Kompetenzzentrum für Biodiversität und integrative Taxonomie (KomBioTa)
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/79
Browse
Browsing Kompetenzzentrum für Biodiversität und integrative Taxonomie (KomBioTa) by Classification "570"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Publication Competitive hierarchies in bryozoan assemblages mitigate network instability by keeping short and long feedback loops weak(2023) Koch, Franziska; Neutel, Anje-Margriet; Barnes, David K. A.; Tielbӧrger, Katja; Zarfl, Christiane; Allhoff, Korinna T.Competitive hierarchies in diverse ecological communities have long been thought to lead to instability and prevent coexistence. However, system stability has never been tested, and the relation between hierarchy and instability has never been explained in complex competition networks parameterised with data from direct observation. Here we test model stability of 30 multispecies bryozoan assemblages, using estimates of energy loss from observed interference competition to parameterise both the inter- and intraspecific interactions in the competition networks. We find that all competition networks are unstable. However, instability is mitigated considerably by asymmetries in the energy loss rates brought about by hierarchies of strong and weak competitors. This asymmetric organisation results in asymmetries in the interaction strengths, which reduces instability by keeping the weight of short (positive) and longer (positive and negative) feedback loops low. Our results support the idea that interference competition leads to instability and exclusion but demonstrate that this is not because of, but despite, competitive hierarchy.Publication Enhanced crop diversity but not smaller field size benefit bats in agricultural landscapes(2025) Hiller, Thomas; Gall, Friederike; Grass, IngoContext: Farmland biodiversity continues to decline due to the expansion and intensification of agriculture. Historically, efforts to conserve farmland biodiversity have focused on conserving habitats outside agricultural production areas. More recently, attention has turned to the conservation potential of the cropland matrix, where reducing field size and increasing crop diversity to promote crop heterogeneity can significantly benefit farmland biodiversity. Bats are one group of farmland species that have experienced dramatic declines over recent decades. Objectives: Here we investigated the effects of crop heterogeneity (crop diversity, field size) and landscape structural elements (e.g. length of linear structures, distance to forest, proportion of semi-natural habitat) on the activity of bat functional groups. Results: Increasing crop diversity led to greater bat activity, especially for open space foraging bats. However, contrary expectations, bat activity was not affected by heterogeneity in crop configuration, i.e. field edge density. Furthermore, structural landscape elements, including hedgerows and distance to forest, were important predictors of bat activity, especially for species that hunt in highly cluttered spaces. While crop diversity clearly benefited bat activity, the lack of effect of crop configurational heterogeneity on bat foraging activity may suggest heterogeneityarea trade-offs and intensive pesticide use in small-scale vegetable production. Conclusions: Therefore, in addition to maintaining high levels of crop diversity, promoting hedgerows and tree lines between farmland and woodland may facilitate bat activity across the agricultural landscape matrix. The combination of high crop heterogeneity and structural elements provides favorable hunting grounds for bats and may promote their conservation in agricultural landscapes.Publication High genetic diversity of Echinococcus canadensis G10 in northeastern Asia: Is it the region of origin?(2023) Wassermann, Marion; Addy, Francis; Kokolova, Ludmila; Okhlopkov, Innokentiy; Leibrock, Sarah; Oberle, Jenny; Oksanen, Antti; Romig, ThomasEchinococcus canadensis consists of 4 genotypes: G6, G7, G8 and G10. While the first 2 predominantly infect domestic animals, the latter are sylvatic in nature involving mainly wolves and cervids as hosts and can be found in the northern temperate to Arctic latitudes. This circumstance makes the acquisition of sample material difficult, and little information is known about their genetic structure. The majority of specimens analysed to date have been from the European region, comparatively few from northeast Asia and Alaska. In the current study, Echinococcus spp. from wolves and intermediate hosts from the Republic of Sakha in eastern Russia were examined. Echinococcus canadensis G10 was identified in 15 wolves and 4 cervid intermediate hosts. Complete mitochondrial cytochrome c oxidase subunit 1 (cox1) sequences were obtained from 42 worm and cyst specimens from Sakha and, for comparison, from an additional 13 G10 cysts from Finland. For comparative analyses of the genetic diversity of G10 of European and Asian origin, all available cox1 sequences from GenBank were included, increasing the number of sequences to 99. The diversity found in northeast Asia was by far higher than in Europe, suggesting that the geographic origin of E. canadensis (at least of G10) might be northeast Asia.Publication Rainforest fragmentation decreases the robustness of plant‐frugivore interaction networks(2025) Becker, David; Li, Wande; Gurung, Ashtha; Rodriguez Martinez, Eduardo; Rojas, Emmanuel; Rodríguez‐Herrera, Bernal; Vollstädt, Maximilian G. R.; Grass, Ingo; Hiller, Thomas; Becker, David; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany; Li, Wande; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany; Gurung, Ashtha; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany; Rodriguez Martinez, Eduardo; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany; Rojas, Emmanuel; Reserva Biológica Tirimbina, Heredia, Costa Rica; Rodríguez‐Herrera, Bernal; Escuela de Biología y Centro de Investigación en Biodiversidad y Ecología Tropical (CIBET), Universidad de Costa Rica, San José, Costa Rica; Vollstädt, Maximilian G. R.; Instituto Mediterráneo de Estudios Avanzados (CSIC‐UIB), Mallorca, Balearic Islands, Spain; Grass, Ingo; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, Germany; Hiller, Thomas; Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart, GermanyTropical rainforests are biodiversity hotspots that provide a variety of ecosystem functions and services. Seed dispersal by fruit‐eating birds is an important ecosystem process in the regeneration of tropical rainforests, which is increasingly threatened by widespread deforestation. In particular, the expansion of agricultural land often leads to forest fragmentation, which can have a negative impact on the interactions between plants and frugivores and thus on seed dispersal. However, little is known about how forest fragmentation affects the structure and robustness of plant–frugivore interaction networks. Here, we examined the effects of forest fragmentation on species richness of frugivorous birds interacting with focal tree species, and the structure and robustness of plant–frugivore interaction networks in the tropical lowland forests of northern Costa Rica. Species richness of frugivorous birds at the forest edges increased with fragment size and forest cover in the surrounding landscape as well as with local fruit availability. Modularity and robustness of plant–frugivore networks increased with enhanced fragment size and forest cover, while network specialization (H2′) increased only with greater forest cover. Additionally, the three common tanager species ( Ramphocelus passerinii , Thraupis palmarum , and Thraupis episcopus ) were identified as key bird species for network functioning by promoting among‐module and within‐module connectivity. Conservation measures should therefore not only focus on threatened specialist species, but more on the key species that enhance network structure and consequently increase the robustness of these trophic interaction networks. Ultimately, our study demonstrates that tropical forest fragmentation simplifies network structure, making these interactions more vulnerable to anthropogenic disturbances.Publication Reduced body mass in a highly insectivorous mammal, the garden dormouse — ecological consequences of insect decline?(2025) Erhardt, Stefanie; Förschler, Marc I.; Fietz, JoannaBiodiversity is decreasing worldwide, and early indicators are needed to identify endangered populations before they start to decline in abundance. In mammals, body mass (BM) is regarded as an indicator of fitness, and its loss is used as an early warning signal preceding population decline. The garden dormouse ( Eliomys quercinus , Gliridae, BM: 60–110 g) is a small mammalian hibernator that has disappeared from over 50% of its former range in the last decades. The aim of this study was to investigate whether garden dormice from a presumably thriving and stable population already show early warning signals, which may precede a population decline. We therefore conducted capture‐mark‐recapture studies during 2003–2005 (Period 1) and 2018–2021 (Period 2) in the Northern Black Forest, one of its last natural distribution areas in Germany. We collected fecal samples, measured BM, and tibia length as a proxy for size and age. Results revealed that in Period 2 adult dormice had a significantly lower (12%) pre‐hibernation BM, corrected for body size, and juveniles showed a significantly lower BM gain after weaning than nearly two decades ago. Fecal samples collected in Period 2 showed that arthropods represented the main food residues in fecal samples during juvenile growth and pre‐hibernation fattening. Ambient temperature during hibernation showed no correlation with BM at emergence. We could not detect a phenological time shift in reproduction; however, we found only one birth peak in Period 2, compared with two birth peaks in Period 1. Observed changes in BM and reproduction pattern represent early warning signals, as they point to an insufficient availability of high‐quality food, which prevents dormice from meeting their nutritional requirements, with potentially serious consequences for their reproductive success and survival. As arthropods are the dominant food resource, their decline may at least partly explain this phenomenon.Publication Trade‐offs among restored ecosystem functions are context‐dependent in Mediterranean‐type regions(2025) Fiedler, Sebastian; Perring, Michael P.; Monteiro, José A.; Branquinho, Cristina; Buzhdygan, Oksana; Cavieres, Lohengrin A.; Cleland, Elsa E.; Cortina‐Segarra, Jordi; Grünzweig, José M.; Holm, Jennifer A.; Irob, Katja; Keenan, Trevor F.; Köbel, Melanie; Maestre, Fernando T.; Pagel, Jörn; Rodríguez‐Ramírez, Natalia; Ruiz‐Benito, Paloma; Schurr, Frank M.; Sheffer, Efrat; Valencia, Enrique; Tietjen, Britta; Fiedler, Sebastian; Freie Universität Berlin, Theoretical Ecology, Institute of Biology, Berlin, Germany; Perring, Michael P.; UKCEH (UK Centre for Ecology and Hydrology), Environment Centre Wales, Bangor, UK; Monteiro, José A.; Freie Universität Berlin, Theoretical Ecology, Institute of Biology, Berlin, Germany; Branquinho, Cristina; cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Buzhdygan, Oksana; Freie Universität Berlin, Theoretical Ecology, Institute of Biology, Berlin, Germany; Cavieres, Lohengrin A.; Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción and Institute of Ecology and Biodiversity (IEB), Concepción, Chile; Cleland, Elsa E.; Ecology, Behavior & Evolution Department, University of California, San Diego, La Jolla, CA, USA; Cortina‐Segarra, Jordi; Department of Ecology and IMEM, University of Alicante, Alicante, Spain; Grünzweig, José M.; Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel; Holm, Jennifer A.; Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Irob, Katja; Freie Universität Berlin, Theoretical Ecology, Institute of Biology, Berlin, Germany; Keenan, Trevor F.; Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Köbel, Melanie; cE3c – Centre for Ecology, Evolution and Environmental Changes & CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Maestre, Fernando T.; Environmental Sciences and Engineering, Biological and Environmental Science and Engineering 34 Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia; Pagel, Jörn; Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany; Rodríguez‐Ramírez, Natalia; IMBE, Aix Marseille Université, Avignon Université, Marseille, France; Ruiz‐Benito, Paloma; Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, Alcalá de Henares, Spain; Schurr, Frank M.; Institute of Landscape and Plant Ecology, University of Hohenheim, Stuttgart, Germany; Sheffer, Efrat; Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel; Valencia, Enrique; Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain; Tietjen, Britta; Freie Universität Berlin, Theoretical Ecology, Institute of Biology, Berlin, GermanyGlobal biodiversity hotspots, including Mediterranean‐type ecosystems worldwide, are highly threatened by global change that alters biodiversity, ecosystem functions, and services. Some restoration activities enhance ecosystem functions by reintroducing plant species based on known relationships between plant traits and ecosystem processes. Achieving multiple functions across different site conditions, however, requires understanding how abiotic factors like climate and soil, along with plant assemblages, influence ecosystem functions, including their trade‐offs and synergies. We used the ModEST ecosystem simulation model, which integrates carbon, water, and nutrient processes with plant traits, to assess the relationships between restored plant assemblages and ecosystem functions in Mediterranean‐type climates and soils. We investigated whether maximised carbon increment, water use efficiency, and nitrogen use efficiency, along with their trade‐offs and synergies, varied across different abiotic contexts. Further, we asked whether assemblages that maximised functions varied across environments and among these functions. We found that maximised ecosystem carbon increment and nitrogen use efficiency occurred under moist, warm conditions, while water use efficiency peaked under drier conditions. Generally, the assemblage that maximised one function differed from those for other maximised functions. Synergies were rare, except between water and nitrogen use efficiencies in loam soils across most climates. Trade‐offs among maximised functions were common, varying in strength with abiotic context and plant assemblages, and were more pronounced in sandy loam soils compared to clay‐rich soils. Our findings suggest that due to variation in abiotic conditions within and across Mediterranean‐type regions at the global scale, site‐specific plant assemblages are required to maximise ecosystem functions. Thus, lessons from a single site cannot be transferred to another site, even where the same plant functional types are available for restoration. Our simulation results offer valuable insights into potential ecosystem performance under specific abiotic conditions following restoration with particular plant functional types, thereby informing local restoration efforts.
