Fakultätsübergreifend / Sonstige Einrichtung
Permanent URI for this communityhttps://hohpublica.uni-hohenheim.de/handle/123456789/36
Browse
Browsing Fakultätsübergreifend / Sonstige Einrichtung by Classification "630"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Acrocomia spp.: Neglected crop, ballyhooed multipurpose palm or fit for the bioeconomy? A review(2021) Vargas-Carpintero, Ricardo; Hilger, Thomas; Mössinger, Johannes; Souza, Roney Fraga; Barroso Armas, Juan Carlos; Tiede, Karen; Lewandowski, IrisAcrocomia spp., a genus of wild-growing palms in the neotropics, is rapidly gaining interest as a promising multipurpose crop. Diverse products can be derived from various components of the palm, the oils being of highest interest. Acrocomia shows similar oil yield and fatty acid composition to the African oil palm (Elaeis guineensis). It is, however, able to cope with a wider range of environmental conditions, including temporary water scarcity and lower temperatures, thus potentially a more sustainable alternative to its tropical counterpart. Acrocomia’s research history is recent compared to other traditional crops and thus knowledge gaps, uncertainty, and challenges need to be addressed. This review attempts to assess the acrocomia’s preparedness for cultivation by highlighting the state-of-the-art in research and identifying research gaps. Based on a systematic literature search following a value web approach, it (a) provides a comprehensive overview of research topics, (b) shows the development of publication activities over time and the drivers of this development, and (c) compiles main findings to assess the acrocomia’s preparedness for commercial cultivation. Our results confirm its multipurpose characteristic as a potential feedstock for manifold sectors. Research has continued to increase over the last decade, especially on A. aculeata and is driven by the interest in bioenergy. Increasing knowledge on botany has contributed to understanding the genetic diversity and genus-specific biology. This has enabled applied research on seed germination and propagation toward domestication and initial plantation activities, mostly in Brazil. Main research gaps are associated with genotype–environment interaction, planting material, crop management, and sustainable cropping systems. Overall, we conclude that acrocomia is at an early phase of development as an alternative and multipurpose crop and its up-scaling requires the integration of sustainability strategies tailored to location-based social-ecological conditions.Publication A collaborative, systems approach for the development of biomass-based value webs: The case of the acrocomia palm(2022) Vargas-Carpintero, Ricardo; Hilger, Thomas; Tiede, Karen; Callenius, Carolin; Mössinger, Johannes; Souza, Roney Fraga; Barroso Armas, Juan Carlos; Rasche, Frank; Lewandowski, IrisThe diversification of biomass resources is key to the transition towards a bioeconomy. Acrocomia spp., a neotropical genus of palms, is an example of plants’ diversity potential for a sustainable bioeconomy. Acrocomia’s adaptability to environments outside rainforests, its specific fruit properties and high yields has generated the interest of researchers and entrepreneurs, triggering its introduction as a multipurpose oil crop. Developing sustainability-oriented and knowledge-based acrocomia value webs requires a collaborative, systems approach from the outset. Fostering an inter- and transdisciplinary dialogue on acrocomia through a participatory workshop with both academic and non-academic actors contributed to this endeavor. This allowed the identification of priorities, knowledge gaps, and stakeholder roles, and served as the basis for the co-creation of a research and development roadmap. Key steps for the introduction of acrocomia include intertwined technical aspects relating to the development of planting material, cultivation systems, processing technologies and applications, market entry, and value web governance aspects. A broad collaboration among scientists, the public and private sectors, farmers, and civil society, is required for the development of acrocomia value webs. The incorporation of sustainability and a consideration of context in the design and development phases are fundamental to fostering the sustainable performance of acrocomia value webs.Publication Food informatics - Review of the current state-of-the-art, revised definition, and classification into the research landscape(2021) Krupitzer, Christian; Stein, AnthonyBackground: The increasing population of humans, changing food consumption behavior, as well as the recent developments in the awareness for food sustainability, lead to new challenges for the production of food. Advances in the Internet of Things (IoT) and Artificial Intelligence (AI) technology, including Machine Learning and data analytics, might help to account for these challenges. Scope and Approach: Several research perspectives, among them Precision Agriculture, Industrial IoT, Internet of Food, or Smart Health, already provide new opportunities through digitalization. In this paper, we review the current state-of-the-art of the mentioned concepts. An additional concept is Food Informatics, which so far is mostly recognized as a mainly data-driven approach to support the production of food. In this review paper, we propose and discuss a new perspective for the concept of Food Informatics as a supportive discipline that subsumes the incorporation of information technology, mainly IoT and AI, in order to support the variety of aspects tangent to the food production process and delineate it from other, existing research streams in the domain. Key Findings and Conclusions: Many different concepts related to the digitalization in food science overlap. Further, Food Informatics is vaguely defined. In this paper, we provide a clear definition of Food Informatics and delineate it from related concepts. We corroborate our new perspective on Food Informatics by presenting several case studies about how it can support the food production as well as the intermediate steps until its consumption, and further describe its integration with related concepts.Publication Methane reduction potential of brown seaweeds and their influence on nutrient degradation and microbiota composition in a rumen simulation technique(2022) Künzel, Susanne; Yergaliyev, Timur; Wild, Katharina J.; Philippi, Hanna; Petursdottir, Asta H.; Gunnlaugsdottir, Helga; Reynolds, Chris K.; Humphries, David J.; Camarinha-Silva, Amélia; Rodehutscord, MarkusThis study aimed to investigate the effects of two brown Icelandic seaweed samples (Ascophyllum nodosum and Fucus vesiculosus) on in vitro methane production, nutrient degradation, and microbiota composition. A total mixed ration (TMR) was incubated alone as control or together with each seaweed at two inclusion levels (2.5 and 5.0% on a dry matter basis) in a long-term rumen simulation technique (Rusitec) experiment. The incubation period lasted 14 days, with 7 days of adaptation and sampling. The methane concentration of total gas produced was decreased at the 5% inclusion level of A. nodosum and F. vesiculosus by 8.9 and 3.6%, respectively (P < 0.001). The total gas production was reduced by all seaweeds, with a greater reduction for the 5% seaweed inclusion level (P < 0.001). Feed nutrient degradation and the production of volatile fatty acids and ammonia in the effluent were also reduced, mostly with a bigger effect for the 5% inclusion level of both seaweeds, indicating a reduced overall fermentation (all P ≤ 0.001). Microbiota composition was analyzed by sequencing 16S rRNA amplicons from the rumen content of the donor cows, fermenter liquid and effluent at days 7 and 13, and feed residues at day 13. Relative abundances of the most abundant methanogens varied between the rumen fluid used for the start of incubation and the samples taken at day 7, as well as between days 7 and 13 in both fermenter liquid and effluent (P < 0.05). According to the differential abundance analysis with q2-ALDEx2, in effluent and fermenter liquid samples, archaeal and bacterial amplicon sequence variants were separated into two groups (P < 0.05). One was more abundant in samples taken from the treatment without seaweed supplementation, while the other one prevailed in seaweed supplemented treatments. This group also showed a dose-dependent response to seaweed inclusion, with a greater number of differentially abundant members between a 5% inclusion level and unsupplemented samples than between a 2.5% inclusion level and TMR. Although supplementation of both seaweeds at a 5% inclusion level decreased methane concentration in the total gas due to the high iodine content in the seaweeds tested, the application of practical feeding should be done with caution.