Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Newcomb, Maria"

Type the first few letters and click on the Browse button
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    High-throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought
    (2021) Zendonadi dos Santos, Nícolas; Piepho, Hans‐Peter; Condorelli, Giuseppe Emanuele; Licieri Groli, Eder; Newcomb, Maria; Ward, Richard; Tuberosa, Roberto; Maccaferri, Marco; Fiorani, Fabio; Rascher, Uwe; Muller, Onno
    Chlorophyll fluorescence (ChlF) is a powerful non‐invasive technique for probing photosynthesis. Although proposed as a method for drought tolerance screening, ChlF has not yet been fully adopted in physiological breeding, mainly due to limitations in high‐throughput field phenotyping capabilities. The light‐induced fluorescence transient (LIFT) sensor has recently been shown to reliably provide active ChlF data for rapid and remote characterisation of plant photosynthetic performance. We used the LIFT sensor to quantify photosynthesis traits across time in a large panel of durum wheat genotypes subjected to a progressive drought in replicated field trials over two growing seasons. The photosynthetic performance was measured at the canopy level by means of the operating efficiency of Photosystem II (Fq′/Fm′) and the kinetics of electron transport measured by reoxidation rates (Fr1′ and Fr2′). Short‐ and long‐term changes in ChlF traits were found in response to soil water availability and due to interactions with weather fluctuations. In mild drought, Fq′/Fm′ and Fr2′ were little affected, while Fr1′ was consistently accelerated in water‐limited compared to well‐watered plants, increasingly so with rising vapour pressure deficit. This high‐throughput approach allowed assessment of the native genetic diversity in ChlF traits while considering the diurnal dynamics of photosynthesis.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy