Browsing by Person "Pataczek, Lisa"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Publication Agrivoltaics mitigate drought effects in winter wheat(2023) Pataczek, Lisa; Weselek, Axel; Bauerle, Andrea; Högy, Petra; Lewandowski, Iris; Zikeli, Sabine; Schweiger, AndreasClimate change is expected to decrease water availability in many agricultural production areas around the globe. At the same time renewable energy concepts such as agrivoltaics (AV) are necessary to manage the energy transition. Several studies showed that evapotranspiration can be reduced in AV systems, resulting in increased water availability for crops. However, effects on crop performance and productivity remain unclear to date. Carbon‐13 isotopic composition (δ13C and discrimination against carbon‐13) can be used as a proxy for the effects of water availability on plant performance, integrating crop responses over the entire growing season. The aim of this study was to assess these effects via carbon isotopic composition in grains, as well as grain yield of winter wheat in an AV system in southwest Germany. Crops were cultivated over four seasons from 2016–2020 in the AV system and on an unshaded adjacent reference (REF) site. Across all seasons, average grain yield did not significantly differ between AV and REF (4.7 vs 5.2 t ha−1), with higher interannual yield stability in the AV system. However, δ13C as well as carbon‐13 isotope discrimination differed significantly across the seasons by 1‰ (AV: −29.0‰ vs REF: −28.0‰ and AV: 21.6‰ vs REF: 20.6‰) between the AV system and the REF site. These drought mitigation effects as indicated by the results of this study will become crucial for the resilience of agricultural production in the near future when drought events will become significantly more frequent and severe.Publication Combining improved mungbean cultivars with plant growth promoting rhizobacteria inoculation and regulated deficit irrigation to increase crop productivity(2024) Pataczek, Lisa; Cadisch, GeorgThe cultivation of legumes provides an approach to sustainably intensify agricultural production, since short-duration legumes can fit into existing cereal-based cropping systems, diversifying farm incomes and farmers diets, as well as providing environmental benefits through the fixation of atmospheric N2 and, thus, enhancing yields of following crops. Mungbean is a legume, which plays already an important role in the traditional nutrition of people in the Global South. Its nutritious seeds can improve food security and the short growing duration facilitates the diversification of mainly cereal-based crop rotations. However, yields are low and may even become lower in future in the face of climate change. Main constraints of mungbean cultivation include pest and diseases, as well as heat, drought and soil salinity due to inappropriate irrigation techniques or saline ground water. The main aim of this thesis was therefore to analyse the effects of more advanced cultivation techniques, i.e. the use of plant growth promoting rhizobacteria (PGPR) and regulated deficit irrigation (RDI), on the productivity and nitrogen (N) fixation capacity of improved mungbean (Vigna radiata L.) cultivars, resistant and/or tolerant to pests, diseases, heat and soil salinity. An extended literature review was conducted to summarize the current understanding of the use of PGPRs and the effect on crop productivity, especially on marginal land (Chapter 2). The use of PGPRs can on the one hand side increase plant growth through direct and indirect mechanisms, such as BNF, hormone production and nutrient solubilization or the production of antibiotics to suppress phytodiseases. Especially 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity plays a significant role to reduce the negative impact of stress environments. On the other side PGPRs can be used to remediate decontaminated sites, through metabolic capabilities, transforming for instance aromatic compounds into less toxic compounds, or the biodegradation of pesticides and organic pollutants. Since ACC deaminase-producing bacteria are also supposed to enhance root growth, it is assumed that they can potentially increase soil N uptake and/or infection sites for rhizobia to biologically fix atmospheric N2 (BNF). In order to test the effect of ACC deaminase-producing PGPRs on mungbean productivity and N accumulation, three strains were tested as single- or multistrain inoculation in the field: Rhizobium phaseoli, Bacillus subtilis and Pseudomonas fluorescens (Chapter 3). Their effect on one improved mungbean cultivar (NM11, resistant to the Mungbean Yellow Mosaic Disease) was assessed on two research sites in Faisalabad, Pakistan. The impact of the strains differed significantly, with no effect on productivity (total biomass, seed yield) or total N accumulation (BNF and soil-N uptake) with multi-strain inoculation of all strains and single-strain inoculation of P. fluorescens. Inoculation with B. subtilis did, however, result in significantly increased dry matter (roots: +211 kg ha-1, total dry matter: +1.7 t ha-1), and total plant-N (+36 kg ha-1), while R. phaseoli inoculation enhanced BNF (+24%). The results suggested that only the single strain inoculation of B. subtilis and R. phaseoli was promising in terms of productivity increase, however, the choice of the strain should be made according to the soil-N status: low soil-N favors R. phaseoli inoculation, while medium to high soil-N would rather point towards the use of B. subtilis. The improved mungbean cultivar NM11 was additionally tested together with three other improved cultivars (AVMU 1604, AVMU 1635 and KPS2, resistant/tolerant to powdery mildew, bruchids and heat and salt, respectively), in combination with RDI in a greenhouse trial at the University of Hohenheim (Chapter 4). The aim was to identify differences in drought adaptation strategies between the cultivars in terms of dry matter partitioning, yield, harvest index, pod harvest index, water use efficiency and carbon-13 isotope discrimination. Levels of water deficit as depletion fractions (%) of total available soil water were set to 0.45, 0.65 and 0.8, corresponding to recommended irrigation, moderate and severe water deficit, respectively. The cultivars differed in their drought resistance strategies, exhibiting either drought escape, avoidance, tolerance or a combination of several strategies. The cultivar KPS2 showed mainly a drought escape mechanism through faster development, stable yields and greatest harvest index/pod harvest index (36%/69%) across all RDI treatments and cultivars. The cultivar AVMU 1604 displayed mainly a mixture of drought avoidance and escape through increased remobilization of assimilates from vegetative plant parts to pods/seeds, resulting in greater yield under water deficit by 52%. The choice of a cultivar for the field should be based, thus, on the prevailing climatic conditions (season and region): KPS2 can grow in areas with terminate drought conditions, whereas AVMU 1604 can tolerate intermittent drought conditions. The results of this thesis showed that ACC deaminase-producing PGPRs can substantially affect N uptake, although this effect is barely discussed in literature. Moreover, improved mungbean cultivars, exhibiting already a range of tolerances and resistances to certain pests and diseases, showed a great potential in adapting to drought conditions, representing a viable option for cultivation under increasing abiotic and biotic stress factors in the face of climate change.Publication Mineral-solubilizing bacteria-mediated enzymatic regulation and nutrient acquisition benefit cotton’s (Gossypium hirsutum L.) vegetative and reproductive growth(2023) Ahmad, Iqra; Ahmad, Maqshoof; Bushra,; Hussain, Azhar; Mumtaz, Muhammad Zahid; Najm-ul-Seher,; Abbasi, Ghulam Hassan; Nazli, Farheen; Pataczek, Lisa; Ali, Hayssam M.Many farmers’ incomes in developing countries depend on the cultivation of major crops grown in arid and semi-arid regions. The agricultural productivity of arid and semi-arid areas primarily relies on chemical fertilizers. The effectiveness of chemical fertilizers needs to improve by integration with other sources of nutrients. Plant growth-promoting bacteria can solubilize nutrients, increase plant nutrient uptake, and supplement chemical fertilizers. A pot experiment evaluated the promising plant growth-promoting bacterial strain’s effectiveness in promoting cotton growth, antioxidant enzymes, yield, and nutrient uptake. Two phosphate solubilizing bacterial strains (Bacillus subtilis IA6 and Paenibacillus polymyxa IA7) and two zinc solubilizing bacterial strains (Bacillus sp. IA7 and Bacillus aryabhattai IA20) were coated on cotton seeds in a single as well as co-inoculation treatments. These treatments were compared with uninoculated controls in the presence and absence of recommended chemical fertilizer doses. The results showed the co-inoculation combination of Paenibacillus polymyxa IA7 and Bacillus aryabhattai IA20 significantly increased the number of bolls, seed cotton yield, lint yield, and antioxidants activities, including superoxide dismutase, guaiacol peroxidase, catalase, and peroxidase. Co-inoculation combination of Bacillus subtilis IA6 and Bacillus sp. IA16 promoted growth attributes, including shoot length, root length, shoot fresh weight, and root fresh weight. This co-inoculation combination also increased soil nutrient content. At the same time, Paenibacillus polymyxa IA7 + Bacillus aryabhattai IA20 increased nutrient uptake by plant shoots and roots compared.