Institut für Kulturpflanzenwissenschaften
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/12
Browse
Browsing Institut für Kulturpflanzenwissenschaften by Journal "Agriculture"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Application of infrared imaging for early detection of downy mildew (Plasmopara viticola) in grapevine(2022) Zia-Khan, Shamaila; Kleb, Melissa; Merkt, Nikolaus; Schock, Steffen; Müller, JoachimLate detection of fungal infection is the main cause of inadequate disease control, affecting fruit quality and reducing yield of grapevine. Therefore, infrared imagery as a remote sensing technique was investigated in this study as a potential tool for early disease detection. Experiments were conducted under field conditions, and the effects of temporal and spatial variability in the leaf temperature of grapevine infected by Plasmopara viticola were studied. Evidence of the grapevine’s thermal response is a 3.2 °C increase in leaf temperature that occurred long before visible symptoms appeared. In our study, a correlation of R2 = 0.76 at high significance level (p ≤ 0.001) was found between disease severity and MTD. Since the pathogen attack alters plant metabolic activities and stomatal conductance, the sensitivity of leaf temperature to leaf transpiration is high and can be used to monitor irregularities in temperature at an early stage of pathogen development.Publication Effects of stand density and N fertilization on the performance of maize (Zea mays L.) intercropped with climbing beans (Phaseolus vulgaris L.)(2022) Villwock, Daniel; Kurz, Sabine; Hartung, Jens; Müller-Lindenlauf, MariaMaize is Germany’s most important fodder and energy crop. However, pure maize cultivation has ecological disadvantages. Moreover, its yield is low in crude protein, an important feed quality parameter. Maize–bean intercropping can potentially address both issues. A bean variety specially developed for intercropping was first introduced in 2016. Using this variety, a network of institutions conducted 13 field trials from 2017 to 2020 on four sites in Germany. We sought to determine the effects of stand density and nitrogen (N) fertilization on dry matter yield, crude protein yield, and soil mineral N content (Nmin) at harvest of intercropped vs. pure maize. The three intercropping bean densities we tested (7.5, 5.5, and 4 plants/m2) produced non-significantly different yields of dry matter or crude protein, given a maize density of 7.5–8 plants/m2. Intercropping was inferior to pure maize in dry matter yield, but non-significantly different in crude protein yield. Under neither cropping strategy were significant losses in dry matter or crude protein yield recorded with reduced compared to full N fertilization. At full fertilization, however, both pure maize systems and the 8/4 maize–bean intercrop system left significantly higher Nmin at harvest than the other variants of the corresponding system or N fertilization level and thus an increased risk of nitrate leaching. We encourage further optimization of yield performance in maize–bean intercropping, e.g., through breeding or promotion of biological N fixation via rhizobia inoculation. Furthermore, we recommend reducing N fertilization levels in maize cultivation.Publication Efficiency of phosphorus fertilizers derived from recycled biogas digestate as applied to maize and ryegrass in soils with different pH(2022) Bach, Inga-Mareike; Essich, Lisa; Bauerle, Andrea; Müller, TorstenThree phosphorus (P) fertilizer fractions recycled from biogas digestates were tested alone and in combination for their efficiency in two agricultural surface soils with different pH: a silty sandy loam and a clay loam. The experiments were carried out in pots under greenhouse conditions, using mineral triple superphosphate (TSP) as a reference. Maize was cultivated for 50 days, followed by ryegrass cultivation for an additional 84 days in the same soil, without additional fertilization. The variables investigated were above-ground plant biomass production, plant phosphorus concentration and content, and plant available phosphorus concentration in soil. The dry matter (DM) yield of maize was increased by the organic P fertilizers equal to or more than TSP in both soils. In the neutral soil, biomass was almost doubled compared to TSP when using one of the fractions (Struvite containing P-Salt) alone or in combination with dried solid fractions. P concentration in maize cultivated in the neutral soil was not significantly different between the P fertilization treatments. However, associated with biomass increase, the total P content in maize plants was equal to or higher than that with TSP. In the acidic soil, P concentration and total P content in maize plants, as well as the calcium-acetate-lactate extractable P (CAL-P) concentration in soil, were equal to or even higher than TSP. Ryegrass DM yield was unaffected by all P fertilizers, independent of the soil, although P concentration and total P content increased in the acidic soil with all fertilizers. Our results show that recycled P fertilizers from biogas digestates are effective P fertilizer alternatives to mineral TSP for maize cultivation under acidic and neutral soil conditions. The lack of growth effects in ryegrass indicates that recycled P fertilizers do not require changes in weed control. On the other hand, P extraction by ryegrass in overfertilized acidic soils as an option for soil remediation also works in soils fertilized with biogas digestate fractions.Publication Phosphate fertilizer type and liming affect the growth and phosphorus uptake of two maize cultivars(2023) Ning, Fangfang; Nkebiwe, Peteh Mehdi; Hartung, Jens; Munz, Sebastian; Huang, Shoubing; Zhou, Shunli; Graeff-Hönninger, SimoneIn the context of phosphorus (P) exhaustion and low P use efficiency (PUE) in crop production, a field trial was designed on a low-P soil in southwestern Germany in 2020 and 2021 to investigate the effects of P fertilizer type and liming on maize growth and P uptake and PUE. The experimental factors were (i) two P fertilizer types, rock phosphate (RP) and diammonium phosphate (DAP); (ii) lime application, lime and no lime; and (iii) two maize cultivars. The results showed that RP resulted in a lower leaf area index and light interception compared with DAP, a 33% lower silage yield, and a 29% lower P content at harvest. The PUE of RP was 18%, which was 37% lower than DAP. Soil liming reduced shoot biomass and led to 35% less shoot P content at the six-leaf stage. The maize cultivar Stabil expressed higher yielding and P acquisition characteristics. In conclusion, DAP cannot be replaced by placed RP, regardless of the lime application in silage maize production in this study. Future research on the PUE of maize cultivars should also consider root characteristics in response to P fertilizer type and soil pH.