cc_by-nc-ndcc_by-nc-ndStreck, ThiloMoradtalab, Narges2024-04-082024-04-082021-10-062020https://hohpublica.uni-hohenheim.de/handle/123456789/6599Mitigation of abiotic stress in crops is a feature attributed to various so-called biostimulants based on plant growth-promoting microorganisms (PGPMs) plant-, compost- and seaweed extracts, protein hydrolylates, chitosan derivatives etc. but also to mineral nutrients with protective functions, such as zinc (Zn), manganese (Mn), boron (B), calcium (Ca) and silicon (Si), recommended as stress protectants in commercial formulations. This study focussed on the effects of selected biostimulants on cold stress mitigation during early growth in maize, as a major stress factor for cultivation of tropical and subtropical crops in temperate climates. Chilling stress and micronutrient supplementation Chilling stress, induced by moderately low soil temperatures (8-14°C) in a controlled root cooling system, was associated with inhibition of shoot growth, oxidative leaf damage (chlorosis, necrosis accumulation of stress anthocyanins) and a massive decline in root length (Chapter 4 and 5). Due to inhibition of root growth, nutrient acquisition in general was impaired. However, nutrient deficiencies were recorded particularly for the micronutrients zinc (Zn) and manganese (Mn). The impaired Zn and Mn status was obviously related with the observed limitations in plant performance, which were reverted by exogenous Zn and Mn supplementation (0.5 mg plant-1), finally leading to restored nutrient acquisition and improved plant recovery after termination of the cold stress period. Zinc and manganese deficiency was mainly related with impaired uptake of the micronutrients, since the cold stress-induced deficiency symptoms persisted even in hydroponic culture when all nutrients were freely available. Beneficial effects of Zn/Mn supplementation were only detectable when the micronutrients were supplied prior to the onset of the stress period via seed soaking, seed dressing or fertigation, when uptake and internal translocation was still possible. A transcriptome analysis of the shoot tissue (Chapter 5) revealed 1400 differentially expressed transcripts (DETs) after 7-days exposure of maize seedlings to chilling stress of 12°C, mostly associated with down-regulation of selected functional categories (BINs), related with photosynthesis, synthesis of amino acids, lipids and cell wall precursors, transport of mineral nutrients (N, P, K,), metal handling and synthesis of growth hormones (auxins, gibberellic acid) but also of jasmonic (JA) and salicylic acids (SA) involved in stress adaptations. In accordance with the impaired micronutrient status and oxidative leaf damage in response to the cold stress treatments, downregulation was also recorded for transcripts related with oxidative stress defence (superoxide dismutases SOD, catalase, peroxidases POD, synthesis of phenylpropanoids and lignification), particularly dependent on the supply of micronutrients as co-factors. Upregulation was recorded for BINs related with degradation of lipids, of cell wall precursors, synthesis of waxes and certain flavonoids and of stress hormones, such as abscisic acid (ABA) and ethylene but degradation of growth-promoting cytokinins (CK). Accordingly, supplementation of Zn and Mn increased the accumulation of anthocyanins and antioxidants, the activities of superoxide dismutase and peroxidases, associated with reduced ROS accumulation (H2O2), mitigation of oxidative leaf damage and improved plant recovery at the end of the cold stress period (Chapter 5 and 6). Effects of seaweed extracts Cold-protective properties similar to Zn/Mn supplementation, associated with an improved Zn/Mn-nutritional status and reduced oxidative damage, were recorded also after fertigation with seaweed extracts prior to the onset of the stress treatments (Chapter 4). However, this effect was detectable only with seaweed extract formulations rich in Zn/Mn (Algavyt+Zn/Mn; Algafect; 6-70 mg kg DM-1) but not with a more highly purified formulation (Superfifty) without detectable micronutrient contents. This finding suggests that the cold-protective effect by soil application of seaweed extracts is based on an improved micronutrient supply and not to an elicitor effect, frequently reported in the literature for stress-protective functions after foliar application of seaweed extracts. Silicon fertilization Similar to seaweed extracts, also silicon (Si), applied by seed soaking or fertigation with silicic acid, mimicked the cold-protective effects of Zn/Mn supplementation in maize seedlings (Chapter 5). The Zn/Mn status of the Si-treated plants was improved although, in this case no additional micronutrient supply was involved. However, Si application significantly reduced leaching losses of Zn/and Mn by 50-70%, as a consequence of cold stress-induced membrane damage in germinating maize seeds and favoured the root to shoot translocation of Zn. This was associated with a restoration of gene expression, similar to the profiles recorded for unstressed control plants. However, the expression of genes related with synthesis and signal transduction of ABA, as central regulator of adaptive cold stress responses in plants, was even more strongly upregulated than in the cold-stressed controls. Accordingly, expression of cold stress adaptations involved in oxidative stress defence (SOD, peroxidases, phenolics, antioxidants) and the reduction of oxidative leaf damage and improved plant recovery were similar to the plants with Zn/Mn supplementation. Plant growth promoting microorganisms Cold-protective functions were recorded also for selected microbial inoculants (Chapter 6). However, out of five tested inoculant formulations, based on strains of Pseudomonas sp., DSMZ13134, Bacillus amyloliquefaciens FZB42, Bacillus atrophaeus ABI05, Penicillium sp. PK112 (BFOD) and a consortium of Trichoderma harzianum OMG16 and five Bacillus strains (Combi-A), a significant protective effect was detectable only for Penicillium sp. and particularly for CombiA. The CombiA consortium significantly increased root length and reduced oxidative leaf damage of cold-stressed plants, associated with increased SOD and POD activities and accumulation of phenolics and antioxidants. Root growth stimulation was related with increased IAA (indole acetic acid) tissue contents and increased expression of genes involved in IAA biosynthesis (ZmTSA) transport (ZmPIN1A) and perception (ZmAFR12). The tissue concentrations of ABA were not affected by the microbial inoculants, but the shoot concentrations of JA and SA increased, suggesting an effect by induced systemic resistance (ISR). Moreover, root concentrations of cytokinins (CKs) as ABA antagonists and expression of IPT genes involved in CK biosynthesis declined, leading to an increased ABA/cytokinin ratio and accordingly to increased expression of ABA responsive genes (ZmABF2). These findings suggest that CombiA mainly acted via improvement of root growth and nutrient acquisition by activation of the plant auxin metabolism and activation of cold protective metabolic responses by induction of ISR via JA/SA signalling and ABA-mediated responses, due to inhibition of CK biosynthesis. Synergistic interactions While the different cold-stress protectants investigated in this study induced similar protective plant responses, synergistic effects were obtained by combined applications (Chapter 6). The combination of CombiA inoculation with Zn/Mn supplementation further increased the plant micronutrient status and the cold-protective effects of CombiA. For all treatments, generally the expression of cold-protective effects was further improved by use of DMPP-stabilized ammonium fertilizers instead of nitrate fertilization. Ammonium fertilization promoted micronutrient acquisition via root-induced rhizosphere acidification, increased the ABA shoot concentrations with a moderate activation of metabolic cold stress responses and stimulated root colonization of Trichoderma harzianum OMG16 (CombiA). Field performance A comparative evaluation of the various cold protectants under field conditions with stabilized ammonium starter fertilization, revealed a severely reduced seedling emergence at six weeks after sowing (44%) due to extremely cold and wet soil conditions by the end of April in 2016, associated with a low Zn-nutritional status (32 mg kg-1 shoot DM). Significant improvements were recorded particularly for starter treatments including Zn/Mn seed dressing (emergence 56%) or seed priming with K2SiO4 (emergence 72%) and also by inoculation with the fungal PGPM strain Penicillium sp. BFOD (emergence 49%) associated with a doubling of the Zn tissue concentrations. Even after re-sowing, a significant yield increase for silo maize was recorded exclusively for the K2SiO4 treatment (Chapter 5). Taken together, the findings suggest that exploitation of synergistic interactions by combined starter applications of protective nutrients with selected biostimulants, could offer a cost-effective option for cold-stress prophylaxis in sensitive crops.Der Einsatz sogenannter Biostimulanzien auf Basis pflanzenwachstums-stimulierender Mikroorganismen, verschiedener Pflanzen-, Kompost- oder Algenextrakten, Protein-hydrolysaten oder Chitosanderivaten etc., aber auch Mineralstoffe mit Schutzfunktionen, wie z.B. Zink (Zn), Mangan (Mn), Bor (B), Calcium (Ca) oder Silizium (Si) wird in zahlreichen kommerziellen Formulierungen zur Erhöhung der pflanzlichen Stresstoleranz empfohlen. Die vorliegende Arbeit befasst sich daher exemplarisch mit der Charakterisierung der Wirkungen ausgewählter Biostimulanzien zur Erhöhung der Kältetoleranz in der Jugendentwicklung von Mais, als einer der Hauptstressfaktoren beim Anbau tropischer und subtropischer Kulturpflanzen in gemäßigten Klimazonen. Kältestress und Mikronährstoff-Supplementierung Kältestress, der durch moderat erniedrigte Bodentemperaturen von 8-14°C in einem kontrollierten Wurzelraumkühlungssystem induziert wurde, führte zu einer Hemmung des Sprosswachstums, oxidativen Blattschäden (Chlorosen, Nekrosen, Bildung von Stress-anthocyanen) und einem drastischen Rückgang des Wurzelwachstums (Kapitel 4 und 5). Durch die Wurzelwachstumshemmung wurde die Nährstoffaneignung generell beeinträchtigt. Jedoch wurde physiologischer Nährstoffmangel explizit für Zn und Mn diagnostiziert, der offensichtlich wesentlich für die beobachteten Beeinträchtigungen der Pflanzenentwicklung verantwortlich war, und durch Zn und Mn Supplementierung behoben werden konnte, verbunden mit einer allgemein verbesserten Nährstoffaufnahme und einer effizienteren Erholung nach Beendigung der Kälteperiode. Zink und Manganmangel beeinträchtigten hauptsächlich die Mikronährstoffaufnahme, denn die Mangelsymptome traten sogar in Nährlösungskultur auf, wenn alle Nährstoffe frei verfügbar waren. Die Schutzwirkung einer Zn/Mn Supplementierung war nur nachweisbar, wenn die Mikronährstoffe vor Beginn der Stressperiode über Einquellen des Saatgutes mit Mikronährstofflösung, Saatgutbeizung oder Fertigation appliziert wurden, solange eine Aufnahme und Verlagerung innerhalb der Pflanze noch möglich war. Eine Transkriptomanalyse im Sprossgewebe (Kapitel 7) ergab 1400 differenziell exprimierte Transkripte (DETs) nach 7-tägiger Kältebehandlung von Maiskeimlingen bei 12°C, die hauptsächlich im Zusammenhang mit verminderter Expression bestimmter funktioneller Kategorien (BINs) standen, in Verbindung mit der Photosynthese, Synthese von Aminosäuren, Lipiden und Zellwandvorstufen, Transport von Mineralstoffen (N,P,K), Interaktionen mit metallischen Kationen, der Synthese von Wachstumshormonen (Auxine, Gibberellinsäure) aber auch von Jasmon-, (JA) und Salicylsäure (SA) mit Beteiligung an der Regulation von Stressanpassungen. In Übereinstimmung mit dem beeinträchtigten Mikronährstoffstatus und der Ausbildung oxidativer Blattschäden als Folge der Kältebehandlung, wurde auch eine verminderte Expression von Transkripten in Verbindung mit der oxidativen Stressabwehr beobachtet (Superoxiddismutasen SOD, Katalase, Peroxidasen POD, Synthese von Phenylpropanoiden und Lignifizierung), die besonders auf eine ausreichende Versorgung mit Mikronährstoffen als Co-Faktoren angewiesen ist. Erhöhte Expression wurde für BINs in Verbindung mit dem Abbau von Lipiden und Zellwandvorstufen, der Synthese von Wachsen und bestimmter Flavonoide sowie von Stresshormonen wie Abscisinsäure (ABA) und Ethylen und dem Abbau wachstumsfördernder Cytokinine (CK) beobachtet. Entsprechend erhöhte die Supplementierung von Zn und Mn die Bildung von Anthocyanen und Antioxidanzien, die Aktivitäten von Superoxiddismutase und Katalase, verbunden mit verminderter Akkumulation freier Radikale (H2O2), einer Verminderung oxidativer Blattschäden und einer verbesserten Erholung nach Ende der Kältestressperiode (Kapitel 5 und 6). Wirkung von Algenextrakten Die Fertigation mit Algenextrakten vor Beginn der Kältebehandlung zeigte ähnliche Kälteschutzwirkungen wie die Zn/Mn Supplementierung (Kapitel 4). Jedoch war diese Wirkung nur bei Algenextraktformulierungen mit hohem Zn/Mn Konzentrationen nachweisbar (Algavyt+Zn/Mn; Algafect; 6-70 mg kg TM-1), jedoch nicht bei einer stärker aufereinigten Formulierung (Superfifty) ohne nachweisbaren Mikronährstoffgehalt. Dies weist auf eine Mikronährstoffwirkung der Algenextrakte bei Bodenapplikation hin und nicht auf Elicitoreffekte, die in der Literatur häufig für Blattapplikationen beschrieben werden. Silizium Düngung Ähnlich wie die Algenextrakte zeigte auch Siliziumapplikation über Saatgutbehandlung oder Fertigation mit Kieselsäure die typischen Kälteschutzeffekte einer Zn/Mn-Supplementierung bei Maiskeimlingen (Kapitel 5). Der Zn/Mn-Status Si-behandelter Pflanzen wurde signifikant erhöht, obwohl keine zusätzliche Mikronährstoffdüngung erfolgt war. Allerdings verminderte die Si Behandlung die durch Membranschäden induzierten Mikronährstoffverluste keimender Maissamen unter Kältestress signifikant um 50-70% und förderte die Zinkverlagerung in den Spross. Dabei traten Genexpressionsprofile vergleichbar mit ungestressten Kontrollpflanzen auf. Allerdings wurde die Expression von Genen in Verbindung mit der Synthese und Signaltransduktion von ABA, als zentraler Regulator pflanzlicher Anpassungen an Kältestress, sogar noch stärker erhöht als bei kältegestressten Kontrollpflanzen. Entsprechend wurde die Expression von Kältestressanpassungen im Zusammenhang mit der oxidativen Stressabwehr (SOD, POD, Phenole, Antioxidanzien) in ähnlicher Weise erhöht wie nach Zn/Mn Supplementierung und oxidative Blattschäden entsprechend vermindert. Pflanzenwachstums-stimulierende Mikroorganismen Für einige mikrobielle Inokulanzien auf Basis von Pilz-, und Bakterienstämmen konnten Kälteschutzfunktionen nachgewiesen werden (Kapitel 6). Jedoch traten signifikante Schutzwirkungen nur bei zwei von fünf getesteten Formulierungen auf (Pseudomonas sp., DSMZ13134, Bacillus amyloliquefaciens FZB42, Bacillus atrophaeus ABI05, Penicillium sp. PK112 (BFOD) und ein Konsortium aus Trichoderma harzianum OMG16 und 5 Bacillus Stämme (Combi-A) mit signifikanten Effekten für BFOD und besonders für CombiA. Das CombiA-Konsortium erhöhte die Wurzellänge signifikant und verminderte oxidative Blattschäden in Verbindung mit erhöhter Aktivität von SOD und POD, sowie Akkumulation von Phenolen und Antioxidanzien, Die Förderung des Wurzelwachstums war mit erhöhten Gewebekonzentrationen von Indolessigsäure (IAA) und erhöhter Expression von Genen der IAA-Synthese (ZmTSA), IAA-Transport (ZmPIN1A) und der IAA Signalperzeption (ZmAFR12) verbunden. Die Konzentrationen von ABA wurden durch die Inokulanzien nicht beeinflusst aber die Sprosskonzentrationen von JA und SA stiegen an, was auf eine induzierte systemische Resistenzreaktion (ISR) hindeutet. Darüber hinaus wurden die Konzentrationen von Cytokininen (CKs) als ABA-Antagonisten verringert was zu einem erhöhten ABA/CK Verhältnis und einer erhöhten Expression ABA-responsiver Gene (ZmABF2) führte. Diese Beobachtungen weisen auf eine wurzelwachstumsfördernde Wirkung von CombiA über Interaktionen mit dem pflanzlichen Auxinstoffwechsel hin, sowie auf eine Aktivierung von Kältestressanpassungsreaktionen durch ISR-Induktion über JA/SA-vermittelte Signaltrans-duktion und ABA-abhängige Stressantworten, in Folge der gehemmten CK Synthese. Synergistische Interaktionen Während die verschiedenen, in dieser Arbeit getesteten Kälteschutzapplikationen ähnliche Schutzwirkungen induzierten, konnten durch kombinierte Anwendungen auch synergistische Effekte induziert werden. Die kombinierte Inokulation von CombiA mit Zn/Mn Supplementierung führte zu einem erhöhten Zn/Mn Ernährungsstatus, der die Schutzwirkung von CombiA noch weiter verbesserte. Bei allen Behandlungen konnte die Kälteschutzwirkung durch die Verwendung DMPP-stabilisierter Ammoniumdünger an Stelle von Nitratdüngung weiter erhöht werden. Ammonium Düngung verbesserte die Mikronährstoffaneignung durch wurzelinduzierte pH-Absenkung in der Rhizosphäre, erhöhte die Sprosskonzentrationen von ABA verbunden mit einer moderaten Aktivierung der Kälteschutzanpassungen und verbesserte die Wurzelbesiedelung mit Trichoderma harzianum OMG16 (CombiA). Anwendung unter Feldbedingungen, Eine vergleichende Untersuchung der Wirkung der verschiedenen Kälteschutzanwendungen mit stabilisierter Ammonium Starterdüngung im Feldversuch, ergab einen drastisch verminderten Feldaufgang sechs Wochen nach Aussaat (44%) als Folge von extrem hoher Bodenfeuchte und niedriger Bodentemperaturen nach Aussaat Ende April 2016, verbunden mit einem niedrigen Zink-Ernährungsstatus (32 mg kg-1 Spross TM). Eine signifikante Verbesserung des Feldaufgangs wurde besonders durch Zn/Mn Saatgutbeizung (56%) Saatgutbehandlung mit K2SiO4 (72%) aber auch durch Inokulation mit dem Penicillium-Stamm BFOD (49%) erreicht. Dabei wurden die Zn-Sprosskonzentrationen verdoppelt. Selbst nach Lückennachsaat in Folge der massiven Kälteschäden, zeigte die K2SiO4 Behandlung noch eine signifikante Ertragserhöhung im Vergleich zur unbehandelten Kontrolle (Kapitel 5). Zusammenfassend weisen die Ergebnisse darauf hin, dass besonders durch synergistische Wirkungen kombinierter Applikationen von Mineraldüngern mit Schutzfunktionen und ausgewählten Biostimulanzien, kostengünstige Anwendungen für die Kältestressprophylaxe bei kälteempfindlichen Kulturpflanzen entwickelt werden könnten.enghttp://creativecommons.org/licenses/by-nc-nd/3.0/de/Cold stressMaizeBiostimulantsPhytohormonAntioxidants630KältestressMaisBiostimulanzienPflanzen-HormonAntioxidansMicronutrients, silicon and biostimulants as cold stress protectants in maizeMikronährstoffe, Silizium und Biostimulanzien als Kältestressschutzmittel in MaisDoctoralThesis1772537608urn:nbn:de:bsz:100-opus-18835