Browsing by Person "Ordon, Frank"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Capturing wheat phenotypes at the genome level(2022) Hussain, Babar; Akpınar, Bala A.; Alaux, Michael; Algharib, Ahmed M.; Sehgal, Deepmala; Ali, Zulfiqar; Aradottir, Gudbjorg I.; Batley, Jacqueline; Bellec, Arnaud; Bentley, Alison R.; Cagirici, Halise B.; Cattivelli, Luigi; Choulet, Fred; Cockram, James; Desiderio, Francesca; Devaux, Pierre; Dogramaci, Munevver; Dorado, Gabriel; Dreisigacker, Susanne; Edwards, David; El-Hassouni, Khaoula; Eversole, Kellye; Fahima, Tzion; Figueroa, Melania; Gálvez, Sergio; Gill, Kulvinder S.; Govta, Liubov; Gul, Alvina; Hensel, Goetz; Hernandez, Pilar; Crespo-Herrera, Leonardo Abdiel; Ibrahim, Amir; Kilian, Benjamin; Korzun, Viktor; Krugman, Tamar; Li, Yinghui; Liu, Shuyu; Mahmoud, Amer F.; Morgounov, Alexey; Muslu, Tugdem; Naseer, Faiza; Ordon, Frank; Paux, Etienne; Perovic, Dragan; Reddy, Gadi V. P.; Reif, Jochen Christoph; Reynolds, Matthew; Roychowdhury, Rajib; Rudd, Jackie; Sen, Taner Z.; Sukumaran, Sivakumar; Ozdemir, Bahar Sogutmaz; Tiwari, Vijay Kumar; Ullah, Naimat; Unver, Turgay; Yazar, Selami; Appels, Rudi; Budak, HikmetRecent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world’s most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public–private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.Publication The potential of hybrid breeding to enhance leaf rust and stripe rust resistance in wheat(2020) Beukert, Ulrike; Liu, Guozheng; Thorwarth, Patrick; Boeven, Philipp H. G.; Longin, C. Friedrich H.; Zhao, Yusheng; Ganal, Martin; Serfling, Albrecht; Ordon, Frank; Reif, Jochen C.Leaf rust and stripe rust belong to the most important fungal diseases in wheat production. Due to a dynamic development of new virulent races, epidemics appear in high frequency and causes significant losses in grain yield and quality. Therefore, research is needed to develop strategies to breed wheat varieties carrying highly efficient resistances. Stacking of dominant resistance genes through hybrid breeding is such an approach. Within this study, we investigated the genetic architecture of leaf rust and stripe rust resistance of 1750 wheat hybrids and their 230 parental lines using a genome-wide association study. We observed on average a lower rust susceptibility for hybrids in comparison to their parental inbred lines and some hybrids outperformed their better parent with up to 56%. Marker-trait associations were identified on chromosome 3D and 4A for leaf rust and on chromosome 2A, 2B, and 6A for stripe rust resistance by using a genome-wide association study with a Bonferroni-corrected threshold of P < 0.10. Detected loci on chromosomes 4A and 2A were located within previously reported genomic regions affecting leaf rust and stripe rust resistance, respectively. The degree of dominance was for most associations favorable in the direction of improved resistance. Thus, resistance can be increased in hybrid wheat breeding by fixing complementary leaf rust and stripe rust resistance genes with desired dominance effects in opposite parental pools.
