Browsing by Person "Chagunda, Mizeck G. G."
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Publication The adoption potential of extended lactation as a strategy to reduce excess calf numbers in dairy farming(2024) Gresham, Josephine; Reiber, Christoph; Chagunda, Mizeck G. G.Dairy production relies predominantly on a few, selectively bred, high-yielding dairy breeds, resulting in a surplus of low-value male offspring. This situation leads to a conflict between a growing demand for milk and low appreciation for dairy calves. Extending lactation could reduce the number of calves born. This study aimed to assess the current use of extended lactation in dairy production in Southern Germany, identify the perceived potential, and determine the biological potential extended lactation has to reduce calf numbers. A survey from 2020 with 310 farmers was analysed. A total of 145 (46.8%) farmers used extended lactation. The use of extended lactation on farms correlated significantly with breed, milk yield, interest in continuing or implementing the use of extended lactation, and the indicated feasibility of extended lactation. The perceived potential was assessed by 39.8% of farmers as “high” to “very high”. A total of 17 (12.8%) farmers currently not using extended lactation were identified as potential adopters. Together with existing adopters, this could result in 52.3% of farms using extended lactation, which could biologically reduce calf numbers by 7.3% or 14.1% p.a., when extended by three or six months, respectively. This adoption potential shows that extended lactation can reduce calf numbers considerably, addressing both ethical and economic concerns in dairy farming and benefiting farmers as well as society.Publication Enhancing individual animal resilience to environmental disturbances to address low productivity in dairy cattle performing in sub-Saharan Africa(2023) Oloo, Richard D.; Ojango, Julie M. K.; Ekine-Dzivenu, Chinyere C.; Gebreyohanes, Gebregziabher; Mrode, Raphael; Mwai, Okeyo A.; Chagunda, Mizeck G. G.The current review examines potential solutions to enhance the sustainability and productivity of the dairy sector in sub-Saharan Africa (SSA) with an emphasis on breeding for resilience. Additionally, the paper explores various indicators for measuring resilience and provides insights into the data that can be utilized to quantify resilience in SSA’s dairy production systems. Dairy production contributes significantly to food and nutritional security and employment in SSA. However, besides the general lack of enabling policy and institutional environments, production is negatively affected by environmental challenges such as high temperatures and heat stress, diseases and parasites, unreliable rainfall patterns, shortages of feeds and forages and undue preference for taurine cattle breeds regardless of their poor adaptability to prevailing local conditions. Fostering the resilience capacity of dairy animals is imperative to combat climate-related adversities and maintain productivity. This can only be achieved if reliable and practical methods for quantifying and analyzing resilience in SSA are described and undertaken. This study has reviewed variance of deviations, root mean square of deviations, autocorrelation of deviations, skewness of deviations, slope of the reaction norm and its absolute value as possible indicators of resilience in SSA. While previous research has reported genetic variation and favorable correlations of these indicators with health, fitness, and fertility traits, their potential in SSA environments requires further investigation. Besides, labor- and cost-effective phenotypic data collection is essential for characterization of resilience using these indicators. Through this study, we propose frequently collected data on milk production traits, body fat-related traits, and activity patterns as suitable in the sub-Saharan Africa context. The African Asian Dairy Genetic Gains Project by the International Livestock Research Institute (ILRI) offers a valuable opportunity to collate data from diverse dairy systems in SSA for testing the potential of these indicators. Insights from this study are helpful in improving resilience of dairy animals in SSA, which would contribute to poverty alleviation, animal welfare improvement, and better preparedness in lieu of climate change in SSA.Publication From a documented past of the Jersey breed in Africa to a profit index linked future(2022) Opoola, Oluyinka; Shumbusho, Felicien; Hambrook, David; Thomson, Sam; Dai, Harvey; Chagunda, Mizeck G. G.; Capper, Jude L.; Moran, Dominic; Mrode, Raphael; Djikeng, AppolinaireThe paper reports on the prevalence and performance of the Jersey cattle breed in Africa, highlighting its geographic distribution and describing the reported performance and other related characteristics from the early 1900s to the present day. The review examines the contribution of Jersey cattle in increasing the volume and efficiency of milk production across the continent. Data relating to the Jersey cattle breed has been reported in more than 30 African countries based on available material published between 1964 and 2020. A key encompassing parameter of any reference was a well-described consideration of the Jersey cattle breed (as pure or crossbred with other exotic and/or indigenous breeds) with reported performance within a variety of production systems and agro-ecologies in Africa. The main focus was on breed and performance parameters, breed types, percentage of different breed types in specific environments, reproduction method and fertility; survival and longevity; disease incidence; and production efficiency metrics such as: feed efficiency (milk unit per dry matter intake, DMI) and milk yield (MY) per unit of body weight (BW). The main performance descriptors identified were based on observations on resilience under both abiotic (heat, nutrition) and biotic (incidences of pests and diseases) stressors, milk production, BW, nutrition and utilisation of feed resources. From the literature consulted, we grouped key dairy cattle performance characteristics reported in each country under the following areas to aid comparisons; a. Milk production (Milk nutrient value, daily MY, lifetime MY and annual MY); b. Fertility traits and AFC; c. Survival and longevity, d. Production efficiency (Feed efficiency, milk per unit BW and milk per unit DMI and e. Disease incidences. Results of the review showed that the smaller stature and lower maintenance nutrient requirements of the Jersey breed means that it is better suited to tolerate the tropical production conditions in the African small-scale dairy farming sector. Detailed analyses on MY and survival showed that Jersey crosses with exotic and African indigenous breeds performed better than purebred cattle with strong evidence to support the suitability of the Jersey breed in crossbreeding with indigenous breeds for use in smallholder production systems.Publication Genetic and phenotypic correlations among feed efficiency, immune and production traits in indigenous chicken of Kenya(2023) Miyumo, Sophie A.; Wasike, Chrilukovian B.; Ilatsia, Evans D.; Bennewitz, Jorn; Chagunda, Mizeck G. G.This study aimed at estimating genetic and phenotypic relationships among feed efficiency, immune and production traits measured pre- (9–20 weeks of age) and post- (12 weeks from on-set of lay) maturity. Production traits were average daily gain (ADG) and average daily feed-intake (ADFI1) in the pre-maturity period and age at first egg (AFE), average daily feed-intake (ADFI2) and average daily egg mass (EM) in the post-maturity period. Feed efficiency comprised of residual feed intake (RFI) estimated in both periods. Natural antibodies binding to keyhole limpet hemocyanin (KLH-IgM) and specific antibodies binding to Newcastle disease virus (NDV-IgG) measured at 16 and 28 weeks of age represented immune traits pre- and post-maturity, respectively. In the growing period, 1,820 records on ADG, KLH-IgM and NDV-IgG, and 1,559 records on ADFI1 and RFI were available for analyses. In the laying period, 1,340 records on AFE, EM, KLH-IgM and NDV-IgG, and 1,288 records on ADFI2 and RFI were used in the analyses. Bi-variate animal mixed model was fitted to estimate (co)variance components, heritability and correlations among the traits. The model constituted sex, population, generation, line and genotype as fixed effects, and animal and residual effects as random variables. During the growing period, moderate to high heritability (0.36–0.68) was estimated for the production traits and RFI while the antibody traits had low (0.10–0.22) heritability estimates. Post-maturity, the production traits and RFI were moderately (0.30–0.37) heritable while moderate to high (0.25–0.41) heritability was estimated for the antibody traits. Genetic correlations between feed efficiency and production traits in both periods showed that RFI had negative genetic correlations with ADG (−0.47) and EM (−0.56) but was positively correlated with ADFI1 (0.60), ADFI2 (0.74) and AFE (0.35). Among immune and production traits, KLH-IgM and NDV-IgG had negative genetic correlations with ADG (−0.22; −0.56), AFE (−0.39; −0.42) and EM (−0.35; −0.16) but were positively correlated with ADFI1 (0.41; 0.34) and ADFI2 (0.47; 0.52). Genetic correlations between RFI with KLH-IgM (0.62; 0.33) and NDV-IgG (0.58; 0.50) were positive in both production periods. Feed intake, RFI and antibody traits measured in both production periods were positively correlated with estimates ranging from 0.48 to 0.82. Results from this study indicate selection possibilities to improve production, feed efficiency and immune-competence in indigenous chicken. The genetic correlations suggest that improved feed efficiency would be associated with high growth rates, early maturing chicken, high egg mass and reduced feed intake. In contrast, improved general (KLH-IgM) and specific (NDV-IgG) immunity would result in lower growth rates and egg mass but associated with early sexual maturation and high feed intake. Unfavorable genetic correlations between feed efficiency and immune traits imply that chicken of higher productivity and antibody levels will consume more feed to support both functions. These associations indicate that selective breeding for feed efficiency and immune-competence may have genetic consequences on production traits and should therefore be accounted for in indigenous chicken improvement programsPublication Is heat stress a growing problem for dairy cattle husbandry in the temperate regions? A case study of Baden-Württemberg in Germany(2024) Leandro, Miguel António; Stock, Joana; Bennewitz, Jörn; Chagunda, Mizeck G. G.Heat stress with measurable effects in dairy cattle is a growing concern in temperate regions. Heat stress in temperate regions differs between environments with different geophysical characteristics. Microclimates specific to each environment were found to greatly impact at what level heat stress occurs and will occur in the future. The landlocked state of Baden-Württemberg, Germany, provides several different environments, hence, a good case-study. Temperature–Humidity Index (THI) from 17 weather stations for the years 2003 to 2022 was calculated and milking yields from 22 farms for the years 2017 to 2022 were collected. The occurrences and evolving patterns of heat stress were analyzed with the use of a THI, and the effect of heat stress on milk yield was analyzed based on milking records from Automated Milking Systems. Daily average THI was calculated using hourly readings of relative humidity and ambient temperature, disregarding solar radiation and wind, as all animals were permanently stabled. Based on studies conducted in Baden-Württemberg and neighboring regions, cited ahead in the section of THI, THI = 60 was the threshold for heat stress occurrence. Findings show that the heat stress period varied between stations from 64 to 120 d with THI ≥ 60 in a year. This aligns with yearly and summer averages, also steadily increasing from May to September. The length of the heat stress period was found to increase 1 extra day every year. Extreme weather events such as heat waves did not increase the heat stress period of that year in length but increased the average THI. Milk yield was found to be significantly (α = 0.05) different between counties grouped into different zones according to heat stress severity and rate of increase in daily average THI. Future attempts at managing heat stress on dairy cattle farms in the temperate regions should account for microclimate, as geographical proximity does not mean that the increase in heat stress severity will be the same in the 2 neighboring areas.Publication Livestock phenomics and genetic evaluation approaches in Africa: current state and future perspectives(2023) Houaga, Isidore; Mrode, Raphael; Opoola, Oluyinka; Chagunda, Mizeck G. G.; Mwai, Okeyo A.; Rege, John E. O.; Olori, Victor E.; Nash, Oyekanmi; Banga, Cuthbert B.; Okeno, Tobias O.; Djikeng, AppolinaireThe African livestock sector plays a key role in improving the livelihoods of people through the supply of food, improved nutrition and consequently health. However, its impact on the economy of the people and contribution to national GDP is highly variable and generally below its potential. This study was conducted to assess the current state of livestock phenomics and genetic evaluation methods being used across the continent, the main challenges, and to demonstrate the effects of various genetic models on the accuracy and rate of genetic gain that could be achieved. An online survey of livestock experts, academics, scientists, national focal points for animal genetic resources, policymakers, extension agents and animal breeding industry was conducted in 38 African countries. The results revealed 1) limited national livestock identification and data recording systems, 2) limited data on livestock production and health traits and genomic information, 3) mass selection was the common method used for genetic improvement with very limited application of genetic and genomic-based selection and evaluation, 4) limited human capacity, infrastructure, and funding for livestock genetic improvement programmes, as well as enabling animal breeding policies. A joint genetic evaluation of Holstein-Friesian using pooled data from Kenya and South Africa was piloted. The pilot analysis yielded higher accuracy of prediction of breeding values, pointing to possibility of higher genetic gains that could be achieved and demonstrating the potential power of multi-country evaluations: Kenya benefited on the 305-days milk yield and the age at first calving and South Africa on the age at first calving and the first calving interval. The findings from this study will help in developing harmonized protocols for animal identification, livestock data recording, and genetic evaluations (both national and across-countries) as well as in designing subsequent capacity building and training programmes for animal breeders and livestock farmers in Africa. National governments need to put in place enabling policies, the necessary infrastructure and funding for national and across country collaborations for a joint genetic evaluation which will revolutionize the livestock genetic improvement in Africa.Publication Potential for quantifying general environmental resilience of dairy cattle in sub-Saharan Africa using deviations in milk yield(2023) Oloo, Richard D.; Mrode, Raphael; Bennewitz, Jörn; Ekine-Dzivenu, Chinyere C.; Ojango, Julie M. K.; Gebreyohanes, Gebregziabher; Mwai, Okeyo A.; Chagunda, Mizeck G. G.Introduction: Genetic improvement of general resilience of dairy cattle is deemed as a part of the solution to low dairy productivity and poor cattle adaptability in sub-Saharan Africa (SSA). While indicators of general resilience have been proposed and evaluated in other regions, their applicability in SSA remains unexplored. This study sought to test the viability of utilizing log-transformed variance (LnVar), autocorrelation (rauto), and skewness (Skew) of deviations in milk yield as indicators of general resilience of dairy cows performing in the tropical environment of Kenya. Methods: Test-day milk yield records of 2,670 first-parity cows performing in three distinct agroecological zones of Kenya were used. To predict expected milk yield, quantile regression was used to model lactation curve for each cow. Subsequently, resilience indicators were defined based on actual and standardized deviations of observed milk yield from the expected milk yield. The genetic parameters of these indicators were estimated, and their associations with longevity and average test-day milk yield were examined. Results: All indicators were heritable except skewness of actual and standardized deviation. The log-transformed variance of actual (LnVar1) and standardized (LnVar2) deviations had the highest heritabilities of 0.19 ± 0.04 and 0.17 ± 0.04, respectively. Auto-correlation of actual (rauto1) and standardized (rauto2) deviations had heritabilities of 0.05 ± 0.03 and 0.07 ± 0.03, respectively. Weak to moderate genetic correlations were observed among resilience indicators. Both rauto and Skew indicators had negligible genetic correlations with both longevity and average test-day milk yield. LnVar1 and LnVar2 were genetically associated with better longevity (rg = −0.47 ± 0.26 and −0.49 ± 0.26, respectively). Whereas LnVar1 suggested that resilient animals produce lower average test-day milk yield, LnVar2 revealed a genetic association between resilience and higher average test-day milk yield. Discussion: Log transformed variance of deviations in milk yield holds a significant potential as a robust resilience indicator for dairy animals performing in SSA. Moreover, standardized as opposed to actual deviations should be employed in defining resilience indicators because the resultant indicator does not inaccurately infer that low-producing animals are inherently resilient. This study offers an opportunity for enhancing the productivity of dairy cattle performing in SSA through selective breeding for resilience to environmental stressors.