Browsing by Person "Dzomeku, Beloved Mensah"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Eco-physiological studies on False Horn plantain(2020) Dzomeku, Beloved Mensah; Wünsche, Jens NorbertWest Africa suffers from climate uncertainty, high levels of variability, lack of access to real-time and future climate information, and poor predictive capacity are common barriers to adaptation though the region is identified as climate-change hotspot. The regions vulnerability is heightened by its overdependence on rain-fed agriculture, with its sensitivity to climate change and variability. Rain-fed agriculture contributes 30% of GDP and employs about 70% of the population, and it is the main safety net of the rural poor. Drought affects plantain production in West Africa resulting in high level of food insecurity among the vulnerable. Under rain-fed production, achievable yield of plantain landraces are 11.0t/ha while the potential yield is 20t/ha. Plantain breeding is limited due to the complex nature of the breeding process. Plantain plant itself is a giant herbaceous plant occupying 6m2 of land hence only 1667 could occupy a hectare of land. The production system is faced with a myriad of challenges from inadequate healthy planting materials at the time of plantain through the production system to post-harvest. Unlike bananas which are mainly produce by multinational companies under irrigation, plantain production is mainly by smallholder farmers under rain-fed agriculture. Whereas banana production under irrigation is efficient, plantain production under rainfed production is haphazard and unsustainable. Farm sizes range between 0.4 to 5ha. Major limiting factors of the rainfed system is drought resulting in low yields and economic loses. Our study seeks to understand the effects of drought on the physiological responses of plantain crop under rainfed production. Different experiments were conducted to study the responses of various cultivars to on-farm rapid production of healthy planting materials. The results revealed that drought seriously affects natural regeneration of plantain planting materials as such new approaches need to be used for sufficient production. As each plantain plant produces averagely 42 leaves before flowering and each leaf has at least one axillary bud, it presupposes that 42 suckers should be produced at harvest. However, at harvest only 12 healthy suckers are produced around each plantain plant. The approach is able to exploit the full potential of every sucker to generate healthy planting materials. This technique therefore could be used to set up commercial propagation system for plantain planting material production. The study revealed Apantu and hybrid plantain FHIA-21 to show same responses. Plantain farmers can easily produce in large quantities healthy plantain planting materials using sawdust and building their own humidity chambers near water source. The study also showed that there is the potential for farmers to use this technique for establishing commercial propagation centres to generate healthy planting materials. We also studied the physiological responses of Apantu crop to water regimes and natural mycorrhization of plantains. Also, study was conducted on the fruit maturity index and the effect of climate variability on fruit micronutrient content. The natural mycorrhization of plantain roots was the first to be reported on plantain in Ghana. During the study it was observed that plantain roots were naturally colonised by mycorrhizae. However, this phenomenon was cultivar specific; with Apantu roots more colonised compared to Apem. Sustainable intensification of plantain production could be achieved through the use of beneficial soil microbes in production. Conventional production systems, however, do not promote the survival of these microbes. The study further revealed that plantains respond to water stress by reduction in stomatal density, movement and reduction in leaf area. In addition, early stages of water stress had little effect on the final yield of the crop. The anatomical and physiological studies were challenges faced in laticiferous plant like the plantain. However, drought stress at advance stage of growth of plantain adversely affect yields. Our study also showed that fruit maturity index could vary with seasons. The various maturity indices used in plantain production could not be used under rain-fed conditions; especially angularity. The angularity index used was observed not to be appropriate in the dry season. The study also revealed high α-carotene levels with seasonality and maturity in plantain. The high levels of provitamin A in plantain fruits during the dry season coincided with high incidence of sun’s UV index. This finding could play a significant role in the plantain industry as a food security crop the vulnerable who could not afford the high provitamin A foods especially for children under five years. However, the retention and bioavailability of the carotenoid after cooking need to be studied. In conclusion all the chapters showed clear understanding of the behaviour of plantain under severe adverse environmental conditions and conclusions drawn to guide future production of the crop. Under climate change with its complexities, further studies on plantain is needed to improve productivity to achieve food security in West Africa.