Browsing by Person "Guo, Yuhang"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Genetic dissection of phosphorus use efficiency and genotype-by-environment interaction in maize(2022) Li, Dongdong; Li, Guoliang; Wang, Haoying; Guo, Yuhang; Wang, Meng; Lu, Xiaohuan; Luo, Zhiheng; Zhu, Xintian; Weiß, Thea Mi; Roller, Sandra; Chen, Shaojiang; Yuan, Lixing; Würschum, Tobias; Liu, WenxinGenotype-by-environment interaction (G-by-E) is a common but potentially problematic phenomenon in plant breeding. In this study, we investigated the genotypic performance and two measures of plasticity on a phenotypic and genetic level by assessing 234 maize doubled haploid lines from six populations for 15 traits in seven macro-environments with a focus on varying soil phosphorus levels. It was found intergenic regions contributed the most to the variation of phenotypic linear plasticity. For 15 traits, 124 and 31 quantitative trait loci (QTL) were identified for genotypic performance and phenotypic plasticity, respectively. Further, some genes associated with phosphorus use efficiency, such as Zm00001eb117170, Zm00001eb258520, and Zm00001eb265410, encode small ubiquitin-like modifier E3 ligase were identified. By significantly testing the main effect and G-by-E effect, 38 main QTL and 17 interaction QTL were identified, respectively, in which MQTL38 contained the gene Zm00001eb374120, and its effect was related to phosphorus concentration in the soil, the lower the concentration, the greater the effect. Differences in the size and sign of the QTL effect in multiple environments could account for G-by-E. At last, the superiority of G-by-E in genomic selection was observed. In summary, our findings will provide theoretical guidance for breeding P-efficient and broadly adaptable varieties.Publication Meta-quantitative trait loci analysis and candidate gene mining for drought tolerance-associated traits in maize (Zea mays L.)(2024) Li, Ronglan; Wang, Yueli; Li, Dongdong; Guo, Yuhang; Zhou, Zhipeng; Zhang, Mi; Zhang, Yufeng; Würschum, Tobias; Liu, WenxinDrought is one of the major abiotic stresses with a severe negative impact on maize production globally. Understanding the genetic architecture of drought tolerance in maize is a crucial step towards the breeding of drought-tolerant varieties and a targeted exploitation of genetic resources. In this study, 511 quantitative trait loci (QTL) related to grain yield components, flowering time, and plant morphology under drought conditions, as well as drought tolerance index were collected from 27 published studies and then projected on the IBM2 2008 Neighbors reference map for meta-analysis. In total, 83 meta-QTL (MQTL) associated with drought tolerance in maize were identified, of which 20 were determined as core MQTL. The average confidence interval of MQTL was strongly reduced compared to that of the previously published QTL. Nearly half of the MQTL were confirmed by co-localized marker-trait associations from genome-wide association studies. Based on the alignment of rice proteins related to drought tolerance, 63 orthologous genes were identified near the maize MQTL. Furthermore, 583 candidate genes were identified within the 20 core MQTL regions and maize–rice homologous genes. Based on KEGG analysis of candidate genes, plant hormone signaling pathways were found to be significantly enriched. The signaling pathways can have direct or indirect effects on drought tolerance and also interact with other pathways. In conclusion, this study provides novel insights into the genetic and molecular mechanisms of drought tolerance in maize towards a more targeted improvement of this important trait in breeding.