Hohenheim Center for Livestock Microbiome Research (HoLMiR)
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/17567
Browse
Browsing Hohenheim Center for Livestock Microbiome Research (HoLMiR) by Classification "610"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Determination of optimal phage load and administration time for antibacterial treatment(2024) Plunder, Steffen; Burkard, Markus; Helling, Thomas; Lauer, Ulrich M.; Hoelzle, Ludwig E.; Marongiu, LuigiUsing phages as antibacterials is becoming a customary practice in Western countries. Nonetheless, successful treatments must consider the growth rate of the bacterial host and the degradation of the virions. Therefore, successful treatments require administering the right amount of phage (viral load, Vφ) at the right moment (administration time, Tφ). The present protocols implement a machine learning approach to determine the best combination of Vφ and Tφ to obtain the elimination of the target bacterium from a system. Basic Protocol 1: One bacterium, one phage. Alternate Protocol 1: One bacterium, one phage (wrapping function). Alternate Protocol 2: One bacterium, one phage (wrapping function, alternative growing model). Basic Protocol 2: Two bacteria, one phage. Alternate Protocol 3: Two bacteria, one phage (launch from terminal).Publication Intestinal dysbiosis associated with non-nutritive sweeteners intake: an effect without a cause?(2025) Marongiu, Luigi; Brzozowska, Ewa; Hetjens, Svetlana; Hoelzle, Ludwig E.; Venturelli, Sascha; Brzozowska, Ewa; Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland; Hetjens, Svetlana; Department of Medical Statistics, Biomathematics and Information Processing, University Clinic Mannheim, Mannheim, Germany; Hoelzle, Ludwig E.; Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany; Venturelli, Sascha; Department of Nutritional Biochemistry, University of Hohenheim, Stuttgart, GermanyNon-nutritive sweeteners (NNS) are present in various commercial articles, from foodstuffs to oral hygiene products. Despite their alleged safety, mounting evidence indicates that NNS intake is associated with an alteration of intestinal bacterial populations (dysbiosis) in animals and humans. Since NNS are commercialized based on the assumption that they are not metabolized by human cells and negligible effect on bacterial, the insurgence of dysbiosis associated with NNS intake remains unexplained. The current review aims to assess the effect of selected NNS (acesulfame potassium, advantame, aspartame, neotame, saccharin, stevia, and sucralose) on the human intestinal microbiota. Findings from this review suggests that NNS intake is linked not only to alterations in human physiology but also to modifications of bacterial biochemistry, including the hindrance of quorum sensing pathways, in a species-specific manner. Moreover, there were suggestions that NNS could also affect the biology of phages, namely by binding to the active sites of proteins involved in the infection process and altering the induction rate of prophages. The studies gathered in the present review provide a framework for understanding how NNS might be connected to dysbiosis, both directly through alterations in bacterial biochemistry and indirectly through impaired phage activity.Publication The therapeutic potential of vitamins A, C, and D in pancreatic cancer(2025) Piotrowsky, Alban; Burkard, Markus; Schmieder, Hendrik; Venturelli, Sascha; Renner, Olga; Marongiu, LuigiThe pancreatic ductal adenocarcinoma (PDAC) is among the deadliest tumor diseases worldwide. While treatment options have generally become more diverse, little progress has been made in the treatment of PDAC and the median survival time for patients with locally advanced PDAC is between 8.7 and 13.7 months despite treatment. The aim of this review was to explore the therapeutic potential of complementing standard therapy with natural or synthetic forms of vitamins A, C, and D. The therapeutic use of vitamins A, C, and D could be a promising addition to the treatment of PDAC. For all three vitamins and their derivatives, tumor cell-specific cytotoxicity and growth inhibition against PDAC cells has been demonstrated in vitro and in preclinical animal models. While the antitumor effect of vitamin C is probably mainly due to its pro-oxidative effect in supraphysiological concentrations, vitamin A and vitamin D exert their effect by activating nuclear receptors and influencing gene transcription. In addition, there is increasing evidence that vitamin A and vitamin D influence the tumor stroma, making the tumor tissue more accessible to other therapeutic agents. Based on these promising findings, there is a high urgency to investigate vitamins A, C, and D in a clinical context as a supplement to standard therapy in PDAC. Further studies are needed to better understand the exact mechanism of action of the individual compounds and to develop the best possible treatment regimen. This could contribute to the long-awaited progress in the treatment of this highly lethal tumor entity.
