Browsing by Person "Gerhards, Roland"
Now showing 1 - 20 of 37
- Results Per Page
- Sort Options
Publication A study of integrated weed control strategies for establishing soybean (Glycine max L. MERR.) in the German production system(2017) Weber, Jonas Felix; Gerhards, RolandSoybean (Glycine max L. MERR.) has expanded to become one of the most traded agriculture products worldwide in recent decades. Europe is one of the primary importing regions; however, the dependence on soybean imports has been critically assessed by the public. To reduce the dependency on soybean imports, increased local soybean production should be favoured. In addition to environmental conditions, weeds are a major limiting factor for soybean yield under German climate conditions. Weeds can be successfully controlled with herbicides, although crop injury frequently occurs after application. Sensor-based screening would be helpful for a rapid evaluation of cultivar tolerance to herbicide application. Alternatively, mechanical weed control strategies can be applied. Since soybean production is currently introduced to the regional crop production, weed control efficiency of conventional mechanical tools (e.g., hoeing and harrowing) have to be evaluated. By using automatic guiding systems intra-row elements could be utilised to increase the weed control efficiency of mechanical hoeing. Other than that, agronomical practices such as the tillage system or cover crops influences the occurrence of weeds. The most common practise worldwide for soybean cultivation is the no-tillage system, which has not yet been investigated under local conditions. Therefore, different weed control strategies in soybean production were investigated according to the following major objectives of this thesis: - Detection of crop injury by herbicides using a chlorophyll fluorescence imaging sensor for different soybean cultivars. - Evaluation of the conventional mechanical strategies of hoeing and harrowing in soybean. - Examination of the weed control efficiency in inter- and intra-row areas using RTK-GNSS precision steering and an optical camera guiding system for mechanical weed control in soybean. - Evaluation of the efficiency of ‘tillage’, ‘reduced tillage’ and ‘no- tillage’ cultivation systems and the influence of cover crops on weed suppression in local soybean production. The Imaging-PAM-sensor based on chlorophyll fluorescence imaging was utilised to investigate the response of different soybean cultivars to the application of herbicides. The measurements indicated significant differences with respect to injury to the cultivars after herbicide application. Herbicides containing the active ingredient ‘metribuzin’ resulted in significant differences in the level of crop injury depending on the cultivar. The active ingredients ‘dimethenamid’ and ‘clomazone’ resulted in less injury, independent of the cultivar. The PAM-sensor was able to detect stress symptoms 3 to 7 days before visual symptoms appeared. An investigation of hoeing and harrowing, which are conventional mechanical techniques for weed control, showed 78% and 72% weed control efficiency, respectively. In further experiments, the results of precision steering systems using RTK-GNSS and an optical camera guiding system additionally equipped with intra-row elements (e.g., finger weeders) were compared with the results of conventional hoeing. Mechanical weed control using automatic steering technology and an intra-row element (finger weeder) reduced the weed density by 89% compared with 68% in the conventional hoeing system. With respect to crop yields, statistical benefits of precision steering were not observed. However, the driving speed could be increased from 4 km h−1 in the conventional hoeing system to 10 km h−1 using the automatic steering systems. In an additional experiment, two cover crops species, rye (Secale cereale L.) and barley (Hordeum vulgare L.), were grown for preventive weed control in soybean production. The cover crops were transformed into a mulch layer using a roller-crimper immediately before soybean was sown using a no-tillage technique. Conventional tillage was performed to compare the systems with respect to their weed control efficiency, crop development and soybean yield. The results showed that the no-tillage system had a greater effect on suppressing summer annual weed species (Chenopodium album (L.), Echinochloa crus-galli (L.) P. Beauv. and Amaranthus retroflexus (L.)) than the tillage systems. Conventional tillage and reduced tillage showed increased suppression of the weed species Matricaria inodora (L.), Stellaria media (L.) Vill. and Sonchus arvensis (L.), which were present in the no-tillage system. However, in the conventional tillage and reduced tillage systems, an additional weed control treatment was necessary to suppress the summer annual weeds and ensure high yields. The cover crop rye resulted in weed control similar to that of barley in the no-tillage system. Despite the low weed density, the no-tillage system with a rolled cover crop showed a yield reduced of 47%, whereas the yield of the reduced tillage system was decrease by 23% compared with the conventional tillage system.Publication Agronomic and technical evaluation of herbicide spot spraying in maize based on high-resolution aerial weed maps - an on-farm trial(2024) Allmendinger, Alicia; Spaeth, Michael; Saile, Marcus; Peteinatos, Gerassimos G.; Gerhards, Roland; Allmendinger, Alicia; Department of Weed Science, Institute for Phytomedicine, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.);; Spaeth, Michael; Department of Weed Science, Institute for Phytomedicine, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.);; Saile, Marcus; Department of Weed Science, Institute for Phytomedicine, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.);; Peteinatos, Gerassimos G.; ELGO-DIMITRA, Leof Dimokratias 61, Agii Anargiri, 135 61 Athens, Greece;; Gerhards, Roland; Department of Weed Science, Institute for Phytomedicine, University of Hohenheim, 70599 Stuttgart, Germany; (A.A.);; Rossi, VittorioSpot spraying can significantly reduce herbicide use while maintaining equal weed control efficacy as a broadcast application of herbicides. Several online spot-spraying systems have been developed, with sensors mounted on the sprayer or by recording the RTK-GNSS position of each crop seed. In this study, spot spraying was realized offline based on georeferenced unmanned aerial vehicle (UAV) images with high spatial resolution. Studies were conducted in four maize fields in Southwestern Germany in 2023. A randomized complete block design was used with seven treatments containing broadcast and spot applications of pre-emergence and post-emergence herbicides. Post-emergence herbicides were applied at 2–4-leaf and at 6–8-leaf stages of maize. Weed and crop density, weed control efficacy (WCE), crop losses, accuracy of weed classification in UAV images, herbicide savings and maize yield were measured and analyzed. On average, 94% of all weed plants were correctly identified in the UAV images with the automatic classifier. Spot-spraying achieved up to 86% WCE, which was equal to the broadcast herbicide treatment. Early spot spraying saved 47% of herbicides compared to the broadcast herbicide application. Maize yields in the spot-spraying plots were equal to the broadcast herbicide application plots. This study demonstrates that spot-spraying based on UAV weed maps is feasible and provides a significant reduction in herbicide use.Publication An image analysis and classification system for automatic weed species identification in different crops for precision weed management(2010) Weis, Martin; Gerhards, RolandA system for the automatic weed detection in arable fields was developed in this thesis. With the resulting maps, weeds in fields can be controlled on a sub-field level, according to their abundance. The system contributes to the emerging field of Precision Farming technologies. Precision Farming technologies have been developed during the last two decades to refine the agricultural management practise. The goal of Precision Farming is to vary treatments within fields, according to the local situation. These techniques lead to an optimisation of the management practice, thereby saving resources, increasing the farmers outcome, reducing the overall management costs and the environmental impact. A successful introduction of Precision Farming involves the development of application equipment capable of varying treatments and sensor technology to measure the spatial heterogeneity of important growth factors. Such systems are able to record, store and use large amounts of data gathered by the sensors. Decision components are needed to transform the measurements into practical management decisions. Since the treatments are varied spatially, positional data, usually measured using GPS technology, has to be processed. The located measurements lead to a delineation of management zones within a field and are represented by geo-data and can be visualised in maps. The improved, detailed knowledge of the situation within the field leads to new and extended scopes of applications and allows to document the management practices more precisely. In this work, parts of Precision Farming technology were developed for site-specific weed management. Five selected publications are presented, covering the technological prerequisites and details of the developed system.Publication Bi‐directional hoeing in maize(2023) Naruhn, Georg; Schneevoigt, Valentin; Hartung, Jens; Peteinatos, Gerassimos; Möller, Kurt; Gerhards, RolandThe weed control efficacy (WCE) of mechanical weeding in the inter‐row area in conventional cropping systems can achieve more than 90%. Despite the use of special intra‐row tools (e.g., finger weeders), only a WCE of 65%–75% can currently be realized in the intra‐row area. To close the gap between inter‐row and intra‐row WCE, in this study, a new approach for high‐efficacy precise mechanical weeding is presented. By using a GPS‐based pneumatic precision seeder (Kverneland GEOseed), a square crop seeding pattern of 37.5 cm × 37.5 cm was established in maize to enable post‐emergence hoeing lengthwise and transverse to the sowing direction. Thus, the treated area by the hoeing blades is postulated to increase, resulting in higher WCE. For this, six field experiments were conducted in South‐Western Germany in 2021 and 2022. Goosefoot blades and no‐till sweeps were guided automatically using a camera for row detection and a hydraulic side‐shift control for the hoe. This bi‐directional treatment was compared to an herbicide application and to hoeing treatments only along and transverse to the sowing direction. The bi‐directional hoeing treatment increased the WCE compared to hoeing along the crop rows on average from 80% to 95% and was not significantly different from the herbicide applications in 2022. Precise sowing in combination with hoeing along and transverse the crop rows resulted in 5.3% crop losses compared to 2.2% for hoeing only along the sowing direction by using only 15 cm wide goosefoot blades, while in the herbicide treatment and the untreated control no crop losses were detected. While maize biomass was not significantly different from the herbicide treatment in most cases over both years, in 2022, even the grain yield of the bi‐directional hoeing treatment with goosefoot blades (7.8 Mg ha−1) was statistically equal to the herbicide treatment (6.9 Mg ha−1). This study demonstrates the great potential of bi‐directional hoeing as an effective alternative to chemical weed control in row crops such as maize, sunflower and sugar beet.Publication Camera-guided weed hoeing in winter cereals with narrow row distance(2020) Gerhards, Roland; Kollenda, Benjamin; Machleb, Jannis; Möller, Kurt; Butz, Andreas; Reiser, David; Griegentrog, Hans-WernerFarmers are facing severe problems with weed competition in cereal crops. Grass-weeds and perennial weed species became more abundant in Europe mainly due to high percentages of cereal crops in cropping systems and reduced tillage practices combined with continuous applications of herbicides with the same mode of action. Several weed populations have evolved resistance to herbicides. Precision weed hoeing may help to overcome these problems. So far, weed hoeing in cereals was restricted to cropping practices with row distances of more than 200 mm. Hoeing in cereals with conventional row distances of 125–170 mm requires the development of automatic steering systems. The objective of this project was to develop a new automatic guidance system for inter-row hoeing using camera-based row detection and automatic side-shift control. Six field studies were conducted in winter wheat to investigate accuracy, weed control efficacy and crop yields of this new hoeing technology. A three-meter prototype and a 6-meter segmented hoe were built and tested at three different speeds in 150 mm seeded winter wheat. The maximum lateral offset from the row center was 22.53 mm for the 3 m wide hoe and 18.42 mm for the 6 m wide hoe. Camera-guided hoeing resulted in 72–96% inter-row and 21–91% intra-row weed control efficacy (WCE). Weed control was 7–15% higher at 8 km h−1 compared to 4 km h−1. WCE could be increased by 14–22% when hoeing was combined with weed harrowing. Grain yields after camera-guided hoeing at 8 km h−1 were 15–76% higher than the untreated control plots and amounted the same level as the weed-free herbicide plots. The study characterizes camera-guided hoeing in cereals as a robust and effective method of weed control.Publication A comparison of seven innovative robotic weeding systems and reference herbicide strategies in sugar beet (Beta vulgaris subsp. vulgaris L.) and rapeseed (Brassica napus L.)(2023) Gerhards, Roland; Risser, Peter; Spaeth, Michael; Saile, Marcus; Peteinatos, GerassimosMore than 40 weeding robots have become commercially available, with most restricted to use in crops or fallow applications. The machines differ in their sensor systems for navigation and weed/crop detection, weeding tools and degree of automation. We tested seven robotic weeding systems in sugar beet and winter oil‐seed rape in 2021 and 2022 at two locations in Southwestern Germany. Weed and crop density and working rate were measured. Robots were evaluated based on weed control efficacy (WCE), crop stand loss (CL), herbicide savings and treatment costs. All robots reduced weed density at least equal to the standard herbicide treatment. Band‐spraying and inter‐row hoeing with RTK‐GPS guidance achieved 75%–83% herbicide savings. When hoeing and band spraying were applied simultaneously in one pass, WCE was much lower (66%) compared to the same treatments in two separate passes with 95% WCE. Hoeing robots Farmdroid‐FD20®, Farming Revolution‐W4® and KULTi‐Select® (+finger weeder) controlled 92%–94% of the weeds. The integration of Amazone spot spraying® into the FD20 inter‐row and intra‐row hoeing system did not further increase WCE. All treatments caused less than 5% CL except for the W4‐robot with 40% CL and the combination of conventional inter‐row hoeing and harrowing (21% CL). KULT‐Vision Control® inter‐row hoeing with the automatic hydraulic side‐shift control resulted in 80% WCE with only 2% CL. Due to the low driving speed of maximum 1 km h−1 of hoeing robots with in‐row elements, treatment costs were high at 555–804 € ha−1 compared to camera‐guided inter‐row hoeing at 221 € ha−1 and broadcast herbicide application at 307–383 € ha−1. Even though the costs of robotic weed management are still high, this study shows that robotic weeding has become a robust, and effective weed control method with great potential to save herbicides in arable and vegetable crops.Publication Consequences for weed management in crop rotations by introducing imidazolinone-tolerant oilseed rape varieties(2012) Krato, Christoph; Gerhards, RolandOSR (Brassica napus L.) is one of the most important arable oil crops globally and is grown on an area of 31,680,945 ha as winter- and spring-sown varieties. The harvest is mainly used in human nutrition, animal feeding and as a renewable resource for the production of paints, varnishes and biodiesel. OSR can be considered a quite competitive crop but nonetheless weed control is carried out on the vast majority of the grown area. The most common treatments are done PRE-E or early POST-E, mainly as prophylactic treatments without exact knowledge of the weed species or their densities. In order to facilitate a more targeted weed control in OSR, IT varieties combined with the corresponding imidazolinone herbicide imazamox (target-site is ALS) + metazachlor/quinmerac (Clearfield® production system) were developed for the European market by BASF SE and several breeding companies. By integrating IT plants into cropping systems, herbicide-tolerance genes will appear in agricultural ecosystems. Unless the tolerance is achieved by non-transgenic breeding methods, the introduction creates concerns regarding spreading the herbicide-tolerance in space and time causing unwanted changes for volunteer OSR management. The aim of the present study was to investigate important aspects, which are likely to arise with a commercial introduction and cultivation of IT OSR in Europe: POST-E weed control was successful using IT varieties. The total herbicide efficacy of imazamox/metazachlor/quinmerac was about 90 % in the field trials. Good results were achieved against volunteer cereals, Thlaspi arvense, Chenopodium album, Matricaria inodora, Papaver rhoeas, Capsella bursa-pastoris and Apera spica-venti but a lack of efficacy was observed regarding control of Agropyron repens and Viola arvensis. Yield was increased significantly in treated plots compared to untreated ones by up to 50 %. IT OSR can be a tool for the use of damage thresholds in integrated weed management in OSR. Outcrossing between IT and IS OSR varieties was confirmed with outcrossing frequencies between 0.57 and 2.05 % between pollen donors and acceptors that were directly adjacent. Outcrossing declined significantly with increasing distance but was still found 45 m from IT plants. The transfer of both tolerance genes and heterozygosity was shown by 84 % of analysed F1-plants. A cross-tolerance of IT OSR to SUs, TPs and SCTs was shown in greenhouse bioassays and field trials with calculated resistance factors between 5 and 775. Furthermore, homozygous IT plants expressed a much higher tolerance level compared to heterozygous ones. Herbicides with alternative modes of action other than HRAC B (ALS-inhibition) were found to be effective to control IT volunteers in subsequent crops. Pendimethalin, picolinafen, isoproturon, diflufenican, florasulam, flufenacet and flurtamone controlled IT volunteers in WW. In sugar beet, herbicide combinations with metamitron, desmedipham, phenmedipham, ethofumesate, chloridazon and lenacil were able to control IT volunteers but single active ingredients were not. Significant negative correlations were detected for the independent variable volunteer OSR density and the wheat yield parameters heads m-2, HW and yield. In contrast, moisture content of wheat and percentage of dockage increased with increasing volunteer density. The highest volunteer density of 261 plants m-2 caused a maximum yield loss of 68 % in WW. Based on a non-linear regression analysis, a single volunteer OSR plant per m2 causes a yield loss of between 0.74 and 1.61 %. In conclusion, the use of IT OSR varieties can substitute the herbicide clomazone in the future and provide POST-E weed control with detailed knowledge of the weed spectrum. This can promote integrated weed management, the use of damage thresholds in weed control and working management benefits for growers. Clearly, difficulties in volunteer management are a drawback of IT OSR, but with conducting an accurate, delayed tillage after OSR harvest and adjusting herbicide regimes in subsequent crops, IT volunteers should not cause more harm compared to IS OSR volunteers. Based on the assumption that innovations in development of new active ingredients for weed control cannot be expected, the use of HT crops has to be seen as a major tool to solve issues in weed management.Publication Cover cropping in integrated weed management(2018) Sturm, Dominic; Gerhards, RolandWeed control constitutes a major challenge in the worldwide crop production. Beside chemical and mechanical weed control strategies, cover cropping provides an effective way of biological weed suppression. Five different field experiments were conducted at six locations from 2014-2016 to evaluate the weed control efficacy of different cover crops in mono and mixed cultivation combined with different fertilization strategies and sowing dates. Furthermore weed suppressing effects of cover crop mulches in spring and of living mulches in summer were investigated. Potential effects on sugar beet emergence, quality and quantity were also assessed. In three laboratory and two greenhouse experiments from 2015-2017, the proportional contribution of competitive and biochemical effects on the overall weed suppression and the identification of varying susceptibilities of different weeds against biochemical stresses were at the center of research. In field experiments, the weed suppressive effects of cover crops and living mulches in mono and mixed cultivation were tested. The experiments emphasized the importance of cover crop and living mulch mixtures compared to mono cropping due to a higher flexibility to biotic and abiotic stresses. This was followed by a more constant biomass production and more effective weed suppression. Moreover, the observed weed control was a result of competitive and biochemical effects, induced by cover crops. These were later on analyzed for active weed growth suppressing compounds. Altering cover crop sowing date and fertilization to optimize the weed control resulted in significant changes of cover crop and weed biomass. Early cover crop sowing five or three weeks before winter wheat harvest increased the weed control efficacy in one year, significantly. Due to contrary results over the two experimental years, we suggest that the cover crop biomass and consequently the weed suppressive ability depends on sufficient soil water for rapid cover crop germination and growth. The use of cover crop mulch in sugar beet crops provided a weed suppression of up to 83%. Especially mulch derived from cover crop mixtures reduced the weed density (56%) more effectively compared to mono cultivated cover crops (31%). The inclusion of cover crops, mulches and living mulches can lead to significant herbicide reductions in the main crop. However supplementary mechanical or chemical weed control strategies are still necessary, especially in crops with a low competitive ability like sugar beets. Nevertheless, novel mechanical weed control approaches and adequate herbicide application techniques, as band-spraying, can reduce the herbicide input in the long-term. Germination tests with aqueous cover crop extracts were conducted on weed seeds to evaluate differences in the inhibition of germination and root growth. Furthermore, different sensitivities of the weeds against the different cover crop extracts were revealed. Some cover crops as S. alba, F. esculentum, H. annuus, T. subterraneum and L. usitatissimum showed the most effective weed suppression. Moreover, the weed M. chamomilla showed the highest susceptibility against biochemical stresses in the germination tests. A strong positive correlation between the weed suppressive effects by the extracts and the field weed suppression was found. This indicated that biochemical effects play also an important role on the overall weed suppression in the field. To estimate the proportions of competitive and biochemical effects on the overall weed suppression by cover crops, greenhouse experiments with active carbon supplemented soil were conducted. These experiments revealed that biochemical effects, by the presence of active carbon in the soil, shifted the balance of competition between cover crops and weeds. In the course of the experiments, we also found species-specific effects on the donor as well as on the receiver side. The results of this thesis demonstrate the diverse use of cover crops, their mulches and living mulches in agricultural systems. This work aims on the optimization of biological weed control strategies and indicates approaches for future research. It is for example not yet clear how cover crops suppress specific weeds and if it is possible to design combinations of specific cover crops for the suppression of individual weed communities. Additionally, these results help to reduce long-term herbicide inputs in agricultural systems.Publication Decision support systems for weed management in North China plain winter wheat production systems(2012) Menegat, Alexander; Gerhards, RolandThe North China Plain region is on eof the major production regions for wheat and maize in China.Weed control practice in the North China Plain has changed from hand weeding towards chemical methods. This change in weed management practice is caused by a shift of labour towards the fast growing industrial sector and by steadily increasing yields which made herbicides affordable even for small scale farmers. Agriculture in the North China Plain region is characterised by a double cropping system of winter wheat followed by summer maize in one year. Due to the continuous overuse of chemical fertilizers, irrigation water and pesticides severe problems are aligned with this intensive cropping system. Especially the accumulation of pesticide residues in the food chain as well as in environmental resources becomes an increasing problem. Objective of this study is to develop a decision support system for weed management for the North China Plain winter wheat production system. Examples in Europe showed that herbicide input can significantly be reduced by implementing decision support systems. Herbicide selection, dosage and timing of application is calculated on basis of knowledge on weed-crop interaction and dose-response relationships of herbicides and weeds. The decision support systems aims to provide reliable decisions under consideration of economic and ecologic effects of herbicide use.Publication Development and testing of new robotic weeding techniques for ridge and flat tillage systems(2024) Alagbo, Oyebanji Olubunmi; Gerhards, RolandUnder changing climate, conservative tillage practice is expected to gain more popularity over conventional tillage in terms of reduced energy emission and drought resilience. Hence, a need to develop cheap-climate-smart farming solutions for the future. The results of four different studies are summarized below. The first review article summarized different forms of ridge tillage and their impact on crop yield, weed seedbank dynamics, and weed management. Due to improved soil structure and optimal soil moisture conditions provided by ridges, several studies have proven that ridges can accelerate crop emergence, thus stimulating early-stage competitiveness of crops against weeds. More importantly, re-compacted ridges may give more benefits in the long term. The study further emphasized the use of RTK-GNSS (real-time kinematic global satellite navigation systems) ridging system for pilot hoeing, spraying, and seeding – as a cheap alternative to automatic vision control weeding systems in flat seedbeds. In the second article, an autosteered living mulch seeder and hoeing prototypes (using RTK-GNSS-created ridges as a guide) were developed and tested. The impact of ridge re-compaction on soil physical properties was also evaluated. In the two-year field experiment, the combined hoeing and living mulch seeding prototypes attained 70 – 80% weed control efficacy (WCE) with no record of crop losses. This result was comparable to similar treatment in flat seedbeds. Temperature and soil moisture in re-compacted ridges were partly better than in flat seedbeds, whereas, root penetration significantly improved on ridges (40% higher) with relative gain in root biomass (ca. 53.6 g m-2) compared to flat seedbeds. The third study evaluated the performance of different autonomous hoeing combinations on re-compacted ridges. It was hypothesized that autonomous weeding methods using RTK-GNSS-created ridges can substitute broadcast herbicide and manual weeding in future farms. Six field trials were conducted including maize and soybean. The treatment options include; i). twice hoeing combined with band herbicide application on ridge tops, ii). twice hoeing, iii). twice hoeing combined with living mulch, iv). twice hoeing combined with post-emergent harrowing on ridge tops. All hoeing treatments significantly reduced weed density in maize and soybean cultures except for one pass of post-emergent harrowing. In maize and soybean respectively, twice hoeing combined with band herbicide application on ridge tops or twice hoeing combined with living mulch in valleys achieved 70 - 100% and 77 - 86% WCE (within inter-row areas) and 66 - 72% and 67 - 79% WCE (within intra-row areas). Post-emergent harrowing treatments on ridge tops performed poorly in maize (46% WCE) and soybean (10% WCE). Therefore, twice hoeing combined with band herbicide application on ridge tops or twice hoeing combined with living mulch in the valley were considered best in selectivity due to higher weed control efficacy (inter – and intra-row), little or no crop damage, and highest grain yield as comparable to broadcast herbicide applications. The fourth article evaluated four autonomous inter and intra-row weeding methods in maize, sunflower, and sugar beet. Within the intra-row area, the treatment involved are; finger weeding, AI-based hoeing actuators, and band herbicide spraying – each simultaneously combined with sensor-guided inter-row hoeing using K.U.L.T iSelect®. In the six experiments conducted, all treatments attained higher yield, with more than 77% reduction in weed density. Most experiments recorded non-significant crop losses. Intra-row band-spraying or AI-based hoeing actuation (combined with inter-row hoeing) achieved 91% and 77% WCE respectively across maize, sugar-beet, and sunflower. However, as an autonomous system, band herbicide treatment was preferable in terms of herbicide savings (60%) and tractor speed comparable to broadcast herbicide application.Publication Development of a sensor-based harrowing system using digital image analysis to achieve a uniform weed control selectivity in cereals(2021) Spaeth, Michael; Gerhards, RolandUsing intelligent sensor technology for site-specific weed control can increase the efficacy of traditional weed control implements. Several scientific studies successfully used intelligent sensors for automatic harrow control by taking many different parameters into account such as weed density, soil resistance factor, and plant growth. However, none of the systems was practically feasible because these factors made the control system too complex and unattractive for farmers. Defining only one parameter (crop soil cover) instead of many provides a new and simple approach which was investigated in this work. The first scientific publication focuses on the development, practical implementation and testing of the automatic harrow control system. Two RGB-cameras were mounted before and after the harrow and constantly monitored crop cover. The CSC was then computed out of these resulting images. The image analysis, decision support system and automatic control of harrowing intensity by hydraulic adjustment of the tine angle were installed on a controller which was mounted on the harrow. Eight field experiments were carried out in spring cereals. Mode of harrowing intensity was changed in four experiments by speed, number of passes and tine angle. Each mode was varied in five intensities. In four experiments, only the intensity of harrowing was changed. Modes of intensity were not significantly different among each other. However, intensity had significant effects on WCE and CSC. Cereal plants recovered well from 10% CSC, and selectivity was in the constant range at 10% CSC. Therefore, 10% CSC was the threshold for the decision algorithm. If the actual CSC was below 10% CSC, intensity was increased. If the actual CSC was higher than 10%, intensity was decreased. The new system was tested in an additional field study. Threshold values for CSC were set at 10%, 30% and 60%. Automatic tine angle adjustment precisely realised the three different CSC values with variations of 1.5% to 3%. The next publication discussed and assessed the site-specific field adaptation of the development in cereals. In 2020, three field experiments were conducted in winter wheat and spring oats to investigate the response of the weed control efficacy and the crop to different harrowing intensities, in southwest Germany. In all experiments, six levels of CSC were tested. Each experiment contained an untreated control and an herbicide treatment as a comparison to the harrowing treatments. The results showed an increase in the WCE with an increasing CSC threshold. Difficult-to-control weed species such as Cirsium arvense (L.) and Galium aparine (L.) were best controlled with a CSC threshold of 70%. With a CSC threshold of 20% it was possible to control up to 98% of Thlaspi arvense (L.) The highest crop biomass, grain yield, and selectivity were achieved with an CSC threshold of 20–25% at all trial locations. With this harrowing intensity, grain yields were higher than in the herbicide control plots and a WCE of 68–98% was achieved. The last scientific article compares pairwise a conventional harrow intensity with automatic sensor-based harrowing intensity. Five field experiments in cereals were conducted at three locations in southwestern Germany in 2019 and 2020 to investigate if camera-based harrowing resulted in a more homogenous CSC and higher WCE, biomass, and crop grain yield than a conventional harrow with a constant intensity across the whole plot. For this purpose, pairwise comparisons of three fixed harrowing intensities (10 °, 40 °, and 70 ° tine angle) and three predefined CSC thresholds (CSC of 10%, 20%, and 60%) were realized in randomized complete block designs. Camera-based adjustment of the intensity resulted in 6-16% less standard deviation variation of CSC compared to fixed settings of tine angle. Crop density, WCE, crop biomass and grain yield were significantly higher for camera-based harrowing than for conventional harrowing. WCE and yields of all automatic adjusted harrowing treatments were equal to the herbicide control plots. In this PhD-thesis, a sensor-based harrow was developed and successfully investigated as an alternative to conventional herbicide application in cereals. A permanent, equal replacement of chemical weed control in arable farming systems can only be achieved using modern, sensor-based mechanical weed control approaches. Therefore, the efficacy of the mechanical weed control method can be improved and increased continuously. It has been shown that the precise adjustment of mechanical weed control methods to site-specific weed conditions allows similar WCE results as an herbicide application without causing yield losses. These findings contribute towards modern plant protection strategies to reduce the herbicide use and to establish the acceptance of technical progress in society.Publication Development of a spatial data infrastructure for precision agriculture applications(2021) Jackenkroll, Markus; Gerhards, RolandPrecision agriculture (PA) is the technical answer to tackling heterogeneous conditions in a field. It works through site specific operations on a small scale and is driven by data. The objective is an optimized agricultural field application that is adaptable to local needs. The needs differ within a task by spatial conditions. A field, as a homogenous-planted unit, exceeds by its size the scale units of different landscape ecological properties, like soil type, slope, moisture content, solar radiation etc. Various PA-sensors sample data of the heterogeneous conditions in a field. PA-software and Farm Management Information Systems (FMIS) transfer the data into status information or application instructions, which are optimized for the local conditions. The starting point of the research was the determination that the process of PA was only being used in individual environments without exchange between different users and to other domains. Data have been sampled regarding specific operations, but the model of PA suffers from these closed data streams and software products. Initial sensors, data processing and controlled implementations were constructed and sold as monolithic application. An exchange of hard- or software as well as of data was not planned. The design was focused on functionality in a fixed surrounding and conceived as being a unit. This has been identified as a disadvantage for ongoing developments and the creation of added value. Influences from the outside that may be innovative or even inspired cannot be considered. To make this possible, the underlying infrastructure must be flexible and optimized for the exchange of data. This thesis explores the necessary data handling, in terms of integrating knowledge of other domains with a focus on the geo-spatial data processing. As PA is largely dependent on geographical data, this work develops spatial data infrastructure (SDI) components and is based on the methods and tools of geo-informatics. An SDI provides concepts for the organization of geospatial components. It consists of spatial- and metadata in geospatial workflows. The SDI in the center of these workflows is implemented by technologies, policies, arrangements, and interfaces to make the data accessible for various users. Data exchange is the major aim of the concept. As previously stated, data exchange is necessary for PA operations, and it can benefit from defined components of an SDI. Furthermore, PA-processes gain access to interchange with other domains. The import of additional, external data is a benefit. Simultaneously, an export interface for agricultural data offers new possibilities. Coordinated communication ensures understanding for each participant. From the technological point of view, standardized interfaces are best practice. This work demonstrates the benefit of a standardized data exchange for PA, by using the standards of the Open Geospatial Consortium (OGC). The OGC develops and publishes a wide range of relevant standards, which are widely adopted in geospatially enabled software. They are practically proven in other domains and were implemented partially in FMIS in the recent years. Depending on their focus, they could support software solutions by incorporating additional information for humans or machines into additional logics and algorithms. This work demonstrates the benefits of standardized data exchange for PA, especially by the standards of the OGC. The process of research follows five objectives: (i) to increase the usability of PA-tools in order to open the technology for a wider group of users, (ii) to include external data and services seamlessly through standardized interfaces to PA-applications, (iii) to support exchange with other domains concerning data and technology, (iv) to create a modern PA-software architecture, which allows new players and known brands to support processes in PA and to develop new business segments, (v) to use IT-technologies as a driver for agriculture and to contribute to the digitalization of agriculture.Publication Development of an automated sensor based system for weed harrowing in cereals(2012) Rueda Ayala, Victor Patricio; Gerhards, RolandThe biggest challenge for weed harrowing in wheat and barley is to carry out a site-specific weed control according to the variability in conditions of soil, weeds and crop growth stage; selectivity of harrowing and yield response may also be considered. Therefore, an algorithm to automatically adjust the harrowing intensity was developed. First, different intensities were tested and the best results in terms of weed control efficacy and yield gains, were assigned as the optimal intensity levels. Second, a decision algorithm for weed harrowing was elaborated based assessments of leaf cover, weed density and soil density, to infer the output variable intensity. Third, we tested the system in two field experiments. The system requires more validation experiments in field with variable soil types and variable weed competition. Our perspective is that real-time intensity adjustment might be achievable if cameras are attached in the front and at the rear or sides of the harrow. Then feedback of the remaining weed competition might be used as new input to the model, which would indicate the necessity of cultivating a second or more passes.Publication Distribution, detection and genetic background of herbicide-resistant Alopecurus myosuroides (Huds.) in Germany(2015) Rosenhauer, Maria; Gerhards, RolandWeed control is an important part in agricultural practice. Since selective herbicides were introduced, the labour-intensive mechanical weed control was replaced by chemicals. The use of chemicals for weed control has become increasingly problematic due to the evolution of herbicide-resistant weeds. In Germany, Alopecurus myosuroides (Huds.) is one of the most problematic weeds concerning herbicide resistance. The first resistant black-grass biotype in Germany was found in 1982. More than 30 years after the first resistant black-grass was found in Germany (1982), there are still numerous unsolved questions and challenges concerning the problem of herbicide resistance. Further knowledge about the distribution, the detection, and the genetic background of different resistance mechanisms is needed to find comprehensive solutions for the future. Knowledge about the occurrence and distribution of herbicide-resistant black-grass in Germany, and the herbicides primarily affected may provide more detailed information for farmers to quickly react on upcoming resistances. Moreover, if the genetic background of resistance is better understood, practical conclusions regarding the choice of herbicides and management tools can be drawn. Furthermore, a reliable and easy-to-handle test system for the detection of resistances would enable farmers to react faster and in a more targeted manner. The aim of the present study was to investigate these aspects addressing herbicide-resistant black-grass in Germany. How widespread is TSR in Germany? Did the amount of TSR change over the years? Are there “TSR-hot spots” in Germany? The first paper addressed ACCase and ALS-resistant black-grass samples in Germany. It dealt with the distribution and development of TSR in Germany over a period of nine years. It could be demonstrated that TSR was more widespread than expected. The frequency of ACCase-TSR increased from 4.0% in 2004 to 38.5% in 2012. ALS-TSR rose from 0.8% in 2007 to 13.9% in 2012. Both TSRs significantly increased over time within a standing number of seed samples over the years. How many genes are involved in NTSR? Are there differences between the plants and can we detect cross-resistances? The second paper dealt with the inheritance of NTSR conferring resistance to chlorotoluron, fenoxaprop-P-ethyl, pinoxaden, mesosulfuron + iodosulfuron, and flufenacet in six different black-grass plants. Segregation analyses of the quantitative trait showed a minimum of five loci conferring specific resistances. The resistances against chlorotoluron and fenoxaprop-P-ethyl were mostly conferred by one locus, whereas resistances against pinoxaden and mesosulfuron + iodosulfuron were mostly conferred by a minimum of two loci. A minimum of one to three loci explained resistance to flufenacet. The accumulation of resistance loci in individual plants could be achieved by the study. Furthermore, the number of loci was shown to be herbicide- and plant-specific which further confirms the complexity of NTSR. How is it possible to test pre-emergence herbicides in black-grass? Which test system is the most reliable? The aim of the third paper was to find a reliable test system to monitor pre-emergence herbicide resistance in black-grass. It is widely known that diverse sites of action can be affected by NTSR. Moreover, resistance against pre-emergence herbicides belonging to the HRAC groups N, K3, and C2 occur. The outcomes of the study indicate that a soil-based greenhouse test with pre-germinated seeds is most suitable for resistance detection. Discriminating herbicide rates which were able to distinguish between the resistant and susceptible black-grass biotypes were found for all of the herbicides tested. This enables a reliable, quick, and easy way to identify pre-emergence resistance. In conclusion, herbicide-resistant black-grass has become an increasing problem in Germany. The high frequency of nearly 40% ACCase TSR on resistance suspected sites highlights the importance of changes in agricultural practices. The aim should be to avoid the repeated use of single site of action herbicides in short term crop-rotations with large quantities of winter cereals. The accumulation of NTSR loci in single plants increases the risk of biotypes with broad resistances against many different modes of action. Resistance linkages were found to be plant-specific which may result in unpredictable resistance situations in the field. Even pre-emergence herbicides can be affected by NTSR. An option to detect these resistances is provided by a soil-based greenhouse bioassay with pre-germinated seeds.Publication Effects of weeds on yield and determination of economic thresholds for site-specific weed control using sensor technology(2014) Keller, Martina; Gerhards, RolandWeeds can cause high yield losses. Knowledge about the weeds occurring, their distribution within fields and their effects on the crop yield is important to achieve effective weed control. The critical period for weed control (CPWC) and the economic threshold (ET) are important key concepts and management tools in weed control. While the former helps to time weed control in crops of low competitiveness, the latter provides a decision aid to determine whether weed control is necessary. This decision is generally taken at the field level. Weeds have been found to be distributed heterogeneously within fields. Site-specific weed control (SSWC) addresses this sub-field variation by determining weed distribution as input, by taking control decisions in the decision component and by providing control measures as output at high spatial resolution. Sensor systems for automated weed recognition were identified as prerequisite for SSWC since costs for scouting are too high. While experiences with SSWC using sensor data as input are still scarce, studies showed that considerable herbicide savings could be achieved with SSWC. ETs can serve as thresholds for the decision component in SSWC systems. However, the commonly used ETs were suggested decades ago and have not been updated to changing conditions since. The same is the case for the CPWC in maize in Germany. In addition, the approaches to determine the CPWC are usually not based on economic considerations, which are highly relevant to farmers. Thus, the objectives of this thesis are: 1. To test different models and to provide a straightforward approach to integrate economical aspects in the concept of the CPWC for two weed control strategies: Herbicide based (Germany) and hoeing based (Benin); 2. To determine the effect of weeds on yield and to calculate ETs under current conditions which can be used for SSWC; 3. To evaluate the use of bi-spectral cameras and shape-based classification algorithms for weed detection in SSWC; and 4. To determine changes in weed frequencies, herbicide use and yield over the last 20 years in southwestern Germany. Datasets in maize from Germany and Benin served as input for the CPWC analyses. The log-logistic model was found to provide a similar fit as the commonly used models but its parameters are biologically meaningful. For Germany, analyses using a full cost model revealed that farmers should aim at applying herbicides early before the 4-leaf stage of maize. In Benin, where weed control is mainly done by hoeing, analyses showed that one well- timed weeding operation around the 10-leaf stage could already be cost-effective. A second weeding operation at a later stage would assure profit. The precision experimental design (PED) was employed to determine the effect of weeds, soil properties and herbicides on crop yield in three winter wheat trials. In this design, large field trials’ geodata of weed distribution, herbicide application, soil properties and yield are used to model the effects of the former three on yield. Galium aparine, other broadleaved weeds and Alopecurus myosuroides reduced yield by 17.5, 1.2 and 12.4 kg ha-1 plant-1 m2 determined by weed counts. The determined thresholds for SSWC with independently applied herbicides were 4, 48 and 12 plants m-2, respectively. Bi-spectral camera based weed–yield estimates were difficult to interpret showing that this technology still needs to be improved. However, large weed patches were correctly identified. ETs derived of field trials’ data carried out at several sites over 13 years in the framework of the ’Gemeinschaftsversuche Baden-Württemberg’ were 9.2-9.8 and 4.5-8.9 % absolute weed coverage for winter wheat and winter barley and 3.7% to 5.5% relative weed coverage for maize. Overall, the weed frequencies in winter cereals were found to be more stable than the weed frequencies in maize during the observation period. In maize, a frequency increase of thermophilic species was found. Trends of considerable yield increases of 0.16, 0.08 and 0.2 t ha-1 for winter wheat, winter barely and maize, respectively, were estimated if weeds were successfully controlled. In order to evaluate the use of bi-spectral cameras and shapebased classification algorithms for weed detection in SSWC, herbicides were applied site-specifically using weed densities determined by bi-spectral camera technology in a winter wheat and maize field. Threshold values were employed for decision taking. Using this approach herbicide savings between 58 and 83 % could be achieved. Such reductions in herbicide use would meet the demand of society to minimize the release of plant protection products in the environment. Misclassification occurred if weeds overlapped with crop plants and crop leaf tips were frequently misclassified as grass weeds. Improvements in equipment, especially between the interfaces of camera, classification algorithms, decision component and sprayer are advisable for further trials. In conclusion, the derived ETs can be easily implemented in a straightforward SSWC system or can serve as decision aid for farmers in winter wheat and winter barley. Further model testing and adjusting would be necessary. For maize, the use of ETs at the field level is not suggested by this study, however the need for early weed control is clearly demonstrated. Bi-spectral camera technology combined with classification algorithms to detect weeds is promising for research use and for SSWC, but still requires some technical improvements.Publication Evaluating different management strategies to increase the effectiveness of winter cover crops as an integrated weed management measure(2020) Schappert, Alexandra; Gerhards, RolandWeed control in agricultural production systems is indispensable to achieve stable crop yields. Integrated cropping systems are demanding for preventive and ecologically harmless weed control measures in order to protect soil and water resources and to retard the selection of herbicide-resistant weeds. Well-established winter cover crops provide nutrient retention and soil protection and may effectively suppress weeds. This contributes to reduce chemical and mechanical fall- and spring-applied weed control practices. However, producers are cautious towards integrating cover crops in crop rotations, as their performance is related to environmental conditions and varies, therefore, significantly from season to season. To increase their integration into cropping systems, reliability on weed control by cover crops needs to improve. In the current study, management strategies such as i) the cover crop sowing method, ii) the selection of water deficit tolerating cover crop species, iii) cover crop species combinations, iv) the adjustment of the mulching date and v) tillage practices after cover crop cultivation were considered as possibilities to improve the effectiveness of cover crops to control weeds during cultivation and in the subsequent cash crop. Within the first and the second publication, the general weed and A. myosuroides control ability of a cover crops mixture during and after cultivation were compared in the field with various fall-applied tillage methods and glyphosate treatments. Due to the development of highly competitive cover crop stands, weeds were suppressed by 98% and A. myosuroides by 100% during cultivation. Therefore, cover crops were more efficient compared to glyphosate application(s), non-inversion and inversion tillage and revealed a great potential to reduce or even replace chemical and mechanical fall-applied weed control measures. The efficient A. myosuroides control during the cover crop cultivation remained until spring barley harvest. This quantifies cover crops to complement herbicide resistance management strategies. In contrast, due to the weak cover crop performance during fall-to-winter within another two experiments included in the second article, weed suppressive effects of cover crops disappeared after the cultivation of cover crops. This might have been the reason why reduced tillage and adjusted mulching dates in spring failed in contributing to expand weed suppressive effects of cover crops in these experiments. Cover crop mixtures are attributed to show a greater resilience against unfavorable conditions than pure cover crop stands which is expected to result in an increased weed suppression ability. Within article three, the weed control efficacy of pure cover crop stands was compared with species mixtures. Pure stands of Avena strigosa Schreb. and Raphanus sativus var. oleiformis Pers. provided the most efficient weed control with 83% and 72%, respectively. Cover crop species mixtures showed a weaker weed suppression ability than the most efficient pure stand. In order to improve the weed control ability of cover crop mixtures, it was evaluated that the species selection is more relevant than the species diversity. Thereby, environmental requirements, such as water and temperature demand, and weed suppression mechanisms should be considered. Weed suppression of mixtures was improved by increasing the proportions of A. strigosa and R. sativus var. oleiformis, as they were showing a susceptibility for dry conditions and combine a strong competition for resources and allelopathic interference with weeds. Within the fourth article, it was explored whether a low susceptibility of single cover crop species to water-limitations accompanies an improved weed suppression ability. A. strigosa and Sinapis alba L. showed differing suitabilities to cope with water-deficit in the greenhouse. A relation between weed suppression and water demand of cover crops at the field was not identified. Although the weed control ability of cover crops is generally narrowed under water-limited conditions, the weed suppression potential of individual species seems to be independent of their water supply. The adjustment of the cover crop sowing method, the consideration of species-specific requirements and the mixing strategies, were evaluated as being important to improve the resilience of cover crops against severe environmental conditions and their weed control ability. Investigations of cover crop mixtures with respect to single component species, their mixing ratios and seed densities, might further increase the absolute and average effectiveness of cover crops as an integrated weed management practice.Publication Evaluation of the new cropping practices in sugar beet (Beta vulgaris L.) cultivation in the central black soil region of Russian Federation(2019) Bezhin, Kostyantyn; Gerhards, RolandIn recent years Russian sugar production has exceeded the country needs with a surplus of 500.000 tons. Sugar producers and traders are forced to start trading on the global markets. However, ineffective production, caused by low yields of sugar puts the price of Russian sugar 35 to 50 % higher than the leading sugar exporters. Weeds belong to one of the main factors reducing sugar beet yield. Weeds that survive control operations may cause significant crop yield reductions. Rapid emergence and homogeneous crop stand are very important for competition with weeds. At the same time, the crop may be suppressed by selective herbicide application, if herbicides are applied during suboptimal weather conditions. This study evaluated glyphosate-tolerant sugar beet technology and seed priming for the possibility to increase the productivity of sugar beet cultivation. A series of studies were carried out in different environments in Germany and in Russian Federation. The scope of the studies was dealing with: i) comparison of the conventional weed control technology with technology, based on glyphosate applications; ii) a study of the crop weed interaction in German environment and in the environment of the Central black soil region of the Russian Federation; iii) tests of sugar beet seed priming for the speed of germination by means of growth chamber test, and for the speed of emergence in the soil seedbed, by means of greenhouse and field experiments. The results of the conducted experiments are concentrated in three scientific articles that have been published in the international peer-reviewed journals: The purpose of the first article was to analyse the weed control efficacy of weed control schemes with one, two and three applications of glyphosate and compare it with the conventional weed control technology. The results show that the application of glyphosate supplied significantly higher efficacy of weed control than conventional herbicides. In five out of 7 experiments single application of glyphosate gave the same weed control efficacy as two or three applications. No significant differences in weed control efficacy were observed between two different dosages of glyphosate – 900 and 1350 g a.e. ha-1. The variants treated with conventional herbicides and with two and three glyphosate applications showed no significant differences in white sugar yield. In one location, the variant with one application of glyphosate resulted in lower white sugar yield due to delayed application of herbicide, and longer time of crop and weed interference. The aim of the second article was to study the yield loss caused by the competition with weeds in different environments. In the Russian locations Chenopodium album L. and Amaranthus retroflexus L. caused serious yield reduction already at low plant densities. White sugar yields harvested at Russian locations were approximately 45 % lower than in German locations. At Russian locations 50 % of the maximum weed population has caused more than 80 % yield reduction. Relative weed cover was the best predictor of the sugar beet yield loss. Weed biomass and weed density gave less accurate predictions. The third article was focused on testing of priming technology on the seed performance and crop establishment. In the controlled environment, primed seeds needed 10 days to reach full germination percentage of the seeds, for not primed seeds it took between 12 and 14 days. Primed seeds produced significantly larger area of plant foliage area and amount of dry biomass than non-rimed seeds. In uncontrolled environments, findings of previous experiments could not be confirmed. Priming did not influence the weed suppressive ability of the crop and the white sugar yield. The general conclusion of this dissertation is that GT technology may help to improve the profitability of sugar beet cultivation for Russian growers by reducing the number of herbicide applications and increase weed control efficacy. Seed priming can give benefits for crop establishment, however only under specific environmental conditions.Publication Evaluation of weed populations under the influence of site-specific weed control to derive decision rules for a sustainable weed management(2008) Ritter, Carina; Gerhards, RolandIn context of reduction programs for chemical plant protection, herbicide use needs to be strictly controlled and reduced to the absolute necessary extent in order to minimise negative side effects for the environment and pesticide residues in the food chain. The site specific weed management is a promising way to reduce herbicide use. It aims at managing weeds with respects to their spatial and temporal variability. Post-emergence herbicides are only applied at highly infested locations in the fields. Several studies on site-specific weed control have shown that this practice is reasonable, and it has been successfully implemented in various crops, resulting in a considerable reduction of herbicide use, treatment costs, and consequently benefits to the environment. However, there is still lack of knowledge on the population dynamics of weeds and the interactions between crop and weeds under the site-specific weed management. Long term effects of the site-specific weed control have not been studied in detail yet. Additionally, an experimental approach was needed to create precise decision algorithms for site-specific weed management. Therefore the applied scientific objective of this research was: - to analyse the spatial and temporal distribution of weeds, - to provide information on weed population dynamics under the influence of the site-specific weed control, - to detect if site-specific weed management leads to an increase in weed density, and if weed patches remain stable in density and location over time, - to determine herbicide savings and efficacy of the site specific weed management, - to design an experimental on-farm approach to explain yield variation caused by within-field heterogeneity of weed density, soil quality and herbicide application, in order to derive decision rules for site-specific weed control. During the course of this work site specific weed management tested in field trails, long term effects were examined, population dynamics were analysed and a model approach to derive management decision was approved. It was proved that weed distribution was heterogeneous in all experimental fields. The average weed density remained stable when economical weed thresholds were applied. The application of effective herbicides in every year did not reduce density in high density weed patches. The patches were persistent over eight years, with slight variations in density from year to year. It is suggested that a combination of chemical, mechanical, and cultural weed management strategies would be necessary to effectively control weeds in high density locations. However, the knowledge about the spatial stability of weed patches of individual species offers possibilities to use this information for weed management strategies. Population dynamic parameters such as weed seedling emergence, crop-weed competition, seedlings mortality, herbicide efficacy, seed production and viability were found to be weed density dependent. With increasing weed density weed biomass and fecundity increased. These findings support that weed density has to be considered in weed management strategies. Site-specific weed management was effective over time. The amount of herbicides used could be decreased significantly due to site specific herbicide application, without loosing performance. Only 26-35 % of herbicides were sprayed compared to uniform application of herbicides that is still the standard method of weed control. Additionally, a new experimental design based on an anisotropic exponential model with nugget effect was established. The influences of the co-variables weed and soil on yield and the side-effects of herbicides were quantified separately with this model, by overlaying and spatially joining all data. Out of this information, yield losses due to weed and herbicide injury could be defined, and valid decision rules for site-specific weed management could be ascertained. For the first time the injury to the crop due to herbicide application could be numeralised with this experimental design. This large loss of yield can be avoided and considerable reductions in herbicide rates can be achieved by site-specific weed management based on weed thresholds. This experimental approach enables to explain the variation of yield within agricultural fields, and an understanding of the effects on yield of the factors and their causal interactions. This work is seen as a mayor step forward in order to precisely manage weeds with respect to their spatial and temporal dynamics.Publication Exploring the effects of different stubble tillage practices and glyphosate application combined with the new soil residual herbicide cinmethylin against Alopecurus myosuroides Huds. in winter wheat(2022) Messelhäuser, Miriam Hannah; Saile, Marcus; Sievernich, Bernd; Gerhards, RolandEffective control of Alopecurus myosuroides Huds. (blackgrass) solely with a chemical treatment is not guaranteed anymore because populations exhibit resistance to almost all herbicide modes of action. Integrated weed management (IWM) against blackgrass is necessary to maintain high weed control efficacies in winter cereals. Four field experiments were conducted in Southwest Germany from 2018 to 2020 to control A. myosuroides with a combination of cultural and chemical methods. Stubble treatments, including flat, deep and inversion soil tillage; false seedbed preparation and glyphosate use, were combined with the application of the new pre-emergence herbicide cinmethylin in two rates in winter wheat. Average densities of A. myosuroides in the untreated control plots were up to 505 plants m−2. The combination of different stubble management strategies and the pre-emergence herbicide cinmethylin controlled 86–97% of A. myosuroides plants at the low rate and 95–100% at the high rate until 120 days after sowing. The different stubble tillage practices varied in their efficacy between trials and years. Most effective and consistent were pre-sowing glyphosate application on the stubble and stale seedbed preparation with a disc harrow. Stubble treatments increased winter wheat density in the first year but had no effect on crop density in the second year. Pre-emergence application of cinmethylin did not reduce winter wheat densities. Multiple tactics of weed control, including stubble treatments and pre-emergence application of cinmethylin, provided higher and more consistent control of A. myosuroides. Integration of cultural weed management could prevent the herbicide resistance development.Publication Facilitation of weed seed predation by living mulch and cover crops(2022) Schumacher, Matthias; Gerhards, RolandWeed seed predation (WSP) is an important agro‐ecosystem service that naturally suppresses weed populations. Disturbances directly interfere with the activity of the seed predators, for example, harvest and soil tillage during a peak in weed seed availability (around cereal harvest). Plant soil cover and reduced soil tillage are factors that might positively affect WSP. We investigated cover crops and living mulch along with soil disturbance (no‐till and conventional seeding) in comparison to a fallow and repeated stubble tillage with a chisel plough in terms of WSP, activity‐density of carabid beetles and soil cover. A field experiment with a randomised complete block design and four replications was conducted at two sites from 2017 until 2019. WSP rates were assessed with seed cards and exclosure cages from July until November during a period of eight consecutive days each month. Living mulch exhibited the highest WSP rates of 72% with a maximum of 95% immediately following cereal harvest in August and September of 2017 and 2019, while the remainder of the treatments ranged from 2% to 5% WSP. In October and November mustard showed on average twice as high WSP rates compared to the other treatments (50% vs. 10%–25%). Seeding and soil tillage did not significantly influence carabid beetle activity‐density and WSP, except for living mulch. Predator groups (invertebrates and vertebrates) were not influenced by the various treatments, rather year and month determined the predator groups dominance. Besides their weed suppressive effects, living mulches and cover crops also facilitate WSP.