Institut für Sonderkulturen und Produktionsphysiologie
Permanent URI for this collectionhttps://hohpublica.uni-hohenheim.de/handle/123456789/43
Browse
Browsing Institut für Sonderkulturen und Produktionsphysiologie by Person "Blaich, Rolf"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Publication Mechanisms of frost adaptation and freeze damage in grapevine buds(2002) Badulescu Valle, Radu Virgil; Blaich, RolfMechanisms of frost hardening in compound (latent) buds of the grapevine cultivar ?Bacchus? were tested with different methods during three winters. The investigated parameters were LTE/HTE (low temperature exotherm/high temperature exotherm), water content, starch, sugar- and anions combination and bud histology. Water content from wood and buds was determined regularly every 2 weeks from March 1998 until Mai 2000. The lowest water content in wood and buds (about 40 %) was found between November and February. In general shoot sections and buds from the apical shoot area contained less water than in the basal area. Sugars and anions were analyzed with HPLC. The highest concentrations of soluble sugars were found in basal buds of the shoot, the lowest concentration in buds of the apical shoot area. Sucrose was the predominant soluble sugar, it was accompanied by glucose, fructose, sucrose, raffinose, and also stacchyose which was hitherto not described for grapevine buds. The concentration of soluble sugars increased during autumn and reached its maximum (around 150 mg/g dry matter) in November/December until the beginning of January then it decreased again to around 30 mg/g at bud burst. The predominant anion was sulphate while chloride could be detected only in traces. The anions reached their maximum at the beginning of January and in mid April. To evaluate the exotherm measuring method, model experiments were carried out with water drops (1µl) on filter paper and with small plant parts (leaf, stems, flower parts). Both the plant parts and the destilled water on the cellulose fiber freeze mainly between ?8 and ?15°C (an influence of the low osmotic value of the plant sap could not be found). After the first freezing the specimen were thawed and freezing repeated. The freezing points of the first and the second freezing cycle were significantly correlated. This shows that freezing does not occur at random, but is determined by ice nucleation sites characteristic for each sample. These sites even survive the physical destruction of the cells by the ice cristals. Further model experiments were carried out to get indications on possible barriers to ice cristal growth in plant tissue. Exotherm analysis was used to determine the freezing point of grapevine buds which is accompanied by a transient temperature rise called exotherm. The grapevine buds show 2 or more exotherms, one or two HTEs (high temperature exotherms) between ? 5 °C and ?10°C and the LTE (low temperature exotherm, sometimes more than one ) between ?10°C and ?25°C depending on the frost adaption of the buds. The HTEs are assumed to indicate the freezing of surface water or apoplastic water in the subtending tissue (bud pad), whereas the LTE (or LTEs) seem to be caused by freezing of the primary (and secondary) buds (shoot primordiy of the compound bud). The temperature minimum of the LTEs (down to ? 25 °C) is reached in January/February and is not influenced by humidity which, however, changes the THE values occuring usually around ? 10 ° and ? 4 °C, which are influenced by water in the bud scales. The LTEs of the buds in the lower area of the shoot were higher as compared to the buds in the middle and upper area of the shoot. The LTE analysis clearly shows the frost adaptation of the latent buds which usually reaches a maximum by the end of January but a clear relation to the changing air temperatures could not be established. Histological and cytological analyses were used to test for frost damage in bud parts and for changes during the cold adaptation. A modified staining method was developed to differentiate the cells. During automn and winter the buds contained a lot of starch grains which dissolved at bud burst. A permeability barrier between bud pad and shoot primordia could not be found, however it could be directly shown, that a HTE causes no cell damage in the buds, while after the appearence of the LTE(s) a disintegration of protoplasts in primary and secondary buds could be found. This is a direct evidence that LTEs indicates the death of the eyes in the complex grapevine bud. If after the appearance of the HTE the buds were held one day at this temperature before further cooling, no LTEs would appear. This and similar observations during the frost storage of grapevine cuttings is discussed in terms of the (harmless) ice formation in the bud base at moderate minus temperatures which would result in a freeze drying effect due to the lower water potential of the bud pad (in comparison to the non frozen eyes) and a further increase of the frost resistance of the growing points. If frost adapted grapevine shoots from the field were kept at 20°C deacclimation occurred after about 10 days. Accidentally wetted buds showed exotherms above ?4°C. In these buds and the watering water ice nucleating bacteria (Pseudomonas fluorescens) could be found.Publication Molecular evidence of intraclonal variation and implications for adaptational traits of grape phylloxera populations (Daktulosphaira vitifoliae, Fitch)(2007) Vorwerk, Sonja; Blaich, RolfGrape phylloxera (Daktulosphaira vitifoliae Fitch; Homoptera: Phylloxeridae) is an economical important insect pest of grapevine (Vitis spp.) worldwide. The insect was introduced with contaminated plant material from North America in the 1850s and spread rapidly across all European viticultural regions. In the 19th century, nearly three-forths of the ungrafted and highly susceptible European grape species were destroyed by the insect pest. European viticulture did not recover until the development of grafting, combining European Vitis vinifera varieties with resistant rootstocks, bred from American Vitis species. Grape phylloxera is still present in viticulture. Today, grape phylloxera populations mainly persist in abandoned vineyards and rootstock nurseries. Grape phylloxera populations seem to be variable in terms of genotypic composition and host adaptability. The lifecycle described by Fitch (1854) and others in the 19th century does not seem to match actual conditions anymore. This thesis aimed at redefining the genetic structure of European grape phylloxera populations by employing genetic markers. It was shown, that the insect has turned away from its classical holocycle and now mainly reproduces asexually, as already demonstrated for Australian grape phylloxera populations. Despite asexual reproduction, all examined populations revealed a high grade of genotypic diversity. The reports on the emergence of new and more aggressive strains raised the question, how a population composed of asexually reproducing organisms would change and adapt to such an extent. Using a multilocus marker system, eight single founder lineages were genetically monitored over at least 15 generations. All lineages revealed a high grade of intraclonal variation. Sequencing of polymorphic fragments showed, that the genetic variation was not due to contaminating plant or bacterial DNA, but was due to variation within the insect genome. Furthermore, mutations occured already in early generations and were not observed to accumulate in later generations. Mutations were rather generated constantly and only few mutation specific markers were identified to be stable over all following generations. The here documentated genetic variation reveals the great adaptational potential of this insect pest. The adaptability of single founder lineages was further assessed by measuring physiological parameters in single isolation chambers in the greenhouse. Parameters as the number of surviving individuals per generation, the number of eggs or the number of ovarioles per generation exposed differences in performance among the lineages and also within the lineages a high grade of intraclonal variation. A direct correlation of specific multilocus markers and particularly adapted individuals or lineages was not possible in this assay. Two markers, though, were observed to occure in several lineages which performed well on the new host plant. These markers may be a first step to the development of adaptation-related markers and need to be tested on further populations and host plants. When analysing intraclonal variation, the question of putative contaminating factors within the system arises. Symbiotic bacteria occuring in nearly all aphid species certainly are the first to be suspected as a source of genetic variation among single individuals tested. Endosymbiotic bacteria, as Buchnera aphidicola in other aphid species, influencing nutritional condition and fitness of the insect population, were not identified in D. vitifoliae. A bacterium, closely related to Pantoea agglomerans, however, was identified in several grape phylloxera populations, using universal 16S rDNA primers and later specifically developed markers, which were also employed for in situ hybridization. The bacterium was localized in the salivary pump of D. vitifoliae. PCR analysis of in vitro reared populations revealed that the bacterium is present in root- and leaf-feeding parthenogenetic populations of grape phylloxera and, moreover, seems to be transmitted from generation to generation. In other insect species, this bacterium has been demonstrated to produce antifungal and antibacterial substances, which were also found in first in vitro tests with grape phylloxera associated bacteria. The insect may benefit from the antagonistic potential of these bacteria. P. agglomerans may be a further participant in the certainly complex interaction of grape phylloxera and grapevine. This thesis represents a broad approach to elucidate the development of grape phylloxera populations in Europe. Using new molecular marker systems, it has become possible to gain more information on the genetic structure of the insect and its adaptational potential. The predominant clonal reproduction mode of the insect confronts grapevine breeders and pest management with the task to continously develop new resistant rootstocks and to keep up with new pest management systems.Publication Untersuchungen zur Abundanz der Reblaus (Dactylosphaera vitifolii Shimer) und zur Nodositätenbildung in Abhängigkeit von Umweltfaktoren(2000) Kopf, Andreas; Blaich, RolfThe aim of the examinations was to investigate the abundance of Phylloxera (Dactylosphaera vitifolii Shimer), the occurrence of different biotypes of Phylloxera, the reaction of rootstocks to the infestation by Phylloxera and the influence of abiotic environmental conditions on the interaction between insect and plant. To investigate this interaction galls on rootlets (nodosities) and leaf galls were examined. The abundance of Phylloxera and the issue of the holocyclical reproduction in the wine region palatinate were evaluated in a field monitoring. In a special field trial the occurrence of different stages of Phylloxera and their damages on the rootstock were registered. With a dual aseptical in vitro system Phylloxera of different origins were examined on their aggressiveness to different varieties of rootstocks. In pot trials the influence of the type of soil and the effect of N-fertilization on the development of nodosities were investigated. The results of the examination show that Phylloxera can be found in nearly every part of the palatinate and that the improper cultivation of grafted rootstocks promotes the spreading of Phylloxera. Through shoots of rootstocks ? as they can be found in vineyards run wild - a holocyclical development of Phylloxera is made possible under appropriate climatical circumstances. Fitness, population dynamics of Phylloxera and the number of nodosities caused by the insects are correlating with their adaptation to a host rootstock. Pot studies have demonstrated that Phylloxera populations develop better in clay soil than sandy soil. High densities of Phylloxera in combination with a lack of N-supply increase a growth depression on grafted roots. It could also be proved that N-fertilization reduces the Phylloxera populations and the development of nodosities up to 98 %.Publication Untersuchungen zur physikalischen Kartierung des Genoms der Weinrebe(2000) Böhm, Andreas; Blaich, RolfIn this study research on physical mapping of the grapevine genome was done and a method for preparation of high molecular weight DNA from Vitis-protoplasts was established. In the first part of the project the usefulness of megarestriction-fragments for physical mapping in different grapevine-varieties was analyzed. Hybridization experiments with a probe for repetitive DNA showed that most of the restriction fragments were only about 200 Kb in length with a maximum of 400 Kb. Due to the distance of 300 Kb/cM in the genome of Vitis most fragments only cover a distance of less than 1 cM. For this reason physical mapping with megarestriction-fragments would be less successful. As an alternative strategy for physical mapping a genomic BAC-library was constructed for the variety 'Vidal blanc' which is less sensitive to fungal pathogens. 800 BAC-clones with an average insert size of about 49 Kb have been randomly picked and analyzed. After transforming the complete ligation-mixture 30000 single BACs are expected. They represent more than 3-fold genomesize of Vitis and each single-copy sequence would be contained in the library with a probability of 95 For a first screening of the partial library specific probes for genes from the metabolism of plants or for genes with correlation to pathogen resistance have been developed. The amplification of partial sequences from these Vitis-genes was done with specific oligonucleotides. The PCR-products have been cloned and sequenced. A special probe specific for chloroplast-DNA was used to detect BACs with inserts from the genome of chloroplasts. As a first result of colony-hybridization experiments eight clones with inserts of chloroplast-DNA could be identified. One BAC-clone contains a gene similar to an osmotin-like protein.