Browsing by Person "Bubeck, Alena Marie"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Characterization of dietary and genetic influences on the gastrointestinal microbiota(2023) Bubeck, Alena Marie; Fricke, Florian W.Although the gut microbiota is known to contribute fundamentally to human health, e.g. by promoting the maturation of the immune system and intestinal homeostasis, the factors shaping its composition are only poorly understood. Extrinsic and intrinsic influences can disturb the tightly controlled equilibrium between the microbiome and the host and induce dysbiosis, which has been linked to diverse health conditions such as obesity, atherosclerotic cardiovascular disease (ACVD) and inflammatory bowel disease (IBD). Therefore, understanding events leading to microbial perturbations and the prediction of associated health outcomes could aid in the prevention and treatment of these conditions. In this work, the impact of dietary and genetic factors on gastrointestinal microbiota compositions were determined, with the diet serving as an exemplary extrinsic, modifiable microbiota-relevant factor and with a genetic deficiency in a mouse model for intestinal inflammation serving as an exemplary intrinsic, non-modifiable microbiota-relevant factor. In both studies, microbial communities obtained from either a human or a murine cohort, respectively, were taxonomically characterized by 16S rRNA gene amplicon sequencing and analyzed in the context of metabolic and inflammatory implications for the host. In ACVD, the reduction of excess blood cholesterol, which is a main risk factor, is tackled by clinical interventions aiming to reduce cholesterol uptake from exogenous, dietary sources or by inhibiting endogenous cholesterol biosynthesis. Cholesterol-to-coprostanol conversion by the intestinal microbiota has also been suggested to reduce intestinal and serum cholesterol availability, but the dependencies of cholesterol conversion on specific bacterial taxa and dietary habits, as well as its association with serum lipid levels remain largely unknown. To study microbiota contributions to human cholesterol metabolism under varying conditions, fecal microbiota and lipid profiles, as well as serum lipid biomarkers, were determined in two independent human cohorts, including individuals with (CARBFUNC study) and without obesity (KETO study) on very low-carbohydrate high-fat diets (LCHF) for three to six months and six weeks, respectively. Across these two geographically independent studies, conserved distributions of cholesterol high and low-converter types were measured. Also, cholesterol conversion was most dominantly linked to the relative abundance of the cholesterol-converting bacterial species Eubacterium coprostanoligenes, which was further increased in low-converters by LCHF diets, shifting them towards a high-conversion state. Lean cholesterol high-converters, which were characterized by adverse serum lipid profiles even before the LCHF diet, responded to the intervention with increased LDL-C, independently of fat, cholesterol and saturated fatty acid intake. These findings identify the cholesterol high-converter type as a potential predictive biomarker for an increased LDL-C response to LCHF diet in metabolically healthy lean individuals. Although the etiology of IBD has not been fully resolved, an interplay between the intestinal microbiota, environmental factors and an individual’s genetic susceptibility is thought to trigger chronic inflammation by a dysregulation of the immune response in the gut. To identify colitis-associated microbiota alterations throughout the development of spontaneous colitis, mice with a genetic deficiency of the anti-inflammatory cytokine Interleukin-10 (IL-10) from different litters were co-housed with wild-type mice and monitored for 20 weeks. The scoring of mice based on their phenotype and stool consistency mirrored the state of mucosal inflammation as assessed based on histopathological examinations and cytokine expression profiles. Also, the state of colitis was characterized by global microbiota alterations and susceptibility to colitis was dependent on litter-specific microbiome compositions that mice adopted early on in their lives. Colitis development was further associated with the presence of the bacterial genus Akkermansia in mature mice shortly before symptoms manifested. This genus was also a good predictor of colitis-related mice withdrawal, suggesting the potential of Akkermansia to serve as an early onset, subclinical colitis marker. In summary, fecal microbiota characterizations in response to LCHF diets in humans and throughout the development of intestinal inflammation in a colitis mouse model highlight the potential of personalized microbiome-based patient classifications to predict clinical outcomes and improve treatment approaches.