Newest publications
Intestinal dysbiosis associated with non-nutritive sweeteners intake: an effect without a cause?
(2025) Marongiu, Luigi; Brzozowska, Ewa; Hetjens, Svetlana; Hoelzle, Ludwig E.; Venturelli, Sascha; Brzozowska, Ewa; Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Hetjens, Svetlana; Department of Medical Statistics, Biomathematics and Information Processing, University Clinic Mannheim, Mannheim, Germany; Hoelzle, Ludwig E.; Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany; Venturelli, Sascha; Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, Germany
Non-nutritive sweeteners (NNS) are present in various commercial articles, from foodstuffs to oral hygiene products. Despite their alleged safety, mounting evidence indicates that NNS intake is associated with an alteration of intestinal bacterial populations (dysbiosis) in animals and humans. Since NNS are commercialized based on the assumption that they are not metabolized by human cells and negligible effect on bacterial, the insurgence of dysbiosis associated with NNS intake remains unexplained. The current review aims to assess the effect of selected NNS (acesulfame potassium, advantame, aspartame, neotame, saccharin, stevia, and sucralose) on the human intestinal microbiota. Findings from this review suggests that NNS intake is linked not only to alterations in human physiology but also to modifications of bacterial biochemistry, including the hindrance of quorum sensing pathways, in a species-specific manner. Moreover, there were suggestions that NNS could also affect the biology of phages, namely by binding to the active sites of proteins involved in the infection process and altering the induction rate of prophages. The studies gathered in the present review provide a framework for understanding how NNS might be connected to dysbiosis, both directly through alterations in bacterial biochemistry and indirectly through impaired phage activity.
Sucrose reduction with maintained sweetness level lowers glycemic fluctuations and energy intake in healthy males
(2025) Gaider, Marlies; Kimmeswenger, Isabella; Schmidt, Jana; Thines, Cynthia; Wu, Anni; Stoffl, Teresa K.; Rust, Petra; Ley, Jakob P.; Krammer, Gerhard E.; Somoza, Veronika; Lieder, Barbara; Gaider, Marlies; Christian Doppler Laboratory for Taste Research, Faculty of Chemistry, University of Vienna, Vienna, Austria; Kimmeswenger, Isabella; Vienna Doctoral School of Chemistry (DoSChem), University of Vienna, Vienna, Austria; Schmidt, Jana; Department Human Nutrition and Dietetics, Institute of Clinical Nutrition, University of Hohenheim, Stuttgart, Germany; Thines, Cynthia; Christian Doppler Laboratory for Taste Research, Faculty of Chemistry, University of Vienna, Vienna, Austria; Wu, Anni; Christian Doppler Laboratory for Taste Research, Faculty of Chemistry, University of Vienna, Vienna, Austria; Stoffl, Teresa K.; Christian Doppler Laboratory for Taste Research, Faculty of Chemistry, University of Vienna, Vienna, Austria; Rust, Petra; Department of Nutrional Science, Faculty of Life Sciences, University of Vienna, Vienna, Austria; Ley, Jakob P.; Symrise AG, Holzminden, Germany; Krammer, Gerhard E.; Symrise AG, Holzminden, Germany; Somoza, Veronika; Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Vienna, Austria
Introduction: The sole perception of sweet taste is discussed to interfere with postprandial blood glucose regulation and leading to enhanced cravings for sweet foods. This raises the question whether preserving sweetness while reducing sugar in a test solution can sustain beneficial effects on blood glucose regulation and subsequently decrease postprandial energy intake. Specifically, we hypothesized that reducing the caloric load of a sucrose solution while maintaining the perceived sweetness intensity by adding hesperetin as a taste modifier attenuates large fluctuations in postprandial blood glucose concentrations with beneficial effects on appetite and cravings for sweet foods.
Methods: In a randomized crossover study with 32 healthy male participants, the effect of a 10% sucrose solution on blood glucose regulation and energy intake was compared to an equi-sweet 7% sucrose solution with 50 mg/L hesperetin. Data was analyzed using paired Student’s t-tests or Repeated-measures ANOVA. The study was approved by the ethical committee of the University of Vienna (approval number 00903) and registered at ClinicalTrials.gov (NCT05705596).
Results: The results show that the decline in blood glucose concentrations was less pronounced after consumption of the 7% sucrose solution with hesperetin than after the isosweet 10% sucrose solution. Additionally, participants reported less desire for a sweet snack and had on average a 10 ± 7% (p < 0.05) lower energy intake after consumption of the 7% sucrose hesperetin-spiked solution.
Conclusion: In conclusion, our results argue for a pronounced role of the carbohydrate content in postprandial appetite regulation.
Enabling adaptive food monitoring through sampling rate adaptation for efficient, reliable critical event detection
(2025) Jox, Dana; Schweizer, Pia; Henrichs, Elia; Krupitzer, Christian; Jox, Dana; Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; Schweizer, Pia; Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; Niu, Jianwei; Department of Food Informatics and Computational Science Hub, University of Hohenheim, 70599 Stuttgart, Germany; Niu, Jianwei
Monitoring systems are essential in many fields, such as food production, storage, and supply, to collect information about applications or their environments to enable decision-making. However, these systems generate massive amounts of data that require substantial processing. To improve data analysis efficiency and reduce data collectors’ energy demand, adaptive monitoring is a promising approach to reduce the gathered data while ensuring the monitoring of critical events. Adaptive monitoring is a system’s ability to adjust its monitoring activity during runtime in response to internal and external changes. This work investigates the application of adaptive monitoring—especially, the adaptation of the sensor sampling rate—in dynamic and unstable environments. This work evaluates 11 distinct approaches, based on threshold determination, statistical analysis techniques, and optimization methods, encompassing 33 customized implementations, regarding their data reduction extent and identification of critical events. Furthermore, analyses of Shannon’s entropy and the oscillation behavior allow for estimating the efficiency of the adaptation algorithms. The results demonstrate the applicability of adaptive monitoring in food storage environments, such as cold storage rooms and transportation containers, but also reveal differences in the approaches’ performance. Generally, some approaches achieve high observation accuracies while significantly reducing the data collected by adapting efficiently.
Toward food-grade production of the Glutamicibacter halophytocola diamine oxidase using Komagataella phaffii
(2025) Bechtel, Anna; Kettner, Lucas; Hessenberger, Jan; Vlassakakis, Kenny; Fischer, Lutz; Bechtel, Anna; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany; Kettner, Lucas; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany; Hessenberger, Jan; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany; Vlassakakis, Kenny; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany; Fischer, Lutz; Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
The diamine oxidase from Glutamicibacter halophytocola (DAO-GH) was recombinantly produced in K. phaffii using the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter for methanol-free production. Firstly, K. phaffii clones were generated for intracellular and secretory DAO-GH production that still possessed antibiotic resistance due to the cloning procedure. For intracellular production, a maximum intracellular DAO activity of 15,404 nkat/Lculture was achieved in fed-batch bioreactor cultivations, while for secretory production, the highest extracellular DAO activity of 6,078 nkat/Lculture was achieved using the αMF signal peptide without its EAEA sequence. The intracellularly produced DAO-GH was partially purified in several purification steps with a yield of 80%, a purification factor of about 10 and specific DAO activity of 16.7 nkat/mgprotein. The secretory DAO-GH production resulted in a specific DAO activity of 15.4 nkat/mgprotein already in the cell-free culture supernatant at the end of cultivation without further purification steps. The food industry aims to avoid the use of antimicrobial resistance in enzyme production, therefore, a new cassette plasmid with self-excisable antibiotic resistance markers was constructed for secretory DAO-GH production. The antibiotic-resistance-free K. phaffii clone generated with this plasmid achieved a maximum extracellular DAO activity of 4,770 nkat/Lculture in a fed-batch bioreactor cultivation. The DAO-GH obtained in this cultivation was spray-dried, resulting in a storable powder with 23 nkat/gpowder DAO activity and a water activity value of 0.12. This study demonstrated the secretion of recombinant DAO in a microbial host such as K. phaffii for the first time and provides a strategy for generating antibiotic-resistance-free K. phaffii clones.
Miscanthus‐derived products for material applications: can they contribute to greenhouse gas emission mitigation?
(2025) Lask, Jan; Weik, Jan; Kiesel, Andreas; Lewandowski, Iris; Wagner, Moritz; Lask, Jan; Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Weik, Jan; Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Kiesel, Andreas; Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Lewandowski, Iris; Institute of Crop Science, University of Hohenheim, Stuttgart, Germany; Wagner, Moritz; Institute of Applied Ecology, Geisenheim University, Geisenheim, Germany
Miscanthus is a particularly promising lignocellulosic biomass as it can also grow under marginal conditions and can be used for a wide range of products including energy and material applications. The latter, including applications in the construction, textile, chemical, or agricultural sector, is becoming increasingly relevant today. In general, it is hypothesised that biobased products are advantageous in terms of their greenhouse gas (GHG) performance when compared to conventional—in particular fossil—alternatives. To investigate this, the life cycle assessment methodology is typically applied. However, assessments are subject to uncertainty and variability due to assumptions and methodological choices. Given the increasing interest in miscanthus‐derived material applications, this study aims to draw more general conclusions about their GHG performance and relative mitigation potential. This should support a better understanding of their contribution to climate change mitigation objectives and guide the selection of promising products or product groups. A systematic review of peer‐reviewed literature was conducted. In total, 20 studies reporting on 188 comparisons of the GHG performance of miscanthus‐derived and alternative products were assessed. Most comparisons indicated potential GHG mitigation through miscanthus‐derived products, with the majority ranging between 20% and 100% savings. Key parameters defining the relative performance include the selection of the reference product, consideration of soil carbon changes, changes in product and process design, as well as the incorporation of indirect Land Use Change (iLUC) impacts. Overall, we conclude that miscanthus‐derived material applications have the potential to contribute to GHG emission mitigation if iLUC effects are minimised. Given the limited availability of agricultural land, miscanthus‐derived products with high absolute GHG mitigation potential per unit of biomass used and long product lifetime are preferable. For future development, potential environmental trade‐offs need to be monitored.
