Browsing by Person "Hosseini, Behnoush"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Characterization of Bacillus velezensis UTB96, demonstrating improved lipopeptide production compared to the strain B. velezensis FZB42(2022) Vahidinasab, Maliheh; Adiek, Isabel; Hosseini, Behnoush; Akintayo, Stephen Olusanmi; Abrishamchi, Bahar; Pfannstiel, Jens; Henkel, Marius; Lilge, Lars; Vögele, Ralf ; Hausmann, RudolfBacillus strains can produce various lipopeptides, known for their antifungal properties. This makes them attractive metabolites for applications in agriculture. Therefore, identification of productive wild-type strains is essential for the development of biopesticides. Bacillus velezensis FZB42 is a well-established strain for biocontrol of plant pathogens in agriculture. Here, we characterized an alternative strain, B. velezensis UTB96, that can produce higher amounts of all three major lipopeptide families, namely surfactin, fengycin, and iturin. UTB96 produces iturin A. Furthermore, UTB96 showed superior antifungal activity towards the soybean fungal pathogen Diaporthe longicolla compared to FZB42. Moreover, the additional provision of different amino acids for lipopeptide production in UTB96 was investigated. Lysine and alanine had stimulatory effects on the production of all three lipopeptide families, while supplementation of leucine, valine and isoleucine decreased the lipopeptide bioproduction. Using a 45-litre bioreactor system for upscaling in batch culture, lipopeptide titers of about 140 mg/L surfactin, 620 mg/L iturin A, and 45 mg/L fengycin were achieved. In conclusion, it becomes clear that B. velezensis UTB96 is a promising strain for further research application in the field of agricultural biological controls of fungal diseases.Publication Characterization ofantifungal properties of lipopeptide-producing Bacillus velezensis strains and their proteome-based response to the phytopathogens, Diaporthe spp(2023) Akintayo, Stephen Olusanmi; Hosseini, Behnoush; Vahidinasab, Maliheh; Messmer, Marc; Pfannstiel, Jens; Bertsche, Ute; Hubel, Philipp; Henkel, Marius; Hausmann, Rudolf; Vögele, Ralf; Lilge, LarsIntroduction: B. velezensis strains are of interest in agricultural applications due to their beneficial interactions with plants, notable through their antimicrobial activity. The biocontrol ability of two new lipopeptides-producing B. velezensis strains ES1-02 and EFSO2-04, against fungal phytopathogens of Diaporthe spp., was evaluated and compared with reference strains QST713 and FZB42. All strains were found to be effective against the plant pathogens, with the new strains showing comparable antifungal activity to QST713 and slightly lower activity than FZB42. Methods: Lipopeptides and their isoforms were identified by high-performance thin-layer chromatography (HPTLC) and mass spectrometric measurements. The associated antifungal influences were determined in direct in vitro antagonistic dual culture assays, and the inhibitory growth effects on Diaporthe spp. as representatives of phytopathogenic fungi were determined. The effects on bacterial physiology of selected B. velezensis strains were analyzed by mass spectrometric proteomic analyses using nano-LC-MS/MS. Results and Discussion: Lipopeptide production analysis revealed that all strains produced surfactin, and one lipopeptide of the iturin family, including bacillomycin L by ES1-02 and EFSO2-04, while QST713 and FZB42 produced iturin A and bacillomycin D, respectively. Fengycin production was however only detected in the reference strains. As a result of co-incubation of strain ES1-02 with the antagonistic phytopathogen D. longicolla, an increase in surfactin production of up to 10-fold was observed, making stress induction due to competitors an attractive strategy for surfactin bioproduction. An associated global proteome analysis showed a more detailed overview about the adaptation and response mechanisms of B. velezensis, including an increased abundance of proteins associated with the biosynthesis of antimicrobial compounds. Furthermore, higher abundance was determined for proteins associated with oxidative, nitrosative, and general stress response. In contrast, proteins involved in phosphate uptake, amino acid transport, and translation were decreased in abundance. Altogether, this study provides new insights into the physiological adaptation of lipopeptide-producing B. velezensis strains, which show the potential for use as biocontrol agents with respect to phytopathogenic fungi.Publication Species of the Diaporthe/Phomopsis Complex (DPC) in European soybean and establishment of quadruplex Real-Time PCR for diagnosis(2022) Hosseini, Behnoush; Vögele, RalfDiaporthe seed decay is among the most disruptive soybean diseases around the world, which cause significant yield losses and affect soybean quality. Different Diaporthe species cause this disease, while Diaporthe longicolla is considered the main causal agent. The species of this fungal complex (genus Diaporthe is also called the Diaporthe/Phomopsis Complex / DPC) have to be accurately identified for epidemiological studies of the disease and for optimal control measures. To identify the major causal agents of seed decay in Europe, DPC-damaged soybean seeds of various cultivars, that were collected from different fields in Germany, France, and Austria were tested by seed plating. 32 Diaporthe isolates could be obtained. The isolates were morphologically identified by the colors and shape of the colony, conidia dimensions, and by whether pycnidia with α- and/or β-conidia or perithecia with ascospores are formed. To corroborate morphological identification, sequences of the internal transcribed spacer (ITS), translation elongation factor 1-α (TEF1), and beta-tubulin (TUB) sequences were obtained. From the results of both morphological and molecular analyses it became clear that all isolates belong to one of the four species D. longicolla, D. caulivora, D. eres, and D. novem. The pathogenicity of all strains on soybean was tested. Molecular phylogenies were calculated and based on the above results updated species descriptions were created. This study identified these four species as the main Diaporthe pathogens for soybean in central Europe. A sensitive and accurate method for quick detection of these pathogens was developed based on multiplex real-time PCR. Specific TaqMan primer-probe sets for the four species were designed based on TEF1 sequences. The primer-probe sets were tested for specificity and efficiency using PCR products and genomic DNA from the four Diaporthe species and several other soybean pathogens. These primer-probe sets reliably distinguish the different species and they can be used to detect them in the same reaction by quadruplex real-time PCR. DNA from different soybean plant materials including healthy and infected seeds or seed coats, stems, and leaves was used to test the quadruplex real-time PCR assay. Application of the assay was extended to quantify the pathogens. Standard curves for the four species were created from serial dilutions of genomic DNA diluted with DNA from soybean tissue. An additional standard curve was created from serial dilutions of soybean DNA diluted with ddH2O. To gain the ratio of fungal DNA per plant DNA (ng/ng), DNA samples from soybean tissues can now be examined in the new assay and a parallel SYBR® Green-based real-time PCR. The assay was first applied to six soybean seed lots with putative Diaporthe contamination. In all seed lots seeds contaminated with Diaporthe species and even some seeds infected with more than one Diaporthe species were found, while other seeds were free of the pathogens. The load of fungal biomass varies strongly between individual seeds.