Institut für Biologie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/81
Browse
Browsing Institut für Biologie by Journal "Ecology and evolution"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Influence of ambient temperature on the phenology of the greater mouse‐eared bat (Myotis myotis)(2023) Matthäus, Laura; Kugelschafter, Karl; Fietz, JoannaIn order to assess the consequences of climate change and evaluate its impacts on wildlife, it is essential to do so on a species-specific level. It is assumed that changes in the ambient temperature influence energy consumption as well as food availability and thus foraging behavior, reproduction, survival, and therefore population dynamics in bats. Based on this assumption, the present study aims to gain insights into the roosting and breeding behavior of the greater mouse-eared bat (Myotis myotis) in relation to changes of the ambient temperature. For this purpose, we investigated the effect of ambient temperature on the phenology of the greater mouse-eared bat by using activity data of the bats collected using light barriers at the maternity roosts. The light barrier used in this study is a system that detects the interruption of two light beams, for example, by a flying bat, and displays it as an electrical signal. The investigations have shown that 1. the higher the winter temperatures, the earlier the greater mouse-eared bats returned to the roosts to form the maternity colony; however, this was only true for ambient temperatures below 0.5°C, 2. birth season started earlier at higher spring temperatures, 3. the dissolution of maternity roosts occurred earlier with earlier birth season and at higher ambient temperatures during lactation. The results revealed that ambient temperature has an influence on the phenology of the greater mouse-eared bat. Depending on the respective life history stage, an increase in ambient temperature can have a positive or negative effect on the fitness of the animals. In recent years, mild winters have been recorded more frequently, which can have an influence on the behavior of bats. Warm winters within certain limits seem to lead to an earlier formation of the maternity colony, which can be positive or negative for the bats depending on persistent weather conditions and thus insect availability. In the course of climate change, we can also expect earlier spring events and an increase in spring temperature, as well as hot spells in summer. These warm springs and summers seem to lead to an earlier beginning of births, a faster development of the juveniles and an earlier dissolution of the maternity roost. An advance of reproductive activities can be assumed to increase the chance to survive the following winter in both mothers and their young, as they have more time to build up sufficient energy reserves for hibernation before winter starts. Due to the climatic changes, phenological changes of the bats be expected. This study highlights that in order to understand the impact of climate change on biodiversity, it is necessary to investigate in detail effects on a species-specific level and also to consider direct and indirect effects of ambient temperature on different life history stages.Publication New species based on the biological species concept within the complex of Lariophagus distinguendus (Hymenoptera, Chalcidoidea, Pteromalidae), a parasitoid of household pests(2023) Pollmann, Marie; Kuhn, Denise; König, Christian; Homolka, Irmela; Paschke, Sina; Reinisch, Ronja; Schmidt, Anna; Schwabe, Noa; Weber, Justus; Gottlieb, Yuval; Steidle, Johannes Luitpold MariaThe pteromalid parasitoid Lariophagus distinguendus (Foerster) belongs to the Hymenoptera, a megadiverse insect order with high cryptic diversity. It attacks stored product pest beetles in human storage facilities. Recently, it has been shown to consist of two separate species. To further study its cryptic diversity, strains were collected to compare their relatedness using barcoding and nuclear genes. Nuclear genes identified two clusters which agree with the known two species, whereas the barcode fragment determined an additional third Clade. Total reproductive isolation (RI) according to the biological species concept (BSC) was investigated in crossing experiments within and between clusters using representative strains. Sexual isolation exists between all studied pairs, increasing from slight to strong with genetic distance. Postzygotic barriers mostly affected hybrid males, pointing to Haldane's rule. Hybrid females were only affected by unidirectional Spiroplasma‐induced cytoplasmic incompatibility and behavioural sterility, each in one specific strain combination. RI was virtually absent between strains separated by up to 2.8% COI difference, but strong or complete in three pairs from one Clade each, separated by at least 7.2%. Apparently, each of these clusters represents one separate species according to the BSC, highlighting cryptic diversity in direct vicinity to humans. In addition, these results challenge the recent ‘turbo‐taxonomy’ practice of using 2% COI differences to delimitate species, especially within parasitic Hymenoptera. The gradual increase in number and strength of reproductive barriers between strains with increasing genetic distance also sheds light on the emergence of barriers during the speciation process in L. distinguendus.