Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Liu, Yuan"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    Publication
    Characterization of the key odorants in goji wines in three levels of sweetness by applications of sensomics approach
    (2024) Zheng, Yan; Oellig, Claudia; Zhang, Youfeng; Liu, Yuan; Chen, Yanping; Zhang, Yanyan
    The correlations and differences of the key odorants were systematically conducted among three sweetness of goji wines by the sensomics approach. After aroma (extract) dilution analysis, 67, 67, and 66 odorants were screened in sweet goji wine, semi-dry goji wine, and dry goji wine, in which, 63 odorants were identified in all goji wines. Determination of 53 odorants revealed a total of 30 odorants with the concentrations surpassing their olfactory thresholds. Overall, the odor activity values (OAVs) of ketones decreased, while esters, alcohols, phenols, and aldehydes increased with the decrease in sweetness in goji wine samples. Nevertheless, (E)-β-damascenone, trans- and cis-whisky lactones, and 3-methyl-2,4-nonanedione, evoked cooked apple-like, coconut-like, and hay-like odor impressions in goji wines and showed the highest OAVs. A reliable evaluation of the aroma contributions was executed as aroma recombinations and suggested a successful evaluation of key odorants in goji wines.
  • Loading...
    Thumbnail Image
    Publication
    Interactions of nitrogen-related, growth promoting bacteria with Miscanthus × giganteus

    impact and mechanism

    (2020) Liu, Yuan; Ludewig, Uwe
    The highly nitrogen-use efficient biomass grass Miscanthus is a host of the bacterial endophyte Herbaspirillum frisingense. While Herbaspirillum frisingense has the genetic competence to fix nitrogen, the plant-associated microbiome may also contribute to this nitrogen efficiency. Furthermore, the costly field establishment of the sterile perennial Miscanthus × giganteus from rhizomes is a severe constraint for expanding the production area of this commercial biomass crop. In this study, the effect of Herbaspirillum frisingense inoculation on stem-cutting sprouting, shoot biomass and other yield parameters was investigated. I studied how the inoculation impacts on the M. × giganteus associated microbiome and how the long term differences in nitrogen fertilizer amount modulated the M. × giganteus associated microbiome. This was studied in a 14 year-old field trial of M. ×giganteus fertilized with various amounts of nitrogen. Stem cutting inoculation improved the shoot sprouting and establishment success of Miscanthus × giganteus in the greenhouse. In a small field trial, plant height and biomass from inoculated sites were significantly larger in the second year after establishment, but already after one year after inoculation, the bulk soil, rhizosphere, root and rhizome microbiomes were almost devoid of Herbaspirillum. This beta-proteobacterium may colonize the shoot of Miscanthus × giganteus more efficiently. Major differences between bacterial communities were determined by plant-soil compartments and less by the plant organs, while both inoculation and nitrogen had little effects on these communities. Compared to the little effect on the soil, rhizosphere and root microbiomes, the rhizome microbiome was massively modulated by both inoculation and nitrogen level. In the rhizome, several proteobacteria, which are associated with plant growth promoting functions, were enriched by inoculation, while N2-fixing-related bacterial families were favored by long-term nitrogen-deficiency plots, but denitrifier-related families were depleted. The studies suggest that H. frisingense inoculation may improve establishment of Miscanthus stem cuttings and has long-lasting effects on the rhizome microbiome diversity, despite low rhizocompetence and low root abundance. Meanwhile, the rhizome could be a potential nitrogen fixation factory. The organ-specific, nitrogen-related bacterial communities are modulated by long-term different nitrogen supply and are mainly shaped by the plant, which provides guidance for optimizing Miscanthus sustainable cultivation.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy