Browsing by Person "Imhof, Nora"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Molekulare Dynamik der YidC-Membraninsertase aus Escherichia coli(2011) Imhof, Nora; Kuhn, AndreasThe membrane insertase YidC of the Gram-negative bacterium E. coli enables the insertion of proteins into the cytoplasmic membrane. YidC itself is localized in the cytoplasmic membrane and spans the membrane six times with its N- and C-termini localized in the cytoplasm. These six transmembrane segments are connected by three periplasmic loops (P1, P2 and P3) and two cytoplasmic loops (C1 and C2). It is known that the binding of the YidC-dependent protein Pf3 coat induces conformational changes in the tertiary structure of YidC. This molecular dynamic of YidC was examined in detail with steady-state and time-resolved fluorescence spectroscopy. Therefore, three tryptophan mutants of YidC with one tryptophan residue each, at position 354 in the first periplasmic domain P1, at position 454 in the second periplasmic region and at position 508 near the third periplasmic region, respectively, were used. Additionally, a double tryptophan mutant was used which contained two tryptophan residues at position 332/334 of the domain P1. These tryptophan residues were used as intrinsic fluorophores. First, it was shown that the tryptophan mutants of YidC complemented the growth defect of the E. coli YidC-depletion strain JS7131. Additionally, the mutants were able to insert the strictly YidC-dependent PClep protein into the cytoplasmic membrane of the depletion strain. Thus, the functionality of the tryptophan mutants of YidC was ensured. Purified tryptophan mutants of YidC were reconstituted into liposomes and titrated with Pf3W0 coat, a tryptophan free mutant of Pf3 coat protein allowing spectroscopic studies of each periplasmic region (P1, P2 and P3) before and after binding of Pf3W0 coat protein. Analysis of the emission spectra and the fluorescence lifetimes of detergent solubilized as well as of the reconstituted YidC tryptophan mutants before binding of Pf3W0 coat revealed that the tryptophan residue of each single tryptophan mutant (YidCW354, YidCW454 and YidCW508) was localized at the membrane/water interface. These results are consistent with the proposed membrane topology of YidC. The tryptophan residues of the double tryptophan mutant of YidC (YidC2W) showed fluorescence properties consistent with their localization in a partially exposed alpha-helical segment of the P1 domain. Analysis of the emission spectra and the fluorescence lifetimes provided additional evidence that binding of Pf3W0 coat induced conformational changes of all periplasmic regions (P1, P2 and P3) within YidC. Measurements of fluorescence anisotropy showed that the conformational changes affected motions within all three periplasmic regions of the YidC tryptophan mutants, whereas the periplasmic domain P1 with the tryptophan residues W332/W334 and the third periplasmic domain P3 with the tryptophan residue W508 were affected most significantly.