Browsing by Person "Miedaner, Thomas"
Now showing 1 - 20 of 27
- Results Per Page
- Sort Options
Publication Analyzing resistance to ergot caused by Claviceps purpurea [Fr.] Tul. and alkaloid contamination in winter rye (Secale cereale L.)(2022) Kodisch, Anna; Miedaner, ThomasErgot caused by Claviceps purpurea [Fr.] Tul. is one of the oldest well-known plant diseases leading already in medieval times to severe epidemic outbreaks. After the occurrence of honeydew, the characteristic ergot bodies called sclerotia are formed on the ear. These are containing toxic ergot alkaloids (EAs). Strict limits are set within the European Union. Rye (Secale cereale L.) as cross-pollinating crop is particularly vulnerable to ergot since the competitive situation of fungal spores and pollen during flowering. Nevertheless, even today the threat is real as agricultural practice is changing and screening studies revealed EAs in samples of the whole cereal value chain frequently. The aims were to establish a harmonized method to test ergot resistance and EA contamination in winter rye, to clarify major significant factors and their relevance and to reveal the suitability of one commercial ELISA test. Further, effort was paid to examine the covariation of ergot amount and EA content considering different factors because of prospective legislative changes. Genotypes showed significant variation for ergot severity and pollen-fertility restoration after natural infection as well as artificial inoculation whereas a high positive correlation could be found between both treatments. Additionally, variances of environment, general combining ability (GCA), specific combining ability (SCA), and interactions were significant. Although male pollen-fertility restoration was of utmost importance, the female component was also significant. This illustrates that apart from promising selection of high restoration ability the maternal restorability could be exploited in future breeding programs especially when a high pollen amount is already reached. A large-scale calibration study was performed to clarify the covariation of ergot severity, EA content (HPLC, ELISA) considering genotypes, locations, countries, years, and isolates. EA profile was rather stable across country-specific isolates although large differences regarding the EA content were detected. The moderate covariation between ergot severity and EA content (HPLC) indicates that a reliable prediction of the EA content based on ergot severity is not possible what can also not be explained by grouping effects of the factors. Further, EAs seem not to act as virulence factor in the infection process since EA content showed no relationship to disease severity. Additionally, the missing correlation of ELISA and HPLC leads to the conclusion that the ELISA is not an appropriate tool what can be used safely to screen samples regarding ergot in the daily life. The genetic variation of male-sterile CMS-single crosses was analysed in a special design without pollen in field and greenhouse to identify resistance mechanisms and to clarify whether ergot can be reduced in the female flower. At this, comparison of needle and spray inoculation revealed medium to high correlations illustrating that both methods were suitable for this research. Significant environment and genotype by environment interaction variances were detected. So, testing across several environments is necessary also without pollen. Further, small but significant genotypic variation and identification of one more ergot-resilient candidate revealed that selection of female lines could be promising to further reduce ergot. The EA content was lower for less susceptible genotypes. Thus, EA content can be considerably reduced by breeding. A strong positive correlation could be found for ergot severity and EA content when analysing 15 factorial single crosses. The male pollen-fertility restoration was also here the most relevant component but the female component contributed an obviously higher proportion for the EA content than for ergot severity. In conclusion, this thesis demonstrate that implementing of a high and environmental stable male fertility restoration ability via exotic Rf genes can effectively reduce ergot although also the female restorability enables great opportunities. The unpredictable covariation between ergot amount and EA content illustrates that both traits have to be assessed, in particular the EA content by a valid HPLC approach to guarantee food and feed safety.Publication Breeding for resistance to Fusarium ear diseases in maize and small-grain cereals using genomic tools(2021) Gaikpa, David Sewordor; Miedaner, ThomasThe world’s human and livestock population is increasing and there is the need to increase quality food production to achieve the global sustainable development goal 3, zero hunger by year 2030 (United Nations, 2015). However, biotic stresses such as Fusarium ear infections pose serious threat to cereal crop production. Breeding for host plant resistance against toxigenic Fusarium spp. is a sustainable way to produce more and safer cereal crops such as maize and small-grain winter cereals. Many efforts have been made to improve maize and small-grain cereals for ear rot (ER) and Fusarium head blight (FHB) resistances, using conventional and genomic techniques. Among small-grain cereals, rye had the shortest maturity period followed by the descendant, hexaploid triticale while both wheat species had the longest maturity period. In addition, rye and triticale were more robust to Fusarium infection and deoxynivalenol accumulation, making them safer grain sources for human and animal consumption. However, a few resistant cultivars have been produced by prolonged conventional breeding efforts in durum wheat and bread wheat. High genetic variation was present within each crop species and can be exploited for resistance breeding. In this thesis, the genetic architecture of FHB resistance in rye was investigated for the first time, by means of genome-wide association study (GWAS) and genomic prediction (GP). GWAS detected 15 QTLs for Fusarium culmorum head blight severity, of which two had major effects. Both weighted and unweighted GP approaches yielded higher prediction abilities than marker-assisted selection (MAS) for FHB severity, heading stage and plant height. Genomics-assisted breeding can shorten the duration of breeding rye for FHB resistance. In the past decade, genetic mapping and omics were used to identify a multitude of QTLs and candidate genes for ear rot resistances and mycotoxin accumulation in maize. The polygenic nature of resistance traits, high genotype x environment interaction, and large-scale phenotyping remain major bottlenecks to increasing genetic gains for ear rots resistance in maize. Phenotypic and molecular analyses of DH lines originating from two European flint landraces (“Kemater Landmais Gelb”, KE, and “Petkuser Ferdinand Rot”, PE) revealed high variation for Gibberella ear rot (GER) severity and three agronomic traits viz. number of days to female flowering, plant height and proportion of kernels per cob. By employing multi-SNP GWAS method, we found four medium-effect QTLs and many small-effect (10) QTLs for GER severity in combined DH libraries (when PCs used as fixed effects), none co-localized with the QTLs detected for the three agronomic traits analyzed. However, one major QTL was detected within KE DH library for GER severity. Two prioritized SNPs detected for GER resistance were associated with 25 protein-coding genes placed in various functional categories, which further enhances scientific knowledge on the molecular mechanisms of GER resistance. Genome-based approaches seems promising for tapping GER resistance alleles from European maize landraces for applied breeding. After several cycles of backcrossing and sufficient selection for agronomic adaptation traits, the resistant lines identified in this thesis can be incorporated into existing maize breeding programs to improve immunity against F. graminearum ear infection. Breeding progress can be faster using KE landrace than PE. A successful validation of QTLs identified in this thesis can pave way for MAS in rye and marker-assisted backcrossing in maize. Effective implementation of genomic selection requires proper design of the training and validation sets, which should include part of the current breeding population.Publication Correction: Miedaner et al. Effective pollen-fertility restoration is the basis of hybrid rye Production and ergot mitigation. Plants 2022, 11, 1115(2023) Miedaner, Thomas; Korzun, Viktor; Wilde, PeerPublication Effective pollen-fertility restoration is the basis of hybrid rye production and ergot mitigation(2022) Miedaner, Thomas; Korzun, Viktor; Wilde, PeerHybrid rye breeding leads to considerably higher grain yield and a higher revenue to the farmer. The basis of hybrid seed production is the CMS-inducing Pampa (P) cytoplasm derived from an Argentinean landrace and restorer-to-fertility (Rf) genes. European sources show an oligogenic inheritance, with major and minor Rf genes, and mostly result in low-to-moderate pollen-fertility levels. This results in higher susceptibility to ergot (Claviceps purpurea) because rye pollen and ergot spores are in strong competition for the unfertilized stigma. Rf genes from non-adapted Iranian primitive rye and old Argentinean cultivars proved to be most effective. The major Rf gene in these sources was localized on chromosome 4RL, which is also a hotspot of restoration in other Triticeae. Marker-based introgression into elite rye materials led to a yield penalty and taller progenies. The Rfp1 gene of IRAN IX was fine-mapped, and two linked genes of equal effects were detected. Commercial hybrids with this gene showed a similar low ergot infection when compared with population cultivars. The task of the future is to co-adapt these exotic Rfp genes to European elite gene pools by genomic-assisted breeding.Publication Effects of non-adapted quantitative trait loci (QTL) for Fusarium head blight resistance on European winter wheat and Fusarium isolates(2010) Ohe, Christiane von der; Miedaner, ThomasFusarium head blight (FHB), caused by Fusarium graminearum and F. culmorum, is a devastating disease responsible for tremendous damage in wheat fields and contamination of grain with mycotoxins deoxynivalenol (DON) and nivalenol (NIV), rendering the harvest unsafe for human and animal consumption. The variability of Fusarium populations is high and changes in aggressiveness, chemotypes or species within and among Fusarium populations are known. Stable FHB resistance combined with high yield is one main target in wheat breeding programs. Mapping studies detected several quantitative trait loci (QTL) for FHB resistance in non-adapted sources, such as Sumai3 from China. The two most important and commonly used major QTL are located on chromosome 3BS (Fhb1) und 5A (Qfhs.ifa-5A). However, negative side effects of non-adapted resistance sources introgressed in elite winter wheat material are feared in Europe. Furthermore, the stability of the QTL effect against changing Fusarium populations is unknown. The objectives of this research were to analyze whether (1) the QTL Fhb1 and Qfhs.ifa-5A introgressed from a non-adapted resistance source into two winter wheat varieties have possible side effects on agronomic and quality performance, (2) 3-ADON and 15-ADON chemotypes are significantly different in their aggressiveness and DON production, (3) competition among Fusarium isolates in mixtures exists, and if so, how the resistant host will influence this competition. In conclusion, both resistance QTL are effective and stable in elite spring and winter wheat backgrounds. For improvement of FHB resistance both QTL are valuable, but Qfhs.ifa-5A would suffice for European breeding programs. Due to chemotype shifts, 3-ADON isolates could pose a greater risk to food safety than 15-ADON but breeding and use of highly resistant lines can reduce the risks associated with DON in wheat. Accordingly, resistant spring wheat lines were less affected by the tested Fusarium isolates and mixtures and, therefore, confirmed a high stability of these QTL. Directed selection of highly aggressive isolates due to the resistance QTL seems to be unlikely in the short term.Publication Genetics of resistance to ear diseases and mycotoxin accumulation in the pathosystems maize/Fusarium and wheat/Fusarium(2010) Messerschmidt, Martin; Miedaner, ThomasInfection of ears of maize with Fusarium graminearum (FG) reduces yield and, more important, contaminate the harvest with mycotoxins. F. verticillioides (FV) is an economically important cause of ear rot. Among other mycotoxins, FV produces the fumonisins (FUM) and FG produces deoxynivalenol (DON) and zearalenone (ZEA). All three mycotoxins are harmful to humans and animals. Therefore, the European Union released legally enforceable limits. One alternative to reduce ear rot severity and mycotoxin concentrations is breeding and growing varieties resistant to Fusarium infections. However, few is known about breeding parameters for resistance to Fusarium infections and mycotoxin accumulation in European maize breeding material. The main objective of this thesis was to draw conclusions for breeding of resistance to ear rot and mycotoxin accumulation with special attention on three European maize maturity groups. We investigated methodical aspects like (1) the comparison of natural and artificial inoculation to evaluate ear rot resistance and (2) the necessity of separate testing of FV and FG. Furthermore, quantitative-genetic parameters like heritabilities and correlations were estimated to draw conclusions about (3a) genetic variation in line and testcross performance and the relationships (3b) between ear rot severity and mycotoxin concentrations in lines and testcrosses and (3c) between line and testcross performance. Three maturity groups (early, mid-late, late) each comprising about 150 maize inbred lines were evaluated for ear rot resistance to FV. The same genotypes of the early maturity group were additionally evaluated for resistance to FG in separate, but adjacent trials. Field evaluation was conducted in two to six environments with silk channel inoculation and natural infection, respectively. In the late maturity group kernel inoculation was conducted additionally. Out of the 150 lines, 50 to 60 lines per maturity group were crossed with two unrelated testers of the opposite heterotic group. The concentrations of toxins FUM, DON and ZEA of the chosen lines and their testcrosses were analyzed by immunotests. Despite significant genotypic differences among the inbred lines after inoculation or natural infections, inoculation was found to be superior due to easier visual differentiation and increased accuracy. Therefore, inoculation should be conducted. In the late maturity group silk channel inoculation (simulating infection over the silks) and kernel inoculation (simulating secondary infection after wounding) were appropriate since both caused similar ear rot severity. However, both inoculation methods should be tested separately due to only moderate correlations between them. In the early maturity group resistance to FG or FV should be tested separately due to moderate correlations. Significant genotypic variances in large sets and subsets of lines and also in testcrosses revealed that there is genetic variation in all maturity groups and also within heterotic groups. In the flint group less lines were resistant to FV and FG than in dents indicating that resistance needs improvement, i.e. by introgression of resistance alleles followed by recurrent selection. Significant genotype x environment interactions may complicate selection and, therefore, multi-environmental trials are required for an accurate selection. High genotypic correlations between ear rot rating and mycotoxin concentrations were found among lines and testcrosses. The cost efficient indirect selection for mycotoxin concentrations based on ear rot rating could increase response to selection by testing more genotypes and/or in more test environments assuming a fixed budget. This should increase selection intensity and/or heritability. Moderate genotypic correlations between line and testcross performance were. One moderately to highly susceptible tester is sufficient due to high genotypic correlations between testcrosses of different testers. Both indicates a mainly additive gene action, but also non-additive gene action may play a role in some crosses. Selection for testcross performance based on line performance was less effective when calculating relative efficiencies. Different scenarios have been identified: (1) In Central Europe mainly resistance to ear rot in lines needs to be tested to ensure high seed quality, whereas resistance in testcrosses is not important due to low natural infection. (2) In Southern Europe, where high natural infections occur regularly, parallel selection for resistance to ear rot in lines and testcrosses is important. One susceptible tester should be used for creation of testcrosses. For selection in lines all parental lines should be inoculated but only lines selected out of testcrosses for agronomic traits would be rated afterwards saving resources. This is feasible due to later harvest date of lines than of testcrosses.Publication Genetische Variation für Resistenz gegen Mutterkorn (Claviceps purpurea [Fr.] Tul.) bei selbstinkompatiblen und selbstfertilen Roggenpopulationen(2006) Mirdita, Vilson; Miedaner, ThomasErgot (Claviceps purpurea [Fr.] Tul.) is one of the most important diseases in rye. Infection during flowering results in the production of black, overwintering organs (sclerotia) instead of kernels, which contain harmful alcaloids. Three experiments were conducted to estimate quantitative-genetic parameters of the resistance of rye to ergot under the conditions of organic farming. The general aim was the estimation of genetic variation among and within self-incompatible rye populations and among CMS lines and their male-sterile testcrosses. In 2002 and 2004, genetic variation in resistance to ergot was tested among 65 rye populations at each of two locations (Experiment 1). Thirteen populations were registered rye varieties and the remaining 52 were genetic resources. To assess genetic variation within populations, 50 full-sib families (FSF) from each of five rye populations were developed and tested at four locations (Experiment 2). To test genetic differences in the susceptibility of ovaries towards fungal penetration in the absence of pollen, (i) 64 currently available CMS lines and (ii) their male-sterile crosses with three testers (=sets) were tested in 2003 and 2004, and in 2004, respectively. Inoculation was performed by spraying an aggressive mixture of isolates of Claviceps purpurea three times during the flowering period. The micro-plots were grown in a chess-board design separated by wheat plots to reduce the neighbouring effects. Traits of resistance were the proportion of infected spikes relative to the total number of spikes per plot, and the percentage by weight of ergot sclerotia in the grain. In Experiment 3, the weight of slcerotia per spike and per pair of spikelet were measured due to the absence of grain. Amount of pollen shedding was rated on the basis of the anther size and extrusion. Highly significant genotypic and genotype-environment interaction variances were found among rye populations in the percentage of ergot sclerotia in the grain. All genotypes were infected by ergot. No differences in mean among the registered rye varieties and genetic resources were detected. Because all populations were highly pollen shedding, the results indicate the existence of genetically determined resistance to ergot within the self-incompatible rye. Correlation between both resistance traits was significant (rp = 0.92). Genetic variation within populations was highly significant for all five populations. Individual progenies with resistance higher than the population mean were observed. The mean resistance of initial populations hardly differed from the mean of their progeny indicating a predominantly additive inheritance. Highly significant genetic variation in resistance to ergot was also detected among the currently available 64 CMS lines. Corresponding testcrosses mostly had a higher weight of sclerotia per spike than the lines. Considerable differences in the level of resistance were observed among testcrosses. Crosses with tester line 1 were substantially more susceptible, whereas those with tester 2 were hardly over the mean of the parental lines. The material showed a quantitative distribution of ergot resistance. Weak to medium-sized correlations (0.33 ? 0.47) between locations were detected among lines. The correlation between locations was even weaker in testcrosses. Weak correlations in ergot weight per spike were observed between CMS lines and their testcrosses in sets 2 and 3. In set 1, the estimated phenotypic correlation was higher (rp = 0.65). Estimates of error-corrected correlations were always higher than phenotypic correlations. No genetic difference was detected among the CMS lines for the amount of alkaloids in their sclerotia. This study shows that incompatible rye populations as well as self-fertile hybrid populations contain a substantial genetic variation for resistance to ergot that is inherited quantitatively. In both materials, mainly additive genetic variance was found. Because of a significant genotype-environment interaction, multi-environment trials are necessary to select for resistance. The results of this study nevertheless indicate good prospects to improve resistance to ergot in rye breeding in the long term.Publication Genome-wide prediction of testcross performance and phenotypic stability for important agronomic and quality traits in elite hybrid rye (Secale cereale L.)(2016) Wang, Yu; Miedaner, ThomasGenomic selection offers a greater potential for improving complex, quantitative traits in winter rye than marker-assisted selection. Prediction accuracies for grain yield for unrelated test populations have, however, to be improved. Nevertheless, they are already favorable for selecting phenotypic stability of quality traits.Publication Genomics-assisted breeding for quantitative disease resistances in small-grain cereals and maize(2020) Miedaner, Thomas; Boeven, Ana Luisa Galiano-Carneiro; Gaikpa, David Sewodor; Kistner, Maria Belén; Grote, Cathérine PaulineGenerating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are suffering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed.Publication Genomics-assisted breeding strategies for quantitative resistances to Northern corn leaf blight in maize (Zea mays L.) and Fusarium diseases in maize and in triticale (× Triticosecale Wittm.)(2021) Galiano Carneiro, Ana Luísa; Miedaner, ThomasFusarium head blight (FHB) in triticale (× Triticosecale Wittm.), Gibberella ear rot (GER) and Northern corn leaf blight (NCLB) in maize (Zea mays L.) are devastating crop diseases causing yield losses and/or reducing grain quality worldwide. Resistance breeding is the most efficient and sustainable approach to reduce the damages caused by these diseases. For all three pathosystems, a quantitative inheritance based on many genes with small effects has been described in previous studies. Hence, this thesis aimed to assess the potential of genomics-assisted breeding strategies to reduce FHB, GER and NCLB in applied breeding programs. In particular, the objectives were to: (i) Dissect the genetic architecture underlying quantitative variation for FHB, GER and NCLB through different quantitative trait loci (QTL) and association mapping approaches; (ii) assess the potential of genomics-assisted selection to select superior triticale genotypes harboring FHB resistance; (iii) phenotype and characterize Brazilian resistance donors conferring resistance to GER and NCLB in multi-environment trials in Brazil and in Europe; and (iv) evaluate approaches for the introgression and integration of NCLB and GER resistances from tropical to adapted germplasm. The genome-wide association study (GWAS) conducted for FHB resistance in triticale revealed six QTL that reduced damages by 5 to 8%. The most prominent QTL identified in our study was mapped on chromosome 5B and explained 30% of the genotypic variance. To evaluate the potential of genomic selection (GS), we performed a five-fold cross-validation study. Here, weighted genomic selection increased the prediction accuracy from 0.55 to 0.78 compared to the non-weighted GS model, indicating the high potential of the weighted genomic selection approach. The successful application of GS requires large training sets to develop robust models. However, large training sets based on the target trait deoxynivalenol (DON) are usually not available. Due to the rather moderate correlation between FHB and DON, we recommend a negative selection based on genomic estimated breeding values (GEBVs) for FHB severity in early breeding stages. In the long-run, however, we encourage breeders to build and test GS calibrations for DON content in triticale. The genetic architecture of GER caused by Fusarium graminearum in maize was investigated in Brazilian tropical germplasm in multi-environment trials. We observed high genotype-by-environment interactions which requires trials in many environments for the identification of stable QTL. We identified four QTL that explained between 5 to 22% of the genotypic variance. Most of the resistance alleles identified in our study originated from the Brazilian tropical parents indicating the potential of this exotic germplasm as resistance source. The QTL located on chromosome bin 1.02 was identified both in Brazilian and in European trials, and across all six biparental populations. This QTL is likely stable, an important feature for its successful employment across different genetic backgrounds and environments. This stable QTL is a great candidate for validation and fine mapping, and subsequent introgression in European germplasm but possible negative linkage drag should be tackled. NCLB is another economically important disease in maize and the most devastating leaf disease in maize grown in Europe. Virulent races have already overcome the majority of known qualitative resistances. Therefore, a constant monitoring of S. turcica races is necessary to assist breeders on the choice of effective resistances in each target environment. We investigated the genetic architecture of NCLB in Brazilian tropical germplasm and identified 17 QTL distributed along the ten chromosomes of maize explaining 4 to 31% of the trait genotypic variance each. Most of the alleles reducing the infections originated from Brazilian germplasm and reduced NCLB between 0.3 to 2.5 scores in the 1-9 severity scale, showing the potential of Brazilian germplasm to reduce not only GER but also NCLB severity in maize. These QTL were identified across a wide range of environments comprising different S. turcica race compositions indicating race non-specific resistance and most likely stability. Indeed, QTL 7.03 and 9.03/9.04 were identified both in Brazil and in Europe being promising candidates for trait introgression. These major and stable QTL identified for GER and NCLB can be introgressed into elite germplasm by marker-assisted selection. Subsequently, an integration step is necessary to account for possible negative linkage drag. A rapid genomics-assisted breeding approach for the introgression and integration of exotic into adapted germplasm has been proposed in this thesis. Jointly, our results demonstrate the high potential of genomics-assisted breeding strategies to efficiently increase the quantitative resistance levels of NCLB in maize and Fusarium diseases in maize and in triticale. We identified favorable QTL to increase resistance levels in both crops. In addition, we successfully characterized Brazilian germplasm for GER and NCLB resistances. After validation and fine mapping, the introgression and integration of the QTL identified in this study might contribute to the release of resistant cultivars, an important pillar to cope with global food security.Publication The importance of Fusarium head blight resistance in the cereal breeding industry: Case studies from Germany and Austria(2023) Miedaner, Thomas; Flamm, Clemens; Oberforster, MichaelFusarium head blight (FHB) resistance in wheat and triticale has a high priority in the European Union because of the strict guidelines for the major mycotoxins deoxynivalenol (DON) and zearalenone (ZON) and the admission policy of the regulatory authorities. Potentially 70% of the arable land in Germany and about 60% in Austria can be affected by Fusarium. Although epidemics occur only in some years and/or some regions, DON and ZON are detected every year in varying amounts in wheat, rye and maize. Despite a high significance of FHB resistance in breeding companies, as validated by a recent survey, breeding progress in wheat is basically absent for FHB resistance in both countries. The main reasons are the complex inheritance of FHB resistance and the high proportions of the dwarfing allele Rht‐D1b in high‐yielding varieties promoting susceptibility. Despite this, some varieties with high FHB resistance (score 2–3 on the 1–9 scale) have been released that account, however, only for 11% and 18% of the multiplication area in Germany and Austria, respectively. For triticale, an official testing system for FHB resistance in terms of DON content exists in Germany and Austria, but not for the other cereals. Susceptibility to maize ear rot has been described in Austria, but not in Germany. Additionally, a testing system for stalk rot resistance in both countries should be established.Publication Improving host resistance to Fusarium head blight in wheat (Triticum aestivum L.) and Gibberella ear rot in maize (Zea mays L.)(2023) Akohoue, Félicien; Miedaner, ThomasFusarium head blight (FHB) in wheat and Fusarium (FER) and Gibberella ear rot (GER) in maize are major cereal diseases which reduce yield and contaminate kernels with several mycotoxins. In Europe, these diseases contribute to significant yield gaps and high mycotoxin risks across countries. However, existing management strategies related to agronomic practices are not fully effective, with some of them being cost-prohibitive. Enhancing host plant resistance is additionally required for managing the diseases more effectively and sustainably. Unfortunately, breeding for FHB resistance is challenged by complex interactions with morphological traits and the quantitative nature of the trait. In maize, available genetic resources have not been fully exploited to improve GER resistance in elite materials. In this work, we elucidated the complex interactions between FHB resistance and morphological traits, like plant height (PH) and anther retention (AR) in wheat. The effect of reduced height (Rht) gene Rht24 on AR and the contribution of genomic background (GB) to FHB resistance in semi-dwarf genotypes were also assessed. GB refers to all genomic loci, except major Rht genes, that affect the traits. To achieve this, 401 winter wheat cultivars were evaluated across five environments (location × year combination). All cultivars were genotyped using Illumina 25 K Infinium single-nucleotide polymorphism array. We performed correlation and path coefficient analysis, and combined single and multi-trait genome-wide association studies (GWAS). Our findings revealed significant genotypic correlations and path effects between FHB severity with PH and AR, which were controlled by several pleiotropic loci. FHB severity and PH shared both negatively and positively acting pleiotropic loci, while only positively acting pleiotropic loci were detected between FHB severity and AR. Rht-D1 is a major pleiotropic gene which exerted a negative effect on FHB resistance. These pleiotropic loci contribute to our understanding of the complex genetic basis of FHB resistance, and their exploitation can help to simultaneously select for FHB resistance with PH and AR. Contrary to Rht-D1b, Rht24b had no negative effect on FHB resistance and AR. This exhibits Rht24 as an important FHB-neutral Rht gene which can be integrated into breeding programs. Genomic estimated breeding values (GEBV) were calculated for each cultivar to assess GB. We observed highly negative GEBV for FHB severity within resistant wheat cultivars. Susceptible cultivars exhibited positive GEBV. Genomic prediction has a great potential and can be exploited by selecting for semi-dwarf winter wheat genotypes with higher FHB resistance due to their genomic background resistance. To tackle maize ear rot diseases, refined and stable quantitative trait loci (QTL) harboring candidate genes conferring resistances to FER and GER were identified. The effectiveness of introgression of two European flint landraces, namely “Kemater Gelb Landmais” (KE) and “Petkuser Ferdinand Rot” (PE) was evaluated. The prediction accuracy of using line performance as a predictor of hybrid performance for GER resistance was also evaluated within the two landraces. We applied a meta-QTL (MQTL) analysis based on 15 diverse SNP-based QTL mapping studies and performed gene expression analysis using published RNA-seq data on GER resistance. In total, 40 MQTL were identified, of which 14 most refined MQTL harbored promising candidate genes for use in breeding programs for improving FER and GER resistances. 28 MQTL were common to both FER and GER, with most of them being shared between silk (channel) and kernel resistances. This highlights the co-inheritance of FER and GER resistances as well as types of active resistance. Resistance genes can be transferred into elite cultivars by integrating refined MQTL into genomics-assisted breeding strategies. Afterwards, four GER resistant doubled haploid (DH) lines from both KE and PE landraces were crossed with two susceptible elite lines to generate six bi-parental populations with a total of 534 DH lines which were evaluated for GER resistance. GER severity within the six landrace-derived populations were reduced by 39−61% compared to the susceptible elite lines. Moderate to high genetic advance was observed within each population, and the use of KE landrace as a donor was generally more effective than PE landrace. This shows promise in enhancing resistance to GER in elite materials using the European flint landraces as donors. Furthermore, per se performance of 76 DH lines from both landraces was used to predict GER resistance of their corresponding testcrosses (TC). Moderate phenotypic and genomic prediction accuracy between TC and line per se performance was found for GER resistance. This implies that pre-selecting lines for GER resistance is feasible; however, TC should be additionally tested on a later selection stage to aim for GER-resistant hybrid cultivars.Publication Inheritance of quantitative resistance and aggressiveness in the wheat/Fusarium pathosystem with emphasis on Rht dwarfing genes(2010) Voß, Hans-Henning; Miedaner, ThomasFusarium head blight (FHB), or scab, is one of the most devastating fungal diseases affecting small-grain cereals and maize, causing severe yield losses and contamination of grain with mycotoxins such as deoxynivalenol (DON) worldwide. Fusarium graminearum (teleomorph Gibberella zeae) and Fusarium culmorum are the most prevalent Fusarium species in wheat production in Central and Northern Europe. Breeding for increased resistance to FHB in wheat is considered the most effective strategy for large scale disease management and mycotoxin reduction. Height reducing Rht genes are extensively used in wheat breeding programmes worldwide in order to improve lodging resistance and yield potential, with Rht-D1b being the most important Rht allele in Northern Europe. However, their individual effects on FHB resistance are yet unclear. Due to the incremental approach to increase host resistance the question arises whether the Fusarium pathogen has the capability to adapt by increased aggressiveness and/or increased mycotoxin production. Therefore, the objectives of the present study were to investigate the effects on FHB resistance of Rht-D1b and additional Rht alleles, the segregation variance for FHB resistance and identification of FHB resistance QTL in subsequent mapping analyses in three crossing populations segregating for the semi-dwarfing Rht-D1b allele and two sets of isogenic wheat lines. Regarding the pathogen, the study aims to determine the segregation variance in two F. graminearum crosses of highly aggressive parental isolates and to examine the stability of host FHB resistance, pathogen aggressiveness and the complex host-pathogen-environment interactions in a factorial field trial. All experiments were conducted on the basis of multienvironmental field trials including artificial inoculation of spores. The presence of Rht-D1b resulted in 7-18% reduction in plant height, but considerably increased FHB severity by 22-53% within progenies from three tested European elite winter wheat crosses. In the following QTL mapping analyses the QTL with the strongest additive effects was located at the Rht-D1 locus on chromosome arm 4DS and accordingly coincided with a major QTL for plant height in all three wheat populations. On total, a high number of 8 to 14 minor QTL for FHB reaction that were found in the three populations which emphasised the quantitative inheritance of FHB resistance in European winter wheat. The detected QTL mostly showed significant QTL-by-environment interactions and often coincided with QTL for plant height. By means of isogenic lines in the genetic background of the variety Mercia, Rht-D1b and Rht-B1d significantly increased mean FHB severity by 52 and 35%, respectively, compared to the wild-type (rht). Among the Maris Huntsman data set, the Rht alleles increased mean FHB severity by 22 up to 83%, but only the very short lines carrying Rht-B1c or Rht-B1b+Rht-D1b showed significance. The analyses of 120 progenies of the crosses from each of the highly aggressive parental F. graminearum isolates revealed significant genetic variation for aggressiveness, DON and fungal mycelium production following sexual recombination. This variation resulted in stable transgressive segregants towards increased aggressiveness in one of the two progeny. The factorial field trial, including eleven F. graminearum and F. culmorum isolates varying in aggressiveness and seven European elite winter wheat varieties, varying in their FHB resistance level, displayed no significant wheat variety × isolate interaction. Nevertheless, isolates possessing increased aggressiveness significantly increased FHB severity and DON production at a progressive rate on varieties with reduced FHB resistance. In conclusion, the analysed Rht alleles led to differently pronounced negative effects on FHB resistance that strongly depended on the genetic background. However, significant genetic variation for FHB resistance exists for selection and, thus, to largely counteract these effects by accumulating major and minor FHB resistance QTL. Significant genetic variation for aggressiveness among F. graminearum and the capability to increase its level of aggressiveness beyond yet known levels simply by sexual recombination may lead to long term erosion of FHB resistance. The rate at which increased aggressiveness develops will depend on the selection intensity and whether it is of constant, episodic or balanced nature. Consequently, the selection pressure imposed on the pathogen should be minimized by creating and maintaining a broad genetic base of FHB resistance that relies on more than one genetically unrelated resistance source by combining phenotypic and marker-assisted selection to achieve a sustainably improved FHB resistance in wheat breeding.Publication Integration of hyperspectral, genomic, and agronomic data for early prediction of biomass yield in hybrid rye (Secale cereale L.)(2021) Galán, Rodrigo José; Miedaner, ThomasCurrently, the combination of a growing bioenergy demand and the need to diversify the dominant cultivation of energy maize opens a highly attractive scenario for alternative biomass crops. Rye (Secale cereale L.) stands out for its vigorous growth and increased tolerance to abiotic and biotic stressors. In Germany, less than a quarter of the total harvest is used for food production. Consequently, rye arises as a source of renewables with a reduced bioenergy-food tradeoff, emerging biomass as a new breeding objective. However, rye breeding is mainly driven by grain yield while biomass is destructively evaluated in later selection stages by expensive and time-consuming methods. The overall motivation of this research was to investigate the prospects of combining hyperspectral, genomic, and agronomic data for unlocking the potential of hybrid rye as a dual-purpose crop to meet the increasing demand for renewable sources of energy affordably. A specific aim was to predict the biomass yield as precisely as possible at an early selection stage. For this, a panel of 404 elite rye lines was genotyped and evaluated as testcrosses for grain yield and a subset of 274 genotypes additionally for biomass. Field trials were conducted at four locations in Germany in two years (eight environments). Hyperspectral fingerprints consisted of 400 discrete narrow bands (from 410 to 993 nm) and were collected in two points of time after heading for all hybrids in each site by an uncrewed aerial vehicle. In a first study, population parameters were estimated for different agronomic traits and a total of 23 vegetation indices. Dry matter yield showed significant genetic variation and was stronger correlated with plant height (r_g=0.86) than with grain yield (r_g=0.64) and individual vegetation indices (r_g: =<|0.35|). A multiple linear regression model based on plant height, grain yield, and a subset of vegetation indices surpassed the prediction ability for dry matter yield of models based only on agronomic traits by about 6 %. In a second study, whole-spectrum data was used to indirectly estimate dry matter yield. For this, single-kernel models based on hyperspectral reflectance-derived (HBLUP) and genomic (GBLUP) relationship matrices, a multi-kernel model combining both matrices, and a bivariate model fitted also with plant height as a secondary trait, were considered. HBLUP yielded superior predictive power than the models based on vegetation indices previously tested. The phenotypic correlations between individual wavelengths and dry matter yield were generally significant (p < 0.05) but low (r_p: =< |0.29|). Across environments and training set sizes, the bivariate model yielded the highest prediction abilities (0.56 – 0.75). All models profited from larger training populations. However, if larger training sets cannot be afforded, HBLUP emerged as a promising approach given its higher prediction power on reduced calibration populations compared to the well-established GBLUP. Before its incorporation into prediction models, filtering the hyperspectral data available by the least absolute shrinkage and selection operator (Lasso) was worthwhile to deal with data dimensionally. In a third study, the effects of trait heritability, as well as genetic and environmental relatedness on the prediction ability of GBLUP and HBLUP for biomass-related traits were compared. While the prediction ability of GBLUP (0.14 - 0.28) was largely affected by genetic relatedness and trait heritability, HBLUP was significantly more accurate (0.41 - 0.61) across weakly connected datasets. In this context, dry matter yield could be better predicted (up to 20 %) by a bivariate model. Nevertheless, due to environmental variances, genomic and reflectance-enabled predictions were strongly dependant on a sufficient environmental relationship between data used for model training and validation. In summary, to affordably breed rye as a double-purpose crop to meet the increasing bioenergy demands, the early prediction of biomass across selection cycles is crucial. Hyperspectral imaging has proven to be a suitable tool to select high-yielding biomass genotypes across weakly linked populations. Due to the synergetic effect of combining hyperspectral, genomic, and agronomic traits, higher prediction abilities can be obtained by integrating these data sources into bivariate models.Publication Mapping of quantitative-trait loci (QTL) for adult-plant resistance to Septoria tritici in five wheat populations (Triticum aestivum L.)(2010) Risser, Peter; Miedaner, ThomasSeptoria tritici blotch (STB), caused by Septoria tritici (teleomorph Mycosphaerella graminicola), is one of the most important diseases in wheat varieties worldwide, responsible for severe damage of the leaves causing yield losses between 30 and 40 %. Control of STB includes crop rotation, soil tillage, fungicide application, and cultivation of resistant varieties. Profit-making wheat growers are forced to apply narrow crop rotations under reduced tillage. Some fungicides including widely-used strobilurins are no longer effective due to mutations in the highly variable pathogen population of S. tritici. Therefore, resistance breeding using genetic mapping to identify quantitative-trait loci (QTL) associated with STB resistance provides a promising strategy for controlling the disease. The main goal of this study was to detect chromosomal regions for quantitative adult-plant resistance of winter wheat to STB. Besides this, we analyzed the genetic diversity of 24 European varieties after inoculation with four different isolates of S. tritici. Multienvironmental field trials inoculated with S. tritici were applied to test isolates and varieties and to phenotype mapping populations. In detail, the objectives were to (1) compare natural infection and inoculation, (2) evaluate genotypic variation of adult-plant resistance to STB in European varieties, (3) analyze genotype x environment (G x E) interaction, (4) evaluate and analyze phenotypic data including STB severity, heading date (HED), and plant height (PLH) of five mapping populations, (5) construct genetic linkage maps of these populations using AFLP, DArT, and SSR markers, (6) determine number, positions, and genetic effects of QTL for evaluated traits, and (7) reveal QTL regions for multiple-disease resistance within mapping populations using QTL meta-analysis. In all trials, inoculation with one to four preselected isolates was performed and STB severity was visually scored plotwise as percentage coverage of flag leaves with lesions bearing pycnidia. 24 winter wheat varieties were chosen with maximal differentiation in resistance to STB and evaluated across three years including nine environments. Five mapping populations, Florett/Biscay, Tuareg/Biscay, History/Rubens, Arina/Forno, and Solitär/Bussard, each comprising a cross of a resistant and a susceptible variety, with population sizes ranging from 81 to 316, were phenotyped across four to six environments. In parallel, 221 to 491 polymorphic genetic markers were assigned to linkage groups covering 1,314 to 3,305 cM of the genome. Based on these linkage maps, the number, positions, and genetic effects of QTL could be determined by composite interval mapping. Furthermore, raw data of different experiments evaluated for resistance to two other pathogens, Fusarium head blight and Stagnospora glume blotch, were used to reveal multiple-disease resistance QTL within Arina/Forno and History/Rubens populations by the software package PLABMQTL. Results of inoculated field trials coincided with not inoculated trials showing natural infection (r = 0.84 to 0.99, P < 0.01), thus inoculation method was accurate to evaluate STB severity in the field. Genotypic variation between 24 varieties ranged from 8 % (Solitär) to 63 % (Rubens) flag leaf area infected. In the analysis of variance, genotypic variance had highest impact followed by G x E interaction (P < 0.01). Therefore, environmental stability of varieties should be a major breeding goal. The varieties Solitär, History, and Florett were most stable, as revealed by a regression approach. In contrast, disease symptoms of Biscay ranged from 19 to 72 % within the three experimental years. Phenotypic data revealed significant (P < 0.01) genotypic differentiation for STB, HED, and PLH within all five mapping populations and between the parents. Entry-mean heritabilities (h²) ranged from 0.69 to 0.87 for STB, the only exception was Tuareg/Biscay (h² = 0.38). For HED (h² = 0.78 to 0.93) and PLH (h² = 0.92 to 0.98) heritabilities were high. All correlations between STB and HED (r = -0.18 to -0.33) as well as between STB and PLH (r = -0.13 to -0.45) were negative and moderate. The exception was History/Rubens which is segregating at the Rht-D1 locus showing considerably higher correlation between STB and PLH (r = -0.55, P < 0.01). The five mapping populations showed a wide and continuous distribution of mean STB severity averaged across three to six environments in field trials at adult-plant stage. In QTL analysis, one to nine, zero to nine, and four to eleven QTL were detected for STB, HED, and PLH, respectively, across five wheat populations using composite interval mapping. One to two major QTL for resistance to STB were detected consistently across environments in each population (QStb.lsa_fb-3B, QStb.lsa_fb-6D, QStb.lsa_tb-4B, QStb.lsa_tb-6B, QStb.lsa_hr-4D, QStb.lsa_hr-5B.1, QStb.lsa_af-3B, QStb.lsa_bs-7A) explaining more than 10 % of normalized adjusted phenotypic variance. Altogether, resistance QTL explained 14 to 55 % of adjusted phenotypic variance. Both parents contributed resistant alleles. Major QTL, however, were all from the resistant parent. QTL meta-analysis revealed each of four loci for multiple-disease resistance located on chromosomes 3B, 4B, 5B, and 6D in Arina/Forno, and on chromosomes 2B, 4D, 5B, and 7B in History/Rubens. The most effective meta QTL was on chromosome 4D in History/Rubens closely linked to Rht-D1. The resistance allele from History reduced disease severity by 9.8 % for STB and 6.3 % for FHB, thus explaining 47 % and 60 % of partial phenotypic variance. In general, European wheat varieties showed a wide range of genotypic variation for STB resistance useful for breeding. Although the influence of environment and G x E interaction was high, some resistant varieties which were stable across multiple environments were found (Solitär, History, Florett). Genomic regions associated with STB resistance were mapped across 13 out of 21 wheat chromosomes. Together with the continuous distribution of five segregating populations for flag leaf infection, it can be concluded that the adult-plant resistance to S. tritici was inherited quantitatively depending on several loci explaining part of phenotypic variance. QTL meta-analysis across three severe pathogens, including Fusarium head blight, Stagnospora glume blotch, and STB, within two populations revealed eight loci for multiple-disease resistance with closely linked markers applicable in resistance breeding. Combining detected major QTL as well as meta QTL in present breeding material by applying marker-assisted selection seems a promising approach to the breeding of varieties with improved resistance to Septoria tritici blotch, Fusarium head blight, and Stagnospora glume blotch.Publication Mapping stem rust and leaf rust resistances in winter rye (Secale cereale L.)(2023) Gruner, Paul; Miedaner, ThomasRye (Seale cereale L.) is one of the few cross-pollinating small-grain cereals and is mainly used for bread baking, biogas production and as animal feed. In its largest cultivation area (Northern, Central and Eastern Europe, including the Russian Federation) two major rust diseases, stem rust (SR) caused by Puccinia graminis f. sp. secalis and leaf rust (LR) caused by Puccinia recondita, can cause severe yield losses. Whereas LR can be found in most rye growing areas every year, SR is occurring less regularly, but can become epidemic in some years. The general occurrence of stem rust in Germany is becoming more regular, especially when hot summers provide optimum conditions for the growth and the spread of this fungus. Resistant cultivars can be a successful way to control both diseases, but SR is not assessed in the (German) variety registration and still several cultivars can be found that are susceptible or medium resistant for LR. Before the studies of this thesis were conducted, no marker-associated SR resistance gene locus was known and only six LR resistance loci had been reported. Rust resistances can be classified into all-stage resistances (ASR), that are usually caused by single R-genes and adult-plant resistances (APR), that are characterized by smaller (quantitative) effects and can only be observed in the adult-plant stage and thus make field tests mandatory. This thesis aimed on identifying resistant genotypes and respective resistance loci for SR and LR resistances in the rye genome. Two different material groups were used: biparental populations composed of inbred lines and populations composed of self-incompatible single plants. In total ten biparental populations and two additional testcross populations were studied, each constituting 68-90 genotypes. Self-incompatible populations were genetic resources from the Russian Federation, Austria and the United States of America and had 68-74 single plants each. Inbred lines were assessed in multi-environmental field trials (4-6 environments per population) and to guarantee high disease pressure, SR was artificially inoculated in contrast to naturally occurring LR in all environments. In addition, two different kind of seedling tests, one based on inoculations of entire seedling plants and one based on inoculation of detached leaves, were used to assess SR resistance. Mixed linear models were used to analyze the phenotypic data from field experiments and (mixed) cumulative logit models were used to analyze ordinal data resulting from seedling tests. Due to small sample size of a single detached leaf per genotype and isolate in self-incompatible populations, the results based on cumulative modes were cross checked with a non-parametric test. Both, progenies from biparental populations and single plants from self-incompatible populations were genotyped with single nucleotide polymorphism (SNP) based markers (Illumina iSelect 10K SNP chip or DArTseqTM) and appropriate statistical tests for phenotype-marker association were applied. This was achieved by extending phenotypic models with additive and dominant marker effects and their respective interaction with the environment or the isolates. Two marker-associated SR ASR loci (Pgs1, Pgs3.1) could be identified in biparental populations that were responsible for (large) qualitative differences between resistant and susceptible plants in the field and/or seedling stage. Additionally, 14 quantitative trait loci (QTLs) were shown to be responsible for SR APR. For LR, except one QTL found at similar position compared to a previous study, two new genes (Pr7, Pr8) and three QTLs were identified. Self-incompatible rye populations were used for the first time for association mapping and three SR resistance loci (Pgs1 - Pgs3) could be identified. Two thereof were also found within biparental mapping populations by means of QTL mapping and this was considered as prove of this new method. Throughout all studies, the natural cross-pollinating character of rye had to be considered in choosing appropriate methods and for developing rust resistant rye hybrids. This thesis includes breeding material from the largest European rye breeding companies and experiments were conducted in close cooperation with them. The characterization of breeding material for SR and LR infection, development of (new) mapping approaches, detection of resistance loci and marker candidates in the rye genome and finally the discussion of selection strategies provides a solid basis for breeders to develop the most durable SR and LR resistant rye cultivars. For scientists, new research topics could be, for example, the cloning of rye genes or a more thorough understanding of pathogen dynamics to finally achieve durable resistance in future.Publication Molecular and genetic analyses of aggressiveness in Fusarium graminearum populations and variation for Fusarium head blight resistance in durum wheat(2011) Talas, Firas; Miedaner, ThomasFusarium head blight (FHB) is a devastating disease of wheat, barley and other cereals, which affects all wheat-growing areas of the world. The most prevalent species are Fusarium graminearum Schwabe (teleomorph: Gibberella zeae (Schweinitz) Petch) and Fusarium culmorum (W. G. Smith) Saccardo. Wheat breeding for FHB resistance has become the most effective and cost efficient strategy to combat this disease. Assisting long term stable breeding programs need a better understanding of the biology and dynamic changes of the population structure. Deoxyninalenol (DON) has the most economical impact among the other mycotoxin secreted by this fungus. Several chemotypes characterizes F. graminearum isolates. All chemotypes (3-ADON, 15-ADON, and NIV) were detected in Europe. The prevalent chemotype in Germany and UK is 15-ADON. Population structure is the result of evolutionary forces acting on the population in time and space together with mutation, recombination, and migration enhancing the genetic variance of a population, random drift and the selection reducing it. Aggressiveness in F. graminearum denotes the quantity of disease induced by a pathogenic isolate on a susceptible host in a non-race specific pathosystem, and is measured quantitatively. The quantitative traits such as aggressiveness and DON production mirror both the environmental changes and the genetic variation. Several genes are responsible for DON production; majority of these genes are grouped in TRI5 cluster. Few genes are known to be associated with F. graminearum aggressiveness such as MAP kinase genes, RAS2, and TRI14. Association between single nucleotide polymorphism and genetic variation of aggressiveness and DON production traits provide a clear identification of quantitative participation of different SNPs in expressing the trait. Also, this approach provides a good method to test the association between candidate genes and the traits. The objectives of this research were to (1) screen some durum wheat landraces for FHB resistance; (2) determine the genetic and chemotypic structure of natural population of F. graminearum in Germany; (3) determine the phenotypic variation in Aggressiveness and DON production, which come out one farmer wheat field; (4) compare the phenotypic variation and genetic variation occurring in one wheat field; and (5) associate the phenotypic traits with SNPs in candidate genes. Screening for FHB resistance was performed on sixty-eight entries form the Syrian landraces. The main characters of selection for resisting FHB disease are low mean value of infection and stability in different environments. Four genotypes (ICDW95842, ICDW92330, ICDW96165, Chahba) had small mean FHB value, small value of deviation form regression, and regression coefficient close to zero. These genotypes were considered as candidate resistant sources of FHB for further agronomic performance analysis through backcrossing generation. The causal agent of FHB in Germany is F. graminearum s.s. with a dominating rate of 64.9 % (out of 521 Fusarium spp. isolates). Nonetheless, the three chemotypes were detected in Germany and some times within one wheat field. The 15-ADON chemotype dominated the populations of F. graminearum s.s. in Germany followed by 3-ADON then NIV chemotype (92, 6.8, and 1.2%, respectively). High genetic diversity (Nei?s gene diversity ranged form 0.30 to 0.58) was detected on a single wheat field scale. Analysis of molecular variance (AMOVA) revealed a higher variance within populations (71.2%) than among populations (28.8%). Populations of F. graminearum s.s. in Germany display a tremendous genetic variation on a local scale with a restricted diversity among populations. Surprisingly the phenotypic variation of aggressiveness and DON production revealed a similar partitioning scale as the genetic variation. In other words, analyses of variance (ANOVA) revealed a higher variance within populations (72%) than between (28%) populations. The wide spectrum of aggressiveness (i.e., from 18 to 39%) and DON production (from 0.3 to 23 mg kg-1) within single wheat field simulate the global variation in both traits. Consequently, associating the observed variation of aggressiveness and DON production with detected single nucleotide polymorphism (SNPs) in some candidate genes revealed few but significant associations. According to Bonferroni-Holm adjustment, three SNPs were associated significantly with the aggressiveness, two in MetAP1 and one in Erf2 with explained proportions of genotypic variance (pG) of 25.6%, 0.5%, and 13.1%, respectively. One SNP in TRI1 was significantly associated with DON content on TRI1 (pG=4.4). The rapid decay of the LD facilitate a better high resolution of the association approach and is in turn suggest the need of higher number of SNP marker to facilitate a genome wide association study. The linkage disequilibrium between unlinked genes suggests the involvement of these genes in the same biosynthesis network. In conclusion, building wheat breeding program for FHB resistance depend initially on identifying sources of resistance among wheat varieties or wild relatives. Moreover, understanding the population structure of the pathogen and the selection forces causing genetic alteration of the population structure enable us employ a sufficient increase of the host resistance. Keeping such a balanced equilibrium between increasing host resistance and changes occur in genetic structure of F. graminearum population would insure no application of additional selection pressure. Further association of candidate genes with aggressiveness can provide effective information of the population development. Continuous observation of Fusarium population?s development is needed to insure a stable management of Fusarium head blight disease.Publication Molecular and phenotypic analyses of pathogenicity, aggressiveness, mycotoxin production, and colonization in the wheat-Gibberella zeae pathosystem(2004) Cumagun, Christian Joseph R.; Miedaner, ThomasFusarium head blight (FHB), caused by Gibberella zeae (Schwein.) Petch (anamorph: Fusarium graminearum Schwabe), is one of the principal diseases responsible for extensive damage in wheat fields and contamination of grain with the mycotoxins deoxynivalenol (DON) and nivalenol (NIV), rendering the harvest unsafe for human and animal consumption. Control of FHB is difficult because of the complex nature of host-pathogen-environment interaction and the nonavailability of highly effective fungicides. Agronomic practices and resistance breeding, therefore, offer the best strategies for disease management. Mapping by molecular markers provides an accurate approach for genetic analyses of simple and complex traits particularly pathogenicity, aggressiveness, and mycotoxin production. Pathogenicity, as defined here, is the ability to cause disease whereas aggressiveness is the quantity of disease induced by a pathogenic isolate on a susceptible host in which isolates do not interact differentially with host cultivars. The project aims to (1) map pathogenicity and aggressiveness of G. zeae based on a published genetic map (2) estimate genetic diversity of four parent isolates by PCR-based markers (3) examine the inheritance of pathogenicity, aggressiveness, mycotoxin type (DON/NIV), and DON production on a phenotypic basis, (4) analyse genetic covariation among aggressiveness, DON, and fungal colonization, (5) and compare aggressiveness of 42 isolates in greenhouse and field environments. Two crosses of G. zeae using nit (nitrate nonutilizing) marker technique were performed: (1) pathogenic DON-producing Z-3639 (Kansas, USA) x nonpathogenic NIV-producing R-5470 (Japan) belonging to lineage 7 and 6, respectively, and (2) DON-producing FG24 (Hungary) x FG3211 (Germany), both aggressive lineage 7 isolates. For the first cross, 99 progeny segregated in a consistent 61:38 for pathogenicity: nonpathogenicity in a two-year greenhouse experiment. Among the 61 pathogenic progeny, disease severity, measured as percentage infected spikelets, varied significantly (P = 0.01). Heritability for aggressiveness was high. Pathogenicity locus was mapped on linkage group IV near loci PIG1 (red pigment production), TOX1 (trichothecene toxin amount), and PER1 (perithecial production) explaining 60%, 43%, and 51% of the phenotypic variation, respectively. Two large aggressiveness QTLs were mapped on linkage group I linked to the locus TRI5 (trichodiene synthase in the trichothecene gene cluster) and an amplified fragment length polymorphism (AFLP) marker (EAAMTG0655K), explaining 51% and 29% of the observed phenotypic variation, respectively. These unlinked loci suggest that genetic basis between pathogenicity and aggressiveness were different. TRI5 is located in the same gene cluster as a previously identified gene known as TRI13, which determines whether DON or NIV will be produced. DON-producing progeny were, on average, twice as aggressive as were those producing NIV. Loci were only detected in the two linkage groups mentioned from the nine linkage groups present in the map. For the second cross FG24 x FG3211 with 153 progeny, head blight rating and relative plot yield were used as aggressiveness traits. DON production was measured by a commercial kit enzyme immunoassay. These three traits were quantitatively inherited among 153 progeny across three environments. Repeatabilities within each environment were medium to high but heritabilities across environments were medium only due to high progeny-environment interaction. DON was a less environmentally stable trait than aggressiveness. Transgressive segregants were detected frequently. This implies that even a cross within a lineage could lead to an increase in aggressiveness. Mapping of this cross was not initiated because the parents were not polymorphic enough to construct a genetic map. Instead, the parents were analysed for polymorphism in comparison to the parents of the first cross using 31 AFLP primer combinations and 56 random amplified polymorphic DNA (RAPD) primers. Polymorphism between Z-3639 and R-5470 was about three to four times higher than between FG24 and FG3211. Cluster analysis revealed that R-5470 was genetically separated from the other three parents, thus confirming the lineage assignments. Among preselected 50 progeny from the same field experiments that showed normal distribution for aggressiveness - head blight rating, fungal colonization, and DON production were correlated (r = 0.7, P = 0.01). Fungal colonization measured as Fusarium exoantigen (ExAg) content using enzyme-linked immunosorbent assay (ELISA) varied also quantitatively, but heritability was lower due to high progeny-environment interaction and error. Strong correlations among all traits indicate control by similar genes or gene complexes. No significant variation was observed for DON/ExAg ratio. Aggressiveness traits and DON production were more environmentally stable compared to Fusarium ExAg content. Our findings imply that aggressiveness may have other components apart from mycotoxin production. Genotypic variation for aggressiveness among the 42 progeny in one greenhouse and three field environments was significant and their correlation was moderate (r = 0.7, P = 0.01). High heritability in both environments again indicates that aggressiveness was a relatively stable trait, although methods of inoculation differed, i.e., injection for greenhouse and spraying for field experiments. Greenhouse aggressiveness could predict aggressiveness in the field, and thereby should reduce costs for resistance and phytopathological studies. In conclusion, we consider G. zeae as medium-risk pathogen with the potential to evolve to a higher level of aggressiveness due to sexual recombination. Erosion of quantitative resistance in FHB cannot be ignored, especially if host resistances with oligogenic inheritance, e.g. Sumai 3 from China, are used on a large acreage. Consequently, the rather simple inheritance of pathogenicity and aggressiveness in G. zeae could lead to a gradual increase of aggressiveness. These results should enhance efforts of plant breeders to use several, genetic distinct sources of resistance in order to avoid possible FHB outbreaks in the future.Publication Molecular and phenotypic diversity in populations of Fusarium culmorum on cereal hosts(2022) Castiblanco Vargas, Eveline Valheria; Miedaner, ThomasFusarium head blight is one of the most devastating diseases of cereals globally and responsible for large harvest losses, not only due to the reduction in productivity but also due to the contamination of the grain with mycotoxins. The major causal agent worldwide is Fusarium graminearum; in Europe also other Fusarium species, among them Fusarium culmorum (FC) play an important role. The interaction between Fusarium species and cereals has been categorized as quantitative according to previous phenotypic and genetic observations. We studied the molecular and phenotypic diversity of natural populations of FC and how they interact with four cereals (bread wheat, durum wheat, triticale, rye) as host. Specifically, we sought (i) to understand the interaction between host and isolate, and between isolate and environment using the variance partition approach offered by mixed models applied to analyze multi-environmental studies; (ii) to identify or validate the association of Fusarium genes previously assigned as candidates using field aggressiveness and deoxynivalenol (DON) production; and (iii) to compare the application and results of the candidate gene association mapping approach applied to the same population of FC isolates but with different phenotypic data obtained from inoculation in different hosts-bread wheat and rye. Phenotyping was based on multi-environmental field experiments where each plot of the host plant was artificially inoculated with spores of the respective isolate in accordance with the experimental design. Aggressiveness was visually quantified as the percentage of spikelets with symptoms per plot and was repeatedly evaluated over time. The content of the mycotoxin deoxynivalenol (DON) in the harvested grain was evaluated by double enzyme linked immunosorbent assays (ELISA). Genes previously reported in the literature as related to aggressiveness were selected for sequencing. Using the available F. graminearum genome sequence, specific primers were constructed to amplify and sequence the most variable regions of the respective genes. The partitioning of the phenotypic variance using mixed models, for a subpopulation of 38 FC isolates in four cereal hosts, allowed to disaggregate the magnitude of the genotypic and environmental variance, and the environmental variance in turn into its different components. The genotypic variance was significant, but was exceeded by the magnitude of the environmental variance and its interactions with genotype, showing that the role of plasticity in the pathosystem of Fusarium culmorum and its cereal hosts is highly important. In contrast, the variance associated with the host factor and the interactions with host were not significant, confirmed by high values of genetic correlation amogn host. This result supports the categorization of the cereal/Fusarium culmorum interaction as unspecific and quantitatively inherited also from the view of the pathogen. For the present study, plasticity was understood as the changes in the phenotype of the pathogen that could be attributed to changes induced by the environment. Our data revealed the year as factor with the highest influence on plasticity, meaning that the isolates with high performance values under humid conditions did not exhibit the same high values under dry conditions. Because the environmental conditions are erratic between the years, the lack of a constant selection pressure in the same direction reduces the probability of achieving a speciation event per environment. The phenotypic data of the DON content in harvested grain showed a high correlation with the aggressiveness data. An association mapping study with 17 candidate genes for aggressiveness using a population of 100 isolates of FC inoculated on bread wheat revealed the significant association of the HOG1 gene, explaining 10.29% of the genetic variance of aggressiveness and 6.05% of the genetic variance corresponding to the accumulation of DON in mature grain. HOG1 is a kinase-like protein involved in the communication within the oxidative metabolism of the fungus. In a similar study using the same population of FC isolates and the same candidate genes but rye as host, the gene CUT showed a significant association with aggressiveness, explaining 16.05% of the genetic variance. The CUT gene encodes a cutinase protein, belonging to the secretome and involved in the process of unleashing the membranes and cuticles of the host plant. Taken together, our results suggest that i) field trials of breeding for resistance to FC in cereals should be carried out in several years to properly account for the genotype-by-year interaction; ii) despite the fact that molecular communication may present some type of host specificity the high plasticity guarantees that the effects on the phenotype are very similar among the cereal hosts; and iii) the high genetic correlation of aggressiveness for different cereals invites to involve non-cereal crops in the rotation plans focused on Fusarium disease management.Publication Molecular mapping of resistance and aggressiveness in the cereal/Fusarium head blight pathosystem(2016) Kalih, Rasha; Miedaner, ThomasFusarium head blight (FHB) is one of the most destructive fungal diseases in small-grain cereals worldwide causing significant yield losses and contamination of grain with mycotoxins e.g., deoxynivalenol (DON). This renders the grain unsuitable for human consumption and animal feeding. Exploring the genetic mechanism of FHB resistance is considered the key tool for modern cereal breeding activities. Triticale, the intergeneric hybrid between wheat and rye, is an important cereal crop in Poland and Germany. Resistance breeding using genetic mapping to identify quantitative-trait loci (QTL) associated with FHB resistance represents the best strategy for controlling the disease. In parallel, understanding the mechanism of aggressiveness and DON production of F. graminearum will be a significant contribution to improve FHB management. The objectives of the present work were (1) identification of QTL related to FHB resistance in triticale, together with the analysis of the correlation of FHB severity with other related traits such as plant height and heading stage, (2) correlation between DON production and FHB severity, (3) mapping of dwarfing gene Ddw1 in triticale and studying its effect on FHB resistance, plant height and heading stage, (4) detection of SNPs in candidate genes associated with aggressiveness and DON production of a large Fusarium graminearum population in bread wheat. To study the genetic architecture of FHB resistance in triticale, five doubled-haploid (DH) triticale populations with 120 to 200 progenies were successfully tested under field conditions by inoculation with Fusarium culmorum (FC46) in multiple environments. All genotypes were evaluated for FHB resistance, plant height and heading stage. DArT markers were used to genotype triticale populations. Significant genotypic variances (P<0.001) were observed for FHB severity in all populations combined with high heritability. Twenty-two QTLs for FHB resistance in triticale were reported with two to five QTL per population, thus confirming the quantitative inheritance of FHB resistance in triticale. The most prominent (R2 ≥ 35%) QTLs were located on chromosomes 6A, 3B, 4R, and 5R. QTLs for plant height and heading stage were also detected in our work, some of them were overlapping with QTLs for FHB resistance. Correlation between FHB severity, DON content and Fusarium damaged kernels (FDK) in triticale was studied in the population Lasko x Alamo. Significant genotypic variance was detected for all traits. However, low correlation between FHB severity and DON content (r=0.31) was found. Interestingly, correlation between FHB severity and FDK rating was considerably higher (r=0.57). For FHB severity, two QTLs were detected in this population. A QTL located on chromosome 2A with minor effect for FHB severity was also a common QTL for DON content and FDK rating and explained ≥34% of genotypic variance for these two traits. A second QTL on chromosome 5R was a major QTL but it has no effect on DON content or FDK rating. For analyzing the rye dwarfing gene Ddw1 derived from the father Pigmej, 199 (DH) progenies were genotyped with DArT markers and in addition with conserved ortholog set (COS) markers linked to the Ddw1 locus in rye. QTL analyses detected three, four, and six QTLs for FHB severity, plant height and heading stage, respectively. Two specific markers tightly linked with Ddw1 on rye chromosome 5R explained 48, 77, and 71 % of genotypic variation for FHB severity, plant height, and heading stage, respectively. This is strong evidence, that we indeed detected the rye gene Ddw1 in this triticale population. Another objective was to highlight the association between quantitative variation of aggressiveness and DON production of 152 F. graminearum isolates with single nucleotide polymorphism (SNP) markers in seven candidate genes. One to three significant SNPs (P < 0.01 using cross-validation) were associated to FHB severity in four genes (i.e., Gmpk1, Mgv1, TRI6, and Erf2). For DON content, just one significant SNP was detected in the gene Mgv1 explaining 6.5% of the total genotypic variance. In conclusion, wide genetic variation in FHB resistance in triticale has been observed in five populations. QTL mapping analyses revealed twenty-two QTLs for FHB resistance derived from wheat and rye genomes. QTLs located on the rye genome were reported here for the first time and they are a new source for FHB resistance in triticale. In parallel, analysis of the diversity of four pathogenicity genes in F. graminearum is an important first step in inferring the genetic network of pathogenicity in this fungal pathogen.