Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Longin, C. Friedrich H."

Type the first few letters and click on the Browse button
Now showing 1 - 9 of 9
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Genetic architecture underlying the expression of eight α-amylase trypsin inhibitors
    (2021) El Hassouni, Khaoula; Sielaff, Malte; Curella, Valentina; Neerukonda, Manjusha; Leiser, Willmar; Würschum, Tobias; Schuppan, Detlef; Tenzer, Stefan; Longin, C. Friedrich H.
    Amylase trypsin inhibitors (ATIs) are important allergens in baker’s asthma and suspected triggers of non-celiac wheat sensitivity (NCWS) inducing intestinal and extra-intestinal inflammation. As studies on the expression and genetic architecture of ATI proteins in wheat are lacking, we evaluated 149 European old and modern bread wheat cultivars grown at three different field locations for their content of eight ATI proteins. Large differences in the content and composition of ATIs in the different cultivars were identified ranging from 3.76 pmol for ATI CM2 to 80.4 pmol for ATI 0.19, with up to 2.5-fold variation in CM-type and up to sixfold variation in mono/dimeric ATIs. Generally, heritability estimates were low except for ATI 0.28 and ATI CM2. ATI protein content showed a low correlation with quality traits commonly analyzed in wheat breeding. Similarly, no trends were found regarding ATI content in wheat cultivars originating from numerous countries and decades of breeding history. Genome-wide association mapping revealed a complex genetic architecture built of many small, few medium and two major quantitative trait loci (QTL). The major QTL were located on chromosomes 3B for ATI 0.19-like and 6B for ATI 0.28, explaining 70.6 and 68.7% of the genotypic variance, respectively. Within close physical proximity to the medium and major QTL, we identified eight potential candidate genes on the wheat reference genome encoding structurally related lipid transfer proteins. Consequently, selection and breeding of wheat cultivars with low ATI protein amounts appear difficult requiring other strategies to reduce ATI content in wheat products.
  • Loading...
    Thumbnail Image
    Publication
    High-resolution proteomics reveals differences in the proteome of spelt and bread wheat flour representing targets for research on wheat sensitivities
    (2020) Afzal, Muhammad; Pfannstiel, Jens; Zimmermann, Julia; Bischoff, Stephan C.; Würschum, Tobias; Longin, C. Friedrich H.
    Wheat consumption can trigger celiac disease, allergic reactions and non-celiac wheat sensitivity (NCWS) in humans. Some people with NCWS symptoms claim a better tolerability of spelt compared to bread wheat products. We therefore investigated potential differences in the proteomes of spelt and bread wheat flour using nano LC–ESI–MS/MS on a set of 15 representative varieties for each of the two species. Based on the bread wheat reference, we detected 3,050 proteins in total and for most of them the expression was mainly affected by the environment. By contrast, 274 and 409 proteins in spelt and bread wheat, respectively, had a heritability ≥ 0.4 highlighting the potential to influence their expression level by varietal choice. We found 84 and 193 unique proteins for spelt and bread wheat, respectively, and 396 joint proteins, which expression differed significantly (p ≤ 0.05) when comparing both species. Thus, about one third of proteins differed significantly between spelt and bread wheat. Of them, we identified 81 proteins with high heritability, which therefore might be interesting candidates for future research on wheat hypersensitivities.
  • Loading...
    Thumbnail Image
    Publication
    Historic insights and future potential in wheat elaborated using a diverse cultivars collection and extended phenotyping
    (2025) El Hassouni, Khaoula; Afzal, Muhammad; Boeven, Philipp H. G.; Dornte, Jost; Koch, Michael; Pfeiffer, Nina; Pfleger, Franz; Rapp, Matthias; Schacht, Johannes; Spiller, Monika; Sielaff, Malte; Tenzer, Stefan; Thorwarth, Patrick; Longin, C. Friedrich H.
    Wheat is one of the most important staple crops worldwide. Wheat breeding mainly focused on improving agronomy and techno-functionality for bread or pasta production, but nutrient content is becoming more important to fight malnutrition. We therefore investigated 282 bread wheat cultivars from seven decades of wheat breeding in Central Europe on 63 different traits related to agronomy, quality and nutrients in multiple field environments. Our results showed that wheat breeding has tremendously increased grain yield, resistance against diseases and lodging as well as baking quality across last decades. By contrast, mineral content slightly decreased without selection on it, probably due to its negative correlation with grain yield. The significant genetic variances determined for almost all traits show the potential for further improvement but significant negative correlations among grain yield and baking quality as well as grain yield and mineral content complicate their combined improvement. Thus, compromises in improvement of these traits are necessary to feed a growing global population.
  • Loading...
    Thumbnail Image
    Publication
    Influence of variety and growing location on carotenoid and vitamin E contents of 184 different durum wheat varieties (Triticum turgidum ssp. durum) in Germany
    (2020) Groth, Sabrina; Wittmann, Ramona; Longin, C. Friedrich H.; Böhm, Volker
    The influence of variety and growing location on the carotenoid and vitamin E content of 184 different varieties of durum wheat of each of the German locations Hohenheim and Seligenstadt was analyzed by HPLC. In addition, the yellow pigment content was measured as b value using a chroma meter. The results showed that the measured parameters vary both between sites and varieties, with higher variance between varieties. Finally, we elaborated a high genetic variance and heritability for lutein and total carotenoids and no negative correlations to important agronomic and quality traits in durum wheat. Thus, future durum breeding could produce varieties with improved agronomy, quality, and increased contents of lutein and total carotenoids. Vitamin E has only a minor importance due to the low contents in durum wheat. Due to the high correlation between the b value and the total carotenoid content, the b value could be used as a cheap and rapid method to initially screen high numbers of breeding lines before testing individual promising breeding lines with HPLC, warranting efficient and accurate selection of durum lines with increased carotenoid content.
  • Loading...
    Thumbnail Image
    Publication
    Large-scale genotyping and phenotyping of a worldwide winter wheat genebank for its use in pre-breeding
    (2022) Schulthess, Albert W.; Kale, Sandip M.; Zhao, Yusheng; Gogna, Abhishek; Rembe, Maximilian; Philipp, Norman; Liu, Fang; Beukert, Ulrike; Serfling, Albrecht; Himmelbach, Axel; Oppermann, Markus; Weise, Stephan; Boeven, Philipp H. G.; Schacht, Johannes; Longin, C. Friedrich H.; Kollers, Sonja; Pfeiffer, Nina; Korzun, Viktor; Fiebig, Anne; Schüler, Danuta; Lange, Matthias; Scholz, Uwe; Stein, Nils; Mascher, Martin; Reif, Jochen C.
    Plant genetic resources (PGR) stored at genebanks are humanity’s crop diversity savings for the future. Information on PGR contrasted with modern cultivars is key to select PGR parents for pre-breeding. Genotyping-by-sequencing was performed for 7,745 winter wheat PGR samples from the German Federal ex situ genebank at IPK Gatersleben and for 325 modern cultivars. Whole-genome shotgun sequencing was carried out for 446 diverse PGR samples and 322 modern cultivars and lines. In 19 field trials, 7,683 PGR and 232 elite cultivars were characterized for resistance to yellow rust - one of the major threats to wheat worldwide. Yield breeding values of 707 PGR were estimated using hybrid crosses with 36 cultivars - an approach that reduces the lack of agronomic adaptation of PGR and provides better estimates of their contribution to yield breeding. Cross-validations support the interoperability between genomic and phenotypic data. The here presented data are a stepping stone to unlock the functional variation of PGR for European pre-breeding and are the basis for future breeding and research activities.
  • Loading...
    Thumbnail Image
    Publication
    Mineral and phytic acid content as well as phytase activity in flours and breads made from different wheat species
    (2023) Longin, C. Friedrich H.; Afzal, Muhammad; Pfannstiel, Jens; Bertsche, Ute; Melzer, Tanja; Ruf, Andrea; Heger, Christoph; Pfaff, Tobias; Schollenberger, Margit; Rodehutscord, Markus
    Wheat is of high importance for a healthy and sustainable diet for the growing world population, partly due to its high mineral content. However, several minerals are bound in a phytate complex in the grain and unavailable to humans. We performed a series of trials to compare the contents of minerals and phytic acid as well as phytase activity in several varieties from alternative wheat species spelt, emmer and einkorn with common wheat. Additionally, we investigated the potential of recent popular bread making recipes in German bakeries to reduce phytic acid content, and thus increase mineral bioavailability in bread. For all studied ingredients, we found considerable variance both between varieties within a species and across wheat species. For example, whole grain flours, particularly from emmer and einkorn, appear to have higher mineral content than common wheat, but also a higher phytic acid content with similar phytase activity. Bread making recipes had a greater effect on phytic acid content in the final bread than the choice of species for whole grain flour production. Recipes with long yeast proofing or sourdough and the use of whole grain rye flour in a mixed wheat bread minimized the phytic acid content in the bread. Consequently, optimizing food to better nourish a growing world requires close collaboration between research organizations and practical stakeholders ensuring a streamlined sustainable process from farm to fork.
  • Loading...
    Thumbnail Image
    Publication
    Optimum breeding strategies using genomic and phenotypic selection for the simultaneous improvement of two traits
    (2021) Marulanda, Jose J.; Mi, Xuefei; Utz, H. Friedrich; Melchinger, Albrecht E.; Würschum, Tobias; Longin, C. Friedrich H.
    Selection indices using genomic information have been proposed in crop-specific scenarios. Routine use of genomic selection (GS) for simultaneous improvement of multiple traits requires information about the impact of the available economic and logistic resources and genetic properties (variances, trait correlations, and prediction accuracies) of the breeding population on the expected selection gain. We extended the R package “selectiongain” from single trait to index selection to optimize and compare breeding strategies for simultaneous improvement of two traits. We focused on the expected annual selection gain (ΔGa) for traits differing in their genetic correlation, economic weights, variance components, and prediction accuracies of GS. For all scenarios considered, breeding strategy GSrapid (one-stage GS followed by one-stage phenotypic selection) achieved higher ΔGa than classical two-stage phenotypic selection, regardless of the index chosen to combine the two traits and the prediction accuracy of GS. The Smith–Hazel or base index delivered higher ΔGa for net merit and individual traits compared to selection by independent culling levels, whereas the restricted index led to lower ΔGa in net merit and divergent results for selection gain of individual traits. The differences among the indices depended strongly on the correlation of traits, their variance components, and economic weights, underpinning the importance of choosing the selection indices according to the goal of the breeding program. We demonstrate our theoretical derivations and extensions of the R package “selectiongain” with an example from hybrid wheat by designing indices to simultaneously improve grain yield and grain protein content or sedimentation volume.
  • Loading...
    Thumbnail Image
    Publication
    The potential of hybrid breeding to enhance leaf rust and stripe rust resistance in wheat
    (2020) Beukert, Ulrike; Liu, Guozheng; Thorwarth, Patrick; Boeven, Philipp H. G.; Longin, C. Friedrich H.; Zhao, Yusheng; Ganal, Martin; Serfling, Albrecht; Ordon, Frank; Reif, Jochen C.
    Leaf rust and stripe rust belong to the most important fungal diseases in wheat production. Due to a dynamic development of new virulent races, epidemics appear in high frequency and causes significant losses in grain yield and quality. Therefore, research is needed to develop strategies to breed wheat varieties carrying highly efficient resistances. Stacking of dominant resistance genes through hybrid breeding is such an approach. Within this study, we investigated the genetic architecture of leaf rust and stripe rust resistance of 1750 wheat hybrids and their 230 parental lines using a genome-wide association study. We observed on average a lower rust susceptibility for hybrids in comparison to their parental inbred lines and some hybrids outperformed their better parent with up to 56%. Marker-trait associations were identified on chromosome 3D and 4A for leaf rust and on chromosome 2A, 2B, and 6A for stripe rust resistance by using a genome-wide association study with a Bonferroni-corrected threshold of P < 0.10. Detected loci on chromosomes 4A and 2A were located within previously reported genomic regions affecting leaf rust and stripe rust resistance, respectively. The degree of dominance was for most associations favorable in the direction of improved resistance. Thus, resistance can be increased in hybrid wheat breeding by fixing complementary leaf rust and stripe rust resistance genes with desired dominance effects in opposite parental pools.
  • Loading...
    Thumbnail Image
    Publication
    Refining the genetic architecture of flag leaf glaucousness in wheat
    (2020) Würschum, Tobias; Langer, Simon M.; Longin, C. Friedrich H.; Tucker, Matthew R.; Leiser, Willmar L.
    The cuticle serves as a barrier that protects plants against abiotic and biotic stresses. Differences in cuticle composition can be detected by the scattering of light on epicuticular wax crystals, which causes a phenotype termed glaucousness. In this study, we dissected the genetic architecture of flag leaf glaucousness in a panel of 1106 wheat cultivars of global origin. We observed a large genotypic variation, but the geographic pattern suggests that other wax layer characteristics besides glaucousness may be important in conferring tolerance to abiotic stresses such as heat and drought. Genome-wide association mapping identified two major quantitative trait loci (QTL) on chromosomes 3A and 2B. The latter corresponds to the W1 locus, but further characterization revealed that it is likely to contain additional QTL. The same holds true for the major QTL on 3A, which was also found to show an epistatic interaction with another locus located a few centiMorgan distal to it. Genome-wide prediction and the identification of a few additional putative QTL revealed that small-effect QTL also contribute to the trait. Collectively, our results illustrate the complexity of the genetic control of flag leaf glaucousness, with additive effects and epistasis, and lay the foundation for the cloning of the underlying genes toward a more targeted design of the cuticle by plant breeding.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy