Browsing by Person "Habib-ur-Rahman, Muhammad"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Biochar and slow-releasing nitrogen fertilizers improved growth, nitrogen use, yield, and fiber quality of cotton under arid climatic conditions(2021) Manzoor, Sobia; Habib-ur-Rahman, Muhammad; Haider, Ghulam; Ghafoor, Iqra; Ahmad, Saeed; Afzal, Muhammad; Nawaz, Fahim; Iqbal, Rashid; Yasin, Mubashra; ul Haq, Tanveer; Danish, Subhan; Ghaffar, AbdulThe efficiency of nitrogenous fertilizers in South Asia is on a declining trajectory due to increased losses. Biochar (BC) and slow-releasing nitrogen fertilizers (SRNF) have been found to improve nitrogen use efficiency (NUE) in certain cases. However, field-scale studies to explore the potential of BC and SRNF in south Asian arid climate are lacking. Here we conducted a field experiment in the arid environment to demonstrate the response of BC and SRNF on cotton growth and yield quality. The treatments were comprised of two factors, (A) nitrogen sources, (i) simple urea, (ii)neem-coated urea, (iii)sulfur-coated urea, (iv) bacterial coated urea, and cotton stalks biochar impregnated with simple urea, and (B) nitrogen application rates, N1=160 kg ha-1, N2 = 120 kg ha-1, and N3 = 80 kg ha-1. Different SRNF differentially affected cotton growth, morphological and physiological attributes, and seed cotton yield (SCY). The bacterial coated urea at the highest rate of N application (160 kg ha-1) resulted in a higher net leaf photosynthetic rate (32.8 μmol m-2 s-1), leaf transpiration rate (8.10 mmol s-1), and stomatal conductance (0.502 mol m-2 s-1), while leaf area index (LAI), crop growth rate (CGR), and seed cotton yield (4513 kg ha-1) were increased by bacterial coated urea at 120 kg ha-1 than simple urea. However, low rate N application (80 kg ha-1) of bacterial coated urea showed higher nitrogen use efficiency (39.6 kg SCY kg-1 N). The fiber quality (fiber length, fiber strength, ginning outturn, fiber index, and seed index) was also increased with the high N application rates than N2 and N3 application. To summarize, the bacterial coated urea with recommended N (160 kg ha-1) and 75% of recommended N application (120 kg ha-1) may be recommended for farmers in the arid climatic conditions of Punjab to enhance the seed cotton yield, thereby reducing nitrogen losses.Publication Physiological insights into sulfate and selenium interaction to improve drought tolerance in mung bean(2021) Aqib, Muhammad; Nawaz, Fahim; Majeed, Sadia; Ghaffar, Abdul; Ahmad, Khawaja Shafique; Shehzad, Muhammad Asif; Tahir, Muhammad Naeem; Aurangzaib, Muhammad; Javeed, Hafiz Muhammad Rashad; Habib-ur-Rahman, Muhammad; Usmani, Muhammad MunirThe present study involved two pot experiments to investigate the response of mung bean to the individual or combined SO42− and selenate application under drought stress. A marked increment in biomass and NPK accumulation was recorded in mung bean seedlings fertilized with various SO42− sources, except for CuSO4. Compared to other SO42− fertilizers, ZnSO4 application resulted in the highest increase in growth attributes and shoot nutrient content. Further, the combined S and Se application (S + Se) significantly enhanced relative water content (16%), SPAD value (72%), photosynthetic rate (80%) and activities of catalase (79%), guaiacol peroxidase (53%) and superoxide dismutase (58%) in the leaves of water-stressed mung bean plants. Consequently, the grain yield of mung bean was markedly increased by 105% under water stress conditions. Furthermore, S + Se application considerably increased the concentrations of P (47%), K (75%), S (80%), Zn (160%), and Fe (15%) in mung bean seeds under drought stress conditions. These findings indicate that S + Se application potentially increases the nutritional quality of grain legumes by stimulating photosynthetic apparatus and antioxidative machinery under water deficit conditions. Our results could provide the basis for further experiments on cross-talk between S and Se regulatory pathways to improve the nutritional quality of food crops.