Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Carpentras, Dino"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Response Item Network (ResIN): A network-based approach to explore attitude systems
    (2024) Carpentras, Dino; Lueders, Adrian; Quayle, Michael; Carpentras, Dino; Computational Social Science, ETH Zürich, Zürich, Switzerland; Lueders, Adrian; Department of Communication Science, University of Hohenheim, Stuttgart, Germany; Quayle, Michael; Department of Psychology, University of Limerick, Limerick, Ireland
    Belief network analysis (BNA) refers to a class of methods designed to detect and outline structural organizations of complex attitude systems. BNA can be used to analyze attitude-structures of abstract concepts such as ideologies, worldviews, and norm systems that inform how people perceive and navigate the world. The present manuscript presents a formal specification of the Response-Item Network (or ResIN), a new methodological approach that advances BNA in at least two important ways. First, ResIN allows for the detection of attitude asymmetries between different groups, improving the applicability and validity of BNA in research contexts that focus on intergroup differences and/or relationships. Second, ResIN’s networks include a spatial component that is directly connected to item response theory (IRT). This allows for access to latent space information in which each attitude (i.e. each response option across items in a survey) is positioned in relation to the core dimension(s) of group structure, revealing non-linearities and allowing for a more contextual and holistic interpretation of the attitudes network. To validate the effectiveness of ResIN, we develop a mathematical model and apply ResIN to both simulated and real data. Furthermore, we compare these results to existing methods of BNA and IRT. When used to analyze partisan belief-networks in the US-American political context, ResIN was able to reliably distinguish Democrat and Republican attitudes, even in highly asymmetrical attitude systems. These results demonstrate the utility of ResIN as a powerful tool for the analysis of complex attitude systems and contribute to the advancement of BNA.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy