Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Almuhammad, Mervat"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Comparative assessment of ethanol production from six typical German waste baked products
    (2024) Almuhammad, Mervat; Kölling, Ralf; Einfalt, Daniel
    This study investigates the potential for bioethanol production of six types of typical German leftover baked products: bread rolls, pretzel rolls, fine rye bread, white bread, pastry, and cream cakes. The experimental setup consisted of two experiments—one as a control and another with the addition of diammonium phosphate (DAP) to the mash. In terms of monosaccharide concentration at 30% dry matter (DM), white bread mash exhibited the highest level at 251.5 g/L, while cream cakes mash had the lowest at 186 g/L. The highest ethanol production occurred after 96 h of fermentation with rye bread, yielding 78.4 g/L. In contrast, despite having the highest monosaccharide levels, white bread produced only 21.5 g/L of ethanol after 96 h. The addition of DAP accelerated monosaccharide consumption in all baked products, with cream cakes completing the process in just 24 h. Bread rolls, pretzel rolls, pastry, and white bread fermentations finished within 72 h. Ethanol yields significantly increased in three DAP samples, with pretzel rolls yielding the highest ethanol concentration at 98.5 g/L, followed by white bread with 90.6 g/L, and bread rolls with 87.7 g/L. DAP had a substantial impact on all samples, reducing fermentation time and/or increasing ethanol yield. This effect was particularly pronounced with white bread, where it improved conversion efficiency from 17 to 72%, resulting in 90.6 g/L of ethanol. These results demonstrate that waste baked products hold substantial potential for bioethanol production, and this potential can be further enhanced through the addition of DAP.
  • Loading...
    Thumbnail Image
    Publication
    Effect of liquefaction temperature and enzymatic treatment on bioethanol production from mixed waste baked products
    (2025) Almuhammad, Mervat; Kölling, Ralf; Einfalt, Daniel
    This study investigates the effect of different liquefaction temperatures (50–70 °C) and four commercial enzyme formulations on glucose release and subsequent ethanol yield, using mixed waste baked products as a substrate. Among the enzymes tested, Amylase GA 500 proved to be superior in the hydrolysis of starch at lower temperatures (50 °C and 55°C). At higher liquefaction temperatures (65 °C and 70°C) all four enzyme preparations showed comparable activity. The highest glucose concentration (205.7 g/L) and the highest ethanol yield (92 g/L) were achieved with Amylase GA 500 at 65 °C. Its superior performance is attributed to the synergistic activity of α-amylase and glucoamylase, which facilitates efficient starch hydrolysis. Crucially, we discovered that the liquefaction temperature profoundly affects fermentation speed independently of the initial glucose concentration or the enzyme preparation used for starch hydrolysis. This novel mechanistic insight suggests that higher temperature treatment either makes an additional factor crucial for yeast fermentation available or depletes/destroys an inhibitor present in the complex waste bakery product matrix. These findings highlight the critical role of temperature and enzyme formulation in optimizing bioethanol production from bakery waste, supporting the development of more sustainable and efficient waste-to-biofuel processes.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy