Browsing by Person "Berg, Christoph"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Advancing 2D fluorescence online monitoring in microtiter plates by separating scattered light and fluorescence measurement, using a tunable emission monochromator(2023) Berg, Christoph; Busch, Selma; Alawiyah, Muthia Dewi; Finger, Maurice; Ihling, Nina; Paquet-Durand, Olivier; Hitzmann, Bernd; Büchs, JochenOnline fluorescence monitoring has become a key technology in modern bioprocess development, as it provides in‐depth process knowledge at comparably low costs. In particular, the technology is widely established for high‐throughput microbioreactor cultivation systems, due to its noninvasive character. For microtiter plates, previously also multi‐wavelength 2D fluorescence monitoring was developed. To overcome an observed limitation of fluorescence sensitivity, this study presents a modified spectroscopic setup, including a tunable emission monochromator. The new optical component enables the separation of the scattered and fluorescent light measurements, which allows for the adjustment of integration times of the charge‐coupled device detector. The resulting increased fluorescence sensitivity positively affected the performance of principal component analysis for spectral data of Escherichia coli batch cultivation experiments with varying sorbitol concentration supplementation. In direct comparison with spectral data recorded at short integration times, more biologically consistent signal dynamics were calculated. Furthermore, during partial least square regression for E. coli cultivation experiments with varying glucose concentrations, improved modeling performance was observed. Especially, for the growth‐uncoupled acetate concentration, a considerable improvement of the root‐mean‐square error from 0.25 to 0.17 g/L was achieved. In conclusion, the modified setup represents another important step in advancing 2D fluorescence monitoring in microtiter plates.Publication Online 2D fluorescence monitoring in microtiter plates allows prediction of cultivation parameters and considerable reduction in sampling efforts for parallel cultivations of Hansenula polymorpha(2022) Berg, Christoph; Ihling, Nina; Finger, Maurice; Paquet-Durand, Olivier; Hitzmann, Bernd; Büchs, JochenMulti-wavelength (2D) fluorescence spectroscopy represents an important step towards exploiting the monitoring potential of microtiter plates (MTPs) during early-stage bioprocess development. In combination with multivariate data analysis (MVDA), important process information can be obtained, while repetitive, cost-intensive sample analytics can be reduced. This study provides a comprehensive experimental dataset of online and offline measurements for batch cultures of Hansenula polymorpha. In the first step, principal component analysis (PCA) was used to assess spectral data quality. Secondly, partial least-squares (PLS) regression models were generated, based on spectral data of two cultivation conditions and offline samples for glycerol, cell dry weight, and pH value. Thereby, the time-wise resolution increased 12-fold compared to the offline sampling interval of 6 h. The PLS models were validated using offline samples of a shorter sampling interval. Very good model transferability was shown during the PLS model application to the spectral data of cultures with six varying initial cultivation conditions. For all the predicted variables, a relative root-mean-square error (RMSE) below 6% was obtained. Based on the findings, the initial experimental strategy was re-evaluated and a more practical approach with minimised sampling effort and elevated experimental throughput was proposed. In conclusion, the study underlines the high potential of multi-wavelength (2D) fluorescence spectroscopy and provides an evaluation workflow for PLS modelling in microtiter plates.Publication Online process state estimation for Hansenula polymorpha cultivation with 2D fluorescence spectra-based chemometric model calibrated from a theoretical model in place of offline measurements(2023) Babor, Majharulislam; Paquet-Durand, Olivier; Berg, Christoph; Büchs, Jochen; Hitzmann, BerndThe use of 2D fluorescence spectra is a powerful, instantaneous, and highly accurate method to estimate the state of bioprocesses. The conventional approach for calibrating a chemometric model from raw spectra needs a large number of offline measurements from numerous runs, which is tedious, time-consuming, and error-prone. In addition, many process variables lack direct signal responses, which forces chemometric models to make predictions based on indirect responses. In order to predict glycerol and biomass concentrations online in batch cultivation of Hansenula polymorpha, this study substituted offline measurements with simulated values. The only data from cultivations needed to generate the chemometric model were the 2D fluorescence spectra, with the presumption that they contain sufficient information to characterize the process state at a measurement point. The remainder of the evaluation was carried out with the aid of a mathematical process model that describes the theoretical interferences between process variables in the system. It is shown that the process model parameters, including microbial growth rate, the yield of biomass from glycerol, and lag time can be determined from only the spectra by employing a model-based calibration (MBC) approach. The prediction errors for glycerol and biomass concentrations were 8.6% and 5.7%, respectively. An improved model-based calibration (IMBC) approach is presented that calibrates a chemometric model for only biomass. Biomass was predicted from a 2D fluorescence spectrum in new cultivations, and glycerol concentration was estimated from the process model utilizing predicted biomass as an input. By using this method, the prediction errors for glycerol and biomass were reduced to 5.2% and 4.7%, respectively. The findings indicate that model-based calibration, which can be carried out with only 2D fluorescence spectra gathered from prior runs, is an effective method for estimating the process state online.