Repository logo
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
    Communities & Collections
    All of hohPublica
Log In
Log in as University member:
Log in as external user:
Have you forgotten your password?

Please contact the hohPublica team if you do not have a valid Hohenheim user account (hohPublica@uni-hohenheim.de)
Hilfe
  • English
  • Deutsch
  1. Home
  2. Person

Browsing by Person "Pfeffer, Martin"

Type the first few letters and click on the Browse button
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Identification of new microfoci and genetic characterization of tick-borne encephalitis virus isolates from Eastern Germany and Western Poland
    (2024) Król, Nina; Chitimia-Dobler, Lidia; Dobler, Gerhard; Kiewra, Dorota; Czułowska, Aleksandra; Obiegala, Anna; Zajkowska, Joanna; Juretzek, Thomas; Pfeffer, Martin
    (1) Background: Tick-borne encephalitis (TBE) is the most important tick-borne viral disease in Eurasia, although effective vaccines are available. Caused by the tick-borne encephalitis virus (TBEV, syn. Orthoflavivirus encephalitidis), in Europe, it is transmitted by ticks like Ixodes ricinus and Dermacentor reticulatus. TBEV circulates in natural foci, making it endemic to specific regions, such as southern Germany and northeastern Poland. Our study aimed to identify new TBEV natural foci and genetically characterize strains in ticks in previously nonendemic areas in Eastern Germany and Western Poland. (2) Methods: Ticks were collected from vegetation in areas reported by TBE patients. After identification, ticks were tested for TBEV in pools of a maximum of 10 specimens using real-time RT-PCR. From the positive TBEV samples, E genes were sequenced. (3) Results: Among 8400 ticks from 19 sites, I. ricinus (n = 4784; 56.9%) was predominant, followed by D. reticulatus (n = 3506; 41.7%), Haemaphysalis concinna (n = 108; 1.3%), and I. frontalis (n = 2; <0.1%). TBEV was detected in 19 pools originating in six sites. The phylogenetic analyses revealed that TBEV strains from Germany and Poland clustered with other German strains, as well as those from Finland and Estonia. (4) Conclusions: Although there are still only a few cases are reported from these areas, people spending much time outdoors should consider TBE vaccination.
  • Loading...
    Thumbnail Image
    Publication
    Tick hazard in a Central European country: Mapping Europe’s principal tick-borne disease vector across Germany
    (2025) Springer, Andrea; Lindau, Alexander; Fachet-Lehmann, Katrin; Kämmer, Daniel; Bulling, Ingrid; Knoll, Steffen; Król, Nina; Fischer, Dominik; Fischer, Luisa; Drehmann, Marco; Chitimia-Dobler, Lidia; Noll, Madeleine; Vineer, Hannah Rose; Kahl, Olaf; Pfeffer, Martin; Strube, Christina; Mackenstedt, Ute
    The most common European tick species, Ixodes ricinus, is the principal vector of Borrelia and tick-borne encephalitis virus and several other pathogens of public health relevance in Europe. Comprehensive data on tick abundance and the underlying ecological drivers are crucial for developing awareness and control strategies and to assess future changes in tick-borne disease risk. We aimed to provide a Germany-wide map of I. ricinus abundance to aid in disease transmission risk assessment. During 2018−2020, questing tick density was assessed at 83 sites across the whole country by drag flagging, whereby 49,344 I. ricinus nymphs and adults were collected. Relationships between climate, land cover, and monthly questing I. ricinus nymph density were explored and used to draw an abundance map. Highest tick hazard was observed in areas near the coast with mild winters and moist springs, and in mid-elevation mountain ranges, which represent popular tourist destinations. The ticks’ seasonal activity pattern was predominantly unimodal. The fact that the observed regional differences are contradictory to a previous estimation based on a combination of regional studies illustrates the need for an extensive and coordinated sampling effort to reliably estimate tick abundance at larger spatial scales. Combined with data on tick-borne pathogens, our study enables estimating the density of infected ticks and consequently the risk of acquiring an infectious tick bite. Moreover, the observed relationships with climate and land cover can help to predict future developments of tick hazard under different climate scenarios in Central Europe.

  • Contact
  • FAQ
  • Cookie settings
  • Imprint/Privacy policy