Browsing by Person "Meiners, Arwid Steffen"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Publication Potentialbewertung effizienzsteigernder Technologien bei Landmaschinen in Verfahrensketten mit Körnerfruchternte(2023) Meiners, Arwid SteffenReducing fuel consumption in agricultural process chains through increased energy efficiency in machine use is effectively achieved through process-oriented approaches. Although European targets for greenhouse gas reduction are increasingly being demanded legislatively and socially, the farmer’s pressure to act is primarily motivated intrinsically due to economic constraints. There are technologies existing on the market that contribute to increasing machine and process efficiency. To this day, however, it is difficult to evaluate their economic use on a farm-specific basis before deciding on investments. The complexity of agricultural process chains encourages and demands comprehensive approaches for both the use and the evaluation of efficiency-increasing technologies and measures. The objective of this research is to develope and apply a proper evaluation method. As a virtual evaluation environment, a machine model is created which can be used to calculate time-related fuel consumption of agricultural machine combinations under the influence of efficiency-increasing technologies. Supplemented by a process model, the consumption of individual process chains and entire crop rotations can be simulated. A modular model topology allows flexible combinations of tractors and implements for process chains with grain crop production. Corresponding simulation models are built and parametrised. The focus is on developing a model for self-propelled harvesters and on parameterising it for application as a combine harvester. As a data basis for the process components, load and performance data are collected in field tests using a state-of-the-art hybrid combine harvester. At the same time this contributes to the general data availability of performance requirements of process components in harvesting operations. In the model application, a potential evaluation of efficiency-increasing technologies and measures, such as optimised traction conditions, driving strategies or reduced intensities in tillage and harvesting, is carried out on a virtual model farm representing typical process chains with grain crop production in the region of South Hanover. Optimisation potentials for three- and five-part crop rotations are established along the individual process steps. Specific recommendations from individual technology analyses are made for efficient use of the machinery in use. As an overall assessment, a potential for reducing fuel consumption of about 26% resulting from optimised machine efficiency can be identified.