Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Neyret, Margot"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Increasing plant species richness by seeding has marginal effects on ecosystem functioning in agricultural grasslands
    (2023) Freitag, Martin; Hölzel, Norbert; Neuenkamp, Lena; van der Plas, Fons; Manning, Peter; Abrahão, Anna; Bergmann, Joana; Boeddinghaus, Runa; Bolliger, Ralph; Hamer, Ute; Kandeler, Ellen; Kleinebecker, Till; Knorr, Klaus‐Holger; Marhan, Sven; Neyret, Margot; Prati, Daniel; Le Provost, Gaëtane; Saiz, Hugo; van Kleunen, Mark; Schäfer, Deborah; Klaus, Valentin H.
    Experimental evidence shows that grassland plant diversity enhances ecosystem functioning. Yet, the transfer of results from controlled biodiversity experiments to naturally assembled ‘real world’ ecosystems remains challenging due to environmental variation among sites, confounding biodiversity ecosystem functioning relations in observational studies. To bridge the gap between classical biodiversity‐ecosystem functioning experiments and observational studies of naturally assembled and managed ecosystems, we created regionally replicated, within‐site gradients of species richness by seeding across agricultural grasslands differing in land‐use intensity (LUI) and abiotic site conditions. Within each of 73 grassland sites, we established a full‐factorial experiment with high‐diversity seeding and topsoil disturbance and measured 12 ecosystem functions related to productivity, and carbon and nutrient cycling after 4 years. We then analysed the effects of plant diversity (seeded richness as well as realized richness), functional community composition, land use and abiotic conditions on the ecosystem functions within (local scale) as well as among grassland sites (landscape scale). Despite the successful creation of a within‐site gradient in plant diversity (average increase in species richness in seeding treatments by 10%–35%), we found that only one to two of the 12 ecosystem functions responded to realized species richness, resulting in more closed nitrogen cycles in more diverse plant communities. Similar results were found when analysing the effect of the seeding treatment instead of realized species richness. Among sites, ecosystem functioning was mostly driven by environmental conditions and LUI. Also here, the only functions related to plant species richness were those associated with a more closed nitrogen cycle under increased diversity. The minor effects of species enrichment we found suggest that the functionally‐relevant niche space is largely saturated in naturally assembled grasslands, and that competitive, high‐functioning species are already present. Synthesis: While nature conservation and cultural ecosystem services can certainly benefit from plant species enrichment, our study indicates that restoration of plant diversity in naturally assembled communities may deliver only relatively weak increases in ecosystem functioning, such as a more closed nitrogen cycle, within the extensively to moderate intensively managed agricultural grasslands of our study.
  • Loading...
    Thumbnail Image
    Publication
    A slow-fast trait continuum at the whole community level in relation to land-use intensification
    (2024) Neyret, Margot; Le Provost, Gaëtane; Boesing, Andrea Larissa; Schneider, Florian D.; Baulechner, Dennis; Bergmann, Joana; de Vries, Franciska T.; Fiore-Donno, Anna Maria; Geisen, Stefan; Goldmann, Kezia; Merges, Anna; Saifutdinov, Ruslan A.; Simons, Nadja K.; Tobias, Joseph A.; Zaitsev, Andrey S.; Gossner, Martin M.; Jung, Kirsten; Kandeler, Ellen; Krauss, Jochen; Penone, Caterina; Schloter, Michael; Schulz, Stefanie; Staab, Michael; Wolters, Volkmar; Apostolakis, Antonios; Birkhofer, Klaus; Boch, Steffen; Boeddinghaus, Runa S.; Bolliger, Ralph; Bonkowski, Michael; Buscot, François; Dumack, Kenneth; Fischer, Markus; Gan, Huei Ying; Heinze, Johannes; Hölzel, Norbert; John, Katharina; Klaus, Valentin H.; Kleinebecker, Till; Marhan, Sven; Müller, Jörg; Renner, Swen C.; Rillig, Matthias C.; Schenk, Noëlle V.; Schöning, Ingo; Schrumpf, Marion; Seibold, Sebastian; Socher, Stephanie A.; Solly, Emily F.; Teuscher, Miriam; van Kleunen, Mark; Wubet, Tesfaye; Manning, Peter; Neyret, Margot; Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Le Provost, Gaëtane; INRAE, Bordeaux Sciences Agro, ISVV, SAVE, Villenave d’Ornon, France; Boesing, Andrea Larissa; Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Schneider, Florian D.; Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Baulechner, Dennis; Justus Liebig University, Department of Animal Ecology, Giessen, Germany; Bergmann, Joana; Leibniz Center for Agricultural Landscape Research (ZALF), Müncheberg, Germany; de Vries, Franciska T.; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; Fiore-Donno, Anna Maria; Terrestrial Ecology, Institute of Zoology, University of Cologne, Köln, Germany; Geisen, Stefan; Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands; Goldmann, Kezia; Helmholtz Centre for Environmental Research (UFZ), Soil Ecology Department, Halle/Saale, Germany; Merges, Anna; Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Saifutdinov, Ruslan A.; A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia; Simons, Nadja K.; Ecological Networks, Technical University Darmstadt, Darmstadt, Germany; Tobias, Joseph A.; Department of Life Sciences, Imperial College London, Ascot, UK; Zaitsev, Andrey S.; Justus Liebig University, Department of Animal Ecology, Giessen, Germany; Gossner, Martin M.; Forest Entomology, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland; Jung, Kirsten; Institut of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany; Kandeler, Ellen; Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany; Krauss, Jochen; Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany; Penone, Caterina; Institute of Plant Sciences, University of Bern, Bern, Switzerland; Schloter, Michael; Helmholtz Zentrum Muenchen, Research Unit for Comparative Microbiome Analysis, Oberschleissheim, Germany; Schulz, Stefanie; Helmholtz Zentrum Muenchen, Research Unit for Comparative Microbiome Analysis, Oberschleissheim, Germany; Staab, Michael; Ecological Networks, Technical University Darmstadt, Darmstadt, Germany; Wolters, Volkmar; Justus Liebig University, Department of Animal Ecology, Giessen, Germany; Apostolakis, Antonios; Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany; Birkhofer, Klaus; Department of Ecology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany; Boch, Steffen; Swiss Federal Research Institute WSL, Birmensdorf, Switzerland; Boeddinghaus, Runa S.; Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany; Bolliger, Ralph; Institute of Plant Sciences, University of Bern, Bern, Switzerland; Bonkowski, Michael; Terrestrial Ecology, Institute of Zoology, University of Cologne, Köln, Germany; Buscot, François; Helmholtz Centre for Environmental Research (UFZ), Soil Ecology Department, Halle/Saale, Germany; Dumack, Kenneth; Terrestrial Ecology, Institute of Zoology, University of Cologne, Köln, Germany; Fischer, Markus; Institute of Plant Sciences, University of Bern, Bern, Switzerland; Gan, Huei Ying; Senckenberg Centre for Human Evolution and Palaeoenvironments Tübingen (SHEP), Tübingen, Germany; Heinze, Johannes; Department of Biodiversity, Heinz Sielmann Foundation, Wustermark, Germany; Hölzel, Norbert; Institute of Landscape Ecology, University of Münster, Münster, Germany; John, Katharina; Justus Liebig University, Department of Animal Ecology, Giessen, Germany; Klaus, Valentin H.; Institute of Agricultural Sciences, ETH Zürich, Zürich, Switzerland; Kleinebecker, Till; Institute for Landscape Ecology and Resources Management (ILR), Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany; Marhan, Sven; Department of Soil Biology, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany; Müller, Jörg; Department of Nature Conservation, Heinz Sielmann Foundation, Wustermark, Germany; Renner, Swen C.; Ornithology, Natural History Museum Vienna, Vienna, Autria, Germany; Rillig, Matthias C.; Freie Universität Berlin, Institute of Biology, Berlin, Germany; Schenk, Noëlle V.; Institute of Plant Sciences, University of Bern, Bern, Switzerland; Schöning, Ingo; Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany; Schrumpf, Marion; Department of Biogeochemical Processes, Max-Planck-Institute for Biogeochemistry, Jena, Germany; Seibold, Sebastian; Technical University of Munich, TUM School of Life Sciences, Freising, Germany; Socher, Stephanie A.; Paris Lodron University Salzburg, Department Environment and Biodiversity, Salzburg, Austria; Solly, Emily F.; Helmholtz Centre for Environmental Research (UFZ), Computation Hydrosystems Department, Leipzig, Germany; Teuscher, Miriam; University of Göttingen, Centre of Biodiversity and Sustainable Land Use, Göttingen, Germany; van Kleunen, Mark; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China; Wubet, Tesfaye; German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena-, Leipzig, Germany; Manning, Peter; Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
    Organismal functional strategies form a continuum from slow- to fast-growing organisms, in response to common drivers such as resource availability and disturbance. However, whether there is synchronisation of these strategies at the entire community level is unclear. Here, we combine trait data for >2800 above- and belowground taxa from 14 trophic guilds spanning a disturbance and resource availability gradient in German grasslands. The results indicate that most guilds consistently respond to these drivers through both direct and trophically mediated effects, resulting in a ‘slow-fast’ axis at the level of the entire community. Using 15 indicators of carbon and nutrient fluxes, biomass production and decomposition, we also show that fast trait communities are associated with faster rates of ecosystem functioning. These findings demonstrate that ‘slow’ and ‘fast’ strategies can be manifested at the level of whole communities, opening new avenues of ecosystem-level functional classification.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy