Institut für Landschafts- und Pflanzenökologie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/11
Browse
Browsing Institut für Landschafts- und Pflanzenökologie by Classification "630"
Now showing 1 - 20 of 25
- Results Per Page
- Sort Options
Publication Agrivoltaics mitigate drought effects in winter wheat(2023) Pataczek, Lisa; Weselek, Axel; Bauerle, Andrea; Högy, Petra; Lewandowski, Iris; Zikeli, Sabine; Schweiger, AndreasClimate change is expected to decrease water availability in many agricultural production areas around the globe. At the same time renewable energy concepts such as agrivoltaics (AV) are necessary to manage the energy transition. Several studies showed that evapotranspiration can be reduced in AV systems, resulting in increased water availability for crops. However, effects on crop performance and productivity remain unclear to date. Carbon‐13 isotopic composition (δ13C and discrimination against carbon‐13) can be used as a proxy for the effects of water availability on plant performance, integrating crop responses over the entire growing season. The aim of this study was to assess these effects via carbon isotopic composition in grains, as well as grain yield of winter wheat in an AV system in southwest Germany. Crops were cultivated over four seasons from 2016–2020 in the AV system and on an unshaded adjacent reference (REF) site. Across all seasons, average grain yield did not significantly differ between AV and REF (4.7 vs 5.2 t ha−1), with higher interannual yield stability in the AV system. However, δ13C as well as carbon‐13 isotope discrimination differed significantly across the seasons by 1‰ (AV: −29.0‰ vs REF: −28.0‰ and AV: 21.6‰ vs REF: 20.6‰) between the AV system and the REF site. These drought mitigation effects as indicated by the results of this study will become crucial for the resilience of agricultural production in the near future when drought events will become significantly more frequent and severe.Publication Air pollution by particulate matter and ammonia at suburban and rural sites in the North China Plain(2011) Kopsch, Jenny; Fangmeier, AndreasThe thesis presented here was conducted at the Institute of Landscape and Plant Ecology at the University of Hohenheim within the scope of the first Sino-German International Research Training Group (IRTG) ?Modeling Material Flows and Production Systems for Sustainable Resource Use in Intensified Crop Production in the North China Plain?. The project is jointly performed by the University of Hohenheim and the China Agricultural University (CAU) Beijing and financed by the German Research Foundation and the Chinese Ministry of Education. The present study was performed in the framework of subproject 1.3 of the IRTG which had the major aim to study air pollution and atmospheric nitrogen deposition in the North China Plain (NCP). For that purpose data on concentrations of atmospheric pollutants were required in order to assess the level of exposure to pollution of both population and environment in the NCP. This study represents the initial work in the NCP in 2005 and 2006 in order to monitor air pollution and dry nitrogen deposition and its effects. Within this work experiments were conducted to monitor concentrations of PM2.5, PM10, TSP, NOx and NH3 in the NCP. Ammonia monitoring and biomonitoring were synchronised in order to study the potential effects of nitrogen deposition on Molinia caerulea. Since there was no air monitoring network existing in the NCP at the onset of this study, one major part of the work consisted of setting up and testing of European measuring devices under the special conditions in the NCP. The measurements have been therefore the starting point of field observations in the NCP and especially the PM monitoring operated at the agricultural study site Dongbeiwang (DBW) was a key element of the field campaign in order to study pollutant concentrations in the NCP but also the influences of the nearby megacity Beijing. Sampling with the High Volume Sampler Digitel DHA 80 proved to be suitable for the conditions in the NCP. The levels of daily PM10 measured in this study exceeded European (50 µg m-3) and Chinese (150 µg m-3) thresholds by far. Also the EU standard for the number of tolerated daily exceedances (35 times per year) was not met in the Beijing area. Results of PM10 measurements at DBW showed 126 exceedances of the daily mean European threshold in only 128 days in 2005 and 43 exceedances in 44 days in 2006. The maximum daily mean of 412 µg m-3 also reflects the high PM10 peak concentrations in the study region. Results of daily PM2.5 measurements at DBW in 2005 and in 2006 showed exceedances of the U. S. daily average air quality standard of 35 µg m-3 for 99 % of the data (mean value in 2005: 222 µg m-3 and in 2006: 123 µg m-3). High daily PM2.5 peak concentrations were observed especially during the winter. Overall, only under extreme meteorological conditions such as heavy rainfalls PM levels of less than 50 µg m-3 were detected at DBW. Diurnal and hourly variations of PM levels were demonstrated. Glass fibre filters proved to be suitable for the collection of high PM loads whereas quartz fibre filters are much more suitable for the laboratory analysis of N species. Determination of particulate ammonium and nitrate on glass fibre filters of spring season was tested and showed averaged concentrations of 2.4 and 13.1 µg m-3 (TSP) and 8.0 and 11.6 µg m-3 (PM10), respectively. The mass spectrometric measurements were challenging due to the filter material and δ15N/14N ratios were found to be very heterogeneous ranging from -3.0 ? to 44.3 ?, referring to both filter types. The simple and low-cost passive sampling method used (Radiellos®) also proved to be an appropriate tool for evaluating ammonia exposure in the NCP. The seasonal ammonia levels were in the range from 9 to 43 µg m-3 at DBW, Wuqiao and Quzhou, which indicates intensive agricultural activity in the whole NCP. No relationship was found between atmospheric ammonia levels and plant growth parameters of Molinia caerulea and thus, growth of these test plants was not related to gaseous dry deposition of ammonia. The NOx measurements in NCP did not yield reliable data within given time. Overall, multiple sources are assumed to interplay at the study site namely, local dust (such as harvest), traffic, biomass burning, coal combustion, secondary aerosol and industrial emissions from Beijing area. Long-range transported air pollutants such as pollutants from Hebei and Shandong province or deserts as well as the weather pattern greatly influence the atmospheric pollution at DBW and NCP in general.Publication Analysis of phytosociological composition and spatial structure of the central zone of Lake Baikal Eastern coast vegetation(2018) Brianskaia, Elena; Schmieder, KlausThe object of this study is the terrestrial ecosystem of Lake Baikal enlisted by UNESCO as the World Heritage Site. The analysis of spatial and phytosociological structures of the vegetation can reveal important stages of its formation and future dynamics. Today, the present flora and vegetation of the complex Baikal Siberian ecosystem is reflected in studies of many Russian and international phytosociologists. However, despite the huge amount of data, the phytosociological vegetation structure and its spatial distribution of the central zone of Lake Baikal eastern coast has not been studied. By this thesis, we provide the first results about the flora, phytosociological composition of the vegetation and the soil diversity of the central zone of Lake Baikal eastern coast. Selecting the area to study, we hypothesize that this complex territory can be considered as a model biome that adjoins Lake Baikal central zone in the east. The major landscape of the studied area is composed of forests complicated by the bogged valleys of the rivers Cheremshanka, Talovka and Bezymyanka. The Katkovskaya and Chernaya Griva mountains range stretches from the northto the east. 167 relevés were performed by standard methods of the Braun-Blanquet approach. To reveal the phytosociological composition of the vegetation supervised k-means classification was performed in JUICE program. By comparing the vegetation data from the studied area (167 relevés) with data from the adjacent territories of Lake Baikal, Svyatoi Nos Peninsula and the Barguzin mountain range (589 relevés) was obtained the final prodromus of the vegetation. The soil identification was performed according to Russian soil classification. The vegetation mapping was performed in ArcGIS 10.3.1 by the supervised image classification of multispectral panchromatic imagery SPOT 6. The vegetation of the territory under study is represented by four classes. The dominant type of the vegetation is represented by forests which are classified into Vaccinio-Piceetea Br.-Bl. in Br.-Bl. et al. 1939 class. The wetland vegetation includes two classes Scheuchzerio-Caricetea nigrae (Nordh. 1936) Тх. 1937 and Oxycocco-Sphagnetea Br.-Bl et R. Tx. 1943. The vegetation of shifting sands of the coastal line is classified into Brometea korotkyi Hilbig et Korolyuk 2000 class. For all phytosociological vegetation units are identified seven soil types, such as, Lithozems, Brown soil, Soddy Brown Forest soil and Rzhavozems, Fen Peat, and Peat Gleyzem. The soil distribution demonstrates its contingence with an altitudinal gradient; however, transitioning from mountain to plain areas, a hydrological regime becomes crucial. Despite a relatively small territory under study (approx. 500 km2), the vegetation is relatively diverse. Location of the studied area within the zonal forest belt contributes to the leading position of the forest communities. The close ground water occurrence creates suitable conditions for wetland vegetation formation. Lake Baikal coastal line is considered as a refugium of the unique ancient Miocene-Pliocene xerophytic vegetation and flora. Thus, Lake Baikal water body, mountain landform and close ground water occurrence contribute to the formation of diverse vegetation communities. We suggest that the vegetation of this relatively small territory can be considered as a model within the central zone of Lake Baikal eastern coast.Publication Die Bedeutung städtischer Gliederungsmuster für das Vorkommen von Pflanzenarten unter besonderer Berücksichtigung von Paulownia tomentosa (Thunb.) Steud. - dargestellt am Beispiel Stuttgart(2002) Richter, Matthias; Böcker, ReinhardThe relevance of urban landuse patterns and ecological factors for the occurrence of spontaneously and subspontaneously growing plant species is the subject of this doctoral thesis. First a model of scales for urban ecological research is introduced in order to structure the different hypotheses. This model distinguishes between the agglomeration Stuttgart, separated in main ?landuse types? (forest, agricultural area, settlement), the central city of Stuttgart, "building structure/free space types" and ?types of soil use?. The types of soil use (e.g. lawns, bushes, flower-beds or pavements) are characterised by the most frequent plant species. Moreover their soils are analysed and they are described climatically. In cities average types of soil use (concerning the chemical characterisation of soils) are wide-spread. Some plant species (e.g. Paulownia tomentosa) are described more in detail, concerning their ecological traits and their preferential occurrence on each spacial scale. The hypothesis is tested: If there is a dependence - of plant species and phytocoenoses on types of soil use - and of types of soil use on building structure/free space types - and of building structure/free space types on their location within the city centre, - then there is a dependence of plant species and their phytocoenoses on the location within the city. To test this hypothesis, some building structure/free space types and types of soil use were selected at random and there vegetation relevés were collected. An attempt is made to construct an improved model of a big city, representing an agglomeration. On the spatial level of the agglomeration Stuttgart Paulownia tomentosa can be found neither in forests nor in agricultural area. It is growing within settlements only, namely within the central built-up areas of Stuttgart, Feuerbach and Bad Cannstatt. The city centre of Stuttgart can be divided into three zones: the central business district with big department stores and banking houses, bordering on old apartment houses and detached houses (especially at the slopes). Other building structure/free space types (like villas, graveyards, parks, or industrial areas) are mingled in these zones. A scheme is outlined which shows how the different building structure/free space types are scattered over the central city. Paulownia tomentosa can be detected most frequently within the zone of old apartment houses. Historical and climatological reasons are important for this result, too. More than 90% of the sites where Paulownia tomentosa is growing are cracks: cracks along the bottom of buildings, gravelled area and urban wasteland. The sites are characterised by a low level of nutrients, high pH-values and soils which extremely dry out in summer. So the occurrence of the species depends on the presence of special types of soil use. A low intensity of gardencare is a further important factor for its presence. Paulownia tomentosa is an exemplification showing how the ecological traits of a species and its dependence from the presence of structural types can be used to find the places where it is growing. In the case of Paulownia this attempt can be used to forecast the expected further spread.Publication Biomonitoring of ammonia deposition by means of higher plants(2013) Ilogu Chibuzo Franklin; Fangmeier, AndreasAtmospheric nitrogen deposition emanating from oxidized or reduced nitrogen sources has been influenced immensely by human activities. This is as a result of the need to improve and meet the ever changing demands of an increasing growth in global population. The benefits accrued from such activities however, have not been without some negative effects on several ecosystems, plants, air quality and human health. This is due to the emission of reactive nitrogen species and its contribution to the level of atmospheric nitrogen pollution in the environment as well as nitrogen deposition afterwards. Atmospheric ammonia (NH3) arguably is an important source of nitrogen deposition. Its major source is from agricultural activities involving various aspects of crop production including, fertilizer and manure applications among others and also importantly from livestock management. It is pertinent therefore, to conduct continuous monitoring studies in order to ascertain the prevailing ambient NH3 concentration in an area, so as to identify periods when threshold values are exceeded and also to determine how certain plants would respond when exposed to NH3 pollution. This necessitated the need to investigate in this thesis, through active biomonitoring, the interaction of NH3 pollution on selected indicator species namely, Italian ryegrass (Lolium multiflorum L.), barnyard grass (Echinochloa crus-galli L.), stinging nettle (Urtica dioica L.) and common lambsquarters (Chenopodium album L.). The influence of nitrogen deposition, arising from NH3 pollution on the selected indicator species were examined by the responses of the free amino acids and above ground biomass accumulation of the various plants studied, as an indicator of nitrogen accumulation. In order to execute plant and atmospheric NH3 interactions, two different experiments were conducted. The first experiment was a field study carried out around a livestock farm as a source of NH3 pollution and nitrogen deposition. Plant materials were exposed alongside passive diffusion tube samplers at three selected distances from the stable along a transect of 804m. The three different sites were selected with increasing distance from the stable, in order to enable a comparison between the plants exposed in close proximity to the source NH3 emission and those further away. The ambient NH3 concentration at each site was measured with the passive diffusion tube samplers exposed at each location. This measurement was conducted with a view to determine the ambient NH3 concentration exposed to the plant materials at each site and also to observe the influence of increasing distance on NH3 pollution and its exposure on the plants, from a point source of NH3 pollution. Furthermore, two fumigation experiments were conducted under controlled greenhouse conditions. In the fumigation study, only Lolium multiflorum and Echinochloa crus-galli, plants were used for this experiment and exposed to three treatment levels of gaseous NH3 fumigations in different growth chambers. The plants were exposed to the following treatments, non-filtered air (NFA), non-filtered air with low NH3 concentration (NFA+) and non-filtered air with high NH3 concentration (NFA++) in both fumigation experiments. In the field experiment, the ambient NH3 concentration measured at each location from the stable, decreased with increasing distance from the point of NH3 emission. This decrease in concentration of NH3 clearly demonstrates the impact of livestock management as a source of NH3 pollution. The free amino acid concentrations and compositions investigated in the various plants studied in the field experiments showed a significant response to NH3 exposure. Several fold increases in the free amino acid concentrations and changes in composition were observed in plant materials exposed to increasing NH3 concentrations at closer proximity to the stable. Observations made from this study showed that an increase in NH3 concentration with closer distance to the source of NH3 pollution influenced remarkably, the percentage increases of low carbon to nitrogen compounds such as Glutamine (Gln) in Lolium multiflorum and Chenopodium album, Asparagine (Asn) in Echinochloa crus-galli and Arginine (Arg) in Urtica dioica. The increases and alterations observed in the free amino acid compositions of the plants studied, demonstrates the uptake and sensitivity of the various plants to NH3 pollution and nitrogen deposition by inducing changes in its free amino acid metabolism. The effects of nitrogen deposition on the above ground biomass of the plants in the field study, indicated a significant effect of the ambient NH3 concentrations on Lolium multiflorum, Echinochloa crus-galli and Urtica dioica. These findings demonstrate a positive influence of NH3 pollution as a nitrogen source on growth and biomass accumulation in the plants. Considering the results obtained in this study based on the responses of the plants to atmospheric NH3 pollution in the field and in the fumigation studies, it is obvious NH3 had an influence over the growth and metabolism of the plants studied. This influence indicates the plants were able to detect changes in the ambient NH3 concentrations in the environment and responded by exhibiting changes in biomass production and alterations in free amino acid compositions, thus indicating they have good potentials as biomonitors of ammonia deposition.Publication Cd and Zn concentrations in soil and silage maize following the addition of P fertilizer(2021) Niño-Savala, Andrea Giovanna; Weishaar, Benedikt; Franzaring, Jürgen; Liu, Xuejun; Fangmeier, AndreasStudies of soil Cd and Zn are often performed on sites that are contaminated or have deficient Zn conditions. Soil characteristics and crop management could impact the soil mobility and uptake of Cd and Zn, even when considering unpolluted Cd soils and adequate soil Zn levels. The concentrations of these two metals were assessed in soil and silage maize under five P fertilization treatments at two growth stages under low Cd and sufficient Zn conditions. Pearson correlation coefficients and stepwise linear regressions were calculated to investigate the soil characteristics influencing the bioavailable metal fraction in soil and the metal concentration in silage maize. P treatments did not impact Cd accumulation in maize; however, the Zn uptake was affected by P placement at the leaf development stage. From early development to maturity, the Cd level in maize decreased to 10% of the initial uptake, while the Zn level decreased to 50% of the initial uptake. This reduction in both metals may be attributed to a dilution effect derived from high biomass production. Silage maize could alleviate the initial Cd uptake while diminishing the depressant effect of P fertilizer on Zn concentration. Further research is required to understand the effect of P fertilizer on Cd uptake and its relation to Zn under field conditions at early and mature stages.Publication Effects of elevated atmospheric CO2 concentrations on insects and pathogens of spring wheat (Triticum aestivum L. cv. Triso) and oilseed rape(Brassica napus cv. Campino)(2012) Oehme, Viktoriya; Fangmeier, AndreasIt is suggested that plants, herbivore insects and pathogens will be affected by rising atmospheric CO2. The working hypothesis of this study was that elevated CO2 will affect plant composition and will thus exert influence on plant-insect interactions by changing the nutritive value for insects feeding on phloem sap. To test this hypothesis, experiments were carried out on wheat and oilseed rape in two different systems: controlled environment chambers (climate chamber system) and an open field exposure system with natural climatic and soil conditions (Mini FACE system). The abundance of detrimental insects from different feeding guilds and plant damage by parasitic organisms were examined in a Mini FACE system, while the consequences of elevated CO2 on aphid performance and potential correlations to phloem sap composition of host plants were observed in controlled environment chambers. The concentrations of amino acids and carbohydrates in the phloem of host plants were analysed by high?performance liquid chromatography (HPLC), using a fluorescence detector for amino acids and the evaporative light scattering detector for carbohydrates. In a Mini-FACE system, phenological development of spring wheat and OSR was not significantly changed due to CO2 enrichment. However, elevated CO2 induced changes in plant chemistry (increased carbon:nitrogen ratio and defensive compounds), which resulted in changes in population densities of some pest species. In order to monitor alterations in insect population density, two different methods were applied: direct counts (method 1) and using of yellow sticky traps (method 2). These methods showed both increases and decreases of insect numbers due to elevated CO2, depending on species and on the period of observation. Concerning plant pathogens, leaves of spring wheat were only slightly and not significantly damaged by Erysiphe graminis, Puccinia striiformis, Puccinia recondita and Septoria tritici during the 2006/2008 years in all treatments. Also the OSR was not significantly damaged by Peronospora parasitica. The frequency and severity of disease infestation on spring wheat and OSR was not significantly impacted by elevated CO2. In controlled-environment chambers, the phenology, above ground biomass and RGR of OSR were not significantly impacted due to elevated CO2. And although the phenology of spring wheat was not influenced by raised CO2, significant increases were observed for plant above ground biomass and RGR. The aphid presence significantly reduced the aboveground biomass and RGR of spring wheat, while no effects due to aphids were observed in OSR. High-CO2 treatment differently impacted the performance of aphids. Slight and non-significant increases due to elevated atmospheric CO2 conditions were observed for the aphid relative developmental stages and intrinsic rates of increase, while the weight and RGR were significantly increased for Rhopalosiphum padi and decreased for Myzus persicae. In order to clear CO2-impacts on the insect performance, phloem sap from host plants was analysed for the composition and concentration of amino acids and carbohydrates. In summary, although the phenological development of spring wheat and OSR was not affected due to elevated CO2, significant changes were found for the concentration of carbohydrates in the phloem sap of spring wheat and individual amino acids in both host plants. These alterations in plant chemistry affected the performance and abundance of herbivore insects.Publication Effects of land-use intensity on functional community composition and nutrient dynamics in grassland(2024) Walter, Julia; Thumm, Ulrich; Buchmann, Carsten M.; Heinonen-Tanski, HelviLand-use intensity drives productivity and ecosystem functions in grassland. The effects of long-term land-use intensification on plant functional community composition and its direct and indirect linkages to processes of nutrient cycling are largely unknown. We manipulated mowing frequency and nitrogen inputs in an experiment in temperate grassland over ten years. We assessed changes in species composition and calculated functional diversity (FDis) and community weighted mean (CWM) traits of specific leaf area (SLA), leaf dry matter content (LDMC) and leaf and root nitrogen of the plant community, using species-specific trait values derived from databases. We assessed above- and belowground decomposition and soil respiration. Plant diversity strongly decreased with increasing land-use intensity. CWM leaf nitrogen and SLA decreased, while CWM LDMC increased with land-use intensification, which could be linked to an increased proportion of graminoid species. Belowground processes were largely unaffected by land-use intensity. Land use affected aboveground litter composition directly and indirectly via community composition. Mowing frequency, and not a land-use index combining mowing frequency and fertilization, explained most of the variation in litter decomposition. Our results show that land-use intensification not only reduces plant diversity, but that these changes also affect nutrient dynamics.Publication Fallstudien zu Stickstoffdioxid und Feinstaub - Untersuchung und Vergleich verschiedener Pflanzenarten und Dachflächen im urbanen Raum(2022) Neher, Philipp; Fangmeier, AndreasMore and more people are living in cities. Therefore, one of the main tasks of municipalities is to ensure a good quality of life for people living in cities. Among many other factors, air quality plays a decisive role, because we all need air to live and consume many litres of it every day. This study therefore deals with the question of whether urban vegetation, especially green roofs, can contribute to an improvement in air quality. In order to answer this question, parameters reflecting air quality were recorded on several roof surfaces. The parameters investigated were primarily particles in the range of 2.5 to 80 micrometres and nitrogen dioxide (NO2). Airborne particles were recorded using Sigma-2-samplers and NO2 using Palmes tubes. On the other hand, morphological leaf characteristics of different plant species were examined microscopically and a statement was made about the "filtering capacities" of the species. In support of this, heavy metal contents in the substrate and wash-out were investigated. Investigations on roof surfaces showed that, due to the height difference, significantly lower pollutant levels were recorded on roof surfaces than at street level. For NO2, about 50 % lower values were recorded. The comparison between greened and ungreened roof surfaces showed slightly significantly lower values for both particulate matter and NO2 on greened roofs. Investigations on the different plant species showed that plants with a structurally rich leaf surface, dense and tall growth, "filter" more particles from the ambient air than low-growing species or species with a smooth leaf surface. In summary, it can be stated that green roofs can lead to a slight improvement in air quality with regard to particulate matter and NO2. The decisive factors here are the choice of plants used in greening systems and ultimately also the distance to the emitters.Publication Fernerkundungsgestützte Analyse und Bewertung ökologischer Auswirkungen des Anbaus von Bioenergiepflanzen auf die Agro-Biodiversität anhand der Modellierung der Habitatansprüche der Feldlerche (Alauda arvensis)(2017) Schlager, Patric; Schmieder, KlausFor the first time in 2002, the transformation of the conventional energy system into a system based on renewable energies was politically and legally decided in Germany. On the regional level numerous communities and municipalities followed this decision by voicing their own political resolutions, addressing the coverage of energy consumption with renewable energies. Their implementation is accompanied by a spatial expansion of bioenergy crops which lead to a controversial discussion about food safety, biodiversity and landscape change. Framed by the above mentioned discussion, this study assesses potential changes of skylark (Alauda arvensis) occurrence caused by a spatial expansion of bioenergy crops in the municipality of Schwäbisch Hall, Germany. The skylark was selected due to the comprehensive state of research about skylarks, their endangerment (“Red list of German breeding birds”), and the status as umbrella species for open agricultural landscapes (skylarks typically avoid vertical structures like hedges or edges of forests). The latter emphasizes their role as representatives for other species which are potentially affected by an expansion of bioenergy crops. This study is based on a stratified bird monitoring scheme of Baden-Württemberg, which was developed during a project that aimed to set up an indicator for species richness and was financed by the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV). From the bird monitoring scheme, the stratum, which covers the municipality of Schwäbisch Hall, was extracted and served as a base for the development of a Generalized Linear Habitat Model of the skylark. In order to assess potential habitat changes caused by an expansion of bioenergy crops, Schwäbisch Hall was mapped with an airborne remote sensing technology in 2011. The resulting aerial images were transformed into orthophotos and later classified (focusing on agricultural areas) with an object oriented image analysis approach. Based on the outcomes of the habitat association model and the land use classification, skylark territories were predicted for 1 km² plots covering Schwäbisch Hall. For an in-depth understanding of ecological impacts from expanded bioenergy cropping, a bioenergy scenario was developed considering § 17 BBodSchG (national soil protection act) and regional food security. Based on the scenario, skylark territories were predicted for 1 km² plots covering Schwäbisch Hall. The most reasonable habitat association model resulted in a negative binomial Generalized Linear Model with the predictors winter sown crops and mean patch size per plot. Model performance was assessed by Wald z-statistics with p-values, ANOVA, explained variance, theta, residuals, AIC, and independent field data. Field data was only available for one plot. Therefore, the field data only indicate model performance. The comparison of the model predictions with the field data resulted in an accuracy of 92.21%. The land use classification resulted in the following five classes: 1. winter sown crops (33985.78 ha), 2. maize (9621.36 ha), rapeseed (2952.36 ha), unidentified crops (7244.18 ha), and grassland (30720.88 ha). Grasslands were not mapped by remote sensing techniques, but taken from a digital landscape model. Accuracy assessment showed an overall accuracy of 89.16 % and 0.78 kappa statistics. Prediction of skylark territories based on the land use classification of 2011 resulted in 46269 territories, or a mean density of 8.4 territories per 10 ha on agricultural areas and 5.4 territories per 10 ha on agricultural and grassland combined areas. The scenario assumed a three partite crop rotation (maize, rapeseed, winter sown crops) and a mean value of 0.17 ha per inhabitant for food security. Areas for fodder production were considered in course of the calculation of food security because Schwäbisch Hall is characterized by many livestock farms, which made it necessary to avoid conflicts between potential bioenergy sites and areas for fodder production. Considering the above mentioned assumptions, Schwäbisch Hall has a bioenergy potential of 5955 ha for maize and 15033 ha for rapeseed cropping. The results of the bioenergy scenario were randomly distributed to the land use polygons which resulted from the remote sensing analysis. With that, prediction of skylark territories based on the bioenergy scenario was feasible. Skylark territories for the bioenergy scenario resulted in 36472 territories, or a mean value of 6.8 territories per 10 ha on agricultural areas and 4.3 territories per 10 ha on agricultural and grassland combined areas. Considering both land use options, skylark territories declined by 8797 in total numbers or by 19.43 % in relative numbers. In addition to the land use options described above, landscape structure and territory distribution were analyzed based on six landscape units (Naturräumliche Haupteinheiten) covering the municipality of Schwäbisch Hall. The analysis revealed an agriculturally dominated northwestern part, with high numbers and mean values of skylark territories, and a grassland/forest dominated southeastern part, with lower numbers and mean values of skylark territories. The relative decline of these territories between the two land use options within the landscape units resulted approximately in 22 % in the northwestern and approximately 11-15 % in the southeastern part. The results indicate that an expansion of bioenergy crops will have negative effects on breeding birds in open agricultural landscapes which already suffer from degraded habitat conditions. Based on the assumptions of this study, skylark territories will decline by approximately 20 % in comparison to 2011. Yet, considering the results of the indicator report of the German National Strategy on Biodiversity (BMU 2010) and the European Bird Census Council the baseline of 2011 already represents a degraded situation in terms of habitat quality for agricultural breeding birds.Publication Heavy metals from phosphate fertilizers in maize-based food-feed energy systems(2023) Niño Savala, Andrea Giovanna; Fangmeier, AndreasThe problem of polluted agricultural lands with heavy metals due to anthropogenic activities, including applying phosphorous (P) fertilizers polluted with cadmium (Cd) and other metal such as uranium, has been extensively studied. Several reviews, including the one in the present dissertation, have elaborated this issue with often the same results: the application of P fertilizers with high Cd levels is strongly correlated to Cd accumulation in arable soil, which could imply environmental risks as well as health risks for humans and animals through the food chain. Therefore, these reviews have often the same conclusion: the application of low Cd-P fertilizers, either mineral, organic or recycled, is diminishing the risks of Cd pollution at the soil, crop and consumption level. However, globalization, trade politics, economy, dependency on Morocco mineral P fertilizers, and the finite stock in the raw material have challenged this possibility, especially in the European Union. Meanwhile, in China, polluted arable soils are related to other anthropogenic activities and type of fertilizers rather than Cd-polluted phosphate rock and mineral P fertilizers. At the farm level, other options to diminish Cd pollution in soil and crops, besides low Cd-P fertilizers, could consist of different fertilizer and crop management. These options were studied in this dissertation. A different P management, including different rate applications and placements, did not influence the total Cd concentration in silage maize grown in Germany, regardless of the developmental stage of the crop and the Cd levels in P fertilizer. Silage maize might take up Cd derived from P fertilizers under unpolluted soils, without high risks due to its high biomass production. However, significant changes in the labile Cd fraction were already visible after applying Cd-polluted P fertilizers at 150% of the required amount to the soil after only two growing seasons. Further research should be done to understand the correlations between the bioavailable metal fraction and the actual Cd uptake by silage maize, especially in unpolluted soils. This recommendation also follows the meta- analysis results presented in the second publication, which indicated a possible bias as most of the studies are performed under polluted conditions. Considering the results of the third and fourth publication, the Cd uptake by silage maize was strongly correlated to labile Zn in the soil and the Zn uptake at the early development stage after two field seasons. Placed P fertilizer had a significant and negative effect on the Zn uptake by young silage maize. Further research is needed to understand the behavior of Cd and Zn in the uptake process by maize under P fertilization in unpolluted soils. According to three of the four publications presented in this dissertation, the soil pH was the main soil characteristic influencing the bioavailability and the plant uptake of Cd under unpolluted conditions, regardless of the P treatment, the development stage, and the maizes intended use. However, the total Cd concentration in the soil was the dominant variable for the Cd concentration in maize grain when the soil was polluted with high Cd levels, which was the case in several experiments analyzed in the second publication. P fertilizers with average Cd contamination might enhance labile Cd accumulation in arable land and crops when applied to low biomass crops, such as wheat and legume crops. In this regard, crop management such as crop rotation in the central field experiment indicated that the wheat rotation induced a lower Cd accumulation in maize-soil systems, owing to wheat likely accumulating Cd at higher levels than other crops. The results presented in the second publication also indicated high Cd accumulation by the wheat crop: the wheat grain accumulated more Cd than the maize grain. Thus, potential hazards related to Cd accumulation in wheat grain should also be considered in wheat-maize systems. In conclusion, suitable crop rotations considering the crop-specific potential of Cd accumulation, efficient P management including soil P levels and nutrient use efficiency, and low Cd-P fertilizers remain the most viable options and the main challenge to avoid Cd accumulation in arable soils.Publication Impacts of temperature increase and change in precipitation pattern on ecophysiology, biomass allocation and yield quality of selected crops(2023) Drebenstedt, Ireen; Högy, PetraClimate change poses a challenge for the production of crops in the twenty-first century due to alterations in environmental conditions. In Central Europe, temperature will be increased and precipitation pattern will be altered, thereby influencing soil moisture content, physiological plant processes and crop development in agricultural areas, with impacts on crop yield and the chemical composition of seeds. Warming and drought often occur simultaneously. The combination of multiple abiotic stresses can be synergistic, leading to additive negative effects on crop productivity. To date, little information is available from multi-factor experiments analyzing interactive effects of warming and reduced precipitation in an arable field. In addition, one major issue of studying climate change effects on crop development in the long-term is that weather conditions can vary strongly between years, e.g., with hot and dry summers in comparison to cool and wet ones, which directly affects soil moisture content and indirectly affects crop development. Thus, considering yearly weather conditions seems to be important for the analyses of climate change effects on aboveground biomass and harvestable yield of crops. The aim of the present work was to identify single and combined effects of soil warming (+2.5 °C), reduced summer precipitation amount (-25%), and precipitation frequency (-50%) on crop development, ecophysiology, aboveground biomass and yield as well as on yield quality of wheat, barley, and oilseed rape grown in the Hohenheim Climate Change (HoCC) field experiment. This thesis presents novel results from the HoCC experiment in the long-term perspective. Thus, aboveground biomass and yield data (2009-2018) of the three crops were analyzed with regard to their inter-annual variability, including annual fluctuations in weather conditions.This thesis consists of three publications. In the first and second publication a field experiment within the scope of the HoCC experiment was conducted with spring barley (Hordeum vulgare L. cv. RGT Planet) and winter oilseed rape (Brassica napus L. cv. Mercedes) in 2016 and 2017. The objective was to investigate the impacts of soil warming, altered precipitation pattern and their interactions on biomass production and crop yield. In addition, it was examined, whether the simulated climate changes affecting barley photosynthesis and the seed quality compounds of oilseed rape. In the third publication, long-term plant productivity data of wheat, barley, and oilseed rape were evaluated, including aboveground biomass and yield data from the field experiment in 2018 with winter wheat (Triticum aestivum L. cv. Rebell).Publication Landscape ecological, phytosociological and geobotanical study of eumediterranean in west of Syria(2008) Ghazal, Abdullah; Boecker, ReinhardThe Eu-Mediterranean vegetation in Syria is widespread over a large geographical area, occupying an altitudinal zone mainly from 300 to 900 m asl., but can be also found outside this range. The study area is located to the west of the longitude 37° E, where this vegetation dominates. A complete field surveying of the landscape for all regions in the study area was carried out. The environmental variables of the landscape (climate, soil, geology, land use, flora and vegetation) were analyzed in order to achieve landscape ecology grouping. The vegetation surveying was carried out according to the Braun-Blanquet method to classify the vegetation according to the phytosociological relationships through applying the ordination method of Factor Analyses of Correspondences (FAC). Integrating plant sociology with other environmental factors enabled compiling a hierarchical framework for landscape classification and mapping from a higher to a lower level of abstraction. Land units were named with reference to indicative phytosociological alliances. That mapping system uses the potential vegetation for studying areas from the national to the local scale of landscape. The legend of the map refers to the EUCORINE land cover project (2003). The Eu-Mediterranean vegetation is organized in three types: Humid and Sub-humid; Semi-arid; and Arid. The second type can be further divided into two sub-types: cold and non-cold. The following forest types can be recognized in the Eu-Mediterranean vegetation: 1. Evergreen oak forest: this is classified as Mediterranean maquis, and comprises the major part of the forest vegetation in Syria. The main element of this forest is Quercus calliprinos. This vegetation is classified into two main types: the inland vegetation type, and the humid and sub-humid vegetation type. 2. Semi-deciduous oak forest: it consists of Quercus aegilops vegetation and occurs in many sites in Syria. 3. Coniferous forest: dominated mainly by Pinus brutia as well as few small locations of natural forests of either Pinus halepensis or Cupressus sempervirens. The vegetation of Pinus brutia forests occupies a wide area especially in the western region. These forests are distinguished into three types: humid, sub-humid and semi-arid forests. 4. Non-forest Mediterranean vegetation. 5. Running water banks vegetation. 6. Steppe vegetation. The results of the current study show that the inland Quercus calliprinos vegetation is organized in two different associations, Quercus calliprinos-Crataegus azarolus and Pruneto (tourtuosa)-Quercetum calliprini (ass. nov.) in Jabal Al-Arab and the Anti-Lebanon, respectively. The Quercus calliprinos vegetation in the humid, sub-humid and non-cold semi-arid types is organized into four associations: Querco (infectoria)-Quercetum calliprini (ass. nov.), Styraco (officinalis)-Quercetum calliprini (ass. nov.), Querco (calliprinos)-Phillyreetum mediae and Pistacio (palaestina)-Quercetum calliprini. However, those relations were strong among the northern associations especially between the Pistacio (palaestina)-Quercetum calliprini and the Querco (infectoria)-Quercetum calliprini indicating that they are in different stages of the succession. However, if the maquis were kept extensively protected from human activities and were allowed to grow spontaneously, the composition of the maquis will change from a stand with a rich mixture of species to an almost pure stand of Quercus calliprinos. The richness of climax species in the Querco (infectoria)-Quercetum calliprini, which are used as phytosociological indicators for a climax forest, emphasizes that this association is the climax in the East-Mediterranean region. The Pinus brutia is one of the important species of the Syrian forests. Its forests belong to either of the two alliances: Ptosimopappo-Quercion (microphylla) and Gonocytiso-Pinion. The latter is more important in the study area; three new associations were identified to belong to it. These are: Pino (brutia)-Cistetum villosii, Pino (brutia)-Iridetum unguicularis and Pino (brutia)-Arbutetum andrachnii. Overall, 79 land units belonging to 55 land facets were recognized in this study. The dominant parent rock in the study area is calcareous which spread widely by limestone, marl and dolomite. The green rocks appear only in one area, the Baer-Bassit, by a special type of vegetation that belongs to Ptosimopappo-Quercion. The most important alliance in the study area is Quercion calliprini, which is presented by a maquis of Quercus calliprinos with sclerophyllous vegetation. However, Gonocytiso-Pinion represents the coniferous vegetation and spreads in different sizes of patches, but it has disappeared from of southern Coastal Mountains. Oleo-Ceratonion is exposed to a high level of disturbance leading it to exist only in small patches in the Thermo-Mediterranean. The effect of human activities causes high level of disturbance in all units, leading to the disappearance of many forest types.Publication Managementauswirkungen auf Reproduktion und Abundanz von Orthopteren in Streuobstwiesen(2000) Schwabe, Christiane; Böcker, ReinhardThe management of orchards is changing from farmers cutting the grass for their cattle to more timesaving ways of using the grass up to doing nothing at all. The traditional management form as well as alternatives were examined by means of animal ecology in regard to their impact on grasshoppers (Saltatoria, Acrididae). In the years 1994 - 1997 abundance and reproduction of the three species Chorthippus parallelus, Chorthippus dorsatus and Gomphocerus rufus were examined comparing to the management of grass patches. Investigation site was the Limburg (48°36´N / 9°38´E) north of the Swabian Alb (Germany). The management of the patches varied from meadows (two cuts), meadows cut two to four times with grass remaining on the ground, sheep pastures and fallow land. The usable vegetation structures for the three species were investigated in detail. The returning of the grasshoppers on a pasture after intensive sheep grazing was observed. These investigations explain species-dependent habitat preferences. Based on the population data a model was developed to describe the egg density in the soil from given samples of the population density. A method was developed, to determine the management-depending egg mortality. By caging female grasshoppers the number of eggs on defined areas in the soil is increased to simplify finding enough eggs in spring. From the management-depending density of eggs, the rate of fertile eggs in spring and the population densities of the following year a rate of larvae mortality can be calculated, which tells if the population is stable, is a source, or is a sink.Publication The need to decipher plant drought stress along the soil-plant-atmosphere continuum(2023) Schweiger, Andreas H.; Zimmermann, Telse; Poll, Christian; Marhan, Sven; Leyrer, Vinzent; Berauer, Bernd J.Lacking comparability among rainfall manipulation studies is still a major limiting factor for generalizations in ecological climate change impact research. A common framework for studying ecological drought effects is urgently needed to foster advances in ecological understanding the effects of drought. In this study, we argue, that the soil–plant–atmosphere‐continuum (SPAC), describing the flow of water from the soil through the plant to the atmosphere, can serve as a holistic concept of drought in rainfall manipulation experiments which allows for the reconciliation experimental drought ecology. Using experimental data, we show that investigations of leaf water potential in combination with edaphic and atmospheric drought – as the three main components of the SPAC – are key to understand the effect of drought on plants. Based on a systematic literature survey, we show that especially plant and atmospheric based drought quantifications are strongly underrepresented and integrative assessments of all three components are almost absent in current experimental literature. Based on our observations we argue, that studying dynamics of plant water status in the framework of the SPAC can foster comparability of different studies conducted in different ecosystems and with different plant species and can facilitate extrapolation to other systems, species or future climates.Publication Ökosystem-Funktionen als Kriterium einer Operationalisierung ökologischer Aspekte von Nachhaltigkeit?(2000) Doppler, Susanne Maria; Böcker, ReinhardIn recent times, against the background of system-theoretical principles, the description of ecosystems as complex, dynamic systems has been strongly promoted. Therefore the capacity of selforganization of ecosystems is strengthened to be integrated into environmental planning processes. The aim of the following work is to point out the limitations and possibilities given by the scientifically-based criterion 'ecosystem-functioning' in the context of sustainability. The investigations are based on a literature-supported analysis and a theoretical argument about the 'function of ecosystems' in relation to the concept of ecosystems. The results of this argument were submitted (1) to a scientific and science-theoretical analysis and criticism as well as considered in the light of (2) environmental protection issues and ethically relevant aspects of the description and observation of the natural world. The aim of this consideration was to establish to what extent the criterion 'ecosystem functioning' is suitable. The central question about limitations and possibilities of the application of the criterion is answered as follows: The criterion 'ecosystem functioning', formulated via system-theoretical principles of dynamic systems does not meet the requirements of both the natural and ethical issues given by the paradigm of sustainability. A possible alternative is to observe ecosystems and the criterion 'ecosystem-functioning' from a utilitarian position of anthroporelativism. The implementation of this perspective in the world of nature through the criterion 'ecosystem functioning' makes it possible (1) to integrate ethical issues of sustainability and (2) to maintain natural values as well as cultural ones in the countryside for this and future generations.Publication Pathways of C and N turnover in soil under elevated atmospheric CO2(2008) Dorodnikov, Maxim; Fangmeier, AndreasIn the present thesis the C and N transformations in soil as influenced by indirect effect of elevated atmospheric CO2, soil physical structure and land use change were studied in four laboratory experiments using stable-C and N isotopes, as well as soil microbiological techniques. To test the interrelations between chemical and biological characteristics of soil organic matter (SOM) as affected by land use change and elevated atmospheric CO2 an approach for SOM partitioning based on its thermal stability was chosen. In the first experiment C isotopic composition of soils subjected to C3-C4 vegetation change (grassland to Miscanthus x gigantheus, respectively) was used for the estimation of C turnover in SOM pools. In the 2nd (Free Air CO2 Enrichment ? FACE ? Hohenheim) and 3rd (FACE Braunschweig) experiments CO2 applied for FACE was strongly depleted in 13C and thus provided an opportunity to study C turnover in SOM based on its δ13C value. Simultaneous use of 15N labeled fertilizers allowed N turnover to be studied (in the 2nd experiment). We hypothesized that the biological availability of SOM pools expressed as the mean residence time (MRT) of C or N is inversely proportional to their thermal stability. Soil samples were analysed by thermogravimetry coupled with differential scanning calorimetry (TG-DSC). According to differential weight losses between 20 and 1000 °C (dTG) and energy release or consumption (DSC), SOM pools (4 to 5 depending on experiment) with increasing thermal stability were distinguished. Soil samples were heated up to the respective temperature and the remaining soil was analyzed for δ13C and δ15N by IRMS. For all three experiments the separation of SOM based on its thermal stability was not sufficient to reveal pools with contrasting turnover rates of C and N. A possible explanation for the inability of thermal oxidation for isolating SOM pools of contrasting turnover times is that the fractionation of SOM pools according to their thermal stability is close to chemical separation. In turn, it was found that chemical separations of SOM failed to isolate the SOM pools of different turnover time because different biochemical plant components (cellulose, lignin) are decomposed in a wide temperature range. Individual components of plant residues may be directly incorporated into, or even mixed with the thermal stable SOM pools and will so mask low turnover rates of these pools. To evaluate the interactions between availability of SOM for decomposition by soil microbial biomass (biological characteristic) under elevated atmospheric CO2 and protection of SOM due to the occlusion within aggregates of different sizes (physical property, responsible for SOM sequestration) we measured the activity of microbial biomass (indicated by enzyme activities) and growth strategies of soil microorganisms (fast- vs. slow growing organisms) in isolated macro- and microaggregates. The contribution of fast (r-strategists) and slowly growing microorganisms (K-strategists) in microbial communities was estimated by the kinetics of the CO2 emission from bulk soil and aggregates amended with glucose and nutrients (Substrate Induced Growth Respiration method). Although Corg and total Cmic were unaffected by elevated CO2, maximal specific growth rates were significantly higher under elevated than ambient CO2 for bulk soil, small macroaggregates, and microaggregates. Thus, we conclude that elevated atmospheric CO2 stimulated the r-selected microorganisms. Such an increase in r-selected microorganisms could increase C turnover in terrestrial ecosystems in a future elevated atmospheric CO2 environment. The activities of β-glucosidase, phosphatase and sulphatase were unaffected in bulk soil and in aggregate-size classes by elevated CO2, however, significant changes were observed in potential enzyme production after substrate amendment. After adding glucose, enzyme activities under elevated CO2 were 1.2-1.9-fold higher than under ambient CO2. This indicates an increased activity of microorganisms, which leads to accelerated C turnover in soil under elevated CO2. Significantly higher chitinase activity in bulk soil and in large macroaggregates under elevated CO2 revealed an increased contribution of fungi to turnover processes. At the same time, less chitinase activity in microaggregates underlined microaggregate stability and the difficulties for fungi hyphae penetrating them. We conclude that quantitative and qualitative changes of C input by plants into the soil at elevated CO2 affect microbial community functioning, but not its total content. Future studies should therefore focus more on the changes of functions and activities, but less on the pools. In conclusion, elevated CO2 concentrations in the atmosphere along with soil physical structure have a pronounced effect on qualitative but not quantitative changes in C and N transformations in soil under agricultural ecosystem. The physical parameters of soil such as aggregation correlate more with biological availability of SOM than the chemical properties of soil organic materials. The increase of soil microbial activity under elevated CO2 detected especially in soil microaggregates, which are supposed to be responsible for SOM preservation, prejudice sequestration of C in agroecosystems affected by elevated atmospheric CO2.Publication Performance and governance challenges of a government-funded microcredit program for the handloom weavers in Bangladesh(2019) Parvin, Mst. Tania; Birner, ReginaMicrofinance is an important policy tool for poverty reduction and employment generation in developing countries. The first microfinance institution was developed in Bangladesh in the 1970s. Since its inception, many studies have been conducted on different aspects of microfinance, such as outreach, impact and sustainability. However, these studies have mostly been limited to the performance of microcredit programs operated by non-government organizations (NGOs). Therefore, it is justified to shift the focus from NGOs to microcredit programs operated by the public sector. To fill this knowledge gap, a case study of Bangladesh Handloom Board (BHB)’s microcredit scheme has been conducted, which represents a publicly sponsored credit program targeting handloom weavers. Using a mixed methods approach, this thesis has analyzed three dimensions of the selected credit program: impact assessment, repayment performance, and governance challenges. These three topics are covered by three different papers in the thesis. The first two papers apply quantitative techniques whereas the third one adopts a qualitative approach for assessing the institutional viability. The objective of the first paper is to estimate the impact of BHB’s microcredit scheme on the handloom weaver’s investment behavior in Bangladesh. From a policy perspective, this analysis is relevant for two reasons. First, it fills the gaps in the impact assessment studies of credit which have largely neglected the government-run microcredit programs. Second, the article provides insights for the promotion and continuation of this public credit program. Using an Instrumental Variable (IV) Two-stage Least Squares (2SLS) regression model, the study findings reveal that the government credit program alone is not sufficient to increase the investment in the handloom sector of Bangladesh. The credit received from sources other than BHB was thought to be more relevant with regard to this goal. However, this result also implies that access to multiple sources of credit put borrowers into a debt trap, which makes them economically worse off after repaying loans with interest. As a result, productive investment does not take place through the credit program. This finding, however, does not imply that the credit program should be stopped. It is concluded that the credit amount available under this program for technology adoption in the handloom sector should be increased. Moreover, providing credit for power looms will facilitate a structural change from using handlooms to power looms, which may provide a more sustainable means of future livelihood for current handloom weavers. The second paper analyses the credit repayment of the BHB’s microcredit scheme. Considering that the repayment rate (which is regarded as one of the success factors of the credit program) was only 65% as of June 2015, this study identifies factors that contribute to such low repayment rate, which makes government-sponsored microcredit programs financially unsustainable. This analysis is important to guide the public credit institutions to design a better lending policy by focusing on the factors that require special attention while lending to the eligible borrowers. Using a Probit model, this study reveals that socioeconomic and community-level factors associated with the borrowers played an essential role in determining timely loan repayment. Some of these factors were beyond the control of the credit institution. In conclusion, this study suggests strengthening the loan monitoring system by opening up more branches so that the timely delivery of financial as well as non-financial services to borrowers can be assured. The third paper examines the governance challenges faced by the BHB. The analysis is based on the findings of the previous two papers. As the findings from both papers highlight the challenges of BHB, it is important to understand why such challenges occur when implementing a government-sponsored credit program and from where they exactly originate. This analysis also has implications for policy revision and reformulation of BHB, which should be guided by a better understanding of the organization-specific problems that a government-funded microcredit program is facing. These challenges are assessed by using a qualitative research method called Process Net-map. The use of this method helps to understand how the credit program is implemented in practice, which may deviate from the prescribed implementation plan. Moreover, this study analyzes the challenges that arise from the perspectives of both the supply-side and the demand-side stakeholders of BHB. The major finding of the first paper is supported by the outcome of this paper as it reveals that shortage of funds was the main obstacle for implementing BHB’s microcredit scheme, which failed to meet the clients’ financial needs. Besides this problem, the shortage of adequate staff was responsible for weak field administration, which is amplified by the lack of incentives to motivate them. Political influence and corruption in the system were also identified as central challenges. From the beneficiary-side, high opportunity cost to get loans, lack of non-financial services, inadequacy of funds, and difficulty in group formation were also major problems. A lack of transparency in information flow between groups was also noted as a problem. This paper concludes that a poorly designed program which fails to address the organization-specific challenges of government-run microcredit program will not improve the livelihood of the intended beneficiaries. Hence, the study recognizes the credit program’s need for a better legal and regulatory framework to address the governance challenges that are identified. The focus should be placed on flexible, demand-driven, bottom-up and participatory initiatives. Overall, the study concludes that government-run microcredit programs, affected by problems from large bureaucracies, face specific challenges, which tend to be larger than those faced by NGO-run microcredit programs. One possible solution may be an enhanced collaborative system that involves both public and private credit institutions as it may encourage cross-sector learning.Publication The range potential of North American tree species in Europe(2024) Albrecht, Axel Tim; Heinen, Henry; Koch, Olef; de Avila, Angela Luciana; Hinze, JonasEuropean forest ecosystems are projected to change severely under climate change especially due to an anticipated decline in the distribution of major tree species in Europe. Therefore, the adaptation of European forests appears necessary and urgent. While spontaneous adaptation mechanisms bear a large self-guided potential, we focus on quantifying the potential of management-guided mechanisms. Besides other possible tree species groups for adaptation, non-native tree species from North America have a long tradition in Europe, yet their full distribution potential is not completely revealed. We applied an ensemble species distribution model approach to six North American species, using combined occurrence data from the native and naturalized ranges to gain more insights into the species suitability in the introduced area in 2070 (2061–2080) under the emission scenarios RCP 4.5 and 8.5. Our findings support the assumption that there is unreported species potential in the introduced area beyond their current distribution. Next to northeastern range shifts projected for all species, we identified Abies grandis, Liriodendron tulipifera, Quercus rubra, and Robinia pseudoacacia with increasing range potentials in the future. P. ponderosa and P. menziesii var. menziesii are projected to show a steady and decreased range potential under RCP 4.5 and 8.5, respectively.Publication Reaktionen einer Weizen-Wildkraut Gemeinschaft auf erhöhtes CO2 im FACE Experiment: Proteomik, Physiologie und Bestandesentwicklung(2006) Weber, Simone; Fangmeier, AndreasThe enhancement of the atmospheric carbon dioxide concentration in the last 150 years due to human activities is one of the main components of global change. For the future, different scenarios predict a steadily increase of carbon dioxide in our atmosphere. As carbon dioxide is the most important carbon source for plants, higher CO2 concentrations have the potential to cause direct effects on plant metabolism and vegetation development. Until now almost all of the studies concerning the effects of elevated CO2 on plants were carried out under controlled conditions, whereas the effects under natural conditions are in-vestigated at only 33 sites worldwide. The aims of this study were to investigate the effects of elevated carbon dioxide on a plant community under natural conditions with regard of (i) the plant proteome, (ii) the plant physiology, (iii) the vegetation development and (iv) the potential interactions between these criteria. Therefore a Mini-FACE system was used to expose a plant community composed of wheat and weeds to two different treatments: (a) Ambient (ambient CO2 concentration, circa 380 ppm) and (b) FACE (Ambient + 150 ppm CO2). The study mainly focussed on the bio-chemical and physiological reactions of spring wheat (Triticum aestivum cv. Triso) as a crop species and wild mustard (Sinapis arvensis L.) as a weed species on carbon dioxide enrich-ment. The SELDI-TOF-MS technology was applied for the first time in the topic of carbon dioxide impacts on plants. The technology provides the opportunity to quantitatively and qualitatively investigate low molecular weight proteins with low abundances, which has been difficult to realise with the standardized methodology in proteomics until now. In addition to the biochemical and physiological analysis, the vegetation development was investigated continuously during the vegetation period using non-destructive methods. This included the assessment of species phenology and species dominance. The results of the performed study show that the carbon dioxide enrichment affects the protein profiles of both species wheat and wild mustard. Interestingly, many alterations in the protein concentrations were found, but no protein could be detected to be exclusively ex-pressed under CO2 treatment. The degree of modification in both species was influenced by their developmental stage. Particularly the protein profile of wheat leaves was strongly in-fluenced during generative plant development, therefore the plants seems to be highly sensitive to environmental changes during this developmental stage. Altogether three proteins were identified which were affected by CO2 treatment. The first protein, the saccharose-H+-symporter protein, was detected in the grain of spring wheat and is associated with the plant?s primary metabolism. This protein plays an important role in controlling the import of saccharose in developing grain. Consequently, elevated CO2 seems to regulate the allocation of assimilates in an active way by influencing the saccharose-H+-symporter concentration in the grain of spring wheat. Furthermore, the remaining two proteins, the PR4 protein localized in the grains and the LRR-kinase protein accumulated in the leaves of spring wheat, are associated with the secondary plant metabolism and they also responded to the elevated CO2 concentrations. These proteins are linked with defense reactions of the plants against patho-gens. The elevated CO2 concentrations caused a decrease in defense recognition in the vege-tative tissue. If the plant is infected by pathogens this down-regulation could result in a ne-gative impact. The concentration of soluble proteins and of total nitrogen decreased in the leaves of spring wheat whereas the C/N ratio increased. Despite this the relative concentration of Chlorophyll a was not affected and therefore an accelerated growth of the plants due to the carbon dioxide enrichment can be excluded. Thus the detected pattern of responses suggests an enhanced nitrogen use efficiency under increased CO2 concentrations. The biomass of single spring wheat plants was unaltered during the vegetation period whereas other investi-gations in parallel showed an enhanced growth and a greater yield of spring wheat at the end of the vegetation period. Species dominance of wheat and weeds was neither influenced in the first nor the second year of investigation with regard to CO2 enrichment. The results indicate that annual crop systems under natural conditions indeed exhibit strong reactions concerning proteomics and physiology, but not concerning the plant development probably due to a relative short time of exposition. Based on long term considerations the detected reactions of the plant proteome may play an important role in the breeding of optimal adapted plants.