendar-days-ahead and 180-

trading-days-ahead DAX volatility forecasts, they find that implied volatility and

the stochastic volatility model provide the best forecasting results. Furthermore,

their findings demonstrate that implied volatility outperforms ARCH-type models

for both forecast horizons. However, they find that ARCH-type models produce

useful DAX volatility forecasts over shorter horizons.120 Overall, they report that

the model ranking depends on the forecast horizon and the employed error measure,

such that their results do not permit identifying a superior overall prediction method

for DAX volatility forecasts.121

Claessen and Mittnik (2002) conduct an analysis similar to that of Bluhm and Yu

(2001). They also investigate whether the VDAX provides better DAX volatility

118Bluhm and Yu (2001) use the VDAX to measure the implied volatility of DAX options.
119See ibid., pp. 1-6.
120They evaluate short-term DAX volatility forecasts based on the linear-exponential (LINEX) loss

function and boundary violations that are applied in the Value-at-Risk approach.
121See ibid., pp. 12-18.
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forecasts than return-based volatility models, including several GARCH models.122

In contrast to Bluhm and Yu (2001), they also examine the performance of com-

bined volatility forecasts. Moreover, they apply an extended model set, namely the

historical moving average model, a random walk model, a standard and a modified

GARCH(1,1) model, an autoregressive model for squared returns, and an extended

GARCH(1,1) model where implied volatility is added as an explanatory variable, to

produce DAX volatility predictions. The forecasting performance is compared for

different forecast horizons based on different evaluation criteria for the period from

February 1992 to December 1995.123,124

Within the class of individual forecasts, they report that the GARCH(1,1) model

extended by implied volatility provides the best prediction results in terms of the

MSE across different forecast horizons, whereas implied volatility exhibits high pre-

diction errors. With respect to combined forecasts, they find that the combination

of volatility forecasts based on implied volatility and the GARCH(1,1) model pro-

vides better forecasting results and outperforms the extended GARCH(1,1) model.

They suggest that it is possible to correct the forecasting bias of implied volatility by

including implied volatility in the GARCH(1,1) model or using combined forecasts.

Overall, they conclude that past DAX returns provide no additional information

relative to DAX implied volatility.125

Lazarov (2004) extends the above-cited research on forecasting DAX index volatility

by estimating time series volatility models based on realised volatility.126 Further, he

applies realised volatility to compare the forecasting performance of several volatility

prediction methods, including forecasts based on option-implied volatility.127 In

addition to using implied volatility, he considers the GARCH(1,1) model, a GARCH

122In addition to VDAX data, they use transaction data on short-term near ATM DAX index
options.

123They apply the MAE, the MSE, and the proportion of correctly predicted directions to evaluate
the DAX volatility predictions.

124See Claessen and Mittnik (2002), pp. 302-309.
125See ibid., pp. 312-320.
126Additionally, he incorporates realised volatility into time series volatility models to capture

additional information on future volatility.
127Lazarov (2004) computes realised volatility as the sum of squared 5-minute DAX returns.
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model for realised variance, an ARFIMA model for realised variance, an extended

version of these time series volatility models where implied volatility is included, and

an ad-hoc linear regression model that accounts for the volatility risk premium.128

The data set contains transaction data on DAX futures and options from January

1999 to July 2002.129

Lazarov’s (2004) out-of-sample forecast evaluation results demonstrate that the

GARCH(1,1) model provides poor prediction results and that the model is outper-

formed by option-implied volatility and the ARFIMA model. Moreover, he reports

that the extended GARCH model exhibits a better performance than the standard

GARCH(1,1) model. However, the prediction results of both GARCH models are

outperformed by the ARFIMA model based on realised variance. Interestingly, the

ad-hoc linear regression model provides prediction results similar to those of the

ARFIMA model. In summary, he concludes that implied and realised variance cap-

ture the same information for predicting DAX index volatility.130

While Lazarov (2004) considers short-term DAX volatility forecasts of up to ten

days, Raunig (2006) examines whether DAX volatility is predictable over longer

horizons. In his study, he computes daily DAX volatility forecasts over 10, 20, and

45 trading days for the period from December 1997 to July 2005. In contrast to

previous findings, he demonstrates that DAX volatility is predictable up to 40 trad-

ing days. Because the predictability test results indicate that more sophisticated

volatility models are useful for the prediction of DAX volatility over longer hori-

zons, he performs an out-of-sample forecasting experiment to investigate the perfor-

mance of GARCH models and option-implied volatility. In particular, he compares

the predictive ability of the GARCH(1,1) model, the Glosten-Jagannathan-Runkle

GARCH (GJR-GARCH)(1,1) model, and the VDAX.131

128The ad-hoc model represents a regression of realised variance on lagged implied volatility.
129See Lazarov (2004), pp. 41-47
130See ibid., pp. 57-64.
131See Raunig (2006), pp. 363-364.
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The forecasting performance is evaluated based on different loss functions, namely

MAE, MSE, and HMSE, where latent volatility is measured as the sum of daily

squared returns over the forecast horizon. The evaluation results for the selected

prediction methods are mixed. On the one hand, the MAE and MSE loss functions

suggest, that with one exception, DAX volatility forecasts based on the VDAX

outperform the GARCH models. On the other hand, the HMSE criterion indicates

that the GJR-GARCH model provides the lowest prediction errors. Because the

evaluation method applied by Raunig (2006) is based on the sum of daily squared

returns, the mixed results are might be induced by the choice of a noisy volatility

measure and should be interpreted with caution.132

To close the gap in the empirical literature on the information content of option

prices on the future distribution of the underlying asset, Wilkens and Röder (2006)

investigate whether higher moments of option-implied distributions contain informa-

tion on the underlying’s future moments. Their study is based on a transaction data

set of DAX options from January 1999 to December 2000.133 By applying the BS

model, the Gram/Charlier density expansion model, and two models with mixtures

of lognormal distributions, they extract the entire risk-neutral distribution from

DAX option prices and examine the information content of option-implied volatility,

skewness and kurtosis on future moments. In addition to analysing option-implied

moments, they also consider the forecasting ability of historical higher moments.134

Using univariate regressions, they find that option-implied volatilities principally

contain information on future volatility and offer greater explanatory power for

future volatility than does historical volatility.135 The results of the encompass-

ing regressions suggest that the explanatory power of implied volatility does not

increase when historical volatility is added to the regression model. Thus, DAX

132See Raunig (2006), pp. 370-371.
133For further empirical results regarding Euro-Bund-Future options that are not presented here,

see Wilkens and Röder (2006).
134See ibid., pp. 50-53.
135In particular, they report that volatility forecasts based on implied volatility from the BS model

outperform alternative option pricing models in terms of the adjusted coefficient of determina-
tion.
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implied volatilities subsume the information on future volatility provided by his-

torical volatility. Further, they report that volatility forecasts based on implied

volatility from more complex option pricing models do not deliver better prediction

results than the BS model. Additionally, they also document that neither implied

nor historical skewness or kurtosis provide information on the corresponding future

moments.136

Muzzioli (2010) applies the promising approach developed by Jiang and Tian (2005)

that uses model-free implied volatility to forecast DAX index volatility. Muzzioli

(2010) compares the forecasting performance of BS implied volatility, model-free

implied volatility, and volatility forecasts based on time series models. Her sample

comprises intraday data on DAX index options from January 2001 to December

2006. Further, she avoids the non-synchronous data problem by matching prices

in a one-minute interval. Following Andersen and Bollerslev (1998), she measures

ex-post volatility as the sum of 5-minute squared DAX returns.137

Estimating encompassing regressions, she finds that DAX volatility forecasts based

on implied volatility subsume the information provided by historical returns, regard-

less of whether she uses an AR(1) or a GARCH(1,1) model to predict DAX volatility.

Furthermore, she reports that BS implied volatility covers the information contained

in model-free implied volatility. According to Muzzioli (2010), the inferior results

of model-free implied volatility are might be due to measurement errors induced

by illiquid options that are used to calculate model-free implied volatility based on

a cross section of option prices.138 Moreover, to investigate whether the forecast-

ing performance of model-free implied volatility is affected by the implementation

method selected, she employs different implementation methods with respect to the

extrapolation of the strike price domain.139 Her results indicate that the imple-

136See Wilkens and Röder (2006), pp. 64-68.
137See Muzzioli (2010), pp. 561-563.
138In comparison to ATM options, the liquidity of options near the minimum, respectively maxi-

mum, available strike is typically lower.
139The methodology of her basic implementation method follows Jiang and Tian (2005), who

assume a constant volatility function beyond the maximum and minimum strike price. In
addition to Jiang and Tian (2005), she considers two different implementation methods. First,
as an alternative to the assumption of a constant volatility function beyond the available strike
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mentation method suggested by Jiang and Tian (2005) provides better results than

alternative computation methodologies.140

Similar to Muzzioli (2010), Schöne (2010) examines the information content of BS

implied volatility measured by the VDAX and model-free implied volatility provided

by the DAX-Volatilitätsindex New (VDAX-New). While Muzzioli (2010) focuses on

the comparison of DAX volatility forecasts based on implied volatility and time se-

ries models, Schöne (2010) investigates whether different ex-post volatility measures

affect the evaluation of DAX volatility predictions. In addition to the classical close-

to-close estimator that is based on squared daily returns, he employs four different

alternative ex-post volatility measures using additional information such as the day’s

high, low, and opening price.141 Additionally, he applies a high-frequency volatility

measure that is based on the daily sum of squared 15-minute DAX returns. The

study considers daily DAX, VDAX, and VDAX-New data from January 1992 to

October 2009 and DAX intraday data from January 2001 to October 2009.142

The volatility predictions are evaluated by performing univariate regressions in which

ex-post DAX volatility (measured by different daily and high-frequency volatility

measures) is regressed on DAX volatility forecasts based on the VDAX, respectively

the VDAX-New. In general, the regression results suggest that the VDAX-New pro-

vides more information on future DAX volatility than the VDAX. However, Schöne

(2010) reports that the degree of the information content of each volatility index

on future DAX volatility depends on the applied ex-post volatility measure. With

respect to the higher information content of the VDAX-New, he argues that this can

be explained by the shorter maturity of the underlying DAX options (the VDAX

is computed from DAX options with 45 days to maturity, whereas the VDAX-New

prices, she uses an extrapolation method that matches the slope of the smile at the minimum,
respectively maximum, strike value. Second, she does not extend the set of strike prices beyond
the available range.

140See Muzzioli (2010), pp. 571-575.
141In particular, he applies the Parkinson estimator, the Garman/Klass estimator, the

Rogers/Satchell estimator, and the Yang/Zhang estimator. See Schöne (2010) for a brief de-
scription of the estimators.

142See ibid., pp. 625-645.
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is calculated from options that expire in 30 days).143 As it uses different forecast

horizons, the evaluation approach applied by Schöne (2010) does not allow for a

proper comparison of the predictive ability of the VDAX and the VDAX-New.

Recently, Tallau (2011) also analyses whether the VDAX and/or the VDAX-New

provide information for the prediction of DAX volatility. In particular, he compares

the predictive power of both volatility indices, the asymmetric GJR-GARCH(1,1)

model, and the RiskMetrics approach based on univariate and encompassing regres-

sions.144 He uses daily data on the VDAX, the VDAX-New, and the DAX for the

period from January 1992 to December 2008 and considers different forecast hori-

zons.145 Despite their different computational methodologies, he documents several

empirical similarities for both volatility indices across different forecast horizons.

First, the VDAX and VDAX-New provide a biased estimate of future DAX volatil-

ity. Second, they subsume the information that is contained in historical returns.

However, the regression results demonstrate that the VDAX-New provides more in-

formation on future volatility than the VDAX and time series models. Further, in

contrast to Muzzioli (2010), he finds that the VDAX-New comprises the information

provided by the VDAX. Because Tallau (2011) uses an ex-post volatility measure

based on squared daily returns and Muzzioli (2010) employs a high-frequency volatil-

ity measure, the conflicting results may be due to Tallau’s (2011) application of a

noisy volatility measure.146,147

Overall, the above studies present evidence that DAX implied volatility contains

helpful information for the prediction of DAX volatility. While the articles by Bluhm

and Yu (2001) and Raunig (2006) report mixed results regarding the forecast rank-

ing, recent studies by Lazarov (2004), Wilkens and Röder (2006), Muzzioli (2010),

and Tallau (2011) suggest that DAX implied volatility provides better volatility fore-

casts than time series models based on historical returns. In addition, Claessen and

143See ibid., pp. 645-654.
144The RiskMetrics framework was developed by J.P. Morgan and is based on the exponentially

weighted moving average method. See Morgan (1996).
145See Tallau (2011), pp. 47-50.
146Tallau (2011) uses the sum of squared daily returns over 30 days to measure ex-post volatility.
147See ibid., pp. 59-72.
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Mittnik (2002) indicate that combined volatility forecasts using the information from

implied volatility and historical returns are a reasonable complement to individual

forecasts. Further, Lazarov (2004) presents the promising result that the forecasting

performance of ARFIMA models is similar to that of DAX implied volatility. With

respect to the forecast ranking of BS implied volatility and model-free volatility,

Muzzioli (2010) documents that BS implied volatility covers the information con-

tained in model-free volatility, whereas Tallau (2011) presents the opposite results.

5.4. Model Selection

As the literature review presented above demonstrates that a comprehensive com-

parison of forecasting approaches has yet to be performed for the German stock

market, this thesis is designed to help close this gap. After the general descrip-

tion of volatility forecasting models in Chapter 4 and the literature review of their

empirical forecasting performance presented in this Chapter, this Section explains

the selection of the specific models used in this thesis to forecast DAX volatility.

In addition to the general model characteristics and the empirical results presented

above, model selection is also based on the models’ ability to match the observed

DAX IVS as documented in Chapter 3. Because the advantages and disadvantages

of each forecasting approach are deeply discussed in Chapter 4, this Section draws

on this discussion and focuses on particular aspects.

Chapter 4 introduced four different classes of option pricing models: local volatility

models, the concept of model-free implied volatility, stochastic volatility models,

and jump-diffusion models. While local volatility models are in principle able to

perfectly replicate the observed DAX volatility smiles, they exhibit weaknesses when

the dynamics of the complete DAX IVS have to be generated.148 Britten-Jones and

Neuberger (2000) developed the concept of model-free implied volatility to overcome

these deficiencies. Moreover, Muzzioli (2010) and Tallau (2011) report evidence that

148See Wallmeier (2003).
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DAX volatility forecasts based on this concept subsume the information contained

in historical returns. Therefore, model-free implied volatility is used in this study

to produce DAX volatility forecasts.

Although stochastic volatility models provide a more comprehensive approach than

local volatility models to explain the characteristics of DAX implied volatilities,

they are not considered in this study, because the inclusion of additional risk fac-

tors makes the models more complex and reliable parameter estimation more diffi-

cult.149,150 Further, jump-diffusion models are also not applied in this thesis due to

their inability to generate certain patterns of the DAX volatility term structure.151

Finally, despite its well-documented weaknesses, the BS model is employed as the

benchmark model in this study, because it can be regarded as a heuristic rule applied

by many market participants.152 Thus, in the following Chapter, the BS model and

model-free implied volatility are used to derive implied volatilities for the prediction

of DAX volatility.

Moreover, time series models are employed to produce DAX volatility forecasts.

First, GARCH models based on daily DAX returns are employed due to their ability

to reproduce volatility clustering effects that are documented in Chapter 3. Second,

the above-cited promising empirical results concerning the forecasting performance

of long memory models motivated the selection of the ARFIMA and HAR mod-

els.153,154 In addition to individual forecasts, this study also considers combined

forecasts, because forecast combinations have been found to outperform individual

forecasting models in many areas.155

149See ibid., p. 239.
150In addition, Bates (1996b) and Das and Sundaram (1999) also report that unreasonably high

parameters are necessary to reproduce the pronounced volatility smiles of short-term options.
151See Das and Sundaram (1999).
152In particular, this study analyses, i. a., whether model-free implied volatility based on a broader

information set provides better forecasting results than standard BS implied volatility.
153See, e.g., Martens and Zein (2004) and Becker et al. (2006).
154An analysis of whether the model features are conform to the empirical characteristics of the

data is presented in the next Chapter.
155See, e.g., the comprehensive studies by Makridakis and Hibon (2000), Stock and Watson (1999),

and Marcellino (2004).
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6. Forecasting DAX Volatility

This Chapter focuses on the generation and evaluation of DAX volatility forecasts.

After analysing the characteristics of the DAX return and volatility series, various

volatility forecasting models are estimated. Then, information criteria are used

to select the appropriate model specifications. Because the data set contains long

time series that cover clearly different volatility periods, a number of structural

break tests are performed. The next Section describes the forecasting method and

evaluation approach used in this study. Finally, the prediction results for different

forecast horizons are presented, evaluated and compared with previous findings in

the literature.

6.1. Data Description

While the empirical analysis of the stylised facts of implied DAX volatilities in Chap-

ter 3 considers the complete IVS, this Chapter examines DAX volatility forecasts

that require different data filters. Specifically, the calculation of volatility forecasts

based on implied DAX volatilities uses cross-sectional data (option prices) and not

the complete IVS. Thus, the change in research topic requires an adjustment of the

underlying data filters.

First, DAX ITM options and DAX options with a remaining lifetime of fewer (more)

than 5 (360) days are excluded from the sample because of liquidity concerns.1 An

1See Aı̈t-Sahalia and Lo (1998), who argue that ITM options are not completely reliable due to
infrequent trading. See Aı̈t-Sahalia and Lo (1998), p. 517.
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DAX ITM option is defined as a call (put) option with a moneyness level below

(above) 0.97 (1.03).2 Second, to ensure that the daily estimated IVS is as stable

as possible within the day, only DAX option contracts that are traded between 4

p.m. and 5 p.m. are considered.3 The reduction of the sample to one trading hour

is primarily induced by the calculation of model-free volatility, which is based on a

complete range of option prices.4 Jiang and Tian (2005) and Muzzioli (2010) also

employ model-free volatility to calculate volatility forecasts and use option contracts

from a particular trading hour. The trading hour between 4 p.m. and 5 p.m. is

selected, as most trading activities typically occur before the trading phase ends

at 5:30 p.m. Finally, this study excludes all DAX options with implied volatilities

below 5% and above 120% to eliminate the effects of outliers.5 After all filters have

been applied, the remaining data set contains 0.81 million option contracts. The

following Section presents some descriptive statistics, time series plots, correlograms

and a correlation matrix for the return and volatility series investigated in this

study.

6.2. Descriptive Statistics

To present some descriptive statistics for daily DAX model-free volatilities and DAX

BS ATM implied volatilities, both implied volatility series are computed based on

the selected options data set. As the construction of the implied volatility series

was described in the previous Chapters, I refer to the corresponding passages.6 The

2Jiang and Tian (2005) employ a similar filter.
3Note that a minimum set of option prices is necessary to ensure a precise estimate of the IVS.
4The reduction of the sample size can be explained as follows: First, the implementation of model-
free volatility requires the conversion of the observed option prices to implied volatilities. Then,
smoothing methods are applied to the implied volatilities to obtain a complete set of implied
volatilities. These smoothed implied volatilities are reinserted into the BS equation to derive the
desired range of option prices. The crucial point is that the calculation of BS option prices is
based on the index level. If the above time interval is not restricted, variation in the index level
(e.g., over one day) can induce substantial pricing errors due to non-synchronous data.

5See also Chapter 3.2.3.
6The BS implied volatilities are calculated according to Section 2.3. Then, the Nadaraya-Watson
estimator is used to compute daily BS implied volatilities for a fixed grid of maturities and
moneyness levels (see Section 3.1.3). The optimal bandwidths for the Nadaraya-Watson estimator
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implied volatilities of both series are determined for a DAX option with constant

maturity (here: one month) on an annualised basis. The choice of maturity is mo-

tivated by the VDAX-NEW, which also has a maturity of one month. In addition

to the implied volatility series, daily realised DAX volatilities are estimated as the

cumulative sum of squared 5-minute DAX returns over one day.7 Finally, DAX re-

turns are calculated from daily DAX index levels at 5 p.m. The descriptive statistics

are reported in Table 6.1.8

Table 6.1.: Descriptive statistics of volatility and return series from 2002 to 2009

mfv lnmfv bsatm lnbsatm rvola lnrvola rdax

Mean 0.250 -1.470 0.243 -1.515 0.218 -1.691 0.000
Std. Dev. 0.112 0.402 0.118 0.431 0.144 0.556 0.016
Skewness 1.248 0.526 1.405 0.523 2.260 0.424 -0.112
Exc. Kurt 0.877 -0.542 1.689 -0.445 7.704 -0.102 4.541
Minimum 0.116 -2.155 0.103 -2.277 0.037 -3.306 -0.080
Maximum 0.684 -0.380 0.812 -0.208 1.302 0.264 0.102

Source: own calculations.

Table 6.1 indicates that daily DAX returns also match the well-known stylised facts

that are typically observed for financial returns: negative skewness and excess kurto-

sis. Similar to the related literature, the table reports that model-free volatility and

BS ATM implied volatility, are on average, greater than realised volatility.9 Cher-

nov (2007) attributes this result to the existence of a volatility risk premium that

causes implied volatility to exceed realised volatility.10 Further, DAX options, on

average, exhibit a slightly greater model-free volatility than BS ATM implied volatil-

ity. Muzzioli (2010) suggests that this can be explained by the fact that model-free

volatility also includes information from non-ATM options that overall have higher

are determined by minimising the penalisation function (3.22). The daily model-free volatilities
are derived as shown in Section 4.1.2.

7See Section 6.6.1 for a detailed description of estimating realised DAX volatilities from DAX
intraday returns. An explanation of how 5-minute DAX returns are computed from DAX futures
prices is given in Chapter 3.2.2. Analogous to both implied volatility series, the realised volatility
is expressed on an annual basis.

8In the following tables, DAX BS ATM implied volatility is abbreviated bsatm, DAX model-free
volatility mfv, realised DAX volatility rvola, and DAX return rdax. The prefix ln together with
the abbreviation for the times series denotes the corresponding log-series.

9Muzzioli (2010) reports the same finding. See Muzzioli (2010), p. 568.
10See Chernov (2007), p. 420.
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overall implied volatilities than ATM options.11 Moreover, all three linear volatility

series are positively skewed and exhibit positive excess kurtosis.

The time series plot of daily DAX returns in Figure 6.1 displays two extremely

volatile market periods that are described in Section 3.2.4. During both periods,

the DAX dramatically declined and volatility increased considerably. Furthermore,

the plot depicts volatility clustering for the DAX return series, which is typical of

many financial return series. Figure 6.2 indicates that each of the two implied DAX

volatility series is closely related to realised DAX volatility. It also illustrates that

realised DAX volatility is more ”spiky” than either implied volatility series. The

correlation matrix of the volatility series, which is provided in Table 6.2, confirms

this close relationship between implied and realised DAX volatility. It also suggests

that DAX model-free and DAX BS ATM implied volatility are highly correlated.

The correlation between each volatility series and the DAX return is negative, which

indicates the existence of the leverage effect.12

Table 6.2.: Correlation matrix

mfv bsatm rvola rdax

mfv 1.000
bsatm 0.995 1.000
rvolva 0.888 0.907 1.000
rdax -0.115 -0.120 -0.138 1.000

Source: own calculations.

To study the autocorrelation structure, Figure 6.3 contains a correlogram for each

volatility and return series. While the sample autocorrelations for DAX returns are

not generally significantly different from zero, the correlograms for all three volatility

series indicate significant positive serial correlations. Moreover, the slow decay of the

11See Muzzioli (2010), p. 569.
12See Fengler (2012), who also reports a negative correlation between DAX returns and BS 1M
ATM implied volatility for the period from 2000 to 2008. See Fengler (2012), p. 123.
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Figure 6.3.: Correlograms of DAX volatilities and return series

sample autocorrelations in the volatility series provides evidence for the existence of

long memory effects.13

6.3. Tests Results for Unit Roots, Long Memory, and

ARCH Effects

After presenting some descriptive statistics, this Section reports the results of var-

ious unit-root tests to investigate whether the time series are stationary. Sev-

eral statistical tests have been developed to test for stationarity. This study em-

ploys the augmented Dickey-Fuller (ADF) test, the Dickey-Fuller generalised least-

13Koopman et al. (2005) obtain related results for daily S&P 100 returns, realised volatilities, and
implied volatilities for the period from January 1997 to November 2003. See Koopman et al.
(2005), p. 452.
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squares (DFGLS) test suggested by Elliott et al. (1996), and the KPSS test developed

by Kwiatkowski et al. (1992).

The ADF test is widely used and based on the null hypothesis that the series is non-

stationary. The ADF test can be computed for different cases that differ with respect

to whether, under the null hypothesis, the process contains a drift and whether the

test regression contains a constant or trend term. Given the time series plot of DAX

returns in Figure 6.1, the null hypothesis of a random walk without drift is tested

against the alternative of a stationary process with a constant, but no trend term.

In addition, the plots of the volatility series in Figure 6.2 suggest that the hypothesis

of a random walk with drift should be tested against the alternative of a stationary

process with a constant, but no trend term.

Further, the DFGLS test suggested by Elliott et al. (1996) is implemented, as Elliott

et al. (1996) report that the test has a significantly higher power than the original

ADF test. The DFGLS test represents a modified Dickey-Full test in which a pos-

sible drift and/or deterministic linear trend is removed from the time series via a

generalised least squares regression before the unit root test is performed.14,15 The

null hypothesis of the DFGLS test states that the series follows a random walk,

whereby a drift is possible. Finally, the KPSS test is selected to complement the

unit root tests because, in contrast to the ADF and the DFGLS tests, it uses the

null hypothesis of a stationary time series.

Table 6.3 below summarises the findings of the above unit root tests. While none

of the unit root tests suggest the existence of a unit root for the DAX return series,

the results for the volatility series are mixed. Specifically, the ADF test and the

DFGLS test reject the non-stationarity hypothesis for realised volatility at the 5%

level, but the KPSS test indicates non-stationarity. For the implied volatility series,

the null hypothesis of a random walk without drift is accepted by the ADF test in

all cases at the 5% significance level. These findings are consistent with the results

14See Elliott et al. (1996), pp. 815-826.
15Here, the DFGLS test is performed without the assumption of a linear trend. The highest lag
order is selected based on the method proposed by Schwert (1989).
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of the KPSS test. In contrast, with one exception (log model-free volatility), the

DFGLS test provides evidence in favour of a stationary implied volatility series.

The ADF test of the null hypothesis of a random walk with drift is rejected for

both implied volatility series at the 5% level.16 The literature argues that such

contradictory results can be induced by the inability of the previous unit root tests

to distinguish between the integration orders one and zero.17 Thus, in the following,

the Geweke-Porter-Hudak (GPH) test and a modified version of Robinson (1995b)

(denoted ROB here) are performed to detect long memory effects in the series.18

To estimate the long memory parameter d of a fractionally integrated process of the

form (1 − L)dXt = εt where εt is stationary with zero mean, Geweke and Porter-

Hudak (1983) suggest a semiparametric procedure. The GPH test has the appealing

feature that it avoids the need to specify the ARMA structure.19 Further, a modified

version of the GPH estimator proposed by Robinson (1995b) is employed. Hidalgo

and Robinson (1996) argue that under certain conditions, this modified test statis-

tic is likely more efficient.20 The GPH and ROB estimates of the long memory

parameter are presented for typical values of the tuning exponent θ in the last sec-

tion of Table 6.3.21 While the null hypothesis that d is equal to zero is rejected

for all volatility series at the 1% level, the long memory parameter is not signifi-

cantly different from zero for DAX returns at any conventional significance level.

An additional t-test indicates that d is not significantly different from one at the

5% level for the implied volatility series, which provides evidence that the series are

non-stationary. For the realised volatility series, the t-test indicates that the long

memory parameter is significantly different from one at the 1% level. In summary,

16For the results, see Table B.1 in the Appendix.
17See Kirchgässner and Wolters (2007), p. 180.
18For instance Coakley et al. (2011), McAleer and Medeiros (2008), and Gospodinov et al. (2006)
apply the GPH test. Andersen et al. (2003) and Ashley and Patterson (2010) use the adjusted
version of the GPH test provided by Robinson (1995b).

19See Baum (2000), p. 41.
20See Hidalgo and Robinson (1996), p. 173.
21The tuning exponent indirectly specifies the number of ordinates that enter the log-periodogram
regression (see Baum (2000), p. 39). A typical value of θ for the GPH estimate is 0.5 and 0.8 for
the Robinson estimate. See Ashley and Patterson (2010), p. 68.
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Table 6.3.: Results of stationarity, long memory, and ARCH LM tests

test mfv lnmfv bsatm lnbsatm rvola lnrvola rdax

ADF (10) -2.46 -2.30 -2.63 -2.38 -3.76 -3.48 -13.64
p-value 12.6% 17.2% 8.6% 14.6% 0.3% 0.8% 0.0%

ADF (20) -2.37 -2.15 -2.63 -2.28 -3.23 -2.83 -10.59
p-value 15.1% 22.4% 8.6% 17.7% 1.8% 5.3% 0.0%

DFGLS -2.28 -1.91 -2.44 -2.00 -3.01 -2.15 -8.20
tc -1.953 -1.954 -1.949 -1.953 -1.946 -1.947 -1.946

KPSS 4.20 4.74 3.73 4.48 2.81 3.86 0.17
tc 0.463 0.463 0.463 0.463 0.463 0.463 0.463

GPH (θ = 0.5)
d 0.96 0.94 0.93 0.91 0.71 0.75 0.14
t 10.13 9.94 9.41 9.76 7.01 8.95 1.17

p-value 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 24.7%

GPH (θ = 0.8)
d 0.87 0.86 0.86 0.86 0.55 0.54 -0.02
t 28.33 27.81 27.61 27.47 16.66 17.08 -0.79

p-value 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 42.9%

ROB (θ = 0.5)
d 0.96 0.94 0.93 0.91 0.71 0.75 0.13
t 10.14 9.94 9.41 9.76 7.01 8.95 1.04

p-value 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 30.2%

ROB (θ = 0.8)
d 0.85 0.85 0.84 0.84 0.53 0.52 -0.02
t 28.30 27.78 27.59 27.42 16.59 17.01 -0.76

p-value 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 44.6%

ARCH LM
t 1,838.4 1,901.3 1,764.0 1,885.7 1,028.4 1,191.4 472.0

p-value 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Source: own calculations.



190 6. Forecasting DAX Volatility

these findings suggest that long memory effects are responsible for the mixed results

of the unit root tests.

Volatility clustering represents another stylised fact of financial returns that is also

observed for DAX returns (see Figure 6.1). Engle (1982) suggests a Lagrange mul-

tiplier test (ARCH LM) to test for the presence of volatility clustering or ARCH

effects. The null hypothesis of this test states that the time series is free of ARCH ef-

fects. The results of the ARCH LM test presented in Table 6.3 indicate that the null

hypothesis is rejected at the 1% level for each series. This suggests the presence of

ARCH effects in all series.22 Further, the sample autocorrelation function (ACF) of

the squared DAX return residuals, which is depicted in Figure 6.4, demonstrates that

all sample autocorrelations are significantly different from zero at the 5% level.23,24

In addition, the combined hypothesis that all sample autocorrelations in the squared

DAX return residuals are zero is tested based on the Portmanteau test (LB here-

after) developed by Ljung and Box (1978). The results of the LB test indicate that

the combined hypothesis can clearly be rejected at the 1% level when the lag length

is 10 or 20.25

In summary, these findings and the observed excess kurtosis in DAX returns indicate

that ARCH effects exist in DAX return series considered here.26 As GARCH models

are able to capture these effects, various GARCH and EGARCH models are esti-

mated below. In addition to these models, further members of the GARCH family

were estimated (e.g., the extended GARCH model, where realised variance is added

to the variance equation as an explanatory variable). They are not further consid-

ered in this study due to estimation problems or poor prediction results. Moreover,

22The lag length of the ARCH LM test is set to 10 to capture the features of a GARCH(1,1)
process, which can be approximated by an ARCH(q) process when q is sufficiently large.

23Based on simulation results, Bollerslev (1988) shows that an analysis of the sample correlation
structure of the squared residuals can provide helpful information for model identification issues.
See Bollerslev (1988), p. 130.

24The squared DAX return residuals are computed based on the mean model, which is described
in Section 6.4.

25The LB test statistic takes the value 1314.16 (2217.59) when the lag length is 10 (20).
26As mentioned above, the ARCH LM test also implies that the volatility series exhibit ARCH
effects.
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Figure 6.4.: Correlogram of squared DAX return residuals

ARFIMA and HAR models are fitted to the volatility series, as the results of the

GPH test and the modified version developed by Robinson (1995b) provide evidence

that the volatility series are fractionally integrated.

6.4. Identification, Estimation, and Selection of

Volatility Time Series Models

This Section addresses the identification, estimation, and selection of the GARCH,

ARFIMA, and HAR models employed in this study to forecast DAX volatility.27

After specifying of the conditional mean equation, the Section discusses the identi-

fication of various GARCH-type models. Then, the GARCH models are estimated

and information criteria are used to select the “best” GARCH models for DAX

volatility prediction. Similarly, this Section presents the identification, estimation,

and selection of long memory models to conduct DAX volatility forecasts.

27See Chapter 4.2 for a brief introduction to each volatility model.
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6.4.1. GARCH Models

Specification of the Conditional Mean

Specifying the variance equation for the GARCH models requires the identification

of an appropriate model for the conditional mean. To do so, the sample ACF, the

sample partial autocorrelation function (PACF), and the corrected LB test devel-

oped Diebold (1988) are computed. The sample ACF of the DAX returns is plotted

in Figure 6.5. Diebold (1988) demonstrates that Bartlett’s confidence bands are

overly conservative in the presence of ARCH effects. It particular, the use of Bar-

lett’s original formula can lead to a misspecification of the ARMA process for the

conditional mean, since the original formula underestimates the variances of the

sample autocorrelations. Thus, the corrected 95% confidence interval B(τ) for the

sample autocorrelation ρ̂(τ) is calculated based on Diebold’s formula:

B(τ) = 0± 1.96 S(τ)0.5 (6.1)

with

S(τ) =
1

T

(
1 +

γ̂(τ)

σ̂4

)
(6.2)

where S(τ) denotes the variance of the sample autocorrelations, ρ̂(τ), γ̂(τ) is the es-

timated autocovariance of the squared DAX returns, and σ̂4 represents the squared

sample variance of the DAX returns.28,29 Figure 6.5 depicts the sample autocorre-

lations of the DAX returns and the corrected confidence intervals. To visualise the

effect of the corrected confidence bands, the standard confidence bands based on

Bartlett’s formula are also depicted, as dashed black lines, in Figure 6.5.

Figure 6.5 indicates that the sample autocorrelations of the DAX returns up to lag

20 fall within the corrected confidence bands. This implies that the DAX returns are

not serially correlated. The corrected LB developed by Diebold (1988) is performed

28See Diebold (1988), p. 21.
29See Krämer and Runde (1994) and Kokoszka and Politis (2008), who show that Barlett’s formula
should not be used for ARCH processes. Hsieh (1989), for example, provides an application of
Diebold’s formula.
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Figure 6.5.: Correlogram of the DAX return series

to test the combined hypothesis that the first k autocorrelation coefficients of the

DAX returns are zero. The test statistic of the corrected LB test is given by

Q∗(k) = T (T + 2)
k∑

τ=1

(
σ4

σ4 + γ(τ)

)
ρ̂2(τ)

T − τ
.30 (6.3)

The p-values of Diebold’s corrected LB test can be observed in Figure 6.6. The

findings confirm that the DAX returns are not serially correlated up to lag 20.

Therefore, based on these results, the conditional mean equation is specified as

E[rt|It−1] = µ (6.4)

where It−1 denotes the information set at time t.31

30Diebold (1988) suggests correcting for the original Ljung-Box test statistic, as the empirical test
size of the Ljung-Box test is larger then its nominal size if ARCH effects are present. See Diebold
(1988), p. 28.

31The sample PACF of the DAX returns indicates that some partial autocorrelations are significant
at the 5% level. Because the magnitude of these partial autocorrelations is low and the pattern
is not systematic, the above specification of the conditional mean is selected. See Figure B.1 in
the Appendix.
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Figure 6.6.: p-values for Diebold’s ARCH-robust Q*-statistic

GARCH Model Estimation and Selection

Having specified the mean equation, this Section describes the choice of the error

distribution and the determination of the ARCH order p and GARCH order q.

Furthermore, this Section also presents the in-sample estimation results and the

selection of the GARCH models used in this study to forecast DAX volatility.32

Since the pioneering work of Engle (1982), numerous extensions of the basic GARCH

model structure have been developed to capture various empirical characteristics,

such as asymmetries in the variance or fractional volatility.33 While a variety of

GARCH models exist, in practice the basic GARCH(1,1) model is generally applied.

In a comprehensive study, Hansen and Lunde (2005) compare 330 ARCH-type mod-

els and report that the forecasting performance of the GARCH(1,1) model is rarely

surpassed.34 For instance, Claessen and Mittnik (2002), Sapusek (2004), Lazarov

32Here, the term“GARCHmodels”not only refers to the standard GARCH model, but also includes
asymmetric GARCH models, such as the EGARCH model.

33See the “Glossary to ARCH” provided in Bollerslev (2008), which contains an enumeration of
over 80 different GARCH models.

34See Hansen and Lunde (2005), pp. 881-886.
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(2004), Raunig (2006), and Muzzioli (2010) use the GARCH(1,1) model to predict

DAX volatility. Thus, the GARCH(1,1) model is a natural candidate for predicting

DAX volatility.

As GARCH models assuming a normal error distribution are often unable to com-

pletely reproduce the leptokurtosis of financial time series, non-normal error dis-

tributions have been suggested to model the observed excess kurtosis.35 While

Bollerslev (1987), Baillie and Bollerslev (1989), and Hsieh (1989), among others,

suggest Student’s t-distribution, Nelson (1991) and Xu and Taylor (1995) employ

the generalised error distribution (GED). Moreover, the choice of error distribution

affects forecasting performance. Angelidis et al. (2004) and Wilhelmsson (2006) find

that GARCH models with leptokurtic error distributions provide better forecasting

results than models with normal error distributions. Thus, this study estimates

a GARCH(1,1) model with a leptokurtic error distribution. The GED is selected

from the class of leptokurtic distributions, as it is more flexible than Student’s t-

distribution.36 Given the large number of observations, precise estimates of the

additional parameters should be feasible.

The in-sample estimation results of the GARCH(1,1) model fitted to the DAX re-

turn series from January 2002 to December 2009 are presented in Table 6.4. The

table demonstrates that the estimates of the ARCH parameter α1 and the GARCH

parameter β1 are significantly different from zero at the 1% level. Moreover, the

use of a non-normal distribution is justified by the value of the estimated shape

parameter of the GED, which is significantly lower than two.37 Similar to some re-

search findings on financial returns,38 the sum of the estimated ARCH and GARCH

parameters is close to one (0.995), which indicates that DAX volatility is highly

persistent.39 Franke et al. (2004) report a related result for daily DAX index returns

35See Bollerslev et al. (1992), p. 11.
36The variance of the GED depends on two parameters (one for scale and one for shape), whereas
the variance of Student’s t-distribution is determined by one parameter (the degrees of freedom).

37If the shape parameter of the GED is lower than two, the GED is leptokurtic.
38See Bollerslev et al. (1992), pp. 14-15.
39As noted in Section 4.2.1, the GARCH(1,1) model is stationary for α1 + β1 < 1.
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Table 6.4.: Estimation results for GARCH models

GARCH(1,1) GARCH(1,2) EGARCH(2,1)

µ 0.001*** 0.001*** 4.8E-04**
(2.2E-04) (2.2E-04) (2.3E-04)

ω 1.3E-06*** 8.3E-07*** -0.134***
(5.1E-07) (3.1E-07) (0.032)

α1 0.078*** 0.043***
(0.012) (0.009)

β1 0.917*** 1.509*** 0.985***
(0.011) (0.080) (0.004)

β2 -0.555***
(0.076)

θ1 -0.202***
(0.047)

θ2 0.096**
(0.046)

γ1 -0.163***
(0.063)

γ2 0.283***
(0.062)

shape 1.513 1.527 1.623
(0.051) (0.100) (0.092)

ln L 5,986.9 5,991.1 6,030.6
AIC -11,963.8 -11,970.2 -12,045.3
SIC -11,935.8 -11,936.5 -12,000.3

Source: own calculations.
Note: Standard error in parentheses; ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01. The “shape” parameter refers to the GED
distribution of the model errors.

from January 1998 to December 2007.40 The impact of this outcome remains a

disputed matter in the literature.

To capture the persistence of conditional variances, Engle and Bollerslev (1986)

suggest the Integrated GARCH (IGARCH) model, which imposes a precise unit

root in the autoregressive polynomial.41 Lamoureux and Lastrapes (1990) advise

against the application of IGARCH models to long time series. They demonstrate

that high persistence in the variance can be attributed to deterministic shifts in the

40See Franke et al. (2011), p. 321.
41In particular, α1 + ...+ αq + β1 + ...+ βp = 1.
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unconditional variance that are not accounted for the model. In contrast, Brooks

(2008) notes that the theoretical motivation for non-stationarity in the variance is

weak, as non-stationarity in the variance implies that the unconditional variance is

unbounded.42 Because Figure 6.2 provides additional indications that DAX volatility

is mean-reverting rather than unbounded, the standard GARCH(1,1) model is used

to predict DAX volatility. Lamoureux and Lastrapes (1990) argument that volatility

persistence may be due to structural breaks is investigated separately in this study.

In addition to the GARCH(1,1) model, various GARCH models of up to order

p = q = 2 are estimated to identify the model that provides the “best fit” to the

DAX return series. The selection of an appropriate GARCH model is typically

based on information criteria, such as the Akaike information criterion (AIC) and

the Schwartz information criterion (SIC).43 Although information criteria have been

widely used, a careful interpretation of the results is necessary, as little is known

about the statistical properties of the information criteria in the presence of ARCH

effects.44 For this reason, Brooks and Burke (1998) suggest the use of modified

information criteria that are also applicable when volatility clustering is observed.

Specifically, they propose a modified version of the SIC, termed the heteroskedas-

tic Schwartz information criterion (HSIC), which is based on the Kullback-Leibler

discrepancy. They define the HSIC as

HSIC ≡
T∑

t=1

log(ĥ2t ) + g log(T ) (6.5)

where ĥ2t denotes the estimated conditional variance using the corresponding GARCH

model and g = p + q + 2 is the total number of estimated parameters. As various

criteria have been suggested and no clear favourite can be observed in the literature,

42See Brooks (2008), p. 37.
43See Zivot (2009), who argues that the use of the classical information criteria is justified by
the possibility of expressing GARCH models as ARMA models of squared residuals. See Zivot
(2009), p. 126.

44See Bollerslev et al. (1994) and Leeb and Pötscher (2009).
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Table 6.5.: Diagnostic test results for GARCH models

GARCH(1,1) GARCH(1,2) EGARCH(2,1)

Q1(10) 17.9 17.3 16.1
5.6% 6.8% 9.8%

Q1(20) 24.2 23.4 23.1
23.5% 26.8% 28.5%

Q2(10) 11.2 7.4 6.6
34.4% 68.3% 76.1%

Q2(20) 25.7 22.3 21.9
17.5% 32.3% 34.6%

ARCH LM(10) 9.8 6.3 7.0
46.1% 78.6% 72.5%

ARCH LM(20) 24.0 21.1 22.4
24.3% 39.2% 31.9%

Sign bias 0.5 0.5 -1.0
61.6% 62.3% 33.1%

Negative sign bias 0.8 0.4 0.0
39.9% 72.5% 96.8%

Positive sign bias -2.6 -2.4 -0.3
1.1% 1.5% 73.9%

Joint effect 10.4 10.1 1.3
1.5% 1.8% 72.7%

Source: own calculations.
Note: For each test, the first row contains the value of the test
statistic and the second row presents the p-value.

all three information criteria are calculated in this study to determine the ARCH

order p and the GARCH order q.

Table B.2 in the Appendix provides the results of the information criteria for the

various GARCH models. Of the standard GARCH models, the GARCH(1,2) model

exhibits the lowest values for each of the three information criteria. Thus, based

on these findings, this model is selected to predict DAX volatility. The in-sample

estimation results of the GARCH(1,2) model are reported in Table 6.4. Similar to

the GARCH(1,1), the estimated ARCH and GARCH parameters are significantly
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different from zero at the 1% level and the sum of the parameters is again near one.45

Further, the estimated shape parameter of the GED is less than two.

To investigate whether the two GARCH models completely capture the ARCH ef-

fects, the standardised residuals of the GARCH(1,1) and GARCH(1,2) models are

analysed. The distributions of the standardised residuals of the GARCH models are

examined in a first step. Theory implies that the distributions of the standardised

residuals of the estimated GARCH models should approximate the normal distri-

bution.46 In the following, the Jarque-Bera (JB) test is used to determine whether

the skewness and kurtosis of the standardised residuals are equal to zero and three,

respectively, which would be their values under normality.47 Although the values

of the JB test statistic for the standardised residuals are much smaller than those

for DAX returns,48 the null hypothesis of normality is nevertheless rejected at all

conventional significance levels.49

However, the results of the LB test (denoted Q2 ) for the squared standardised

residuals of the GARCH models reported in Table 6.5 indicate that the squared

standardised residuals no longer exhibit any significant sample autocorrelations. The

results of Engle’s LM test for ARCH effects, which are also presented in Table 6.5,

support this finding for both GARCH models. Additionally, the null hypothesis of

zero autocorrelation between the standardised residuals of the GARCH models is

assessed based on the LB test. The corresponding test statistic is denoted Q1 and

the results are also presented in Table 6.5. The null hypothesis, which states that

there is zero autocorrelation between the standardised residuals, is rejected for both

GARCH models. Therefore, while both GARCH model are unable to completely

capture the excess kurtosis and skewness of the DAX returns, the results of the LB

45Because the sum of the estimated ARCH and GARCH parameters is lower than one, the
GARCH(1,2) model is covariance stationary.

46See Zivot (2009), p. 127.
47The JB test statistic computed for the distribution of the standardised residuals of the
GARCH(1,1) (GARCH(1,2)) model is 207.96 (172.21).

48The JB test statistic calculated for DAX returns is 1748.61.
49The null hypothesis is rejected due to the remaining excess kurtosis and the skewness in the
distribution of the standardised residuals.
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test and Engle’s ARCH LM test indicate that the models are able to reproduce the

ARCH effects.

As skewed return distributions can be induced by the leverage effect,50 four tests

are performed to investigate whether asymmetries exist in the standardised residual

series of the two GARCH models. If asymmetric effects are detected in the resid-

ual series, the application of an asymmetric GARCH is reasonable, as a standard

GARCH model does not capture these effects.

The four diagnostic tests were proposed by Engle and Ng (1993) and use the following

regression

v2t = c0 + c1Iεt−1<0 + c2Iεt−1<0 εt−1 + c3Iεt−1≥0 εt−1 + ut (6.6)

where vt denotes the standardised residuals of the GARCH models and I is an

indicator function that takes the value 1 if the respective condition, e.g., εt−1 < 0,

holds and zero otherwise. Based on this regression, the null hypotheses H i
0 : ci = 0

(for i = 1, 2, 3) and Hj
0 : c1 = c2 = c3 = 0 are tested. The test of the null hypothesis

H1
0 is called the sign bias test, the test of the second null hypothesis H2

0 is called

negative size bias test, and the test of the third null hypothesis H3
0 is the positive

size bias test.51,52 All four tests are applied to the standardised residuals of the

GARCH(1,1) and GARCH(1,2) models. The test results are presented in Table 6.5.

Null hypotheses H3
0 and Hj

0 are rejected at the 5% level for the GARCH(1,1) and

GARCH(1,2) models. This indicates the presence of asymmetry in the conditional

volatility.

To address such asymmetries, several extensions of the standard GARCH model

have been suggested. For instance, Nelson (1991) proposes the EGARCH model,

Glosten et al. (1993) develop the GJR-GARCH model, Engle and Ng (1993) suggest

the Asymmetric GARCH (AGARCH) model, and Zakoian (1994) advises the use

50See Bouchaud and Potters (2001), p. 65.
51See Engle and Ng (1993), pp. 1757-1763.
52In Table 6.5, the test of the combined hypothesis Hj

0 is denoted joint effect.
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of the Threshold GARCH (TGARCH) model. This study employs the EGARCH

model to reproduce the asymmetric effects, as the above-cited study by Awartani

and Corradi (2005) reports that the EGARCH model exhibits better out-of-sample

performance than the GJR-GARCH, TGARCH, or AGARCH model. Furthermore,

the EGARCH model has the convenient feature that the conditional variance is

always positive. Following Nelson (1991), the EGARCH model with GED residuals

is used in this work, as the unconditional variance does not necessarily exist for other

leptokurtic distributions (e.g., Student’s t-distribution).53 Similar to the standard

GARCH model, the appropriate order of the EGARCH model is determined by

information criteria. For this purpose, various EGARCH models are estimated up

to order p = q = 2. The results of the information criteria for these models are

presented in Table B.2 in the Appendix.

While the AIC recommends the use of the EGARCH(2,2) model, the SIC and the

HSIC favour the EGARCH(2,1) model. Because the AIC is known to exhibit a

tendency towards over-parameterised models, the SIC and HSIC are used to select

the EGARCH(2,1) model.54 The in-sample estimation results of the EGARCH(2,1)

model, which are presented in Table 6.4, reveal that the estimates of the model

parameters are significantly different from zero at the 5% level.55 The findings of

Engle’s ARCH LM test reported in Table 6.5 demonstrate that the EGARCH(2,1)

model is able to capture the observed ARCH effects of the DAX return series. Fur-

ther, Engle and Ng’s (1993) sign bias tests indicates that the EGARCH model fully

captures the asymmetric behaviour of the conditional volatility, as none of the four

null hypotheses are rejected at the 5% level (see Table 6.5). In summary, drawing

on these insights, the GARCH(1,1), the GARCH(1,2), and the EGARCH(2,1) are

able to reproduce the observed stylised facts of DAX returns. The estimation and

selection results for the ARFIMA and HAR models are presented below.

53See Nelson (1991), p. 352.
54Specifically, the HSIC is more useful in the presence of ARCH effects than the traditional infor-
mation criteria (see the discussion above).

55Moreover, the EGARCH(2,1) model is covariance stationary, as β1 is lower than one (see Section
4.2.1 for the stationarity condition of an EGARCH model).
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6.4.2. ARFIMA and HAR Models

Estimation and Selection

Using the ARFIMA and the HAR model to fit realised DAX volatilities is motivated

by the results of the GPH test and its modified version suggested by Robinson

(1995b). Both tests indicate that realised DAX volatilities are fractionally integrated

(see Table 6.3). Additionally, Figure 6.3 demonstrates that the sample ACF of

realised DAX volatilities decays hyperbolically, which is characteristic of fractionally

integrated processes.56 Therefore, various long memory models are fitted to the

realised DAX volatility series.57 In contrast, the linear decay of the sample ACF

for implied DAX volatilities provides evidence that the implied volatility series are

integrated of order one (see Figure 6.3). This finding agrees with the results of

the unit root tests presented in Table 6.3, which generally suggest that the implied

volatility series are non-stationary. Therefore, the long memory models are not

applied to implied DAX volatilities.

To select an appropriate model, various ARFIMA models of up to order p = q = 2

are fitted to realised DAX volatilities. To capture the so-called weekend effect,

the ARFIMA model equations are extended by a Monday dummy variable.58,59

Model selection is performed based on the AIC and SIC, as suggested by Crato and

Ray (196) for ARFIMA models.60 The ARFIMA(1,d,1) model is selected from the

56See Zivot and Wang (2008), p. 273.
57Here, the term “long memory models” also refers to models that are only able to mimic long
memory effects, such as the HAR model.

58In the following, the coefficient on the Monday dummy variable is denoted by θ.
59The weekend effect states that higher stock market return volatility is observed after a weekend.
For instance, Harvey and Whaley (1992), who consider S&P 100 index options, demonstrate that
implied volatility generally tends to increase on Mondays. They suggest that this variation is
due to excess buying pressure induced by traders who are opening their positions on Monday.
See Harvey and Whaley (1992), p. 58.

60The AIC is defined as AIC = −2 logL+2s, and the SIC is given by SIC = −2 logL+s logN , where
L denotes the maximum likelihood of the ARFIMA model considered, and s = 1+ p+ q+ k+ 1
contains the number of estimated parameters. The number of estimated parameters consists
of the ARMA orders p and q, the number of parameters of the mean equation k, and the last
summand accounts for the residual variance. See Doornik and Ooms (2006), p. 26.
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estimated models, as it exhibits the lowest AIC and SIC values (see Table B.3 in

the Appendix).

The in-sample estimation results of the ARFIMA(1,d,1) model are presented in

Table 6.6. The output indicates that the estimated ARMA parameters α1 and β1,

the coefficient of the Monday dummy θ, and the fractional differencing parameter

d are significantly different from zero at the 1% level. The estimate of the long

memory parameter d suggests that realised DAX volatilities are weakly stationary.61

To examine whether the estimated model is correctly specified, the residuals of

the ARFIMA(1,d,1) model are analysed. The results of the LB test, which are

also presented in Table 6.6, demonstrate that the sample autocorrelations of the

residuals are not significantly different form zero at the 5% level.62 Further, the GPH

test detects no remaining long memory effects. In summary, the ARFIMA model

seems able to capture the dependencies of realised DAX volatilities. Therefore, the

ARFIMA model is used to predict DAX volatility.

In addition to the ARFIMA model, the HAR model proposed by Corsi (2009) is

also able to reproduce long memory effects. An introduction to the HAR model

was presented in Section 4.2.2. As mentioned above, the HAR model does not

formally belong to the class of long memory models, but it does also capture a

hyperbolic decaying ACF. Similar to the ARFIMA model, the model equation for

the HAR model is extended by including a Monday dummy variable to capture the

weekend effect. The in-sample estimation results of the HAR model are presented

in Table 6.6. The table indicates that the estimated coefficients of the HAR model

are all significantly different from zero at the 5% level. As the LB test of the model

residuals suggests that the HAR model does not capture all serial dependencies,

the sample ACF and PACF of the residuals are examined.63 Figure B.2 in the

Appendix indicates that the sample autocorrelation at lag k = 2 of the residual series

is significantly different from zero. Thus, the HAR model is modified by adding

61A weakly stationary process is characterised by a fractional parameter d below 0.5.
62The results of the LB test are denoted Q1(10) and are provided in Table 6.6.
63For the results of the LB test, see Table 6.6.
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two-period lagged realised DAX volatility to the model equation. The estimated

parameters of the modified HAR model are also presented in Table 6.6. The table

provides evidence that the parameter estimates are all significantly different from

zero at the 5% level. Moreover, the null hypothesis of the LB test cannot be rejected

at the 5% significance level after extending the model by adding two-period lagged

realised DAX volatility. Finally, the GPH test indicates that the residuals are not

fractionally integrated (see Table 6.6). Therefore, the modified HAR model is able

to account for the observed dependencies of realised DAX volatilities. The next

Section examines the potential effects of structural breaks on the estimation results

of the presented forecasting models.

6.5. Structural Breaks

The discussion in Section 3.2.4 suggests that DAX volatility changed considerably

over the long sample period (see also Figure 3.3). Further, the estimation results of

the standard GARCH models provide evidence that the high persistence of the con-

ditional variance may be due to regime switches.64 Moreover, the literature notes

that long memory effects can arise from the occurrence of structural breaks and

regime switching.65,66 Thus, the following Section investigates whether high persis-

tence in variance and long memory effects can be explained by structural breaks. If

these features are the result of structural changes, then the above time series mod-

els are misspecified and further considerations are necessary.67 Before the effects

of structural breaks are analysed, the following Section provides a brief overview of

selected structural break tests.

64Recall the arguments advanced by Lamoureux and Lastrapes (1993) cited above.
65Banerjee and Urga (2005) note that long memory effects can be induced by structural breaks.
See Banerjee and Urga (2005), p. 22.

66Alternatively, Banerjee and Urga (2005) highlight that long memory can be attributed to the
aggregation of processes.

67For instance, Gourieroux and Jasiak (2001b) argue that the application of a strong fractional
model can lead to spurious results if long memory effects are due to infrequent regime switching.
See Gourieroux and Jasiak (2001b), p. 38.
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Table 6.6.: Estimation results for long memory models

ARFIMA(1,d,1) HAR modified HAR

µ -1.647*** -0.039** -0.037**
(0.306) (0.019) (0.019)

α1 0.974***
(0.013)

β1 -0.921***
(0.036)

d 0.385***
(0.043)

βd 0.369*** 0.371***
(0.033) (0.033)

β2d 0.101***
(0.030)

βw 0.416*** 0.304***
(0.045) (0.057)

βm 0.185*** 0.194***
(0.036) (0.035)

θ -0.045*** -0.065*** -0.069***
(0.013) (0.016) (0.016)

ln L -27.3 -30.4 -24.2
AIC 66.5 70.7 60.5
SIC 100.2 98.8 94.1

Q1(10) 16.0 26.1 11.9
9.9% 0.4% 29.4%

GPH 0.1 0.0 0.0
91.5% 99.3% 99.0%

Source: own calculations.
Note: Standard error in parentheses; ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01. The parameter θ denotes the coefficient
of the Monday dummy variable and β2d represents the
coefficient of the two periods lagged realized volatility.
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6.5.1. Testing for Structural Breaks

Chow (1960) develops the classical test for detecting a structural change. Based

on the assumption that the breakdate is known, he divides the sample into two

subperiods, estimates a model for each subperiod, and finally tests whether the

two parameter sets are equal. If the residuals are homoscedastic, the classical F

statistic is used to test the equality hypothesis; otherwise the Wald test statistic is

applied.68,69

Because the breakdate is often not known a priori, Quandt (1960) suggests calcu-

lating a sequence of Chow statistics over all possible breakdates and deriving the

breakdate using the point with the maximum Chow statistic.70 While the signifi-

cance of the test statistics is evaluated based on the critical values of a chi-squared

distribution when the breakdate is known a priori, these critical values cannot be

used if the breakdate is unknown. Andrews (1993) and Andrews and Ploberger

(1994) solve this problem by determining the asymptotic null distributions of the

test statistics and providing the corresponding asymptotic critical values. However,

the test developed by Andrews (1993) and Andrews and Ploberger (1994), called

the supF test, only considers the occurrence of one structural break. Thus, Bai

and Perron (1998) extend their solution by developing a method that allows the

researcher to test for multiple structural breaks. In the following, the supF test de-

veloped by Andrews (1993) and the extension developed by Bai and Perron (1998)

are presented, as both tests are used in this study.71 The the supF test developed

by Andrews (1993) is described first.

Assume a linear regression model of the form

yi = xiβi + εi (i = 1, ..., n) (6.7)

68See Hansen (2001), p. 118.
69Recall, that the traditional Chow (1960) test assumes constant variances. See Maddala (2008),
p. 391.

70Note that the procedure does not consider “all” possible breakdates, but rather subperiods of the
full sample that are determined by a trimming parameter. See Hansen (2001), p. 119.

71See ibid., pp. 119-121.
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where yi denotes the observed values of the dependent variable at time i, xi repre-

sents a k × 1 vector of independent variables,72 and βi is a k × 1 vector of possibly

time-varying coefficients. The null hypothesis that no multiple structural breaks

exist is given by

H0 : βi = β0 (i = 1, ..., n) (6.8)

and is tested against the alternative that at least one coefficient is time-varying.

When testing for one unknown structural break, the null hypothesis is tested based

on the following F statistic

Fi =
û⊤û− û(i)⊤û(i)

û(i)⊤û(i)/(n− 2k)
(6.9)

where û denotes the residuals from the unsegmented model and û(i) represents the

residuals from the segmented model. The segmented model is estimated for two

subsamples that are determined by the breakpoint at time i. As the breakpoint

is unknown a priori, the calculation of the F statistic is repeated for all possible

breakdates i = nh, ..., n − nh (nh ≥ k) where nh = [nh], and h is a trimming

parameter. If the supremum of the F statistics, supF = supiFi, is excessively large,

the null hypothesis of one unknown structural break is rejected.73,74

As noted above, Bai and Perron (1998) extend this approach to multiple breaks.

Under the assumption that there are m breakpoints, the minimal residual sum of

squares of m+ 1 segmented linear regressions can be written as

RSS(i1, ..., im) =
m+1∑

j=1

rss(ij−1 + 1, ij) (6.10)

72To add an intercept to the regression equation, the first component of xi is set equal to one.
73See Zeileis et al. (2003), pp. 110-111.
74The structural break analysis in this study is performed based on the R software package “struc-
change” developed by Zeileis et al. (2003). In the software package, the approximate asymptotic
p-values of the test statistic are computed using the method developed by Hansen (1997).
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where rss(ij−1 + 1, ij) denotes the minimal residual sums of squares for the regres-

sion of the j-th segment. The breakdates î1, ..., îm are determined by solving the

optimisation problem

min
i1,...,im

RSS(i1, ..., im) (6.11)

over all partitions (i1, ..., im) with ij − ij−1 ≥ nh ≥ k. Bai and Perron (2003)

suggest a dynamic programming approach to identify the global minimisers. In this

framework, the solution is recursively described by

RSS(Im,n) = min
mnh≤i≤n−nh

[RSS(Im−1,i) + rss(i+ 1, n)] (6.12)

where Im,n = {i1, ..., im} represents a set of breakpoints.75 In the next Section, the

impact of structural breaks on long memory effects is analysed for realised DAX

volatilities using the approach of Choi and Zivot (2007) that builds on the Bai and

Perron (1998) test.

6.5.2. Testing for Long Memory Effects in the Presence of

Structural Breaks

As mentioned above, both structural breaks and regime switches can induce long

memory effects.76 As the GPH test and the modified version developed by Robinson

(1995b) indicate the presence of long memory effects in realised DAX volatility (see

Table 6.3), and the time series plot of the series in Figure 6.2 depicts remarkable

changes in realised DAX volatility over the long sample period, the existence of

structural breaks and their effect on the long memory property of realised DAX

volatilities is analysed in the following.77

75See Zeileis et al. (2003), p. 112.
76See, e.g., Granger and Teräsvirta (1999), Diebold and Inoue (2001), and Granger and Hyung
(2004).

77This analysis is essential for selecting of the ARFIMA and HAR models. If the long memory
effects of realised DAX volatilities can be fully attributed to structural breaks, the detection of
structural breaks is more important in predicting DAX volatility than the ability of time series
models to capture long memory effects.
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Note: DAX realized volatility is abbreviated by RVOLA.

Figure 6.7.: DAX log realised volatility with structural breaks in the mean

Choi and Zivot (2007) propose an approach to investigate this issue. They examine

the relationship between long memory and structural breaks in the forward discounts

of five G7 countries. First, they estimate the long memory parameter under the

assumption that no structural break appeared in the prevailing series. Then, they

use Bai and Perron’s (2003) method to detect multiple structural breaks in the

mean of each forward discount series. Based on this result, they calculate demeaned

forward discount series. The demeaned series are simply computed as ût = yt − ĉj

where yt denotes the original forward discount series and ĉj represents the estimated

mean for each regime of the forward discount series. Next, they re-estimate the long

memory parameter for the demeaned series and compare their findings with the

previous results. They report that even after the elimination of structural breaks,

long memory effects exist in each country’s forward discount series. In the following,
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Table 6.7.: Results of the Bai and Perron (1998) test

A. Optimal number of breaks

number of breaks 0 1 2 3
RSS 629.8 490.5 318.2 316.4
SIC 3403.7 2910.0 2044.5 2048.5

B. Breakdates

break 1 2
breakdate 2003/11/21 2008/01/15

C. Regimes

regime 1st 2nd 3rd
from 2002/01/02 2003/11/21 2008/01/15
to 2003/11/20 2008/01/14 2009/12/30

Source: own calculations.

Choi and Zivot (2007) method is applied to examine whether the long memory effect

observed for realised DAX volatilities is due to structural breaks.78

First, the Bai and Perron (2003) test is performed to identify multiple structural

changes in a linear model. Here, realised DAX volatility is regressed on a constant.

Then, the SIC is used to determine the optimal number of breaks.79,80 The results

of the Bai and Perron (1998) test are presented in Table 6.7. They demonstrate that

the optimal partition is obtained for two breakpoints. The related breakdates are

also reported in Table 6.7. A time series plot of realised DAX volatilities including

the estimated breakdates is depicted in the upper panel of Figure 6.7.

78In this study, the Choi and Zivot (2007) method is adjusted with respect to the estimation of
the long memory parameter: the long memory parameter is not estimated using the modified
log-periodogram regression developed by Kim and Phillips (2006); instead an ARFIMA model is
fitted to realised DAX volatilities, where the ARFIMA parameters are estimated by maximum
likelihood.

79Bai and Perron (2003) recommend the use of the SIC, as the AIC tends to overestimate the
number of breaks. See Bai and Perron (2003), p. 14.

80Generally, the choice of the trimming parameter reflects a trade-off between the need for a mini-
mum sample size to obtain precise parameter estimates and the objective of capturing structural
breaks at the beginning and end of the sample period. Further, Bai and Perron (2003) argue
that in the presence of serial correlation and/or heterogeneity (including heteroskedasticity) in
the data, a higher trimming parameter should be used (see ibid., p. 15). Based on these consid-
erations, the trimming parameter is set to 0.2 in this study. As the test results are plausible and
agree with a simple visual examination of the time series, this seems a reasonable choice.
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Table 6.8.: Estimation results of the ARFIMA model before and after removing
structural breaks

ARFIMA(1,d,1) ARFIMA(1,d,1)
(original series) (demeaned series)

µ -1.647*** -0.037
(0.306) (0.175)

α1 0.974*** 0.949***
(0.013) (0.020)

β1 -0.921*** -0.866***
(0.036) (0.054)

d 0.385*** 0.334***
(0.042) (0.056)

θ -0.045*** -0.044***
(0.013) (0.013)

Q1(10) 16.01 16.31
9.9% 9.1%

GPH 0.1 -1.0
91.5% 33.4%

Source: own calculations.
Note: Standard error in parentheses; ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01. The parameter θ denotes the coefficient
of the Monday dummy variable.

The detected breakdates can be linked to certain historical events.81 The first break-

date marks the end of the volatile period at the beginning of the sample, is driven by

investors’ fears of an impending recession in the US and the Iraq war in 2003. The

second breakdate corresponds to the beginning of the financial crisis in 2008. The

period between the two volatile market phases reflects a more silent market charac-

terized by a rising DAX. Thus, the findings of the Bai and Perron (1998) test are

reasonable, as they correspond to historical events. In the following, the identified

breakdates are used to calculate the demeaned realised DAX volatility series.

The demeaned realised DAX volatility series is constructed by removing the mean

of each regime from the original realised DAX volatility series. The lower panel

of Figure 6.7 provides a time series plot of the demeaned series. In the next step,

the ARFIMA(1,d,1) model is estimated for the original and demeaned time series.

81See also the discussion in Section 3.2.4 regarding DAX volatility regimes.
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The estimation results are presented in Table 6.8. The table demonstrates that

the parameters estimated for each ARFIMA model are all significantly different

from zero at the 1% level. Further, after the elimination of the structural breaks

in the mean, the estimated fractional parameter is below that obtained for the

original series but still significant.82 This suggests that the level of the long memory

parameter for the considered realised DAX volatility series is driven by structural

breaks. However, the long memory effect does not entirely disappear if structural

breaks are removed from the DAX volatility series. Thus, the above ARFIMA model

overestimates the long memory effect of realised DAX volatility but nevertheless

captures an actual feature of the time series. As the prediction of DAX volatility

is based on rolling windows of fixed sample sizes of 500 observations, a series of

subsamples that are not affected by the observed structural breaks exists. Therefore,

the ARFIMA model is used to produce DAX volatility forecasts. The next Section

analyses whether the HAR model and the GARCH reveal structural changes of

unknown timing.

6.5.3. Testing for Structural Breaks: Results for the HAR model

and the GARCH Models

Due to their model structures, the supF test for structural changes developed by

Andrews (1993) can be directly applied to the modified HAR and the GARCH

models. First, the Andrews (1993) test is used to test for parameter instability in

the modified HAR model. The test results are presented in Table 6.9.83 The table

provides evidence that the null hypothesis cannot be rejected for the modified HAR

model at the 5% level. Thus, the test results suggest that no structural change

emerged in the parameters of the modified HAR model across the sample. Next,

the findings for the GARCH models are described.

82The LB test and the GPH test indicate that the ARFIMA model is able to capture the depen-
dencies of the original and demeaned realised DAX volatility series.

83Similar to the previous Section, the trimming parameter is set to 0.2.
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Table 6.9.: Results of the Andrews (1993) test

model supF p-value

modified HAR 16.74 9.8%
GARCH(1,1) 3.52 45.4%
GARCH(1,2) 3.83 40.2%
EGARCH(2,1) 3.95 38.2%
Source: own calculations.

To test for structural breaks in the variance, Hansen (2012) proposes first regressing

the squared residuals of a linear regression model on a constant and, second, applying

the Andrews (1993) supF test to this squared residuals regression.84 In an ARCH

setting, the squared standardised residuals of a GARCH model are regressed on a

constant. Then, the Andrews (1993) test is performed to test the null hypothesis

that no structural break with an unknown change point appeared in the residual

series. Applying this procedure to the selected GARCH models, yields the test

results provided in Table 6.9. They indicate that the null hypothesis is not rejected

at the 5% level for any of the three GARCH models. Based on these findings,

the modified HAR model and the three GARCH models can be directly used to

predict DAX volatility without taking structural parameter changes into account.

After selecting the volatility forecasting models and conducting the structural break

analysis, the forecasting methodology and evaluation approach applied in this study

are introduced.

6.6. Volatility Proxy, Evaluation Approach, and

Forecasting Methodology

First, this Section explains the selection of the employed volatility proxy, realised

volatility. Next, it describes the calculation of realised volatility for the DAX returns

series. Thereafter, the Section presents the evaluation approach used to determine

whether one or more volatility forecasting models provide superior DAX volatility

84See Hansen (2012), p. 30.
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predictions. Finally, the forecasting methodology employed in this study is dis-

cussed.

6.6.1. Volatility Proxy

As the variable of interest, volatility, is unobservable, a volatility proxy is necessary

to evaluate DAX volatility forecasts. While prior studies use squared daily asset

returns as a conditionally unbiased estimator for latent variance, the concept of

realised variance has recently become increasingly widespread.85,86 The choice of

the volatility proxy is important, as Hansen and Lunde (2006) demonstrate that the

application of a conditionally unbiased volatility proxy instead of the true latent

variable can lead to a different ranking of volatility forecasts.

Hansen and Lunde (2006) investigate the empirical rankings of volatility prediction

models using various volatility proxies. They demonstrate that a ranking of volatility

forecasting models based on realised variance is more likely to be consistent with

the true ranking, as realised variance is typically a more precise volatility measure

than squared daily returns.87 In addition, Andersen et al. (2006) note that realised

volatility is a natural benchmark for the evaluation of volatility forecasts, as it

does not rely on an explicit model.88 Therefore, the basic concept of using realised

volatilities as a volatility proxy is presented in the following.

Assume that the logarithmic price process of a given asset follows a continuous

semi-martingale pt, t ≥ 0 given by

pt = p0 +

∫ t

o

µτdτ +

∫ t

0

στdWτ (6.13)

85See Xiao (2013), p. 57.
86For instance, Bluhm and Yu (2001) and Claessen and Mittnik (2002) use the standard deviation as
an estimate of the average volatility over a fixed time interval, whereas Lazarov (2004), Muzzioli
(2010), and Schöne (2010) compute various realised variance estimators based on DAX intraday
returns.

87See Hansen and Lunde (2006), pp. 98-100.
88See Andersen et al. (2006), p. 830.
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where W represents standard geometric Brownian motion, (µτ )τ≥0 denotes a finite

variation càglàg drift process and (στ )τ≥0 is an adapted càdlàg volatility process.

Then, the quadratic variation (QV) of the return process is89,90

r0,t := pt − p0 =

∫ t

o

µτdτ +

∫ t

0

στdWτ (6.14)

over the interval [0, t] is

QV (0, t) =

∫ t

0

σ2
τdτ (6.15)

with
n∑

j=1

(pj∆ − p(j−1)∆)
2 m.s.−→ QV (0, t) for n→ ∞.91 (6.16)

The index variable n denotes the number of high-frequency intervals over [0, t] with

length ∆ = n−1.

The sample-path variation of the squared return process over the interval [0, t] is

also called integrated variance (IVAR). In a continuous-time setting, the quadratic

variation equals the integrated variance

IVAR(0, t) :=

∫ t

0

σ2
τdτ = QV (0, t).92 (6.17)

As intraday asset returns are available for very small intervals, the IVAR can be

estimated over the interval [0, 1] using the standard realised variance

RV n :=
n∑

j=1

(pj∆ − p(j−1)∆)
2 :=

n∑

j=1

r2j∆,n (6.18)

where r2j∆,n denotes squared intraday returns.93

89The quadratic variation reduces to (6.15), as the quadratic variation of the finite drift process µt

is zero and the quadratic variation of a Wiener process over [0, t] is equal to t.
90The application of quadratic variation to measure volatility was first suggested by Andersen and
Bollerslev (1998).

91See Hautsch (2012), pp. 195-196.
92See Andersen and Benzoni (2009), p. 560.
93See Hautsch (2012), p. 197.
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Formally, realised variance is a consistent estimator of quadratic variation due to

the semi-martingale form of the price process and the assumed unlimited sampling

frequency. However, in practice, the assumption that the price process is sampled

over arbitrarily small intervals is limited by the observed transaction frequency.94

Further, in a more realistic setting, the price process described by equation (6.13)

is affected by a noise component that includes so-called market microstructure ef-

fects. Due to the high sampling frequency of DAX futures, the following Section

concentrates on the effect of market microstructure noise on the realised variance

estimator.

A price process that accounts for these effects is given by

pt = p∗t + ut (6.19)

where p∗ represents a semi-martingale process of the form (6.13) and ut is a noise

component that incorporates market microstructure effects such as price discrete-

ness, bid-ask bounces and non-synchronous trading. Under the assumption that ut

is i.i.d. with zero mean and E[u2t ] := ω2, intraday returns behave according to an

MA(1) process, and the expected realised variance is given by

E[RV n] = IVAR(0, 1) + 2nω2.95 (6.20)

The equation demonstrates that in the presence of market microstructure effects,

realised variance is a biased estimator of actual variance.96 Further, for large sam-

pling frequencies, the realised variance estimator is dominated by the noise term, as

with n→ ∞, the estimator diverges to infinity.97

The literature suggests two alternative approaches to reduce the estimation bias

caused by market microstructure noise. First, instead of using every tick, realised

94See Härdle et al. (2008), p. 277.
95See Hautsch (2012), p. 198.
96See McAleer and Medeiros (2008), p. 19.
97See Hautsch (2012), p. 198.
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variance is computed based on lower sampling frequencies, such as 5-, 10-, or 30-

minute returns, to avoid (serial) dependencies induced by market microstructure

effects.98 This method is called sparse sampling. However, while this procedure

leads to reduced estimation bias, the actual variance estimate is less precise, as a

reduced information set is considered. Various realised variance estimators have

been developed to address this problem, which take market microstructure effects

into account but do not exclude (excessive amounts of) information.99

For instance, to eliminate serial correlation from high-frequency returns, Andersen

et al. (2001b) suggest a two-step approach. First, they fit a moving average model

to the intraday return series. Second, the realised variance is estimated by taking

the sum of the squared model residuals. Zhang et al. (2005) propose an alternative

estimator. They present the so-called two times scales estimator, which combines re-

alised variances from various sampling frequencies. Alternatively, Barndorff-Nielsen

et al. (2008) recommend a kernel-based estimator of quadratic variation, in which

the kernel weights ensure the consistency of the estimator in the presence of market

microstructure noise. Bandi and Russell (2006) developed another popular realised

variance estimator. Their estimator is based on the notion of selecting an optimal

sampling frequency.

In a comprehensive study, Liu et al. (2012) investigate the accuracy of nearly 400

different estimators of asset price variation and find that the 5-minute realised vari-

ance estimator nearly always superior. Therefore, this estimator is considered in the

following. As the realised variance estimator is only consistent if intraday returns are

uncorrelated, the sample autocorrelations of DAX 5-minute returns are examined.

If significant serial correlations between the intraday returns are detected, market

microstructure noise exists and the estimator is biased. The sample ACF of DAX

5-minute returns is depicted in Figure B.3. The sample autocorrelations at the first

and the fifth lags are significantly different form zero at the 5% level, but their mag-

98See, for example, Andersen et al. (2000) and Andersen et al. (2003).
99See McAleer and Medeiros (2008), p. 21.
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nitude is very low. To evaluate their economic relevance, Ebens (1999) suggests a

simple approach that is described below.

The approach developed by Ebens (1999) is based on the estimation of a Moving

Average (MA) model of order q

rn,t = ǫn,t +

q∑

i=1

ψi,tǫn−i,t (6.21)

for high-frequency returns in which the innovations ǫn,t are serially uncorrelated.100

To determine the relationship between the realised variance and the actual variance

of the MA(q) process, he derives

E

[
N∑

n=1

r2n,t

]
= (1 +

q∑

1

ψ2
i,t)E

[
N∑

n=1

ǫ2n,t

]
. (6.22)

Thus, if any serial correlation remains in high-frequency returns, the realised vari-

ance overestimates the actual variance. The bias can be calculated by plugging the

estimated MA coefficients into (6.22). In the following, Ebens’s (1999) approach is

used to determine the effect of the observed serial correlations on the estimates of

DAX volatility.101

First, an MA model that includes the moving-average terms for lags one and five

is fitted to the DAX 5-minute return series, as the sample autocorrelations at the

first and the fifth lags are significantly different from zero at the 5% level (see Figure

B.3). The estimation results presented in Table B.4 indicate that for the full sample,

the two estimated MA coefficients are significantly different from zero at the 1%

level. Next, the estimated MA model parameters are plugged into equation (6.22).

The results indicate that the realised variance overestimates the actual volatility by

0.04%. Therefore, the economic effect of the remaining market microstructure noise

in 5-minute DAX returns is very low. Thus, the realised variance estimator based on

100Ebens’s (1999) original specification allows the parameters of the MA model to change over
time.

101See ibid., p. 11.
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5-minute DAX returns is used as volatility measure in this study. A time series plot

of the estimated realised 5-minute DAX volatilities for the full sample is provided

by Figure 6.7.

6.6.2. Forecast Evaluation

Overview of Forecast Evaluation Techniques

After selecting the volatility proxy, this Section presents the evaluation approach

used in this study. The comparison of various forecasting models is typically based on

out-of-sample prediction results. The rational is reported various studies obtaining

poor out-of-sample forecasting results while providing a good in-sample fit for some

models.102 The literature provides various explanations for this discrepancy. White

(2000) argues that in-sample forecast performance is more affected by outliers and

data mining-induced overfitting than out-of-sample performance. Enders (2004)

notes that the best in-sample model fit will not always provide the best forecasting

results due to increasing parameter uncertainty in complex models.103 Moreover,

Poon and Granger (2003) highlight that the design of out-of-sample tests is closer to

reality than that of in-sample tests. Therefore, most studies examining the predictive

ability of volatility forecasting models use out-of-sample volatility forecasts.104,105

The previous Section, demonstrates that several structural breaks occur in the re-

alised DAX volatility series that may have different effects of the results of in-sample

and out-of-sample performance tests. Clark and McCracken (2005) analyse the ef-

fects of structural breaks on predictive ability tests. They find that structural breaks

can explain the differences in the findings of in-sample and out-of-sample perfor-

mance tests. In particular, they report that out-of-sample performance tests have

102See Klein (1992), Fildes and Makridakis (1995), Poon and Granger (2003), and McCracken and
West (2004), among others.

103See Enders (2004), 82.
104See, for example, Koopman et al. (2005), Becker et al. (2006), and Martin et al. (2009).
105However, Inoue and Kilian (2005) question this practice. They report that neither data mining

nor parameter instability can explain these differences; instead they can be attributed to the
higher power of in-sample tests of predictive ability.
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the power needed to identify the predictive ability of forecasting models at the end

of the sample, which is of particular interest for prediction purposes.106 As the fo-

cus of this study is forecasting DAX volatility, the predictive ability of the selected

volatility forecasting models is evaluated based on out-of-sample results.107 Thus,

various out-of-sample forecast evaluation methods are presented below. The discus-

sion begins with an overview of the basic forecast evaluation approaches suggested

in the literature. The following discussion is based on the classification proposed by

West (2006) that was presented at the beginning of Chapter 5.

As described in Chapter 5, encompassing regressions have been widely applied to

evaluate volatility forecasts. They allow the researcher to assess whether forecasts

are biased and/or efficient with respect to alternative forecasts. Further, the R2

of encompassing regressions is used to rank different forecasting models. Despite

its common use, this approach has certain disadvantages. Hansen (2005) criticises

the use of R2 to produce misleading forecast rankings, as the coefficient of determi-

nation ignores possible forecasting bias.108 Another disadvantage of encompassing

regressions concerns the way in which volatility forecasts are compared. Becker et al.

(2007) argue that the use of encompassing regressions is equivalent to an iterative

comparison of individual forecasts (e.g., BS ATM implied volatility) to alternative

individual forecasts from a set of multiple forecasts (e.g., GARCH model-based

forecasts from the set of time series models). Because only individual forecast com-

parisons are considered, the approach neglects the comparison of the individual

forecasts with the complete set of alternative forecasts. Thus, the shortcomings of

individual forecasts (e.g., time series models) could explain the improved forecasting

performance of implied volatilities documented by several studies using encompass-

ing regressions.109 For this reason, encompassing regression are not used in this

106See Clark and McCracken (2005), p. 28
107The evaluation procedure applied in this study also considers certain aspects of in-sample model

performance, as the model identification and selection are based on the full sample. Further,
certain important, comparable studies use out-of-sample performance tests. See, e.g., Claessen
and Mittnik (2002), Martens and Zein (2004), and Koopman et al. (2005).

108See Hansen and Lunde (2005), p. 877.
109See Becker et al. (2007), p. 2536.
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study for the evaluation of DAX volatility forecasts.110 Thus, the application of

statistical error measures, utility-based criteria, and profit-based measures to assess

the performance of volatility forecasts is discussed below.

While utility-based criteria are theoretically appealing, their practical implemen-

tation is complicated, since utility functions are typically unknown. Further, if

profit-based measures instead are used to evaluate forecasting performance from an

economic perspective, they require the definition of trading strategies, which im-

poses further assumptions regarding transaction costs, such as execution costs and

bid-ask spreads.111 Moreover, Poon and Granger (2003) argue that comparing fore-

cast accuracy based on option pricing errors privileges forecasts derived from implied

volatilities relative to predictions from time series models. The reason is that volatil-

ity prediction errors induced by misleading option pricing models are cancelled out

when implied volatility is reintroduced into the option pricing formula.112 Thus, to

avoid additional assumptions when specifying utility functions or trading strategies,

statistical loss functions are used to evaluate DAX volatility forecasts.113

Statistical Loss Functions

The most common statistical loss functions or evaluation criteria are mean error

(ME), MAE, MSE, root mean square error (RMSE), and MAPE.114 These criteria

are used to rank forecasting models and select the model that reports the lowest

error measure. The listed loss functions are symmetric, as they penalise positive and

110Becker and Clements (2008) remark on an additional disadvantage of encompassing regressions.
They refer to the findings of Patton (2011), who shows that the results of encompassing re-
gressions depend on the assumed distribution of the volatility proxy. See Becker and Clements
(2008), p. 127.

111For instance, Chan et al. (2009) apply realised volatilities to forecast implied volatilities and
investigate the economic value of their forecasting method using a dynamic trading strategy
based on straddles.

112See Poon and Granger (2003), p. 491.
113Although this work considers volatility forecasts that can be used in risk management applica-

tions, specific risk management criteria (e.g., the proportion of failures) are not employed. This
is because such criteria require density or quantile forecasts, which are beyond the scope of this
study.

114See Poon and Granger (2003), p. 490.
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negative errors of the same magnitude equally. To allow for asymmetric penalties,

additional loss functions are proposed in the literature. For instance, Bollerslev et al.

(1994) suggest the so-called QLIKE measure, which is given by

QLIKE =
1

H

H∑

t=1

log(fm
t ) +

RV
1/2
t

fm
t

(6.23)

where fm
t denotes an individual volatility forecast series with length H from model

m at time t and RV
1/2
t represents the realised volatility at t.115 This loss function

is motivated by its implicit use for estimating volatility models based on the quasi-

maximum likelihood function (e.g., GARCH models).116 Following Harvey (1997),

Kennedy (2003), and others, the choice of the evaluation criteria should be based

on the ability of the measures to proxy for the economic loss resulting from the

use of the forecasts.117 Thus, the evaluation criteria selected for this study should

agree with the application of DAX volatility forecasts for asset and risk management

purposes.

According to West (1996), the MSE which is defined as

MSE =
1

H

H∑

t=1

(fm
t − RV

1/2
t )2 (6.24)

is the most commonly used loss function.118 It penalises extreme incorrect predic-

tions more heavily than, e.g., the MAE, and thus is useful for applications in which

extreme forecast errors are unduly more serious than small errors.119 As extremely

incorrect volatility forecast errors can lead to massive over- or under-capitalisation

of financial institutions, the choice of the MSE seems meaningful for risk manage-

ment applications. Further, as the MSE has been applied in many studies, its usage

115For instance, the QLIKE measure is applied by Becker and Clements (2008), Hansen and Lunde
(2005), and Louzis et al. (2012), among others.

116Alternatively, Granger (1999) proposes the LINEX loss function initially introduced by Varian
(1975).

117See Harvey (1997), p. 4 and Kennedy (2003), p. 362.
118See West (2006), p. 101.
119See Brooks and Persand (2003), p. 5.
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allows the results of this study to be compared with the previous findings in the

literature. However, in situations in which a different weighting of positive and

negative forecasting errors is required, the QLIKE measure’s ability to allow for

asymmetric penalties renders it more appropriate.

As it is advisable to consider more than one evaluation criterion, two loss functions

are considered in this study. In addition to their previously mentioned suitable

characteristics, the MSE and the QLIKE are employed to evaluate DAX volatility

forecasts, as Patton (2011) demonstrates that both loss functions are robust to noise

in the volatility proxy. As noted above, the use of imperfect volatility proxies can

lead to incorrect forecast rankings. To avoid such distortions, Patton (2011) suggests

a new parametric family of loss functions that nests the MSE and the QLIKE. Having

selected the evaluation criteria, the next Section presents predictability tests that

examine whether two or more competing forecasts differ significantly.

Predictive Ability Tests

The commonly employed tests for evaluating the performance of two alternative

prediction models are based on ratios of or differences in the above-presented statis-

tical error measures. As the null hypothesis supposes that the predictive ability of

the two models is equal, these tests are called equal predictive ability (EPA) tests.

Given two squared forecast error series e21t and e
2
2t with length H , the null hypothesis

can be tested by the following F -statistic

F =

∑H
t=1 e

2
1t∑H

t=1 e
2
2t

.120 (6.25)

Under the null hypothesis the test statistic is F -distributed with (H,H) degrees

of freedom. Several assumptions must be met to employ this test. First, the test

requires that the forecast errors have zero mean and are normally distributed. Fur-

ther, no serial correlation in the forecast errors is allowed, and the contemporaneous

120The numerator of this test statistic contains the larger of the two MSE.
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correlation of the two forecast error series must be zero. Because these assumptions

are often violated in practice, the test statistic is not generally F -distributed.121

Therefore, alternative test statistics have been developed that (partially) account

for these violations.122

Diebold and Mariano (1995) and West (1996) suggest EPA tests that are valid under

more general assumptions. Similar to the above F -test, Diebold and Mariano (1995)

propose an EPA test that comparest two competing forecasting models. The Diebold

and Mariano (DM) (1995) test is based on the sample mean of the observed loss

differential series, which is given by

d12 =
1

H

H∑

t=1

[g(e1t)− g(e2t)] (6.26)

where g(·) represents various loss functions (e.g., MSE or asymmetric loss func-

tions).123 The test statistic of the DM test is given by

S =
d12√

2πf̂d12 (0)

H

(6.27)

where f̂d12(·) is a consistent estimate of the spectral density for the series d12,t.
124

As Harvey et al. (1997) demonstrate that the DM test is oversized in small samples,

they develop a modified DM test statistic that performs better in small samples.

The modified DM test statistic proposed by Harvey et al. (1997) is

S∗ =

[
H + 1− 2τ +H−1τ(τ − 1)

H

]−1/2
d12(

Var
(
d12

))1/2
(6.28)

121For instance, multi-step-ahead forecasts can induce serial correlation in the forecast errors.
Additionally, the forecast errors from two competing forecast models will typically be correlated.

122See Enders (2004), p. 84.
123The index numbers of the loss differential series d12,t refer to the corresponding forecasting

models m = 1, 2.
124See Diebold and Mariano (1995), p. 254.
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where τ denotes the forecast horizon. The variance in the serially correlated loss

differentials is estimated by

V̂ar
(
d12

)
= (γ0 + 2γ1 + ... + 2γq)/(H − 1) (6.29)

where γj is the j-th autocovariance of d12. Under the null hypothesis the test statistic

S∗ is t-distributed with (H − 1) degrees of freedom, provided that fairly weak con-

ditions are satisfied.125 In contrast to the above EPA test based on the F -statistic,

the DM test and its modified version are robust to non-Gaussian and nonzero mean

forecast errors. Moreover, the test does not require serially and contemporaneously

uncorrelated forecast errors. However, the application of the DM tests is restricted

to non-nested forecasting models.126,127 Further, the DM test applies to predictions

that do not rely on parameter estimates. As economic predictions are typically

based on such estimates, West (1996) develops a framework that allows for forecast

uncertainty due to parameter estimation errors.128

West (1996) demonstrates that the variance-covariance matrix of the loss differen-

tials becomes more complex if parameter estimation errors are taken into account.129

Similar to the DM test, West’s (1996) framework can only be applied to non-nested

models and for long series of predictions and realisations.130 Based on formal asymp-

totic theory, he considers certain conditions under which parameter estimation error

is asymptotically irrelevant.131 However, the asymptotic irrelevance condition is not

met in certain important cases. In particular, if rolling or fixed schemes are used

and/or realisations and forecasts are correlated, the effect of parameter uncertainty

125See Harvey et al. (1997), pp. 281-282.
126See Diebold and Mariano (1995), p. 136.
127For the pairwise comparison of nested models, see Clark and McCracken (2001).
128See West (1996), p. 1067.
129See Fan (2010), p. 63.
130See West (1996), p. 1067.
131For instance, if the prediction period is small relative to the sample size used in the parameter

estimation, asymptotic irrelevance holds. Under these conditions, inference can proceed by
performing the tests suggested by Diebold and Mariano (1995).
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does not vanish asymptotically and the complex variance-covariance matrix has to

be computed.132

While the above-described test procedures consider the relative predictive accuracy

of two alternative models, White (2000) generalises the Diebold and Mariano (1995)

and West (1996) tests to the joint comparison of a set of multiple forecasting models

against a given benchmark model.133 White’s (2000) approach is based on the com-

posite null hypothesis that no competing model provides better forecasting results

than the benchmark model. This test is called the reality check test, as White (2000)

explicitly accounts for the effects of data-snooping. Data-snooping or data-mining

can appear if a given data set is used more than once to estimate and evaluate

different forecasting models, as it is possible to obtain satisfactory results due to

chance.134 Thus, if multiple forecasting models are compared, it is important to

control for data-snooping biases by accounting for the correlation across the various

models.135,136

Hansen (2005) identifies a shortcoming of the reality check test. He demonstrates

that White’s (2000) test is sensitive to the inclusion of poor and irrelevant fore-

casting models in the set of alternative prediction models. Therefore, he suggests

a more powerful formulation of the test, termed the SPA test, which is based on a

studentised test statistic and a sample-dependent null distribution. Similar to the

reality check test, it allows for a simultaneous comparison of multiple forecasts and

thus controls for data-snooping effects.137 However, in addition to these appealing

features, the SPA test has certain disadvantages. As the SPA test requires the spec-

ification of a benchmark model, it cannot be applied in cases in which no natural

benchmark exists. Moreover, the rejection of the null hypothesis of the SPA test im-

plies that one or more models outperform the benchmark. However, the test provides

132See West (2006), p. 111.
133See Corradi and Swanson (2007), p. 69.
134See Mariano (2004), p. 294.
135See Corradi and Swanson (2007), p. 69.
136For example, the White (2000) reality check test is employed by Awartani and Corradi (2005),

who investigate the predictive ability of standard GARCH and asymmetric GARCH models.
137See Hansen and Lunde (2005), p. 87.
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little information regarding which model is superior to the benchmark. Therefore,

Hansen et al. (2003) and Hansen et al. (2011b) suggest the MCS approach, which is

explained in the next Section.

The Model Confidence Set (MCS) Approach

Generally, the MCS approach can be used to examine whether several forecasts are

significantly different from one an other. Specifically, the objective is to select a

group of models from the initial model set that comprises the “best” forecasting

models. The criterion for determining the “best” models is user-specified, e.g., the

MSE. The approach is not limited to pairwise model comparisons and does not re-

quire the specification of a benchmark model.138 Further, the MCS procedure allows

the researcher to compare econometric models and more general alternatives, such

as trading rules, which are not necessarily based on a specific data model.139,140

Moreover, according to Hansen et al. (2011b), the tests results are informative re-

garding the informational content of the data. If the approach delivers a large set of

models with equal predictive ability, this indicates that the data have limited infor-

mational content.141 Due to these appealing features, this study employs the MCS

procedure to examine whether DAX volatility forecasts based on implied volatilities

are superior to volatility predictions from GARCH, ARFIMA, and HAR models.

To my knowledge, this work presents the first application of the MCS approach to

compare DAX volatility predictions for different forecast horizons based on realised

volatility.142 Therefore, this Section describes the approach in detail.

138See Hansen et al. (2003), pp. 839-843.
139See Hansen et al. (2011b), p. 454.
140Thus, the MCS approach can also be applied to implied volatilities.
141See Hansen et al. (2011b), pp. 459-460.
142In the literature, the MCS approach is applied by, inter alia, Becker and Clements (2008),

Martens et al. (2009), Audrino and Hu (2011), and McAleer et al. (2013) to S&P 500 volatility,
Patton and Sheppard (2009) to individual stock volatility, and Dunis et al. (2013) to the implied
volatility of the EUR/USD exchange rate. In addition, Caporin and McAleer (2012) focus on
model comparison and selection of univariate volatility models for financial time series, and
present an empirical application of the MCS approach to one-day-aheadDAX volatility forecasts.
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The objective of the MCS approach is to identify a set of models, called the MCS,

which contains the “best” forecasting model for a given confidence level (1−α). The
MCS is determined by an iterative procedure consisting of a sequence of EPA tests.

At the conclusion of the sequence, the approach provides a final set M̂∗
α of “optimal”

forecasting models for a given confidence level. The final set can contain one or more

models of equal predictive ability.143

Given an initial set of forecasting models M0 = {1, ..., m}, the MCS procedure

evaluates the models according to their expected loss differentials over the sample

t = 1, ..., H . The loss differential between models i and j in M0 is defined as

dij,t ≡ L(RVt, f
i
t )− L(RVt, f

j
t ) i, j = 1, ...m t = 1, ..., H (6.30)

and

di.,t ≡ L(RVt, f
i
t )−

1

m

m∑

j=1

L(RVt, f
j
t ) i, j = 1, ...m t = 1, ..., H (6.31)

where L(·) represents the selected loss function (here: MSE or QLIKE). While the

first sample loss statistic dij,t measures the relative performance between the ith and

the jth model, the second sample loss statistic di.,t denotes the performance of the

ith model relative to the average across the models in M.144

The MCS procedure is initialised by testing the EPA hypotheses H0 : E(dij,t) = 0

for the complete set of candidate models in M0. If the EPA hypothesis is rejected,

an elimination rule is used to remove the worst-performing model from M0. This

procedure is repeated for the remaining set of surviving models until the EPA hy-

pothesis is accepted. The final set of surviving models provides the MCS, which is

denoted by M̂∗
α.

145

143See Hansen et al. (2011b), p. 453.
144See ibid., p. 465.
145See Hansen et al. (2003), pp. 843-845.
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At each step of the MCS procedure, the EPA hypothesis is tested based on the test

statistic

TR = max
i,j∈M

|tij| = max
i,j∈M

|dij |√
V̂ar(dij)

(6.32)

where dij =
1
H

∑H
t=1 dij,t measures the relative performance between models i and j.

If the null hypothesis is rejected, at least one model in M is outperformed by the

other models. The worst performing model Mi is determined by

i = arg max
i∈M

di.√
V̂ar(di.)

(6.33)

where di. =
1

m−1

∑
j∈M dij represents the average performance of model i relative to

the average across the models inM. The variance estimates V̂ar(dij) and V̂ar(di.) are

calculated using a bootstrap procedure, which is explained below. After the worst-

performing model is removed from M, the EPA test is repeated for the reduced set

of models until the EPA hypothesis is accepted.146 To obtain p-values at each stage

for TR, the implementation of the bootstrap method is described below.147

The distribution of TR is approximated by bootstrapping, as the asymptotic distri-

bution of the test statistic TR is non-standard.148 The bootstrap method is used to

generate B bootstrap resamples for all combinations of i and j for dij,t. Specifically,

the block bootstrap procedure that considers sequential blocks of dij,t is applied to

capture temporal dependencies in dij,t.
149 Thus, before the bootstrap procedure can

be initialised, the time series dependencies in dij,t must be analysed. Hansen et al.

(2003) suggest fitting an autoregressive process to dij,t and setting the block length

146See Hansen et al. (2011b), pp. 465-466.
147Similar results hold for Tmax.
148The distribution of TR depends on the covariance structure of the forecasts. See Becker and

Clements (2008), p. 128.
149Alternatively, the stationary bootstrap method developed by Politis and Romano (1994) can

be used. In contrast to the block bootstrap procedure, this procedure is based on random
block lengths. While the stationary bootstrap method ensures the stationarity of the bootstrap
resamples, the variance of the statistics increases (see Becker and Clements (2008), p. 128).
Thus, similar to Hansen et al. (2003), the block bootstrap method is employed in this study.
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to the largest lag length.150 Given the selected block length the bootstrap procedure

operates as follows:151

1. Generate B block bootstraps for all forecast combinations, dbij,t for b = 1, ..., B.

2. Estimate the variances

V̂ar(dij) =
1

B

B∑

b=1

(
d
b

ij − dij

)2

(6.34)

and

V̂ar(di.) =
1

B

B∑

b=1

(
d
b

i. − di.

)2

(6.35)

where d
b

ij and d
b

i. denote the bootstrap counterparts of dij and di..

3. Calculate the bootstrap distribution of TR under the null hypothesis using

T b
R = max

i,j∈M
|tij | = max

i,j∈M

|dbij − dij |√
V̂ar(dij)

. (6.36)

4. Compute the p-values of the EPA test using

p̂ =
1

B

B∑

b=1

1(T b
R > TR) (6.37)

with

1(A) =





1 if A is true

0 if A is false.
(6.38)

Equation (6.37) demonstrates that the p-value of the EPA test is calculated as the

proportion of instances in which the bootstrapped test statistics are larger than the

observed value of TR. These p-values are used to determine model-specific p-values.

150The block bootstrap method requires that the series dij,t be stationary and exhibit geometrically
strong mixing. See Hansen et al. (2003), p. 846.

151See ibid., pp. 860-861.
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To determine of model-specific p-values, it is necessary to select a significance level

α. If the p-value of the EPA test exceeds α, the worst-performing model is removed

from M. In this case, the p-value of the model is equivalent to the maximum p-value

of all EPA tests up to this iteration. More formally, the p-value of model i is defined

by

p̂i = max
k≤k(i)

p(k) (6.39)

where p(k) is the p-value of the kth EPA test and k(i) denotes the iteration at which

model i is removed from M. Thus, based on this definition, the first model removed

from M, receives the smallest p-value. By convention, the p-value of the surviving

models is 1.152

Despite its appealing properties, some issues must be accounted for when the MCS

approach is applied in the presence of parameter uncertainty. Hansen et al. (2011b)

note that the results of the MCS procedure can also be affected by parameter esti-

mation errors. To reduce these effects, they recommend estimating the parameters

based on a rolling window. Specifically, if nested models that rely on estimated

parameters are compared, they note that a careful application of the MCS approach

is advisable.153 As this study estimates various time series models to predict DAX

volatility, the effects of parameter estimation errors on the MCS approach are min-

imised by the implementation of a rolling estimation scheme. Although Hansen

et al. (2011b) report that this approach has good small sample properties, the final

set M̂∗
α may include several inferior forecasting models in finite samples. This can

be explained by the MCS procedure, which only eliminates a model from the MCS

when its performance is significantly below that of a competing model.154 These as-

pects should be recalled during the following evaluation of DAX volatility forecasts.

The next Section presents the methodology applied to examine the out-of-sample

performance of implied volatilities and time series models.

152See Hansen et al. (2011b), pp. 462-463.
153In addition, they suggest certain modifications, e.g., the use of a proper test size. See ibid., p.

476.
154See ibid., p. 493.
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6.6.3. Forecasting Methodology

The choice of the forecast horizon is related to the objective of the study. As

mentioned in the introduction, the objective of this work is to provide information to

investment and risk managers regarding which forecasting method delivers superior

DAX volatility forecasts. Typically, these practitioners require volatility forecasts of

between one day and one month. Therefore, the selected forecast horizons are one

day, two weeks (or ten trading days), and one month (22 trading days).155 First,

this Section describes the construction of DAX volatility forecasts based on implied

volatilities.

Generally, a rolling estimation scheme is used to generate out-of-sample forecasts.156

To obtain a series of monthly, non-overlapping forecasts, the implied volatilities are

estimated based on DAX options traded on the Wednesday immediately following

the expiration date.157 In particular, the Nadaraya-Watson estimator is employed

to produce smoothed implied DAX volatilities with a remaining lifetime of precisely

one month.158 These smoothed implied volatilities that begin on December 23rd,

2003 are used as one-month-ahead DAX volatility forecasts. The one-day-ahead

(two-week-ahead) forecasts based on implied DAX volatilities are calculated from

DAX option prices recorded every (second) Wednesday beginning from December

23rd, 2003.159 Next, the computation of rolling DAX volatility forecasts based on

155As this study does not focus on forecasting intraday volatility, I refer interested readers, for
example, to Engle and Sokalska (2012).

156The following methodology is similar to that in Jiang and Tian (2005) and Muzzioli (2010).
157As the week after the expiration date is one of the most active, DAX options from the middle of

this week are selected. If the Wednesday is not a trading day, the next trading day is considered.
See also Muzzioli (2010), p. 567.

158See Section 3.1.3 for the calculation of BS ATM and model-free implied volatilities using the
Nadaraya-Watson estimator.

159While the smoothing procedure technically allows the researcher to compute implied volatilities
for options with a remaining lifetime of one or ten trading days, the same implied DAX volatility
for one-month-ahead forecasts is used to predict DAX volatility for shorter forecast horizons.
The reason is that DAX options with fewer than five days to maturity are excluded from the
sample due to liquidity concerns. As this elimination rule also reduces the data available to
construct the two-week-ahead forecasts, the procedure typically suggested in the literature is to
use one-month-ahead forecasts for shorter forecast horizons. See, e.g., Martin et al. (2009), pp.
89-92.



6.7. Evaluation of the Forecasting Results 233

the above-presented time series models (GARCH, ARFIMA, and HAR models) is

described.

The time series models are estimated for each forecast horizon based on a rolling

window of 500 trading days. To match the forecast horizon of the time series models

with that of implied DAX volatilities, the estimation period for one-month-ahead

forecasts ends on December 23rd, 2003. The time series models are estimated based

on this sample and, then, used to calculate DAX volatility forecasts for the follow-

ing month.160 In total, the application of this estimation and forecasting scheme

produces 72 one-month-ahead DAX volatility forecasts. The rolling scheme must be

adjusted to calculate the one-day- and ten-day-ahead forecasts.

Similar to the procedure for one-month-ahead forecasts, the estimation periods for

shorter forecast horizons end on December 23rd, 2003. The predicted DAX volatil-

ities refer to the next one or ten trading days. In the following, the estimation

period for the time series model is shifted by one (ten days) towards the end of the

sample and corresponding DAX volatility forecasts are computed. In summary, this

procedure yields 156 two-week and 1535 one-day-ahead DAX volatility forecasts.161

Finally, the realised volatilities used to measure the accuracy of the volatility fore-

casts are calculated for each forecast horizon.162

6.7. Evaluation of the Forecasting Results

This Section presents the evaluation of the DAX volatility forecasting results of the

employed time series models and implied volatilities. In addition to the individual

forecasts, this study also considers combined forecasts because forecast combinations

160The second sample begins on January 30th, 2002 and ends on January 21st, 2004, and so on.
161The following Sections consider the DAX volatility forecasts that are generated based on

the GARCH(1,1) model because the GARCH(1,2) model produces considerably higher out-
of-sample forecast errors.

162Specifically, realised volatility is computed as the average realised volatility over the forecast
horizon. See also Becker and Clements (2008), p. 126.
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have been found to outperform individual forecasting models in many areas.163 For

instance, Becker and Clements (2008) report that a combination of model based

forecasts of S&P 500 volatility provides better prediction results than a wide range

of individual forecasts, including implied volatility. The literature offers several ex-

planations for the empirical success of combined forecasts. First, the combination

of individual forecasts is an attractive strategy due to diversification gains. Second,

if structural breaks are difficult to detect in the data generating process, combined

forecasts based on models that adapt to these changes differently provide better

forecasts on average.164 Third, relative to individual forecasting models, a combina-

tion of forecasts can reduce misspecification biases and measurement errors. Despite

these advantages, several arguments against combining forecasts are also mentioned

in the literature.165

While non-stationarities motivate the use of combined forecasts (recall the second

argument above), they can also induce stability problems in the weights used in the

combinations. Further, if small samples are used to calculate numerous forecasts, es-

timation errors can complicate the determination of the combination weights.166 To

avoid these problems and maintain the above-mentioned number of volatility fore-

casts for evaluation process,167 equal weights are used to combine individual DAX

volatility forecasts. Using equal weights provides a natural benchmark for combin-

ing forecasts. Furthermore, empirical studies demonstrate that equal weighting is

unlikely to be outperformed by other weighting schemes.168,169 Therefore, this study

uses equal weights to combine individual DAX volatility forecasts based on time se-

ries models and/or implied volatilities. Finally, the random walk model completes

the set of examined forecasting approaches, as it is typically used as a benchmark.

163See, e.g., the comprehensive studies by Makridakis and Hibon (2000), Stock and Watson (1999),
and Marcellino (2004).

164For an explanation see Pesaran and Timmermann (2007).
165See Timmermann (2006), pp. 137-138.
166See ibid., p. 139.
167Specifically, the one-month ahead DAX volatility forecast series consists of 72 data points.
168See Timmermann (2006), p. 193.
169To understand these empirical findings, Timmermann (2006) provides general conditions under

which equal weights are optimal in a population sense. See ibid., pp. 148-150.
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Because the sample period contains the 2008 financial crisis, it is possible to analyse

the impact of the crisis on model forecasting performance, which is of particular

interest for academics and practitioners. The literature suggests various approaches

to cope round with extremely volatile sample periods. For instance, Fleming (1998)

excludes all data surrounding the October 1987 stock market crash, as model param-

eter estimates are highly influenced by this event.170 Alternatively, using a GARCH

framework, Blair et al. (2001) introduce dummy variables in the mean and variance

equations to capture the effects of the October 1987 crash. Further, Christensen

and Prabhala (1998), who observe a regime shift around the 1987 crash, perform a

pre-crash and a post-crash subperiod analysis.171 Due to the forecasting methodol-

ogy employed and the occurrence of the financial crisis during the last third of the

sample period, the forecasting performance of the implied volatilities and time series

models is evaluated for the full sample (from 2002 to 2009) and the subperiod ex-

cluding the two most volatile months of the financial crisis (September and October

2008) separately.172 First, the following Section discusses the evaluation results for

the one-day-ahead DAX volatility forecasts.

6.7.1. One-day-ahead Forecasts

The use of the MCS approach requires that all loss differentials dij are stationary.

Therefore, the ADF test is performed to test for non-stationarity in the loss dif-

ferentials. Table B.5 in the Appendix presents the results of the ADF test, the

null hypothesis of which states that each series follows a unit-root process.173,174

As the null hypothesis can be rejected for all loss differentials at the 1% level, the

MCS method can be implemented to evaluate the performance of the DAX volatility

forecasts.

170See Fleming (1998), p. 323.
171See Christensen and Prabhala (1998), pp. 141-147.
172In the following, this sample is called “subperiod ex financial crisis 2008”.
173The alternative hypothesis is that the series are generated by a stationary process without drift.
174Using the results of the dependency analysis below, the ADF test includes up to 15 lags.
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As described in the previous Section, the MCS approach uses the block bootstrap

method to generate the distributions of the test statistics. Similar to Hansen et al.

(2003), the block length is determined based on the lag length of the autoregressive

processes fitted to the loss differentials. Specifically, the block length is set equal to

the largest lag length of the estimated autoregressive processes. Table B.8 in the

Appendix provides the estimation results for the autoregressive processes fitted to

the daily loss differentials.175 The table indicates that the maximum lag length is 15.

Thus, the block length is set to 15. To ensure that the results are not influenced by

the actual draws, 10,000 bootstrap resamples are generated.176 The MCS approach

is employed based on these parameters, and the results regarding the MSE criteria

are presented in Table 6.10.

When the full sample is considered, the combined forecast of BS ATM implied

volatility and the HAR model provides the lowest MSE. In addition to this combi-

nation, the combined forecast of BS ATM implied volatility and the ARFIMA(1,d,1)

model and the individual forecasts from the HAR and the ARFIMA(1,d,1) exhibit

low MSE values. In contrast, the highest MSE values are observed for the individual

forecasts based on the implied volatilities and the GARCH models. While the rela-

tively poor performance of the volatility forecasts based on the implied volatilities

can be explained by the mismatch between the forecast horizon and the maturity,

the inferior performance of the GARCH models is surprising. Typically, GARCH

models provide good prediction results over short-term periods. In the following,

the MCS approach is applied to examine whether the two combined forecasts and

the individual forecasts from the HAR and ARFIMA(1,d,1) models significantly

outperform forecasts based on the implied volatilities and GARCH models.

Table 6.10 indicates that the MCS comprises four combined forecasts and the indi-

vidual forecasts from the HAR and ARFIMA(1,d,1) models. Therefore, each of the

175The lag length of the autoregressive processes is determined based on the SIC. As outliers distort
the sample autocorrelation structure of the daily loss differentials, observations with realised
volatilities above 75% are excluded from the data set (approximately 1% of the observations).
For the effects of outliers on sample autocorrelations, see Chan (1995).

176The same number of resamples is used for the two-weeks-ahead and one-month-ahead forecasts.
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Table 6.10.: MCS results for one-day-ahead forecasts (loss function: MSE)

Panel A: full sample

model MSE rank (MSE) MCS p-value

garch11 0.517% (10) 0.3%
egarch21 0.521% (11) 1.3%
arfima11 0.403% (3) 93.7%*
har 0.400% (2) 93.7%*
mfv 0.594% (12) 0.3%
bsatm 0.487% (9) 1.3%
garch11+arfima11 0.417% (5) 37.8%*
garch11+har 0.417% (5) 81.8%*
bsatm+garch11 0.462% (7) 0.3%
bsatm+arfima11 0.403% (3) 92.9%*
bsatm+har 0.399% (1) 100.0%*
rw 0.473% (8) 1.3%

Panel B: subperiod ex financial crisis 2008

model MSE rank (MSE) MCS p-value

garch11 0.349% (11) 0.3%
egarch21 0.310% (8) 0.5%
arfima11 0.256% (3) 72.8%*
har 0.256% (3) 72.8%*
mfv 0.397% (12) 0.3%
bsatm 0.330% (10) 0.3%
garch11+arfima11 0.268% (5) 30.3%*
garch11+har 0.268% (5) 72.8%*
bsatm+garch11 0.307% (7) 0.3%
bsatm+arfima11 0.255% (2) 72.8%*
bsatm+har 0.252% (1) 100.0%*
rw 0.313% (9) 0.5%

Source: own calculations.

Note: The forecasts in M̂∗
90% are identified by one asterisk.
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four combined forecasts contains one of the individual forecasts from the HAR and

ARFIMA(1,d,1) models. As the individual forecasts based on the implied volatilities

and the GARCH models do not belong to the MCS at the 5% level, it follows that

they provide significantly inferior prediction results relative to the MCS models. The

next paragraph presents the prediction results for the subsample that excludes the

two most volatile months of the 2008 financial crisis.

As expected, all examined forecasting methods exhibit considerably lower MSE val-

ues when the reduced subsample is considered. With respect to the ranking of the

volatility forecasts, the findings for the reduced subsample are similar to those for

the full sample (see Table 6.10). As in the case of the full sample, the two com-

bined forecasts of BS ATM implied volatility and the HAR or the ARFIMA(1,d,1)

model, followed by the individual forecasts of the HAR and ARFIMA(1,d,1) models

produce the lowest MSE values. Furthermore, the forecasts based on the implied

volatilities and GARCH(1,1) exhibit the highest MSE errors. Despite these simi-

larities, the evaluation results of these two samples are not identical. Interestingly,

the relative ranking of the GARCH(1,1) and EGARCH(2,1) models changes when

the two most volatile months of the crisis are eliminated. This implies that the

higher MSE documented for the EGARCH(2,1) model (relative to the GARCH(1,1)

model) for the full sample is due to the extreme market movements in autumn 2008.

This finding agrees with the results of Bluhm and Yu (2001), who report that asym-

metric GARCH models (in particular the GJR-GARCH and the EGARCH model)

provide better one-day-ahead DAX volatility forecasts than the standard GARCH

model.177

The MCS results for the reduced subsample are presented in Table 6.10 and indicate

that the composition of the MCS remains constant. Thus, except for minor changes

in individual rankings, the 2008 financial crisis affects the one-day-ahead predictive

abilities of all forecasting methods considered, as measured by the MSE, in the same

177See Bluhm and Yu (2001), pp. 13-15.
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direction. After discussing model forecasting performance based on the MSE, the

results for the asymmetric loss function, QLIKE, are outlined below.

Table 6.11.: MCS results for one-day-ahead forecasts (loss function: QLIKE)

Panel A: full sample

model QLIKE rank (QLIKE) MCS p-value

garch11 4.591% (10) 0.0%
egarch21 4.524% (9) 0.0%
arfima11 3.566% (1) 100.0%*
har 3.567% (2) 98.7%*
mfv 6.036% (12) 0.0%
bsatm 4.874% (11) 0.0%
garch11+arfima11 3.716% (6) 29.0%*
garch11+har 3.686% (5) 38.9%*
bsatm+garch11 4.395% (7) 0.0%
bsatm+arfima11 3.669% (4) 38.9%*
bsatm+har 3.606% (3) 88.4%*
rw 4.482% (8) 0.0%

Panel B: subperiod ex financial crisis 2008

model QLIKE rank (QLIKE) MCS p-value

garch11 4.480% (10) 0.0%
egarch21 4.297% (7) 0.2%
arfima11 3.448% (1) 100.0%*
har 3.468% (2) 73.9%*
mfv 5.946% (12) 0.0%
bsatm 4.818% (11) 0.2%
garch11+arfima11 3.604% (6) 27.8%*
garch11+har 3.582% (5) 31.4%*
bsatm+garch11 4.318% (8) 0.2%
bsatm+arfima11 3.576% (4) 31.4%*
bsatm+har 3.520% (3) 73.9%*
rw 4.436% (9) 0.2%

Source: own calculations.

Note: The forecasts in M̂∗
90% are identified by one asterisk.

Using the QLIKE criterion to rank the DAX volatility forecasts yields similar results

to the MSE loss function (see Table 6.11). As the MCS contains the same forecasting

methods, this confirms the findings above regarding the superior predictive ability of

the individual forecasts from the ARFIMA(1,d,1) and the HAR model and those of
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the combined forecasts including one of these individual forecasts.178 In all compar-

isons, the top position in the volatility forecast ranking changes if the forecasts are

ranked according to the QLIKE criterion. While the lowest MSE is observed for the

combined forecast based on BS ATM implied volatility and the HAR model, the low-

est QLIKE is received for the individual forecast from the ARFIMA(1,d,1) model.179

In accordance with the findings for the MSE, the highest values of the QLIKE mea-

sure are recorded for the individual forecasts based on the implied volatilities and

the GARCH(1,1) model. When the forecasting results for the reduced subsample

“subperiod ex financial crisis 2008” are considered, the MCS still contains the same

models. Thus, the findings regarding the superior performance of these forecasting

models also holds for the QLIKE measure and the reduced subsample.

Overall, the composition of the MCS does not change when the loss function is

changed (MSE to QLIKE) or a different sample is considered (the full sample or

reduced subsample). Accordingly, the combined forecasts that contain one of the

individual forecasts from the HAR or ARFIMA(1,d,1) models and the both individ-

ually produce forecasts that are superior to competing model-based forecasts. This

finding demonstrates that the ability of the HAR and ARFIMA(1,d,1) models to

capture long memory dependencies in realised DAX volatilities seems important for

predicting short-term DAX volatility. The results regarding whether combined fore-

casts are superior to individual forecasts are mixed. While in the case of the MSE

criterion the combination of the individual forecasts from BS ATM implied volatility

and the HAR or ARFIMA(1,d,1) model (slightly) reduces the forecast errors rela-

tive to the individual forecasts (HAR and ARFIMA(1,d,1)), this effect cannot be

observed for the QLIKE measure.180

178Similar to the MCS results for the MSE criterion, the MCS based on the QLIKE criterion
contains the combined forecasts of the GARCH(1,1) model and the HAR or the ARFIMA(1,d,1)
model.

179The combined forecast of BS ATM implied volatility and the HAR model also produces low
QLIKE errors.

180Note that according to the MCS approach, the combined forecast that exhibits the lowest MSE
does not significantly outperform the individual forecasts from the long memory models.
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These results support the findings of Lazarov (2004), who reports that the standard

ARFIMA model and the ARFIMA model enhanced with implied variance provide

the best DAX volatility forecasts.181 Although this study does not consider extended

ARFIMA models, the results of Lazarov (2004) are related to this work. Similar to

the extended ARFIMA model suggested by Lazarov (2004), the combined forecast of

BS ATM implied volatility and the HAR model suggested by this study is based on

the information from using realised and implied volatilities to predict DAX volatility.

Further, this study extends the findings of Lazarov (2004), as his evaluation approach

does not allow for the investigation of whether the (extended) ARFIMA models

provide significantly better DAX volatility forecasts than the (extended) GARCH

models. Specifically, based on the MCS approach, this study demonstrates that

the ARFIMA and related HAR model significantly outperform the GARCH and

the EGARCH models. The following Section presents the evaluation results for the

two-weeks-ahead DAX volatility forecasts.

6.7.2. Two-weeks-ahead Forecasts

To apply the MCS approach to evaluate the two-weeks-ahead forecasts, the ADF

test is used to examine whether the loss differentials dij are stationary. The results

of the ADF test, which are reported in Table B.6 in the Appendix, show that the

null hypothesis of non-stationarity can be rejected for all loss differentials at the 1%

level.182 Thus, the MCS method can be employed to assess the predictive ability

of the selected forecasting models. As in the case of the one-day-ahead forecasts,

the block length of the bootstrapping method is determined based on autoregressive

processes fitted to the bi-weekly loss differentials.183 The estimation results for these

autoregressive processes imply a block length of four (see Table B.10). The outcome

181See Lazarov (2004), pp. 60-61.
182Based on the results of the following temporal dependency analysis, the ADF test is performed

using four lags.
183Similar to the procedure for one-day-ahead loss differentials, the lag length of the autoregressive

processes are determined based on the SIC. Here, no outliers have to be excluded from the data
set.
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of the MCS approach and the two-weeks-ahead forecast ranking based on the MSE

criterion are presented in Table 6.12.

Table 6.12.: MCS results for two-weeks-ahead forecasts (loss function: MSE)

Panel A: full sample

model MSE rank (MSE) MCS p-value

garch11 0.494% (9) 8.6%
egarch21 0.624% (12) 8.6%
arfima11 0.499% (10) 8.6%
har 0.504% (11) 8.6%
mfv 0.471% (8) 8.6%
bsatm 0.394% (1) 100.0%*
garch11+arfima11 0.439% (5) 77.3%*
garch11+har 0.451% (7) 8.6%
bsatm+garch11 0.401% (4) 99.6%*
bsatm+arfima11 0.400% (2) 99.6%*
bsatm+har 0.400% (2) 99.6%*
rw 0.448% (6) 96.6%*

Panel B: subperiod ex financial crisis 2008

model MSE rank (MSE) MCS p-value

garch11 0.322% (12) 4.5%
egarch21 0.257% (10) 3.3%
arfima11 0.206% (4) 8.2%
har 0.205% (3) 6.5%
mfv 0.273% (11) 4.5%
bsatm 0.223% (5) 6.5%
garch11+arfima11 0.225% (6) 4.5%
garch11+har 0.229% (7) 4.5%
bsatm+garch11 0.237% (8) 4.5%
bsatm+arfima11 0.175% (2) 28.1%*
bsatm+har 0.171% (1) 100.0%*
rw 0.246% (9) 4.5%

Source: own calculations.

Note: The forecasts in M̂∗
90% are identified by one asterisk.

In the full sample, the individual forecast based on BS ATM implied volatility pro-

vides the lowest MSE prediction error for two-weeks-ahead DAX volatility forecasts.

In contrast to the findings for one-day-ahead forecasts, the ARFIMA(1,d,1) and the

HAR model produce relatively high MSE values when applied to the full sample.
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While the superior performance of BS ATM implied volatility can be explained by

the better match of forecast horizon and an option’s time to maturity, the unex-

pectedly poor results of the HAR and the ARFIMA(1,d,1) model must be further

analysed using the MCS results for the reduced subsample presented in Table 6.12.

The findings for the subsample demonstrate that the high MSE values observed for

the long memory models are due to the impact of the two most volatile months of the

financial crisis.184 Similar to the results for one-day-ahead DAX volatility forecasts,

the combined forecasts that include the individual forecasts of BS ATM implied

volatility and the HAR or the ARFIMA(1,d,1) model exhibit low MSE errors and,

in contrast, the GARCH models produce high MSE values.

Another notable result is that the DAX volatility forecasts based on BS ATM im-

plied volatility produce a considerably lower MSE than model-free volatility based

forecasts. Additionally, the results of the MCS approach show that the individual

forecast based on BS ATM implied volatility provides significantly lower MSE pre-

diction errors than does that based on model-free volatility. Although model-free

volatility, by construction, uses a larger information set than BS implied volatil-

ity, this additional information does seem not to be relevant for the prediction of

two-weeks-ahead DAX volatility.

While the MCS for the full sample contains six models, including the random walk

model, the MCS for the reduced sample is more compact. In particular, the MCS for

the reduced sample shows that the combined forecasts of BS ATM implied volatility

and the HAR, respectively, the ARFIMA(1,d,1), model provide significantly better

forecasts than the other prediction methods. Further, the reduction of the MCS

reflects the considerable impact of the financial crisis on forecasting two-weeks-ahead

DAX volatility.

Whereas the MCS based on the MSE loss function contains multiple models and

differs across the two samples, the MCS results for the QLIKE function indicate that

the combined forecast of BS ATM implied volatility and the HAR model provides

184For the reduced subsample, the HAR and the ARFIMA(1,d,1) model show relatively low MSE
values compared with the other forecasting models.
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Table 6.13.: MCS results for two-weeks-ahead forecasts (loss function: QLIKE)

Panel A: full sample

model QLIKE rank (QLIKE) MCS p-value

garch11 3.687% (9) 1.4%
egarch21 4.180% (12) 2.3%
arfima11 3.710% (10) 1.7%
har 3.587% (8) 1.7%
mfv 4.094% (11) 1.7%
bsatm 3.220% (4) 4.8%
garch11+arfima11 3.310% (6) 3.1%
garch11+har 3.234% (5) 3.1%
bsatm+garch11 3.123% (3) 3.1%
bsatm+arfima11 2.792% (2) 4.8%
bsatm+har 2.674% (1) 100.0%*
rw 3.475% (7) 3.1%

Panel B: subperiod ex financial crisis 2008

model QLIKE rank (QLIKE) MCS p-value

garch11 3.317% (11) 0.1%
egarch21 3.284% (9) 0.7%
arfima11rv 3.119% (8) 2.6%
har 3.080% (7) 2.6%
mfv 3.847% (12) 0.7%
bsatm 3.024% (6) 2.6%
garch11+arfima11rv 2.866% (4) 3.0%
garch11+har 2.811% (3) 3.0%
bsatm+garch11 2.872% (5) 2.6%
bsatm+arfima11rv 2.433% (2) 4.5%
bsatm+har 2.333% (1) 100.0%*
rw 3.292% (10) 0.7%

Source: own calculations.

Note: The forecasts in M̂∗
90% are identified by one asterisk.



6.7. Evaluation of the Forecasting Results 245

the best DAX volatility predictions across both samples (see Table 6.13). In addition

to this forecast combination, the related combined forecast that consists of BS ATM

implied volatility and the ARFIMA(1,d,1) model provides low, but not significantly

lower, QLIKE values. As for the MSE criterion, the forecasts based on BS ATM

implied volatility show lower (QLIKE) prediction errors than model-free volatility

forecasts, and the GARCH models exhibit comparably high QLIKE errors.

In the literature, Claessen and Mittnik (2002) also compare the predictive ability of

time series models and implied volatility for two-weeks-ahead DAX volatility fore-

casts. Moreover, considering individual forecasts (e.g., the GARCH(1,1) model or an

extended version of the GARCH model to which BS ATM implied volatility is added

as an external regressor), they also examine the performance of combined forecasts.

Their analysis shows that combining forecasts does not necessarily improve fore-

casting performance.185 However, they find that a combination of BS ATM implied

volatility and the GARCH(1,1) model with weekend effects provides lower prediction

errors than the individual forecasts, including the extended GARCH model.186,187

This study partially confirms the findings of Claessen and Mittnik (2002). Based

on the MSE loss function, this work shows that the combined forecast of BS ATM

implied volatility and the standard GARCH(1,1) model provides lower prediction

errors than the individual forecasts from the GARCH models. However, in contrast

to Claessen and Mittnik (2002), this study reports a lower MSE for BS ATM implied

volatility based forecasts than for the combined forecast of BS ATM implied volatil-

ity and the GARCH(1,1) model. Further, this study suggests that the combined

forecasts of BS ATM implied volatility and long memory models provide superior

forecasting results in (not extreme volatile) market situations.

185In particular, they combine a moving-average model, a random walk model, an AR(15) model,
BS ATM implied volatility, and a GARCH(1,1) model.

186See Claessen and Mittnik (2002), pp. 314-320.
187This result is based on the application of the MSE criterion. In addition to the above-mentioned

combined forecast, Claessen and Mittnik (2002) report that the combination of implied volatility
with a constant term to correct for mean bias produces the lowest MSE. See ibid., p. 316.
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A comparison of GARCH and ARFIMA models can be found in Lazarov (2004). He

reports better predictive performance for (enhanced) ARFIMA models compared

with GARCH or extended GARCH models. This study confirms the better perfor-

mance of ARFIMA relative to GARCH models for the reduced sample.

However, while this study documents relatively high MSE values for the GARCH

models, Raunig (2006) finds that an asymmetric GARCH model provides lower

MSE values than the standard GARCH(1,1) model and BS ATM implied volatil-

ity.188 This study confirms the results of Raunig (2006) with respect to the better

performance of asymmetric GARCH models (here: the EGARCH model) relative to

the standard GARCH(1,1) model for the reduced sample but contradicts Raunig’s

(2006) findings concerning the inferior performance of BS ATM implied volatility.

These different results cannot be clearly attributed to the samples considered be-

cause his experiment partly overlaps with the sample period of this study. However,

in contrast to this work, he uses squared daily returns and not realised volatility to

measure volatility, which can explain the different outcomes. Next, the evaluation

results for one-month-ahead DAX volatility forecasts are presented.

6.7.3. One-month-ahead Forecasts

The results of the ADF test presented in Table B.7 demonstrate that the non-

stationary hypothesis can be rejected for all loss differentials at the 1% level. There-

fore, the MCS method can be applied to evaluate the one-month-ahead DAX volatil-

ity forecasts.189 Further, the estimation results for the autoregressive processes fitted

to the monthly loss differentials show that the maximum lag length of the autore-

gressive processes is two (see Table B.11). Using these results to employ the MCS

approach leads to the results summarised in Table 6.14 for the MSE loss function.

The comparison of the MSE rankings for one-month-ahead and two-weeks-ahead

forecasts shows that some results are identical. First, the combined forecasts of

188See Raunig (2006), p. 371.
189The ADF test is performed for two lags.
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Table 6.14.: MCS results for one-month-ahead forecasts (loss function: MSE)

Panel A: full sample

model MSE rank (MSE) MCS p-value

garch11 0.693% (11) 9.7%
egarch21 1.021% (12) 11.1%*
arfima11 0.678% (10) 11.1%*
har 0.622% (8) 45.9%*
mfv 0.601% (6) 45.9%*
bsatm 0.559% (2) 92.0%*
garch11+arfima11 0.628% (9) 45.9%*
garch11+har 0.615% (7) 45.9%*
bsatm+garch11 0.596% (5) 45.9%*
bsatm+arfima11 0.575% (3) 87.0%*
bsatm+har 0.551% (1) 100.0%*
rw 0.584% (4) 92.0%*

Panel B: subperiod ex financial crisis 2008

model MSE rank (MSE) MCS p-value

garch11 0.363% (12) 3.9%
egarch21 0.320% (11) 2.3%
arfima11 0.211% (3) 53.1%*
har 0.218% (4) 53.1%*
mfv 0.260% (9) 53.1%*
bsatm 0.245% (6) 41.7%*
garch11+arfima11 0.240% (5) 53.1%*
garch11+har 0.251% (7) 53.1%*
bsatm+garch11 0.275% (10) 2.3%
bsatm+arfima11 0.189% (1) 100.0%*
bsatm+har 0.192% (2) 82.1%*
rw 0.255% (8) 3.9%

Source: own calculations.

Note: The forecasts in M̂∗
90% are identified by one asterisk.
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BS ATM implied volatility and the HAR, or the ARFIMA(1,d,1), model and the

individual forecast based on BS ATM implied volatility provide the lowest MSE

values in the full sample. Second, while the individual forecasts of the HAR and the

ARFIMA(1,d,1) produce high MSE prediction errors when applied to the full sam-

ple, both forecasting models provide considerably lower MSE values in the reduced

sample. Third, BS ATM implied volatility provides better forecasting performance

than model-free volatility in both samples. Fourth, the combined forecasts of BS

ATM implied volatility and the HAR or the ARFIMA(1,d,1) model exhibit the best

forecasting performance in the reduced sample. Finally, the GARCH models pro-

duce relatively high MSE errors regardless of the sample considered.

However, the MCS results for one-month-ahead and two-weeks-ahead DAX volatility

forecasts exhibit some differences. Whereas the MCS for two-weeks-ahead forecasts

shrinks to one, respectively, two models, the MCS for the one-month-ahead forecasts

still comprises eight, respectively, ten models when the reduced sample is considered.

In particular, the MCS approach demonstrates, that based on the MSE criterion,

both GARCH models, the combined forecast of BS ATM implied volatility and the

GARCH(1,1) model, and the random walk model, are significantly outperformed by

the other forecasting models when the effects of the financial crisis are (partly) elim-

inated. Below, the evaluation results based on the QLIKE criterion are discussed.

Assessing the performance of the forecasting models using the QLIKE criterion

yields a ranking that is similar to the previous ranking based on the MSE (see

Table 6.15).190 Although the combined forecasts of BS ATM implied volatility and

the ARFIMA(1,d,1) or the HAR model deliver considerably lower QLIKE values,

the MCS barely fails to verify the superior predictive ability of both forecasting

methods at the 10% level. There are two potential explanations for the failure of

190However, although the results are closely related, there are some differences. First, the improved
forecasting performance of long memory models in the reduced sample is observed in a weaker
form for the QLIKE criterion. Second, BS ATM implied volatility also provides one of the best
DAX volatility forecasts when the two most volatile months of the 2008 crisis are removed. The
good forecasting results observed for the combined forecast of BS ATM implied volatility and
the GARCH(1,1) model in both samples can be attributed to the remarkable results of BS ATM
implied volatility.
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Table 6.15.: MCS results for one-month-ahead forecasts (loss function: QLIKE)

Panel A: full sample

model QLIKE rank (QLIKE) MCS p-value

garch11 4.756% (9) 3.9%
egarch21 7.125% (12) 4.3%
arfima11 5.170% (11) 3.9%
har 4.769% (10) 4.3%
mfv 4.408% (7) 42.8%*
bsatm 3.932% (2) 53.2%*
garch11+arfima11 4.538% (8) 42.8%*
garch11+har 4.342% (5) 42.8%*
bsatm+garch11 4.092% (4) 42.8%*
bsatm+arfima11 3.950% (3) 52.1%*
bsatm+har 3.714% (1) 100.0%*
rw 4.366% (6) 52.1%*

Panel B: subperiod ex financial crisis 2008

model QLIKE rank (QLIKE) MCS p-value

garch11 3.663% (10) 0.4%
egarch21 4.132% (12) 1.4%
arfima11rv 3.644% (9) 10.2%*
har 3.412% (7) 10.2%*
mfv 3.530% (8) 10.2%*
bsatm 3.113% (3) 10.2%*
garch11+arfima11rv 3.261% (6) 10.2%*
garch11+har 3.118% (4) 10.2%*
bsatm+garch11 3.148% (5) 10.2%*
bsatm+arfima11rv 2.820% (2) 16.9%*
bsatm+har 2.644% (1) 100.0%*
rw 3.717% (11) 10.2%*

Source: own calculations.

Note: The forecasts in M̂∗
90% are identified by one asterisk.
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the MCS approach to identify one or at least a small set of superior forecasting

models for both loss functions in the case of one-month-ahead forecasts. The first

argument refers to the different sample sizes that are used for the evaluation of the

DAX volatility forecasts. While the evaluation of one-day-ahead and two-weeks-

ahead DAX volatility forecasts is based on large samples, the sample size for the

one-month-ahead forecasts is much lower due to the non-overlapping construction

principle employed. In addition to the sample size, the larger number of models

in the MCS for one-month-ahead forecasts potentially reflects that increasing noise

dominates the predictive ability of nearly all forecasting models over longer forecast

horizons. In the following, the evaluation results for one-month-ahead DAX volatility

forecasts are compared with the findings in the literature.

Similar to their findings for two-weeks-ahead forecasts, Claessen and Mittnik (2002)

report that based on the MSE criterion the combined forecast of BS ATM implied

volatility and the GARCH(1,1) model with weekend effects outperforms the indi-

vidual forecasts.191 However, this study demonstrates, that the combined forecast

only produces a lower MSE than the GARCH(1,1) model.192 In contrast, the weaker

performance of BS ATM implied volatility in comparison to the GARCH(1,1) model

documented by Claessen and Mittnik (2002) cannot be confirmed in this study.193

Instead, the findings of this work are in line with those of Raunig (2006), who reports

that BS ATM implied volatility exhibits lower MSE values for 30-days-ahead DAX

volatility forecasts than the GARCH(1,1) and the GJR-GARCH(1,1) model.194

Further, the results of this study agree with a related paper published by Muzzi-

oli (2010) who also uses non-overlapping one-month-ahead DAX volatility forecasts.

According to Muzzioli (2010), both option-based volatility forecasts are better pre-

dictors of future realised volatility than the GARCH(1,1) model. In addition, she re-

ports that BS implied volatility exhibits better performance than model-free volatil-

191See Claessen and Mittnik (2002), p. 317.
192In particular, the MCS results presented in Table 6.14 show that, in the full sample, the MSE

prediction error of the combined forecast is significantly lower than for the GARCH(1,1) model.
193Note, that Claessen and Mittnik (2002) only consider a small sample of 26 four-week forecasts.

See ibid., p. 313.
194See Raunig (2006), p. 371.
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ity.195,196 However, Muzzioli (2010) does not consider DAX volatility forecasts based

on long memory models and combined forecasts. The above findings suggest that

these forecasting approaches provide superior prediction results that should be taken

into account. Hence, this thesis extends the results of Muzzioli (2010).

195See Muzzioli (2010), pp. 581-582.
196In contrast, Schöne (2010) and Tallau (2011) report that the information content of the VDAX-

New is higher than that of the VDAX. Note that the VDAX is calculated from BS ATM
implied volatilities and the VDAX-New is based on the concept of Demeterfi et al. (1999),
which is identical with the model-free implied volatility approach developed by Britten-Jones and
Neuberger (2000) (see Tallau (2011), p. 52). However, because their evaluation approach uses
the Mincer-Zarnowitz regression, which is not directly comparable with the approach employed
in this study, I refrain from a more detailed comparison of the results.
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7. Conclusion

Although forecasting DAX volatility is crucial to option pricing, investment man-

agement, and risk management, a comprehensive overview on the performance of

volatility prediction models for the German stock market does yet not exist. Fur-

thermore, many risk models failed during the global financial crisis of 2008. Thus,

a study on the forecasting ability of different DAX volatility prediction models that

cover episodes of turmoil will provide important information for practitioners and

academics. While the existing studies only perform isolated comparisons of fore-

casting models, a broad range of approaches are used in this study to predict DAX

volatility.

Moreover, recently developed forecast evaluation approaches that consider data

snooping effects have not been applied to the evaluation of DAX volatility forecasts.

In addition, although some empirical studies provide evidence for the existence of

structural breaks in financial time series, the associated effects on the prediction of

DAX volatility are not examined.

The intent of this study is to close these research gaps and to provide information re-

garding which forecasting method delivers superior DAX volatility forecasts. Before

the empirical analysis of the DAX IVS is performed to detect the dynamic regular-

ities that can be used to predict volatility, an overview of the current research on

the stylised facts of DAX implied volatilities is presented in Chapter 2.

In the literature, most empirical studies present evidence for the existence of a post-

crash DAX volatility skew and a DAX volatility term structure that are similar
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to other options markets.1 Fengler et al. (2002), Wallmeier (2003), and Äijö (2008)

document different shapes and considerable time variation of the DAX IVS. Further-

more, Fengler (2012) finds that the DAX IVS exhibits a systematic dynamic pattern

that should be considered when predicting implied volatility. Because the objective

of this study is to predict DAX volatility, the structure and time variation of the

DAX IVS with sufficient regard to the financial crisis of 2008 are analysed in Chap-

ter 3. The behaviour of the DAX IVS is investigated for three different subsamples

because different volatility regimes occurred during the sample period.2

The empirical analysis demonstrates that on average, a non-flat DAX IVS existed

during the sample period from 2002 to 2009. The average DAX IVS shows that

the DAX volatility smile is steepest for short-term options and flattens out with

increasing maturity. The volatility of DAX implied volatilities is higher for DAX

short-term options than for DAX options with longer maturities. Furthermore, the

findings show that the slope of the DAX volatility smile changes during the sample

period, particularly during volatile market periods, e.g., the financial crisis of 2008.3

Similarly, the term structure varied considerably during the sample period, and the

movements across the maturities are closely related.

Considering the volatility regimes, the slope of the term structure seems to be pos-

itive during market periods with normal volatility levels and negative in turbulent

market phases. The change in the slope during volatile periods has not been previ-

ously documented in the literature for DAX options.4 Moreover, the times series of

DAX implied volatilities suggest that the changes of the series are highly correlated

across maturity and moneyness. In particular, the series show that DAX implied

volatilities tend to move upwards (downwards) during turbulent (stable) market pe-

1See, e.g., Wallmeier (2003), Hafner (2004), and Fengler et al. (2007).
2The first sample considers the turbulent market phase at the beginning of the sample period
(January 2nd, 2002 to May 2nd, 2003), the second subsample comprises a long, stable upturn
period (May 5th, 2003 to August 8th, 2007), and the last subsample covers the financial crisis of
2008 (August 9th, 2007 to December 30th, 2009).

3In particular, a volatility skew can be observed in the first and third subsamples, whereas a
volatility smile occurred during the second subsample.

4For instance, Fengler (2004) reports a relatively flat average term structure for DAX ATM options
in 2001 when the dot-com crisis affected stock markets.
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riods, and this generally can be observed for all DAX options across all maturities

and moneyness levels.5

Thus, in addition to the extension of the current research on certain DAX implied

volatility patterns, this study also exhibits how DAX implied volatilities move during

different market periods. This knowledge can be used by option traders and risk

managers. Options traders should consider this risk factor by demanding a higher

risk premium for option series that are highly exposed to remarkable changes of

DAX implied volatilities. Additionally, the high time series dependencies among the

implied volatilities across different options series in volatile periods reflect close price

movements that should be analysed by risk managers in stress scenarios. Because

put options are typically used by institutional investors for portfolio insurance, this

risk factor exists for many investors.

Furthermore, the results provide evidence of regularities in the dynamic struc-

ture of the DAX IVS, which may be considered when predicting implied volatil-

ity. Gonçalves and Guidolin (2006), Konstantinidi et al. (2008), and Bernales and

Guidolin (2014) also find evidence for predictable features of the IVS and propose

corresponding approaches to exploit these regularities to generate better volatility

forecasts. However, because the empirical findings in this study suggest that the

considered DAX implied volatility series is non-stationary, the author does not pur-

sue this modelling approach for DAX implied volatility, and leaves it for future

research.6

Because the empirical analysis of the DAX IVS that is presented in Chapter 3

demonstrates that the constant volatility assumption of the BS model is violated,

an option pricing model that is sufficiently flexible to allow for these features is

necessary. Thus, in Chapter 4, four different classes of option pricing models are

discussed, namely, stochastic volatility models, jump-diffusion models, local volatil-

5Interestingly, although the DAX level increased in 2009 and DAX implied volatilities for short-
term options decreased, they did not return to their pre-crash levels.

6The interaction between non-stationarity, structural breaks and long memory effects generates a
complex process structure. Perhaps future work on stochastic processes will provide solutions to
model such structures.
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ity models, and the concept of model-free implied volatility. Based on the models’

ability to match the observed DAX IVS and the results of the empirical studies on

the forecasting performance of implied volatility and the time series models that

are provided in Chapter 5, the concept of model-free implied volatility that was

developed by Britten-Jones and Neuberger (2000) is selected and used in this study

to forecast DAX volatility. Furthermore, despite its well-documented weaknesses,

the BS model is employed as a benchmark model in this study, because it can be

regarded as a heuristic rule that is applied by many market participants.7

In addition to these option pricing models, the GARCH model, the EGARCH model,

the ARFIMA model, and a modified form of the HAR model that was recently sug-

gested by Corsi (2009) are employed because of their capabilities to reproduce the

observed time series characteristics. Based on information criteria, the GARCH(1,2),

the EGARCH(2,1), and the ARFIMA(1,d,1) models are selected to predict DAX

volatility. Furthermore, the GARCH(1,1) model, which is used in many empirical

applications as a benchmark model is employed to forecast DAX volatility. Be-

sides the individual forecasts, this study also considers combined forecasts, because

some studies provide evidence that forecast combinations can outperform individual

forecasts.8

The generation and evaluation of the DAX volatility forecasts are described in Chap-

ter 6. Because the data set contains long time series that cover clearly different

volatility periods, this study investigates whether the high persistence in variance

and long memory effects can be explained by structural breaks. Based on the Bai and

Perron (2003) test, two breakpoints that can be linked to certain historical events

are identified for the realised DAX volatility series.9 The analysis suggests that the

level of the long memory parameter for the considered realised DAX volatility series

is partly driven by structural breaks. However, the long memory effect does not

7For a detailed explanation of the selection of the prediction models, see Chapter 5.4.
8See, e.g., the comprehensive studies by Makridakis and Hibon (2000), Stock and Watson (1999),
and Marcellino (2004).

9The first breakdate marks the end of the volatile period at the beginning of the sample, which
was driven by investors’ fears of an impending recession in the US and the Iraq war in 2003. The
second breakdate corresponds to the beginning of the financial crisis in 2008.
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entirely disappear if structural breaks are removed from the series. As a result, the

above ARFIMA model overestimates the long memory effect of the realised DAX

volatility for the full sample. Nevertheless, the model captures an actual feature of

the time series.

This issue has been neglected by the existing studies on the prediction of volatility

that are based on long memory models (e.g., Lazarov (2004)). Particularly, all

studies that compare the forecasting performance of implied volatility and time

series models that are based on a longer time series likely suffer from this problem.

Thus, the results that these studies provide must be interpreted with care, especially

when they report superior prediction results in favour of implied volatility.

Because in this study, the prediction of DAX volatility is based on rolling windows

of fixed sample sizes of 500 observations, a series of subsamples that are not af-

fected by the observed structural breaks exists. Additionally, the empirical analysis

demonstrates that long-range dependencies exist, even if structural breaks are re-

moved from the realised volatility series. Therefore, the ARFIMA model is used to

produce DAX volatility forecasts. Furthermore, the effects of unknown structural

breaks on the modified HAR and GARCH model parameters are also examined.

The test results suggest that no structural change emerged in the parameters of the

modified HAR model and the GARCH models across the sample.

The DAX volatility forecasts are calculated based on the above mentioned models

for different forecast horizons. The prediction results are evaluated by the MCS

approach, where the MSE and the QLIKE are used as loss functions.10 Because the

sample period contains the 2008 financial crisis, the impact of the crisis on model

forecasting performance is analysed by using the full sample and the subperiod that

excludes the two most volatile months of the crisis.

The evaluation results regarding one-day-ahead DAX volatility forecasts confirm the

findings of Lazarov (2004), who reports that (extended) ARFIMA models provide

10Patton (2011) demonstrates that both functions are robust to possible noise in the volatility
proxy.
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the best one-day-ahead DAX volatility forecasts. However, this study also extends

this line of research. Similar to the findings of this study, Lazarov (2004) also reports

that (extended) ARFIMA models provide better one-day-ahead DAX volatility fore-

casts than (extended) GARCH models. However, the evaluation approach that is

employed by Lazarov (2004) does not allow for an analysis regarding whether the

observed forecast error differences are significant. By applying the MCS approach,

this work demonstrates that the ARFIMA and the related HAR model significantly

outperform the GARCH and the EGARCH models. These results are robust to

the employed loss function as well as the considered sample. Additionally, the above

results show that the simple HAR model provides remarkable short-term forecasting

performance for DAX volatility compared with a wide class of more sophisticated

volatility prediction models. In total, these results demonstrate that the ability of

the HAR and the ARFIMA models to capture long memory dependencies in realised

DAX volatilities seem to provide useful information for predicting short-term DAX

volatility.

Furthermore, this study refines the results of Claessen and Mittnik (2002) and

Lazarov (2004) for two-weeks-ahead DAX volatility forecasts. Similar to Claessen

and Mittnik (2002), this work shows that the combination of two individual forecasts

that contain relevant information concerning future DAX volatility provides lower

MSE prediction errors than individual forecasts. However, in contrast to Claessen

and Mittnik (2002), who conclude that the combination of GARCH forecasts and

BS ATM implied volatility seem to perform best, this study generally reports a sig-

nificantly superior forecasting performance for the combined forecasts of BS ATM

implied volatility and long memory models.

Lazarov (2004) evaluates the volatility forecasts based on the heteroscedasticity-

consistent mean square error and also finds better prediction results for an ARFIMA

model that is enhanced with implied volatility than for GARCH or extended GARCH

models. However, Lazarov (2004) reports similar results for a linear regression model

where the realised variance is regressed over the corresponding forecasting horizon on
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the lagged value of implied volatility.11 Because of the employed evaluation method,

Lazarov’s (2004) results do not provide evidence on which approach performs signifi-

cantly better than the other considered models. Based on the MCS approach and

a longer sample period, this study shows that in general, the combined forecasts of

BS ATM implied volatility and long memory models provide a significantly better

forecasting performance than alternative models. Thus, similar to the results for

one-day-ahead forecasts, DAX volatility predictions that are based on long memory

models can improve BS ATM implied volatility forecasts by incorporating additional

information.

The MCS results for one-month-ahead DAX volatility forecasts show that GARCH

models provide significantly higher prediction errors than most other models that are

under consideration. Thus, the results of this thesis are consistent with the findings

of Raunig (2006) and Muzzioli (2010), who report a better forecasting performance

for BS ATM implied volatility than for the GARCH models.12

In addition, the evaluation results show that BS ATM implied volatility provides

a better forecasting performance than model-free volatility in both samples. These

findings do not agree with Schöne (2010) and Tallau (2011), who report that the

information content of the VDAX-New (or model-free implied volatility) is higher

than the information content of the VDAX (or BS ATM implied volatility). Because

the VDAX is based on a constant time to maturity of 45 days and the VDAX-New

is calculated for a fixed maturity of 30 days, the better one-month-ahead forecasting

performance of the VDAX-New is not surprising. In this study, model-free volatility

is explicitly calculated for a maturity of one month, such that there is no mismatch

between the maturities of the two implied volatility measures.

In fact, the results of this study confirm the findings of Muzzioli (2010), who also

reports that BS implied volatility exhibits a better performance than model-free

11See Lazarov (2004), pp. 62.
12In contrast, Claessen and Mittnik (2002) find better prediction results of the GARCH(1,1) model
compared with BS ATM implied volatility for one-month-ahead DAX volatility predictions, but
they consider only a small sample of 26 four-week forecasts. See Claessen and Mittnik (2002),
p. 313.
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volatility. However, Muzzioli (2010) does not consider DAX volatility forecasts based

on long memory models and combined forecasts. Overall, the above findings suggest

that these forecasting approaches provide superior prediction results.

In summary, the empirical results that are presented by this thesis contribute to the

current research in several ways. First, the existing studies mostly perform partial

model comparisons that ignore certain aspects. In particular, volatility forecasts

that are based on long memory models and model-free implied volatility are not

considered in the same forecast comparison regarding DAX volatility. This study

demonstrates that forecasts based on long memory models typically provide im-

portant information to predict DAX volatility, either as individual predictions or

combined with other prediction models. Interestingly, this result does not depend

on the forecast horizon or the loss function that is considered. If DAX volatility is

predicted for longer horizons (from two weeks to one month), the information that

DAX implied volatility provides should be considered because it supplements the

information that is contained in DAX realised volatility.

Second, past studies of the German stock market do not take recently developed fore-

cast evaluation approaches into account. Most studies use encompassing regressions

that consider individual forecast comparisons and do not control for data snooping

effects to evaluate volatility forecasts. Third, squared daily returns that provide a

noisy estimate of latent volatility are often used as a volatility proxy to evaluate

DAX volatility predictions. However, Hansen and Lunde (2006) demonstrated that

a ranking of volatility forecasting models that is based on the realised variance is

more likely to be consistent with the true ranking.13 Fourth, although some studies

detect long memory effects in financial time series, the effects of structural breaks on

the applied forecasting methodology are not examined. By considering all of these

issues, this thesis provides further information to investment and risk managers re-

garding which forecasting method delivers superior DAX volatility forecasts.

13See Hansen and Lunde (2006), pp. 98-100.
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Additional studies are recommended to extend these findings. As mentioned, the

relatively poor performance of one-day-ahead volatility forecasts that are based on

implied volatility is not surprising because it can be explained by the mismatch be-

tween the forecast horizon and the maturity. It would be interesting to determine

whether short-term options (e.g., DAX weekly options) contain relevant information

for short-term volatility forecasts. Further, the extension of the ARFIMA model by

a Monday dummy variable shows, that taking calendar day effects into account can

enhance model performance. Therefore, future research should examine, whether

such variables provide incremental information for predicting volatility (e.g., calen-

dar day effects, seasonalities, and macroeconomic announcements).

In addition, the systematic dynamic pattern of the DAX IVS can be used by time

series models to enhance the forecasting performance of implied volatility. More-

over, recent studies by Hansen et al. (2011a) as well as Louzis et al. (2014) provide

evidence, that the Realized GARCH model structure can lead to a better empirical

fit over standard GARCH models, respectively, generate superior Value-at-Risk esti-

mates. Maybe this new framework can help to improve GARCH volatility forecasts,

and provide new insights into modeling and forecasting intraday volatility.

Another point left for future research is the construction of combined volatility

forecasts. Because structural breaks are difficult to detect in the data generating

process, combined forecasts that are based on models that adapt to these changes

differently can provide better forecasts on average and have particular interest in

unstable markets.14 While this study combines individual volatility forecast-based

equal weights, alternative methods to derive “optimal” weights can be employed.

Additionally, the above analysis concerning the effects of structural breaks on the

applied forecasting methodology can only provide initial insights that should be

further investigated. Finally, future research should also examine whether and how

alternative forecast evaluation methods influence the forecast rankings that have

been presented.

14For an explanation, see Pesaran and Timmermann (2007).
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A. Appendix of Chapter 3
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Figure A.1.: DAX implied volatility surface on May, 2nd 2007.
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Figure A.2.: DAX implied volatility surface on October, 16th 2008.
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B. Appendix of Chapter 6

Table B.1.: ADF test results for the null hypothesis “random walk with drift”

ADF (10) ADF (20)

mfv -2.46 -2.37
0.7% 0.9%

lnmfv -2.30 -2.15
1.1% 1.6%

bsatm -2.63 -2.63
0.4% 0.4%

lnbsatm -2.38 -2.28
0.9% 1.1%

rvola -3.76 -3.23
0.0% 0.1%

lnrvola -3.48 -2.83
0.0% 0.2%

rdax -13.63 -10.58
0.0% 0.0%

Source: own calculations.
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Figure B.1.: Partial autocorrelation function for DAX return series

Table B.2.: Information criteria for GARCH model selection

model AIC SIC HSIC

ARCH(1) -11,490.7 -11,468.2 -16,937.9
ARCH(2) -11,651.1 -11,623.0 -17,221.7

GARCH(1,1) -11,963.8 -11,935.8 -17,678.7
GARCH(1,2) -11,970.2 -11,936.5 -17,682.1
GARCH(2,1) -11,925.7 -11,892.0 -17,605.7
GARCH(2,2) -11,926.8 -11,887.5 -17,603.5

EARCH(1) -11,481.0 -11,452.9 -16,907.5
EARCH(2) -11,582.0 -11,542.7 -17,083.5

EGARCH(1,1) -12,022.6 -11,988.9 -17,747.6
EGARCH(1,2) -12,021.5 -11,982.2 -17,741.5
EGARCH(2,1) -12,045.3 -12,000.3 -17,759.4
EGARCH(2,2) -12,048.5 -11,997.9 -17,758.1

Source: own calculations.
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Table B.3.: Information criteria for ARFIMA model selection

model AIC SIC

ARFIMA(1,d,0) 84.9 107.4
ARFIMA(0,d,1) 85.3 107.8
ARFIMA(1,d,1) 64.5 92.6
ARFIMA(2,d,0) 85.7 113.8
ARFIMA(0,d,2) 85.7 113.7
ARFIMA(2,d,1) 65.7 99.4
ARFIMA(1,d,2) 65.8 99.5
ARFIMA(2,d,2) 67.3 106.7

Source: own calculations.
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Note: Bartlett’s formula for MA(q) 95% confidence bands (top panel)
and 95% confidence bands [se=1/sqrt(n)] (bottoom panel).

Figure B.2.: Correlograms of HAR model residuals
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Figure B.3.: Correlogram of DAX 5-minute returns

Table B.4.: Estimation results for an MA(2) model fitted to DAX returns

MA(2)
µ 4.95 e-07

(2.52 e-06)
ψ1 0.017***

(0.004)
ψ5 0.012***

(0.004)
Q1*(10) 7.61

66.68%
Source: own calculations.
Note: Standard error in parentheses;
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
The results of Diebold’s ARCH robust
Q-statistic are denoted by Q1*.



269

Table B.5.: ADF test results for one-day loss differentials

garch11 egarch21 arfima11 har bsatm mfv

egarch21 -6.25
0.00%

arfima11 -5.70 -5.74
0.00% 0.00%

har -6.45 -5.54 -6.93
0.00% 0.00% 0.00%

bsatm -5.37 -5.68 -8.36 -7.34
0.00% 0.00% 0.00% 0.00%

mfv -5.33 -5.88 -7.76 -7.23 -6.78
0.00% 0.00% 0.00% 0.00% 0.00%

rw -11.08 -8.29 -9.09 -9.86 -7.87 -7.51
0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Source: own calculations.
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Table B.6.: ADF test results for two-weeks loss differentials

garch11 egarch21 arfima11 har bsatm mfv

egarch21 -6.75
0.00%

arfima11 -8.02 -4.70
0.00% 0.01%

har -6.25 -4.80 -8.22
0.00% 0.01% 0.00%

bsatm -5.29 -4.59 -4.64 -4.22
0.00% 0.01% 0.01% 0.06%

mfv -6.79 -4.43 -4.26 -4.26 -6.04
0.00% 0.03% 0.05% 0.05% 0.00%

rw -7.99 -5.79 -6.57 -6.15 -5.21 -6.14
0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Source: own calculations.
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Table B.7.: ADF test results for one-month loss differentials

garch11 egarch21 arfima11 har bsatm mfv

egarch21 -4.34
0.04%

arfima11 -6.12 -3.87
0.00% 0.22%

har -6.12 -4.09 -5.38
0.00% 0.10% 0.00%

bsatm -3.61 -3.95 -4.27 -3.97
0.56% 0.17% 0.05% 0.16%

mfv -4.37 -3.83 -4.08 -3.63 -5.19
0.03% 0.26% 0.10% 0.53% 0.00%

rw -5.12 -4.50 -5.96 -6.16 -7.26 -7.50
0.00% 0.02% 0.00% 0.00% 0.00% 0.00%

Source: own calculations.
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Table B.8.: Estimation results for AR(p) processes of one-day loss differentials (1/2)
loss
series δ α1 α2 α3 α4 α5 α6 α7

d12 0.0004 0.4589*** -0.1604*** -0.1022*** 0.0183 0.1755*** -0.0819*** 0.0794***
(0.0005) (0.0069) (0.0067) (0.0105) (0.0125) (0.0154) (0.0157) (0.0159)

d13 0.0012* 0.2675*** 0.0708*** -0.1293*** -0.0047 0.1020*** 0.0607*** 0.0188*
(0.0007) (0.0075) (0.0089) (0.0089) (0.0165) (0.0178) (0.0172) (0.0098)

d14 0.0011 0.2495*** 0.0157 -0.1436*** -0.0629*** 0.0968*** 0.0599*** -0.0154
(0.0007) (0.0097) (0.0100) (0.0078) (0.0105) (0.0139) (0.0161) (0.0096)

d15 0.0005 0.2599*** 0.0661*** -0.0459*** -0.0089 0.0819*** 0.1175*** 0.0106
(0.0008) (0.0075) (0.0078) (0.0082) (0.0096) (0.0125) (0.0163) (0.0170)

d16 -0.0002 0.2721*** 0.0568*** -0.0586*** -0.0264*** 0.0940*** 0.1246*** -0.0062
(0.0008) (0.0069) (0.0082) (0.0087) (0.0093) (0.0129) (0.0168) (0.0178)

d17 0.0000 0.1216*** -0.0340*** -0.1016*** -0.0879*** 0.0333* 0.0059 0.1288***
(0.0005) (0.0114) (0.0128) (0.0131) (0.0115) (0.0189) (0.0133) (0.0051)

d23 0.0007*** 0.2070***
(0.0002) (0.0126)

d24 0.0007 0.1011*** 0.0375*** 0.0495*** 0.0630*** 0.0286** -0.0167 -0.0368
(0.0005) (0.0120) (0.0101) (0.0140) (0.0191) (0.0116) (0.0135) (0.0233)

d25 0.0000 0.2274*** -0.0159* -0.0169 0.0758*** 0.1248*** 0.0447*** -0.0271
(0.0004) (0.0145) (0.0092) (0.0136) (0.0141) (0.0132) (0.0158) (0.0175)

d26 -0.0006 0.1739*** 0.0274** 0.0228 0.0651*** 0.1175*** 0.0547*** -0.0516**
(0.0004) (0.0180) (0.0131) (0.0142) (0.0151) (0.0150) (0.0195) (0.0212)

d27 -0.0005 0.0185 -0.0268* -0.0566*** -0.0572*** -0.0394* 0.0036 0.2601***
(0.0006) (0.0121) (0.0143) (0.0165) (0.0077) (0.0227) (0.0147) (0.0081)

d34 -0.0001 0.0947*** 0.1781*** -0.0524*** -0.0195 0.0466*** 0.0549*** 0.1362***
(0.0002) (0.0122) (0.0100) (0.0135) (0.0180) (0.0100) (0.0129) (0.0102)

d35 -0.0007*** 0.1170***
(0.0001) (0.0122)

d36 -0.0013*** 0.1410***
(0.0002) (0.0137)

d37 -0.0008*** -0.0774*** -0.1067***
(0.0002) (0.0101) (0.0095)

d45 -0.0006*** 0.1290*** 0.0983*** 0.0747***
(0.0002) (0.0121) (0.0094) (0.0131)

d46 -0.0013*** 0.1323*** 0.1134*** 0.0831***
(0.0003) (0.0154) (0.0096) (0.0114)

d47 -0.0007*** -0.0323*** -0.0761***
(0.0002) (0.0108) (0.0134)

d56 -0.0007*** 0.2695*** 0.0716*** -0.0212 -0.0362** 0.0770*** 0.0302* 0.0290
(0.0001) (0.0140) (0.0122) (0.0152) (0.0161) (0.0133) (0.0175) (0.0182)

d57 -0.0005 0.1197*** -0.0005 0.0572** -0.0393* 0.0505*** 0.0240** 0.2618***
(0.0008) (0.0113) (0.0187) (0.0283) (0.0235) (0.0187) (0.0102) (0.0049)

d67 0.0001 0.0930*** 0.0025 0.0727*** -0.0488** 0.0517*** 0.0150 0.2813***
(0.0008) (0.0123) (0.0174) (0.0231)*** (0.0215) (0.0166) (0.0148) (0.0048)

Source: own calculations.
Note: Standard error in parentheses; ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The parameters δ, α1, α2,. . ., αp

refer to an AR(p) process of the form xt = δ + α1xt−1 + α2xt−2 + . . .+ αpxt−p + εt. The expression dij
represents the loss differentials which are calculated from the individual loss series of the forecasting models.
The index denotes the employed forecasting models which are coded by 1 = GARCH(1,1), 2 = EGARCH(2,1),
3 = ARFIMA(1,d,1), 4 = HAR, 5 = BSATM, 6 = MFV, and 7 = RW.
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Table B.9.: Estimation results for AR(p) processes of one-day loss differentials (2/2)
loss
series α8 α9 α10 α11 α12 α13 α14 α15 BIC

d12 0.0985*** -10,546
(0.0134)

d13 0.1418*** -10,723
(0.0117)

d14 0.1222*** 0.0748*** -0.0066 -0.0038 0.1512*** -0.1095*** 0.1550*** -10,799
(0.0116) (0.0135) (0.0102) (0.0098) (0.0111) (0.0097) (0.0097)

d15 0.0637*** 0.1084*** -10,665
(0.0158) (0.0146)

d16 0.0454*** 0.0988*** -10,327
(0.0145) (0.0139)

d17 -0.1146*** -8,513
(0.0105)

d23 -11,544

d24 0.0561*** 0.0208* 0.0549*** 0.1365*** 0.0898*** -11,481
(0.0102) (0.0121) (0.0116) (0.0143) (0.0156)

d25 0.1692*** -11,295
(0.0094)

d26 0.1787*** -11,243
(0.0096)

d27 -8,786

d34 -0.1126*** -0.0398*** -0.1206*** -0.0074 0.2352*** -0.0607*** -0.0265*** 0.1999*** -14,114
(0.0079) (0.0118) (0.0113) (0.0289) (0.0063) (0.0130) (0.0088) (0.0105)

d35 -12,043

d36 -11,580

d37 -10,804

d45 -11,853

d46 -11,319

d47 -10,914

d56 -0.1681*** -0.0222 0.0198 0.0008 0.0965*** 0.0153 0.0224 0.1621*** -15,138
(0.0102) (0.0172) (0.0165) (0.0173) (0.0176) (0.0142) (0.0172) (0.0143)

d57 -0.1039*** -8,867
(0.0261)

d67 -0.0939*** -8,821
(0.0269)

Source: own calculations.
Note: Standard error in parentheses; ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The parameters δ, α1, α2,. . ., αp

refer to an AR(p) process of the form xt = δ + α1xt−1 + α2xt−2 + . . .+ αpxt−p + εt. The expression dij
represents the loss differentials which are calculated from the individual loss series of the forecasting models.
The index denotes the employed forecasting models which are coded by 1 = GARCH(1,1), 2 = EGARCH(2,1),
3 = ARFIMA(1,d,1), 4 = HAR, 5 = BSATM, 6 = MFV, and 7 = RW.
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Table B.10.: Estimation results for AR(p) processes of two-weeks loss differentials

loss series δ α1 α2 α3 α4 BIC

d12 -0.0013 0.0992** -772.0
(0.0032) (0.0414)

d13 -0.0001 -857.2
(0.0012)

d14 -0.0001 0.3218*** -0.1921*** -0.1548** -0.1953*** -927.1
(0.0019) (0.1010) (0.0638) (0.0710) (0.0525)

d15 0.0010 -0.1999*** -908.1
(0.0024) (0.0559)

d16 0.0002 -0.3190*** -865.4
(0.0022) (0.0664)

d17 0.0005 0.0888* -0.4259*** -0.3072*** -982.2
(0.0006) (0.0496) (0.0211) (0.0300)

d23 0.0012 0.5814*** -1,199.9
(0.0015) (0.0201)

d24 0.0012 -0.1735*** -968.2
(0.0014) (0.0256)

d25 0.0022 0.4894*** -890.0
(0.0049) (0.0284)

d26 0.0014 0.5889*** -976.2
(0.0046) (0.0628)

d27 0.0018 0.0682*** -735.3
(0.0043) (0.0251)

d34 -0.0001 -0.6244*** -0.3144*** -1,139.5
(0.0003) (0.0216) (0.0259)

d35 0.0010 0.2903*** -974.9
(0.0025) (0.0321)

d36 0.0002 0.2024 0.1957* -1,043.4
(0.0022) (0.1439) (0.1186)

d37 0.0005 -0.0773*** -804.8
(0.0032) (0.0295)

d45 0.0010 0.2546*** 0.3582*** -1,035.8
(0.0035) (0.0796) (0.0380)

d46 0.0002 -0.0307 0.4528*** -1,008.8
(0.0024) (0.0450) (0.0226)

d47 0.0006 0.2732*** -924.9
(0.0029) (0.0232)

d56 -0.0008 -0.2323*** -1,244.5
(0.0008) (0.0343)

d57 -0.0005 -0.2501*** -939.6
(0.0008) (0.0177)

d67 0.0002 -0.3054*** -856.6
(0.0012) (0.0192)

Source: own calculations.
Note: Standard error in parentheses; ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
The parameters δ, α1, α2,. . ., αp refer to an AR(p) process of the form
xt = δ + α1xt−1 + α2xt−2 + . . .+ αpxt−p + εt. The expression dij
represents the loss differentials which are calculated from the individual
loss series of the forecasting models. The index denotes the employed
forecasting models which are coded by 1 = GARCH(1,1), 2 = EGARCH(2,1),
3 = ARFIMA(1,d,1),4 = HAR, 5 = BSATM, 6 = MFV, and 7 = RW.
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Table B.11.: Estimation results for AR(p) processes of one-month loss differentials

loss series δ α1 α2 BIC

d12 -0.0033 -318.5
(0.0031)

d13 0.0001 -0.3236*** -423.2
(0.0021) (0.0527)

d14 0.0007 -0.3019*** -479.7
(0.0011) (0.0568)

d15 0.0013 -0.3944*** -486.8
(0.0018) (0.0562)

d16 0.0009 -0.5113*** -476.2
(0.0011) (0.0313)

d17 0.0011 -512.7
(0.0008)

d23 0.0034 0.4104*** -393.0
(0.0086) (0.0606)

d24 0.0040 0.2811*** -349.2
(0.0119) (0.0761)

d25 0.0045 0.4420*** -334.8
(0.0123) (0.0503)

d26 0.0040 0.4908*** -349.1
(0.0119) (0.0481)

d27 0.0044 0.1373** -290.8
(0.0113) (0.0593)

d34 0.0006 -549.8
(0.0006)

d35 0.0012 0.3822*** -463.6
(0.0033) (0.0491)

d36 0.0007 0.4203*** -487.5
(0.0026) (0.0573)

d37 0.0009 -382.2
(0.0020)

d45 0.0006 -512.0
(0.0008)

d46 0.0002 -520.3
(0.0008)

d47 0.0004 -420.1
(0.0015)

d56 -0.0004 -672.2
(0.0003)

d57 -0.0003 -0.3898*** -0.2894*** -457.4
(0.0008) (0.0457) (0.0581)

d67 0.0001 -0.4345*** -0.3047*** -436.8
(0.0009) (0.0429) (0.0511)

Source: own calculations.
Note: Standard error in parentheses; ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01. The parameters δ, α1, and α2 refer to an AR(p)
process of the form xt = δ + α1xt−1 + α2xt−2 + . . .+ αpxt−p + εt.
The expression dij represents the loss differentials which are
calculated from the individual loss series of the forecasting models.
The index denotes the employed forecasting models which are coded
by 1 = GARCH(1,1), 2 = EGARCH(2,1), 3 = ARFIMA(1,d,1),
4 = HAR, 5 = BSATM, 6 = MFV, and 7 = RW.
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Härdle, W., Hautsch, N., and Pigorsch, U. (2008), Measuring and Modeling Risk
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ter’s thesis, Philipps-Universität Marburg.

Hosking, J. R. M. (1981), Fractional Differencing, Biometrika 68(1), pp. 165–176.

Hsieh, D. A. (1989), Testing for Nonlinear Dependence in Daily Foreign Exchange

Rates, The Journal of Business 62(3), pp. 339–368.

Hull, J. C. (2006), Options, Futures, and Other Derivatives, Upper Saddle River,

NJ: Pearson Prentice Hall.

Hull, J. C. and White, A. (1987), The Pricing of Options on Assets with Stochastic

Volatilities, The Journal of Finance 42(2), pp. 281–300.

Hurvich, C. M., Simonoff, J. S., and Tsai, C.-L. (1998), Smoothing Parameter Se-

lection in Nonparametric Regression Using an Improved Akaike Information Cri-

terion, Journal of the Royal Statistical Society: Series B (Statistical Methodology)

60(2), pp. 271–293.

Inoue, A. and Kilian, L. (2005), In-Sample or Out-of-Sample Tests of Predictability:

Which One Should We Use?, Econometric Reviews 23(4), pp. 371–402.

Isaenko, S. (2007), Dynamic Equilibrium with Overpriced Put Options, Economic

Notes 36(1), pp. 1–26.



Bibliography 299

Jackwerth, J. C. (2004), Option-Implied Risk-Neutral Distributions and Risk Aver-

sion, Charlottesville, VA: The Research Foundation of AIMR.

Jackwerth, J. C. and Rubinstein, M. (2001), Recovering Stochastic Processes from

Option Prices. Working Paper, London Business Schoool.

Jarrow, R. A. (1998), Volatility: New Estimation Techniques for Pricing Derivatives,

London: Risk Books.

Javaheri, A. (2005), Inside Volatility Arbitrage, Hoboken, NJ: John Wiley & Sons.

Javaheri, A., Wilmott, P., and Haug, E. G. (2004), GARCH and Volatility SWAPs,

Quantitative Finance 4(5), pp. 589–595.

Jiang, G. J. and Tian, Y. S. (2005), The Model-Free Implied Volatility and Its

Information Content, Review of Financial Studies 18(4), pp. 1305–1342.

Jiang, G. J. and Tian, Y. S. (2010), Misreaction or Misspecification? A Re-

Examination of Volatility Anomalies, Journal of Banking & Finance 34(10), pp.

2358–2369.

Joshi, M. S. (2003), The Concepts and Practice of Mathematical Finance, Cam-

bridge, UK: Cambridge UP.

Kennedy, P. (2003), A Guide to Econometrics, Cambridge, MA: MIT.

Kim, C. S. and Phillips, P. C. B. (2006), Log Periodogram Regression: The Nonsta-

tionary Case. Cowles Foundation Discussion Papers 1587, Cowles Foundation for

Research in Economics, Yale University.
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Krämer, W. and Runde, R. (1994), Some Pitfalls in Using Empirical Autocorrela-

tions to Test for Zero Correlation Among Common Stock Returns, in J. Kaehler

and P. Kugler (eds.), Econometric Analysis of Financial Markets, Heidelberg:

Physica, pp. 1–10.

Kuan, C.-M. and Hsu, C.-C. (1998), Change-Point Estimation of Fractionally Inte-

grated Processes, Journal of Time Series Analysis 19(6), pp. 693–708.

Kwiatkowski, D. et al. (1992), Testing the Null Hypothesis of Stationarity Against

the Alternative of a Unit Root, Journal of Econometrics 54(1-3), p. 159–178.

Lamoureux, C. G. and Lastrapes, W. D. (1990), Persistence in Variance, Structural

Change, and the GARCH Model, Journal of Business and Economic Statistics

8(2), pp. 225–234.

Lamoureux, C. G. and Lastrapes, W. D. (1993), Forecasting Stock-Return Vari-

ance: Toward an Understanding of Stochastic Implied Volatilities, The Review of

Financial Studies 6(2), pp. 293–326.

Landler, M. and Timmons, H. (2008), Stocks Plunge Worldwide on Fears of a U.S.

Recession, The New York Times, January 21, 2008, http://www.nytimes.com/

2008/01/21/business/22stox-web.html?pagewanted=all&_r=0.
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Time-Series Forecasts Vis-à-Vis Implied Volatility, The Journal of Futures Mar-

kets 24(11), pp. 1005–1028.

Martin, G. M., Reidy, A., and Wright, J. (2009), Does the Option Market Produce

Superior Forecasts of Noise-Corrected Volatility Measures?, Journal of Applied

Econometrics 24(1), pp. 77–104.

Martino, S. et al. (2011), Estimating Stochastic Volatility Models Using Integrated

Nested Laplace Approximations, The European Journal of Finance 17(7), pp.

487–503.

Mayhew, S. (1995), Implied Volatility, Financial Analysts Journal 51(4), pp. 8–20.



Bibliography 303

McAleer, M., Jimenez-Martin, J.-A., and Perez-Amaral, T. (2013), GFC-Robust

Risk Management Strategies Under the Basel Accord, International Review of

Economics & Finance 27, pp. 97–111.

McAleer, M. and Medeiros, M. C. (2008), Realized Volatility: A Review, Economet-

ric Reviews 27(1-3), pp. 10–45.

McCracken, M. W. and West, K. D. (2004), Inference about Predictive Ability, in

M. P. Clements and D. F. Hendry (eds.), A Companion to Economic Forecasting,

Malden, MA: Blackwell, pp. 299–321.

Merton, R. (1973), The Theory of Rational Option Pricing, Bell Journal of Eco-

nomics and Management Science 4(1), pp. 141–183.

Merton, R. C. (1976), Option Pricing When Underlying Stock Returns are Discon-

tinuous, Journal of Financial Economics 3(1-2), pp. 125–144.

Merton, R. C. (1980), On Estimating the Expected Return on the Market: An

Exploratory Investigation, Journal of Financial Economics 8(4), pp. 323–361.

Mitra, S. (2009), A Review of Volatility and Option Pricing. Working Paper, Brunel

University.

Mittnik, S. and Rieken, S. (2000), Put-Call Parity and the Informational Efficiency

of the German DAX-Index Options Market, International Review of Financial

Analysis 9(3), pp. 259–279.

Mixon, S. (2007), The Implied Term Structure of Stock Index Options, Journal of

Empricial Finance 14(3), pp. 333–354.

Mixon, S. (2009), Option Markets and Implied Volatility: Past versus Present, Jour-

nal of Financial Economics 94(2), pp. 171–191.

Morgan, J. P. (1996), Riskmetrics: Technical Document, New York: Morgan Guar-

anty Trust Company of New York.

Müller, U. A. et al. (1995), Fractals and Intrinsic Time: A Challenge to Econome-

tricians. Working Paper, XXXIXth International AEA Conference on Real Time

Econometrics, 14-15 October 1993, Reprint by Olsen and Associates, Zürich.



304 Bibliography

Müller, U. A. et al. (1997), Volatilities of Different Time Resolutions-Analyzing

the Dynamics of Market Components, Journal of Empirical Finance 4(2-3), pp.

213–239.

Musiela, M. and Rutkowski, M. (2005), Martingale Methods in Financial Modelling,

Berlin: Springer.

Muzzioli, S. (2010), Option Based Forecasts of Volatility: An Empirical Study in

the DAX-Index Options Market, The European Journal of Finance 16(6), pp.

561–586.

Nadaraya, E. A. (1964), On Estimating Regression, Theory of Probability & Its

Applications 9(1), pp. 141–142.

Nagel, H. (2001), Optionsbewertung bei stochastischer Volatilität, Wiesbaden:

Deutscher Universitäts-Verlag.
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